The ISP Column

A monthly column on things Internet

December 2014

Geoff Huston

Workshop on DNS Future Root Service

The theme of a workshop, held at the start of December 2014 in Hong Kong, was looking at means to
enable further scaling of the root server system, and the 1%z day workshop was scoped in the form of
consideration of alternative approaches to that of the default of adding further anycast instances of the
existing 13 root server anycast constellations. There were two specific proposals that were considered
at this workshop that formed the workshop’s focus.

This was a workshop operating on at least three levels. Firstly there was the overt agenda of working
through a number of proposed approaches that could improve the services provided by the DNS root
service. The second was an unspoken agenda concerned with protecting the DNS from potential
national measures that would “fragment” the DNS name space into a number of spaces, which
includes, but by no means not limited to, the DNS blocking activities that occur at national levels. The
third level, and an even less acknowledged agenda, is that there are various groups who want to claim a
seat at the Root Server table.

These various agendas work against each other to some extent, in that increasing the number of root
servers runs the elevated risks of a lack of managed control of the contents of the root, which
exacerbates the risk of fragmentation of the root zone contents. Introducing the capability for any
resolver to serve the root zone allows for the root service to grow atomically on a needs and capability
basis, which addresses the perception of imposed scarcity of root services in certain parts of the world,
but at the same time undermines the privileged role of the current root service operators, some of
whom have created sustaining business models of leasing out anycast instances of their root service,
while others who have aspirations to run a root server would like to see the this privileged role
maintained. So its not surprising to see some conservative reactions from some of the incumbents
when faced with proposals that radically change the root service environment. From this respect this
was always going to be a workshop that aired ideas and discussed concepts, as distinct from a
workshop that focused on viable solutions or attempted to reach any form of closure on any particular
proposal

The highly positive aspect of this two day event was bringing the Chinese, and in particular BII, ZDNS
and CNNIC, into the same room as some folk from the DNS root server community and the IETF
DNS technical group. And in this respect I would say that the workshop was a success - it exposed the
Chinese to the considerations of the DNS root server community, and at the same time the Chinese
had the opportunity to expose some of their work and thoughts about expanding the root service.

Aside: The Root Server System

The DNS is a hierarchically distributed naming system. A name in the
DNS is a sequence of labels that read from left to right, where is a
sequence of labels can be views in a pairwise fashion where the label
on the left is the “child” of the “parent label on the right. The common
progenitor of this name structure is the root, which is notionally



€ »

defined as the trailing “.” at the right most part of a fully qualified DNS

name.

The DNS system is implemented as a collection of authoritative name
servers. A set of name servers is nominated as being authoritative for a
given zone, and any of these name servers will provide identical
answers in response to queries for names that lie within its zone. When
queried for a name that is a child of this zone these servers will
respond with the authoritative name servers for that child zone. The
root zone is a zone file that contains a zone header and a list of
delegations of the complete collection of top level names.

When a recursive resolver is passed a query relating to a name about
which it has absolutely no knowledge it will generate a query to a root
server. The response is not the desired information, but the name
servers that are authoritative for the top level domain name being
queried. The recursive resolver will then query one of these name
servers for the name, and will receive in response the name servers that
are authoritative for the send level domain name, and so on. The
inference from this mode of operation of the DNS is that the
operation of the DNS requires that all resolvers have access to at least
one root name server at all times.

A single root name server is not a robust approach to root server
design. One the other hand, millions of distinct root servers would lead
to a host of other issues, not the least which include the considerations
of root priming queries and the challenge of keeping a very large
collection of distinct servers in tight synchronization with respect to
the content that they serve as the root zone of the DNS. The adoption
of 13 distinct root servers is a compromise between these two
pressures. The exact number was the outcome of the number of
distinct root server labels, and their IPv4 addresses that can be loaded
into an unsigned IPv4 UDP response to a root server priming query
that is less than 512 bytes.

The demands of scaling the root service in the face of an expanding
network involved the adoption of anycast cloud servers for a number
of the root name servers. The anycast structure has a number of major
attributes that help the root server system. The first is that the multiple
instances of the root server instance split up the query load against that
server’s IP address into the localities served by each anycast instance.
This allows the root setvice instance to distribute its load, which
improves its service. Equally, it allows the root server instance to
appear to be “close” to many disparate parts of the client base
simultaneously, which also contributes to an improvement in its service
profile. This technique also allows the root server to cope with various
forms of denial of service attacks. Wide scale distributed attacks are
spread across multiple server instances, which implies that a greater
server capacity is deployed to absorb the attack. Point attacks are
pinned against a single server instance, which minimizes the collateral
damage to a single instance of the anycast server set. It also imposes a
two level hierarchy on distribution of changes to the root zone, limiting
the number of points of direct notification of changes to the primary
authoritative instance of the root zone.

