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Fragmentation 
 
One of the more difficult design exercises in packet switched network architectures is that of the design 
of packet fragmentation. In this article I’d like to examine IP packet fragmentation in detail and look at 
the design choices made by IP version 4, and then compare that with the design choices made by IP 
version 6. 
 
Packet-switched networks dispensed with a constant time base, which, in turn allowed individual 
packets to be sized according to the needs of the application as well as the needs of the network. 
Smaller packets have a higher packet header to payload ratio, and are consequently less efficient in data 
carriage. On the other hand, within a packet switching system the smaller packet can be dispatched 
faster, reducing the level of head-of-line blocking in the internal queues within a packet switch and 
potentially reducing network-imposed jitter as a result. Larger packets allow larger data payloads which 
in turns allows greater carriage efficiency. Larger payload per packet also allows a higher internal switch 
capacity when measured in terms of data throughput. But larger packets take longer to be dispatched 
and this can be a cause of increased jitter. 
 
Various network designs adopted various parameters for packet size. Ethernet, standardized in the mid-
1970’s adopted a variable packet size, with supported packet sizes of between 64 and 1,500 octets. 
FDDI, a fibre ring local network used a packet size of up to 4,478 octets. Frame Relay used a variable 
packet size of between 46 and 4,470 octets. The choice of a variable-sized packets allows to 
applications to refine their behaviour. Jitter and delay-sensitive applications, such as digitised voice may 
prefer to use a stream of smaller packets to attempt to minimise jitter, while reliable bulk data transfer 
may choose a larger packet size to increase the carriage efficiency. The nature of the medium may also 
have a bearing on this choice. If there is a high bit error rate (BER) probability, then reducing the 
packet size minimises the impact of sporadic errors within the data stream, which may increase 
throughput.  
 

IPv4 and Packet Fragmentation 
 
In designing a network protocol that is intended to operate over a wide variety of substrate carriage 
networks, the designers of IP could not rely on a single packet size for all transmissions. Instead the IP 
designers of the day provided a packet length field in the IP version 4 header [RFC791]. This field was 
a 16-bit octet count, allowing for an IP packet to be anywhere from the minimum size of 20 octets 
(corresponding to an IP header without any payload) to a maximum of 65,535 octets. So IP itself 
supports a variable size packet format. But which packet size should an implementation use? 
 
The tempting answer is to use the maximum size permitted by the local device’s network interface, with 
the caveat that an application may nominate the explicit use of smaller-sized packets. But there is a 
complication here. The Internet was designed as an “inter-network” network protocol, allowing an IP 
packet to undertake an end-to-end journey from source to destination across a number of difference 
networks. For example, consider a host connected to a FDDI network, which is connected to an 
Ethernet network. The FDDI-connected host may elect to send a 4,478 octet packet, which will fit into 
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a FDDI network, but the packet switch that is attempting to pass the packet into the Ethernet network 
will be unable to do so because it is too large.  
 
The solution adopted by IPv4 was the use of forward fragmentation. The basic approach is that any IP 
router that is unable to forward an IP packet into the next network because the packet is too large for 
this network may split the packet into a set of smaller IP fragments, and forward each of these 
fragments. The fragments continue along the network path as autonomous packets, and the addressed 
destination host is responsible to re-assemble these fragments back into the original IP packet. 
 
The behaviour is managed by a 32-bit field in the IPv4 header, which is subdivided into 3 sub fields 
(Figure 1).  
 
 

 
Figure 1 – IPv4 Packet Header Fragmentation Fields 

 
The first sub-field is a 16-bit packet identifier, which allows fragments that share a common packet 
identifier value to be identified as fragments of the same original packet. 
 
The second sub-field is a 3-bit vector of flags. The first bit is unused. The second is the Don’t Fragment 
flag. If this flag is set the packet cannot be fragmented, and must be discarded when it cannot be 
forwarded. The third bit is the More Fragments field, and is set for all fragments bar the final fragment. 
 
The third sub-field is the fragmentation offset value, that is the offset of this fragment from the start of 
the original packet’s IP payload, measured in octawords (64 bit units). 
 
