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BBR TCP 
 
The Internet was built using an architectural principle of a simple network and agile edges. The basic 
approach was to assume that the network is a simple collection of buffered switches and circuits. As 
packets traverse the network they are effectively passed from switch to switch. The switch selects the 
next circuit to use to forward the packet closer to its intended destination. If the circuit is busy, the 
packet will be placed on a queue and processed later, when the circuit is available. If the queue is full, 
then the packet is discarded. This network behaviour is not entirely useful if what you want is a reliable 
data stream to transit through the network. The approach adopted by the IP architecture is to pass the 
responsibility for managing the data flow, including detecting and repairing packet loss as well as 
managing the data flow rate, to an end-to-end transport protocol. In general, we use the Transmission 
Control Protocol (TCP) for this task. TCP's intended mode of operation is to pace its data stream such 
that it is sending data as fast as possible, but not so fast that it continually saturates the buffer queues 
(causing queuing delay), or loses packets (causing loss detection and retransmission overheads). This 
desire by TCP to run at an optimal speed is attempting to chart a course between two objectives; firstly, 
to use all available network carriage resources, and secondly, to share the network resources fairly 
across all concurrent TCP data flows.  
 
But while TCP might look like a single protocol, that is not the case. TCP is a common transport 
protocol header format, and all TCP packets use this format and apply the same interpretation to the 
fields in this protocol header (Figure 1). But behind this is a world of difference. The way TCP 
manages the data flow rate, and the way in which it detects and reacts to packet loss are in fact open to 
variation, and over the years there have been many variants of TCP that attempt to optimise TCP in 
various ways to meet the requirements or limitations that are found in various network environments.  
 

 
 
Figure 1 – The Headers for a IPv4 / TCP packet 
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AIMD and TCP Reno 

For many years, the so-called “Reno” flow control algorithm appears to have become the mainstay of 
TCP data flow control, perhaps due to its release in the 4.3BSD-Reno Unix distribution.  
 
Reno is an instance of an AIMD flow algorithm, denoting “Additive Increase, Multiplicative Decrease”. 
Briefly, Reno is an “ACK-pacing” flow control protocol, where new data segments are passed into the 
network based on the rate at which ACK segments, indicating successful arrival of older data segments 
at the receiver, are received by the data sender. If the data sending rate was exactly paced to the ACK 
arrival rate, and the available link capacity was not less than this sending rate, then such a TCP flow 
control protocol would hold a constant sending rate indefinitely (Figure 2).  
 

 
Figure 2 – Ack-pacing flow control 

 
 
However, Reno does not quite do this. In its steady state (called “Congestion Avoidance”) Reno 
maintains an estimate of the time to send a packet and receive the corresponding ACK (the “round trip 
time,” or RTT), and while the ACK stream is showing that no packets are being lost in transit, then 
Reno will increase the sending rate by one additional segment each RTT interval. Obviously, such a 
constantly increasing flow rate is unstable, as the ever-increasing flow rate will saturate the most 
constrained carriage link, and then the buffers that drive this link will fill with the excess data with the 
inevitable consequence of overflow of the line’s packet queue and packet drop. The way TCP signals a 
dropped packet is by sending an ACK in response to what it sees is an out of order packet where the 
ACK signals the last in-order received data segment. This behaviour ensures that the sender is kept 
aware of the receiver’s data reception rate, while signalling data loss at the same time. A Reno sender’s 
response to this signalled form of data loss is to attempt to repair the data loss and halve its sending 
rate. Once the loss is repaired, then Reno resumes its former additive increase of the sending rate from 
this new base rate. The ideal model of behaviour of TCP Reno in congestion avoidance mode is a 
“sawtooth” pattern, where the sending rate increases linearly over time until the network reaches a 
packet loss congestion level in the network’s queues, when Reno will repair the loss, halve its sending 
rate and start all over again (Figure 3).  
 

