The ISP Column

A monthly column on things Internet

October 2013
(updated 10 November)

Geoff Huston

Dotless

It was never obvious at the outset of this grand Internet experiment that the one aspect of the
network’s infrastructure that would truly prove to be the most fascinating, intriguing, painful, lucrative
and just plain confusing, would be the Internet’s Domain Name System.

After all, it all seemed so simple to start with: network applications rendezvous with their counterparts
using protocol-level addresses, but we users prefer to use “natural” identifiers that act as aliases for
these addresses. So rather than trying to remember that my local server is 192.0.2.34, or, perhaps more
challenging, 2001:db8:a25d:8664:dff1:73b6:fe40:34, I can give it a memorable name, such as “server”.
So I make an entry in a local translation table that makes the name “server” equivalent to those two IP
addresses, and now I can use the term “server” to direct applications to rendezvous with this system.

This works well in a small scale local context, but how do we scale this up to a larger network that
spans many local name contexts? The answer that was devised back in the early 1980’s was to use a
hierarchically structured common name scheme. So we had some generic so-called “top-level” names,
such as .edu, .gov, .mil, .org, and .com, and folk then reserved a name in one of these name spaces, and
then populated the lower levels of the name hierarchy with their particular needs for identification. So I
now might have my server name now called server.example.com, assuming that I had been delegated the
name space of example within .com.

Opver the years the set of these top-level domain names have expanded. A major expansion was to
integrate the 2 letter country codes from the ISO-3166 country name table into the set of top level
DNS labels. Since then there has been a continual discussion about expansion of the so-called “generic
top-level domain name” (gTLDs) set (as distinct from the set of ISO-3166 two letter domain names
that map to country codes, whose management is considered to be a national issue for each country to
work through). Under the umbrella of ICANN’s stewardship of the top level domain space of the DNS
some 14 new ¢gTLDs were added in the past 13 years, bringing the total to some 22 currently available
names (most notable of which was the .xxx gTLD, that excited considerable interest at the time).
However, after more than a decade of careful rationing and slow progress in terms of opening up the
top level name space of the DNS, at the start of 2012 ICANN changed its stance and opened up the
gTLD space for applicants. Of course nothing in the DNS comes for free, and the cost of making such
an application is reported to be some $185,000. (Illustrating that even in domain names vanity comes at
a considerable pricel) Despite this application cost, some 1,930 application were received for new
gTLDs, and the process of evaluation of these applications is underway.

“Dotless” TLDs

Within the evaluation process there have evidently been a number of proposals that propose relatively
novel use of these top level DNS labels, and the one I’d like to look at here is that of the so-called
“dotless” domains proposed for the DNS root zone. It’s as if I had decided to revive the name server
and propose it to be not only a top-level domain name that is defined across the entire Internet, but to
have this name resolve to an IP address.

Can such dotless domain names, such as server, really function as top level domains?

For example, if I have my way, and server becomes a new gTLD, will that imply that everyone that
entered server into their web browser, or everyone who sends mail to #ze@server, or uses this server name
in any other network application will end up communicating with my server?

The DNS is not so simple, and in this case we have developed so called “search lists” that interfere
with these so-called “dotless” domain names in various ways. The concept behind the search list was to
allow local names to be used without explicitly adding a global DNS context. I can use a local service
name for a named service and have the DNS automatically append the common DNS suffix to the
local name to form a fully qualified DNS query name. So, if I have a local search list with example.com,
then when I use the name server, the local DNS resolution system will append the search list,
exanmple.com, and then attempt to resolve the fully qualified name server.example.com. So how do search
lists actually work? Or perhaps maybe we should first ask: how were search lists intended to work?

Consulting the RFCs

The base specification of the DNS, RFC1034, assumed that any name requiring resolution was either a
complete (or “absolute”) domain name, or an incomplete (or “relative”) domain name. Absolute
domain names were names that would be passed as a query to the DNS without further modification,
while relative domain names required the appending of a locally defined name to form an absolute
name. RFC1034 proposed that name forms that ended with a “.” were to be interpreted as absolute
names, while other names were relative names.

This approach has the downside of potentially directing many queries to the servers who are
authoritative for the root of the DNS, and this specification in RFC1034 was subsequently modified in
RFC1123 such that the local name resolution system should require that a name has three or more
individual labels (“two or more interior dots in a generated domain name”) before submitting the query
to the DNS for resolution.

