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Scoring the DNS Root Server System 
 
The process of rolling the DNS Root’s Key Signing Key of the DNS has now started. During this 
process there will be a period where the root zone servers’ response to a DNS query for the DNSKEY 
resource record of the root zone will grow from the current value of 864 octets to 1,425 octets. Does 
this present a problem? 
 
Let’s look at the DNS Root Server system and score it on how well it can cope with large responses. It 
seems that awarding stars is the current Internet way, so let’s see how many stars we’ll give to the Root 
Server System for their handling of large responses.  
 
Packets and Networks 
 
What is it about large responses that are an issue here? 
 
There are a number of persistent themes in packet networking that appear to be unresolved despite 
many decades of experience. One of these is the handling of packet sizes.   
 
Packet-switched networks dispensed with the constant time base used in time-switched networks. 
Instead, they allow individual packets to be sized according to the needs of the application as well as 
the needs of the network. Smaller packets have a higher packet header to payload ratio, and are 
consequently less efficient in data carriage. On the other hand, within a packet switching system the 
smaller packet can be dispatched faster, reducing the level of head-of-line blocking in the internal 
queues within a packet switch and potentially reducing network-imposed jitter as a result. Larger 
packets allow larger data payloads which in turns allows greater carriage efficiency. Larger payload per 
packet also allows a higher internal switch capacity when measured in terms of data throughput. But 
larger packets take longer to be dispatched and this can be a cause of increased jitter.  
 
Some packet network designs, notably ATM, used a constant-sized packet, replicating many of the 
properties of the time-switched systems. Others deferred the decision over packet size to the next layer 
up in the protocol stack and supported variable packet sizes. Ethernet, designed in mid-1970’s, adopted 
a variable packet size, with supported packet sizes of between 64 and 1,500 octets. FDDI, a fibre ring 
local network used a variable packet size of up to 4,478 octets. Frame Relay used a variable packet size 
of between 46 and 4,470 octets. The choice of a variable-sized packets allows to applications to refine 
their behaviour. Jitter and delay-sensitive applications, such as digitised voice, may prefer to use a 
stream of smaller packets to attempt to minimise jitter, while reliable bulk data transfer may choose a 
larger packet size to increase the carriage efficiency. The nature of the medium may also have a bearing 
on this choice. If there is a high bit error rate (BER) probability, then reducing the packet size 
minimises the impact of sporadic errors within the data stream, which may increase throughput. 
 
The real issues surface when you impose an overlay end-to-end network transport design on top of 
these various packet delivery media.  What should an Internet router do with a 4,478 octet IP packet 
received on an FDDI interface when the next hop is an Ethernet segment with a maximum packet size 
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of 1,500 octets? The answer varies according to the IP version. In IPv4, as long as the DON’T 

FRAGMENT bit in the IP packet header is clear, the router is permitted to split the payload across 
several IP packets, fragmenting the packet to match the next hop maximum message size, replicating 
the IP header in all the fragments (aside from the fragmentation control header fields, of course). The 
IPv6 behaviour is similar to that of IPv4 when the packet header has the DON’T FRAGMENT field set to 
1. The router is not permitted to fragment the packet, and as it cannot forward the packet onward, an 
ICMP diagnostic message (containing the leading octets of the to-be-discarded packet) is sent 
backwards to the source address in the original packet and the packet is then dropped.  
 
In the IPv4 router-fragmentation case nothing more need be done. Fragmentation is handled at the IP 
layer and the reassembled complete packet is delivered to the upper layer transport protocol at the 
other end. But in the other case, namely IPv6 and IPv4 when the IPv4 DON’T FRAGMENT field is set 
on, then the issue of a path packet size issue needs to be handled at the transport layer. For TCP the 
intended response by the sender is to be passed the ICMP diagnostic packet and have the session 
reduce its MSS value to match the reduced size. TCP will then assume control for repairing the data 
gap because of the dropped packet and the session should continue. For UDP it’s a little trickier. UDP 
has no “memory” so the received ICMP diagnostic message has no logical delivery point within the 
local host. Ultimately, this becomes a problem at the application layer, and the application using UDP 
has to detect packet loss and to take into account a potential cause of packet size mismatch in its 
recovery behaviour. If the application is lucky the host will lend a hand here and place a host entry in 
its local forwarding table that records the original destination address and the maximum packet size 
that can be sent too that address, based on the size field contained in the packet too big 
ICMP diagnostic message.   
 
