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Raw Sockets in IPv6 
 
Among many other functions performed by a computer’s operating system, there is typically an 
interface to a shared local network protocol engine. This means that applications that run within the 
operating system’s environment don’t need to implement their own network protocol engine, as they 
can make use of a shared common interface to the underlying network protocol engine via a simple 
standard interface. In Unix, the commonly used API to the underlying communications system is via 
the socket routines. Sockets creates an abstract model of the underlying network by mimicking a simple 
peripheral device, and once the application connects to a network socket (akin to opening a virtual 
connection to a remote host), it can then use the network through conventional read and write 
commands on that socket. Using the appropriate socket abstraction, the details about managing the 
TCP or UDP packet headers and the common IP layer is managed by the operating system’s protocol 
drivers, and is largely hidden from the application. 
 
As part of a measurement experiment, we wanted an implementation of an IPv6 UDP server and a 
TCP server that generated fragmented IPv6 packets. However, as an added condition, we wanted the 
application to directly control the packet fragmentation function. The conventional standard socket 
interface masks any visibility to the underlying packet transactions, and therefore cannot be used for 
this experiment. There is a specialised socket option that allows an application to interact directly with 
the underlying communications driver and read and write IP datagrams without having the packets 
processed by the operating system’s IP protocol drivers. This is the Raw Socket option in IPv4, and an 
example of opening such a socket is shown in this C code snippet: 
 

/* 

 * open_raw_socket 

 * 

 * open a raw socket interface into the kernel 

 */ 

 

void 

open_raw_socket() 

  {   

  const int on = 1 ; 

 

  /* create the raw socket via the socket call*/ 

  if ((sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP)) < 0) { 

    perror("socket() error"); 

    exit(EXIT_FAILURE); 

    } 

 

  /* inform the kernel the IP header is already attached via a socket option */ 

  if (setsockopt(sock_fd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on)) < 0) { 

    perror("setsockopt() error"); 

    exit(EXIT_FAILURE); 

    } 

  } 

 

This code snippet is written to use IPv4. A shift to IPv6 does not entail a lot of code changes. It's a 
case of changing the protocol specifier from AF_INET to AF_INET6, expanding the size of the IP 
address data structures to 128 bits and there is not that much else to do. But this is not the case for raw 
sockets. Here IPv6 is indeed very different, as noted in RFC 3542: 
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   [The] difference from IPv4 raw sockets is that complete packets 

   (that is, IPv6 packets with extension headers) cannot be sent or 

   received using the IPv6 raw sockets API. 

   … 

   When writing to a raw socket the kernel will automatically fragment 

   the packet if its size exceeds the path MTU, inserting the required 

   fragment headers. 

   … 

   Most IPv4 implementations give special treatment to a raw socket 

   created with a third argument to socket() of IPPROTO_RAW, whose value 

   is normally 255, to have it mean that the application will send down 

   complete packets including the IPv4 header.  (Note: This feature was 

   added to IPv4 in 1988 by Van Jacobson to support traceroute, allowing 

   a complete IP header to be passed by the application, before the 

   IP_HDRINCL socket option was added.)  We note that IPPROTO_RAW has no 

   special meaning to an IPv6 raw socket (and the IANA currently 

   reserves the value of 255 when used as a next-header field). 

  
RFC 3542, “Advanced Sockets Application Program Interface (API) for IPv6”, W. Stevens et al, May 2003. 

 
What we want to do in this measurement experiment, namely use an IPv6 raw socket that allows the 
application to have direct control of the entirety of the IPv6 packet header, including fragmentation 
handling, is not directly supported using the IPv6 raw IP socket interface. 
 
But there is another approach that can be used. Sockets can extend one further level down in the 
protocol stack, and connect directly to the network interface rather than to a network protocol engine. 
This form of raw socket requires the application to write complete packets to the socket interface, 
including the media layer framing (such as the Ethernet headers), the IP level packet header, the 
transport protocol header, as well as any payload. If we want to perform explicit control over the 
generation of IPv6 Extension Headers to support IPv6 packet fragmentation control at the application 
level, then this media level socket interface looks like a viable approach. 
 
In this article, I will describe how we used this raw socket interface in IPv6 to generate a UDP-based 
DNS server and a TCP-based HTTP(S) server that allowed the application to exercise direct control 
over packet fragmentation. 
 

