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An Opinion in Defence of NAT's

Network Address Translation has often been described as an unfortunate aberration in the evolution of
the Internet, and one that will be expunged with the completion of the transition of IPv6. I think that
this view, which appears to form part of today’s conventional wisdom about the Internet unnecessarily
vilifies NATSs. In my opinion, NATSs are far from being an aberration, and instead I see them as an
informative step in the evolution of the Internet, particularly as they relate to possibilities in the
evolution of name-based networking. Here’s why.

Background

It was in 1989, some months after the US National Science Foundation-funded IP backbone network
had been commissioned, and at a time when there was a visible momentum behind the adoption of IP
as a communications protocol of choice, that the first inklings of the inherent finite nature of the IPv4
address became apparent in the Internet Engineering Task Force (IETF) [1].

Progressive iterations over the IP address consumption numbers reached the same general conclusion:
that the momentum of deployment of IP meant that the critical parts of the 32-bit address space would
be fully committed within 6 or so years. It was predicted that by 1996 we would have fully committed
the pool of Class B networks, which encompassed one quarter of the available IPv4 address space. At
the same time, we were concerned at the pace of growth of the routing system, so stop gap measures
that involved assigning multiple Class C networks to sites could’ve staved off exhaustion for a while,
but perhaps at the expense of the viability of the routing system [2].

Other forms of temporary measures were considered by the IETF, and the stop gap measure that was
adopted in early 1994 was the dropping of the implicit network/host partitioning of the address in
classful addressing in favour of the use of an explicit network mask, or "classless" addressing. This
directly addressed the pressing nature problem of the exhaustion of the Class B address pool, as the
observation at the time was that while a Class C network was too small for many sites given the recent
introduction of the personal computer, Class B networks were too large, and many sites were unable to
realise reasonable levels of address use with Class B addresses. This move to classless addressing (and
classless routing of course) gained some years of breathing space before the major impacts of address
exhaustion, which was considered enough time to complete the specification and deployment of a
successor IP protocol [3].

In the search for a successor IP protocol several ideas were promulgated. The decisions around the
design of IPv6 related to a desire to make minimal changes to the IPv4 specification, while changing
the size of the address fields, and changing some of encoding of control functions through the use of
the extension header concept, and the changing of the fragmentation behaviour to stop routers from
performing fragmentation on the fly [4].

The common belief at the time was that the adoption of classless addressing in IPv4 bought sufficient
time to allow the deployment of IPv6 to proceed. It was anticipated that IPv6 would be deployed
across the entire Internet well before the remaining pools of IPv4 addresses were fully committed.



This, together with a deliberate approach for hosts to prefer to use IPv6 for communication when both
IPv4 and IPv6 was available for use would imply that the use of IPv4 would naturally dwindle away as
more IPv6 was deployed, and that no 'flag day' or other means of coordinated action would be needed
to complete this Internet wide protocol transition [5].

In the flurry of documents that explored concepts of a successor protocol was one paper that described
a novel concept of source address sharing [6]. If a processing unit was placed on the wire, it was
possible to intercept all outbound TCP and UDP packets and replace the source IP address with a
different address and change the packet header checksum, and then forward the packet on towards its
intended destination. As long as this unit used one of its own addresses as the new address, then any
response from the destination would be passed back to this unit. The unit could then use the other
fields of the incoming IP packet header, namely the source address and the source and destination port
addresses, to match this packet with the previous outgoing packet and perform the reverse address
substitution, this time replacing the destination address with the original source address of the
corresponding outgoing packet. This allowed a "public" address to be used by multiple internal end
systems, provided that they were not all communicating simultaneously. More generally a pool of
public addresses could be shared across a larger pool of internal systems.

