
The ISP Column
A monthly column on things Internet

Geoff Huston
October 2015

Transport Protocols

One of the early refinements in the Internet protocol model was the splitting of the original Internet
protocol from a single monolithic specification [1] into the Internet Protocol (IP) and a pair of
transport protocols. The Internet Protocol layer is intended to be used by the internal switches within
the network to forward the packet to its intended destination, while the Transport Protocol layer is
intended to be used by the source and destination systems. In this article I’d like to look at what we’ve
been doing with these transport protocols.

There are two end-to-end transport protocols in common use in today’s Internet: the User Datagram
Protocol (UDP) [2] and Transmission Control Protocol (TCP) [3]. Why just two? Surely we’ve thought
of many ways to control the flow of data across a packet switched network, and in an architecture as
open as the Internet it seems reasonable to ask why haven’t see seen the emergence of a plethora of
end-to-end transport protocols. There have been no shortage of attempts, and on any Unix-like system
an inspection of /etc/protocols provides a list of 130 such protocols that are layered on top of IP.
Now some of these are special purpose protocols, such as protocol 89, used by the OSPF routing
protocols, and others are encapsulation protocols, such as protocol 41 for IPv6-in-IPv4 encapsulation.
But there are a fair number of end-to-end protocols in that list as well, such as protocol 27, the Reliable
Datagram Protocol (RDP), of protocol 132, the Stream Control Protocol (SCTP). But most of these
end-to-end transport protocols find it hard to survive in the public Internet. The issue today is that our
middleware has got the better of us.

Much of the Internet shelters behind all kinds of middleware. These can take the form of firewalls and
filters, that work on the principle of explicit permission rather than exception. These units will
commonly permit protocols 6 and 17 (TCP and UDP), but as far as permitted end-to-end protocols go,
that’s normally it. It’s not just the paranoia of firewalls. We have load balancers, packet shapers, and
many other forms of intercepting middleware that can recognise and manipulate TCP sessions, but they
conventionally don't do much else. So, for all practical purposes the Internet only allows the end-to-end
transport protocols TCP and UDP. So lets look at these two protocols in a little more detail.

UDP
UDP is a very simple abstraction of the basic IP datagram, in that like IP itself, UDP is an unreliable
medium. Mirroring the service characteristics of IP, Packets sent using UDP may or may not be
received by their intended destination. UDP packets may be reordered, duplicated or lost. There is no
flow control and no throttling in UDP. The packet quantization in UDP is explicit: if data is split into
two UDP packets by the sender, then the receiver will collect the data using two distinct read
operations.

UDP is intended to be used for extremely simple transactions that do not require session context. The
Domain Name System (DNS) and the Network Time Protocol (NTP) are good examples of
applications that make use of UDP to support a very efficient query / response transaction model.
Typically a sender generates a query packet with space for an answer and the response is the same
packet with the answer field completed.

 Page 2

These days UDP is regarded far more cautiously. The lack of a session context implies that most
transactions are unencrypted, and are not only readily tapped by third parties, but they are highly
susceptible to passing off attacks, where someone other than the intended recipient generates a
response, possibly intending to mislead or dupe the original querier. For example, DNS interceptors
have become a very common means of performing content filtering on today’s internet. More
insidiously, UDP is a common platform for mounting various forms of denial of service attacks. Many
UDP servers, such as authoritative DNS servers, need to answer all UDP queries, so they are not in a
position to only answer certain “genuine” queries. All queries tend to look genuine in UDP. This has
been exploited by attackers who place the IP address of the intended victim in the source address of
the UDP packet. With enough queries sent to enough servers all with the same source address, its
possible to enrol UDP servers into being unwitting attackers. So today UDP has fallen from grace.

If its not UDP then its likely to be TCP.

TCP
TCP is a reliable end-to-end flow controlled stream protocol. A stream of data passed into a TCP
socket at one end will be read as a stream of data at the other end. As it's a stream protocol, the packet
quantisation is hidden from the application, as are the mechanics of flow control, loss detection and
retransmission, session establishment and session teardown. TCP will not preserve any inherent timing
within the data stream, but will preserve the integrity of the stream.

