
The ISP Column  
A monthly column on things Internet 

 

 
Joao Luis Silva Damas 

Geoff Huston 
September 2016 

 

Binding to an IPv6 Subnet 
 
In the original framework of the IP architecture, hosts had network interfaces, and network interfaces 
had single IP addresses. The list of active network interfaces, and the manner in which they acquire IP 
addresses, either by a static configuration or by some dynamic mechanism via a query to the local 
network, is specified in a boot time configuration file.  
 

For example, on a Debian Linux host system the configuration file 
/etc/network/interfaces enumerates the host’s active network 
interfaces and the same in which they are configured with an address. 
For example, one might see in that file some elements to configure the 
interface eth0: 
 

iface eth0 inet static 
    address 198.51.100.2/24 
    gateway 198.51.100.1 

 
iface eth0 inet6 static 
    address 2001:db8::2/64 
    gateway 2001:db8::1 

 
In this example the eth0 interface is configured statically with a single 
IPv4 address and a single IPv6 address, together with a protocol-
specific default route (the ‘gateway’ element) to allow the host to know 
where to send non-locally addressed packets.  
 
While the name and location of the network interface configuration file 
may change across various flavours of Linux, and will change across 
different operating systems, the same basic boot-time network 
interface configuration instructions are present on most systems.  

 
These days, many operating systems allow a configuration to add additional addresses to network 
interfaces. This “aliasing” of an interface with additional IP addresses allows a host to treat a number of 
differently IP addressed packets as locally-address packets and allows applications on the host to bind 
to all of these addresses simultaneously.  
 

Continuing with the Debian example, one way of configuring this is to 
duplicate the interface descriptions with these alternate addresses:  
 

iface eth0 inet6 static 
    address 2001:db8::2/64 
    gateway 2001:db8::1 



  Page 2 

iface eth0 inet6 static 
    address 2001:db8:10::10/64 

 
(There are a number of ways to configure these alias addresses in a 
Debian host, and this example is just one way, but let’s not head down 
that path here!) 

 
Multiple interface addresses have also been adopted in the IPv6 architecture, where network interfaces 
can have multiple addresses, including scoped addresses (IPv6 link local addresses), dynamic addresses 
(IPv6 privacy addresses) and multiple globally scoped addresses (multi-homed site prefix addresses).  
 
However, in all these cases we are talking about binding an interface to an enumerated list of individual 
host addresses.  
 

Even this simple enumeration of alias addresses across a number of 
network interfaces can present some challenges to application. A good 
explanation of the issues here, and an approach to a solution can be 
found in a blog entry from the PowerDNS folk. 
https://blog.powerdns.com/2012/10/08/on-binding-datagram-udp-
sockets-to-the-any-addresses/ considers the API coding required to 
bind to all local addresses from a server application.  

 
This enumeration approach has its limitations in terms of the number of addresses that can be 
managed in this fashion. What if, for example, in an IPv6 context you wanted the host to treat an entire 
/64 subnet as a collection of local addresses that are all equally concurrently available to the host? In 
other words, what if you wanted an application to be able to receive packets that were addressed to any 
128 bit address within this /64 subnet? Obviously enumeration is not viable with such a large set of 
addresses so we have to look elsewhere for a solution.  
 
To achieve this outcome, we could resort to installing some form of local address translation 
functionality, and use a translation rule that transforms all the addresses in the subnet to a single local 
address. By placing this rule into a host’s internal firewall/packet filter engine all packets addressed to 
the subnet could be mapped into a single host address on ingress, and presumably also mapped back 
on egress. However, this approach has its limitations. Address translation, even if performed within the 
host, will not expose the original host address to the application. So if we would like the application to 
not only respond to packets addressed to any host address within a subnet, but also to be aware of 
which address it is responding to then we need to find a method that directs the host to accept all 
packets addressed to the subnet as “locally addressed’ packets, and pass them to applications as 
necessary without changing the address values in the packet.  
 
Another way of phrasing this question is: How can we bind a network interface to an entire subnet of 
IP addresses without having to enumerate each and every individual address?  
 