Page 2



The Proposals

Operating a root slave service on 127.x.y.z

This approach is not an architectural change to the DNS (or at least not intentionally). For recursive
resolvers that implement this approach this is a form of change in query behavior in so far as a
recursive resolver so configured will no longer query the root servers for queries it would normally
direct to an instance of the root, but instead direct these queries to a local instance of a slave server that
is listening on the recursive resolver’s loopback address. This slave server is serving a locally held
instance of the root zone, and the recursive resolver would perform DNSSEC validation of responses
from this local slave to ensure the integrity of responses received in this manner. For users of this
recursive resolver there is no apparent change to the DNS or to their local configurations. Obviously,
there is no change to the root zone either.

The motivation behind this proposal is that there are a population of recursive resolvers that are still
too far away from all of the root servers, and this causes delays in the DNS resolution function. The
caching properties of recursive DNS resolvers is such that the overall majority of queries directed to
the root servers are for non-existent top level domains, so a pragmatic restatement of the problem
space is that there are recursive resolvers that take too long to generate a NXDOMAIN response, and
this approach would reduce this time delay to a single query interval from the client to the recursive
resolver if the resolver was coupled to a slave server that was serving the root zone.

However, given this particular formulation of the problem space, then the larger and more
comprehensive the anycast constellations of the root servers, the less the demand for this particular
approach. Locales where there are adequately close DNS root services from the anycast root servers
would find no particular advantage in operating a local slave DNS root server as the marginal speed
differential may not be an adequate offset for the added complexity of configuration and operation of
the local slave server.

The linking of the root zone information to the loopback is a point of fragility in the setup. To set up a
slave DNS server that is authoritative for the root zone it would uses multiple root servers to ensure
that it has access to a root zone from at least one of the anycast server constellations at any time. If at
any time it cannot retrieve a master then it should SERVFAIL, and the local recursive resolver should
revert to conventional queries against the root servers.

This proposal provides integrity in the local root server through the mechanism of having the recursive
resolver perform DNSSEC validation against the responses received from the local root slave. If the
recursive resolver is configured as a DNSSEC-validating resolver then this is configurable on current
implementations of DNS recursive resolvers. However, if it is desired to limit DNSSEC validation to
just the responses received from the local slave root server then this is not within the current
capabilities of the more widely used DNS resolver implementations today.

The advantages of this approach is that the decision to set up a local slave root server is a decision that
is entirely local to the recursive resolver, and the impacts of this decision affects only the clients of this
recursive resolver. No coordination with the root server operators is required, nor any explicit
notification. The local slave server is only indirectly visible to the clients of this recursive resolver and
no other.

“Unowned” Anycast Root Server Constellations
One possible motivation behind this proposal lies in the observation that before the root was
DNSSEC-signed we placed much reliance in the concept that the root zone was served from only a

Page 3



small number of IP addresses (the 13 root servers) and no other, but when the root zone is DNSSEC
signed then the integrity of the responses generated from a root zone is based on the ability of the
receiver of the response to validate the signed responses using their local copy of the root keys. Who
serves the zone in such a context is largely irrelevant.

This approach uses the same root key set to sign a second root zone, changing the NS records, and also
maintaining a second root hints file corresponding to the new addresses behind these new root servers.
However, this second set of addresses would not be exclusively assigned to further set of root server
operators, but allowed to be used by any party, in a form of uncontrolled anycast.

In some ways this proposal is similar to the existing AS112 work, where anyone can set us a resolver to
respond to queries for commonly queries non-existent top level domains (such as .local) with
NXDOMAIN responses. The implication is that if there is a perception that a locale is poorly served
by the existing root server anycast constellations then a local instance of this anycast root server can be
set up and served from an instance of this unowned anycast address. As the address is specifically
dedicated for unowned anycast there is no need to coordinate either with the existing root server
operators or with other operators of root zone servers on the same anycast address. A prospective
operator of one of these root servers simply serves the unowned anycast root zone from one of the
small pool (2 address couplets, each linking an IPv4 and a IPv6 address) of reserved anycast addresses.
Recursive resolvers would query this server by using a distinct unowned anycast root hints file.