For example, a router attempting to pass a 1320 octet IP packet into a network whose maximum packet 
size is 532 octets would need split the IP packet into three parts. The first packet would have a 
fragmentation offset of 0, and the More Fragments bit set. The total length would be 532 octets, and the 
IP payload would be 512 octets, making a total of 532 octets for the packet. The second packet would 
have a fragmentation offset value of 64, the More Fragments bit set, total length of 532 and an IP payload 
of 512 octets, making a total of 532 octets for the packet. The third packet would have a fragmentation 
offset value of 128, the More Fragments bit clear, total length of 296 and an IP payload of 276 octets, 
making a total of 296 octets for the packet. (Figure 2) 
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Figure 2 – Example of IPv4 Packet Fragmentation 

 
The advantage of this approach is that as long as it is permissible to fragment the IP packet, all packet 
flows are “forward”. By this it is meant that the sending host is unaware that packet fragmentation is 
occurring, and all the IP fragment packets continue to head towards the original destination where they 
are reassembled. Another advantage is that while the router performing the fragmentation has to 
expend resources to generate the packet fragments, the ensuing routers on the path to the destination 
have no additional processing overhead, assuming that they do not need to further fragment these IP 
fragments. Fragments can be delivered in any order, so the fragments may be passed along parallel 
paths to the destination.  
 
To complete the IPv4 story its necessary to describe the IPv4 behaviour when the Don’t Fragment bit is 
set. The router that is attempting to fragment such a packet is forced to discard it. Under these 
circumstances the router is expected to generate a ICMP Unreachable error (type 3, code 4), and in 
later versions of the IP specification it was expected to add the MTU of the next hop network into the 
ICMP packet. The original sender would react to receiving such an ICMP message by changing its local 
maximum packet size associated with that particular destination address, and thus it would ‘learn’ a 
viable packet size for the path between the source and destination.  
 

Evaluating IPv4 Fragmentation 
 
A case has been made that IP’s approach to fragmentation contributed to IP’s success. This design 
allowed transport protocols to operate without consideration of the exact nature of the underlying 
transmission networks, and avoid additional protocol overhead in negotiating an optimal packet size 
for each transaction. Large UDP packets could be transmitted and fragmented on the fly as required 
without requiring any form of packet size discovery. This approach allowed IP to be used on a wide 
variety of substrate networks without requiring extensive tailoring. 
 
But it wasn’t all good news. 
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Cracks in IP’s fragmentation story were described in a 1987 paper by Kent and Mogul, ‘Fragmentation 
Considered Harmful.” [Kent 87] 
 
TCP has always attempted to avoid IP fragmentation. The initial opening handshake of TCP exchanges 
the local Maximum Segment Sizes, and the sender will not send a TCP segment larger than that 
notified by the remote end at the start of the TCP session. The reason for TCP attempting to avoid 
fragmentation was that fragmentation was inefficient under conditions of packet loss in a TCP 
environment. Lost fragments can only be repaired by resending the entire packet, including resending 
all those fragments that were successfully transmitted in the first place. TCP will perform a data repair 
more efficiently if it were to limit its packet size to one that did not entail packet fragmentation. 
 
This form of fragmentation also posed vulnerabilities for hosts. For example, an attacker could send a 
stream of fragments with a close to maximally sized fragment offset value, and random packet identifier 
values. If the receiving host believed that the fragments represented genuine incoming packets, then a 
credulous implementation might generate a reassembly buffer for each received fragment which may 
represent a memory buffer starvation attack. It is also possible, either through malicious attack or by 
poor network operation, that fragments may overlap or overrun, and the task of reassembly requires 
care and and attention in implementation of fragment reassembly. 
 
Lost fragments represent a slightly more involved problem than lost packets. The receiver has a packet 
reassembly timer upon the receipt of the first fragment, and will continue to hold this reassembly state 
for the reassembly time. The reassembly timer is a factor in the maximal count of packets in flight, as 
the packet identifier cannot be recycled within period defined by the sender-received path delay plus 
the receiver’s reassembly timer. For higher delay high capacity network paths this limit of 65,535 
packets in flight can be a potential performance bottleneck [RFC 4963].  
 
Fragmentation also consumes router processing time, forcing the processing of over-sized packets 
from a highly optimised fast path into a processor queue. 
 
