
The ISP Column  
A monthly column on things Internet 

 

 
Geoff Huston 
December 2016 

Let’s Encrypt with DANE 
 
There is a frequently quoted adage in communications that goes along the lines of “Good, Fast, Cheap: 
pick any two!” It may well be applied to many other forms of service design and delivery, but the basic 
idea is that high quality, high speed services are costly to obtain, and if you want a cheaper service that 
you need to compromise either on the speed of the service or its quality. However, if you looked at the 
realm of security, and X.509 certificate-based secure systems, we appear to be in the worst of all worlds: 
It can be expensive, inherently comprisable and slow to set up and access. So somehow we’ve managed 
to achieve: “Security: Poor, Slow and Expensive!” 
 
However, this environment is changing, and it may no longer be the case. In this column I’d like to 
walk through the process of setting up good, inexpensive and accessible security using several public 
tools. 
 
What I’ll do here is a step by step log of my efforts to set up a secure web service using Let’s Encrypt 
Domain Name public key X.509 certificates and DNSA TLSA records (https://letsencrypt.org). I’m using 
a platform of a FreeBSD system (https://www.freebsd.org) running an Apache web server 
(https://www.apache.org/) in this example. While the precise commands and configuration may be 
different for other OS platforms and other web servers, the underlying steps are much the same, and 
these steps can be readily ported. 
 
Let’s start with the domain name that is already delegated. The first step is to add DNSSEC to the web 
server’s domain name. 
 

1. DNSSEC 

We’ll use the tools provided with the BIND distribution (https://www.isc.org/downloads/bind/). 
 
The first step to signing a DNS zone is to generate two keys: one key, the Key-signing Key (KSK) is 
the Secure Entry Point for the zone. This key is used to sign over the “working key”, which is the Zone 
Signing Key (ZSK). The ZSK is the key that is used to generate the signed zone for DNSSEC. 
 
Firstly, the keys need to be generated. I’ll generate 2,048-bit RSA keys for both the KSK and the ZSK: 
 

$ dnssec-keygen -r/dev/random  -f KSK -a RSASHA1 -b 2048 -n ZONE www.dotnxdomain.net 
Generating key pair....+++ ..........................................+++  
Kwww.dotnxdomain.net.+005+35836 
 
$ dnssec-keygen -r/dev/random  -a RSASHA1 -b 2048 -n ZONE www.dotnxdomain.net 
Generating key pair........+++ ..................................+++  
Kwww.dotnxdomain.net.+005+57561 

 
We now have two key pairs in the working directory: 
 

$ ls -al K* 
-rw-r--r--  1 gih  gih   621 Dec 22 23:13 Kwww.dotnxdomain.net.+005+35836.key 
-rw-------  1 gih  gih  1774 Dec 22 23:13 Kwww.dotnxdomain.net.+005+35836.private 

https://letsencrypt.org/
https://www.freebsd.org/
https://www.apache.org/
https://www.isc.org/downloads/bind/


  Page 2 

-rw-r--r--  1 gih  gih   622 Dec 22 23:14 Kwww.dotnxdomain.net.+005+57561.key 
-rw-------  1 gih  gih  1774 Dec 22 23:14 Kwww.dotnxdomain.net.+005+57561.private 

 
We now need to add these keys into the dotnxdomain.net DNS zone file. BIND has a convenient way 
of doing this via $include macros. 
 

$ cp Kwww.dotnxdomain.net.+005+35836.key keys/Kksk.dotnxdomain.net.key 
$ cp Kwww.dotnxdomain.net.+005+35836.private keys/Kksk.dotnxdomain.net.private 
$ cp Kwww.dotnxdomain.net.+005+57561.key keys/Kzsk.dotnxdomain.net.key 
$ cp Kwww.dotnxdomain.net.+005+57561.private keys/Kzsk.dotnxdomain.neet.private 
 
$ head -14 dotnxdomain.net 
$TTL 15m 
@                       IN SOA  ns1.dotnxdomain.net. research.apnic.net. ( 
                                        2016122202 ; serial 
                                        900        ; refresh (15 min) 
                                        900        ; retry (15 minutes) 
                                        1          ; expire (1 second) 
                                        1          ; minimum (1 second) 
                                        ) 
 
                        NS      ns1.dotnxdomain.net. 
                        NS      ns2.dotnxdomain.net. 
 
