
The ISP Column
A monthly column on things Internet

April 2015

Geoff Huston

The Internet of Stupid Things

In those circles where Internet prognostications abound and policy makers flock to hear grand visions
of the future, we often hear about the boundless future represented by The Internet of Things. This phrase
encompasses some decades of the computing industry’s transition from computers as esoteric pieces of
engineering affordable only by nations, to mainframes, desktops, laptops, handhelds, and now wrist
computers. Where next? In the vision of the Internet of Things we are going to expand the Internet
beyond people and press on with connecting up our world using billions of these chattering devices in
every aspect of our world.

It’s not a new vision by any means. Already my car probably has 100 microprocessors doing everything
from regulating the engine to remembering the seat position. But this grand vision connects all these
processors up in one massive Internet. Gartner have projected that the world of chattering silicon will
get to 25 billion devices by 2020. Cisco has upped the ante with their prediction of 50 billion such
connected things by 2020, and Morgan Stanley has trumped them both by going further with a
prediction of 75 billion devices connected to the Internet in that time. Other reports have placed this
number as high as 100 billion. The extent of the current levels of unbounded technical euphoria in this
space project economic values of this activity in units of trillions of dollars by 2020.

What do we know about the “things” that are already connected to the Internet?

Some of them are not very good. In fact some of them are just plain stupid. And this stupidity is toxic,
in that their sometimes inadequate models of operation and security affects others in potentially
malicious ways.

One of the earlier incidents of stupidity on a grand scale occurred in 2003 when Dave Plonka, then at
the University of Wisconsin-Madison, reported on what appeared to be a large attack directed to a time
server located on the campus. As was reported at the time:

“In May 2003, the University of Wisconsin - Madison found that it was the recipient of a continuous large
scale flood of inbound Internet traffic destined for one of the campus' public Network Time Protocol (NTP)
servers. The flood traffic rate was hundreds-of-thousands of packets-per-second, and hundreds of megabits-
per-second.

Subsequently, we have determined the sources of this flooding to be literally hundreds of thousands of real
Internet hosts throughout the world. However, rather than having originated as a malicious distributed denial-
of-service (DDoS) attack, the root cause is actually a serious flaw in the design of hundreds of thousands of
one vendor's low-cost Internet products targeted for residential use. The unexpected behavior of these products
presents a significant operational problem for UW-Madison for years to come.”

http://pages.cs.wisc.edu/~plonka/netgear-sntp/

The equipment, a Netgear CPE modem, used the SNTP protocol to pick up the time of day from the
network, as it did not have an internal battery or clock, and it hard-coded the IP address of the network
time server operated by the University of Wisconsin into the product. The more units that were sold
the greater the aggregate traffic volume that was sent to the university’s time server.

 Page 2

Was this a fixable problem? Could the vendor perform a product recall?

“Both Netgear and other members of the review team felt that it was unlikely that all but a very small subset of
the owners would return the affected device since they appear to be working fine. Also, very few customers
have registered these products with the manufacturer, so it is impractical to contact them.”

http://pages.cs.wisc.edu/~plonka/netgear-sntp/

It's a “thing” that sits in a cupboard somewhere. It only gets looked at when it stops working. There
was no way to upgrade the device’s software remotely, and no way to alert the human user that they
needed to upgrade the device. So the problem persisted.

In this case there was one victim of this stupidity. Other forms of toxic stupidity affect many more
people. The website http://openresolverproject.org describes the ongoing efforts by Jared Mauch to
document the extent to which devices have been deployed on the Internet that are in effect “open”
DNS resolvers.

These devices are generally CPE modems that interconnect a local network to an Internet service. They
were probably intended to operate in a more restricted sense, answering DNS queries coming from the
“inside” by sending queries to the “outside”. But it appears that in some cases the software failed to
make the distinction between “inside” and “outside”, and answered queries coming from the “outside”
as well. There are many of these stupid devices out there. Some 28 million of them in October 2013
according to this web site’s census.

These devices can be co-opted into behaving in a toxic manner by sending them DNS queries over the
Internet. The open resolver will attempt to answer the query (because it doesn’t know the difference
between “inside” and “outside”) and send the response to the source address in the query. The DNS
response can be contrived to be significantly larger than the query. One form of toxic attack is to coopt
all of these resolvers to ask a query from a single DNS authoritative name server, in an effort to swamp
the name server. Another form of toxic attack is to generate queries with a fake source address, namely
the IP address of the intended victim and cause many millions of these open resolvers to all direct this
DNS response traffic toward the victim.

As with the earlier problem with SNTP and Netgear, there is no easy fix here. These are unmanaged
devices that just sit in a cupboard. Nobody is looking after them.

Here at APNIC we have been affected by a similar problem. One of our servers was experiencing a
continuous load of some 5,000 queries per second, all for a single script that returned the IP address
where the query came from. It was just another simple “what’s my IP address?” script. When we
wanted to migrate servers the question of exactly why this query load had appeared came up. It seems
that like the earlier experiences with poor quality control in CPE controller software, a manufacturer
had embedded the URL for the APNIC “What’s my IP address” script into its software for some form
of DVR or television. And for some reason the software in the device used this query regularly as part
of its operating procedures.