Why is all this relevant?   
 
Because DNS.  

DNS 

 
The DNS is a UDP application, and in the context of the Internet its a critical application. Pretty much 
every transaction across the Internet starts with a name-based rendezvous, and the first step is to 
resolve the name to an IP address. For this we use the DNS.  
 
The original design of the DNS limited packet payloads using UDP to 512 octets (RFC1035). 
Interestingly, the motivation behind this appeared not to be the desire to avoid packet fragmentation 
per se, but to avoid a different packet size issue: the maximum reassembled packet size that an IPv4 
host is assured to be able to reassemble is 576 octets (RFC791). This limitation has some interesting 
side-effects. For example, this size limitation means that the number of authoritative name servers 
listed in response to a DNS priming query was limited to 13 entries, as long as you only wanted to 
know the IPv4 addresses of these servers. A 14th entry would push the DNS response to list the root 
zone’s name servers over 512 octets in length. From this came the limitation of 13 distinct root name 
servers for the DNS.  
 
Some things have changed over the intervening years, but interestingly the 512 octet limit to DNS 
payloads, in theory at any rate. This is despite the observation that a new informal standard packet 
MTU size has been adopted by the Internet: these days a 1,500 octet packet stands a strong chance of 
being passed through the Internet unscathed. But while 1,500 octet packets stand a good chance of 
making it through, there is a difference between a probabilistic estimate and certainty.  IPv4 actually 
provides no certainty in this space. While the maximum size of a reassembled IPv4 packet was specified 
at 576 octets, the minimum unfragmented size was not. The IPv6 specification defines a minimum 
unfragmented IP packet length of 1,280 octets. That is, any IPv6 packet with a size equal to or less than 
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1,280 octets will not be fragmented by an IPv6 carriage network, and will be accepted by the intended 
host. 
 

Why 1,280 octets? It seems like such an arbitrary number. The answer 
I’ve been given is that 1,280 is what you get when you add 1,024 and 
256! This somewhat meaningless piece of maths was intended to 
ensure that an IPv6 packet could transit an underlying Internet fabric 
that presumably supported 1,500 octet packets, and also admit the 
possibility of a number of levels of IP-in-foo encapsulation. Personally 
I find this arbitrary choice to one of the major design flaws of IPv6 and 
the cause of much brokenness in the IPv6 Internet!  

 
While the 512 octet limit still applies to the DNS in theory, it’s not uncommon to see larger 
DNS responses being pushed around the Internet with apparent impunity. This is particularly the case 
when DNSSEC is added, and the response contains the digital signature as well as the requested data. 
To cope with this, the DNS protocol now uses an extension mechanism, EDNS(0), defined in 
RFC6891, that allows a querier to specify the largest UDP response it is willing to receive. If this 
number exceeds 1,500 octets (and it is commonly set to 4,096 in many resolvers), then it is highly likely 
that the DNS UDP response will be fragmented, and the querier will need to reassemble the IP 
fragments in order to assemble the DNS response. If the response would be larger than the offered 
EDNS(0) buffer size, then the response will necessarily be truncated to fit within the specified payload 
size. If the querier wants the complete answer it will either need to re-query with a larger EDNS(0) 
buffer size, or, more commonly, re-query using TCP.  
 
Again, why is this relevant?  
 
Because DNS, DNSSEC and the forthcoming roll of the KSK of the root zone.  