Within any packet-switched network when there is contention for a common output port, or when
sustained packet volumes exceeds the available capacity at a switching point the packet switch will use a
queue to hold the excess packets. When this queue fills, the packet switch must drop packets. Any
reliable data protocol that operates across such a network must recognize this possibility and take
corrective action. TCP is no exception to this constraint. One approach is to have each pair of switches
conduct a reliable protocol over their common link, and perform this detection and correction of
packet loss on a hop-by-hop basis. TCP uses a different approach and makes no assumptions about the
reliability of each hop. Instead TCP use an end-to-end data sequence numbering between the two
communicating systems that allows them to identify their context within the stream. When an in-
sequence packet is received by a host it will send back as a positive acknowledgement (ACK) to the
sender the sequence number of the final byte in the packet. This ACK is a “cumulative ACK” in that it
is saying that all data in the stream up to the sequence number contained in the ACK has been
received. There are no negative acknowledgements (NACKs) in TCP. When an out-of-order packet
arrives, the receiver will also send an ACK, but it will contain the sequence number of the highest in-
order byte that has been received. This form of reliable protocol design is termed “end-to-end” control,
as distinct to "hop-by-hop" control, as TCP does not assume that interior switches will attempt to
correct packet drops at a hop-by-hop level.

Operating TCP over a reliable hop-by-hop controlled environment is
suboptimal. The early experience of running TCP over these hop-by-
hop reliable protocols such as X.25 packet switched systems, and later
ARQ reliable cellular switched radio systems, pointed to significant
problems with this approach in terms of the efficiency of TCP. As we
will see, TCP makes use of timing signals to guide its behaviour, and
when each link in the path is performing a “stop and repair” form of
reliable hop-by-hop control, then this will impose jitter (variation in the
time to send a packet and receive its acknowledgement) on the packet
flow. This imposed jitter will disrupt TCP’s internal estimate of the
Round Trip Time, which will cause its flow control processing to
behave erratically.

 Page 3

TCP uses these ACKs as a form of feedback from the receiver back to the sender in order to clock the
data flow. ACKs arriving back at the sender arrive at intervals approximately equal to the intervals at
which the data packets arrived at the sender. If TCP uses these ACKs to trigger sending further data
packets into the network, then it can send data into the network at the same rate as it is leaving the
network at its destination. This mode of operation is termed “ACK clocking.” In terms of supporting
network stability this is a very astute design decision. In a steady state this mechanism will ensure that
TCP injects data into the network at the same rate as data is removed from the network at the other
end.

Critically, today’s Internet assumes that most of the network’s resources are devoted to passing TCP
traffic, and it also assumes that the flow control algorithms used by these TCP sessions all behave in
approximately similar ways. If the switching and transmission resources of the network are seen as a
common resource, then the assumption about the uniform behaviour of TCP sessions implies that
these end-to-end transport sessions will behave similarly under contention. The result is that, to a
reasonable level of approximation, a set of concurrent TCP sessions will self-equilibrate to give each
TCP session an equal share of the common resource. In other words the network itself does not have
to impose “fairness” on the TCP flows that pass across it – as long as all the flows are controlled by a
uniform flow control algorithm then the flows will interact with each other in a manner that is likely to
allocate an equal proportion of the network’s resources to each active TCP flow. At least that’s the
theory.

But do theory and practice align? Is this the case in today’s Internet and what may be changing with
these assumptions about TCP behaviour?

TCP Flow Control – TCP Tahoe and TCP Reno
Perhaps surprisingly, TCP does not have a single flow control algorithm. While the common TCP
protocol specification defines how to establish and shutdown a session, and defines the way in which
received data is acknowledged back to the sender, the core protocol specification for TCP does not
specify how the two ends negotiate the speed at which data is passed between them. A simple approach
is to send data until the sender’s buffer of unacknowledged sent data is full. Received ACKs will allow
the sender to shrink this buffer, and it can then send further data into the network until the buffer is
buffer is again full.

However, this simple approach has its problems when used by a number of simultaneous sessions,
leading to what as observed at the time as “congestion collapse”. The TCP sessions interact in a way
that causes large scale packet drop, and the loss of ACK signalling causes all senders to retransmit, and
so on. A study of this behaviour in the 1980’s lead to the introduction of a “flow control” approach to
TCP behaviour [4].

One of the early TCP flow control algorithms was TCP Tahoe, first used in the 4.3BSD operating
system. In this flow control framework there are two distinct phases of behaviour: the “Slow Start”
phase, where the sending rate is doubled every round trip time (RTT) interval, and a “Congestion
Avoidance” phase, where the sending rate is increased by a fixed amount (one Message Segment Size
(MSS)) in each RTT interval [5].

