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IPv6, Large UDP Packets and the DNS 
 
The IPv6 protocol introduced very few changes to its IPv4 predecessor. The major change was of 
course the expansion of the size of the IP source and destination address fields in the packet header 
from 32-bits to 128-bits. There were, however, some other changes that apparently were intended to 
subtly alter IP behaviour. One of these was the change in treatment of packet fragmentation.  
 
It appears that rather than effecting a slight improvement from IPv4, the manner of fragmentation 
handling in IPv6 appears to be significantly worse than IPv4. Little wonder that there have been calls 
from time to time to completely dispense with packet fragmentation in IPv6, as the current situation 
with IPv6 appears to be worse than either no fragmentation or the IPv4-style of fragmentation. 
 

One of the more difficult design exercises in packet switched network 
architectures is that of the design of packet fragmentation.  
 
In time-switched networks, developed to support a common bearer 
model for telephony, each ‘unit’ of information passed through the 
network occurred within a fixed timeframe, which resulted in fixed size 
packets, all clocked off a common time base. Packet-switched networks 
dispensed with such a constant common time base, which, in turn 
allowed individual packets to be sized according to the needs of the 
application as well as the needs and limitations of the network 
substrate.  
 
For example, smaller packets have a higher packet header to payload 
ratio, and are consequently less efficient in data carriage and impose a 
higher processing load as a function of effective data throughput. On 
the other hand, within a packet switching system the smaller packet can 
be dispatched faster, reducing head-of-line blocking in the internal 
queues within a packet switch and potentially reducing network-
imposed jitter as a result. This can make it easier to use the network for 
real time applications such as voice or video. Larger packets allow 
larger data payloads which in turns allows greater carriage efficiency. 
Larger payload per packet also allows a higher internal switch capacity 
when measured in terms of data throughput, which, in turn, facilitates 
higher capacity and higher speed network systems.  
 
Various network designs adopted various parameters for packet size. 
Ethernet, invented in the early 1970’s adopted a variable packet size, 
with supported packet sizes of between 64 and 1,500 octets. FDDI, a 
fibre ring local network, used a variable packet size of up to 4,478 
octets. Frame Relay used a variable packet size of between 46 and 
4,470 octets. The choice of a variable-sized packets allows to 
applications to refine their behaviour. Jitter and delay-sensitive 
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applications, such as digitised voice, may prefer to use a stream of 
smaller packets in an attempt to minimise jitter, while reliable bulk data 
transfer may choose a larger packet size to increase the carriage 
efficiency. The nature of the medium may also have a bearing on this 
choice. If there is a high bit error rate (BER) probability, then reducing 
the packet size minimises the impact of sporadic errors within the data 
stream, which may increase throughput in such environments. 
 
In designing a network protocol that is intended to operate over a wide 
variety of substrate networking media and support as wide a variety of 
applications as possible, the designers of IP could not rely on a single 
packet size for all transmissions. Instead, the designers of IPv4 
provided a packet length field in the packet header. This field was a 16-
bit octet count, allowing for an IP packet to be anywhere from the 
minimum size of 20 octets (corresponding to an IP header without any 
payload) to a maximum of 65,535 octets.  
 
Obviously not all packets can fit into all substrate media. If the packet 
is too small for the minimum payload size then it can be readily 
padded. But if it’s too big for the media’s maximum packet size, then 
the problem is a little more challenging. IPv4 solved this using 
“forward fragmentation.” The basic approach is that any IPv4 router 
that is unable to forward an IPv4 packet into the next network because 
the packet is too large for the next hop network may split the packet 
into a set of smaller “fragments,” copying the original IP header fields 
into each of these fragments, then forwarding each of these fragments 
instead. The fragments continue along the network path as 
autonomous IP packets, and the destination host is responsible for re-
assembling these fragments back into the original IP packet and pass 
the result, namely the packet as it was originally sent, back up to the 
local instance of the end-to-end transport protocol.  
 
It's a clever approach, as it hides the entire network-level fragmentation 
issue from the upper level protocols, including TCP and UDP, but it 
has accreted a lot of negative feedback. Packet fragmentation was seen 
as being a source of inefficiency, a security vulnerability and even 
posed a cap on maximal delay bandwidth product on data flows across 
networks.  
 