The Linux local Routing Table 
 
In the same way that host operating systems have evolved to managed interfaces with multiple IP 
addresses, we have also evolved our thinking about the internal packet forwarding structure in hosts. 
The original model of a host was a single routing table, that specified how to handle packets. In its 
simplest form each entry in the routing table specified an address prefix and an interface, so that a 
packet that is processed by the routing subsystem is directed to the nominated host interface according 
to the lookup of the packet’s destination address into the routing table.  



  Page 3 

 
However, this view of the local routing structure has been revised by more recent versions of common 
operating systems. For example, the Linux kernel version 2.2 and version 2.4 support up to 254 routing 
tables. The original intent of this innovation was to allow flexibility in packet handling so that some 
local route policy setting could direct the host to use a different route table other than the default 
packet handling rules as defined by the main routing table. In these Linux systems two of these routing 
tables always exist: the local routing table (id 255) and the main routing table (id 254). The main routing 
table is the conventional one that describes the default local packet handling regime. The local routing 
table is normally controlled by the kernel to keep track of local (to the machine) IP addresses. For 
example, when additional IP addresses are added to a local interface, a host address unicast route entry 
is automatically added to the local route table. In this way the operating system can track which 
addresses are associated with which network interface. 
 
As well as mapping interface alias IP addresses into the local route table, it is possible to enter a route 
into this table without explicitly configuring a local interface. in this case if a route is entered into the 
local routing table pointing to the local loopback interface, then this is directing the local kernel to 
regard any matching packet as one that is directed to itself, rather than to be forwarded onward. 
Interestingly this functionality in the local routing table applies to both unicast host routes and unicast 
prefix routes.  
 

> ip route add local 2001:db8:1:1::/64 dev lo 
 
We can also list the contents of this local routing table:  
 

> ip -6 route list table local 
local ::1 dev lo  proto kernel  metric 256 
local ::1 dev lo  proto none  metric 0 
local 2001:db8::2 dev lo proto none  metric 0 
local 2001:db8:1:1::/64 dev lo  metric 1024  
local fe80::f03c:91ff:feb0:ffff dev lo  proto none  metric 0 
ff00::/8 dev eth0  metric 256 

 
What we see is the /128 address binding from an explicitly configured interface address (the entry for 
the host address 2001:db8::2) and the explicitly locally routed /64 subnet 2001:db8:1:1::/64.  
  
This implies that to enable binding a local process to a full prefix of addresses without explicitly 
configuring each of them on an interface, we can inject a route for the prefix pointing to loopback into 
the local routing table and from then on the kernel will behave as if all those addresses are configured 
on the machine. 
 
This is of course not all that needs to be done – this configuration step just allows a host system to 
recognize that incoming packets that are directed to a network interface are classified as “locally 
addressed” packets. The local router also needs to have an explicit route entry for the subnet that 
directs all packets with destination addresses that are in this subnet to this host. 
 

Using a Subnet Binding 
 
For TCP-based services this local route table subnet entry is sufficient to allow a local application to 
listen and respond to incoming connections on an entire subnet. The component of TCP API that can 
bind to locally configured subnets is the bind socket call, that binds the socket to an interface or a set of 
IP addresses. The API variant we need to use to perform the subnet binding is to pause the generic 
wildcard address (textually this is equivalent to binding the socket to the 0.0.0.0 IPv4 address and to the 
:: IPv6 address) . Given that each TCP session keeps session state, the replies that the TCP server 
generates uses a source address that matches the destination address of the incoming packet. In this 
manner the TCP server’s socket can be bound to all local addresses, including all addresses defined 
within these locally routed subnets simply by binding the listening socket to the wildcard IP address, 



  Page 4 

and the expected thing will happen: namely the TCP server will respond to connection requests 
addressed to any host address in the locally defined subnet range.  
 
This is not sufficient in the case of a UDP-based server wanting to bind to a subnet configured by this 
local routing table approach. As with a TCP server, a UDP server must bind to the wildcard address so 
that it will accept any addressed packet that is accepted on any local interface. However, there is no 
saved session state at play here, so while the wildcard binding is sufficient to allow a UDP server gather 
all incoming packets directed to the relevant UDP service for packets addressed to any address within 
the entire subnet, any response that the UDP server generates will not use the original destination 
address as its source address. What it will use is the IP address of the routing-determined outbound 
network interface for the packet. Obviously this can present problems to a UDP client, particularly 
when it is using a UDP 4-tuple of the source and destination addresses and port numbers in order to 
match responses to queries. 
 