A Raw Socket UDP DNS Server 

 
The aim of this packet handler was to provide a font end to a conventional DNS server. Incoming 
IPv6 UDP DNS queries are passed to a conventional “back end” DNS resolver. UDP responses from 
the “back end” DNS resolver are fragmented into at least two IPv6 packets, ensuring that no packet is 
larger than 512 octets, and passed back to the original sender. 

 
Figure 1 – UDP Packet Handler 

 
 
Let’s now look at the details of the code for this packet handler. The first part of the packet processor 
is a conventional UDP server listening port that listens on IPv6 to incoming packets addressed to the 
local port 53. 
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  /* Create a IPv6 datagram socket and associate it with the variable sockfd*/ 

  sockfd = socket(AF_INET6,SOCK_DGRAM,17); 

  if (sockfd < 0) { 

    perror("Socket"); 

    exit(EXIT_FAILURE); 

    } 

 

  /* The local IPv6 address used to listen is stored in the variable host 

     This is converted to an internal representation of the IPv6 address */ 

  if (((status = inet_pton(AF_INET6,host,&listen.sin6_addr))) <= 0) { 

    if (!status) 

      fprintf(stderr, "Not in presentation format"); 

    else 

      perror("inet_pton"); 

    exit(EXIT_FAILURE); 

    } 

 

  /* set this address into the socket structure and use port 53 (DNS) */ 

  listen.sin6_family = AF_INET6 ; 

  listen.sin6_port = htons(53); 

 

  /* now bind the socket to the local IPv6 address and port 53 */ 

  if (bind(sockfd,(const struct sockaddr *) &listen,(sizeof listen))) { 

    perror("bind") ; 

    exit(EXIT_FAILURE) ; 

    } 

 

  /* we can now set up the listener – the source address and source port of  

     the incoming UDP packet is stored in the cliaddr struct  */ 

  addrlen= sizeof *cliaddr ; 

  cliaddr=malloc(addrlen); 

  len=addrlen; 

 

  for ( ;; ) {     /* do forever */ 

 

    if ((rc = recvfrom(sockfd, buf, MAXBUF, 0, (struct sockaddr *) cliaddr, &len)) < 0 ) { 

      printf("server error: errno %d\n",errno); 

      perror("reading datagram"); 

      exit(1); 

      } 

 

    /* at this stage the client’s address and port is stored in cliaddr, and the DNS query 

       is stored in buf, with length rc – we can pass this DNS query to the back end */ 

 

The next part of the code is also quite conventional. It takes the original DNS query, which is the 
payload returned by the recvfrom() call, and passes it to a DNS resolver without alteration. This 
example code is synchronous for simplicity, so the routine to query the back end DNS resolver will 
wait for the DNS resolver’s response before returning. The code also uses IPv4 for the connection to 
the DNS server. 
 
  /* take an incoming UDP DNS query and flick it to a back-end DNS processor 

     and collect the UDP response */ 

 

  /* open a UDP socket to the DNS server at address serveraddr4 */ 

 

  if ((dns_sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { 

    perror("UDP slave socket() error") ; 

    return 1; 

    } 

  if (connect(dns_sockfd, (struct sockaddr *) &serveraddr4, sizeof(serveraddr4)) < 0) { 

    perror("UDP V4 connect error") ; 

    return 1; 

    } 

 

  /* send the DNS query to the server */ 

  i = write(sockfd, query, data_size) ; 

  if (i < 0) { 

    perror("ERROR writing to socket"); 

    return 1; 

    } 

 

  /* collect the server's reply */ 

  dns_response.len = recvfrom(dns_sockfd, dns_response.buf, MAXBUF, 0,  

                               (struct sockaddr *) &serveraddr4, &serverlen); 

  if (dns_response.len < 0) { 

    perror("UDP recvfrom"); 

    return 1; 

    } 

  close(dns_sockfd) ; 
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This is the simplest approach, but obviously not the most efficient. This code could be made 
asynchronous by using a non-blocking read calls on the socket, but for the sake of simplicity we will 
use the synchronous call to the socket. 
 
The last part of the packet handler is the processing of IPv6 outbound UDP packets directed back to 
the original client, we here we will use a raw Ethernet socket interface. 
 