But even this approach generates excessive query traffic at the root of the DNS. RFC1536 noted the
example of a local name of #sc.edn within a local domain search space of foo.bar.com. Because the original
name is missing that essential trailing dot it is being interpreted as a relative domain name, and the
search list of foo.bar.com is appended, resulting in a query for usc.edn.foo.bar.com, then usc.edu.bar.com, then
finally wsc.edu. RFC1536 (an informational RFC) proposed a modification to the original
absolute/relative name distinction, that a name that already contains multiple labels (“‘contains any
dots”, to quote RFC15306) should first be tried as a fully qualified domain name, and if that fails then
the local search list can be applied to the name. In other words the reverse of the original search list
behaviour. If the name is a single label, then the search list can be applied immediately. RFC3397
attempted to clarify this application of search lists to local names, taking the description in RFC1536
and re-casting them in the context of a Proposed Standard, without changing the substance of the
proposed modifications.

So how have implementations interpreted these specifications?

Testing Search Lists and Dotless Names

How do various name resolver libraries implement the application of search lists in their local name
resolution libraries? Will “dotless” domain names in the DNS be masked out by local domain name
search lists? I have performed some basic tests on a number of popular operating systems, using their
default configuration settings for name resolution.

The tests were set up using a simple application that called the local system’s name resolution

subroutine library. The local system’s DNS query traffic was captured using tcpdump to allow the DNS
queries to be recorded. There are four types of behaviour that have been observed in this experiment:

Page 2

* never - the search list is not applied, and the original name is queried in the DNS

* always - the search list is always applied and the synthesised names are queried in the DNS, but
the original name is never queried in the DNS

* pre - the search list is applied to the original name in DNS queries, and if all permutations of
the application of the search list generate a NXDOMAIN response then the original name is
queried in the DNS

* post - the original name is queried in the DNS, and if this generates an NXDOMAIN response
then the search list is applied to the original name in DNS queries.

The results of this survey of the name resolution behaviour of the more popular systems are shown in
the following table:

System Absolute | Relative Single Label | Relative Multi-Label
server. server www.server
MAC 0SX 10.9 never always never
Windows XP never always post
Windows Vista never always never
Windows 7 never always never
Windows 8 never always never
FreeBSD 9.1 never pre post
Ubuntu 13.04 never pre post

Table 1 — Application of Search Lists in Name Resolution for varions Operating Systems

The mix of behaviours seen here shows some evolution in the thinking about the appropriate use of
search names across the various operating system vendofs.

In the case of “absolute” domain names (ending with a dot) all systems interpret the name as a fully
qualified name and do not apply any local search list.

In the case of so-called “relative names”, the behaviours are variable. For single label domains we see
many systems use the RFC1034 specification, and assume that the original name is a relative name and
requires the use of the local search list in all cases. The FreeBSD and Ubuntu systems use a variation to
his approach, and if the application of the search list yields no such domain (NXDOMAIN) responses
in all cases, then a query for the dotless name is then passed into the DNS.

For multi-label domains some systems implement the procedures described in RFC1536, and treat the
multi-label name firstly as an absolute name, and if that produces a NXDOMAIN response, then the
local search list is applied. However later versions of Windows (Vista, 7 and 8) and the current MAC
OSX systems treat the multi-label name as an absolute name and will not apply the local search list,
even if the queries based on the application of the search list all generate NXDOMAIN responses.

The FreeBSD and Ubuntu behaviours also appear anomalous to me, in so far as the ordering of the
search list and the base name queries is reversed, depending on whether the base name was dotless or
not, but perhaps that a criticism of the state of the standard specification where the combination of
RFC1034 and RFC1536 can lead an implementor to this outcome as being consistent with the
specifications contained in these two documents.

But that's what happens when an application allows the underlying operating system to perform the
name resolution task. The browser writers appear to have largely taken responsibility for their own
name resolution needs, and browsers appears to perform the task differently. Perhaps more curiously
we also see that some browsers perform differently on some platforms than others. Table 2 shows the

Page 3

results of testing the same three variants of queried name forms on a number of browser platforms on
two different operating system platforms.

There is a new behaviour that some browsers have implemented:

* none - the search list is not applied, and the original name is not queried in the DNS
This behaviour is evident with Safari on Mac OS platforms, as Safari appears to have an internal copy
of the root zone, which is in effect a list of all delegated tld strings. If the name being queried is not

part of a known tld it will not query the DNS at all, and pass the string over to the configured search
tool instead.