 
Figure 3 – Ideal TCP Reno Flow Control behaviour 
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The assumptions behind Reno are that packet loss only occurs because of network congestion, and 
network congestion is the result of buffer overflow. Reno also assumes that a link’s RTT is stable and 
the ceiling of available bandwidth is also relatively steady. Reno also makes some assumptions about 
the size of the network’s queue buffers, in that rate halving will not only stop the queue growing, but it 
will allow the buffer to drain. For this to occur the total packet queue capacity in bytes should be no 
larger than the delay bandwidth product of the link that is driven by this buffer. Smaller buffers cause 
Reno to back off to a level that makes inefficient use of the available network capacity. Larger buffers 
can lead Reno into a “buffer bloat” state, where the buffer never quite drains. The residual queue 
occupancy time of this constant lower bound of the queue size is a delay overhead imposed on the 
entire session. 
 
Even when these assumptions hold Reno has its shortcomings. These are particularly notable in high 
speed networks. Increasing the sending rate by one segment per RTT typically adds just 1,500 octets 
into the data stream per RTT. Now if we have a 10Gbps circuit over a 30ms RTT network path, then it 
will take some 3.5 hours to get the TCP session up from 5Gbps flow rate to 10Gbps if the TCP session 
was accelerating in speed by 1,500 octets each RTT. During this 3.5 hour period there can be no packet 
drops, which implies a packet drop rate of less than 1 in 7.8 billion, or an underlying bit error rate that 
is lower than 1 in 1014. For an absolutely clear end-to-end channel in an experimental context this may 
be feasible, but for conventional situations with cross traffic and transient loads imposed by concurrent 
flows this is a completely unrealistic expectation. As noted above, it’s also the case that Reno performs 
poorly when the network buffers are larger than the delay bandwidth product of the associated link. 
And, like any ACK pacing protocol, Reno collapses when ACK signalling is lost, so when Reno 
encounters a loss condition that strips off the tail of a burst of packets, it will lose its ACK-pacing 
signal, and Reno has to stop the current data flow and perform a basic restart of the session flow state. 
 
There have been many proposals to improve this TCP behaviour. Many of these proposals make 
adjustments to the level of increase or decrease per RTT, but stay within the basic behavioural 
parameters of increasing the sending rate more slowly than its decrease. In other words, these variants 
all try to be highly reactive to indications of packet loss, while conservative in their efforts to increase 
the sending rate.  
 
But while it seemed that Reno was the only TCP protocol is use for many years, this changed over 
time, and thanks to their use as the default flow control protocol in many Linux platfoms, CUBIC is 
now widely used as well, probably even more widely used then Reno.   
 

CUBIC 

The base idea was defined with BIC (Binary Increase Congestion Control), a protocol that assumed 
that the control algorithm was actively searching for a packet sending rate that sat on the threshold of 
triggering packet loss, and BIC uses a binary chop search algorithm to achieve this efficiently. When 
BIC performs a window reduction in response to packet drop, it remembers the previous maximum 
window size, as well as the current window setting. With each lossless RTT interval BIC attempts to 
inflate the congestion window by one half of the difference between the current window size and the 
previous maximum window size. In this way, BIC quickly attempts to recover from the previous 
window reduction, and, as BIC approaches the old maximum value, it slows down its window inflation 
rate, halving its rate of window inflation each RTT. This is not quite so drastic as it may sound, as BIC 
also uses a maximum inflation constant to limit the amount of rate change in any single RTT interval. 
This value is typically larger than the 1 segment per RTT used by Reno. The resultant behaviour is a 
hybrid of a linear and a non-linear response, where the initial window inflation after a window 
reduction is a steep linear increase, but as the window approaches the previous point where packet loss 
occurred the rate of window increase slows down. BIC uses the complementary approach to window 
inflation once the current window size passes the previous loss point. Initially further window inflation 
is small, and the window inflation value doubles in size for each RTT, up to a limit value, beyond which 
the window inflation is once more linear.  
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BIC can be too aggressive in low RTT networks and in slower speed situations, leading to a refinement 
of BIC, namely CUBIC. CUBIC uses a 3rd order polynomial function to govern the window inflation 
algorithm, rather than the exponential function used by BIC. The cubic function is a function of the 
elapsed time since the previous window reduction, rather than BIC’s implicit use of an RTT counter, so 
that CUBIC can produce fairer outcomes in a situation of multiple flows with different RTTs. CUBIC 
also limits the window adjustment in any single RTT interval to a maximum value, so the initial window 
adjustment after a reduction is linear. This function is more stable when the window size approaches 
the previous window size. The use of a time interval rather than an RTT counter in the window size 
adjustment is intended to make CUBIC more sensitive to concurrent TCP sessions, particularly in short 
RTT environments.  
 