The first part of this code opens a raw socket to in the interface named by the variable interface. In 
order to construct Ethernet packets, we need to get the Ethernet MAC address of the interface, which 
is performed by an ioctl call on a raw socket interface. We also use the if_nametoindex() call to get 
the local index value of the named interface. We can then open a raw Ethernet socket on the named 
interface. 
 

 

  /* Get a socket descriptor to look up interface */ 

  if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) < 0) { 

    perror("socket() failed to get socket descriptor for using ioctl() "); 

    exit(EXIT_FAILURE); 

    } 

 

  /* Use an ioctl() to look up interface name and get its MAC address */ 

  /* clear the ifr variable */ 

  memset(&ifr, 0, sizeof (ifr)); 

 

  /* write in the name of the interface: held in variable interface */ 

  snprintf(ifr.ifr_name, sizeof (ifr.ifr_name), "%s", interface); 

  if (ioctl(sd, SIOCGIFHWADDR, &ifr) < 0) { 

    perror("ioctl() failed to get source MAC address "); 

    exit (EXIT_FAILURE); 

    } 

  /* done! */ 

  close(sd); 

 

  /* Copy source MAC address into src_mac */ 

  memcpy(src_mac, ifr.ifr_hwaddr.sa_data, 6 * sizeof (uint8_t)); 

 

  /* Find interface index from interface name using the call if_nametoindex() 

     and store the index value in struct sockaddr_ll device (which will be 

     used as an argument of sendto() of the subsequent output call */ 

  memset(&device, 0, sizeof (device)); 

  if ((device.sll_ifindex = if_nametoindex(interface)) == 0) { 

    perror ("if_nametoindex() failed to obtain interface index "); 

    exit (EXIT_FAILURE); 

    } 

 

  /* now copy over the mac address */ 

  device.sll_family = AF_PACKET; 

  memcpy(device.sll_addr, src_mac, 6 * sizeof (uint8_t)); 

  device.sll_halen = 6; 

 

  /* now we are ready to submit a request for a raw socket descriptor */ 

  if ((sd = socket (PF_PACKET, SOCK_RAW, htons (ETH_P_ALL))) < 0) { 

    perror ("socket() failed "); 

    exit (EXIT_FAILURE); 

    } 

 
There is still one critical piece of information that is missing here. When we generate the Ethernet 
packet, we need to add the destination MAC address of the local IPv6 gateway. One way is to use the 
ifconfig cli command and pull this information manually, assuming of course that such a command 
exists on your platform. We can also try to perform this automatically by listening for periodic IPv6 
router advertisements on the interface. The MAC source address of these router advertisements 
packets is the destination address we are after. Here’s a code snippet that binds to the interface and 
looks for RA messages: 
 
 

  /* Request a socket descriptor sd */ 

  if ((sd = socket (AF_INET6, SOCK_RAW, IPPROTO_ICMPV6)) < 0) { 

    perror ("Failed to get socket descriptor "); 

    exit (EXIT_FAILURE); 

    } 
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  /* Set flag so we receive destination address from recvmsg */ 

  on = 1; 

  if ((status = setsockopt (sd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &on, sizeof (on))) < 0) { 

    perror ("setsockopt to IPV6_RECVPKTINFO failed "); 

    exit (EXIT_FAILURE); 

    } 

 

  /* Obtain MAC address of this interface */ 

  memset (&ifr, 0, sizeof (ifr)); 

  snprintf (ifr.ifr_name, sizeof (ifr.ifr_name), "%s", interface); 

  if (ioctl (sd, SIOCGIFHWADDR, &ifr) < 0) { 

    perror ("ioctl() failed to get source MAC address "); 

    exit (EXIT_FAILURE); 

    } 

 

  /* Retrieve interface index of this node */ 

  if ((ifindex = if_nametoindex (interface)) == 0) { 

    perror ("if_nametoindex() failed to obtain interface index "); 

    exit (EXIT_FAILURE); 

    } 

 

  /* Bind a device socket to this interface */ 

  if (setsockopt (sd, SOL_SOCKET, SO_BINDTODEVICE, (void *) &ifr, sizeof (ifr)) < 0) { 

    perror ("SO_BINDTODEVICE failed"); 

    exit (EXIT_FAILURE); 

    } 

 

  /* Listen for incoming message from socket sd 

     Keep at it until we get a router advertisement */ 

  ra = (struct nd_router_advert *) inpack; 

  while (ra->nd_ra_hdr.icmp6_type != ND_ROUTER_ADVERT) { 

    if ((len = recvmsg (sd, &msghdr, 0)) < 0) { 

      perror ("recvmsg failed "); 

      exit (EXIT_FAILURE); 

      } 

    } 

 

  pkt = (uint8_t *) inpack; 

 

  for (i=2; i<=7; i++) { 

    dst_mac[i-2] = pkt[sizeof (struct nd_router_advert) + i]; 

    } 

  close (sd); 

 

 

We start the raw socket write process by generating a IPv6 UDP packet. 
 