DNS Large Responses 

 
DNS resolvers that perform DNSSEC validation will, from time to time, query toward one of the root 
zone name servers for the signed valued of the root zone’s DNSKEY records. When there is no key 
roll happening, the response contains onee KSK, one ZSK and one RRSIG signature signed by the 
KSK. Now that the ZSK is 2,048 bits in size the total size of this DNS response is 864 octets in length.  
 
During the planned roll of the KSK of the DNS Root zone there will be a period when two KSKs (old 
and new) are in the root zone at the same time, and the DNSKEY record will be signed by both of 
these KSK keys. The signed response to a query for the root zone’s DNSKEY record will inflate from 
864 octets to 1,425 octets at this point in time. In the current plan this will occur on the 11th January 
2018, and last for 20 days (http://www.slideshare.net/apnic/rolling-the-root-zone-dnssec-key-signing-
key, slide 28)  
 
As far as I am aware, this is the first time a ‘normal’ DNS response from the root servers will exceed 
1,232 octets in length, and the IPv6 UDP packet will exceed 1,280 octets in length.  
 
Now in theory this should not present a problem, but theory and practice often tend to diverge.  
 

DNS Root Servers and Large DNS Responses 

 
How will the root servers deliver this response?  

http://www.slideshare.net/apnic/rolling-the-root-zone-dnssec-key-signing-key
http://www.slideshare.net/apnic/rolling-the-root-zone-dnssec-key-signing-key
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These days with anycast constellations any question about root server behaviour is not a simple 
question. Let’s simplify this a bit and ask what can we see from the root servers from one 
particular vantage point?  
 
By crafting a relatively long query name for a non-existent domain name we can get a root server to 
generate a response where the DNS payload is 1,268 octets in length. In this case the query used 
EDNS(0) and specified a UDP buffer size of 4096, and requested DNSSEC signatures to be attached 
to the response. An IPv6 UDP datagram containing that response is 1,316 octets long and the IPv4 
UDP datagram is 1,296 octets long. What we see from each root server is shown in Table 1.  
 

Root IPv4   IPv6   

 Truncate Fragment TCP MSS Truncate Fragment TCP MSS 

A N N 1,460 1,280 N 1,440 

B 1,280 N 1,460 1,280 N 1,440 

C N N 1,460 N N 1,440 

D N N 1,460 N N 1,440 

E N N 1,460 N N 1,440 

F N N 1,460 N 1,280 1,440 

G 1,280 N 1,460 1,280 N 1,440 

H N N 1,460 N N 1,440 

I N N 1,460 N N 1,440 

J N N 1,460 1,280 N 1,440 

K N N 1,460 N N 1,440 

L N N 1,460 N N 1,440 

M N N 1,460 N 1,280 1,440 

 
Table 1 – Root Server Response Profile to a large DNS response 

 
 
Table 1 shows that in IPv4 11 of the 13 root servers send the 1,296 octet UDP response packet directly 
to the querier. The other two root servers, B and G, elect to respond with a shortened (truncated) 
response. Some experimentation with varying response lengths shows that this truncation occurs when 
the DNS response is 1,252 octets or larger. The querier is implicitly directed to retry using TCP 
through this response. This would tend to suggest that the root server is attempting to limit its 
responses to be no more than 1,280 octets in length, even in the case of IPv4 responses. However, on 
both B and G, a TCP session offers an MSS of 1,460, indicating that both root servers appear to have a 
local MTU setting of 1,500 octets. For IPv4 this is entirely unexpected behaviour, and it is unclear why 
B and G have chosen to configure their IPv4 behaviour to perform response response truncation in 
this manner, as it seems to be inviting extraneous TCP sessions to be set up.  
 
For IPv6 7 of the 13 root servers send the 1,316 octet UDP response packet without fragmentation. F 
and M elect to fragment the response, fragmenting the packet so as to fit within a 1,280 octet limit. A, 
B, G and J elect to truncate the response instead. When opening a TCP session all four root servers 
offer an MSS of 1,440 octets, indicating that they are using a 1,500 octet MTU for TCP over IPv6. This 
behaviour seems to be more than a little odd.  
 
