
The ISP Column
A monthly column on things Internet

March 2014

Geoff Huston

Protocol Basics:
The Network Time Protocol

Back at the end of June 2012[0] there was a brief IT hiccup as the world adjusted the Coordinated Universal
Time (UTC) standard by adding an extra second to the last minute of the 30th of June. Normally such an
adjustment would pass unnoticed by all but a small dedicated collection of time keepers, but this time the
story spread out into the popular media as numerous Linux systems hiccupped over this additional second,
and they supported some high-profile services, including a major air carrier’s reservation and ticketing
backend system. The entire topic of time, time standards, and the difficulty of keeping a highly stable and
regular clock standard in sync with a slightly wobbly rotating Earth has been a longstanding debate in the
International Telecommunication Union Radiocommunication Sector (ITU-R) standards body that oversees this
coordinated time standard. However, I am not sure that anyone would argue that the challenges of
synchronizing a strict time signal with a less than perfectly rotating planet is sufficient reason to discard the
concept of a coordinated time standard and just let each computer system drift away on its own concept of
time. These days we have become used to a world that operates on a consistent time standard, and we have
become used to our computers operating at sub-second accuracy. But how do they do so? In this article I
will look at how a consistent time standard is spread across the Internet, and examine the operation of the
Network Time Protocol (NTP).

Some communications protocols in the IP protocol suite are quite recent, whereas others have a long and
rich history that extends back to the start of the Internet. The ARPANET switched over to use the
TCP/IP protocol suite in January 1983, and by 1985 NTP was in operation on the network. Indeed it has
been asserted that NTP is the longest running, continuously operating, distributed application on the
Internet[1].

The objective of NTP is simple: to allow a client to synchronize its clock with UTC time, and to do so with
a high degree of accuracy and a high degree of stability. Within the scope of a WAN, NTP will provide an
accuracy of small numbers of milliseconds. As the network scope gets finer, the accuracy of NTP can
increase, allowing for submillisecond accuracy on LANs and sub-microsecond accuracy when using a
precision time source such as a Global Positioning System (GPS) receiver or a caesium oscillator.

If a collection of clients all use NTP, then this set of clients can operate with a synchronized clock signal. A
shared data model, where the modification time of the data is of critical importance, is one example of the
use of NTP in a networked context. (I have relied on NTP timer accuracy at the microsecond level when
trying to combine numerous discrete data sources, such as a web log on a server combined with a Domain
Name System (DNS) query log from DNS resolvers and a packet trace.)

NTP, Time, and Timekeeping
To consider NTP, it is necessary to consider the topic of timekeeping itself. It is useful to introduce some
timekeeping terms at this juncture:

Stability How well a clock can maintain a constant frequency

Accuracy How well the frequency and absolute value of the clock compares with a standard reference
time

 Page 2

Precision How well the accuracy of a clock can be maintained within a particular timekeeping system

Offset The time difference in the absolute time of two clocks

Skew The variation of offset over time (first-order derivative of offset over time)

Drift The variation of skew over time (second-order derivative of offset over time)

NTP is designed to allow a computer to be aware of three critical metrics for timekeeping: the offset of the
local clock to a selected reference clock, the round-trip delay of the network path between the local computer
and the selected reference clock server, and the dispersion of the local clock, which is a measure of the
maximum error of the local clock relative to the reference clock. Each of these components is maintained
separately in NTP. They provide not only precision measurements of offset and delay, to allow the local
clock to be adjusted to synchronize with a reference clock signal, but also definitive maximum error
bounds of the synchronization process, so that the user interface can determine not only the time, but the
quality of the time as well.

Universal Time Standards
It would be reasonable to expect that the time is just the time, but that is not the case. The Universal Time
reference standard has several versions, but these two standards are of interest to network timekeeping.

UT1 is the principal form of Universal Time. Although conceptually it is Mean Solar Time at 0° longitude,
precise measurements of the Sun are difficult. Hence, it is computed from observations of distant quasars
using long baseline interferometry, laser ranging of the Moon and artificial satellites, as well as the
determination of GPS satellite orbits. UT1 is the same everywhere on Earth, and is proportional to the
rotation angle of the Earth with respect to distant quasars, specifically the International Celestial Reference
Frame (ICRF), neglecting some small adjustments.