  /* IPv6 header */ 

  iphdr = (struct ip6_hdr *) &out_packet_buffer[0] ; 

 

  /* IPv6 version (4 bits), Traffic class (8 bits), Flow label (20 bits) */ 

  iphdr->ip6_flow = htonl ((6 << 28) | (0 << 20) | 0); 

 

  /* Next header (8 bits): 44 for Frag */ 

  iphdr->ip6_nxt = 44; 

 

  /* Hop limit (8 bits): default to maximum value */ 

  iphdr->ip6_hops = 255; 

 

  /* src address */ 

  bcopy(&srcaddr->sin6_addr,&(iphdr->ip6_src), 16) ; 

 

  /* dst address */ 

  bcopy(&cliaddr->sin6_addr,&(iphdr->ip6_dst), 16); 

 

  /* set up the UDP packet */ 

  uhdr = (struct udphdr *) &(payload[0]); 

  uhdr->uh_sport = htons(port) ; 

  uhdr->uh_dport = cliaddr->sin6_port; 

  uhdr->uh_ulen = htons(dns_response->len + 8); 

  uhdr->uh_sum = 0; 

 

  /* copy payload bytes from the dns response buffer to the payload buffer */ 

  bcopy(dns_response->buf,&payload[8],dns_response->len) ; 

 

  /* calculate the UDP checksum */ 

  uhdr->uh_sum = udp_checksum(uhdr,dns_response->len + 8, &srcaddr->sin6_addr, &cliaddr->sin6_addr); 
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We have deliberately kept the IPv6 packet header and the UDP header and DNS response payload in 
separate memory buffers. This will allow us to place an IPv6 Extension Header into each output packet 
between the IPv6 packet header and each component part of the fragmented UDP header and payload, 
if we wish to fragment the output packet. In this case, the packet handler code will attempt to fragment 
any response greater than 16 octets in size. 
 

  /* now fragment the output */ 

  /* set up the frag header */ 

  fhdr = (struct ip6_frag *) &out_packet_buffer[40]; 

 

  /* the next header is a UDP packet header */ 

  fhdr->ip6f_nxt = 17 ; 

  fhdr->ip6f_reserved = 0 ; 

  fhdr->ip6f_offlg = htons(1); 

  fhdr->ip6f_ident = rand() % 4294967296 ; 

 

  /* the total size to send is the payload size plus the UDP header */ 

  to_send = dns_response->len + 8 ; 

  to_buf = (char *) uhdr ; 

 

  /* now carve up the UDP response into frags */ 

  /* initial block of UDP payload size is at least 8 bytes less than the original dns response */ 

  units = dns_response->len / 8 ; 

  if (units > 16) datalen = 128 ; 

  else datalen = (units - 1) * 8 ; 

  frag_offset = 0 ; 

 

  /* add in the size of the UDP header into datalen in the first instance */ 

  datalen += 8 ; 

 

  /* Destination and Source MAC addresses */ 

  memcpy(ether_frame, dst_mac, 6 * sizeof (uint8_t)); 

  memcpy(ether_frame + 6, src_mac, 6 * sizeof (uint8_t)); 

 

  /* Next is ethernet type code (ETH_P_IPV6 for IPv6) */ 

  ether_frame[12] = ETH_P_IPV6 / 256; 

  ether_frame[13] = ETH_P_IPV6 % 256; 

 

  /* now send the payload in fragments */ 

  while (to_send > 0) { 

 

    /* each time we send datalen bytes plus the 8 byte frag header */ 

    iphdr->ip6_plen = htons(datalen + 8); 

 

    /* now assemble the ether frame  using 2 x 6 octet MAC addresses, a 2 octet 

       Ethernet frame type field, a 40 octet IPv6 header, a 8 octet Extension 

       Header and the payload */ 

    frame_length = 6 + 6 + 2 + 40 + 8 + datalen; 

 