It may not have been the original intent of the inventors of this address sharing concept, but the
approach was enthusiastically taken up by the emerging ISP industry in the 1990's. They were seeing
the emergence of the home network and were unprepared to respond to it. The previous deployment
model, used by dial-up modems, was that each active customer was assigned a single IP address as part
of the session start process. A NAT in the gateway to the home network could extend this “single IP
address per customer” model to include households with home networks and multiple attached
devices. To do so efficiently a further refinement was added, namely that the source port was part of
the translation. That way a single external address could theoretically be shared by up to 65,535
simultaneous TCP sessions, provided that the NAT could rewrite the source port along with the source
address [7].

For the ensuing decade NATs were deployed at the edge of the network, and have been used by the
ISPs as a means of externalising the need to conserve IP addresses. The address sharing technology was
essentially deployed by, and operated by, the end customer, and within the ISP network each connected
customer still required just a single IP address.

But perhaps that role is underselling the value of NATSs in the evolution of the Internet. NATSs
provided a "firewall" between the end customer and the carrier. The telephony model shared the same
end-to-end service philosophy, but it achieved this over exercising overarching control over all
components of the service. For many decades telephone was a controlled monopoly that was intolerant
of any form of competitive interest in the customer. The Internet did not go down this path, and one
of the reasons why this didn't happen is that NATs allowed the end customer to populate their home
network with whatever equipment they chose, and via a NAT, present to the ISP carrier as a single
"termination" with a single IP address. This effective segmentation of network created a parallel
segmentation in the market, which allowed the consumer services segment to flourish without carrier-
imposed constraint. And at the time that was critically important. The Internet wasn’t the next
generation of the telephone service. It was an entirely different utility service operating in an entirely
different manner.

More recently, NATs have appeared within the access networks themselves, performing the address
sharing function across a larger set of customers. This was first associated with mobile access networks
but has been used in almost all recent deployments of access networks, as a response to the visible
scarcity in the supply of available IPv4 addresses.

NATSs have not been universally applauded. Indeed, in many circles within the IETF NATs were
deplored.
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It was observed that NATSs introduced active middleware into an end-to-end architecture, and divided
the pool of attached devices into clients and servers. Clients (behind NATSs) had no constant IP address
and could not be the target of connection requests. Clients could only communicate with servers, not
with each other. It appeared to some to be a step in a regressive direction that imposed a reliance on
network middleware with its attendant fragility, and imposed an asymmetry on communication [8].

For many years, the IETF did not produce standard specifications for the behaviour of NATS,
particularly in the case of handling of UDP sessions. As UDP has no specific session controls, such as
session opening and closing signals, how was a NAT meant to maintain its translation state? In the
absence of a specific standard specification different implementations of this function made different
assumptions and implemented different behaviour, introducing another detrimental aspect of NATS:
namely variability.

How could an application operate through a NAT if the application used UDP? The result was the use
of various NAT discovery protocols that attempted to provide the application with some
understanding of the particular form of NAT behaviour that it was encountering [9].

NATSs in Today's Internet

Let’s now look at the situation today in the Internet of early 2017. The major hiatus in the supply of
additional IPv4 addresses commenced in 2011 when the central IANA pool of unallocated 1Pv4
addresses was exhausted. Progressively the RIRs ran down their general allocation address pools:
APNIC in April 2011, the RIPE NCC in September 2012, LACNIC in 2014 and ARIN in 2015. The
intention from the early 1990's was that the impending threat of imminent exhaustion of further
addresses would be the overwhelming impetus to deploy the successor protocol. By that thinking then
the Internet would've switched to exclusively use IPv6 before 2011. Yet, that has not happened.

Today a minimum of 90% of the Internet's connected device population still exclusively uses 1Pv4
while the remainder use IPv4 and IPv6 [10]. This is an all-IPv4 network with a minority proportion
also using IPv6. Estimates vary of the device population of today’s Internet, but they tend to fall within
a band of 15 billion to 25 billion connected devices [11]. Yet only some 2.8 billion IPv4 addresses are
visible in the Internet's routing system. This implies that on average each announced public I1Pv4
address serves between 3 to 8 hidden internal devices.