The observations allow the determination of a measure of the Earth’s angle with respect to the ICRF,
called the Earth Rotation Angle (ERA), which serves as a modern replacement for Greenwich Mean Sidereal
Time). UT1 is required to follow the relationship:

 ERA = 2π(0.7790572732640 + 1.00273781191135448 Tu) radians
 where Tu = (Julian UT1 date – 2451545.0)

Coordinated Universal Time (UTC) is an atomic timescale that approximates UT1. It is the international
standard on which civil time is based. It ticks SI seconds, in step with International Atomic Time (TAI). It
usually has 86,400 SI seconds per day, but is kept within 0.9 seconds of UT1 by the introduction of
occasional intercalary leap seconds. As of 2012 these leaps have always been positive, with a day of 86,401
seconds.[9]

NTP uses UTC, as distinct from the Greenwich Mean Time (GMT), as the reference clock standard. UTC
uses the TAI time standard, based on the measurement of 1 second as 9,192,631,770 periods of the
radiation emitted by a caesium-133 atom in the transition between the two hyperfine levels of its ground
state, implying that, like UTC itself, NTP has to incorporate leap second adjustments from time to time.

NTP is an “absolute” time protocol, so that local time zones—and conversion of the absolute time to a
calendar date and time with reference to a particular location on the Earth’s surface—are not an intrinsic
part of the NTP protocol. This conversion from UTC to the wall-clock time, namely the local date and
time, is left to the local host.

 Page 3

Servers and Clients
NTP uses the concepts of server and client. A server is a source of time information, and a client is a system
that is attempting to synchronize its clock to a server.

Servers can be either a primary server or a secondary server. A primary server (sometimes also referred to as a
stratum 1 server using terminology borrowed from the time reference architecture of the telephone
network) is a server that receives a UTC time signal directly from an authoritative clock source, such as a
configured atomic clock or—very commonly these days—a GPS signal source. A secondary server receives its
time signal from one or more upstream servers, and distributes its time signal to one of more downstream servers
and clients. Secondary servers can be thought of as clock signal repeaters, and their role is to relieve the
client query load from the primary servers while still being able to provide their clients with a clock signal
of comparable quality to that of the primary servers. The secondary servers need to be arranged in a strict
hierarchy in terms of upstream and downstream, and the stratum terminology is often used to assist in this
process.

As noted previously, a stratum 1 server receives its time signal from a UTC reference source. A stratum 2
server receives its time signal from a stratum 1 server, a stratum 3 server from stratum 2 servers, and so on.
A stratum n server can peer with many stratum n – 1 servers in order to maintain a reference clock signal.
This stratum framework is used to avoid synchronization loops within a set of time servers.

Clients peer with servers in order to synchronize their internal clocks to the NTP time signal.

The NTP Protocol
At its most basic, the NTP protocol is a clock request transaction, where a client requests the current time
from a server, passing its own time with the request. The server adds its time to the data packet and passes
the packet back to the client. When the client receives the packet, the client can derive two essential pieces
of information: the reference time at the server and the elapsed time, as measured by the local clock, for a
signal to pass from the client to the server and back again. Repeated iterations of this procedure allow the
local client to remove the effects of network jitter and thereby gain a stable value for the delay between the
local clock and the reference clock standard at the server. This value can then be used to adjust the local
clock so that it is synchronized with the server. Further iterations of this protocol exchange can allow the
local client to continuously correct the local clock to address local clock skew.

NTP operates over the User Datagram Protocol (UDP). An NTP server listens for client NTP packets on port
123. The NTP server is stateless and responds to each received client NTP packet in a simple transactional
manner by adding fields to the received packet and passing the packet back to the original sender, without
reference to preceding NTP transactions.

Upon receipt of a client NTP packet, the receiver time-stamps receipt of the packet as soon as possible
within the packet assembly logic of the server. The packet is then passed to the NTP server process. This
process interchanges the IP Header Address and Port fields in the packet, overwrites numerous fields in
the NTP packet with local clock values, time-stamps the egress of the packet, recalculates the checksum,
and sends the packet back to the client.

The NTP packets sent by the client to the server and the responses from the server to the client use a
common format, as shown in Figure 1.

 Page 4

Figure 1: NTP Message Format

The header fields of the NTP message are as follows:

LI Leap Indicator (2 bits)
This field indicates whether the last minute of the current day is to have a leap second applied.
The field values follow:
0: No leap second adjustment
1: Last minute of the day has 61 seconds
2: Last minute of the day has 59 seconds
3: Clock is unsynchronized>

VN NTP Version Number (3 bits) (current version is 4).

Mode NTP packet mode (3 bits)
The values of the Mode field follow:
0: Reserved
1: Symmetric active
2: Symmetric passive
3: Client
4: Server
5: Broadcast
6: NTP control message
7: Reserved for private use

Stratum Stratum level of the time source (8 bits) The values of the Stratum field follow:
0: Unspecified or invalid
1: Primary server

 Page 5

2–15: Secondary server
16: Unsynchronized
17–255: Reserved

Poll Poll interval (8-bit signed integer)2 value of the maximum interval between successive NTP
messages, in seconds.