    /* IPv6 header + frag header */ 

    memcpy (ether_frame + ETH_HDRLEN, iphdr, 48); 

 

    /* payload fragment */ 

    memcpy (ether_frame + ETH_HDRLEN + 48, to_buf, datalen); 

 

    /* Send ethernet frame out using the raw socket */ 

    if ((bytes = sendto (sd, ether_frame, frame_length, 0,  

            (struct sockaddr *) &device, sizeof (device))) <= 0) { 

      perror ("sendto() failed"); 

      exit (EXIT_FAILURE); 

      } 

    to_send -= datalen ; 

    to_buf += datalen ; 

 

    if (to_send > 0) { 

      if (to_send <= 512) { 

 

        /* last frag */ 

        frag_offset += (datalen / 8) ; 

        fhdr->ip6f_offlg = htons(frag_offset << 3) ; 

        datalen = to_send ; 

        } 

      else { 

        frag_offset += (datalen / 8) ; 

        fhdr->ip6f_offlg = htons((frag_offset << 3) + 1); 

        datalen = 512 ; 

        } 

      } 

    } 
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It should be noted that this is only a UDP interceptor, and if a client attempts to connect using TCP, 
then this packet handler will not be invoked A complete DNS front end would also perform TCP 
interception. However, this is not so straight forward as UDP, as we will see when we look at a 
fragmenting TCP packet handler in the next section.  
 
The complete code for this UDP DNS packet handler can be found in a GitHub repository 
(https://github.com/gih900/IPv6--DNS-Frag-Test-Rig). 
 

A Raw Socket TCP HTTP(S) Server  

 
The second part of our experiment was to measure the drop rate of fragmented IPv6 packets that were 
directed towards end users. Within the constraints of our experimental setup this implied that we need 
to place a packet fragmentation module into a TCP session. The approach taken here is similar to that 
used for UDP, namely using a ‘normal’ HTTP(S) server as a backend server, and implementing a 
packet handler to perform the fragmentation of outbound packets directed to the end client. 
 
There are a number of possible implementation options. The chosen option was to use a stateless 
packet handler along the lines of an IPv6 NAT. Incoming SYN packets from the client create a new 
NAT binding state and the packet headers are re-written so that the packet destination address is that 
of the back end HTTP processor and the packet source address is this host. Other incoming packets 
from the client were matched against an established NAT binding state, the packet headers were re-
written and passed to the back end. Packets from the back end needed to be matched against an 
established NAT state, and the packet headers were translated and large payload responses were 
fragmented as they were passed to the client. This design is shown in Figure 2. 
 

 
Figure 2 – TCP Packet Handler 

 
 
The first task is to receive TCP packets from the client and get them passed to the application, 
bypassing the operating system’s conventional behaviour. Most Unix systems will recognise an 
incoming TCP packet and if there is no listening TCP port associated with the destination port 
number, the system will respond with a TCP reset (RST) packet. If there is a TCP session associated 
with the port, then the operating system’s IP and TCP drivers will process the packet and our raw 
packet handlers will not be invoked in any case. We need to stop this automatic RST generation when 
receiving unbound TCP packets. 
 
In FreeBSD systems there is a system parameter than can be set to turn off this behaviour:  

  sysctl -w net.tcp.blackhole=2.  
 
Debian Linux systems don’t appear to have this form of control over these kernel-generated TCP reset 
responses, so the alternative is to suppress the TCP reset packet before it leaves the system. The 
approach we used was to set up a filter in outbound packets using an iptables filter entry: 

https://github.com/gih900/IPv6--DNS-Frag-Test-Rig
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  ip6tables -I OUTPUT 1 -o eth0 -p tcp --tcp-flags ALL RST -j DROP 

 
Strictly speaking this does not suppress the generation of the RST packet, but stops it leaving the 
system, which is the same overall result as suppression in any case. 
 
We then need to pick up all incoming IPv6 TCP packets addressed to the listening address on port 80 
and port 443 and process them within the context of this application. The simplest way to achieve this 
is by using the packet capture library routines (libpcap). 
 