IPv6 removed the fragmentation controls from the common IPv4 
packet header, and placed them into an “Extension Header”. This 
additional packet header was only present in fragmented packets. 
Secondly, IPv6 did not permit fragmentation to be performed when 
the packet was in transit within the network: all fragmentation was to 
be performed by the packet source prior to transmission. This too has 
resulted in an uncomfortable compromise, where an unforeseen need 
for fragmentation relies on ICMP signalling and retransmission. 
 
In the case of TCP a small amount of layer violation goes a long way, 
and if the sending host is permitted to pass IPv6’s Packet Too Big 
ICMPv6 diagnostic message up to the TCP session that generated the 
original packet, then it’s possible for the TCP driver to adjust its 
sending Maximum Segment Size to the new smaller value and carry on. 
In this case, no fragmentation is required.  
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UDP is different, and in UDP a functional response to path message 
size issues inevitably relies on interaction with the upper level 
application protocol. 
 
It appears that when we consider fragmentation in IPv6 we have to 
consider the treatment of IPv6 Extension Headers and UDP. 

 
The DNS is the major user of UDP, and as a consequence of the increasing use of DNSSEC, coupled 
with the increasing use of IPv6 as the IP protocol transition gathers momentum, and it’s time to look 
once more at the interaction of larger DNS payloads over IPv6. 

 
To illustrate this situation, here are two DNS queries, both made by a recursive resolver to an 
authoritative name server, both using UDP over IPv6. 

 
Query 1 

$ dig +bufsize=4096 +dnssec 000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2. 

dotnxdomain.net. @8.8.8.8 

 

; <<>> DiG 9.9.5-9+deb8u10-Debian <<>> +bufsize=4096 +dnssec 000-4a4-000a-000a-0000-b9ec853b 

-241-1498607999-2a72134a.ap2.dotnxdomain.net. @8.8.8.8 

;; global options: +cmd 

;; Got answer: 

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43601 

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1 

 

;; OPT PSEUDOSECTION: 

; EDNS: version: 0, flags: do; udp: 512 

;; QUESTION SECTION: 

;000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. IN    A 

 

;; ANSWER SECTION: 

000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. 0 IN A 139.162.21.135 

000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. 0 IN RRSIG    A 5 4 60 20170803045714 

20170706035714 2997 000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. 

FpuBXVfZ9KXzizaJhQkk1TZF3f26pbYhIBjeZ51euEuY/zMxLgXmGfSh 

cqPJ6zAPdBc+RTT5z0k7nw+ZcPsnj2qdhIXZQRysnxdTCCfqsrmO1yVY 

zWy0hAAOzS3T6e2E4tv5w3L28M6Ie8d2Me4QNKDuT9n/JQLxndJKwAmz hUk= 

000-4a4-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. 0 IN RRSIG    A 42 4 60 

20170803045714 20170706035714 47541 000-4a4-000a-000a-0000-b9ec853b-241-1498607999-

2a72134a.ap2.dotnxdomain.net.  

lHLMBbT+oOj1FVl2W7Bv8AnowHGUuJeUqukha8akRloWEmDLEACzBhUM 

fHC862DF1CA3aNnO/IO4He5+wjTZ2Ec5o1c5Vl1OYtq+HsUe5Jk+GwIX 

6f6boRyJIN6++bYFMlpca7C6uROUdzFZlRXz0zD16xrzhrsPD9vtzdSk 

0gb+L3Gu6SrBfaHz1jYIyQo5vvVTsnsOwYrqr1i+UyrFUVk2/0Jhwb8C 

tJY5vF9D9R44SNCzV5E9QUCV/5PAxOQZ++RcXKUbXlmxlxUR2gsvElP/ 

xaqQA+vRmOtkWK9JcqotzgbS6WUrm/xArNdL2+mf2q9JarI1O0ogoKPP 

6RV6FuOA6MzlE2fiUxO5n+6iPshRhzMDvG5O3A7xrPcGJg3ppvW1jAgd 

blwwJ/sfyTnnG8AaHn2JbFmXXQWPYyucTNKSAl6aH8z2T/PxbrwqVtfr 

cPZo+WLBkcDHICPyvHDETnIi6ZHu3+Dh0U+e+6V15hVrTg/OEKCO18Cx 
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yXwhjsuTsLQkn5MFgGRUHmD5lEYO/5UdzaW9W3x9DUX6LtPFwoR55iMM 

