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Measuring DNSSEC Performance 
 
In February and March of 2013 we conducted a set of measurement tests to understand the extent to 
which today's Internet-connected end systems are capable of performing validation of DNS responses. 
 
The experiment tested some 5.3 million end systems, using test code within an advertisement to 
perform the test, and using Google’s online ad delivery system to deliver the test to end systems. Of 
these 5.3 million end systems that received the impression of the advertisement, some 4 million 
completed the test code, and of these systems some 120,000 systems, or 3% of the tested set appeared 
to use exclusively DNS resolvers that performed DNSSEC validation. In other words it appears that 
some 3% of end systems are “covered” by DNSSEC. A further 2% of end systems appear use a 
combination of DNSSEC-validating and non-validating resolvers. The remaining systems do not 
generate any DNSSEC queries at all when resolving DNSSEC-signed DNS names. 
 
There have been a number of reasons why both domain name administrators and vendors of client 
DNS software cite for not incorporating DNSSEC signing. The added complexity of the name 
administration process when signatures are added to the mix, the challenges of maintaining current root 
trust keys, and the adverse consequences of DNSSEC signature validation failure have all been 
mentioned as reasons to hesitate. We have also heard concerns over increased overhead of using 
DNSSEC. These concerns come from zone administrators, authoritative name server operators and 
from suppliers of DNS resolver systems, and all point to a concern over the imposition of further 
overheads in the process of DNS name resolution when the name being resolved is DNSSEC signed. 
While the issues of complexity are challenging to quantify, we were interested in the issues of 
performance. What are the performance costs of adding DNSSEC signatures to a domain?  
 
In measuring the "performance" of DNSSEC there are a number of possible considerations we’d like 
to address: 
 

• In having DNSSEC-validating DNS resolvers assemble a signature validation chain for the 
signed resource record, what is the incremental time for resolution of DNS queries if the end 
system uses a DNSSEC-validating resolver? 

 
• In serving a DNSSEC-signed zone do we see a considerable increase in the number of queries 

made to the zone's authoritative name server?  Can we quantify the increased server query load? 
 
• In providing signatures to DNSSEC responses what is the extent of increased DNS traffic due 

to the larger DNS response packets? 
 

• What’s the performance implications of an invalidly-signed DNSSEC signature? 
      
This article will explore these performance questions, comparing the predictions from the model of 
DNSSEC operation to the observed behaviour of the end systems that were tested for DNSSEC 
support. 
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The DNSSEC Measurement 
Firstly, a recap of the measurement exercise we use to test DNSSEC use.  
 
The experiment uses an online advertisement campaign to deliver the test code to end systems. When 
the end system is passed an ad that is carrying the experiment the system runs embedded Adobe Flash 
code. The code is executed when the ad is passed to the user, and does not rely on a user "click" or any 
other user trigger action. The active code interrogates one of two experiment controllers by performing 
a URL fetch. The contents of the fetched experiment control URL are a dynamically generated 
sequence of four URLs. These four URLs are the substance of the test setup 
 

• The first URL is that of a transparent 1x1 png image file. This URL uses a domain name that 
has been DNSSEC-signed, and the DNSSEC signature is valid, in that there exists a valid 
sequence of DNSKEY and DS records from the DNS root zone to this URL. This is the A 
test: 
http://a.u7280280162.s1364784185.v6022.69da1.z.dotnxdomain.net/1x1.png 

 
• The second URL is also a transparent 1x1 png image file. The URL uses a domain name that is 

similarly structures to the "d" URL, but where the domain name is not DNSSEC-signed. This is 
the B test: 
http://b.u7280280162.s1364784185.v6022.69da1.z.dashnxdomain.net/1x1.png 

 
• The third URL is also a transparent 1x1 png image file. The URL uses a domain name that is 

similarly structured to the A URL, but where the domain name is DNSSEC-signed. The 
difference between this domain name and the first domain name is that here the DNSSEC 
validation is configured to fail, as the validation path is deliberately broken. In this case the 
breakage is by a deliberate break in the signature validation chain, where a DS Resource record 
does not contain the hash of any of the corresponding DNSKEY keys. This is the C test: 
http://c.u7280280162.s1364784185.v6022.69da2.z.dotnxdomain.net/1x1.png 

 
• The fourth and last URL is used by the end system to pass data back to the experiment server. 

The DNS name used in this URL is not signed. The parameters added to the URL when the 
object is fetch is the times, as measured by the end system, to fetch each of the first three 
URLs. This URL is triggered to be fetched by the end system when either  all three (A, B and 
C) URLs have all been fetched, or a local 10 second timer has elapsed. The purpose of this 
URL is to allow us to distinguish between experiments where the code runs to completion (or 
at least for 10 seconds), and where the execution of the test code is aborted by the user. This is 
the "result" URL: 
http://results.u7280280162.s1364784185.v6022.69da1.x.rand.apnic.net/1x1.png 

 
The experiment uses a consistent ordering in the way in which the URLs are loaded so that the end 
system browser’s Adobe Flash subsystem is instructed to load the A, B and C URLs to the local fetch 
queue in that order. 
 
