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The DNS is a very simple protocol. The protocol is a simple query / response interaction where the 
client passes a DNS transaction to a server with the query part of the transaction completed. The server 
fills in the answer part and possibly adds further information in the additional information part, and 
returns the transaction back to the client.  
 
All very simple. What could possibly go wrong? 
 
In practice the operation of the DNS is significantly more involved. Indeed, it’s so involved that its 
difficult to tell whether the operation of the DNS is merely “complicated” or whether the system’s 
interactions verge on what we would describe as “complex”. When we have some simple questions 
about aspects of DNS behaviour sometimes they questions are extremely challenging to answer. 
 
The question in this this instance is extremely simple to phrase. How many DNS resolvers are 
incapable of receiving a DNS response whose size is just inside the conventional upper limit of an 
unfragmented IP packet in today’s Internet? Why many resolvers can successfully receive a DNS 
response when the combined size of the DNS response plus the protocol overheads approaches 1,500 
octets in total? Before looking at how to answer this question it may be helpful to understand why this 
is an interesting question right now. 

Rolling the Root Zone’s Key Signing Key 
In June 2010 the Root Zone (RZ) of the DNS was signed using the DNSSEC signing framework. This 
was a long-anticipated event. Signing DNS zones, and validating signed responses allows the DNS to 
be used in such a manner that all responses can be independently verified, adding an essential element 
of confidence into one of the fundamental building blocks of the Internet. 
 
However, it goes further than that. Today’s framework of security in the Internet is built upon some 
very shaky foundations. The concept of domain name certificates, in use since the mid-90’s, was always 
a quick and dirty hack, and from time to time we are reminded just how fragile this system truly is when 
the framework is maliciously broken. We can do better, and the approach is to use DNSSEC to place 
cryptographic information in the DNS, signed using DNSSEC (“The DNS-Based Authentication of 
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA”, RFC 6698). So these days 
DNSSEC is quickly becoming a critical technology. The cryptographic structure of  DNSSEC mirrors 
the structure of the DNS name space itself, in that it is a hierarchical structure with a single common 
apex point, which is the anchor point of trust, namely the key used to sign across the Zone Signing Key 
(ZSK) that, in turn, is used to sign all entries in the root zone of the DNS. This key, the RZ Key 
Signing Key (KSK), is the key that was created five years ago when the RZ was first signed. 
 
One of the common mantras we hear in cryptography is that no key should be used forever, and 
responsible use of this technology generally includes some regularly process to change the key value to 
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some new key. This was envisaged in the DNS KSK procedures, and in a May 2010 document from 
the Root DNSSEC Design Team (“DNSSEC Practice Statement for the Root Zone KSK Operator,” 
http://www.root-dnssec.org/wp-content/uploads/2010/06/icann-dps-00.txt), the undertaking was 
made that “Each RZ KSK will be scheduled to be rolled over through a key ceremony as required, or 
after 5 years of operation”.  
 
Five years have elapsed, and its time to roll the RZ KSK of the DNS. The procedure is familiar: a new 
key pair is manufactured, and the new public key value is published. After some time the new key is 
used to sign the zone signing key, in addition to the current signature. Again, after some time, the old 
signature, and the old key is withdrawn and we are left with the new KSK in operation. A procedure to 
do this for the RZ KSK was documented in 2007, as RFC 5011 (”Automated Updates of DNS Security 
(DNSSEC) Trust Anchors”,  RFC5011). 
 
There are two basic unknowns in this approach. The first is that we do not know how many resolvers 
implement RFC5011, and will automatically pick up the new RZ KSK when it is published in the root 
zone. If they do not automatically pick up the new RZ KSK via this process then they will need to do 
so manually. Those that do not will be left stranded when the old RZ KSK is removed, and will return 
SERVFAIL due to an inability to validate any signed response as their copy of the RZ KSK no longer 
matches the new RZ KSK. The second unknown is in the size of the DNS response, and in particular 
the size of the rise of the response in the intermediate stage when both KSK values are used to sign the 
RZ ZSK. At some stages of this anticipated key roll procedure the DNSSEC-signed response to certain 
DNS queries of  the root, namely the RZ DNSKEY query, may approach 1500 octets in size. The first 
unknown is difficult to quantify in advance. However the second should measurable.  
 