A theoretical comparison of Reno and CUBIC is shown in Figure 4. 
 

 
Figure 4 – Comparison of RENO and CUBIC Window Management behaviour 

 
CUBIC is a far more efficient protocol for high speed flows. It’s reaction of packet loss is not as severe 
as Reno, and it attempts to resume the pre-loss flow rate as quickly as possible, then as it nears the 
point of the previous onset of loss then its adjustments over time are more tentative as it probes into 
the loss condition. 
 
What cubic does appear to do is to operate the flow for as long as possible just below the onset of 
packet loss. In other words, in a model of a link as a combination of a queue and a transmission 
element, CUBIC attempts to fill the queue as much as possible for as long as possible with CUBIC 
traffic, and then back off by a smaller fraction and resume its queue filling operation. For high speed 
links CUBIC will operate very effectively as it conducts a rapid search upward, and this implies it is well 
suited for such links.   
 
The common assumption across these flow-managed behaviours is that packet loss is largely caused by 
network congestion, and congestion avoidance can be achieved by reacting quickly to packet loss.  
 

A Simple Model of Links and Queues 

We can gain a better insight into network behaviour by looking at a very simple model of a fixed sized 
queue driving a fixed capacity link, with a single data flow passing through this structure. This data flow 
encounters three quite distinct link and queue states (Figure 5):  
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Figure 5 – Queue and Link States 

 
 

The first state is where the send rate is lower than the capacity of the link. In this situation, the 
queue is always empty and arriving flow packets will be passed immediately onto the link as 
soon as they are received. 
 
The second state is where the sending rate is greater than the link capacity. In this state, the 
arriving flow packets are always stored in the queue prior to accessing the link. This is also an 
unstable state, in that over time the queue will grow by the difference between the flow data 
rate and the link capacity. 
 
The third state is where the sending rate is greater than the link capacity and the queue is fully 
occupied, so the data cannot be stored in the queue for later transmission, and is discarded. 
Over time the discard rate is the difference between the flow data rate and the link capacity. 

 
What is the optimal state for a data flow?  
 
Intuitively, it seems that we would like to avoid data loss, as this causes retransmission which lowers the 
link’s efficiency. We would also like to minimise the end-to-end delay, as ACK pacing control 
algorithms become less responsive the longer the time between the event causing a condition and the 
original data sender being notified of the condition through the ACK stream. Simply put, optimality 
here is to maximise capacity and minimise delay. 
 
If we relate it to the three states described above, the ‘optimal’ point for a TCP session is the onset of 
buffering, or the state just prior to the transition from the first to the second state. At this point all the 
available network transmission capability is being used, while the end-to-end delay is composed entirely 
of transmission delay without a queue occupancy component.  
 
Reno uses a different target for its TCP flow. Reno’s objective is to keep within the second state, but 
oscillate across the entire range of the state. Packet drop (State 3) should cause a drop in the sending 
rate to get the flow to pass through state 2 to state 1 (i.e. draining the queue). RTT intervals without 
packet drop cause the TCP flow to increase the volume of in-flight data, which should drive the TCP 
flow state through state 2. Cubic works harder to place the flow at the point of the onset of packet loss, 
or the transition between States 2 and 3. While this maximises the flow’s ability to place flow pressure 
of the path, CUBIC does so at a cost of increased delay due to the higher probability of forming 
standing queue occupancy states. 
 
The question is whether it is possible to devise a TCP flow control algorithm that attempts to sit at that 
point of optimality which is the onset of the formation of queues, rather than the onset of packet drop. 
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We can, in theory, tell when this optimal point has been achieved if we take careful note of the RTT 
measurements of data packets and their corresponding acknowledgements. In the first state, when the 
sending rate is less than the bottleneck capacity, then the increase in the send rate has no impact on the 
measured RTT value. In the second state, the additional traffic will be stored in a queue for a period, 
and this will result in an increase in the measured RTT for this data. The third state is of course 
identified by packet drop (Figure 6). 
 