66NxP8LROFYXR1WsZCNRIn7Nn4sTmbrmXnxq12KN5E4xVY3zJsZJPQ2e 

6nHBO5NACTPLHMyFAisBbQJk+uayKzs/HmEFZ58SBomEx8QXB81K0+kX 

WOxCWllEvlMrcH9mr53ItQVnxwvwS9K0Y9qCra1rxAVXBl+wSx0Edo2D 

3D0gpPIlC7kw+wUDsGjdMhWKndqP9eDvpSsMqaGaLH7XTSLJci6CoymH 

ptnvgwsFDanfnJ6/i0PrmO2MMhkKCWYt0tlbVHyE3CJey6Vp0LISr06w 

b9r0WnLh5qT68a1hHn86edO2/a/YW3t9xUsv1/t9iGpXfMTJXaptV5sa 

uLmZ8jJtqDAcgIuX/VDjLCjeqrBIASwMy4m2OOBSU5kL7Is+WTRudrT5  

DbJK8N5yzogiFopOIlU= 

 

;; Query time: 3728 msec 

;; SERVER: 8.8.8.8#53(8.8.8.8) 

;; WHEN: Thu Jul 06 04:57:16 UTC 2017 

;; MSG SIZE  rcvd: 1190 

 
Query 2 

$ dig +bufsize=4096 +dnssec 000-510-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2. 

dotnxdomain.net. @8.8.8.8 

 

; <<>> DiG 9.9.5-9+deb8u10-Debian <<>> +bufsize=4096 +dnssec 000-510-000a-000a-0000-b9ec853b-241-1498607999-

2a72134a.ap2.dotnxdomain.net. @8.8.8.8 

;; global options: +cmd 

;; Got answer: 

;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 34058 

;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1 

 

;; OPT PSEUDOSECTION: 

; EDNS: version: 0, flags: do; udp: 512 

;; QUESTION SECTION: 

;000-510-000a-000a-0000-b9ec853b-241-1498607999-2a72134a.ap2.dotnxdomain.net. IN    A 

 

;; Query time: 3477 msec 

;; SERVER: 8.8.8.8#53(8.8.8.8) 

;; WHEN: Thu Jul 06 04:57:41 UTC 2017 

;; MSG SIZE  rcvd: 104 

 
What we see here are two almost identical DNS queries that have been passed to Google’s Public DNS 
service to resolve.  
 
The queries differ in a sub-field in the query which is ‘4a4’ in the first query and ‘510’ in the second. 
The name server used here is a highly modified name server, and it constructs a response by 
interpreting the value of this hexadecimal sub-field as a size parameter. The DNS response is 
constructed to include additional padding of the requested size. In the first case the DNS response is 
1,190 octets in length, and in the second case the response is 1,346 octets in length. The DNS server is 
a IPv6-only server, and the underlying host of this name server is configured with a local maximum 
packet size of 1,280 octets. This means that in the first case the response being sent to the Google 
resolver is a single unfragmented IPv6 UDP packet, and the second case the response is broken into 
two fragmented IPv6 UDP packets. And it is this single change that triggers the Google Public DNS 
Server to provide the intended answer in the first case, but to return a SERVFAIL failure notice in 
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response to the fragmented IPv6 response. When the local MTU on the server is lifted from 1,280 
octets to 1,500 octets the Google resolver returns the server’s DNS response in both cases.  
 

What’s going on?   

 
The only difference in the two responses is IPv6 fragmentation, but there is perhaps more to it than 
that.   
 
