
The ISP Column
A monthly column on things Internet

October 2016

Geoff Huston

DNS DDOS

The recent attacks on the DNS infrastructure operated by DYN in October 2016 have generated a lot
of comment in recent days. Indeed, it’s not often that the DNS itself has been prominent in the
mainstream of news commentary, and in some ways this DNS DDOS prominence is for all the wrong
reasons! I’d like to speculate a bit on what this attack means for the DNS and what we could do to
mitigate the recurrence of such attacks.

Report of the incident from Gizmodo.com (http://gizmodo.com/this-is-probably-why-half-the-internet-shut-down-today-1788062835)

I should note at the outset that when writing this soon after the event is a situation when there is not a
lot of authoritative information about the attack, so we’ll need to make a few guesses as to what was
going on with this attack.

What we think is a likely guess:

• Firstly, it was a DNS attack. Perhaps this guess is more of an assumption than something we
think is a likely guess. It is evident that the authoritative name servers of certain domain names
were the target of this attack, and it is certainly possible that it could’ve been a ping attack or
any other form of IP packets that attempt to saturate the network resources close to the
locations of the authoritative name servers. But let’s proceed here with the assumption that the
attack was one that attempted to overwhelm a collection of DNS name servers with a set of
otherwise quite conventional DNS queries. What would’ve been different about this activity
that would make it an attack was the volume of such queries, and the span of end points
generating such queries.

 Page 2

• The attack was based on sending “normal” DNS queries. This was evidently not a cause of
using a crafted query that exercised some supposed vulnerability in the DNS infrastructure, but
simply a case of sending a large volume of otherwise quite conventional queries.

• The attack was directed at the authoritative name servers for a set of target domain names

• The previous assumption would indicate that the queries were like random-label.target-name.

• The attack was reported to use cameras and other bits and pieces of internet-connected cruft
and co-opted them to launch DNS queries.

What we don't know:

• We don't know if all the co-opted devices were discoverable on the public IPv4 space or were
located behind NATs – but it probably doesn’t matter. The reported number of such devices
(some “10s of millions”) (https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/)
would tend to suggest that the pool of devices lie predominately behind NATs. However, I
have to observe that this is a very large number and it does present some plausibility issues with
the report.

• We don't know if the script included source address spoofing or not. We think not, as the NAT

assumption above would tend to say that this is an attack where the source address cannot be
readily spoofed.

• We don't know if attack used normal DNS infrastructure and made DNS queries via recursive

name servers, or whether they were scripted to directly query particular authoritative name
servers. Getting a device to pull down a particular URL is all part of a bot command and
control channel, so at the very least you need to have the device perform a URL fetch upon
command. In this case that basic ability is enough for such an attack. Explicitly scripting the
device to perform a query directly to an authoritative name server requires further access to the
particular tool or library call that allows this crafting of a DNS query, and this may not be an
option on all these these co-opted devices.

A statement released by DYN (https://dyn.com/blog/dyn-statement-on-10212016-ddos-
attack/) says "We observed 10s of millions of discrete IP addresses associated with the Mirai
botnet that were part of the attack” If the attack used the conventional recursive resolver
infrastructure, then such direct observation from the authoritative name server would not be
possible, as all they would see is a large query volume from the usual set of recursive resolvers
that handle all other DNS query traffic. So the claim from DYN that they directly observed
some 10s of millions of discrete IP addresses would tend to suggest that the co-opted devices
were communicating directly with the authoritative name servers and passing their queries
directly to them, rather than via the recursive resolver infrastructure.

• We don't know what DNS query type was being used in this attack (A, AAA, ANY, or any
other query type). We can assume that the simplest attack is a brute force attack with minimal
device-scripting, so the co-opted device might well just send an A query type.

• We don’t know if the queries specified EDNS(0) DNSSEC OK or any form of DNS options
or padding to increase the size or complexity of the query or its answer. If the aim is to exhaust
the resources of the authoritative name server then query options might well have been used,
but again this requires additional capabilities in the attack script being run on the compromised
devices.

What we can guess:

 Page 3

• We guess that this was a relatively simple script or set of scripts running on a large volume of
co-opted devices without necessarily requiring a sophisticated root kit or other specialised
penetration code running on the compromised device. It’s likely to be a simple exploit.

• We guess that the code used in the attack had a command and control interface that allowed

the co-opted device to start sending, at a minimum, very basic DNS queries with random
terminal labels at a certain time.

• We guess that there were a lot of compromised devices enlisted in the attack (as distinct from a

small number of devices performing source address spoofing) so that the per-device query rate
was not necessarily excessive.

What happened (in DNS terms)

Because of the use of a unique label component as the terminal name in the query, the query is passed
to the authoritative name servers for resolution. This will occur even if the local environment performs
DNS interception and redirection and diverts externally address DNS queries into the local DNS
resolver infrastructure.

The authoritative name servers for the attacked domains were evidently overwhelmed by the query
volume, and started to drop queries.