The query that is of interest here is a query for the RZ DNSKEY RR. The largest response is a 
scenario where the ZSK is increased to a 2048-bit RSA signature and where both the old and the new 
KSK values sign the ZSK. In this phase it appears that the size of the DNS response is 1,425 octets. 
This is compared to the current response size of 736 octets which uses a 1048-bit ZSK and a single 
2048-bit KSK. This only applies to those resolvers who are requesting the DNSSEC signature data to 
be included in the response, which is signalled by setting the DNSSEC OK flag in the query.  
 
How can we measure if this size of response represents an operational problem for the Internet? 

DNS, UDP, Truncation, TCP and Fragmentation 
The DNS is allowed to operate over the UDP and TCP transport protocols. In general, it is preferred 
to use UDP where possible. UDP is a preferred due to the lower overheads of UDP, particularly in 
terms of the load placed on the server. However there is a limitation imposed by this protocol 
choice. By default, UDP can only handle responses with a DNS payload of 512 octets of less 
(RFC1035).  
 
EDNS0 (RFC6891) allows a DNS requestor to inform the DNS server that it can handle UDP 
response sizes larger than 512 octets.  
 

It should be noted that some clarification of the semantics of this claim 
is necessary. If a clients sets the value of 4096 in the EDNS0 UDP 
buffer size field of a query the client is telling the server that it is 
capable of reassembling a UDP response  whose DNS payload size if 
up to 4,096 octets in size. It is likely that to transit such a large 
response the UDP response will be fragmented into a number of 
packets. What the client cannot control is whether all the fragments of 
the response will be passed through from the server to the client. Many 
firewalls regards IP packet fragments as a security risk, and use 
fragment discard rules. The client is not claiming that no such filters 
exist on the path form the server to the client. The EDNS0 UDP 
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buffer size only refers to the packet reassembly buffer size in the 
client’s internal IP protocol stack. 
 
Setting this EDNS0 buffer size is akin to the client saying to the server: 
“You can try using a UDP response up to this size, but I cannot 
guarantee that I will get the answer.” 

 
The requestor places the size of its UDP payload reassembly buffer (not the IP packet size, but the 
DNS payload reassembly size) in the query, and the server is required to respond with a UDP response 
where the DNS payload is no larger than the specified buffer size. If this is not possible then the server 
sets the “truncated” field in the response to indicate that truncation has occurred. If the truncated 
response includes a valid response in the initial part of the answer, the requestor may elect to use the 
truncated response in any case. Otherwise the intended reaction to receiving a response with the 
Truncated Bit set is that the client then opens a TCP session to the server and presents the same query 
over TCP.  A client may initiate a name resolution transaction in TCP, but common client behaviour 
is to initiate the transaction in UDP, and use the Truncated Bit in a response to indicate that the client 
should switch TCP for the query. 
 
When a UDP response is too large for the network the packet will be fragmented at the IP level. In this 
case the trailing fragments use the same IP level leader (including the UDP protocol number field), but 
specifically exclude the UDP pseudo header in the trailing fragments. UDP packet fragmentation is 
treated differently in IPv4 and IPv6. In IPv4 both the original sender, or any intermediate router, may 
fragment an IP packet (unless the Don’t Fragment IP header flag is set). In IPv6 only the original 
sender may fragment an IP packet. If an intermediate router cannot forward a packet onto the next hop 
interface then the IPv6 router will generate an ICMP6 diagnostic packet with the MTU size of the next 
hop interface, append the leading part of the packet and pass this back to the packet’s sender.  When 
the offending packet is a UDP packet the sender does not maintain a buffer of unacknowledged data, 
so the IPv6 UDP sender, when receiving this message, cannot retransmit a fragmented version of the 
original packet. Some IPv6 implementations is to generate a host entry in the local IPv6 forwarding 
table, and record the received MTU in this table against the destination address recorded in the 
appended part of the ICMP6 message, for some locally determined cache entry lifetime. This implies 
that any subsequent attempts within some cache lifetime to send an IPv6 UDP packet to this 
destination will use this MTU value to determine how to fragment the outgoing packet. Other IPv6 
implementations appear to simply discard this ICMP6 Packet Too Big message when it is received  in 
response to an earlier UDP message.  
 