IP fragmentation in both IPv4 and IPv6 raises the eyebrows of firewalls. Firewalls typically use the 
information provided in the transport protocol header of the IP packet to decide whether to admit or 
deny the packet. For example, you may see firewall rules admitting packets using TCP port 80 and 443 
as a way of allowing web traffic through the firewall filter. For this to work the inspected packet needs 
to contain a TCP header and the fields in the header are used to match against the filter set. 
Fragmentation in IP duplicates the IP portion of the packet header, but the inner IP payload, including 
the transport protocol header, is not duplicated in every ensuring packet fragment. This means that 
trailing fragments pose a conundrum to the firewall. Either all trailing fragments are admitted, which 
has its own set of consequent risks, or all trailing fragments are discarded, which also poses connection 
issues. 

 

These issues are discussed in an Internet Draft "Why Operators Filter 

Fragments and What It Implies” (https://tools.ietf.org/html/draft-

taylor-v6ops-fragdrop-02) 

 
IPv6 adds a further factor to the picture. In IPv4 every IP packet, fragmented or not, contains IP 
fragmentation control fields. In IPv6 these same fragmentation control fields are included in an IPv6 
Extension Header that is only attached to packets that are fragmented. This 8 octet extension header is 
placed immediately after the IPv6 packet header in all fragmented packets. This means that a 
fragmented IPv6 packet does not contain the Upper Level Protocol header starting at octet offset 40 
from the start of the IP packet header, but in the first packet of this set of fragmented packets, the 
upper level protocol header is chained off the fragmentation header, at byte offset 48, assuming that 
there is only a Fragmentation Extension Header in the packet. The implications of this are quite 
significant. Instead of always looking at a fixed point in a packet to determine its upper level protocol, 
you need to unravel the extension header chain. This raises two rather tough questions. Firstly, how 
long are you prepared to spend unravelling this chain? Secondly, would you be prepared to pass on a 
packet with an extension header that you don't recognise?  
 
In some cases implementers of IPv6 equipment have found it simpler to just drop all IPv6 packets that 
contain Extension Headers. Some measurements of this behaviour are reported in RFC7872 

(https://tools.ietf.org/html/rfc7872). This RFC reports a 38% packet drop rate when sending 
fragmented IPv6 packets to DNS Name servers.  
 
But the example provided above is in fact the opposite case in the DNS, and illustrates a more 
conventional case. It’s not the queries in the DNS that can grow to sizes that required packet 
fragmentation, but the responses. The relevant question here is what is the anticipated probability of 
packet drop when sending fragmented UDP IPv6 packets as responses to DNS queries? To rephrase 
the question slightly, how do DNS recursive resolvers fare when the IPv6 response from the server is 
fragmented? 
 
For a start, it appears from this above example that Google’s Public DNS resolvers experience some 
packet drop problem when passed a fragmented IPv6 response. But is this a problem that is limited to 

https://tools.ietf.org/html/draft-taylor-v6ops-fragdrop-02
https://tools.ietf.org/html/draft-taylor-v6ops-fragdrop-02
https://tools.ietf.org/html/rfc7872
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Google’s Public DNS service, or do other DNS resolvers experience a similar packet drop issue? How 
widespread is this problem? 
 
We tested this question using three approaches.  

I. Repairing Missing “Glue” with Large DNS packets 

The measurement technique we are using is based on scripting inside online ads. This allows us to 
instrument a server and get the endpoints who are executing the measurement script to interact with 
the server. However, we cannot see what the endpoint is doing. For example, we can see from the 
server when we deliver a DNS response to a client, but we have no clear way to confirm that the client 
received the response. Normally the mechanisms are indirect, such as looking at whether or not the 
client then retrieved a web object that was the target of the DNS name. This measurement approach 
has some degree of uncertainty, as there are a number of reasons for a missing web object fetch, and 
the inability to resolve the DNS name is just one of these reasons. Is there a better way to measure how 
DNS resolvers behave?   
 
The first approach we’ve used here is so-called “glueless” delegation, and use of dynamically named 
DNS name servers. The basic approach is to remove the additional section from the “parent” DNS 
response that lists the IP address of the authoritative name servers for the delegated “child” domain. A 
resolver, when provided with this answer must suspend its effort to resolve the original DNS name and 
instead resolve the name server name. Only when it has completed its task can it resume the original 
name resolution task. We can manipulate the characteristics of the DNS response from the name server 
name, and we can confirm if the resolver received the response by observing whether it was then able 
to resume the original resolution task and query the child name server.  
 