And then there is the middleware problem. Filters and firewalls perform their function by applying a set 
of policy rules to the packet stream. But these rules typically require the presence of the transport layer 
header. How can a firewall handle a fragment? One option is to pass all trailing fragments through 
without inspection, but this exposes the internal systems to potential attack [RFC 1858]. Another 
option is to have the firewall rebuild the original packet, apply the filter rules, and then refragment the 
packet and forward it on if the packet is accepted by the filter rules. However, by doing this the firewall 
is now exposed to various forms of memory starvation attack. NATs that use the transport level port 
addresses as part of its binding table have a similar problem with trailing fragments. The conservative 
approach is for the NAT to reassemble the IP packet at the NAT, apply the NAT address transform 
and then pass the pack onward, fragmenting as required.  
 
 

IPv6 and Fragmentation 
 
When it came time to think about the design of what was to become IPv6 the forward fragmentation 
approach was considered to be a liability, and while it was not possible to completely ditch IP packet 
fragmentation in IPv6, there was a strong desire to redefine its behaviour. 
 
The essential change between IPv4 and IPv6 is that in IPv6 the Don't Fragment bit is always on, and 
because its always on, its not explicitly contained in the IPv6 packet header (Figure 3). There is only 
one fragmentation flag in the Fragmentation Header, the “More Fragments” bit, and the other two bits 
are reserved. The other change was that the packet identifier size was doubled in IPv6, using a 32-bit 
packet identifier field.  
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Figure 3 – IPv6 Packet Header and Fragmentation Header 

 
An IPv6 router cannot fragment an IPv6 packet, so if the packet is too large for the next hop the 
router is required to generate an ICMP6 Type 2 packet, addressed to the source of the packet with a 
Packet Too Big (PTB) code, and also providing the MTU size of the next hop.  While an IPv6 router 
cannot perform packet fragmentation, the IPv6 sender may fragment an IPv6 packet at the source. 
 
 

Evaluating IPv6 Packet Fragmentation 
 
The hope was that these IPv6 changes would fix the problems seen with IPv4 and fragmentation. 
 
Our experience appears to point to a different conclusion. 
 
The first problem is that there is widespread ICMP packet filtering in today’s Internet. For IPv4 this 
was basically a reasonable defense tactic, and if you were willing to have a packet fragmented you 
cleared the Don't Fragment bit before sending the packet so that you were not reliant of receiving an 
ICMP message to indicate a Path sender MTU problem. But in IPv6 the equivalent Don't Fragment bit 
functionality is jammed in the “on” position, and the only way fragmentation will be performed is that 
if the original sender receives the ICMP6 PTB message and then resends the packet fragmented into a 
size that will meet the specified MTU size. But when ICMP6 PTB messages are filtered then the large 
packet in silently discarded within the network without any discernible trace. Attempts by the sender to 
time out and resend the large IPv6 packet will meet with the same fate, so this can lead to a wedged 
state.  
 
This has been seen in the context of the HTTP protocol, where the path MTU is smaller than the 
MTU of the host systems at either end. The TCP handshake completes as none of the opening packets 
are large. The opening HTTP GET packet also makes it through as this is normally not a large packet. 
However, the first response may be a large packet. If it is silently discarded because of the combination 
of fragmentation required and ICMP6 filtering, then neither the client nor the server are capable or 
repairing the situation. The connection hangs. 
 
The second problem is that the ICMP6 PTB message is sent backwards to the source from the interior 
of a network path. Oddly enough, the IPv6 ICMP PTB message is perhaps the one critical instance in 

Version Flow Label

Time To Live

Source Address

Destination Address

Headers

Protocol Header Checksum

Traffic Class

Next HeaderPayload Length Hop Limit

Next Header Fragment OffsetReserved

Identification

Res M

IPv6 Fragmentation Header

IPv6 Packet Header



  Page 6 

the entire IP architecture where the IP source address is interpreted by anything than the intended 
destination. The problems here include path asymmetry, in that the source address may be unreachable 
from the point of the ICMP packet’s generation. There is also the case of tunneling IP-in-IP. Because 
IPv6 fragmentation can only be performed at the source, should the ICMP message be sent to the 
tunnel ingress point or to the original source? If the tunnel ingress is used that this assumes that the 
tunnel egress performs packet reassembly, which can burden the tunnel egress. This is further 
confounded in the cross protocol case of IPv6-in-IPv4 and IPv4-in-IPv6. [RFC 4459] 
 