The interaction of the DNS with intercepting middleware is sometimes quite ugly. Some firewall 
middleware explicitly blocks port 53 over TCP, so that any attempt by resolvers on the “inside” to use 
TCP for DNS queries will fail. More insidious is the case where middleware blocks the transmission of 
UDP fragments, so that when a large DNS response is fragmented the fragments do not reach the 
resolver. Perhaps one of the hardest cases for the client and server to cope with is the case where 
middleware blocks ICMP6 Packet Too Big messages. The sender of the large IPv6 response (TCP or 
UDP) is unaware that the packet was too large to reach the receiver as the ICMP6 message has been 
blocked, but the receiver cannot inform the sender of the problem as it never received any response at 
all from the sender. There is no resolution to this deadlock and ultimately both the resolver and the 
server need to abandon the query due to local timers. 

DNS Response Size Considerations 
There are a number of components in a DNS response, and the size considerations are summarized in 
Table 1. 
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       8 octets UDP pseudo header size  
     20 octets IPv4 packet header 
     40 octets maximum size of IPv4 options in an IPv4 IP packet header 
     40 octets IPv6 packet header 
   512 octets the minimum DNS payload size that must be supported by DNS 
   576 octets the largest IP packet size (including headers) that must be supported by IPv4 

systems 
   913 octets the size of the current root priming response with DNSSEC signature 
1,232 octets the largest DNS payload size of an unfragmented IPv6 DNS UDP packet 
1,280 octets the smallest unfragmented IPv6 packet that must be supported by all IPv6 systems 
1,297 octets the largest size of a ./IN/DNSKEY response with two 2048-bit KSKs and one 

1024-bit ZSK. 
1,425 octets the largest size of a ./IN/DNSKEY response with two 2048-bit KSKs and one 

2048-bit ZSK. 
1,452 octets the largest DNS payload size of an unfragmented Ethernet IPv6 DNS UDP packet 
1,472 octets the largest DNS payload size of an unfragmented Ethernet IPv4 DNS UDP packet 
1,500 octets the largest IP packet size supported on IEEE 802.3 Ethernet networks 

Table 1. Size components relevant to DNS 
 
The major consideration here is to minimize the likelihood that DNS response is lost. What is desired 
is a situation where a UDP response with a commonly used EDNS0 buffer size can be used to form a 
response with a very low probability of packet fragmentation in flight for IPv4, and an equally low 
probability of encountering IPv6 Path MTU issues. 
 
If the desired objective is to avoid UDP fragmentation as far as possible, then it appears that the limit 
in DNS payload size is 1,452 octets. Can we quantify “as far as possible”? In other words, to what 
extent are those resolvers that ask a DNSSEC-signed root key priming query able to accept a UDP 
response with a DNS payload size of 1,452 octets?  