We tested the system using an IPv6-only name server address response that used three response sizes: 

Small      169 octets  
Medium 1,428 octets  
Large  1,886 octets  

 
The local MTU on the server was set to 1,280 octets, so both the medium and large responses were 
fragmented.  
 
This test was loaded into an online advertising campaign. 

 

Results - I  

 

68,229,946 experiments  

35,602,243 experiments used IPv6-capable resolvers  
 

 

Small:  34,901,983 / 35,602,243 = 98.03% = 1.97% Drop  

Medium: 34,715,933 / 35,666,726 = 97.335 = 2.67% Drop  

Large:  34,514,927 / 35,787,975 = 96.44% = 3.56% Drop  

 

 
The first outcome from this data is somewhat surprising. While the overall penetration of IPv6 in the 
larger Internet is currently some 15% of users, the DNS resolver result is far higher. Some 52% of 
these 68M experiments directed their DNS queries to recursive resolvers that were capable of posing 
their DNS queries over a IPv6 network substrate. 
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That's an interesting result: 
 

Some 52% of tested endpoints use DNS resolvers that are capable of using IPv6 

 
Interpreting the packet drop probabilities for the three sizes of DNS responses is not so straight 
forward. There is certainty an increased probability of drop for the larger DNS responses, but this is far 
lower than the 40% drop rate reported in RFC 7872. 
 
It seems that we should question the experimental conditions that we used here. Are these responses 
actually using fragmentation in IPv6?  
 
We observed that a number of recursive resolvers use different query options when resolving the 
addresses of name servers, as distinct from resolving names. In particular, a number of resolvers, 
including Google’s public DNS resolvers, strip all EDNS(0) query options from these name server 
address resolution queries. 
 
When the query has no EDNS(0) options, and in particular when there is no UDP Buffer size option in 
the query, then the name server responds with what will fit in 512 octets. If the response is larger, and 
in our case this includes the Medium and Large tests, the name server sets the Truncated Response flag 
in its response to indicate that the provided response is incomplete. This Truncated Response flag is a 
signal to the resolver that it should query again, using TCP this time. 
 
In the case of this experiment we saw some 18,571,561 medium-size records resolved using TCP and 
19,363,818 large-size records resolved using TCP. This means that the observed rate of failure to 
resolve the name is not necessarily attributable to an inability to receive fragmented IPv6 UDP packets.  
 
Perhaps if we remove all those instances that use TCP to retrieve the large DNS response, then what 
do we have left?  

 

UDP-only queries:  

Small:  34,901,983 / 35,602,243 = 98.03% = 1.97% Drop  

Medium: 16,238,433 / 17,095,165 = 92.21% = 5.01% Drop  

Large:  15,257,853 / 16,424,157 = 93.90% = 7.10% Drop  

 
There is certainly a clearer signal here in this data - some 5% to 7% of experiments used DNS resolvers 
that appeared to be incapable of retrieving a fragmented IPv6 UDP DNS response, as compared to the 
“base” loss rate as experienced by the control small response of 2%. Tentatively, we can propose that a 
minimum of 3% of clients use DNS resolvers that fail to receive fragmented IPv6 packets.  
 
However, in doing this we have filtered out more than one half of the tests, and perhaps we have 
filtered out those resolvers that cannot receive IPv6 fragmented packets.  

II. Large DNS Packets and Web Fetch 

Our second approach was to use a large response for the ‘final’ response for the requested name. 
 
The way in which this has been done is to pad the response using bogus DNSSEC signature records 
(RRSIG). These DNSSEC signature records are bogus in the sense that the name itself is not 
DNSSEC-signed, so the content of the digital signature will never be checked, but as long as the 
resolver is using EDNS(0) and has turned on the DNSSEC OK bit, which occurs in some 70% of all 
DNS queries to authoritative name servers, then the DNSSEC signature records will be added to the 
response.  
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We are now looking at the web fetch rate, and looking for a variance between the web fetch rates when 
the DNS responses involve UDP IPv6 fragmentation. We filtered out all experiments that did not fetch 
the small DNS web object, all experiments that did not set the DO bit in their query, and all 
experiments that used TCP for the medium and large experiments. In this case, we are looking for 
those experiments where a fragmented UDP IPv6 response was passed and testing whether or not the 
endpoint retrieved the web object.  