$include keys/Kksk.dotnxdomain.net.key 
$include keys/Kzsk.dotnxdomain.net.key 

 
This zone now needs to be signed. Again, BIND has a convenient tool to do this via dnssec-signzone: 
 

$ /usr/local/sbin/dnssec-signzone -K ../keys -e 20200724235900 -r /dev/random -d . -o dotnxdomain.net -k Kksk.dotnxdomain.net.key 
dotnxdomain.net Kzsk.dotnxdomain.net.key 
Verifying the zone using the following algorithms: RSASHA1. 
Zone fully signed: 
Algorithm: RSASHA1: KSKs: 1 active, 0 stand-by, 0 revoked 
                    ZSKs: 1 active, 0 stand-by, 0 revoked 
dotnxdomain.net.signed 

 
At this point we have a signed zone that can be added to the local name server configuration. 
 
We also have the DS records that can be passed to the parent zone for publication along with the NS 
delegation records in the parent zone: 
 

$ cat dsset-dotnxdomain.net. 
dotnxdomain.net.  IN DS 8614 5 1 7D6703DDA3BA3321152460F6904034C3E8EAFDE4 
dotnxdomain.net.  IN DS 8614 5 2 EE02E918ED6DABC74F77D51CC346CFA6F8D95D2E4FA98CE93749A546 
                                   49CC60AA 

 
Assuming that the name server of the parent zone have updated by including these DS records, then all 
that’s required to complete the process of DNSSEC zone signing is to refresh the authoritative name 
server: 
 

$ kill -HUP ‘/etc/named.pid’ 

 
It's probably a good idea to check the outcome. One of the best tools to do this is Casey Deccio’s 
DNSviz tool (http://dnsviz.net/) 
 

Figure 1 shows the output from DNSviz, showing the chain of inter-locked digital signatures that starts 
with the KSK of the root zone which signs over the ZSK of the root zone. This ZSK is used to sign 
the DS record of the delegated .net zone that was generated by the .net KSK. Again this KSK signs 
over the .net ZSK, which signs over the KSK of the .dotnxdomain.net delegation entry. This is the 
key we’ve generated above, and we now are walking through the signature structure we’ve just set up. 
The .dotnxdomain.net KSK signs over the ZSK, and this is used to sign the entry for 
www.dotnxdomain.net. 
 

http://dnsviz.net/


  Page 3 

We now have a DNSSEC-signed zonefile to work with. 

 
Figure 1 – dnsviz.net screenshot 

 

2. Domain Name Certificates with Let’s Encrypt 

 
A convenient starting point to issue Let’s Encrypt certificates is where the domain name is being served 
via a Web Server. In this case I’m using Apache, so the virtual host clause in the Apache configuration is: 
 

<VirtualHost *:80> 
    DocumentRoot /usr/local/www/dotnxdomain/data 
    ServerName www.dotnxdomain.net 
    <Directory "/usr/local/www/dotnxdomain/data"> 

        Require all granted 
    </Directory> 
</VirtualHost> 

 



  Page 4 

At this point we are ready to generate the Let’s encrypt domain name certificate. On FreeBSD I’ll use 
the EFF’s certbot package (https://certbot.eff.org). This is a Python implementation of the ACME 
protocol used to fetch certificates. 
 
Once certbot has been installed its now possible to request Let’s Encrypt domain name certificates: 
 

# certbot certonly --webroot -w /usr/local/www/dotnxdomain/data -d www.dotnxdomain.net 

 
The certificate, the private key, and the validation certificate chain are all stored in the 
/usr/local/etc/letsencrypt directory: 
 

# ls /usr/local/etc/letsencrypt/live/www.dotnxdomain.net/ 
cert.pem 
chain.pem 
fullchain.pem 
privkey.pem 

 
We can now configure TLS in the Apache server, using this certificates to open a TLS sessions 
whenever this domain name is used for a secure session. The Apache virtual host config segment needs 
to be configured, and here I used the following configuration settings: 
 

<VirtualHost *:443>  
SSLEngine on 
SSLCipherSuite ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-
GCM-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-
SHA:AES256-GCM-SHA384:AES128-GCM-SHA256:AES256-SHA256:AES128-SHA256:AES256-SHA:AES128-SHA:DES-CBC3-
SHA:HIGH:!aNULL:!eNULL:!EXPORT:!DES:!MD5:!PSK:!RC4 
SSLCertificateFile "/usr/local/etc/letsencrypt/live/www.dotnxdomain.net/cert.pem" 
SSLCertificateKeyFile "/usr/local/etc/letsencrypt/live/www.dotnxdomain.net/privkey.pem" 
SSLCertificateChainFile "/usr/local/etc/letsencrypt/live/www.dotnxdomain.net/fullchain.pem" 
CustomLog "/var/log/httpd-ssl_request.log"  "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b" 
    DocumentRoot /usr/local/www/dotnxdomain/data  
    ServerName www.dotnxdomain.net:443  
    <Directory "/usr/local/www/dotnxdomain/data">  
        Require all granted  
    </Directory>  

 
At this point the URL https://www.dotnxdomain.net/ will respond with the web page over a TLS 
connection. 
 

