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Back at the end of June 2012[0] there was a brief IT hiccup as the world adjusted the Coordinated Universal 
Time (UTC) standard by adding an extra second to the last minute of the 30th of June. Normally such an 
adjustment would pass unnoticed by all but a small dedicated collection of time keepers, but this time the 
story spread out into the popular media as numerous Linux systems hiccupped over this additional second, 
and they supported some high-profile services, including a major air carrier’s reservation and ticketing 
backend system. The entire topic of time, time standards, and the difficulty of keeping a highly stable and 
regular clock standard in sync with a slightly wobbly rotating Earth has been a longstanding debate in the 
International Telecommunication Union Radiocommunication Sector (ITU-R) standards body that oversees this 
coordinated time standard. However, I am not sure that anyone would argue that the challenges of 
synchronizing a strict time signal with a less than perfectly rotating planet is sufficient reason to discard the 
concept of a coordinated time standard and just let each computer system drift away on its own concept of 
time. These days we have become used to a world that operates on a consistent time standard, and we have 
become used to our computers operating at sub-second accuracy. But how do they do so? In this article I 
will look at how a consistent time standard is spread across the Internet, and examine the operation of the 
Network Time Protocol (NTP). 
 
Some communications protocols in the IP protocol suite are quite recent, whereas others have a long and 
rich history that extends back to the start of the Internet. The ARPANET switched over to use the 
TCP/IP protocol suite in January 1983, and by 1985 NTP was in operation on the network. Indeed it has 
been asserted that NTP is the longest running, continuously operating, distributed application on the 
Internet[1]. 
 
The objective of NTP is simple: to allow a client to synchronize its clock with UTC time, and to do so with 
a high degree of accuracy and a high degree of stability. Within the scope of a WAN, NTP will provide an 
accuracy of small numbers of milliseconds. As the network scope gets finer, the accuracy of NTP can 
increase, allowing for submillisecond accuracy on LANs and sub-microsecond accuracy when using a 
precision time source such as a Global Positioning System (GPS) receiver or a caesium oscillator. 
 
If a collection of clients all use NTP, then this set of clients can operate with a synchronized clock signal. A 
shared data model, where the modification time of the data is of critical importance, is one example of the 
use of NTP in a networked context. (I have relied on NTP timer accuracy at the microsecond level when 
trying to combine numerous discrete data sources, such as a web log on a server combined with a Domain 
Name System (DNS) query log from DNS resolvers and a packet trace.) 

NTP, Time, and Timekeeping 
To consider NTP, it is necessary to consider the topic of timekeeping itself. It is useful to introduce some 
timekeeping terms at this juncture:  
 

Stability How well a clock can maintain a constant frequency 
 

Accuracy How well the frequency and absolute value of the clock compares with a standard reference 
time 
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Precision   How well the accuracy of a clock can be maintained within a particular timekeeping system 

 
Offset The time difference in the absolute time of two clocks 

 
Skew The variation of offset over time (first-order derivative of offset over time) 

 
Drift The variation of skew over time (second-order derivative of offset over time) 

 
NTP is designed to allow a computer to be aware of three critical metrics for timekeeping: the offset of the 
local clock to a selected reference clock, the round-trip delay of the network path between the local computer 
and the selected reference clock server, and the dispersion of the local clock, which is a measure of the 
maximum error of the local clock relative to the reference clock. Each of these components is maintained 
separately in NTP. They provide not only precision measurements of offset and delay, to allow the local 
clock to be adjusted to synchronize with a reference clock signal, but also definitive maximum error 
bounds of the synchronization process, so that the user interface can determine not only the time, but the 
quality of the time as well. 

Universal Time Standards 
It would be reasonable to expect that the time is just the time, but that is not the case. The Universal Time 
reference standard has several versions, but these two standards are of interest to network timekeeping. 
 
UT1 is the principal form of Universal Time. Although conceptually it is Mean Solar Time at 0° longitude, 
precise measurements of the Sun are difficult. Hence, it is computed from observations of distant quasars 
using long baseline interferometry, laser ranging of the Moon and artificial satellites, as well as the 
determination of GPS satellite orbits. UT1 is the same everywhere on Earth, and is proportional to the 
rotation angle of the Earth with respect to distant quasars, specifically the International Celestial Reference 
Frame (ICRF), neglecting some small adjustments. 
 