It seems that only APNIC was the victim here. However, maybe it's a little deeper than that. Certainly
APNIC could now tell from these queries how many of these units were being sold, and where they
were sold. However its more than a leak of market intelligence, as it raises more uncomfortable
questions as well. What if the APNIC script was altered gave back the wrong IP address? What if the
script froze the TCP connection and never answered? Would the device crash if the script gave back a
few megabytes in response rather than a few bytes as expected. Could the response overrun the input
buffer and rewrite the operating stack inside the device? Could the script’s response be used to open up
the device and turn it into a remotely controlled bot? Obviously we’re not going to do any of that that.
But it’s not a comfortable position knowing that we are now on someone else’s critical path.

 Page 3

Maybe it all gets better when the software is used in a device that is “managed”. Last year 12% of all
the smartphones sold on the world, or some 180 million units, ran Apple’s IOS software. Part of
Apple’s business model includes the App Store, and to guide users through this store the iPhone is
“locked”. But any search engine will happily direct you to directions on how to unlock your iPhone,
exploiting bugs in the IOS software across most version of IOS. So its not just the software used in low
value unattended equipment that has its problems, but even on high volume high value equipment
where there is a strong commercial motivation to deploy the best quality software.

When we think of an Internet of Things we think of a world of weather stations, web cams, “smart” cars,
personal fitness monitors and similar. But what we tend to forget is that all of these devices are built
upon layers of other people’s software, and assembled into a product at the cheapest possible price
point. It may be disconcerting to realise that the web camera you just installed has a security model that
can be summarised in a single word: yes, and its actually offering a view of your house to the entire
Internet. It may be slightly more disconcerting to realise that your electronic wallet is on a device that is
using a massive compilation of open source software of largely unknown origin, with a security model
that is not completely understood, but appears to be susceptible to be coerced into being a yes.

What are we going to do about it?

It would be nice to think that we’ve stopped making mistakes in code, and from now on our software
in our things will be perfect. But that’s hopelessly idealistic. It’s just not going to happen. Software will
not be perfect. It will continue to have vulnerabilities.

It would be nice to think that this Internet of Things is shaping up as a market where quality matters, and
consumers will select a more expensive product even though its functional behaviour is identical to a
cheaper product that has not been robustly tested for basic security flaws. But that too is hopelessly
idealistic.

The Internet of Things will continue to be a market place where the compromises between price and
quality will continue. The concern is that we may sacrifice quality in order to support a low price. If
that’s the case then what’s going to stop us from further polluting our environment with a huge and
diverse collection of programmed unmanaged devices with inbuilt vulnerabilities?

What can we use to make this world of these cheap things less stupid and less toxic?

Comprehensive answers for this question are difficult to come by.

However, I think we already know some parts about what it will take to avoid an Internet full of
toxically stupid things.

One part of any useful answer is that we really should use IPv6 for the Internet of Things.

There are many problems with IPv4, and one of them is that the address space is just too small. If you
want your thing to be visible on the Internet, then everyone else can find your thing as well.

“ZMap is an open-source network scanner that enables researchers to easily perform Internet-wide network
studies. With a single machine and a well provisioned network uplink, ZMap is capable of performing a
complete scan of the IPv4 address space in under 5 minutes, approaching the theoretical limit of ten gigabit
Ethernet.”
https://zmap.io

Yes, just 5 minutes to scan the entire IPv4 space. On IPv4 there is nowhere to hide. If you want your
thing to be visible on the Internet then everybody else can see it too.

 Page 4

What about IPv6? If it takes 5 minutes to scan 4 billion addresses, how long would it take to scan all of
IPv6’s 340 undecillion addresses? Well at that speed it would take 70 sextillion years! Even with the
usual forms of pruning and heuristics to guide the search, scanning the IPv6 space is not a realistic
proposition. Even the 64 bit interface identifier field takes 41 thousand years to scan at this speed, so a
IPv6 system that used appropriately random privacy addresses would still be hiding behind a massive
search space.

Another part of any useful answer is to avoid unnecessary external dependencies. For example, try not
to betray your existence by invoking external scripts. Don't rely on some other set of resources being
online and available.

And of course its always useful in this world to be paranoid. Don't trust the Internet. That’s not the
same as don't use the Internet. By all means leverage its connectivity and its services, but don't be
overly credulous. If you are using the DNS to map resource names to IP addresses then use an internal
DNS library that validates what it hears, rather than relying on some external resolver not to lie to you.
If you use secure channels to access the device, and you probably should, then use a security model that
is tightly focussed on the use of a specific trust anchor to seed trust. Think of the Internet as a hostile
space: How can you stop your thing from being captured and exploited by others?

Nothing is perfect. Software changes faster than hardware. Think hard about how you want to maintain
these devices once they are deployed in the fields of the Internet. How can you upgrade their software
to correct a calamitous bug?

None of these are new lessons. Were we able to retrospectively apply these lessons then we would not
be staring at some 30 million unmanaged open DNS resolvers wondering just what we are going to do
about them. But that’s already done. More importantly, what we need to avoid is further expanding the
pool of these toxically stupid things. If we are heading towards an Internet of hundred billion things
over the next five years, then let’s make sure that we remember past mistakes and learn from them. We
really need to ensure that its not an Internet of 100 billion stupid things that can be readily co-opted for
evil.

 Page 5

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the
Asia Pacific region. He has been closely involved with the development of the Internet for many years,
particularly within Australia, where he was responsible for the initial build of the Internet within the
Australian academic and research sector. He is author of a number of Internet-related books, and was a
member of the Internet Architecture Board from 1999 until 2005, and served on the Board of Trustees
of the Internet Society from 1992 until 2001.

www.potaroo.net