Precision Clock precision (8-bit signed integer)

The precision of the system clock, in log2 seconds.

Root Delay The total round-trip delay from the server to the primary reference sourced. The value is a 32-
bit signed fixed-point number in units of seconds, with the fraction point between bits 15 and
16. This field is significant only in server messages.

Root
Dispersion

The maximum error due to clock frequency tolerance. The value is a 32-bit signed fixed-point
number in units of seconds, with the fraction point between bits 15 and 16. This field is
significant only in server messages.

Reference
Identifier

For stratum 1 servers this value is a four-character ASCII code that describes the external
reference source (refer to Figure 2). For secondary servers this value is the 32-bit IPv4 address
of the synchronization source, or the first 32 bits of the Message Digest Algorithm 5 (MD5) hash of
the IPv6 address of the synchronization source.

 Code External Reference Source

 LOCL uncalibrated local clock
 CESM calibrated Cesium clock
 RBDM calibrated Rubidium clock
 PPS calibrated quartz clock or other pulse-per-second source
 IRIG Inter-Range Instrumentation Group
 ACTS NIST telephone modem service
 USNO USNO telephone modem service
 PTB PTB (Germany) telephone modem service
 TDF Allouis (France) Radio 164 kHz
 DCF Mainflingen (Germany) Radio 77.5 kHz
 MSF Rugby (UK) Radio 60 kHz
 WWV Ft. Collins (US) Radio 2.5, 5, 10, 15, 20 MHz
 WWVB Boulder (US) Radio 60 kHz
 WWVH Kauai Hawaii (US) Radio 2.5, 5, 10, 15 MHz
 CHU Ottawa (Canada) Radio 3330, 7335, 14670 kHz
 LORC LORAN-C radionavigation system
 OMEG OMEGA radionavigation system
 GPS Global Positioning Service

 Figure 2: Reference Identifier Codes (from RFC 4330)

The next four fields use a 64-bit time-stamp value. This value is an unsigned 32-bit seconds value, and a
32-bit fractional part. In this notation the value 2.5 would be represented by the 64-bit string:

 0000|0000|0000|0000|0000|0000|0000|0010 . |1000|0000|0000|0000|0000|0000|0000|0000
 Integer Part | Decimal Fractional Part

The unit of time is in seconds, and the epoch is 1 January 1900, meaning that the NTP time will cycle in
the year 2036 (two years before the 32-bit Unix time cycle event in 2038).

The smallest time fraction that can be represented in this format is 232 picoseconds.

Reference
Timestamp

This field is the time the system clock was last set or corrected, in 64-bit time-stamp format.

Originate This value is the time at which the request departed the client for the server, in 64-bit time-

 Page 6

Timestamp

stamp format.

Receive
Timestamp

This value is the time at which the client request arrived at the server in 64-bit time-stamp
format.

Transmit
Timestamp

This value is the time at which the server reply departed the server, in 64-bit time-stamp format.

The basic operation of the protocol is that a client sends a packet to a server and records the time the
packet left the client in the Origin Timestamp field (T1). The server records the time the packet was received
(T2). A response packet is then assembled with the original Origin Timestamp and the Receive Timestamp
equal to the packet receive time, and then the Transmit Timestamp is set to the time that the message is
passed back toward the client (T3). The client then records the time the packet arrived (T4), giving the
client four time measurements, as shown in Figure 3.

 Timestamp Name ID When Generated
 --
 Originate Timestamp T1 time request sent by client
 Receive Timestamp T2 time request received by server
 Transmit Timestamp T3 time reply sent by server
 Destination Timestamp T4 time reply received by client

 Figure 3: NTP Transaction Timestamps (from RFC 4330)

These four parameters are passed into the client timekeeping function to drive the clock synchronization
function, which we will look at in the next section.

The optional Key and Message Digest fields allow a client and a server to share a secret 128-bit key, and
use this shared secret to generate a 128-bit MD5 hash of the key and the NTP message fields. This
construct allows a client to detect attempts to inject false responses from a man-in the-middle attack.

The final part of this overview of the protocol operation is the polling frequency algorithm. A NTP client
will send a message at regular intervals to a NTP server. This regular interval is commonly set to be 16
seconds. If the server is unreachable, NTP will back off from this polling rate, doubling the back-off time
at each unsuccessful poll attempt to a minimum poll rate of 1 poll attempt every 36 hours. When NTP is
attempting to resynchronize with a server, it will increase its polling frequency and send a burst of eight
packets spaced at 2-second intervals.