Why would any recursive resolver trust the veracity of any responses received from one of these
unowned anycast root servers? One could well ask the same of recursive resolvers who query into any
of the 13 anycast constellations for the root zone, and to some extent the risks of being led astray are
similar. The one mitigation of the latter case is that to hijack an existing anycast constellation prefix
requires the coercive corruption of the routing system to inject a false instance of an “owned” address,
while there is no such concept as hijacking of the unowned anycast prefix. However, in both cases
some skepticism on the part of the recursive resolver is to be encouraged, and recursive resolvers
should be motivated to validate all such responses using the local copy of the DNS trust anchor
material. This is still a part of “good housekeeping” recommended operational practice for recursive
resolvers using the existing root servers, but is a more strongly worded requirement for resolvers using
this unowned anycast service.

Commentary

While it could be regarded as a byproduct of a single hierarchical name space, the centralization of root
information in the DNS is operationally problematical and does not cleanly fit within a distributed and
decentralized peer model of a network architecture. The adoption of root server anycast constellations
is an attempt to respond to this, to an extent, by over-provisioning of this critical service. A similar
picture is emerging in the area of content provisioning, where cloud-based content is essentially an
exercise in over-provisioning, where single points of distribution are replaced by a larger scale of
multiple delivery points in order to improve the quality of the delivered service.

However, end users don’t enjoy the same level of control, and are dependent on external conditions
that are effectively out of their direct control. Not only does this result in highly variable service
experiences, but it also leaves the user highly exposed to various forms of online surveillance. The
distributing computing world has created external dependencies for users where access to local service
is reliant on external availabilities. The DNS is a good example of this scenario, in so far as resolution
of a DNS name that is not already contained in local caches requires priming queries to external
servers. Obviously these dependencies on external services is an incredibly fragile system where local
services cannot be reliably provided using only local infrastructure.

Secondly, the exposure of full name queries to servers high in the hierarchy exposes excessive amounts
of information about users, the applications and names that they use and the locales of the services that

Page 4



they use. Tapping the DNS query stream from a root is a high payback activity if you want to glean
intelligence about what users do. This is not just about global names, but also extends to names used
exclusively in a local context (e.g. myprinter.myplease.example.com),where part of the cache priming
query set leaks to external authoritative DNS servers.

Perhaps it need not be explicitly stated, but neither proposal contemplates any splitting of the name
space itself, nor any change to the role of the IANA as the administrative entity responsible for the
contents of the root zone, nor any changes to the existing root name servers. However, both proposals
essentially unlock the root zone and allow others to serve the zone contents without any formal
coordination with the existing root servers, the IANA or any other server who may also be serving the
zone.

It is also interesting to note that neither proposal advocates opening up more distinct anycast root
server constellations (i.e. adding a 14" root server). It is completely unclear what additional technical
value would be gained by adding any new server constellations to the existing collection, as distinct
from further expansion of the existing anycast server constellations. The related question about the
politics of the 13 root server operators and the politics of augmenting this group in various ways is an
entirely different subject, and was not considered at this workshop in any manner.

Nor do these proposals advocate any form of alteration of the control of the anycast server instances
of these existing root server systems. In both cases they propose to create a completely novel structure
which is distinct from the existing structure of recursive resolvers, the root zone (and hints) file and the
set of root servers.

Both proposals are incremental in nature, and propose a form of augmentation to the existing structure
of recursive resolvers and the root name server, rather than any change to the existing structure. But in
so doing there is a distinct possibility that this form of uncoordinated piecemeal expansion at a local
level could prove to be more effective across the Internet, and the critical role of the 13 root server
operators would diminish over time if this were the case.

Neither approach is not entirely without some forms of change. All these uncoordinated root server
operators would mean that root zone changes via NOTIFY is not feasible, so it would be back to
periodic zone transfers and timers in the root zone headers. There is no longer a quick mistake
correction capability in the root zone if served in this way, although it could be argued that the massive
level of caching of DNS information actually implied that any changes in the root zone were subject to
cache flushing in any case, irrespective of the speed of zone change at the level of the root server
anycast constellations.

What is perhaps more worrisome is that the unowned anycast proposal is in effect a proposal to fork
the root one, and recursive resolvers are forced to position themselves within one regime or the other.
The only common glue left in this environment is the root key, as the only way that a client of either
regime can detect that they are receiving genuine answers is to perform response validation using the
root key. This is placing a massive amount of invested trust in a security artifact that is only used today
by a very small subset of recursive resolvers.