Slow Start phase starts the data flow in a very conservative manner, sending just one packet into the
network and awaiting its corresponding ACK. However, each received ACK causes the sender to
double its sending window size, so that the sender will successively send 2, 4, 8 and so on packets into
the network upon each RTT interval. This generates an exponentially increasing data rate into the
network, and the TCP session will rapidly either reach the maximum transmission receiving rate of the
remote receiver, the maximum initial transmission rate of the sender (the “slow start threshold”, or
ssthresh), or it will push the network into congestion to the point of packet loss. In the first cases the
TCP flow rate will stabilise at the receiver’s maximum rate. In the second case, where the sending rate
exceeds a local threshold the sender will then move into its Congestion Avoidance mode, and continue

 Page 4

to increase the sending rate until either the receiver’s maximum rate is reached, or until packet loss
occurs.

If an ACK for a packet fails to arrive within the RTT interval then TCP Tahoe assumes that the
sending packet has been lost in the network. This packet loss event causes the local ssthresh value to be
set to half of the current sending rate, and the sending rate is set back to a single packet and slow start
is resumed. An idealised picture of the resultant behaviour of a TCP Tahoe-controlled data flow is
shown in Figure 1. The idea is that at startup the sender rapidly probes upward in speed to determine
the upper bound on the sustainable data rate. At that point the sender now has an approximate rate of
rate. The reasoning is that it assumes that congestion loss occurred within the last RTT interval then
the maximal sustainable sending rate is somewhere between half of the sending rate of the last RTT
interval and the sending rate of the last RTT interval. Tahoe then performs slow start again, but stops
at this halved rate, which it found from the previous slowstart phase was sustainable by the network.
The sender enters into congestion avoidance mode, and probes far more carefully into the next range
of sending speeds, increasing the sending rate by a single segment each RTT interval. Again, Tahoe will
assume that it has overstepped the mark when packet loss occurs , and again it will set ssthresh to half
the sending rate and restart the flow in slow start.

Figure 1 – Idealised TCP Tahoe Flow Control

Tahoe uses the lack of an ACK packet to signal congestion loss. Tahoe carries an internal estimate of
the RTT, and when the ACK has not been received at the RTT interval (plus some interval to allow for
jitter), then Tahoe will perform its reset to slow start. This response to packet loss causes significant
delays within the data transfer, because the sender will be idle during the timeout interval and upon
restarting will recommence with a single packet exchange, gradually recovering the data rate that was
active prior to the packet loss.

To address this, TCP Reno introduced the mechanism of “fast recovery.” This mechanism is triggered
by a sequence of three duplicate ACKS received by the data sender. These duplicate ACKs are
generated by the packets that trail the lost packet, where the sender ACKs each of these packets with
the ACK sequence value of the last in-sequenced byte. In this mode the sender immediately retransmits
the lost packet and then continues with ACK pacing while duplicate ACKs continue to arrive. Once it
receives an indication that the recovery transmissions have been received (by the ACK counter moving
past the sequence number of the lost data), the sender then resumes congestion avoidance, with a rate
equal to one half of the rate used when the duplicate ACKs were received.

The protocol reacts sharply to these duplicate ACK signals of network congestion, but only to one half
of the previous sending rate, and then resumes gradually increasing its sending rate in order to
equilibrate with concurrent TCP sessions. If it fails to recover the missing packets using this fast

 Page 5

recovery mechanism then it collapses its sending window back to 1 and re-enters Slow Start mode.
Figure 2 show the idealised behaviour of TCP Reno.

The intent in the Congestion Avoidance mode is for the sender to carefully probe into the point where
the network path is congested, gradually increasing its data flow pressure on the network. In
Congestion Avoidance mode the duplicate ACKs will cause the sender to halve its sending rate,
attempt to recover from the lost packet, and if successful then continue in this congestion avoidance
mode from the new sending rate.

Figure 2 – Idealised TCP Reno Flow Control

In steady state the TCP Reno Congestion Avoidance algorithm ideally avoids restarting the session
using slow start, and instead tries to continue the flow with the same assumptions about the likely onset
of congestion loss. This is a process of Additive Increase in the sending window (by one segment each
RTT) and Multiplicative Decrease in the sending window (by halving its size) at the onset of
congestion, or AIMD.