MacOS OSX 10.9

Browser\Query Absolute | Relative Single Label | Relative Multi-Label
server. server name.server

Chrome (31.0.1650.39 beta) never always pre

Opera (12.16) never always never

Firefox (25.0) post* always post*

Safari (7.0 9537.71) none** none** none**

Firefox looked up the base name, then added prefix of “www.”, then tried prefixing the “www.” and also appending the search list. If
the base name starts with “www.” it will look up the base name, then lookup the base name with the search list appended

*x Safari seems to be aware of TLDs and does not perform DNS lookups when the name is not a known delegated TLD, irrespective of the
local search list. Safari is also aware of SLD-restricted TLDs and will not perform queries when the SLD is restricted, unless the SLD
matches the restricted list. In known TLDs Safari will query <name>.tld and then www.<name.tld>, unless the query name already
starts with “www.”

Windows 8.1

Browser\Query Absolute Relative Single Label | Relative Multi-Label
server. server name.server

Chrome (30.0.1599.101 m) never always never

Opera (17.0) none none none*

Firefox (25.0) never** always never**

Safari (5.1.7 7534.57.2) never*** always**** never***

Explorer (11.0.900.16384) never none never

Opera is aware of delegated tlds, and only queries the DNS when the last label is a known TLD. In that case it does not use the local
search list

*x Firefox performs a second query by adding a prefix of “www” if the base name has only one or two labels and the base name query

resulted in NXDOMAIN
Safari performed a second query by adding a prefix of “www” to the base name

**** Safari performed an additional query after querying for the basename plus the search list, by querying the FQDN “www.<base
name>.com

Table 2 — Application of Search Lists in Name Resolution for varions Browser and Operating System confignrations

The variance of behaviours in this table is unexpected. Also the efforts by some browsers to load the
list of delegated TLD strings, and SLD strings in restricted TLDs is entirely surprising to me.

There are some subtleties here in the above tables that probably need to be stated up front. In the Old
Days, browsers were equipped with a “go” bar. You were supposed to enter URLs of the form
“http://<domain_name>/<locator_suffix>", but we quickly got tired of all that silly cruft to type in. So the
first change was to eliminate the need for the “http://” prefix. If you didn’t enter it, the browser simply
assumed that's what you meant anyway. Then search engines came along, and for many years browsers

Page 4

had two data entry panels: one for URLs and one for search terms. However, all along it seems that we
really wanted something simpler, and browsers eventually adjusted their interface to use a single data
entry panel. If want you entered looked like a search term it was sent to the search engine, otherwise it
was treated like a URL, and the domain name part of the URL was queried in the DNS. The variance
between browsers and operating systems platforms that we observe in Table 2 in not in fact variance of
the underlying DNS resolution library, but variance in the ruleset used by browsers to distinguish
between a search term and a candidate URL.

Can we remove the factor of the varying search term/URL rulesets and expose the undetlying DNS
library name resolution behaviours? One approach is to enter the “http://” prefix into the browser
along with the name being tested, but in some browsers the input processing appears to strip off this
prefix and pass the resultant string back into a common input processing module that attempts to
distinguish between search terms and URLs. Another approach is to code up the tests in Javascript, and
have the script generate these unique URLs and then instruct the browser to perform the fetch. The
script is at http://www.potaroo.net/tools/dnstesthtml, and it simply instructs the browser to load 3 objects, each
of which use a name form that includes a unique digit string. The three domain names are composed of
a single label, two labels and three labels, and are intended to be nonsensical (that is, a DNS query for
these domains will generate NXDOMAIN responses). If you run up a packet capture tool such as
tepdump it is possible to expose the DNS queries your browser makes as it attempts to resolve these
names.

The results of this scripted test of browsers” name resolution behaviour is shown in Table 3.

MacOS OSX 10.9

Browser\Query Single Label | Multi-Label
labell labell.label2
Chrome (31.0.1650.39 beta) always post
Opera (12.16) always* never
Firefox (25.0) always never
Safari (7.0 9537.71) always never
* Opera also looks up www.labell.(com|org|net|edu|gov)
Windows 8.1
Browser\Query Single Label | Multi-Label
labell labell.label2
Chrome (30.0.1599.101 m) always never
Opera (17.0) always never
Firefox (25.0) always never
Safari (5.1.7 7534.57.2) always never
Explorer (11.0.900.16384) always never

Table 3 — Application of Search Lists in Scripted Name Resolution for various Browser and Operating System configurations

This result is perhaps a little more satisfying, in so far as, with the exceptions of Chrome and Opera on
Mac OSX, all the surveyed browsers appear to behave consistently. With the noted exceptions, the
remaining browser/OS combinations always apply the local domain name search list when attempting
to resolve single label names, and never apply it to multi-label names.