It also needs to be noted that our experience to date with owned anycast has been very poor. At one
stage the IPv6 transition experimented with a form of unowned anycast in the form of 6to4 tunnel
servers, and the results were hardly reassuring. Anycast clouds follow routing, not geography, and
diagnosing operational failures that occur within an uncoordinated anycast structure can range from the
merely challenging to highly cryptic and insoluble. The relationship between a recursive resolver and
the actual root server it is querying is then occluded, and instances of structural failure in DNS name
resolution are far harder to diagnose and correct. Considering that the name translation function is an
essential foundation for the Internet, adding operational opacity to the root zone query function is not
a step that should be taken lightly.

Page 5



But that does not imply that the other proposal is free from operational concerns either. The
complexity of the local slave resolver, with two concurrent DNS resolvers operating within the same
host should also be questioned. While there is a current convention in DNS resolver and server
deployment to avoid the model of a “mixed” mode resolver which is both an authoritative (or slave)
server for some domains and a recursive resolver for all other domains, this is perhaps nothing more
than a convention, and it seems overkill for a resolver to phrase a root query and reach through the
loopback interface to ask a co-resident DNS resolver the queries that are being posed to the root. Why
not just operate the local resolver in mixed mode and allow the root query to simply become a memory
lookup within a single DNS resolver instance? Perhaps the only justification in this case is the issue of
root zone integrity. In the mixed mode of a single resolver instance the question arises of how can the
local resolver validate the contents of the transferred root zone is a reasonable question. In the
loopback model, the local resolver performs DNSSEC validation of the root zone responses and
therefore does not necessarily need to separately validate the contents of the transferred root zone. In
theory a mixed mode resolver could DNSSEC validate the responses retrieved from its local instance
of a slave zone server before passing them to the recursive resolver function, but its not clear than any
existing DNS resolver implementations perform this form of DNSSEC validation of internal queries in
a mixed mode of operation. Alternate approaches of including a zone signature to ensure integrity are
also a possibility to ensure that the recursive resolver is not placed into a position of inadvertently
serving corrupt root zone data.

It’s evident that this approach of a local loopback slave resolver, and related variants, are already in use
in the Internet. Some DNSSEC-validating recursive resolvers interpret the NSEC responses in the root
zone as authentic denial of existence of TLDs as evidenced by the NSEC RRs, and are then able to
generate an NXDOMAIN without asking the root directly. (There is some compelling evidence from
the Day-In-The-Life (DITL) root server query data that the Google PDNS servers are performing
some form of NXDOMAIN generation without referral to root servers, either through a local slave or
through NSEC inference., and the component of queries from Google PDNS servers appears to be
disproportionately small in the DITL root server query logs)

There were a few more observations about the state of the DNS and the role of the root server system
to the larger DNS environment. Its true that we’ve placed considerable change pressure on the DNS in
recent years. We’ve added IPv6 as both a DNS query transport protocol and as a query target in the
form of AAAA records, and we’ve added DNSSEC to allow a client to validate the response that they
receive from a resolver if they so desire. We've added encoded character sets (rather than attempt
enforce an 8-bit “clean” DNS) to support non-ascii character sets in DNS labels, and we are now
expanding the root zone with more top level label names. We’ve now placed much reliance in dynamic
DNS with incremental updates and incremental change notification from the authoritative server to its
secondary slave servers. We've added extensions through EDNSO flags, and then started to populate
that extension with various options and flags that alter the protocol itself (DNS UDP response size),
the content of responses (DNSSEC flags) and even the particular response (experimenting with the
Client Subnet option). We are now toying with information suppression to avoid the gratuitous
verbosity of DNS, restricting the query fields passed to servers to the minimal level of information
necessary to provide a useful response through query name minimization. Today’s DNS is not your
grandparent’s DNS, nor even your older sibling’s DNS! It’s changing.

So to what extent are we bound by overarching considerations of keeping archaic forms of DNS
functional, as against making changes that either break older DNS resolvers or expose them to higher
levels of vulnerability? We are seeing this in the two proposals considered in this workshop where in
both cases the resolvers need to perform DNSSEC wvalidation on root zone responses in order to
ensure that they are not being misled by rogue resolvers masquerading as authentic slave root servers.
Older resolvers that do no use DNSSEC validation are not welcome in this particular playground. But
if this is the case about particular proposals related to expanding the availability and robustness of the
root zone, then why not question the entire nature of the root zone priming query itself?