When the client clock is operating within a sufficient small offset from the server clock, NTP lengthens the
polling interval and sends the eight-packet burst every 4 to 8 minutes (or 256 to 512 seconds).

Timekeeping on the Client
The next part of the operation of NTP is how an NTP process on a client uses the information generated
by the periodic polls to a server to moderate the local clock.

From an NTP poll transaction, the client can estimate the delay between the client and the server. Using
the time fields described in Figure 3, the transmission delay can be calculated as the total time from
transmission of the poll to reception of the response minus the recorded time for the server to process the
poll and generate a response:

 δ = (T4 – T1) – (T3 – T2)

The offset of the client clock from the server clock can also be estimated by the following:
 Θ = ½ [(T2 – T1) + (T3 – T4)]

It should be noted that this calculation assumes that the network path delay from the client to the server is
the same as the path delay from the server to the client.

 Page 7

NTP uses the minimum of the last eight delay measurements as δ0. The selected offset, Θ0, is one measured
at the lowest delay. The values (Θ0,δ0) become the NTP update value.

When a client is configured with a single server, the client clock is adjusted by a slew operation to bring the
offset with the server clock to zero, as long as the server offset value is within an acceptable range.

When a client is configured with numerous servers, the client will use a selection algorithm to select the
preferred server to synchronize against from among the candidate servers. Clustering of the time signals is
performed to reject outlier servers, and then the algorithm selects the server with the lowest stratum with
minimal offset and jitter values. The algorithm used by NTP to perform this operation is Marzullo’s
Algorithm[2].

When NTP is configured on a client, it attempts to keep the client clock synchronized against the reference
time standard. To do this task NTP conventionally adjusts the local time by small offsets (larger offsets
may cause side effects on running applications, as has been found when processing leap seconds). This
small adjustment is undertaken by an adjtime() system call, which slews the clock by altering the frequency
of the software clock until the time correction is achieved. Slewing the clock is a slow process for large
time offsets; a typical slew rate is 0.5 ms per second.

Obviously this informal description has taken a rather complex algorithm and some rather detailed math
formulas without addressing the details. If you are interested in how NTP operates at a more detailed level,
consult the references that follow, which will take you far deeper into the algorithms and the underlying
models of clock selection and synchronization than I have done here.

Conclusion
NTP is in essence an extremely simple stateless transaction protocol that provides a quite surprising
outcome. From a regular exchange of simple clock readings between a client and a server, it is possible for
the client to train its clock to maintain a high degree of precision despite the possibility of potential
problems in the stability and accuracy of the local clock and despite the fact that this time synchronization
is occurring over network paths that impose a noise element in the form of jitter in the packet exchange
between client and server. Much of today’s distributed Internet service infrastructure relies on a common
time base, and this base is provided by the common use of the Network Time Protocol.

References and Further Reading
[0] Geoff Huston, “Leaping Seconds,” The Internet Protocol Journal, Volume 15, No. 3,

September 2012.

[1] David L. Mills, “A Brief History of NTP Time: Confessions of an Internet
Timekeeper,” ACM SIGCOMM, Computer Communication Review, Vol. 33, No. 2, pp. 9–
12, April 2003, http://www.eecis.udel.edu/~mills/database/papers/history.pdf

[2] K. A. Marzullo, “Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed Service,” Ph.D. dissertation, Stanford University,
Department of Electrical Engineering, February 1984,
http://en.wikipedia.org/wiki/Marzullo%27s_algorithm

[3] David L. Mills, “NTP Architecture, Protocol and Algorithms,” University of Delaware,
www.eecis.udel.edu/~mills/database/brief/arch/arch.ppt

[4] Jack Burbank, William Kasch, and David Mills, “Network Time Protocol Version 4:
Protocol and Algorithms Specification,” RFC 5905, June 2010.

[5] David L. Mills, “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and

 Page 8

OSI,” RFC 4330, January 2006.

[6] http://www.ntp.org

[7] http://www.eecis.udel.edu/~mills/ntp.html

[8] David Mills, Computer Network Time Synchronization: the Network Time Protocol on Earth and
in Space, Second Edition, CRC Press, 2011.

[9] http://en.wikipedia.org/wiki/Universal_Time

 Page 9

Disclaimer
The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author
Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the Asia
Pacific region. He has been closely involved with the development of the Internet for many years,
particularly within Australia, where he was responsible for the initial build of the Internet within the
Australian academic and research sector. He is author of a number of Internet-related books, and was a
member of the Internet Architecture Board from 1999 until 2005, and served on the Board of Trustees of
the Internet Society from 1992 until 2001.
www.potaroo.net

