The ISP Column

A monthly column on things Internet

September 2013
Geoff Huston

A Question of DNS Protocols

One of the most prominent denial of service attacks in recent months was one that occurred in March
2013, launched against Spamhaus and Cloudflare.

One writeup of this attack is at h#p:/ / blog.clondflare.com/ the-ddos-that-
almost-broke-the-internet. I'm not sure about the claim that this attack
“almost broke the Internet,” but with a peak volume of attack traffic of
some 120Gbps, it was a very significant attack nevertheless.

How did the attackers generate such massive volumes of attack traffic? The answer lies in the Domain
Name System (DNS). The attackers asked about domain names, and the DNS system answered.
Something we all do all of the time on the Internet. So how can a conventional activity of translating a
domain name into an IP address be turned into a massive attack?

There are a few aspects of the DNS that make it a readily coercible means of generating an attack;

* The DNS makes use of a very simple UDP transaction, where client send queries to resolvers
and resolvers send back responses.

* Within the DNS it is possible to send a relatively small query packet and get the resolver to
reply with a much larger response. The DNS resolver becomes, in effect, a traffic “amplifier.”

* There many so-called “open resolvers, who are willing to respond to queries from any clients
on the Internet. In other words, these resolvers will accept DNS queries from anyone and send
DNS responses to anyone.

The Open Resolver project (http://opentesolverproject.org) claims
that there are some 28 million open resolvers on the Internet at
present). That's a disturbingly high number if you are worried about
ways to subvert the DNS to launch a platform for such attacks.

* Finally, it appears that way too few networks implement source address egress filtering, as
described in BCP38. This is a packet filtering mechanism, which if universally implemented,
would make it far more challenging to mount attacks that relied on essentially lying about the
source address in an IP packet. A network could only emit packets whose source address is
reachable via the same network.

The combination of these four factors produces a comprehensive vulnerability for the Internet. In
performing experiments about the behaviour of the DNS we see a background level of DNS “probes”
that contain a query for “ANY”, often querying the domain ISC.ORG. In this case the original UDP
request of 64 bytes generates a UDP response of 3,475 bytes, or an amplification factor of 54. If an
attacker can send this UDP query to 100 of these open resolvers each second, using a source address of

the intended victim, then the attacker will be generating a query traffic volume of some 51Kbps, and
victim will receive an incoming traffic load of 2.78Mbps. If you then enlist a bot army to replicate this
simple attack one thousand-fold, then the attack traffic volume has exceeded a gigabit per second. With
DNSSEC the response sizes get larger, and the unwitting accomplices in such attacks can expand to
include the authoritative name servers of DNSSEC-signed domain.

The problem is that, in flight, the traffic looks like all other traffic. These are simple DNS responses,
and the network carries DNS responses as one of the more common packet types. So simple filtering is
simply not an option, and we need to look deeper to see how we could mitigate this rather worrisome
vulnerability. This has been a long-standing issue.

For example, these was a presentation from May 2006 on this topic at
an IETF meeting (http://www.iepg.org/july2006/1-frank-scalzo.pdf).
The only difference is that the number of open resolvers has
subsequently jumped from 500,000 to in excess of 25 million!

There have been a number of threads of discussion on this topic.

One thread of conversation goes along the lines that if everyone implemented the measures described
in BCP38, this would prevent endpoints from emitting DNS query packets with a false source address,
and thereby preventing these reflection attacks to be mounted using the DNS. Of course this is a long
standing conversation that is older than BCP38 itself. BCP38 is now 13 years old as a document, and
the somewhat worrisome observation is that nothing much appears to have happened in terms of
improving the situation about source address spoofing over the past 13 years, so there is not a lot of
optimism that anything will change in the coming months, if not years.

There is a conversation thread that says that resolvers should implement response rate limiting (RRL),
and silently discard repetitive queries that exceed some locally configured threshold. While this is
relatively effective in the case of authoritative name servers, it is less effective in the face of a massive
pool of open recursive resolvers, as in this latter case the query load can be spread across the entire
pool so that each resolver may not experience a detectable level of repeated queries. It is also possible
to use a very pool of authoritative name servers in the same manner. However, this consideration does
not weaken the advice that authoritative name servers should implement RRL in any case.