Observations on Going Dotless

After all this, the question still remains: if you want to use a dotless label as a domain name, would it
work? Would applications, including browsers, pass the single word query to the DNS for name
resolution?

It’s not looking good.
Page 5

You could improve that answer a little if you somehow coerced all forms of use of the name to include
the trailing dot to re-cast the name as an absolute name. However, the use of the trailing dot is largely
fallen into disuse in terms of outr use of domain names, and in its relative name form without that
trailing dot, the dotless name looks a whole lot less viable.

It seems that most environments will interpret a single label as an incomplete identifier, and will
attempt to use additional hints to create a multi-label name before querying the DNS. On the Mac
OSX and recent Windows operating systems, the system libraries apply the local search list to the
name, and then attempt to resolve the consequent multi-label name. In such contexts the dotless name
is never queried. For FreeBSD and Ubuntu systems (and presumably Fedora systems and other Linux
variants) the local system will first apply the local DNS search list to the name, and only if these names
all generate NXDOMAIN responses would the local system query for the dotless name. Some
browsers will always pass the dotless name to a search engine and never query the DNS, while others
will always apply the local search list and if that does not resolver, then pass the base name to the
search system. None of the browser/operating system combinations test here will query the DNS for
the single label.

So, would “going dotless” really work?

I just can't see it working, so for me the answer is: "Probably not!"

Name Collision?

Into this somewhat convoluted picture of name resolution comes a related concept of “name
collision”. One way to phrase this question is: “Would the delegation of a new gTLLD name somehow
alter the name resolution behaviour of clients if the same name was already being used in some purely
local context?”

There are certain similarities with “address squatting” relating to prior unauthorised users of
unallocated IP address ranges. Would users who had, in effect, created “pseudo-TLDs” and defined
local domain name scopes where the local domain name servers would answer queries into these
pseudo-TLDs as if they were duly delegated TLDs, suffer from some form of altered and potentially
compromised application behaviour in the event that this name was subsequently used as a duly
delegated gTLD?

If the local use is accompanied by a locally scoped name resolver, then local clients will still resolve
names in this name space within the context of the local resolver, and nothing has changed for them. If
local clients were relocated into a name resolution environment outside the scope of the local name
resolver, and these same users still attempted to resolve names using the local name space, then there
are some potential issues. Whereas previously such displaced use of the name would result in
NXDOMAIN responses from the global DNS, there is the potential for the name to be unexpectedly
resolved in the context of this new gTLD. Now it must be stressed here that the problem is not the
delegation of the ¢TLD per se that has caused this unexpected outcome, but the movement of a client
system outside of the context of a locally scoped name environment that has been locally configured as
a pseudo-TLD, while still retaining some vestige of the name’s definition within the client’s
configuration settings. It is perhaps more that, as with many other cases of squatting, when the squatted
use of resource conflicts with a duly delegated or authorised use of the same resource then there are
inevitable conflicts.

The instance of single name queries in the queries presented to the DNS root servers is a testament to
the observation that such locally scoped use of names, and the associated leakage of name scope, does
occut, but the question is whether delegation of these name as a new gTLD would alter or otherwise
compromise client behaviour in any fashion beyond what would be expected in an undelegated
scenario. There is little to suggest form this particular survey of name resolution behaviours in popular

Page 6

deployed systems and browsers that this scope leakage of private use of a name is a substantial issue,
and there is nothing to suggest in the nature of the way local search lists are applied that the
instantiation of a name as a new gI'LD would significantly occlude the locally scoped use of the same
name in ways that would compromise the operation of web services and other applications.

It appears that global definition of a name would not, in general, occlude the visibility and use of the
same name in locally scoped name resolution contexts.

Perhaps the only substantive issue here is the reverse form of name occlusion, where if a name that is
commonly used in private context is delegated in the DNS root as a new gTLD, then none of the
clients in these private contexts will have any direct visibility of the global name.