3. DANE TLSA record 

 
Now for the final step - the DANE TLSA record.  
 
Why do this?  
 
The underlying problem with domain name certificates is that the client (the Relying Party in security 
parlance) has no knowledge as to exactly which CA issued the certificate that is presented to the client 
on connection. The vulnerability lies in the observation that if an attacker can corrupt any single CA 
from the set of CAs that the client trusts (and most clients trust a lot of CAs!), and coerce this 
corrupted CA to issue a fake certificate for a particular name (*.google.com appears to be a favourite 
choice) , then it’s possible to mount a man-in-the middle attack on users who communicate with this 
particular named service. This is not just a hypothetical supposition and as an example a relatively 
recent incident is described on some detail in a positing on the Google Security Blog 
(https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html). There was also the 
Diginotar hack back in 2011 that achieve some prominence at the time, perhaps because the man-in 
the-middle in this particular attack may have been a state actor attempting to electronically eavesdrop 
on its citizens (http://www.potaroo.net/ispcol/2011-10/hacking.html). 
 

https://certbot.eff.org)/
https://www.dotnxdomain.net/
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html)
http://www.potaroo.net/ispcol/2011-10/hacking.html


  Page 5 

The man-in-the-middle attacker intercepts the user’s connection handshake with a named entity and 
substitutes its own certificate for that name to the user. Unless the user’s application has some 
additional knowledge about what particular certificate it should receive at this point, which is in most 
cases unlikely, it will accept any CA’s certificate that it can validate using its local CA trust set. The 
attacker then opens its own connection with the user’s intended endpoint and acts as a relay between 
the user and the endpoint. The attacker then relays the transactions in both directions, using one 
session key with the user and a second session key with the actual service. This way the entire 
conversation is exposed to the middle-man attacker, but neither the user nor the service platform are 
aware of the attacker’s manipulation of the supposedly secure session.  
 
The advantage of DANE and secure TLSA records in a secured DNS record is that it’s not possible to 
pass the user a fake certificate for a given domain name.  
 
Why not?  
 
Because when the user is passed a domain name certificate as part of the initial TLS handshake the 
client can check the certificate’s details against a TLSA record published in the DNS for the service 
name. Because the DNS entry is signed using DNSSEC, the user has a high level of assurance that the 
DNS information is both genuine and current, and therefore can make an informed judgement as to 
whether to accept the offered certificate.   
 
Let’s generate a DANE TLSA record for the Let’s encrypt certificate we obtained in the previous step. 
 
I found Shumon Huque’s online DANE tools useful at this point:  https://www.huque.com/bin/gen_tlsa 
 

 
Figure 2 – Generating a TLSA record using the gen_tlsa web service 

 
I chose to generate a TLSA record using a SHA-512 hash of the entire Let’s Encrypt Certificate (Figure 
2). The response from this web page is the TLSA record to add to the zone file (Figure 3) 
 
This TLSA record is added to the domain zone file with an updated SOA record, the entire zone is re-
signed for DNSSEC with the ZSK and the name server signaled to reload the zone file. 
  

$ add_tlsa www.dotnxdomain.net www.dotnxdomain.net.tlsa >>dotnxdomain.net 

https://www.huque.com/bin/gen_tlsa
http://www.dotnxdomain.net/
http://www.dotnxdomain.net.tlsa/


  Page 6 

$ increment_soa dotnxdomain.net 
$ signzone dotnxdomain.net 
$ kill -HUP ‘/etc/named.pid’ 

 

 
Figure 3 – Generating a TLSA record, gen_tlsa response 

 
 
There are several diagnostic tools that allow you to check if this has all worked. Shumon Huque’s 
online DANE tools includes one such checker (Figure 4). 
 



  Page 7 

 
Figure 4 – Checking a TLSA record 

 
 
This record is then added to the zone file, and the zone is re-signed with the ZSK 

4. Validation using the DANE TLSA record 

 
I’ve added the DANE validation tool published by CZ.NIC to my browser (https://www.dnssec-

validator.cz/). 
 