There is an informative presentation by Randy Bush at the 2013
APRICOT conference (http://bitly/17QINOV), illustrating the
before and after state of the application of RRL for an authoritative
name server.

Another thread of conversation is to shutdown the open recursive resolvers. The open resolver project
(http://opentesolverproject.org) is working on a “name and shame” approach to the problem, and is
hopeful that by allowing individual resolver operators to check their own status, that these resolvers
will be closed down. Like the universal adoption of BCP38, It’s hard to be overly optimistic about this
approach. Part of the issue is that there is a large volume of unmanaged or semi-managed systems
connected to the Internet, and the vulnerabilities they create are not necessarily known to the parties
who deployed these systems in the first place. For example, one way to create more robust “plug and
play” systems is to reduce the amount of environmental configuration that needs to be loaded into such
systems in the first place. Equipping such standalone units with their own DNS resolver appears to be
a way to remove an additional configuration element from the unit. The downside is that if these units
are configured as an open recursive resolver, then they become part of the overall problem of the
massive population of open resolvers on today’s Internet.

Page 2

The behaviour of the DNS where a small-sized query generates a large response is one that appears to
be intrinsic to the DNS, and particularly DNSSEC. If we want some form of security in the DNS so
that the client can be assured that the response they receive is authentic and current, and has not been
tampered with in any way, then the overheads of cryptographic signature blocks and the size these
signature blocks take up appears to be an intrinsic part of the DNS’ security architecture. So we want a
lightweight fast DNS, so we appear like using UDP, coupled with a ubiquitous distribution of recursive
resolvers and the associated resolver caches, but we also want DNS responses that can be verified, so
we like DNSSEC. So the responses get larger, and the outcome is that the DNS is a highly effective
platform for massive traffic attacks where there is a very limited space to mitigate the associated risks.

If we want to close the door on using the DNS to mount large scale attacks, there does not appear to
be much space left to manoeuver here.

However, there is a conversation that has not quite petered out yet. That conversation is about the use
of UDP in the DNS.

The original specification of the name system (RFC1123) allowed for the use of both UDP and TCP
as the transport service for DNS queries and responses. The relevant part of this specification reads:

“... it is also clear that some new DNS record types defined in the
future will contain information exceeding the 512 byte limit that
applies to UDP, and hence will require TCP. Thus, resolvers and
name servers should implement TCP services as a backup to UDP
today, with the knowledge that they will require the TCP service

in the future.”

Why 512 bytes? The 512 byte limit was based on the IPv4 Host
Requirement Specification (RFC1122), where it is required that all IPv4
systems must accept an IP packet that is at least 576 octets in size.
Allowing for 20 bytes of IP header, 8 bytes of UDP headers and room
for the maximum of 40 bytes of IP options, this implies that the
maximum payload in a UDP packet that will be accepted by all 1Pv4
hosts is restricted to 512 bytes.

It should be noted that it is theoretically possible that there are links that do not support IP packets of
576 bytes in size, so even these 576 byte IP packets may possibly be fragmented in flight. The limit
being referred to here is the largest (possibly reassembled) packet that a host will assuredly accept.

Now of course it is possible to generate larger packets in IPv4, to a theoretical maximum of 65,535
bytes in size, which accommodates a UDP payload of 65,507 bytes, but such larger packets will
probably be fragmented in flight. In such a case, when this is combined with typical firewall behaviour,
then the trailing packet fragments may not be passed onward to a client at all, as many firewall
configurations use acceptance rules based on UDP and TCP port address. As the trailing fragments of
a fragmented IP datagram have no UDP or TCP packet header, this leaves with the firewall with a
quandary. Should the firewall accept all IP fragments? In this case the security role of the firewall may
be compromised through the transmission of fragments that form part of some form of hostile attack.
Or should the firewall discard all IP fragments? In this case a sender of a large packet should be aware
that if there is fragmentation, then the trailing packet fragments may not be passed to the receiver. So
with the two considerations that hosts are not required to accept UDP datagrams that are larger than
576 bytes in size, and firewalls may discard trailing fragments of an IP datagram, the original DNS
response to this situation was to limit all of its UDP responses to 512 bytes in size, and always use TCP
as the backup plan if the DNS response was larger than 512 bytes in size.

Page 3

However, clients may not know in advance that a DNS response is larger than 512 bytes in size. To
signal to a client that it should use TCP to retrieve the complete DNS response, the DNS resolver will
respond in UDP with a partial response, and set the “truncated” bit in the response.