The observations allow the determination of a measure of the Earth’s angle with respect to the ICRF, 
called the Earth Rotation Angle (ERA), which serves as a modern replacement for Greenwich Mean Sidereal 
Time). UT1 is required to follow the relationship: 
 

   ERA = 2π(0.7790572732640 + 1.00273781191135448 Tu) radians 
                       where Tu = (Julian UT1 date – 2451545.0) 

 
Coordinated Universal Time (UTC) is an atomic timescale that approximates UT1. It is the international 
standard on which civil time is based. It ticks SI seconds, in step with International Atomic Time (TAI). It 
usually has 86,400 SI seconds per day, but is kept within 0.9 seconds of UT1 by the introduction of 
occasional intercalary leap seconds. As of 2012 these leaps have always been positive, with a day of 86,401 
seconds.[9] 
 
NTP uses UTC, as distinct from the Greenwich Mean Time (GMT), as the reference clock standard. UTC 
uses the TAI time standard, based on the measurement of 1 second as 9,192,631,770 periods of the 
radiation emitted by a caesium-133 atom in the transition between the two hyperfine levels of its ground 
state, implying that, like UTC itself, NTP has to incorporate leap second adjustments from time to time. 
 
NTP is an “absolute” time protocol, so that local time zones—and conversion of the absolute time to a 
calendar date and time with reference to a particular location on the Earth’s surface—are not an intrinsic 
part of the NTP protocol. This conversion from UTC to the wall-clock time, namely the local date and 
time, is left to the local host. 
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Servers and Clients 
NTP uses the concepts of server and client. A server is a source of time information, and a client is a system 
that is attempting to synchronize its clock to a server. 
 
Servers can be either a primary server or a secondary server. A primary server (sometimes also referred to as a 
stratum 1 server using terminology borrowed from the time reference architecture of the telephone 
network) is a server that receives a UTC time signal directly from an authoritative clock source, such as a 
configured atomic clock or—very commonly these days—a GPS signal source. A secondary server receives its 
time signal from one or more upstream servers, and distributes its time signal to one of more downstream servers 
and clients. Secondary servers can be thought of as clock signal repeaters, and their role is to relieve the 
client query load from the primary servers while still being able to provide their clients with a clock signal 
of comparable quality to that of the primary servers. The secondary servers need to be arranged in a strict 
hierarchy in terms of upstream and downstream, and the stratum terminology is often used to assist in this 
process. 
 
As noted previously, a stratum 1 server receives its time signal from a UTC reference source. A stratum 2 
server receives its time signal from a stratum 1 server, a stratum 3 server from stratum 2 servers, and so on. 
A stratum n server can peer with many stratum n – 1 servers in order to maintain a reference clock signal. 
This stratum framework is used to avoid synchronization loops within a set of time servers. 
 
Clients peer with servers in order to synchronize their internal clocks to the NTP time signal. 

The NTP Protocol 
At its most basic, the NTP protocol is a clock request transaction, where a client requests the current time 
from a server, passing its own time with the request. The server adds its time to the data packet and passes 
the packet back to the client. When the client receives the packet, the client can derive two essential pieces 
of information: the reference time at the server and the elapsed time, as measured by the local clock, for a 
signal to pass from the client to the server and back again. Repeated iterations of this procedure allow the 
local client to remove the effects of network jitter and thereby gain a stable value for the delay between the 
local clock and the reference clock standard at the server. This value can then be used to adjust the local 
clock so that it is synchronized with the server. Further iterations of this protocol exchange can allow the 
local client to continuously correct the local clock to address local clock skew. 
 
NTP operates over the User Datagram Protocol (UDP). An NTP server listens for client NTP packets on port 
123. The NTP server is stateless and responds to each received client NTP packet in a simple transactional 
manner by adding fields to the received packet and passing the packet back to the original sender, without 
reference to preceding NTP transactions. 
 
Upon receipt of a client NTP packet, the receiver time-stamps receipt of the packet as soon as possible 
within the packet assembly logic of the server. The packet is then passed to the NTP server process. This 
process interchanges the IP Header Address and Port fields in the packet, overwrites numerous fields in 
the NTP packet with local clock values, time-stamps the egress of the packet, recalculates the checksum, 
and sends the packet back to the client. 
 