 
 
Figure 5 – The CZ.NIC DANE plug-in in a browser 

https://www.dnssec-validator.cz/
https://www.dnssec-validator.cz/


  Page 8 

 
 

5. Certificate Re-Issuance 

 
Let’s Encrypt certificates have a 90 day validity, so you need to renew these certificates on a regular 
basis. The certbot tool has a convenient option to perform this, which can be loaded into crontab: 
 

$ certbot -renew 

 
Of course, you also need to regenerate the TLSA record each time the Let’s Excrypt certificate is re-
issued. Shumon Huque has written up how to do this by using the command line interface to openssl 
(http://blog.huque.com/2012/10/dnssec-and-certificates.html). The basic approach is simple: convert 
the certificate to the binary DER encoding and take the 512-bit SHA hash of the certificate. Here’s 
what that looks like using calls to openssl. 
 

# openssl x509 -in /usr/local/etc/letsencrypt/live/www.dotnxdomain.net/cert.pem -outform DER | openssl sha512 

 
We can generate the DNS TLSA record with a small amount of additional scripting.  
 
This new TLSA record needs to be placed into the zone file. The remaining tasks are to update the 
SOA index number, resign the zonefile, and signal the BIND daemon to re-read the zonefile to serve 
the new TLSA record. 
 
 

# openssl x509 -in /usr/local/etc/letsencrypt/live/www.dotnxdomain.net/cert.pem -outform DER | openssl sha512 | cut -d ' ' -f 2 | awk 
'{print "_443._tcp.www.dotnxdomain.net.  IN TLSA 3 0 2 " $1}' >www.dotnxdomain.net.tlsa 
$ add_tlsa www.dotnxdomain.net www.dotnxdomain.net.tlsa >>dotnxdomain.net 
$ increment_soa dotnxdomain.net 
$ signzone dotnxdomain.net 
$ kill -HUP ‘/etc/named.pid’ 

 
 

It’s That Easy! 

For many years, we’ve seen Domain Name certificates priced as a luxury add-on, costing many times 
more than the original name registration fees. Let’s Encrypt has broken that model and now basic 
security is now freely available to anyone. 
 
But the CA model itself is not all that robust, and there are still some critical vulnerabilities that can be 
exploited by a well-resourced attacker. Adding DANE TSLA records to the DNS signed zone, and 
equipping user applications, such as browsers, with an additional DNS lookup to fetch and validate the 
TLSA record is a small step, but a significant improvement to the overall security picture. 
 
If you run your own DNS and operate your own web assets then setting this up is a relatively quick 
process. My investment was a couple of hours on Google to pick up the Let’s Encrypt and DANE 
tools and put all this together, and I’m sure that if you are in a similar situation it should be just as 
quick!  
 
And if everyone did this, then it would make various forms of pernicious man-in-the-middle meddling 
attacks so much harder. 
 
 
 
 
 
 

http://blog.huque.com/2012/10/dnssec-and-certificates.html)
http://www.dotnxdomain.net/
http://www.dotnxdomain.net.tlsa/


  Page 9 

 
 

Postscript 

 
Jacob Schlyter has kindly pointed out to me some issues with the approach I have taken here, which I 
should note. There is a useful commentary in RFC7671, including the following recommendation: 
  
   Mor e speci fi cal l y, i t i s RECOMME NDE D t hat at most  si t es TLSA r ecor ds 

   publ i shed f or DANE ser ver s be " DANE- EE( 3) SPKI ( 1) SHA2- 256( 1)" 

   r ecor ds.   Sel ect or SPKI ( 1) i s chosen because i t i s co mpati bl e wi t h 

   r aw publ i c keys [ RFC7250]  and t he r esul ti ng TLSA r ecor d need not  

   change acr oss certi fi cat e r enewal s wi t h t he sa me key.   Mat chi ng t ype 

   SHA2- 256( 1) i s chosen because al l  DANE i mpl e ment ati ons are r equi r ed 

   t o support  SHA2- 256.   Thi s TLSA r ecor d t ype easi l y support s hosti ng 

   arr ange ment s wi t h a si ngl e certi fi cat e mat chi ng al l  host ed domai ns.  