We continued for some years with this approach. The DNS used UDP for the bulk of its transactions,
which all fitted within the 512 byte limit, and for the relatively infrequent case where larger DNS
responses were being generated, the UDP response was truncated, and the client was expected to
repeat the question over a TCP connection.

This was not an altogether comfortable situation when we then considered adding security credentials
to the DNS. The inclusion of digital signatures in DNS responses implied that very few DNSSEC
responses would fit within this 512 byte limit. But if the process of switching to TCP was to respond to
the UDP query with a UDP response that essentially said “Please use TCP” then this adds a
considerable delay to the DNS function. Each query would now involve a minimum of 3 round-trip
time interactions with the server rather than just the single round trip time interval for UDP (a TCP
transaction still includes one transaction for the UDP query and truncated UDP response, one for the
TCP connection establishment handshake, and one for the TCP query and response). The next
refinement of the DNS was to include a way to signal that a client was able to handle larger DNS
responses in UDP.

As pointed out in RFC59606:

“Since the original core specifications for DNS were written, the
Extension Mechanisms for DNS (EDNSO [RFC2671]) have been introduced.
These extensions can be used to indicate that the client is prepared
to receive UDP responses larger than 512 bytes. An EDNSO-compatible
server receiving a request from an EDNSO-compatible client may send
UDP packets up to that client's announced buffer size without
truncation.”

EDNSO allows for the UDP-based DNS response to grow to far higher sizes. The result of this
extension is that it appears that the DNS largely uses UDP and EDNSO is used to allow for the larger
sized responses. TCP is now often regarded as a somewhat esoteric option, only being used for zone
transfer operations, and if the zone does not want to support zone transfers as a matter of local policy,
then it is commonly thought that the role of TCP is no longer essential.

Section 6.1.3.2 of the Host Requirements Specification that addresses requirements for applications and
support (RFC1123) states:

DNS resolvers and recursive servers MUST support UDP, and SHOULD
support TCP, for sending (non-zone-transfer) queries.

In the world of standards specifications and so-called normative language, that “SHOULD” in the
above text is different to a “MUST.” It’s a little stronger than saying “well, you can do that if you want
to”, but it's a little weaker than saying “You really have to do this. There is no option not to.” Little
wonder than some implementors of DNS resolvers and some folk who configure firewalls came to the
conclusion that DNS over TCP was an optional part of the DNS specification that need not necessarily
be supported.

But DNS over TCP is not only a tool to allow for large DNS responses. If we review the preconditions
for the use of the DNS in large scale reflector attacks, the widespread support of UDP for large packet
responses, and the relatively sparse use of BCP38, allows an attacker to mount a reflection attack by co-
opting a large set of open resolvers to send their responses to the target system, by using UDP queries
whose IP source address is the IP address of the intended victim.

TCP does not have the same vulnerability. If an attacker were to attempt to open up a TCP session
using an IP source address of the intended victim, the victim would receive a short IP packet (IP and

Page 4

TCP header only, which is a 40 byte packet) containing only the SYN and ACK flags set. As the victim
system has no pre-existing state for this TCP connection, it will discard the packet. Depending on the
local configuration, it may send a TCP RESET to the other end to indicate that it has no state, or the
discard may be completely silent. This removes one of the essential preconditions for a reflector
amplification attack. If the attack traffic with the spoofed source address of the intended victim uses a
40 byte SYN TCP packet then the victim will receive a 40 byte SYN/ACK TCP packet. The DNS
attack amplification factor would be effectively removed.

If the DNS represents such a significant vulnerability for the Internet through these UDP-based
reflection attacks, then does TCP represent a potential mitigation? Could we realistically contemplate
moving away from the ubiquitous use of ENDSO to support large DNS responses in UDP, and instead
use DNS name servers that limit the maximal size of their UDP responses, and turn to TCP for larger
responses?

Again, lets turn to RFC59606:

“The majority of DNS server operators already support TCP and the
default configuration for most software implementations is to support
TCP. The primary audience for this document is those implementors
whose failure to support TCP restricts interoperability and limits
deployment of new DNS features.”

The question we are looking at here is, can we quantify the extent to which DNS resolvers are capable
of using TCP for DNS queries and responses? How big is this “majority of DNS server operators”
being referred to above?