The Measurement Technique 
The technique used for this measurement is one of embedding URL fetches inside online 
advertisements, and use the advertisement network as the distributor of the test rig (this is documented 
in an earlier article: http://www.potaroo.net/ispcol/2013-05/1x1xIPv6.html, and won't be repeated 
here). However, this approach is not easily capable of isolating the behaviour of individual resolvers 
who query authoritative name servers. User systems typically have two or more resolvers provided in 
their local environment, and these resolvers may use a number of forwarders. The user system will 
repeat the query based on its own local timers, and each recursive resolver also has a number of local 
timers. The internal forwarding structure of the DNS resolver system is also opaque, so the correlation 
of a user system attempting to resolve a single DNS name, and the sequence of queries that are seen at 
the authoritative name server are often challenging to interpret. If the user is able to fetch the Web 
object that is referenced in the URL then one can observe that at least one of the resolvers was able to 
successfully resolve the DNS name, but that does not mean that one can definitively say which resolver 
was the one that successfully resolved the name when the name was queried by two or more resolvers. 
Similarly if the web object was not fetched then it is possible that none of the resolvers were able to 
resolve the name, but this is not the only reason why the web fetch failed to occur. Another possibility 
is that the script’s execution was aborted, or the user’s local resolution timer expired before the DNS 
system returned the answer. This explains a necessary caveat that there is a certain level of uncertainty 
in this form of experimental measurement.  
 
The measurement experiment was designed to measurement the capabilities of resolvers that ask 
questions of authoritative name servers, and in particular concentrate our attention on those resolvers 
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that use EDNS0 and set the DNSSEC OK flag. This has some parallels with the root server situation, 
but of course does not in fact touch the root servers and does not attempt to simulate a root service.  
 
In the first experiment an authoritative server has been configured to respond to requests with a 
particular response size. The resolvers we are looking for are those who generate queries for an A 
Resource Record query with the DNSSEC OK bit set. The response to these queries is a DNS 
response of 1,447 octets, which is just 5 bytes under the largest DNS payload of an unfragmented 
Ethernet IPv6 DNS  UDP packet.  
 

Server Platform 
The server is running FreeBSD 10.0-RELEASE-p6 (GENERIC) 
 
The I/O interface supports TCP segment offloading, and is enabled with 1500 octet TCP 
segmentation in both IPv4 and IPv6. 
 
The server is running a BIND server: 

BIND 9.11.0pre-alpha <id:> built by make with '--with-aes' '--with-ecdsa' 
compiled by CLANG 4.2.1 Compatible FreeBSD Clang 3.3 (tags/RELEASE_33/final 183502) 
compiled with OpenSSL version: OpenSSL 1.0.1e-freebsd 11 Feb 2013 
linked to OpenSSL version: OpenSSL 1.0.1e-freebsd 11 Feb 2013 
compiled with libxml2 version: 2.9.1 
linked to libxml2 version: 20901 

 
The BIND server uses an MTU setting of 1500 octets in IPv4 and IPv6 for TCP and UDP. 

 
The server is serving a DNSSEC-signed zone, and the specific response sizes for this experiment have 
been crafted using additional bogus RRSIG records against the A RR entry, on the basis that the server 
is unable to strip out any of these RRSIG records in its response, and will be forced to truncate the 
UDP response if it cannot fit in the offered buffer size. 
 
The zone was served in both IPv4 and IPv6, and the choice of IP protocol for the query and response 
was left to the resolver that was querying the server. 
 
The queries were generated using Google’s online advertising network, and the advertising network was 
set up to deliver no less than 1 million impressions per day. Each ad impression uses a structured name 
string which consists of a unique left-most name part,  and a common zone parent name. The use of 
the unique parts is to ensure that no DNS cache nor any Web proxy is in a position to serve a response 
from a local cache. All DNS queries for the IP addresses bound to this name are passed to the zone’s 
authoritative name server, and similarly all http GET requests for the associated URL are also passed to 
the web server. 

EDNS0 Buffer Size Distribution 
The first distribution is a simple scan of all the offered EDNS0 buffer sizes in queries that have the 
DNSSEC OK flag set, for the period from the 26th March 2015 to 8th May 2015.  (Figure 1). Of the 178 
million queries, some 31% of queries presented an EDNS0 UDP buffer size of less than 1500 octets, 
and 18% of queries presented a size of 512 bytes. 
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Figure 1: Cumulative distribution of EDNS0 UDP Buffer Size Distribution across all queries 

 
This distribution reflects resolver behavior where the resolver will vary the EDNS0 buffer size  and re-
present the query.  
 