TCP Reno’s AIMD algorithm tends to place high levels of pressure on the buffers in the network while
there is still available buffer space, and react less dramatically when the buffers eventually overfill and
reach the packet drop point. TCP Reno’s flow control is far more efficient than its Tahoe predecessor,
but this is still a “boom and bust” form of feedback control, which attempts to drive the network into
congestion overload and then backoff to allow the buffers to drain. Despite these shortcomings Reno
has been the mainstay of the Internet for more than a couple of decades, and it remains the benchmark
against which other TCP flow control algorithms are compared.

Better than Reno
There have been a number of reasons to break out of Reno’s form of TCP flow control behaviour.
One approach is to use a more even packet flow across the network, and remove some of the
“jerkiness” inherent in TCP Reno. There is also the suspicion that a more “sensitive” flow control
application could achieve a superior outcome than TCP Reno. In other words, a different TCP flow
control algorithm could achieve better than its “fair share” when competing against a set of concurrent
TCP Reno flows!

The first of these approaches we will look at here is a simple change. In an attempt to double the
pressure on other concurrent TCP sessions the AIMD algorithm can be adjusted by increasing the
sending speed a larger constant amount each RTT, and decreasing it by less following packet loss. Tthis
approach is used by MulTCP. For example, if the sending rate was increased by 2 maximum segment
size (MSS) units each Round Trip Time (RTT) instead of 1 MSS in TCP Reno, and the sending rate
was reduced by one quarter rather than one half upon receipt of a duplicate ACK, then the resultant
behaviour would, in an approximate sense, behave like two concurrent TCP sessions. In a fair sharing

 Page 6

scenario this form of flow control would attempt to secure double the network resources devoted to
this session as compared to an equivalent TCP Reno session.

Another variant of this approach is “Highspeed TCP”, which increases its frequency of probing into
potentially claimable capacity by increasing its sending rate by a larger volume, while keeping its
reduction rate at a constant value. So rather than Reno’s increase of the congestion window by 1 each
RTT, Highspeed TCP uses a calculation for the inflation rate per RTT that rises above 1 as the
congestion window grows larger. This protocol will probe for the packet loss onset at a far higher
frequency than either TCP Reno or MulTCP, once the sender is operating with a large congestion
window and is capable of accelerating to much higher flow speeds in a much shorter time interval.

BIC, and its variant CUBIC, use a non-linear increase function rather than a constant rate increase
function. Instead of increasing the speed by a fixed amount each RTT in Congestion Avoidance mode
BIC remembers the sending rate at the onset of packet drop, and each RTT increases its speed by one
half of the difference between the current sending rate and the assumed bottleneck rate. BIC quickly
drives the session towards the bottleneck capacity, and then probes more cautiously once the sending
speed is close to the bottleneck capacity. (Figure 3) Again, compared to a Reno flow session BIC
should produce a superior outcome.

Figure 3 – Idealised TCP BIC Flow Control

Other flow control algorithms move away from using packet loss as the control indication and tend to
oscillate more frequently around the point of the onset of queuing in the routers in the network path.
This form of feedback control makes the sender sensitive to the relative time differences between sent
packets and received ACKs. An example is “packet-pair” flow controlled TCP, where the sending rate
is increased as long as the time interval between two packets being sent is equal to the time interval of
the received ACKs. If the ACK interval becomes larger then this is interpreted as the onset of queuing
in the sending path, and the sending rate is decreased until the ACK timing interval once again equals
the send timing interval.

Recent Microsoft systems use Compound TCP, which combines TCP Reno and delay-based flow
control. The algorithm attempts to measure the amount of in-flight data held in queues (higher delay
traffic) and upon packet loss the algorithm will reduce its sending rate to below the onset of the
sender’s estimate of growth in queuing.

Apple’s Macintosh systems use New Reno, a variant of the Reno flow control algorithm that improves
Reno’s loss recovery procedure, but is otherwise the same AIMD control algorithm.

 Page 7

Linux kernels have switched to use CUBIC, a variant of the BIC algorithm that uses a cubic function
rather than an exponential function to govern window inflation.