The Experiment

We conducted an experiment using a modified DNS name server, where the maximal UDP packet size,
was configured to 512 bytes, and then set up an experiment where a simple query to resolve a DNS
name would generate a response what could not fit within 512 bytes.

While this is relatively easy if the query includes DNSSEC, if we want to set up a condition where all
DNS responses are larger than 512 bytes for a domain then we need to use a slightly different

approach. The approach used in this iteration of the experiment is to use the DNS name alias function,
the CNAME record.

Here is a sample zone:

$TTL 1h
@ IN SOA nsx.dotnxdomain.net. research.apnic.net. (
2013011406 ; Serial

3600 ; Refresh
900 ; Retry
1 ; Expire
1) ; Minimum

IN NS nszl.z.dothxdomain.net.
z1 IN A 199.102.79.186
* IN A 199.102.79.186
429c317£.4f1€7062.6567c55¢.0be33b7b.2b51341.2352853£.59¢4df1d.3b069e4e.87ea53bc.2bdcfb4£.987d5318.£c0f8f61.3cbe5065.8d9a9¢ec4.1ddfa
1c2.4fee4676.1ffb7fcc.ace02a11.a3277bf4.2252b9ed.9b15950d.db03a738.dde1£863.3b0bf729 IN CNAME
33d23a33.3b7acf35.9bd5b553.3ad42a35.09207¢36.2095a7ae.1dc33700.1032d556.32564678.16395067.a12ec545.6183d935.c68cebfb.41a4008¢.4f
291b87.479c69¢e.5¢a48£86.7d11871.7572d592.9d7d4ac3.06b70413.1706£018.0754fa29.9d24b07c

33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207¢36.2095a7ae.1dc33700.103ad556.32564678.16395067.a12ec545.6183d935.c68cebfb.41a4008e.4f
291b87.479¢6f9e.5¢a48£86.7d1187£1.7572d592.9d7d4ac3.06b70413.1706£f018.0754a29.9d24b07c IN A 199.102.79.187

The use of the combination of long label strings and a CNAME construct forces a large response,
which, in turn, triggers DNS to send a truncated UDP response in response to a conventional query for

Page 5

the address record for the original domain name. The truncated UDP response should force the client
resolver to open a TCP session with the name server, and ask the same query again.

To ensure that the authoritative name server directly processed every name query we used unique labels
for each presented experiment, and ensured that the DNSSEC singed zones were also unique. This
ensures that local DNS resolver caches cannot respond to these name queries.

The first question we are interested is: How many clients were able to successfully switch to TCP
following the receipt of a truncated response in UDP?

We conducted an experiment by embedding a number of test cases inside an online ad, and over 8 days
at the end of July 2013 we presented these tests to 2,045,287 end clients. We used four experiments.
Two experiments used a name where the query and response would fit within a 512 byte payload, as
long as the query did not include a request for DNSSEC. One of these domain names was unsigned,
while the other was signed. The other two experiments using the CNAME approach to ensure that the
response would be larger than 512 bytes. Again, one zone was signed, while the other was unsigned.

Experiment UDP | Truncated TCP | Truncated
queries UDP | responses UDP to

responses TCP fail

Short, unsigned 2,029,725 2 6 0
Short, signed 2,037,563 | 1,699,935 | 1,660,754 39,101
(83.4%) (81.5%) (1.9%)

Long, unsigned 2,023,205 2,021,212 1,968,927 52,285
(99.9%) (97.3%) (2.6%)

Long, signed 2,033,535 | 2,032,176 | 1,978,396 53,780
(99.9%) (97.3%) (2.6%)

This data appears to point to a level of failure to followup from a truncated UDP response to a TCP
connection of some 2.6% of clients.

That level of failure to switch from a truncated UDP response to re-phrase the query over TCP is large
enough to be significant. The first question is this failure due to some failure of the DNS authoritative
name server or a failure of the client resolver? If the name server is experiencing a high TCP session
load it will reject new TCP sessions. The way it does this is to respond to incoming TCP session
establishment packets with a RESET. We saw no evidence of this session overload behaviour in the
packet traces that were gathered by the authoritative name server. So the TCP failure looks to be some
issue closer to the client resolver than to the authoritative name server.