 

Results - II  

 

68,229,946 experiments  

25,096,961 experiments used UDP IPv6-capable resolvers 

           and had the DO bit set in the query 
 

 

Medium: 13,648,884 / 25,096,961 = 54.38% = 45.62% Drop  

Large:  13,476,800 / 24,969,527 = 53.97% = 46.03% Drop  

 
This is a result that is more consistent with the drop rate reported in RFC 7872, but there are a number 
of factors at play here, and it is not clear exactly how much of this drop rate can be directly attributed 
to the issue of packet fragmentation in IPv6 and the network’s handling of IPv6 packets with 
Extension Headers. Again, there is also the consideration that in only looking at a subset of resolvers, 
namely those resolvers that can use IPv6, use EDNS(0) options and set the DO bit in these queries 

III. Fragmented Small DNS Packets 

Let’s return to the first experiment, as this form of experiment has far less potential sources of noise in 
the measurement. We are wanting to test whether a fragmented IPv6 packet can be received by 
recursive DNS resolvers, and our use of a large fragmented response is being frustrated by DNS 
truncation.  
 
What if we use a customised DNS name server arrangement that gratuitously fragments the small DNS 
response itself? While the IPv6 specification specifies that network Path MTU sizes should be no 
smaller than 1,280 octets, it does not specify a minimum size of fragmented IPv6 packets. 
 
The approach we’ve taken in this experiment is to use a user level packet processing system that listens 
on UDP port 53 and passes all incoming DNS queries to a back-end DNS server. When it receives a 
response from this back-end server it generates a sequence of IPv6 packets that fragments the DNS 
payload and uses a raw device socket to pass these packets directly to the device interface. 
 
We are relying on the observation that IPv6 packet fragmentation occurs at the IP level in the protocol 
stack, so the IPv6 driver at the remote end will reassemble the fragments and pass the UDP payload to 
the DNS application, and if the payload packets are received by the resolver, there will be no trace that 
the IPv6 packets were fragmented.  
 
As we are manipulating the response to the query for the address of the name server, we can tell if the 
recursive resolver has received the fragmented packets if the resolver resumes its original query 
sequence and queries for the terminal name.  

 

Results - III  
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10,851,323 experiments used IPv6 queries for the name server address 

 6,786,967 experiments queried for the terminal DNS name 

 

Fragmented Response: 6,786,967 / 10,851,323 = 62.54% = 37.45% Drop 

 
This is our second result: 

 
Some 37% of endpoints used IPv6-capable DNS resolvers that were incapable of 
receiving a fragmented IPv6 response. 

 

We used three servers for this experiment, on serving Asia Pacific, a second serving the America and 

the third serving Eurasia and Africa. There are some visible differences in the drop rate: 

 
Asia Pacific:      31% Drop 
Americas:         37% Drop 
Eurasia & Africa: 47% Drop 
 

Given that this experiment occurs completely in the DNS, we can track each individual DNS resolver 
as they query for the name server record then, depending on if they receive the fragmented response, 
query for the terminal name. There are approximately 2 million recursive resolvers in today’s Internet, 
but only some 15,000 individual resolvers appear to serve some 90% of all users. This implies that the 
behaviour of the most intensively used resolvers has a noticeable impact on the overall picture of 
capabilities if DNS infrastructure for the Internet. 

 
We saw 10,115 individual IPv6 addresses used by IPv6-capable recursive resolvers. Of this set of 
resolvers, we saw 3,592 resolvers that consistently behaved in a manner that was consistent with being 
unable to receive a fragmented IPv6 packet, The most intensively used recursive resolvers which 
exhibit this problem are shown in the following table. 