There is a delicate balance between the network and the flow control behaviour of TCP, based around
the management of the queue buffers in the networks’ switches. TCP tends to interpret packet loss as a
signal that the bottleneck point in the network path has filled its queue buffers to the point of overflow,
and maintaining the same sending rate will only exacerbate packet loss and result in flow inefficiency.
The intent of rate halving as a response to congestion loss was to reduce the sending flow rate to a
point below the bottleneck capacity, thus allowing the queue to drain, and the slow increase in
congestion avoidance was to ensure that this lower flow rate was sustained for long enough to allow
the queue buffers to completely drain. The issue here is that a queue that never drains below some
minimum behaves in precisely the same was as a delay line coupled with a shorted queue. So the rate
halving and the gradual recovery are intended to exercise the full extent of the router’s queues and
reduce the level of packet loss and transport inefficiency.

The TCP flow algorithms that modify this behaviour tend to work best when used in an environment
where all other flows behave more conservatively. In an environment where all the concurrent sessions
across a congested link use a RENO-like AIMD behaviour, then a single session that uses a more
aggressive response to packet loss, such as CUBIC, will tend to exert a greater pressure on the
concurrent TCP RENO-like sessions and gain a greater share of available network resources. Of course
this strategy only works when there is a diversity of flow control algorithms in use.

TCP Design Assumptions

It is difficult to design any transport protocol without making some
number of assumptions about the environment in which the protocol
is to be used, and TCP certainly has some inherent assumptions hidden
within its design. There is one fundamental assumption made by these
TCP flow control algorithms:

Packet Loss and jitter in the RTT is due to network congestion.

This basic assumption is complemented by a number of additional
considerations:

A network of wires, not wireless: As we continually learn, wireless is
different. Wireless systems typically have higher bit error rates (BERs)
than wire-based carriage systems. Mobile wireless systems also include
factors of signal fade, base-station handover, RTT instability and
variable levels of load. TCP was designed with wire-based carriage in
mind, and the design of the protocol makes numerous assumptions
that are typical of such of an environment. TCP makes the assumption
that packet loss is the result of network congestion, rather than bit-
level corruption, and that the underlying RTT of a network path is
stable.

A best-path route-selection routing protocol: TCP assumes that
there is a single best metric path to any destination because TCP
assumes that packet reordering occurs on a relatively minor scale, if at
all. This implies that all packets in a connection must follow the same
path within the network or, if there is any form of load balancing, the
order of packets within each flow is preserved by some network-level
mechanism.

 Page 8

A network with fixed bandwidth circuits, not rapidly varying
bandwidth: TCP assumes that available bandwidth is constant, and
will not vary over short time intervals. TCP uses an end-to-end control
loop to control the sending rate, and it takes many RTT intervals to
adjust to varying network conditions. Rapidly changing bandwidth
forces TCP to make very conservative assumptions about available
network capacity.

A switched network with first-in, first-out (FIFO) buffers: TCP
also makes some assumptions about the architecture of the switching
elements within the network. In particular, TCP assumes that the
switching elements use simple FIFO queues to resolve contention
within the switches. TCP makes some assumption about the size of the
buffer as well as its queuing behavior, and TCP works most efficiently
when the buffer associated with a network interface is of the same
order of size as the delay bandwidth product of the associated link.

Non-trivial sessions: TCP also makes some assumptions about the
nature of the application. In particular, it assumes that the TCP session
will last for some number of round-trip times, so that the overhead of
the initial protocol handshake is not detrimental to the efficiency of the
application. TCP also takes numerous RTT intervals to establish the
characteristics of the connection in terms of the true RTT interval of
the connection as well as the available capacity. The introduction of
short-duration sessions, such as found in transaction applications and
short Web transfers, is a new factor that impacts the efficiency of TCP.

Large payloads and adequate bandwidth: TCP assumes that the
overhead of a minimum of 40 bytes of protocol per TCP packet (20
bytes of IP header and 20 bytes of TCP header) is an acceptable
overhead when compared to the available bandwidth and the average
payload size. When applied to low-bandwidth links, this is no longer
the case, and the protocol overheads may make the resultant
communications system too inefficient to be useful.

Interaction with other TCP sessions: TCP assumes that other TCP
sessions will also be active within the network, and that each TCP
session should operate cooperatively to share available bandwidth in
order to maximize network efficiency. TCP may not interact well with
other forms of flow-control protocols, and this could result in
unpredictable outcomes in terms of sharing of the network resource
between the active flows as well as poor overall network efficiency.

If these assumptions are challenged, the associated cost is that of TCP
efficiency. If the objective is to extend TCP to environments where
these assumptions are no longer valid, while preserving the integrity of
the TCP transfer and maintaining a high level of efficiency, then the
TCP operation itself may have to be altered.