  /* the PCAP capture filter  - http and https v6 traffic only*/ 

  sprintf(filter_exp,"dst host %s and (port 80 or port 443) and tcp and ip6",host); 

 

  /* open capture device */ 

  if ((handle = pcap_open_live(interface, SNAP_LEN, 1, 1, errbuff)) == NULL)   { 

    fprintf(stderr, "Couldn't open device %s: %s\n", interface, errbuff); 

    exit(EXIT_FAILURE) ; 

    } 

 

  /* compile the filter expression */ 

  if (pcap_compile(handle, &fp, filter_exp, 0, 0) == -1) { 

    fprintf(stderr, "Couldn't parse filter %s: %s\n", filter_exp, pcap_geterr(handle)); 

    exit(EXIT_FAILURE) ; 

    } 

 

  /* install the filter */ 

  if (pcap_setfilter(handle, &fp) == -1) { 

    fprintf(stderr, "Couldn't install filter %s: %s\n", filter_exp, pcap_geterr(handle)); 

    exit(EXIT_FAILURE) ; 

    } 

 

  /* set up the packet capture in an infinite loop */ 

  if (debug) printf("Enter PCAP packet capture loop\n") ; 

  pcap_loop(handle, -1, got_packet, NULL) ; 

 
Each incoming packet will invoke the packet handler got_packet(), which can be used to process both 
packets coming in from the client and packets coming in from the HTTP(S) back end.  
 
However, before looking at this code there is one more aspect of many modern host systems that we 
need to disable. These days many Ethernet interfaces are “smart” and part of that additional 
functionality is to perform TCP segmentation offloading into the interface card. The argument in 
favour of this is one of relieving the kernel of extraneous I/O interrupts, allowing the kernel to pass 
large buffers of memory to the interface card and have the card perform TCP segmentation for 
outgoing packets. Similarly, the card may aggregate several arriving packets into a single pseudo-TCP 
segment that is passed to the operating system in a single interrupt transaction. Obviously, we need to 
disable this functionality in this context. The ethtool package provides a way to manage these I/O 
devices: 
 
  ethtool –K eth0 generic-segmentation-offload off 

  ethtool –K eth0 generic-receive-offload off 

 
We can now examine the major aspects of the packet handler within the got_packet() routine. The 
first is the handling of packets that come from the end client. The source address and source port are 
used to lookup the local NAT translation table, and this is used to create an outbound packet destined 
to the back-end HTTP(S) server. 
 
  /* this is a packet from the client to the packet handler */ 

  if ((dport == 80) || (dport === 443)) { 

 

    /* search of a matching entry in the local NAT table using the 

       source address and source port as the lookup key */ 

    bcopy(&(ip->ip6_src), &(bdg.ip6_src),16); 

    bdg.sport = sport ; 

    bdp = find_binding(&bdg,dport) ; 
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    /* if we cannot find a NAT table entry, and the packet contains a TCP 

       SYN flag, then we can create a new NAT entry */  

    if ((!bdp) && (tcp->th_flags & TH_SYN)) { 

      if (dport == 80) { 

        port = next_port_80(&(ip->ip6_src),ntohs(tcp->th_sport)) ; 

        bdp = port_80_ptr[port]->entry; 

        } 

      else { 

        port = next_port_443(&(ip->ip6_src),ntohs(tcp->th_sport)) ; 

        bdp = port_443_ptr[port]->entry; 

        } 

      } 

    else if (!bdp) 

      return; 

 

    /* retain the current TCP session sequence number in the NAT table */ 

    bdp->seq = tcp->th_seq ; 

 

    /* perform a header translation and pass the packet to the back-end 

       http(s) server */ 

    send_packet_to_http(packet,bdp)  ; 

    } 

 
The packets received from the back end have the ‘reverse’ NAT header substitution applied in both the 
IPv6 and TCP packet headers. The TCP checksum on the TCP pseudo-header is computed and the 
response is ready for the final phase of sending. 
 
  /* IPv6 header */ 

  iphdr = (struct ip6_hdr *) &out_packet_buffer[0] ; 

  o_iphdr = (struct ip6_hdr *) (packet + ETH_HDRLEN) ; 

 

  /* IPv6 version (4 bits), Traffic class (8 bits), Flow label (20 bits) */ 

  iphdr->ip6_flow = o_iphdr->ip6_flow ; 

 

 

  /* payload length */ 

  len = ntohs(o_iphdr->ip6_plen); 

 

  /* Hop limit (8 bits): default to maximum value */ 

  iphdr->ip6_hops = 255; 

 

  /* src address */ 

  bcopy(&local6_addr,&(iphdr->ip6_src), 16) ; 