 

Resolver Hits AS AS Name CC 

2405:200:1606:672::5 4,178,119 55836 RELIANCEJIO-IN Reliance Jio Infocomm Limited IN 

2402:8100:c::8 1,352,024 55644 IDEANET1-IN Idea Cellular Limited IN 

2402:8100:c::7 1,238,764 55644 IDEANET1-IN Idea Cellular Limited IN 

2407:0:0:2b::5 938,584 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2a::3 936,883 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2a::6 885,322 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2b::6 882,687 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2b::2 882,305 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2a::4 881,604 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2a::5 880,870 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2a::2 877,329 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2b::4 876,723 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:2b::3 876,150 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2402:8100:d::8 616,037 55644 IDEANET1-IN Idea Cellular Limited IN 

2402:8100:d::7 426,648 55644 IDEANET1-IN Idea Cellular Limited IN 

2407:0:0:9::2 417,184 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:8::2 415,375 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:8::4 414,410 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

2407:0:0:9::4 414,226 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 
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2407:0:0:9::6 411,993 4761 INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

 

 
This table is slightly misleading in so far as very large recursive resolvers use resolver “farms” and the 
queries are managed by a collection of query ‘slaves’. We can group these individual resolver IPv6 
addresses to their common Origin AS, and look at which networks use resolvers that show this 
problem with IPv6 Extension Header drops. 
 
The second table (below) now shows the preeminent position of Google’s Public DNS service as the 
most heavily used recursive resolver, and its Extension Header drop issues, as shown in the example at 
the start of this article, is consistent with its position at the head of the list of networks that have DNS 
resolvers with this problem. 

 

AS Hits % of Total AS Name CC 

15169 7,952,272 17.3% GOOGLE - Google Inc. US 

4761 6,521,674 14.2% INDOSAT-INP-AP INDOSAT Internet Network Provider ID 

55644 4,313,225 9.4% IDEANET1-IN Idea Cellular Limited IN 

22394 4,217,285 9.2% CELLCO - Cellco Partnership DBA Verizon Wireless US 

55836 4,179,921 9.1% RELIANCEJIO-IN Reliance Jio Infocomm Limited IN 

10507 2,939,364 6.4% SPCS - Sprint Personal Communications Systems US 

5650 2,005,583 4.4% FRONTIER-FRTR - Frontier Communications of America US 

2516 1,322,228 2.9% KDDI KDDI CORPORATION JP 

6128 1,275,278 2.8% CABLE-NET-1 - Cablevision Systems Corp. US 

32934 1,128,751 2.5% FACEBOOK - Facebook US 

20115 984,165 2.1% CHARTER-NET-HKY-NC - Charter Communications US 

9498 779,603 1.7% BBIL-AP BHARTI Airtel Ltd. IN 

20057 438,137 1.0% ATT-MOBILITY-LLC-AS20057 - AT&T Mobility LLC US 

17813 398,404 0.9% MTNL-AP Mahanagar Telephone Nigam Ltd. IN 

2527 397,832 0.9% SO-NET So-net Entertainment Corporation JP 

45458 276,963 0.6% SBN-AWN-AS-02-AP SBN-ISP/AWN-ISP and SBN-NIX/AWN-NIX TH 

6167 263,583 0.6% CELLCO-PART - Cellco Partnership DBA Verizon Wireless US 

8708 255,958 0.6% RCS-RDS 73-75 Dr. Staicovici RO 

38091 255,930 0.6% HELLONET-AS-KR CJ-HELLOVISION KR 

18101 168,164 0.4% Reliance Communications DAKC MUMBAI IN 

 

What’s the Problem Here? 

IPv6 Extension Headers require that any transport protocol-sensitive functions in network switches 
need to unravel the packet header’s extension header chain. This takes a variable number of cycles for 
the device, and furthermore requires that the switch should recognise all the extension headers 
encountered on the header chain. This is an anathema to a switch in so far as it entails a variable 
amount of time to process. And passing through extension headers that the switch does not understand 
or not prepared to check is a security risk. 
 
It’s easier to drop all packets with extension headers! 
 
Which is what a lot of deployed equipment evidently does. 

What can we do about it? 