 Page 9

Crossing the Beams: TCP in UDP
Other approaches to the evolution of end-to-end transport have headed further away from
conventional TCP and change the behaviour of both the server and the client. One way for an
application to do this is to avoid the use of the operating-system provided implementation of TCP
completely, and place a TCP-styled reliable flow control streaming protocol into the application data
flow, and use the operating system’s UDP interface to pass packets to and from the network.

This approach has been used for many years in the BitTorrent streaming application (LEDBAT), and
more recently by Google in their experiments with QUIC.

Google’s QUIC (Quick UDP Internet Connections) uses a TCP emulation in UDP. QUIC emulates
the reliable sliding window protocol used by TCP within a UDP packet flow. QUIC incorporates the
functionality of secure transport sessions and slots between a conventional HTTP/2 API as the
application interface and UDP (using port 443) as the end-to-end transport protocol.

QUIC implements TCP CUBIC flow control, and also adds to this a number of tweaks to this
algorithm.

This includes the use of Selective Acknowledgement (SACK) when enabled by the receiver to detect
the case of multiple packet drops in a single RTT window. It also includes an approach is to decouple
TCP congestion control mechanisms from data recovery actions. The intent is to allow new data to be
sent during recovery to sustain TCP ACK clocking. This approach, Forward Acknowledgements with
Rate Halving (FACK), is where one packet is sent for every two ACKs received while TCP is
recovering from lost packets. This algorithm effectively reduces the sending rate by one-half within one
RTT interval, but does not freeze the sender to wait the draining on one-half of the congestion
window's amount of data from the network before proceeding to sending further data. The normal
recovery algorithm causes the sender to cease sending for up to one RTT interval, thereby losing the
accuracy of the implicit ACK clock for the session. FACK allows the sender to continue to send
packets into the network during this period, in an effort to allow the sender to maintain an accurate
view of the ACK clock. FACK also provides an ability to set the number of SACK blocks that specify
a missing segment before resending the segment, allowing the sender greater levels of control over
sensitivity to packet reordering.

The implementation also includes Tail Loss Probe (TLP) a technique that responds to ACK timeout by
resending the trailing segment, eliciting a SACK response of the missing segments that can then be
repaired with FACK. It also supports Forward Retransmission Timeout (F-RTO) to mitigate spurious
cases where the sender reverts to slow start following an ACK timeout, and Early Retransmit to
support the case of duplicate ACKs received while the sender’s congestion window is small to also
prevent spurious state changes to slow start.

One thing QUIC can do which is not possible with many TCP tweaks, is play with some of the
fundamental mechanisms of TCP, as there is no legacy issue of a modified TCP sender communicating
with a conventional unmodified TCP receiver. For example QUIC uses a new sequence number for
retransmitted segments, allowing the sender to distinguish between ACKs for the original segment and
ACKs for its retransmitted counterpart. QUIC also always uses TLS encryption and plans to adopt
TLS 1.3 when that spec is complete. It has already adopted its zero RTT handshake.

Google intend to push this further by using Forward Error Correction (FEC), so that the receiver can
repair certain forms of packet low without any retransmission at all, and also add Multipath so as to
allow platforms with multiple network interfaces (such as mobile devices) to load share across all active
interfaces.

QUIC performs bandwidth estimation as a means of rapidly reaching an efficient sending rate. SPDY
further assists QUIC by multiplexing multiple application sessions within a single end-to-end transport

 Page 10

protocol session. This avoids the startup overhead of each TCP session, and leverages the observation
that TCP takes some time to establish the network’s bottleneck capacity. The use of UDP also avoids
intercepting middleware that performs deep packet inspection on TCP flows and modifies their
advertised window size to perform external moderation on TCP flow rate.

This is certainly an interesting approach. It breaks out of the issue of backwards compatibility by
operating the transport session over UDP, so that there are no legacy TCP considerations that have to
be considered.