The NTP packets sent by the client to the server and the responses from the server to the client use a 
common format, as shown in Figure 1. 
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Figure 1: NTP Message Format 

 

The header fields of the NTP message are as follows: 

LI Leap Indicator (2 bits) 
This field indicates whether the last minute of the current day is to have a leap second applied. 
The field values follow: 
0: No leap second adjustment 
1: Last minute of the day has 61 seconds 
2: Last minute of the day has 59 seconds 
3: Clock is unsynchronized> 
  

VN NTP Version Number (3 bits) (current version is 4). 
  

Mode NTP packet mode (3 bits) 
The values of the Mode field follow: 
0: Reserved 
1: Symmetric active 
2: Symmetric passive 
3: Client 
4: Server 
5: Broadcast 
6: NTP control message 
7: Reserved for private use 
  

Stratum Stratum level of the time source (8 bits) The values of the Stratum field follow: 
0: Unspecified or invalid 
1: Primary server 



  Page 5 

2–15: Secondary server 
16: Unsynchronized 
17–255: Reserved 
  

Poll Poll interval (8-bit signed integer)2 value of the maximum interval between successive NTP 
messages, in seconds. 
  

Precision Clock precision (8-bit signed integer) 

The precision of the system clock, in log2 seconds. 
  

Root Delay The total round-trip delay from the server to the primary reference sourced. The value is a 32-
bit signed fixed-point number in units of seconds, with the fraction point between bits 15 and 
16. This field is significant only in server messages. 
  

Root 
Dispersion   

The maximum error due to clock frequency tolerance. The value is a 32-bit signed fixed-point 
number in units of seconds, with the fraction point between bits 15 and 16. This field is 
significant only in server messages. 
  

Reference 
Identifier 

For stratum 1 servers this value is a four-character ASCII code that describes the external 
reference source (refer to Figure 2). For secondary servers this value is the 32-bit IPv4 address 
of the synchronization source, or the first 32 bits of the Message Digest Algorithm 5 (MD5) hash of 
the IPv6 address of the synchronization source. 
 
 

    Code    External Reference Source 
    ------------------------------------------------------- 
    LOCL    uncalibrated local clock 
    CESM    calibrated Cesium clock 
    RBDM    calibrated Rubidium clock 
    PPS     calibrated quartz clock or other pulse-per-second source 
    IRIG    Inter-Range Instrumentation Group 
    ACTS    NIST telephone modem service 
    USNO    USNO telephone modem service 
    PTB     PTB (Germany) telephone modem service 
    TDF     Allouis (France) Radio 164 kHz 
    DCF     Mainflingen (Germany) Radio 77.5 kHz 
    MSF     Rugby (UK) Radio 60 kHz 
    WWV     Ft. Collins (US) Radio 2.5, 5, 10, 15, 20 MHz 
    WWVB    Boulder (US) Radio 60 kHz 
    WWVH    Kauai Hawaii (US) Radio 2.5, 5, 10, 15 MHz 
    CHU     Ottawa (Canada) Radio 3330, 7335, 14670 kHz 
    LORC    LORAN-C radionavigation system 
    OMEG    OMEGA radionavigation system 
    GPS     Global Positioning Service  
 
     Figure 2: Reference Identifier Codes (from RFC 4330) 
 
The next four fields use a 64-bit time-stamp value. This value is an unsigned 32-bit seconds value, and a 
32-bit fractional part. In this notation the value 2.5 would be represented by the 64-bit string: 
 
    0000|0000|0000|0000|0000|0000|0000|0010 . |1000|0000|0000|0000|0000|0000|0000|0000 
           Integer Part                     |             Decimal Fractional Part 
 
The unit of time is in seconds, and the epoch is 1 January 1900, meaning that the NTP time will cycle in 
the year 2036 (two years before the 32-bit Unix time cycle event in 2038). 
 
The smallest time fraction that can be represented in this format is 232 picoseconds. 
 
Reference 
Timestamp   
  

This field is the time the system clock was last set or corrected, in 64-bit time-stamp format. 
  

Originate This value is the time at which the request departed the client for the server, in 64-bit time-
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Timestamp 
  

stamp format. 
  

Receive 
Timestamp 
  

This value is the time at which the client request arrived at the server in 64-bit time-stamp 
format. 
  

Transmit 
Timestamp 
  

This value is the time at which the server reply departed the server, in 64-bit time-stamp format. 
  

The basic operation of the protocol is that a client sends a packet to a server and records the time the 
packet left the client in the Origin Timestamp field (T1). The server records the time the packet was received 
(T2). A response packet is then assembled with the original Origin Timestamp and the Receive Timestamp 
equal to the packet receive time, and then the Transmit Timestamp is set to the time that the message is 
passed back toward the client (T3). The client then records the time the packet arrived (T4), giving the 
client four time measurements, as shown in Figure 3. 
 