It’s easy to say “Well, we should just fix all this errant equipment” but it may be far more challenging to 
actually do so. 
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There is a cost in discovering which parts of the inventory of network equipment have this behaviour, 
and a cost in obtaining and deploying replacement equipment that corrects this problem. Undeniably, 
for as long as we are operating a dual stack network and for as long as services can revert to using IPv4 
when IPv6 fails, then the case to spend this money is not exactly solid. Dual stack networks avoid 
showing any evidence of the issue because IPv4 simply heals up the problem in a seamless manner. 
 
The result is that there could well be no clear business case to underwrite the costs of correcting this 
problem in today’s networks for as long as the DNS operates within a dual-stack Internet. 
 
But if we can’t generate the momentum to actually fix this by modifying all this deployed equipment to 
pass IPv6 packets with Fragmentation Extension Headers, then maybe we should look a little deeper at 
the underlying issue in the IPv6 specification? 
 
What is wrong with allowing network equipment to perform forward fragmenting on IPv6 packets in 
the same manner as IPv4? As far as I can see, there is no intrinsic problem at all with allowing this 
behaviour as long as we are also prepared to admit the reality that IPSEC in IPv6 is a failure. The 
upside is that we eliminate another painful issue in today’s IPv6 internet, namely that of network filters 
discarding ICMPv6 Packet Too Big messages. The underlying issue is that these ICMPv6 diagnostic 
messages are essentially unverified, and it is possible to generate spurious messages of this form and 
attempt to mount some form of DDOS attack on a host.  
 
However, that still does not address the substance of the problem, namely that Extension Headers 
appear to present intractable problems to IPv6 network equipment. One approach could be to fold in 
the Fragmentation Extension header back into the IPv6 header, and use a permanently present set of 
fragmentation control fields in the IPv6 packet header in a manner that is exactly the same as used in 
IPv4. Tempting as this sounds superficially, the case for making fundamental changes to the IPv6 
specification at this time just cannot withstand more critical scrutiny. IPv6 is not such a software 
behaviour, as its baked into the firmware and potentially even the hardware of a large proportion of 
deployed IPv6 equipment. If the prospect of correcting the inventory of equipment that does not 
handle Extension Headers is daunting, the degree of difficulty of changing the behaviour of all 
deployed IPv6 equipment to meet some new packet header specification would be on a new level 
entirely. 
 
Maybe we should bow to the inevitable and recognise that in IPv6 fragmentation is an unfixable 
problem.  
 

This is not a new thought, and is best described in recent years in an 
Internet draft “IPv6 Fragment Header Deprecated” 
(https://tools.ietf.org/html/draft-bonica-6man-frag-deprecate-01).  

 
What would the Internet environment look like if we could not perform packet fragmentation at the IP 
level?  
 
QUIC is an illustration of one approach to this problem. In QUIC the maximum packet size is set to 
1,350 octets, and fragmentation is no longer exposed as an IP-layer behaviour, but instead the task of 
payload segmentation and reassembly is an application task inside the QUIC protocol. Logically it 
appears that the task of payload quantisation into packets has been moved up the protocol stack, and is 
no longer part of IP and no longer part of the end-to-end protocol. In the QUIC architecture it appears 
that packet fragmentation is managed as a session level task, sitting above the common UDP substrate.  
 
What that means is that it could be that shifting the DNS to perform its queries over QUIC could help 
us to envisage a viable all-IPv6 DNS. It’s not the only answer, and we could contemplate DNS over 

https://tools.ietf.org/html/draft-bonica-6man-frag-deprecate-01)
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TCP, DNS over secure sockets using TLS over TCP, or even DNS over HTTP or HTTPs. Or, like 
QUIC we might device some new DNS session level framing protocol and eschew IP level 
fragmentation.  
 
However, one conclusion looks starkly clear to me from these results. We can't just assume that the 
DNS as we know it today will just work in an all IPv6 future Internet. We must make some changes in 
some parts of the protocol design to get around this current widespread problem of IPv6 Extension 
Header packet loss in the DNS, assuming that we want to have a DNS at all in this all-IPv6 future 
Internet. 
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