There is, however, one issue with the use of UDP as a substitute for TCP, and while public reports
from Google on this topic have not been published, it is a source of concern. The issue concerns the
use of UDP through Network Address Translators (NATs) and the issue of address binding times
within the NAT. In TCP a NAT takes its directions from TCP. When the NAT sees an opening TCP
handshake packet from the “inside” it creates a temporary address binding and sends the packet to its
intended destination (with the translated source address of course). The reception of the response part
of the handshake at the NAT causes the NAT to confirm its binding entry and apply it to subsequent
packets in this TCP flow. The NAT holds state until it sees a closing exchange or a reset signal that
closes the TCP session, or until an idle timer expires. For TCP the NAT is attempting to hold the
binding for as long as the TCP session is active. For NATs, UDP is different. Unlike TCP there is no
flow status information in UDP. So when the NAT creates a UDP binding it has to hold it for a certain
amount of time. There is no clear technical standard here, so implementations vary. Some NATs use
very short timers and release the binding quickly, which matches the expectation of the use of UDP as
a simple query/response protocol. The use of UDP as an ersatz packet framing protocol for user-level
TCP implementation requires the NAT to hold the UDP address binding for longer intervals,
corresponding to the hidden TCP session. Some NATs will do so, while others will destroy the binding
even though there are still UDP packets active, thus disturbing the hidden TCP session. QUIC assumes
that a NAT will hold an idle UDP binding open for 30 seconds. If the NAT is more aggressive that
that, then QUIC will fail over to conventional TCP.

This illustrates the level of compromise in today’s environment between end-to-end protocols and
network middleware. TCP sessions are being modified by active middleware that attempts to govern
the TCP flow rate by active modification of window sizes within the TCP session, negating some of
the efforts of the TCP session to optimise its flow speed. TCP in UDP passes control of the TCP flow
management to the application, and hides the TCP flow parameters from the network. However, UDP
sessions are susceptible to interruption by NAT intervention, as some NATs assume that UDP is only
used for micro-sessions, and long held UDP sessions are some form of anomalous behaviour that
should be filtered by removing the UDP port binding in the NAT.

The End of End-to-End?
Where to now?

It's refreshing to see that the technology of end-to-end protocols is not ossified and static. Our
understanding of how to make efficient and effective end-to-end protocols is one that is continually
evolving is subtle but important ways.

What is amazing is that TCP has been able to provide an efficient service, whether it’s tens of bits per
second or billions of bits per second. What is also amazing is that TCP is efficient whether it's the only
conversation on a wire, or whether its one of millions of simultaneous TCP conversations on the wire.
But what is truly amazing is that this technology, now deployed on billions of devices is still malleable
and adaptable. We can still make it better.

End-to-End has definitely not ended yet!

 Page 11

Further Reading
[1] Vinton G. Cerf, Robert E. Kahn, (May 1974). "A Protocol for Packet Network Intercommunication"

(PDF). IEEE Transactions on Communications 22 (5): 637–648. doi:10.1109/tcom.1974.1092259.
http://ece.ut.ac.ir/Classpages/F84/PrincipleofNetworkDesign/Papers/CK74.pdf

[2] Postel, J. “User Datagram protocol”, RFC768, 28 August 1980. https://tools.ietf.org/html/rfc768

[3] Postel, J. “Transmission Control Protocol”, RFC794, September 1981.

https://tools.ietf.org/html/rfc794

[4] V. Jacobsen, M. Karels, Congestion Avoidance and Control, 1988,
http://ee.lbl.gov/papers/congavoid.pdf, retrieved 21 June 2015.

[5] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms,”
RFC2001, January 1997. https://tools.ietf.org/html/rfc768

[6] M. Allman, V. Paxon, E. Blanton, TCP Congestion Control, RFC5681, September 2009.

[7] Peter Dodcal, “15 Newer TCP Implementations”,
http://intronetworks.cs.luc.edu/current/html/newtcps.html, retrieved 21 June 2015.

[8] Fast: https://en.wikipedia.org/wiki/FAST_TCP, retrieved 21 June 2015.

[9] Google’s QUIC: https://www.chromium.org/quicfile://localhost/,
http/::blog.chromium.org:2015:04:a-quic-update-on-googles-experimental.htm, retrieved 21
June 2015.

[10] IETF activity on TCP flow control: TCP Maintenance and Minor Extensions (tcpm)
https://datatracker.ietf.org/wg/tcpm/charter/

 Page 12

Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region. He has been closely involved with the development of the Internet for
many years, particularly within Australia, where he was responsible for building the Internet
within the Australian academic and research sector in the early 1990’s. He is author of a
number of Internet-related books, and was a member of the Internet Architecture Board from
1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992 until
2001 and chaired a number of IETF Working Groups. He has worked as a an Internet
researcher, as an ISP systems architect and a network operator at various times.

www.potaroo.net

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific
Network Information Centre.

	