When recursive name servers attempted to refresh their cache entries on the attacked names, evidently
no authoritative name servers were able to answer these queries, so the recursive resolvers dropped the
name from their local cache once their local cache expiry timer expired.

As the recursive resolvers lost their local cache entry, the attacked names started to disappear off the
net.

Mitigations for this form of DNS DDOS Attack

There are a number of potential responses that could work to mitigate this form of attack. They are not
equally effective, and indeed not all are even viable today. But they illustrate the rage of potential
responses to this form of attack on the DNS.

1 - More Foo

A common response to most forms of DDOS attack has been to build the wall higher.

In the DNS case, the victim domain name can add more name servers to the list of authoritative name
servers, implying that an attacker needs to increase their attack volume if they want to overwhelm the
entire authoritative name server set.

Another response is to add more capacity to the existing authoritative name servers, by adding more
authoritative name servers into an anycast constellation, or by adding the number of name server
engines and using a front end load balancer. Another option may be simply adding more memory and
processing capability to the existing machinery.

The overall intent of all of these measures is to increase the query response capability to exceed the
query volume presented during the attack. As long as this can be achieved the authoritative name
servers will not be pushed into being unresponsive, and the attack would fail.

 Page 4

2 - Longer TTLs

The recursive name servers that handle user queries will hold in their local cache the valid responses
from authoritative name servers for the presumably small set of defined names in the attacked name
space for a specified period of time. As this timer draws down the recursive resolver will attempt to
refresh the cached data. If the expiration timer expires without a successful cache refresh the loca
resolver will purge its cache of this entry.

A possible measure is not to address the attack per se, but to note that the that attack must last for at
least the cache time to line (TTL) period in order to ensure that the recursive resolvers’ cache expires in
all resolvers.

Of course the problem with this is that the expiration timers running in the recursive resolvers will all
be running with different epoch settings, so that in the period when the authoritative name servers are
unavailable the set of recursive name servers carrying cached records will gradually expire, causing the
name space to gradually wink out across the recursive resolver set, and the pool of affected users will
grow as the attack continues.

Longer cache expiration times, if uniformly observed by recursive resolvers, will reduce the rate of
decline in visibility, but not eliminate it. However, the observed behaviour that many recursive resolvers
appear to behave as if they overwrite the authoritative server’s timer values for the zone with local
values, so setting a longer cache lifetime in the zone file may not have the desired effect on all recursive
resolvers.

3 - Filter Queries

If the attack uses a random name part that has a fixed pattern, then it is possible to filter out these
queries at the authoritative name server and drop them before the server’s resources are consumed in
generating a DNS response.

Of course this is a temporary measure in so far as the next attack will probably vary the random name
part in other ways, but as a first response in attack traffic discard its often a useful measure.

4 - IP address filters

There is one observation that is potentially helpful in this space - the pool of IP addresses that query
authoritative name servers falls into two distinct pools based on a simple classification of whether or
not the address matches the set of known visible recursive resolvers.

There are some 10,000 IP addresses that correspond to the collection of visible recursive resolvers that
query authoritative name servers that appear to serve some 95% of the entire user base of the Internet.
It is feasible to load this set of addresses into a FIB cache of a front end router and perform a wire
speed classification of queries into queries from known recursive resolvers and anomalous queries from
individual devices using FIB lookup. The former could be placed into a normal query queue, while the
other could be placed into a lower priority processing queue that might well fail under load. Under
normal query loads this measure would be all but invisible to all users, while under the stress of an
attack that directly contacted the authoritative name server the known recursive resolvers would still
receive service while all other queries would experience some query drop rate.

This measure is effective if the attack is based on scripting the co-opted devices to directly query the
authoritative servers, and the circuits and switches that provide access to the authoritative name server
have sufficient capacity to carry all the queries, including the attack traffic, to the classifying router or
routers.

 Page 5

If the attack uses the conventional recursive resolver infrastructure, then this measure is largely
ineffectual as it’s the known recursive resolvers that are presenting the attack queries. But this is the
case, then another form of mitigation that uses the recursive resolvers to absorb the attack may be
feasible.

5 - Aggressive NSEC-based caching

This is not a realistic option today, but it is a means of improving the resilience of the DNS in the case
where such random name attacks occur through the recursive resolver infrastructure (the opposite of
the case of the IP address filtering option).

When a name does not exist, as is the case for a random name attack, a signed zone response for the
query is not only the NXDOMAIN code, but an NSEC record that indicates the span of the zone file
than covers the query label. A recursive resolver could cache this record and use it to respond to any
query that falls within the same span of names without further reference to the authoritative name
server (see https://tools.ietf.org/html/draft-ietf-dnsop-nsec-aggressiveuse-05 for the details of this
approach).