Part of the reason why estimates of the total population of connected devices are so uncertain is
because NATSs occlude these internal devices so effectively that any conventional internet census
cannot expose these hidden internal device pools with any degree of accuracy.

And part of the reason why the level of IPv6 deployment is still so low is that users, and the
applications that they value, appear to operate perfectly well in a NATed environment. The costs of
NAT deployment are offset by preserving the value of existing investment, both as a tangible
investment in equipment and as an investment in knowledge and operational practices in IPv4.

NATS can be incrementally deployed, and they do not rely on some ill-defined measure of
coordination with others to operate effectively. They are perhaps one of the best examples of a
piecemeal incremental deployment technology where the incremental costs of deployment directly
benefit the entity who deployed the technology. This is in direct contrast to IPv6 deployment, where
the ultimate objective of the deployment, namely the comprehensive replacement of IPv4 in the
Internet can only be achieved once a significant majority of the Internet’s population are operating in a
mode that supports both protocols. Until then the deployments of IPv6 are essentially forced to
operate in a dual stack mode, and also support IPv4 connectivity. In other words, the incremental costs
of deployment of IPv6 only generate incremental benefit once others also take the same decision to
deploy this technology. Viewed from the perspective of an actor in this space the pressures and costs to
stretch the IPv4 address space to encompass an ever-growing Internet are a constant factor. The
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decision to complement that with a deployment of IPv6 is an additional cost that in the short term
does not offset any of the IPv4 costs.

So, for many actors the question is not “Should I deploy IPv6 now?" but "how far can I go with
NATs?" By squeezing some 25 billion devices into 2 billion active IPv4 addresses we have used a
compression ratio of around 14:1, of the equivalent of adding 4 additional bits of address space. These
bits have been effectively 'borrowed' from the TCP and UDP port address space. In other words,
today's Internet uses a 36 -bit address space in aggregate to allow these 25 billion devices to
communicate.

Each additional bit doubles this pool, so the theoretical maximum space of a comprehensively NATted
IPv4 environment is 48 bits, fully accounting for the 32-bit address space and the 16-bit port address
space. This is certainly far less than IPv6's 128 bits of address space, but the current division of IPv6
into a 64-bit network prefix and a 64-bit interface identifier drops the available IPv6 address space to
64 bits. The prevalent use of a /48 as a site prefix, introduces further address use inefficiencies that
effectively drops the IPv6 address space to span the equivalent of some 56 bits.

NATSs can be pushed harder. The "binding space" for a NAT is a 5-tuple consisting of the source and
destination IP address, a source and destination port address and a protocol identifier. This 96-bit NAT
address space is a highly theoretic ceiling, but the pragmatic question is how much of this space can be
exploited in a cost-effective manner such that the marginal cost of exploitation is lower than the cost of
an IPv6 deployment.

NATSs as Architecture

NATSs appear to have pushed applications to a further level of refinement and abstraction that were at
one point considered to be desirable objectives rather than onerous limitations. The maintenance of
both a unique fixed endpoint address space and a uniquely assigned name space for the Internet could
be regarded as an expensive luxury when it appears that only one of these spaces is a strictly necessity
in terms of ensuring integrity of communication.

The IPv4 architecture made several simplifying assumptions - one of these was that an IPv4 address
was overloaded with both the unique identity of an endpoint and its network location. In an age where
computers were bolted to the floor of a machine room this seemed like a very minor assumption, but
in today's wotld it appears that the overwhelming number of connected devices are portable devices
that change constantly their location both in a physical sense and in terms of network-based location.
This places stress on the IP architecture, and the resulting is that IP is variously tunnelled or switched
in the final hop access infrastructure in order to preserve the overloaded semantics of IP addresses.

NATSs deliberately disrupt this relationship, and the presented client side address and port has a
particular interpretation and context only for the duration of a session.