The optimal point where the data delivery rate is maximised and the round trip delay is minimised is 
just at the point of transition from State 1 to State 2, and the onset of queue formation. At this point 
packets are not being further delayed by queueing, and the delivery rate matches the capacity of the 
link. What we are after is therefore a TCP flow control algorithm that attempts to position the flow at 
this point of hovering between states 1 and 2.  
 

 
Figure 6 – Delay and Delivery characteristics of a simple Link Model (after [1]) 

 
One of the earliest efforts to perform this was TCP Vegas.  
 

TCP Vegas 
TCP Vegas used careful measurements of the flow’s RTT by recording the time of sent data and 
matching this against the time of the corresponding received ACK. At its simplest, the Vegas control 
algorithm was that an increasing RTT, or packet drop, caused Vegas to reduce its packet sending rate, 
while a steady RTT caused Vegas to increase its sending rate to find the new point where the RTT 
increased.  
 
TCP Vegas is not without issues. It’s flow adjustment mechanisms are linear over time, so it can take 
some time for a Vegas session to adjust to large scale changes in the bottleneck bandwidth. It also loses 
out when attempting to share a link with Reno or similar loss-modulated TCP flow control algorithms. 
 
A loss-moderated TCP sender will not adjust its sending rate until the onset of loss (State 3), while 
Vegas will commence adjustment at the onset of queuing (State 2). This implies that when a Vegas 
session starts adjusting its sending rate down in response to the onset of queuing, any concurrent loss-
moderated TCP session will occupy that flow space, causing further signals to the Vegas flow to 
decrease its sending rate, and so on. In this scenario, Vegas is effectively “crowded out” of the link. If 
the path is changed mid-session and the RTT is reduced then Vegas will see the smaller RTT and adjust 
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successfully. On the other hand, a path change to a longer RTT is interpreted as a queue event and 
Vegas will erroneously drop its sending rate.  
 
Can we take this delay-sensitive algorithm and do a better job? 
 

BBR 

Into this mix comes a more recent TCP delay-controlled TCP flow control algorithm from Google, 
called BBR.  
 
BBR is very similar to TCP Vegas, in that it is attempting to operate the TCP session at the point of 
onset of queuing at the path bottleneck. The specific issues being addressed by BBR is that the 
determination of both the underlying bottleneck available bandwidth and path RTT is influenced by a 
number of factors in addition to the data being passed through the network for this particular flow, and 
once BBR has determined its sustainable capacity for the flow it attempts to actively defend it in order 
to prevent it from being crowded out by the concurrent operation of conventional AIMD protocols.  
 
Like TCP Vegas, BBR calculates a continuous estimate of the flow’s RTT and the flow’s sustainable 
bottleneck capacity. The RTT is the minimum of all RTT measurements over some time window which 
is described as “tens of seconds to minutes” [1]. The bottleneck capacity is the maximum data delivery 
rate to the receiver, as measured by the correlation of the data stream to the ACK stream, over a sliding 
time window of the most recent 6 to 10 RTT intervals. These values of RTT and bottleneck bandwidth 
are independently managed, in that either can change without necessarily impacting the other.  
 
For every sent packet BBR marks whether the data packet is part of a stream, or whether the 
application stream has paused, in which case the data is marked as “application limited.” Importantly, 
packets to be sent are paced at the estimated bottleneck rate, which is intended to avoid network 
queuing that would otherwise be encountered when the network performs rate adaptation at the 
bottleneck point. The intended operational model here is that the sender is passing packets into the 
network at a rate that is anticipated not to encounter queuing within the entire path. This is a significant 
contrast to protocols such as Reno, which tends to send packet bursts at the epoch of the RTT and 
relies on the network’s queues to perform rate adaptation in the interior of the network if the burst 
sending rate is higher than the bottleneck capacity. 
 
For every received ACK the BBR sender checks if the original sent data was application limited. If not, 
the sender incorporates the calculation of the path round trip time and the path bandwidth into the 
current flow estimates.  
 