 

  /* dst address */ 

  bcopy(&tp->ip6_src,&(iphdr->ip6_dst), 16); 

 

  /* TCP header */ 

  orig_tcp = (struct tcphdr *) (packet + ETH_HDRLEN + 40); 

  tcp = (struct tcphdr *) &(out_packet_buffer[40]); 

  tcp->th_dport =  htons(tp->sport) ; 

  tcp->th_sport = orig_tcp->th_sport; 

 

  /* copy payload bytes from the original packet to the payload buffer */ 

  memcpy(&out_packet_buffer[44],&packet[ETH_HDRLEN + 44],len - 4) ; 

 

  /* Destination and Source MAC addresses */ 

  memcpy(ether_frame, dst_mac, 6 * sizeof (uint8_t)); 

  memcpy(ether_frame + 6, src_mac, 6 * sizeof (uint8_t)); 

 

  /* Next is ethernet type code (ETH_P_IPV6 for IPv6) */ 

  ether_frame[12] = ETH_P_IPV6 / 256; 

  ether_frame[13] = ETH_P_IPV6 % 256; 

 

 

  /* Copy the IPv6 header into the ether_frame */ 

  memcpy(ether_frame + ETH_HDRLEN, &out_packet_buffer[0], 40); 

 

  payload = ntohs(iphdr->ip6_plen) - (tcp->th_off * 4) ; 

  pptr = &out_packet_buffer[40 + (tcp->th_off * 4)]; 

  tcp_hdr_len = tcp->th_off * 4 ; 

  tcp_sequence = ntohl(tcp->th_seq) ; 

 

 
If the payload is small we’ll send it as is, without additional fragmentation. 
 

  if (payload <= 16) { 

    /* copy across the TCP header */ 
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    memcpy(ether_frame + ETH_HDRLEN + 40, &out_packet_buffer[40], tcp_hdr_len); 

 

    /* copy across the payload */ 

    memcpy(ether_frame + ETH_HDRLEN + 40 + tcp_hdr_len, pptr, payload); 

 

    /* IPv6 payload length */ 

    e_iphdr = (struct ip6_hdr *) (ether_frame + ETH_HDRLEN) ; 

    e_iphdr->ip6_plen = htons(tcp_hdr_len + payload); 

 

    /* Next header (8 bits): 6 for TCP */ 

    e_iphdr->ip6_nxt = IPPROTO_TCP; 

 

    /* put in the adjusted sequence number and the new checksum */ 

    e_tcp = (struct tcphdr *) (ether_frame + ETH_HDRLEN + 40) ; 

    e_tcp->th_seq = htonl(tcp_sequence) ; 

    e_tcp->th_sum = 0 ; 

    e_tcp->th_sum = tcp_checksum(e_tcp,tcp_hdr_len+payload,tcp_hdr_len+payload, 

                                         &(e_iphdr->ip6_src),&(e_iphdr->ip6_dst)) ; 

    /* ethernet frame length */ 

    frame_length = ETH_HDRLEN + 40 + tcp_hdr_len + payload ; 

 

    if ((bytes = sendto (sd, ether_frame, frame_length, 0,  

                (struct sockaddr *) &device, sizeof (device))) <= 0) { 

      perror ("sendto() failed"); 

      exit (EXIT_FAILURE); 

      } 

    return; 

    } 

 
We are using the raw socket sd to send this packet. Given that we are already using the pcap library to 
receive these packets directly off the interface an alternative would be to use the pcap_sendpacket() 

routine instead. This alternative approach would be more portable across operating system platforms, 
as it would no longer be reliant on a particular form of interface control functions that are only exposed 
in Linux systems, but perhaps this alternative approach is best left as an exercise for an enthusiastic 
reader. 
 