In the same way that clients now share IP addresses, services now also share addresses. Applications
cannot assume that the association of a name to an IP address is a unique 1:1 relationship. Many
service-identifying names may be associated with the same IP address, and in the case of multi-homed
services it can be the case that the name is associated with several IP addresses.

With this change comes the observation that IP addresses are no longer the essential "glue" of the
Internet. They have changed to a role of ephemeral session tokens that have no lasting semantics.
NATS are pushing us to a different network architecture that is far more flexible - a network that uses
names as the essential glue that binds it together.

We are now in the phase of the internet’s evolution where the address space is no longer unique, and
we rely on the name space to offer coherence to the network
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From that perspective, what does IPv0 really offer?

More address bits? Well perhaps not all that much. The space created by NATSs operates from within a
96-bit vector of address and port components, and the usable space may well approach the equivalent
of a 50-bit conventional address architecture. On the other hand, the IPv6 address architecture has
stripped off some 64 bits for an interface identifier and conventionally uses a further 16 bits as a site
identifier. The resulting space is of the order of 52 bits. It’s not clear that the two pools of address
tokens are all that much different in size.

More flexibility? IPv6 is a return to the overloaded semantics of IP addresses as being unique endpoint
tokens that provide a connected device with a static location and a static identity. This appears to be
somewhat ironic in view of the observation that increasingly the Internet is largely composed of battery
powered mobile devices of various forms.

Cheaper? Possibly, in the long term, but not in the short term. Until we get to the “tipping point” that
would allow a network to operate solely using IPv6 without any visible impact on the network’s user
population then every network still must provide a service using IPv4.

Permanent address to endpoint association? Well not really. Not since we realised that having a fixed
interface identifier represented an unacceptable privacy leak. These days IPv6 clients use so-called
“privacy addresses” as their interface identifier, and change this local identifier value on a regular basis.

Perhaps we should appreciate the role of NATs in supporting the name-based connectivity
environment that is today’s Internet. It was not a deliberately designed outcome, but a product of
incremental evolution that has responded to the various pressures of scarcity and desires for greater
flexibility and capability. Rather than eschewing NATS in the architecture as an aberrant deviation in
response to a short-term situation, we may want to contemplate an Internet architecture that embraces
a higher level of flexibility of addressing. If the name space is truly the binding glue of the Internet,
then perhaps we might embrace a view that addresses are simply needed to distinguish one packet flow
from another in the network, and nothing more.

Appreciating NAT's

When NATSs were first introduced to the Internet they were widely condemned as an aberration in the
Internet’s architecture. And in some ways NATs have directly confronted the model of a stateless
packet switching network core and capable attached edge devices.

But that model has been a myth for decades. The Internet as it is deployed is replete with various forms
of network “middleware” and the concept of a simple stateless packet switching network infrastructure
is has been relegated to the status of an historical, but now somewhat abstract concept.

In many ways, this condemnation of NATs was unwarranted, as we can reasonably expect that network
middleware is here to stay, irrespective of whether the IP packets are formatted as IPv4 or IPv6 and
irrespective of whether the outer IP address fields in the packets are translated or not.

Rather than being condemned, perhaps we should appreciate the role that NATSs play in the evolution
of the architecture of the Internet.

We have been contemplating what it means to have a name-based data network, where instead of using
a fixed relationship between names and IP addresses, we eschew this mapping and perform network
transactions by specifying the name of the desired service or resource [12]. NATSs are an interesting
step in this direction, where IP addresses have lost their fixed association with particular endpoints, and
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are used more as ephemeral session tokens than endpoint locators. This certainly appears to be an
interesting step in the direction of named data networking.

The conventional wisdom is that the endpoint of this current transitioning Internet is an IPv6 network
that has no further use for NATSs. This may not be the case. We may find that NATs continue to offer
an essential level of indirection and dynamic binding capability in networking that we would rather not
casually discard. It may be that NATs are a useful component of network middleware and that they
continue to have a role in the Internet well after this transition to IPv6 has been completed, whenever

that may be!
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