The flow adaptation behaviour in BBR differs markedly from TCP Vegas, however. BBR will 
periodically spend one RTT interval deliberately sending at a rate which is a multiple of the bandwidth 
delay product of the network path. This multiple is 1.25, so the higher rate is not aggressively so, but 
enough over an RTT interval to push a fully occupied link into a queueing state. If the available 
bottleneck bandwidth has not changed, then the increased sending rate will cause a queue to form at 
the bottleneck. This will cause the ACK signalling to reveal an increased RTT, but the bottleneck 
bandwidth estimate should be unaltered. If this is the case, then the sender will subsequently send at a 
compensating reduced sending rate for an RTT interval, allowing the bottleneck queue to drain. If the 
available bottleneck bandwidth estimate has increased because of this probe, then the sender will 
operate according to this new bottleneck bandwidth estimate. Successive probe operations will 
continue to increase the sending rate by the same gain factor until the estimated bottleneck bandwidth 
no longer changes because of these probes. Because this probe gain factor is a multiple of the 
bandwidth delay product, then BBR’s overall adaptation to increased bandwidth on the path is 
exponential rather than the linear adaptation used by TCP Vegas.  
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This regular probing of the path to reveal any changes in the path’s characteristics is a technique 
borrowed from the drop-based flow control algorithms. Informally, the control algorithm is placing 
increased flow pressure on the path for an RTT interval by raising the data sending rate by a factor of 
25% every 8 RTT intervals. If this results in a corresponding queueing load, as shown by an increased 
RTT estimate, then the algorithm will back off to allow the queue to drain and then resume at the 
steady state at the level of the estimated path bandwidth and delay characteristics. There is also the 
possibility that this increased flow pressure will cause other concurrent flows to back off, and in that 
case BBR will react quickly to occupy this resource by sending a steady rate of packets equal to the new 
bottleneck bandwidth estimate. 
 
Session startup is relatively challenging, and the relevant observation here is that on today’s Internet 
link bandwidths span 12 orders of magnitude, and the startup procedure must rapidly converge to the 
available bandwidth irrespective of its capacity. With BBR, the sending rate doubles each RTT, which 
implies that the bottleneck bandwidth is encountered within log2 RTT intervals.  This is similar to the 
rate doubling used by Reno, but here the end of this phase of the algorithm is within an RTT of the 
onset of queuing, rather than Reno’s condition of within one RTT of the saturation of the queue and 
the onset of packet drop.  
 
At the point where the estimated RTT starts to increase, then BBR assumes that it now has filled the 
network queues, so it keeps this bandwidth estimate and drains the network queues by backing off the 
sending rate by the same gain factor for one RTT. Now the sender has estimates for the RTT and the 
bottleneck bandwidth, so it also has the link Bandwidth Delay Product (BDP). Once the server has just 
this quantity of data unacknowledged, then it will resume sending at the estimated bottle neck 
bandwidth rate. 
 
The overall profile of BBR behaviour, as compared to Reno and CUBIC is shown in Figure 7.  
 
 

 
Figure 7 – Comparison of model behaviors of Reno, CUBIC and BBR 

 

Sharing 

The noted problem with TCP Vegas was that it ‘ceded’ flow space to concurrent drop-based TCP flow 
control algorithms. When another session was using the same bottleneck link, then when Vegas backed 
off its sending rate then the drop-based TCP would in effect occupy the released space. Because drop-
based TCP sessions have the bottleneck queue occupied more than half the time, then Vegas would 
continue to drop its sending rate, passing the freed bandwidth to the drop-based TCP session(s). 
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BBR appears to have been designed to avoid this form of behaviour.  The reason why BBR will claim 
its “fair share” is the periodic probing at an elevated sending rate. This behaviour will “push” against 
the concurrent drop-based TCP sessions and allow BBR to stabilize on its fair share bottleneck 
bandwidth estimate. However, this works effectively when the internal network buffers are sized 
according to the delay bandwidth product of the link they are driving. If the queues are over-
provisioned then the BBR probe phase may not create sufficient pressure against the drop-based TCP 
sessions that occupy the queue and BBR might not be able to make an impact on these sessions, and 
may risk losing its fair share of the bottleneck bandwidth. On the other hand, there is the distinct risk 
that if BBR overestimates the RTT it will stabilise at a level that has a permanent queue occupancy. In 
this case, it may starve the drop-based flow algorithms and crowd them out. 
 