A second distribution is shown in Figure 2, which shows the cumulative distribution of the maximum 
EDNS0 buffer sizes  across the 1.5 million resolvers observed across this period. The relatively smaller 
proportion of small EDNS0 buffer sizes in this per-resolver distribution shows that reducing the 
EDNS0 buffer size in subsequent queries following a timeout is one technique a resolver can use to 
establish the difference between an unresponsive server and a network problem with the transmission 
of larger responses. 
 

 
Figure 2: Cumulative distribution of EDNS0 UDP Buffer Size Distribution across all resolvers 

 
 
Some 6.9% of visible resolvers already set their EDNS0 buffer size below the current size of the 
DNSSEC-signed root zone priming response of 913 octets 
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A further 1.4% of visible resolvers use a buffer size that is greater that 913 octets, and less than 1452 
octets. (See Figure 3). 
 

 
 

Figure 3: Cumulative distribution of EDNS0 UDP Buffer Size Distribution across all resolvers, 900 to 1500 octet range 
 

The DNS Transport Protocol 
The conventional operation of the DNS is to prefer use UDP to perform queries. Within this 
convention TCP is used as a fallback when the server passes a truncated response to the client in UDP. 
The distribution of EDNS0 UDP buffer sizes shows that 30% of all UDP queries used an EDNS0 
buffer size of less than the 1,447 octet DNS response size used in the experiment, and 8.5% of all 
visible resolvers used an EDNS0 buffer size of less than 1,447 octets. The difference between the two 
numbers indicates that these resolvers who used small EDNS0 buffer sizes presented a 
disproportionately high number of UDP queries to the server, indicate that some resolvers evidently do 
not cleanly switch to TCP upon receipt of a truncated UDP response.  
 
The experiment used an authoritative name server configured with both IPv4 and IPv6 addresses, 
allowing resolvers to use their local protocol preference rules to determine which protocol to use to 
pass queries to the name server. In this case it appears that the local preference rules appear to be 
weighted heavily in favor of using IPv4. 
 
The breakdown of use of UDP and TCP, and the use of IPv4 and IPv6 over a 7 day sample period is 
shown in Table 2. 
 

Number of Queries  47,826,735    
     
UDP: Queries                46,559,703 97%   
TCP Queries                   1,267,032 3%   
   UDP TCP 
V4 Queries                   47,431,919  99% 46,173,832 1,258,087 
V6 Queries                    394,816 1% 385,871 8,945 
 
Table 2: DNS Transport Protocol Use 
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Fragmentation Signals 

IPv6 IP Reassembly Time Exceeded 
When middleware discards trailing fragments of an IP datagram then the destination host will receive 
just the initial fragment and will time out in attempting to reassemble the complete IP packet. 
Conventional behaviour is for hosts to send an ICMP IP Reassembly Time Exceeded message to the 
originator to inform the packet sender of the failure. Not all hosts reliably send this message and there 
is no assurance that all forms of middleware to allow this ICMP message to be passed to the sender, 
but this is some form of indication that middleware exists that intercepts trailing fragments of 
fragmented IP datagrams. 
 
The server received no ICMP6, time exceeded in-transit (reassembly) messages across a 7 day 
measurement period. 

IPv6 Packet Too Big 
In IPv6 routers cannot fragment IPv6 packets to fit into the next hop interface. Instead, the router will 
place the initial part of the packet into an ICMP6 message, add the code to say that the packet is too 
large, and the MTU of the next hop interface. This ICMP packet is passed back to the packet’s source 
address.  
 
There were 205 ICMP6 packet too big messages received by the server in this experiment in this 7 day 
measurement period. Of these, 33 offered a 1280 MTU in the ICMP message, 1 offered 1454, 1 offered 
1476, 1 offered 1500 (bug!) and the remainder offered 1480 (indicative of an IPv6 in IPv4 tunnel;).  
 