The aim of the root servers is to maximise the likelihood that the response will be received by the 
recursive resolver, and in so doing it needs to chart a careful course between the various operational 
pitfalls that we are aware of.  
 
Let’s look at UDP first.   
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In IPv4 there is a problem with firewalls allowing fragments through, and some recursive resolvers live 
behind firewalls that discard trailing fragments of a fragmented packet. For this reason, it makes a lot of 
sense to use a 1,500 octet value for the maximum IP packet size for UDP over IPv4, so as to avoid 
gratuitously fragmenting outbound IPv4 UDP packets at the source.  
 
A similar line of reasoning holds in IPv6, but the problems with fragmentation are now twofold. Not 
only are firewalls prone to discard trailing IPv6 fragments, but certain routers are prone to discard all 
fragmented IPv6 packets. This is due to the use of an extension header in IPv6 to carry the IP 
fragmentation control fields. Some commonly deployed routers discard all IPv6 packets that contain 
IPv6 extension headers, including fragmentation extension headers. This has been observed to affect 
recursive resolvers. Some 30% of users that sit behind IPv6-capable resolvers use resolvers that are 
seen to be unable to receive a fragmented IPv6 packet. The F and M root servers fragment the IPv6 
packet as if the server used a 1,280 octet MTU. This is not optimal behaviour in the light of this 
widespread level of packet mis-handling.  
 
The other option instead of fragmentation is perform response truncation.  
 
In IPv4 the B and G servers do not deliver a large UDP response, even when the query specifies a large 
UDP buffer size. Instead, the server truncates the response so as not to deliver a UDP datagram larger 
than 1,280 octets.  
 
In IPv6 A and J join B and G in truncating the IPv6 response as if there was a local MTU size of 1,280 
octets. The intention here is to push the client resolver into re-issuing the query over TCP. So, how 
does TCP work with the root servers?  
 
Firstly, TCP is not a viable option for all resolvers. In fact previous measurements 
(http://www.potaroo.net/ispcol/2013-09/dnstcp.pdf) have shown that 17% of resolvers that query 
authoritative name servers appear to be unable to perform a query using TCP. This inability of the 
resolver to perform a TCP query is either due to some local resolver configuration, or an overly zealous 
firewall front end that assumes that the DNS is exclusively a UDP-based protocol. The result is that 
just under 3% of clients are affected by this and cannot resolve a name where the UDP response is 
truncated. So TCP has its problems for the DNS. 
 
What happens when the resolver is capable of performing a TCP DNS query?  
 
In IPv4 all the root servers offer a TCP MSS of 1,460 octets. This is indicative of a local MTU setting 
of 1,500 octets in IPv4 for TCP. This appears to be a robust choice. 
 
In IPv6 all the root servers offer a TCP MSS of 1,440 octets. Again, this is indicative of a local MTU 
setting of 1,500 octets. However, in this case I would offer the view that this is a sub-optimal local 
configuration. The problem lies when the path includes some form of Path MTU Black Hole. In IPv6 
sending a TCP packet that is too large for the path results in an ICMP6 message being sent back to the 
host. If the host receives the diagnostic message, then it is in a position to drop its session maximum 
segment size and resend the packet. If the ICMP6 PTB message is lost or filtered before it reaches the 
original packet’s sender then the TCP session is wedged and cannot proceed. The conservative 
workaround for this is to avoid the packet too big situation altogether. If the sender were to set the 
TCP MSS for IPv6 down to 1,220 octets, then no TCP packet would be larger than 1,280 octets and 
the packet would not require fragmentation (at least if everyone honours the 1,280 MTU limit in the 
IPv6 transit networks). At the response sizes we are talking about for the root servers the marginal 
speed increases seen in raising the MSS from 1,220 to 1,440 is negligible, while the consequent Path 
MTU blackholing is significant.  
 

http://www.potaroo.net/ispcol/2013-09/dnstcp.pdf)
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Scoring the Root Servers 
 
How can we score the actions of each root server when dealing with a response that’s larger than 1,280 
octets? 
 