   It i s al so t he easi est t o i mpl e ment  corr ectl y i n t he cl i ent.  [ RFC7671]  

 
Firstly, my choice of 0 as a Selector Field means that the hash of the full certificate is included in the 
DANE TLSA record, and as I’ve noted above this implies that each time the certificate is re-issued I’ll 
need to update the DNS TLSA record. However, “updating the DNS” is not an instant action, as there 
may be resolvers that have cached the old DNS TLSA record, and they will not be updating their local 
cache until the cache TTL timer expires. The problem is that at the point in time when the server 
presents the new certificate as part of its TLS startup we need to have taken adequate precautions to 
ensure that the old TLSA record has been flushed from resolvers’ caches.  
 
That means that certificate rollover, which happens every three months with Let’s Encrypt certificates, 
is slightly more involved than I’ve described above. The steps need to include a period where new and 
old TLSA records are published in the DNS, and only when the new TLSA record has been picked up 
by clients, and the resolvers that they use, can the new certificate be used in the TLS session. So the 
steps in certificate rollover are: 
 

1. Fetch the new Let’s Encrypt Certificate 
 

2. Generate the new TLSA record 
 

3. Publish both the old and new TLSA records in the DNS 
 

4. Wait for a minimum of twice the Cache TTL as specified in the DNS 
 

5. Switch TLS certificates in the web server configuration 
 

6. Withdraw the old TLSA record 
 
There is potentially an easier way, and it is to use Selector Field value 1, which is a hash of the Subject 
Public Key Info (SPKI) field of the Domain Name Certificate. It might appear that that this is not all 
that secure, in that any third party could take the Subject Public Key Info from the public certificate 
and generate a certificate from this public key, using itself as an issuer. However, the strength in the 
DANE approach lies in the observation that the DANE TLSA record using the SPKI selector is in 
effect binding the server’s private key to the server’s name and it is this bound key that is used as an 
input to the TLS session key. Irrespective of the certificate used to perform a PKI validation, it's the 
server’s private key that matters in terms of providing assurance that the client is connecting to the 
intended named service. 
 
As long as the certificate renewal process uses a constant server private key, then the regular process of 
certificate renewal with Let’s Encrypt certificates need not change the DNS TLSA record, and the new 

https://tools.ietf.org/html/rfc7250


  Page 10 

certificate can be used immediately. As far as I can tell, this is the reasoning behind the 
recommendation to the the SPKI Selector Field in RFC7671. 
 
However, it appears that the default action for certbot is to change the private key on certificate renewal, 
so the SPKI value changes with each certificate renewal. 
 
There are arguments for and against changing the private key on a regular basis. Constant changes of 
the private key imply continual re-keying, and this entails additional moving parts and increased risk of 
breakage. On the other hand, long-lived private keys increased the risk of compromise of the private 
key and opens the window of vulnerability on decryption of past transactions. A regular change of key 
material limits the risk of consequent vulnerability if any instance of the private key is compromised. 
 
If we accept the certbot default behaviour, and accept the re-generation of the private keys every three 
months, then much of the argument in favour of using a TLSA value based on a hash of the SPKI over 
and above a hash of the entire certificate is neutralised. In either case, certbot’s default certificate renewal 
action forces a roll in the DANE TLSA records, and requires the use of a staged roll of the DANE 
TLSA records, using a process described above. In this case the use of the Certificate Selector Field 
Value, as compared to the use of the SPKI value, appears to be a choice which has no particular 
argument in preference of one way or the other.  
 
The other point from RFC7671 is that my choice of a SHA-512 hash was ill-advised, and a 
conservative approach would be to use a SHA-256 hash to generate the TLSA record. 
 
 
 
 
 
 
  



  Page 11 

 

 

Author 

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving 
the Asia Pacific region. He has been closely involved with the development of the Internet for 
many years, particularly within Australia, where he was responsible for building the Internet 
within the Australian academic and research sector in the early 1990’s. He is author of a 
number of Internet-related books, and was a member of the Internet Architecture Board from 
1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992 until 
2001 and chaired a number of IETF Working Groups. He has worked as an Internet 
researcher, as an ISP systems architect and a network operator at various times. 

www.potaroo.net 
 

 

Disclaimer 

The above views do not necessarily represent the views or positions of the Asia Pacific 
Network Information Centre. 

 
 

 

 
 

http://www.potaroo.net/

	The ISP Column
	Let’s Encrypt with DANE
	1. DNSSEC
	2. Domain Name Certificates with Let’s Encrypt
	3. DANE TLSA record
	4. Validation using the DANE TLSA record
	5. Certificate Re-Issuance
	It’s That Easy!
	Postscript
	Author
	Disclaimer