These ICMP messages were generated by 26 IPv6 routers. The overall majority of these messages come 
from the two tunnel broker networks that were early providers of IPv6 via IP-in-IP tunneling (AS109 
and AS 6939).   
 

IPv4 IP Reassembly Time Exceeded 
In this experiment the server received no ICMP IP Reassembly Time exceeded messages in response to 
responses for the A RR. 
 

Summary 
There is a relatively minor issue with IPv6 ICMP packet too big messages, where 205 messages were 
received out of a total of 46.5M DNS responses. These were mainly from known IPv6 tunnel broker 
networks, and the IPv4 query was processed without fragmentation. These messages were the outcome 
of a design decision to run the experiment with a 1,500 octet MTU for IPv6 UDP and TCP. It is likely 
that running the server with a 1280 MTU for outbound IPv6 UDP would’ve eliminated these IPv6 
messages.  

Measurement 1: DNS and Web 
In this section we report on a measurement approach that combined the server’s records of DNS 
queries and responses with the HTTP queries and responses to assemble an overall picture of the 
capability of resolvers who retrieve DNSSEC signatures to successfully process a response when the 
DNS payload approaches 1,452 octets in size (the maximum size of an unfragmented IPv6 UDP 
datagram). In this experiment we are using a response size of 1,447 octets. 
 
We observe that if a DNS resolver is unable to receive a response to its query the original question will 
both be repeated to the original resolver to retry and the query will also be passed to alternate resolvers, 
assuming that multiple resolvers have been configured by the end user system or if multiple resolvers 
are used in the query forwarding path, or if there is some form of DNS load balancing being used in 
the resolver path. Ultimately, if all these resolvers are unable to resolve the name within a user-defined 
query timeout interval, then the user will be unable to fetch the provided URL. This observation 
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implies that the proportion of DNS queries where there is no matching HTTP GET operation is some 
approximate upper bound on the  DNS resolution failure rate when large responses are used. 
 
However, within the parameters of this test, undertaken as a background script run by a users browser 
upon impression of an online advertisement, there is a further factor that creates some noise that is 
layered upon the underlying signal. The intended outcome of the experiment is that the user’s browser 
fetches the URL that has a DNS name where the associated DNS response is 1,447 octets, and the 
failure rate is determined by the absence of this fetch. However, this is not the only reason why the 
user’s browser fails to perform the fetch. The user may switch the browser to a new page, or quit the 
session, or just skip the ad, all of which causes an early termination of the measurement script, which 
results in a failure to retrieve the web object.  
 
We can mitigate this noise factor to some extent by observing that we are interested in DNS resolvers 
that perform queries with EDNS0 DNSSEC OK. The DNS  name used for this measurement is 
DNSSEC signed, and DNSSEC-validating resolvers will perform a DS query immediately following the 
successful receiving of the A response. (The resolvers used by many (1 on 3) users who use resolvers 
that include DNSSEC OK in their A  queries perform DNSSEC validation, and fetch the associated 
DS and DNSKEY RRs.). To identify those experiments that terminate early the experiment script also 
performs a further operation. The script will wait for all experiments to complete or for a 10 second 
timer to trigger. At this point the script will perform a final fetch to signal experiment completion.  
 

Experiments Timed Out Completed Web Seen DS Seen Remainder 

8,760,740 329,993 8,430,747 7,615,693 815,054 0 
 4%  90% 10% 0% 

Table 3: DNS-to-Web Results 
 
Across the 7 day period with just under 9 million sample points we observed no evidence that any user 
who used resolvers that set the DNSSEC OK bit was unable to fetch the DNS records. 
 