We can also look at this from the perspective of the set of visible resolvers. How many resolvers will
switch to use TCP when they receive a UDP response that is truncated? Before looking at the results, it
needs to be noted that the only resolvers that are exposed in this experiment are those resolvers that
query our authoritative name server (viszble resolvers). If a resolver is configured to use a recursive
resolver, then its behaviour will not be directly exposed in this experiment. It should also be noted that
even when the visible recursive resolver is forced to use TCP to query the authoritative name server,
the recursive resolver may still relay the response back to its client via UDP, using EDNSO to ensure
that the larger UDP response is acceptable to the client.

The 2 million clients used a total of 80,505 visible resolvers. Some 13,483 resolvers, or 17% of these
visible resolvers did not generate any TCP transactions with the authoritative name server. These
13,483 UDP-only resolvers made a total of 4,446,670 queries, and of these some 4,269,495 responses
were truncated, yet none of these resolvers switched to TCP.

Page 6

There is a second class of filtering middleware that operates on incoming traffic. In such cases the
authoritative server will see an incoming TCP SYN packet to establish the DNS connection, and the
server will response with a SYN+ACK packet. Because this packet will be blocked by the filtering
middleware, it will never get passed through to the resolver client, and the TCP connection will not be
established. This SYN-only behaviour was observed in just 337 resolvers, which represents some 0.4%
of the set of visible resolvers. These resolvers generated a total of 1,719,945 queries, and received
1,575,328 truncated UDP responses.

Why is the client-level TCP failure rate at some 2% - 3% of clients, while at the resolver level the TCP
failure rate is some 17% of visible resolvers? There are at least three possible reasons for this.

Firstly, in some cases we observe service providers using DNS forwarder farms, where queries are
spread across a number of query engines. When a DNS query is re-phrased using TCP, it may not use
the same forwarder to make the query.

Secondly, we should factor in end client failover to another DNS resolver that can support DNS
transactions over TCP. Most clients are configured with multiple resolvers, and when one resolver fails
to provide a response the client will ask the query of the second and subsequent resolvers in its resolver
set. If any of the visible resolvers associated with the resolvers listed in the client’s resolver set are
capable of using TCP, then at some stage we will see a TCP transaction at the authoritative name
server. In this more prevalent case of TCP failure, either the resolver itself is not capable of generating
a DNS query using TCP (due presumably to local limitations in the resolver software or local
configuration settings), or some network middleware is preventing the resolver performing outgoing
TCP connections to port 53.

Thirdly, the distribution of end clients across the set of visible resolvers is not even, and while some
resolvers, such as the set used by Google’s Public DNS setvice serve some 7% of all end clients, others
serve a single end client. We observed that some 53,000 experiments, out of a total of some 2 million
experiments, failing to complete a TCP-based DNS resolution, so it is also possible that these 13,483
visible resolvers that do not support TCP queries are entirely consistent in volume with this level of
end client failure to resolve the experiment’s DNS label.

There is a slightly different way to look at this question. While we saw some 53,000 experiments that
failed to complete the DNS resolution at all, how many experiments were affected by this deliberate
effort to force resolvers to use TCP? How many clients were impacted in terms of longer DNS
resolution time through the use of DNS resolvers that fail to switch to use TCP?

Experiment UDP | Truncated TCP | Truncated Used
queries UDP | responses UDP to | TCP-Fail

responses TCP fail | Resolvers

Long, unsigned 2,023,205 | 2,021,212 | 1,968,927 52,285 124,881
(99.9%) (97.3%) (2.6%) (6.1%)

Long, signed 2,033,535 | 2,032,176 | 1,978,396 53,780 129,555
(99.9%) (97.3%) (2.6%) (6.4%)

This table shows that slightly more than 6% of all clients used a resolver that was unable to repeat the
DNS query over TCP. Some 75,000 clients used an alternate resolver that was capable of performing
the TCP query, while the remainder were unable to resolve the DNS name at all.

After running this initial experiment, we considered the use of the CNAME construct to inflate the
DNS response to more that 512 bytes, and wondered if this additional DNS indirection created some
problems for some resolver clients. Another approach to coerce client resolvers to use TCP is to
modify the name server code and drop its UDP maximum size to 275 octets, so that the name server
will truncate the UDP response for any response of 276 bytes or larger. In this way a DNS query for

Page 7

the short unsigned name would fit within the new UDP limit, but in all other cases the UDP response
would be truncated.