Page 6



Why are there 13 root nameservers? Because, so goes the story, the response to a priming query made
to a root server fits within the defined minimum accepted UDP payload limit in the DNS of 512 octets,
as defined in that most venerable of specifications, RFC1035 (“Domain Implementation and
Specification,”, P. Mockapetris, November 1987). Really? Well that's not longer the case. A root
priming response these days includes IPv6 records for all bar the “e” root server instance, and the
response is 755 octets. And if you add the DNSSEC-OK flag to the query, then the response is 913
octets in size. Yes, there are still resolvers that are not equipped with EDNSO, and its true that if you
limit the response size to 512 octets then the IPv4 addresses of 13 of the root nameservers and the
IPv6 addresses of two of the root nameservers squeeze into 512 octets, but should this somewhat
archaic constraint really be the defining limitation of the entire DNS system?

Other options include use of TCP as the transport protocol for the root zone priming query, which
would remove this size-related constraint on the number of root zone servers listed in the priming
response. That line of argument then immediately opens up the next question of if you are not
constrained to the magic number of 13, then is there a larger number that makes technical sense?

One possible answer is that no single number makes more or less than
any other, based on a well known observation from Computer Science
that there are only three “natural” numbers, 0, 1 and n!

So at this stage one is left with the view that while the number 13 meets the limitations of some archaic
recursive resolvers (that should perhaps be retired in any case), there aside from this consideration
there is no particular benefit at a technical level why 13 anycast constellations of root name servers
would be any better or worse than 14.

One possible approach is to allow any recursive resolver to be a slave server for the root zone, as
described above. If the zone transfer function included an integrity check across the entire transferred
zone (such as a hash of the transferred zone, signed by the root’s zone signing key), then the recursive
resolver could be assured that it was then serving an authentic copy of the root zone. However such an
integrity check on the transferred zone only assists the local recursive resolver that it has obtained an
authentic and current copy of the zone. Clients of that recursive resolver should be as skeptical as ever
and ask for DNSSEC signatures, and perform DNSSEC validation over all signed responses that are
received from the recursive resolver. The advantage of this approach is that it is an implementation of
an unlimited number of root name servers, where every recursive server that so wants to be can serve
its own authentic copy of the root zone. The disadvantage is that, like all large distributed systems,
there is some introduced inertia into the system and updates take time to propagate. However, in a
space that is already highly cached then difference between what happens today and what would
happen in such a scenario may well be very hard to see.

Conclusions

As noted at the start this was a workshop that was not directed toward conclusions, but more to a peer
review form of activity where a number of concepts around possible directions for the DNS were
intensely thrashed for a couple of days. For the workshop itself there were no particular conclusions.

For myself I think I have two conclusions to carry forward.
The first is that DNSSEC is indeed an extremely valuable asset for the DNS, and we can move forward
with a larger and more robust system if we can count on various efforts to subvert the operation DNS

being thwarted by all forms of clients of the DNS, even to the level of applications performing name to
number resolution, insisting that they are exposed to the DNS responses and their signatures, and

Page 7



performing validation on the received data. For many resolvers its as simple as adding “dnssec-
validation yes;” to your local DNS resolver configuration. Just do it, and do it now!

The second is more generic. We are finding it increasingly challenging to react to inexorable pressures
of scaling the Internet’s infrastructure while still maintaining basic backward compatibility with systems
that only conform to technical standards of the 1980’s. We need to move on. The 512 octet limit in the
DNS is over. Resolvers should support EDNSO, or shut themselves down. Resolvers should perform
DNSSEC validation, or shut themselves down. We need to move on and look at how to support a
larger, more responsive, more robust and far less chatty name system, and we need to be able to
contemplate heading away from basic binary encodings over unencrypted UDP packet exchanges if
that’s what’s needed. Wondering why there are 13 available slots for root name server operators, and
wondering about how we could alter their composition, or change the interaction with the DNS root to
support one or two additional root servers are really a totally unproductive conversations at so many
levels. It may well be time to unlock the mainstream DNS and release the binds to its historic legacy,
and contemplate a different DNS that does not involve these arbitrary constraints over the number and
composition of players.

The attraction of unconstrained systems is that local actors can respond to local needs, and respond by
using local resources, without having to coordinate or cross-subsidize the activities of others. Much of
the Internet’s momentum is driven by this loosely constrained model of interaction. If we can use the
possibilities opened up by a securing the DNS’s payload, where who passed the DNS information to
you is irrelevant, but whether the information is locally verifiable is critically important, then and only
then can we contemplate exactly what it would take to operate an unconstrained DNS system.

Page 8



Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Page 9