There are two caveats to this result. The first is that some 4% of users were unable to complete the 
experiment and did not fetch a completion object, nor the initial web object, nor a DS resource record. 
This represents a level of uncertainty in this result. The second caveat is the nature of this experiment. 
This experiment measures the capability of the collection of resolvers used by each user who 
performed this test. The experiment does not directly measure the capability of the individual resolvers 
who attempted to resolve the DNS name for the user who performed the experiment. 

Measurement 2: DNS Indirection 
Is it possible to refine this experiment and identify individual resolvers who are unable to receive DNS 
responses when the response size approaches 1,452 octets? 
 
One approach is to take a form of DNS delegation that was described in a DNS OARC presentation 
by Florian Maury of the French Systems Security agency (“The “indefinitely” Delegated Name Servers 
(IDNS) Attack,” https://indico.dns-oarc.net/event/21/contribution/11/material/slides/0.pdf). The 
approach described there is the use a “glueless delegation”, so that when a resolver is attempting to 
resolve a particular name it is forced to perform a secondary resolution of the name server’s name, as 
this information is explicitly not provided in the parent zone as glue. 
 

For example, to resolve the name “a.b.example.com”, the resolver will 
query the name servers for “example.com” for the name 
“a.b.example.com”. The server will return the name servers for 
“b.example.com” but will be unable to return their IP addresses, as this 
is the glue that has been explicitly removed from the zone. Let’s 
suppose that the name server for this zone is “nsb.z.example.com”. In 
order to retrieve the address of the name server, the resolver will have 
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to query the name server for “z.example.com” for the name 
“nsb.z.example.com”, and then use the result as the address of the 
server to use to query for “a.b.example.com”. This is shown in Figure 
4. 
 

 
Figure 4: Example of “Glueless” Delegation 

 
When viewed in the context of measuring the properties of DNS resolvers we note that in the above 
example, in order to pass a query to the name server of “b.example.com” the resolver must have been 
able to resolve the name “nsb.z.example.com.” If we are interested in identifying those resolvers that 
are unable to receive a DNS response of 1,444 octets, then if we use RRSIG padding to pad the 
response to the “nsb.z.example.com” query, then in an ideal world the resolvers that query for 
“nsb.z.example.com” but do not query for “a.b.example.com” would be the resolvers that are unable to 
receive or process a 1,444 octet DNS response. 
 
In this second experiment we configured two domain name families. One was a conventional, unsigned 
glueless delegation, where the response to the query for the name server address was a 93 octet 
response, which we used as the control point for the experiment. The other delegation used a 
DNSSEC-signed record, signed with RSA-2048, where the response to a request for the name server 
address was a 1,444 octet response if the resolver set the DNSSEC OK flag in the query. The names 
used in each experiment were structured to be unique names, so that in both cases the queries for the 
names, and the name server names, were not cached, and the resolution efforts were visible at the 
authoritative name server. 
 
In a 109 hour period from the 21st May 2015 to the 26th May 2015 we recorded the following results: 
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Experiments Resolved NS Fail to resolve 
NS 

DNSSEC OK 
Failure 

Other 

5,972,519 5,446,535 525,984 474,037 51,947 
 91% 8% 7% 1% 

Table 4: DNS Indirection Results 
 
In this case the experiment count is the number of experiments where the resolver successfully queries 
for both the address of the control name server and the address of the control URL DNS name, and 
queried for the address of the experiment name server. In 91% of the cases the same resolver was also 
seen to query for the experiment URL DNS address, indicating that it had successfully received the 
response to the earlier name server address query. The majority of the cases that failed to receive this 
response were in response to name server address queries that generated a 1,444 octet response, while a 
smaller number of failures (slightly less than 1%) were in response to a non-DNSSEC OK query. 
 