$ dig +dnssec www.not-defined-here @a.root-servers.net

; <<>> DiG 9.10.4-P3 <<>> +dnssec www.not-defined-here @a.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 33673
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
;; QUESTION SECTION:
;www.not-defined-here. IN A

;; AUTHORITY SECTION:
norton. 86400 IN NSEC now. NS DS RRSIG NSEC
norton. 86400 IN RRSIG NSEC 8 1 86400 20161108050000 20161026040000 39291 . [sig]
. 86400 IN NSEC aaa. NS SOA RRSIG NSEC DNSKEY
. 86400 IN RRSIG NSEC 8 0 86400 20161108050000 20161026040000 39291 . [sig]
. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2016102600 1800 900 604800 86400
. 86400 IN RRSIG SOA 8 0 86400 20161108050000 20161026040000 39291 . [sig]

;; Query time: 182 msec
;; SERVER: 2001:503:ba3e::2:30#53(2001:503:ba3e::2:30)
;; WHEN: Wed Oct 26 05:12:47 UTC 2016
;; MSG SIZE rcvd: 1039

In this example DNS query and response, the response indicates that all names between “norton” and “now” are not defined in
the root zone, and precisely the same authority section of the response could be used by the recursive resolver for any query name
between “norton” and “now” for as long as this negative response is held in the recursive resolver’s cache, without any further
querying of the authoritative name server.

What this measure allows is that in the case that a DNS random name attack is launched using the
recursive resolver infrastructure on a DNSSEC-signed zone that is using NSEC or NSEC3 negative
records that span the entire zone, then the recursive resolver infrastructure can be used to cache these
responses from the authoritative resolver and use them to respond to subsequent attack queries where
the random label falls into the span defined in the response. As the attack continues the recursive
resolver will learn to respond with authoritative NXDOMAIN responses to the complete range of
random values found in the query, thereby using the recursive resolver infrastructure to absorb the
attack close to the attacking devices.

There are three problems about this approach which make this particular mitigation response
frustratingly unhelpful: Very few recursive resolvers perform DNSSEC Validation, even fewer recursive
resolvers have implemented the approach described as “aggressive use of NSEC”, and, thirdly,
disturbingly few domains are DNSSEC signed in the first place. Perhaps this rather disturbing attack
incident might motivate some further action in this space.

 Page 6

Some Closing Observations

This is never going to go away. The sheer volume of consumer devices being marketed today is a fertile
breeding ground for not just low cost, but extraordinary low quality, devices that use corruptible and
often already corrupted software.

Their volume of distribution within a rapacious consumer market that is largely ignorant of technical
quality and robustness and is incredibly price sensitive ensures that poor quality cheap and essentially
unsafe devices will continue to populate the edges of the Internet. For as long as this is happening, it
will continue to be possible to orchestrate thousands if not millions of these devices into large-scale
attacks that are capable of overwhelming most of our defences. It’s hard to see how just building higher
walls of defence will work as a long term strategy.

We can be smarter about this, and we can use both DNS and DNSSEC, and our knowledge of the way
the DNS actually works to build a more robust DNS infrastructure that could be more capable of
deflecting these forms of attack. Whether we have the collective motivation to take these steps and
actually build a more robust and resilient DNS resolution infrastructure remains to be seen.

Of course this will not stop the attacks. Like the lion chasing its prey, the first objective of the potential
victim is to run away faster than at least one of the others! In this case, the objective is to push the
potential set of exploitable vulnerabilities away from the DNS. While is still work to do in other
components of the Internet’s infrastructure, at the very least we can take steps to ensure that the DNS
is no longer the easy target of such attack.

That is assuming, of course, that we truly have a strong desire to try to fix this!

Postscript

As I have attempted to point out in the introduction, this article has been written based on the
assumption that this attack used DNS queries. From the public information provided so far there is no
basis to believe this assumption over and above the assumption that this was an instance of any of the
more “traditional” forms of exhaustion attacks, namely pings, TCP SYN flooding, GRE packets and
other ways to clog up the wire and the server(s), as distinct from specifically clogging up the DNS
function of the servers. Much of this article is speculative in nature, looking at potential mitigation
measures if we had a DNS query attack.

If this was a brute force exhaustion flooding attack then its perhaps a little harder to speculate upon
mitigation measures, as its often the case that if you cannot prevent the packets at the source, then you
need to find some readily identifiable “signature” of the attack stream that will permit you to pull out
the attack traffic before it reaches the critically stressed resource.

We may, or may not get to know more about this particular attack – but one thing we can expect with
much confidence: there will be more attacks. The Internet of Stupid Things is not going to get any
smarter any time soon!

 Page 7

Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region. He has been closely involved with the development of the Internet for
many years, particularly within Australia, where he was responsible for building the Internet
within the Australian academic and research sector in the early 1990’s. He is author of a
number of Internet-related books, and was a member of the Internet Architecture Board from
1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992 until
2001 and chaired a number of IETF Working Groups. He has worked as an Internet
researcher, as an ISP systems architect and a network operator at various times.

www.potaroo.net

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific
Network Information Centre.