The results we saw for this second experiment, which removed the CNAME entry, and used an
authoritative name server with a 275 byte UDP payload limit, with three days of collected data, are
summarized in the following table.

Experiment UDP | Truncated TCP | Truncated
queries UDP | responses UDP to

responses TCP fail

Short, unsigned 704,458 0 3 0
Short, signed 706,975 581,081 568,704 12,377
(82.2%) (80.4%) (1.8%)

Long, unsigned 703,384 571,182 556,835 14,977
(81.3%) (79.2%)) (2.1%)

Long, signed 706,553 579,639 564,716 14,923
(82.0%) (79.9%) (2.1%)

These results are largely consistent with the results of the original experiment. The failure rate is slightly
lower, and this may lead to one further possible reason why a DNS resolver will fail to re-phrase the
query in TCP following making a query in UDP. DNS Resolvers may be configured to operate within
the parameters of a maximal elapsed time to resolve a DNS name, and once this time has elapsed they
may simply abort their efforts to resolve a DNS name. With the CNAME construct we have seen some
resolvers perform an additional query. When the query the original DNS name, the name server returns
the CNAME record and the A record for the target of the CNAME. A small proportion of resolvers
appear not to use the supplied A record in the response, and take the CNAME target name and launch
a second query for the A record of this CNAME target name. The increase in elapsed time to perform
another DNS query may have some bearing on the triggering of the resolver client’s maximum
resolution timer. It appears that the number of clients who would be impacted by a forced switch to
TCP is of the order of 2% of clients.

Conclusion

The original specification of the DNS called for resolvers to use UDP when the response was 512 bytes
or smaller, and TCP was to be used for larger DNS transactions. DNS clients would interpret the
truncated flag in a DNS UDP response to trigger a re-query using TCP.

With the introduction of EDNSO, clients can now signal their capability to accept larger UDP
datagrams, with the result that the fallback to TCP for large DNS responses is used less frequently, to
the extent that there is now a concern that a significant set of clients cannot resolve a DNS name if that
resolution operation is required to occur using TCP.

However, DNS UDP is being used in various forms of malicious attack, using DNS queries where the
response is far larger than the query. The combination of source address spoofing and DNS over UDP
is presenting us with some significant issues. For that reason there is a renewed consideration of the
viability of reverting to TCP for various forms of larger DNS responses, which effectively prevents
source address spoofing in the DNS query / response interaction.

In this experiment we’ve looked at the impact a forced switch to DNS over TCP would have on clients.
In particular, what proportion of clients would no longer be able to complete a DNS name resolution
process if the process necessarily involved the use of TCP? Our measurements of a sample of 2 million
clients in early August 2013 points to a DNS resolution failure rate for some 2% of clients.

Page 8

The picture for individual DNS resolvers appears to be somewhat worse, in that some 17% of visible
resolvers do not successfully followup with a TCP connection following the reception of a truncated
UDP response.

While that 17% number is surprisingly high, there are two mitigating factors here.

It appears that clients make use of multiple DNS resolvers in their local DNS configuration, so that
failure of an initially selected resolver to respond to a query due to lack of support for TCP may be
resolved by the clients selecting the next resolver from their local resolver set. For this set of clients,
which appears to encompass some 4% of the total client population, the penalty is increased DNS
resolution time, where the resolution of a name requires the client to failover to the other resolvers
listed in their local DNS resolver set.

Secondly, the more intensively used visible DNS resolvers appear to be perfectly capable of supporting

TCP-based queries, so the issues with TCP support in the DNS appear to be predominately concerned
with resolvers that are used by a relatively small pool of end clients.

Page 9

Disclaimer

The views expressed are the authors’” and not those of APNIC, unless APNIC is specifically identified
as the author of the communication. APNIC will not be legally responsible in contract, tort or
otherwise for any statement made in this publication.

About the Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the
Asia Pacific region. He has been closely involved with the development of the Internet for many years,
particularly within Australia, where he was responsible for the initial build of the Internet within the
Australian academic and research sector. He is author of a number of Internet-related books, and was a
member of the Internet Architecture Board from 1999 until 2005, and served on the Board of Trustees
of the Internet Society from 1992 until 2001.

www.potaroo.net

Page 10