The nature of this particular experiment is that it is now possible to isolate the capabilities of each 
resolver.  The statistics of resolver capability is shown in the following table 
 

Resolvers Resolved NS Fail to resolve 
NS 

DNSSEC OK 
Failure 

Other 

82,954 78,703 4,251 3,936 315 
 94% 6% 5.5% 0.5% 

Table 5: Resolver Statistics of DNS Indirection Results 
 
This experiment indicates that some 6% of the resolvers that query authoritative name servers are 
unable to process a DNS response where the response is 1,444 octets in length. In this case this is a 
pool of 4,251 resolvers who can successfully follow an NS chain where the NS A response is small, but 
cannot follow the NS chain when they generate a query with the DNSSEC OK flag set and the 
response is 1,444 octets. Of this set of potentially problematical resolvers some 3,110 were only seen to 
perform (and fail) the experiment a single time, and it is perhaps premature to categorize these 
resolvers as being unable to retrieve a 1,444 octet payload on the strength of a single data point. Of the 
remaining 826 resolvers which exhibited this failure behavior more than once. We have the following 
distribution of occurrences: 
 

Times Seen Count 
1 3,110 
2 533 
3 152 
4 56 
5 28 
6 17 
7 4 
8 4 
9 5 
10 1 
11 2 
12 6 
13 3 
14 1 
16 2 
17 4 
18 1 
23 1 
28 1 
30 1 
37 1 
60 1 
140 1 
370 1 
Table 6: Failing Resolver – Seen Counts 
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It is reasonable to surmise that if the resolver exhibits the same behavior two or more times in the 
context of this experiment then the possibility that this is a circumstance of experimental conditions is 
far lower, and the likelihood that there is a problem in attempting to pass a large DNS response to the 
resolver is higher. In this case some 826 resolvers, or 1% of the total count of seen resolvers falls into 
this category. 
 
Of the total number of observed resolvers, some 5,237 are using IPv6, or 6% of the total. Of the 4,251 
resolvers who were observed to fail to resolve the NS record, 830 resolvers, or 21% of the total 
number of failing resolvers used IPv6. This indicates that there are some prevalent issues with IPv6 and 
DNS responses that push the IPv6 packet size larger than the 1,280 octet minimum unfragmented 
MTU size. 
 
These results indicate that using a 1,444 octet DNS response appears to present issues for up to 5% of 
all visible resolvers, who appear to be incapable of receiving the response. This is most likely for 1% of 
visible resolvers, and is possibly the case for the remaining 4%. 
 
This does not necessarily imply that 5%, or even 1%, of all end users are affected. In this experiment 
7,261,042 users successfully fetched the control A record, and of these some 7,172,439 successfully 
fetched the test record, a difference of 1%. This implies that where individual resolvers failed, the users’ 
DNS resolution configuration passed the query to other resolvers to successfully resolve the name 
record. 
 
Some 6.5% of queries were made over TCP (1,211,034 queries out of 18,620,589 queries) for the test 
name from those resolvers who set the DNSSEC OK flag in the query. By comparison, for the control 
name, 475 queries were made using TCP, from a total of 16,451,812 queries. This 6.5% figure 
correlates with the EDNS0 UDP buffer size distribution, where 7% of all UDP queries in this 
experiment had an EDNS0 buffer size of less than 1,444 octets. 

Conclusions 
What can we expect when the DNSSEC-signed responses to DNS queries start to approach the 
maximum unfragmented packet size? 
 
This will potentially impact most users as the majority of queries (some 90% of queries in this 
experiment) set the EDNS0 DNSSEC OK flag, even though a far lower number of resolvers actually 
perform validation of the answer that they receive. 
 
The conclusion from this experiment is that up to 5% of DNS resolvers that set the DNSSEC OK flag 
in their queries appear to be unable to receive a DNS response of 1,444 octets, and within this 
collection IPv6 is disproportionally represented. It is possible that this is due to the presence of various 
forms of middleware, but the precise nature of the failures cannot be established from within this 
experimental methodology.  
 
However, the failing resolvers serve a very small proportion of users, the number of users who are 
unable to resolve a DNS name when DNS responses of this size are involved appear to be no more 
than 1% of all users, and likely to be significantly lower. 
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