Google report on experiments that show that concurrent BBR and CUBIC flows will approximately 
equilibrate, with CUBIC obtaining a somewhat greater share of the available resource, but not 
outrageously so. It points to a reasonable conclusion that BBR can coexist in a RENO/CUBIC TCP 
world without either losing or completely dominating all other TCP flows.  
 
Our limited experiments to date point to a somewhat different conclusion.  
 
The first experiment was of the form of a 1:1 test with concurrent single CUBIC and Reno flows 
passed over a 15.2ms RTT uncongested 10Gbps circuit (Figure 8). CUBIC was started initially, and at 
the 20 second point a BBR session was started between the same two endpoints. BBR’s initial start 
algorithm pushes CUBIC back to a point where it appears unable to re-establish a fair share against 
BBR. This is a somewhat unexpected result, but may be illustrative of an outcome where the internal 
buffer sizes are far lower than the delay bandwidth product of the bottleneck circuit. 
 

 
Figure 8 – Test of CUBIC vs BBR  

 
The second experiment used a 298ms RTT path across a large span of the Internet between end nodes 
located in Germany and Australia. This is a standard Internet path across commercial ISPs, as one 
would expect to encounter in the Internet. These are not the only two streams that exist on the 16 
forward and 21 reverse direction component links in this extended path, so the two TCP sessions are 
not only vying with each other for network resources on all of these links, but variously competing with 
cross traffic on each component link. Again, BBR appears to be more successful in claiming path 
resources, and defending them against other flows for the duration of the BBR session (Figure 9). 
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Figure 9 – Second Test of CUBIC vs BBR  

 
This is perhaps a less surprising outcome, in that the extended RTT apparently posed some issues for 
CUBIC, while BBR was able to maintain its path bandwidth estimate in this period. This results point 
to some level of co-existence between BBR and CUBIC, but the outcome appears be biased to BBR 
gaining the greater share of the path capacity. 

Congestion Control and Active Network Profiling 

One other aspect of the Google report is noteworthy: 
 

"Token-bucket policers. BBR's initial YouTube deployment revealed that most of the world's 
ISPs mangle traffic with token-bucket policers. The bucket is typically full at connection startup 
so BBR learns the underlying network's BtlBw [bottleneck bandwidth], but once the bucket 
empties, all packets sent faster than the (much lower than BtlBw) bucket fill rate are dropped. 
BBR eventually learns this new delivery rate, but the ProbeBW gain cycle results in continuous 
moderate losses. To minimize the upstream bandwidth waste and application latency increase 
from these losses, we added policer detection and an explicit policer model to BBR. We are also 
actively researching better ways to mitigate the policer damage.” [1] 

 
The observation here is that traffic conditioners appear to be prevalent in today’s Internet. The token-
bucket policers behave as an average bandwidth filter, but where there are short periods of traffic 
below an enforced average bandwidth rate, then these tokens accumulate as “bandwidth credit” and 
this credit can be used to allow short burst traffic equal to the accumulated token count. The “bucket” 
part of the conditioner enforces a policy that the accumulated bandwidth credit has a fixed upper cap, 
and no burst in traffic can exceed this capped volume.  
 
The objective here is for the rate control TCP protocol to find the average bandwidth rate that is being 
enforced by the token bucket policer, and, if possible, to discover the burst profile being enforced by 
the traffic conditioner. The feedback that the token bucket policer impresses onto the flow control 
algorithm is one where an increase in the amount of data in flight is not necessarily going to generate a 
response of a greater measured RTT, but instead generate packet drop that is commensurate with the 
increased volume of data in flight. This implies that under such conditions a consistent onset of packet 
loss events when the sending rate exceeds some short-term constant upper bound of the flow rate 
would reveal the average traffic flow rate being enforced by the token bucket application point. 
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