The third problem is the combination of IPv6 packet fragmentation and UDP. UDP is an unreliable 
datagram delivery service, so a sender of an UDP packet is not expected to cache the packet and be 
prepared to resend it. A UDP packet delivery error can only be effected at the level of the application, 
and not at the IP or UDP protocol level. So what should a host do upon receipt of an ICMP PTB 
message if resending the IP packet is not an option? Given that the sender does not cache sent UDP 
packets the packet header in the ICMP6 message is unhelpful. As the original packet was UDP, the 
sender does not necessarily have a connection state, so it is not clear how this information should be 
retained and how and when it should be used.  How can a receiver even tell if an ICMP6 PTB packet is 
genuine? If the sender adds an entry into its local IPv6 forwarding table then it is exposing itself to a 
potential resource starvation problem. A high volume flow of synthetic PTB messages has the potential 
to bloat the local IPv6 forwarding table. If the sender ignores the PTB message than the application is 
left to attempt to recover the transaction.  
 
If it makes little sense in the context of an attempt to fragment a UDP packet, it makes less sense to 
fragment a TCP packet. In the context of a TCP session a received ICMP6 PTB Message can be 
interpreted as a re-definition of the remote end MSS value, and the outgoing TCP segments can be re-
framed to conform to this MSS. 
 

Wither Fragmentation? 
 
The basic problem here is that the network was supposed to operate at the IP level and be completely 
unaware of transport. This implies that IP level fragmentation was meant to work in a manner that 
does not involve transport protocol interaction. So much of today’s network (firewalls, filters, etc.) is 
transport-aware and the trailing fragments have no transport context. That means that transport aware 
network middleware needs to re-assemble the packet, which could represent a problem and a DOS 
vulnerability in its own right. 
 
So is fragmentation worth it at all?  
 
I’d still say that’s its more useful to have it than not. But the IPv4 model of forward fragmentation on the 
fly has proved to be more robust than the IPv6 model because the IPv4 model only requires traffic 
flows in one direction and is an IP level function. It has its problems, and no doubt the papers that 
warned that IP fragmentation was “harmful” were sincere in taking that view [Kent 87]. But it is 
possible to make it worse, and the IPv6 model requiring a backward ICMP6 message from the interior 
of the network was in retrospect a decision that made the issue worse! 
 
So what should we do now?  
 
It is probably not a realistic option to try and alter the way that IPv6 manages fragmentation.  There 
was an effort in 2013 in one of the IETF’s IPv6 Working Groups to deprecate the IPv6 Fragment 
Header [Bonica 2013]. That's possibly an over-reaction to the problem of packet fragmentation and 
IPv6, but there is no doubt that the upper level protocols simply should not assume that IPv6 
fragmentation operates in the same manner as IPv4, or even operates in a reliable manner at all! 
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That implies that transport protocol implementations, and even applications, should try and manage 
their behaviour on the assumption that ICMP message filtering is sufficiently prevalent that it is 
prudent to assume that all ICMP messages are dropped. The result is a default assumption that large 
IPv6 packets that require fragmentation are silently dropped.  
 
How can we work around this and operate a network that uses variable-sized packets, but cannot 
directly signal when a packet is too large? RFC4281 describes a Path MTU Discovery process that 
operates without relying on ICMP messages, and IPv6 TCP implementations should rely on this 
mechanism to establish and maintain a viable MTU size that can support packet delivery. In this way 
TCP can manage the path MTU and the application layer need not add explicit functionality to manage 
persistent silent drop of large segments. 
 

Path MTU Discovery 
 
Path MTU discovery was specified in RFC 1191. The approach was to 
send packets with the Don't Fragment bit set. Where a router on the 
path is unable to forward the packet because it is too large for the next 
hop, the Don't Fragment field directs the router to discard the packet 
and send a Destination Unreachable ICMP message with a code of 
“Fragmentation Required and DF set” (Type 3, Code 4).  RFC1191 
advocated the inclusion of the MTU of the next hop network in the 
next field of the ICMP message. 
 
A host receiving this form of ICMP message should store the new 
MTU in the local forwarding table, with an associated time to allow the 
entry to time out. Also the host should identify all active TCP sessions 
that are connected to the same destination address as given in the IP 
packet header fragment of the ICMP message, and notify the TCP 
session of the revised path MTU value. 
 