What we would strongly prefer is that the address pairing is preserved, such that the source address of a 
UDP server’s response is the same as the destination address used to contact the server in the first 
place. To achieve this, the UDP server application needs to set the source address or outgoing 
responses explicitly, using the destination address gathered from the incoming UDP packet it is 
responding to. Picking up the destination address from the socket API is a case of adding a pointer to a 
message control information block to the socket recvmsg() call that collects an incoming UDP message 
and passes it to the UDP server. There are a number of ways to do this in IPv4, depending in the 
operating system, but in the case of IPv6 this has been standardized in RFC3542. We need to set the 
IPV6_RECVPKTINFO parameter on the socket. We can then call recvmsg() with an associated message 
control information block. The block that has the type value IPV6_PKTINFO has an associated data block 
that contains the destination IPv6 address of the UDP packet, and the local host’s interface index that 
received the packet. 
 
So now that we have the original destination address from the incoming packet we’d like to set it as the 
source address of the outgoing packet. RFC3542 specifies the same API approach to perform this, 
where the control block with type IPV6_PKTINFO has a data block that contains the source IPv6 address 
for the outgoing packet, in the same format as the control block used to receive the packet. 
  
Now we are almost there. If we set the source address to any host address associated with a network 
interface than that’s all we need to do. But our subnet binding is not a host address, and efforts to use 
an address drawn from this subnet will conventionally fail a check in the socket driver. What we need 
to do is direct the socket to operate in a more promiscuous mode and accept any of these subnet 
addresses as source addresses for outgoing packets. In the case of Debian systems the socket option 
IP_FREEBIND is required to allow the UDP server to respond to using a source address that matches the 
incoming UDP packet’s destination address when using this subnet address space. 
 
At this point we are done (at least for Debian)! We can associate an entire subnet to the host, and as 
long as the external environment directs packets addresses to any address within the subnet to this host 
we can respond in a conventional manner in both TCP and UDP. 
 

Source code for both TCP and UDP servers for Debian Linux (version 
8.4 of Debian) is located at <http://www.potaroo.net/ispcol/2016-09/>. 
Also we’ve included the source code for a generic test server. Perhaps 
its best left as a challenge to an interested reader to uncover if there are 
comparable settings that allow this subnet binding functionality in 
other systems, such as FreeBSD and Mac OSX. Please let us know 
what you find. 

 



  Page 5 

So, in conclusion, yes, it is possible to construct in both TCP and UDP a host system that allows 
applications to bind to entire subnets, and respond to incoming traffic directed to any address drawn 
from the subnet, and to do so efficiently without performing address translation or any other form of 
packet transformations, and without any overhead of extensive local table lookups that would 
otherwise be the case with large enumerated address lists.  
 
Where is this subnet binding technique useful? We will describe our application of this technique in the 
next article.  
 
 
 
 

  



  Page 6 

 
 
 

 
Authors 

Joao Luis Silva Damas is currently Senior Researcher at APNIC. Joao was also co-founder of 
Hivecast Inc, a DNS services company later sold to Dyn. Previously he worked at ISC (Internet 
Systems Consortium) as CTO overseeing technical developments. Earlier, he served as CTO at 
RIPE NCC and later founded Bond Internet Systems as consulting and research company. For 
around 7 years he organised the RIPE plenary program and launched the current RIPE 
program committee. In 2008, together with colleagues, launched ESNOG to bring together 
Spanish ISPs to interact with each other, an activity that continues to this day.  

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving 
the Asia Pacific region. He has been closely involved with the development of the Internet for 
many years, particularly within Australia, where he was responsible for building the Internet 
within the Australian academic and research sector in the early 1990’s. He is author of a 
number of Internet-related books, and was a member of the Internet Architecture Board from 
1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992 until 
2001 and chaired a number of IETF Working Groups. He has worked as an Internet 
researcher, as an ISP systems architect and a network operator at various times. 

www.potaroo.net 
 

 

 
Disclaimer 

The above views do not necessarily represent the views or positions of the Asia Pacific 
Network Information Centre. 

 
 
 

	
	