 If the IPv4 UDP packet is sent without fragmentation for packets up to 1,500 octets in size, 
then let’s give the server a star. 

 
 If the offered IPv4 TCP MSS value is 1,460 octets, then let’s give the server another star.  

 
 If the IPv6 UDP packet is sent without fragmentation for packets up to 1,500 octets in size, 

then let’s give the server a star. 
 

 If the IPv6 UDP packet is sent without truncation for IPv6 packet sizes up to 1,500 octets, 
then let’s give the server a star. 

 
 If the offered IPv6 TCP MSS value is no larger than 1,220 octets, then let’s give the server 

another star.  
 
How do the root servers fare on this five star rating system? Again, I should repeat that this is the 
results from a test performed from just one vantage point in the Internet. It could be that different 
anycast instances of these root servers have different behaviour, however such variation in behaviour in 
an anycast situation would make some tasks, particularly related to diagnosing failure, far worse, so let’s 
assume that the sane thing is going on here and all anycast instances are essentially the same in this 
respect. 
 
 

A IPv4 is good. IPv6 truncates UDP at 1,280 octets and offers an IPv6 
TCP MSS of 1,440. 

Could do better   

B IPv4 truncates UDP at 1,280. IPv6 truncates UDP at 1,280 octets, and 
offers an IPv6 TCP MSS of 1,440.  

Epic fail!  

C IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

D IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

E IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

F IPv4 is good. IPv6 fragments UDP at 1,280 octets, yet it offers an IPv6 
TCP MSS of 1,440. 

Pretty ordinary  

G IPv4 truncates UDP at 1,280. IPv6 truncates UDP at 1,280 octets, and 
offers an IPv6 TCP MSS of 1,440. 

Epic fail!  

H IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

I IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

J IPv4 is good. IPv6 truncates UDP at 1,280 octets, and offers an IPv6 
TCP MSS of 1,440. 

Could do better  

K IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

L IPv4 is good. IPv6 UDP uses a 1,500 octet MTU, but it offers an IPv6 
TCP MSS of 1,440. 

Almost there  

M IPv4 is good. IPv6 fragments UDP at 1,280 octets, and offers an IPv6 
TCP MSS of 1,440. 

Pretty ordinary  

 
Table 2 – Rating the Root Servers 
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By this metric, the average for the entire root server system is 3 out of 5 stars, which is passable, but 
not exactly inspiring.  
 
If we split out IPv4 and IPv6, the average IPv4 score is 1.7 out of 2 stars, whereas the average IPv6 
score for the root server system is 1.5 out of 3 stars. 
 
This is a somewhat disappointing outcome. We are talking about the servers for the DNS root zone, 
and when a DNSSEC-validating recursive resolver cannot prime its local state with the ZSK state of 
the root zone through DNS queries, then the resolver simply cannot function. So, in some sense, 
failure is not an option here, yet the settings we see in the DNS root zone’s servers, particularly for 
IPv6, elevate the odds of encountering failure when the response being managed is one that sits in that 
twilight zone between 1,280 and 1,500 octets in length. And in a little over a year from now that’s 
exactly what will be happening in the root zone of the DNS. 
 
However, the real question is what this behaviour implies for users. How many users will be stranded 
from the entire DNS root name system for the period when a large response is an intrinsic part of 
anchoring a validating DNS resolver into the global DNS? Earlier work has suggested that this count 
sould be a relatively small number, but perhaps we should revisit this result in the light of this 
additional information about exactly how root servers behave when sending large DNS responses. 
 
But that’s best left as a question for another day and another article.  
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