RFC1981 defined the much the same behavour for IPv6, relying on the 
MTU information conveyed in the ICMP6 Packet Too Big information 
in exactly the same manner as its IPv4 counterpart. 
 
The problem of filtered ICMP messages is a difficult one, and attention 
has turned to path MTU Discovery ideas that do not rely on an ICMP 
message to operate correctly. RFC4821 describes a process refines the 
RFC 1191 ICMP-based process by adding an alternate process that is 
based on detection and reporting of packet loss as an inference of path 
MTU problems in those cases when there is no ICMP feedback. This 
uses a probe procedure that attempts to establish a working MTU size 
through probing the path with various sized packets to establish the 
upper bound MTU. The tradeoff here is the number of round trip 
intervals taken to perform the probes and the accuracy of the path 
MTU estimate.0 
 
Because these probes take time, the entire exercise only tends to be of 
value in long held TCP and TCP-like flows. For shorter sessions the 
pragmatic advice is to clamp the local MTU to a conservative value 
(1,280 is a good first choice for IPv6, and RFC 4821 also suggests 
1,024 for IPv4) and try to avoid the entire issue of fragmentation in the 
first place. 
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UDP is a different story. The lightweight UDP protocol shim does not admit much in the way of 
additional functionality, and one possible approach is to insist that UDP-based applications limit 
themselves to the local MTU size, or to be even more conservative, limit themselves to the 1,280 octet 
IPv6 minimum unfragmented packet size.  
 
The major issue with such advice for UDP lies in the Domain Name System (DNS). Efforts to 
improve the security of the DNS (DNSSEC) have added additional data into DNS responses, and if 
you want to maintain the lightweight efficiency of the DNS then its not possible to keep DNSSEC 
responses under 1500 octets all of the time, let alone under 1,280 octets. One option here is to insist 
that larger DNS responses must use TCP, but this imposes some considerable cost overhead on the 
operation of the DNS. What the DNS has chosen to do appears to represent a reasonable compromise. 
The first part of the approach is that the management of the packet MTU is passed into the application 
layer. The application will conventionally operate with a maximum UDP payload size that assumes that 
UDP fragmentation is working, and a DNS query would normally offer an EDNS buffer size of 4,096 
octets. The responder would use this to assemble its UDP response of up to 4,096 octets in length, 
which would conventionally cause the source to perform UDP packet fragmentation for large 
responses, and may invoke path fragmentation is the path MTU is lower than the responders local 
MTU. The EDNS buffer size is dropped back to a more conservative value that is not expected to 
trigger fragmentation after a number of unsuccessful attempts using a buffer size that would normally 
trigger fragmentation. The intended result is that if the network cannot complete a UDP transaction 
that entails a fragmented UDP response, the transaction is repeated using smaller maximum UDP 
packet size, and the truncated response explicitly signals to the client to re-try the query using TCP 
[RFC 6891]. This process is protocol agnostic, in that it will operate as intended in the case of IPv4 
forward fragmentation where trailing fragments are filtered out by middleware, and in the case of IPv6, 
where there is no forward fragmentation, and it operates whether or not the responder receives any ICMP 
PTB messages. 

Conclusion 
 
What we have learned through all this is that packet fragmentation is extremely challenging, and is 
sensibly avoided, if at all possible. 
 
Rather than trying to bury packet fragmentation to an IP level function performed invisibly at the lower 
levels of the protocol stack, a robust approach to packet fragmentation requires a more careful 
approach that lifts the management of Path MTU into the end-to-end transport protocol and even into 
the application. 
 
IPv6 UDP-based applications that want a lightweight operation should look at keeping their UDP 
packets under the IPv6 1,280 octet unfragmented packet limit. And if that's not possible, then the 
application itself needs to explicitly manage Path MTU, and not rely on the lower levels of the protocol 
stack to manage this.  
 
IPv6 TCP implementations should never assume that IPv6 PTB messages are reliably delivered. High 
volume flows should use RFC4821 Path MTU Discovery and management procedures to ensure that 
the TCP session can avoid Path MTU blackholing. For short flows MSS clamping still represents the 
most viable approach. 
 
I’m not sure that we should go as far as deprecating IP fragmentation in IPv6. The situation is not that 
dire. But we should treat Path MTU with a lot more respect, and include explicit consideration of the 
trade-offs between lightweight design and robust behaviour in today’s network. 
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