The piecemeal fragmentation of the name space through the use of these locally scoped pseudo-gTLDs
was never the best of ideas in an identifier realm such as the DNS that has no implicit understanding of
name scoping or name realms. Applications, users and servers have all implicitly assumed that DNS
names are globally scoped identifiers, and when local practices break this assumption then in some
sense the consequences in terms of name use conflict are self-inflicted. As far as I can tell, the basic
intention of local name search lists was not to augment a local name realm with privately used pseudo-
TLDs, but to allow the local users to use a common global name implicitly, so that local use of simple,
single label name forms can be transformed into fully qualified domain names. Within my local scope 1
can refer to a resource or service with a single label, and the local search list should transform this
single dotless label into a fully qualified domain name that is then resolved in the context of the DNS
itself.

However, the operators of the root name servers of the DNS report a continuing load of queties for
what looks to be “leaking” local use domains. As to why do these names “leak”, I suppose that the
most obvious explanation is that many users may have their browser’s home page set to some form of
corporate network service name, including their mobile devices. When they move their mobile device
to a different environment, the query for this locally scoped domain name would still take place, but in
this latter case the query will head to the root name servers and be counted as a “leaked” name query.

The tables of operating system library and browser behaviours above point to the conclusion that while
many operating system name resolution libraries and many browser implementations will take names
and pass them into the DNS as FQDN names for DNS resolution. Particularly so with names that
have two or more labels. However, there is no evidence that any significant number of clients exhibit
name resolution behaviour, in the form of the application of search lists once the original DNS query
has failed with an NXDOMAIN, that would be affected by the implementation of a name as a new
¢TLD. The “post” form of search list application is only visible in the tests described here in the
operating system libraries of Windows XP and some Unix platforms, while Firefox on a Mac OSX
Platform exhibited this behaviour when the name was entered by a user, and Chrome on a MAC also
showed this behaviour when the name was generated by a Javascript execution. But these are
exceptions in a much larger environment where that behaviour is not evident.

In other words, while there is name leakage to the root from local domains to the global domain, there
is little evidence to suggest that if any of these names were subsequently delegated as new gTLDs then
there would be a significant risk of some widespread form of threats to the integrity of local services as
a consequence. For me, the reports of the dire consequences of such name collisions appears to look a
lot like a furphy! (itp:/ /en.wikipedia.org/wiki/Furphy).

But something else that is important is evident even in this small scale survey of browsers and
operating systems. Everyone appears to do it differently. If only we could agree on the importance of a
consistent interpretation of identifiers in the Internet. If only we could agree on a consistent
interpretation of the use of names and have our operating systems and browsers all operate within a
mutually consistent framework. If only.

Page 7

Weren't standards meant to address exactly these kinds of issues?

Further Reading:

Internet Architecture Board: “Dotless Domains Considered Harmful,” July 2013
http://www.iab.org/documents/correspondence-reports-documents/2013-2 /iab-statement-dotless-
domains-considered-harmful/

New ¢TLD Program Committee of the ICANN Board, "Approved Resolution on Dotless
Domains", September 2013.

htrp://\\'\\‘w.iCﬂnn.(i)l‘g/en/groups/bom‘d/documems/1‘esolurions—ne\\'—gr]d— 13augl3-en.htm

ICANN Security and Stability Advisory Committee, "SSAC Report on Dotless Domains",
February 2012.

http://www.icann.org/en/groups/ssac/documents/sac-053-en.pdf

J. Levine, P. Hoffman, “Top Level Domains that Are Already Dotless,” Internet Draft,
October 2013.

http://datatracker.ietf.org/doc/draft-hoffine-already-dotless/?include_text=1

G. Huston, O. Kolkman, A. Sullivan, W. Kumari, G. Michaelson, “Using Test Delegations
from the Root Prior to Full Allocation and Delegation,” Internet Draft, October
2013.

http://tools.ietf.org/html/draft-kolkman-root-test-delegation-01

Page 8

Disclaimer

The views expressed are the authors’” and not those of APNIC, unless APNIC is specifically identified
as the author of the communication. APNIC will not be legally responsible in contract, tort or
otherwise for any statement made in this publication.

About the Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the
Asia Pacific region. He has been closely involved with the development of the Internet for many years,
particularly within Australia, where he was responsible for the initial build of the Internet within the
Australian academic and research sector. He is author of a number of Internet-related books, and was a
member of the Internet Architecture Board from 1999 until 2005, and served on the Board of Trustees
of the Internet Society from 1992 until 2001.

www.potaroo.net

Page 9