For larger payloads we’ll perform re-segmentation and fragmentation. We’ll re-segment each packet so 
that each TCP packet it is no larger than 1,248 octets, and then we’ll fragment the packet into two 
parts, with the trailing frag containing the last 256 octets of the payload. 
 
  while (payload > 0) { 

 

    /* lets pull off the trailing 8 (or so bytes) into a fragmented trailer */ 

    if (payload < 1200) { 

      tcp_seg_len = payload ; 

      this_frag = ((payload / 8) - 1) * 8 ; 

      } 

 

    /* lets re-segment the packet */ 

    if (payload >= 1200) { 

      tcp_seg_len = 1200 ; 

      this_frag = 1200 - 256 ; 

      } 

 

    /* start constructing the IPv6 header in the Ethernet frame 

       by writing in the IPv6 payload length and next header fields */ 

    e_iphdr = (struct ip6_hdr *) (ether_frame + ETH_HDRLEN) ; 

    e_iphdr->ip6_plen = htons(8 + tcp_hdr_len + this_frag); 

    e_iphdr->ip6_nxt = 44 ; // Fragmentation header 

 

    /* now set up the frag header */ 

    fhdr = (struct ip6_frag *) &ether_frame[ETH_HDRLEN+40] ; 

    fhdr->ip6f_nxt = IPPROTO_TCP ; 

    fhdr->ip6f_reserved = 0 ; 

    fhdr->ip6f_offlg = htons(1); // Offset is zero and Set more-fragments flag 

    fhdr->ip6f_ident = rand() % 4294967296 ; 

 

    /* for the first frag, copy across the TCP header */ 

    memcpy(ether_frame + ETH_HDRLEN + 40 + 8, &out_packet_buffer[40], tcp_hdr_len); 

 

    /* copy across the entire payload (in order to generate the correct tcp checksum) */ 

    memcpy(ether_frame + ETH_HDRLEN + 40 + 8 + tcp_hdr_len, pptr, tcp_seg_len); 

 

    /* put in the adjusted sequence number and the new checksum */ 

    e_tcp = (struct tcphdr *) (ether_frame + ETH_HDRLEN + 40 + 8) ; 

    e_tcp->th_seq = htonl(tcp_sequence) ; 
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    e_tcp->th_sum = 0 ; 

    e_tcp->th_sum = tcp_checksum(e_tcp,tcp_hdr_len + tcp_seg_len, tcp_hdr_len + tcp_seg_len, 

                          &(e_iphdr->ip6_src),&(e_iphdr->ip6_dst)) ; 

 

    /* send the leading fragment to the Ethernet interface */ 

    frame_length = ETH_HDRLEN + 40 + 8 + tcp_hdr_len + this_frag ; 

 

    if ((bytes = sendto (sd, ether_frame, frame_length, 0, (struct sockaddr *) &device,  

                 sizeof (device))) <= 0) { 

      perror ("sendto() failed"); 

      exit (EXIT_FAILURE); 

      } 

 

    pptr += this_frag; 

    offset = (this_frag + tcp_hdr_len) >> 3; 

    remainder = tcp_seg_len - this_frag ; 

 

    /* now adjust the frag header for the trailing frag */ 

    fhdr->ip6f_offlg = htons(offset << 3); // Offset 

    this_frag = remainder ; 

    e_iphdr->ip6_plen = htons(8 + this_frag); 

 

    /* copy across the remainder of the payload immediately folloing the frag header */ 

    memcpy(ether_frame + ETH_HDRLEN + 40 + 8, pptr, this_frag); 

 

 

    /* send the trailing fragment */ 

    frame_length = ETH_HDRLEN + 40 + 8 + this_frag ; 

 

    if ((bytes = sendto (sd, ether_frame, frame_length, 0, (struct sockaddr *) &device, 

                 sizeof (device))) <= 0) { 

      perror ("sendto() failed"); 

      exit (EXIT_FAILURE); 

      } 

 

    pptr += this_frag ; 

    tcp_sequence += tcp_seg_len ; 

    payload -= tcp_seg_len ; 

    } 

 
The complete code for this TCP packet handler can be found in a GitHub repository 
(https://github.com/gih900/IPv6--TCP-Frag-Test-Rig). 
 
I find it to be a little odd that it’s so challenging to set up a raw socket interface in IPv6. It seems that 
the challenges start with interface cards that by default want to perform TCP segmentation and UDP 
fragmentation on output and perform the reverse function on input. Then we have some operating 
systems that seem to be hardwired to send reset packets when receiving TCP packets that to not 
address an open TCP socket. Then we have the IPv6 protocol engine that simply does not support raw 
socket connections in the same manner as IPv4.  
 
The good news, however, is that an equivalent level of functionality can be coerced to work on most 
systems, and even where it does not appear that the ethernet level socket calls are supported, the libpcap 
library can be used in its place, as this library supports both sending and receiving packets.   
  

https://github.com/gih900/IPv6--TCP-Frag-Test-Rig
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