   Timestamp Name        ID   When Generated 
   ---------------------------------------------------------------- 
   Originate Timestamp   T1   time request sent by client 
   Receive Timestamp     T2   time request received by server 
   Transmit Timestamp    T3   time reply sent by server 
   Destination Timestamp T4   time reply received by client  

 
    Figure 3: NTP Transaction Timestamps (from RFC 4330) 
 
These four parameters are passed into the client timekeeping function to drive the clock synchronization 
function, which we will look at in the next section. 
 
The optional Key and Message Digest fields allow a client and a server to share a secret 128-bit key, and 
use this shared secret to generate a 128-bit MD5 hash of the key and the NTP message fields. This 
construct allows a client to detect attempts to inject false responses from a man-in the-middle attack. 
 
The final part of this overview of the protocol operation is the polling frequency algorithm. A NTP client 
will send a message at regular intervals to a NTP server. This regular interval is commonly set to be 16 
seconds. If the server is unreachable, NTP will back off from this polling rate, doubling the back-off time 
at each unsuccessful poll attempt to a minimum poll rate of 1 poll attempt every 36 hours. When NTP is 
attempting to resynchronize with a server, it will increase its polling frequency and send a burst of eight 
packets spaced at 2-second intervals. 
 
When the client clock is operating within a sufficient small offset from the server clock, NTP lengthens the 
polling interval and sends the eight-packet burst every 4 to 8 minutes (or 256 to 512 seconds). 

Timekeeping on the Client 
The next part of the operation of NTP is how an NTP process on a client uses the information generated 
by the periodic polls to a server to moderate the local clock. 
 
From an NTP poll transaction, the client can estimate the delay between the client and the server. Using 
the time fields described in Figure 3, the transmission delay can be calculated as the total time from 
transmission of the poll to reception of the response minus the recorded time for the server to process the 
poll and generate a response: 
 
       δ = (T4 – T1) – (T3 – T2) 
 
The offset of the client clock from the server clock can also be estimated by the following: 
     Θ = ½ [(T2 – T1) + (T3 – T4)] 
 
It should be noted that this calculation assumes that the network path delay from the client to the server is 
the same as the path delay from the server to the client. 
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NTP uses the minimum of the last eight delay measurements as δ0. The selected offset, Θ0, is one measured 
at the lowest delay. The values (Θ0,δ0) become the NTP update value. 
 
When a client is configured with a single server, the client clock is adjusted by a slew operation to bring the 
offset with the server clock to zero, as long as the server offset value is within an acceptable range. 
 
When a client is configured with numerous servers, the client will use a selection algorithm to select the 
preferred server to synchronize against from among the candidate servers. Clustering of the time signals is 
performed to reject outlier servers, and then the algorithm selects the server with the lowest stratum with 
minimal offset and jitter values. The algorithm used by NTP to perform this operation is Marzullo’s 
Algorithm[2]. 
 
When NTP is configured on a client, it attempts to keep the client clock synchronized against the reference 
time standard. To do this task NTP conventionally adjusts the local time by small offsets (larger offsets 
may cause side effects on running applications, as has been found when processing leap seconds). This 
small adjustment is undertaken by an adjtime() system call, which slews the clock by altering the frequency 
of the software clock until the time correction is achieved. Slewing the clock is a slow process for large 
time offsets; a typical slew rate is 0.5 ms per second. 
 
Obviously this informal description has taken a rather complex algorithm and some rather detailed math 
formulas without addressing the details. If you are interested in how NTP operates at a more detailed level, 
consult the references that follow, which will take you far deeper into the algorithms and the underlying 
models of clock selection and synchronization than I have done here. 

Conclusion 
NTP is in essence an extremely simple stateless transaction protocol that provides a quite surprising 
outcome. From a regular exchange of simple clock readings between a client and a server, it is possible for 
the client to train its clock to maintain a high degree of precision despite the possibility of potential 
problems in the stability and accuracy of the local clock and despite the fact that this time synchronization 
is occurring over network paths that impose a noise element in the form of jitter in the packet exchange 
between client and server. Much of today’s distributed Internet service infrastructure relies on a common 
time base, and this base is provided by the common use of the Network Time Protocol. 
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