All four URLs share a unique identifier within the DNS part of the URL. In the above example, it’s the 
string “u7280280162.s1364784185.v6022” This allows us to link up the logs of the separate DNS 
queries and URL fetches into a consistent picture of the execution of each experiment. All four parts of 
the experiment contain this common string.  
 
The experiment uses some 750,000 unique domain names. Some 500,000 subdomains are located as 
subdomains of “z.dotnxdomain.net”. A further 250,000 subdomains are placed under 
“z.dashnxdomain.net”. Each of these subdomains contains a single wildcard entry, with a single A RR 
entry. In the “dotnxdomain.net” domain all these subdomains are DNSSEC signed. For odd-
numbered subdomains the DNSSEC signature is valid, while in the even numbered subdomains the 
DNSSEC signature is invalid. The “dashnxdomain.net”domain does not use DNSSEC signatures. 
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While it is feasible to generate a DNS zone file with millions of signed zones, we decided to use 
an approach that did not require the generation of extremely large DNS zone files. In this 
experiment we have set the DNS TTL at one hour, and we want to ensure that within a 
minimum of two hours no unique DNS label is reused. To achieve this we used 250,000 unique 
labels in the experiment with the one hour TTL, ensuring that as long as the DNS resolvers 
honour the TTL of cached data we will avoid the issue of DNS cache behaviour masking the 
DNSSEC validation queries we are looking for. 

 
The rationale for picking these particular DNS size parameters is as follows. We started with 
examining the Google’s ad delivery rate. As every ad impression makes a request from the 
advertisement control server it is possible to track the number of ad impressions per second. 
When looking at the number of ad impressions per second on a day-by-day basis, the results are 
shown in Figure 1. 

 

 
 

Figure 1 – Per-second Ad Impression Rate 
 
 

It appears that the Google Ad delivery system normally delivers up to 10 ads per second with 
the settings we used for the advertising campaign. 
 
But in our case it’s not the peak per second rate that is the issue. We are interested in the 
number of ads that are delivered in any two hour interval. The number of ads delivered in a two 
hour sliding window on a second-by-second basis for a number of days of an ad campaign is 
shown in Figure 2. 
 

 
 

Figure 2 – 2 Hour Sliding Window Per-second Ad Impression Rate 
 
The highest 2 hour period of ad delivery was experienced on the first day of the experiment, 
where a peak of some 75,000 ads were delivered in a two hour period. The overall result was 
that in each 24 hour period the ad was delivered between 230,000 and 330,000 times.  



  Page 4 

 
Therefore, an ad delivery system that cycles through 250,000 unique labels will have a cycle 
period of between 18 to 26 hours. This appears to be adequately longer than the 1 hour TTL on 
the DNS data. 
 

The experiment is measured at two points:  
 

• The end system’s browser measures the elapsed time from the time the fetch URL is 
dynamically added to the end system's document until the time when the object fetch has 
successfully completed. In the context of this experiment, this would conventionally generate 
three time values, each of which measure the time taken to resolve the URL and then undertake 
an HTTP fetch of the referenced object. 

 
• The server used for this experiment is both the DNS authoritative name server for these 

domain names and the web server for the URLs. All transactions on this server are logged at 
both the application level, where the DNS name daemon logs DNS queries as they are received 
and the web server logs URL fetches as they are completed, and the packet level, where all 
incoming and outgoings packets are recorded. 

   
This allows each URL fetch to be timed by the end system and by the server. 
 

The Theory of DNSSEC Performance 
If we look at the queries made by a end system who uses a non-validating DNS resolver, the sequence 
is relatively straightforward: 
 
    DNS   Query -EDC IN A b.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
    HTTP GET /crossdomain.xml b.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
    HTTP GET /1x1.png b.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
 
The end system makes an initial request for the address of the given URL. Because the URL uses a 
unique label we can ensure that the DNS subsystem cannot use an already cached response, and the 
query is passed to our instrumented authoritative name server.  
 
When the end system receives the DNS response, it then proceeds to load the image. As the end 
system is running the Adobe Flash player, the end system's Flash Player needs to obtain permission to 
talk to servers other than the one that provided the original Flash code. We see this permission check 
as a fetch for a crossdomain.xml object that contains the policy statements for this server. Once this 
fetch completes, the end system then fetches the image URL.  
 
How long should these three network transactions take? 
 
The DNS component of this fetch should be no faster than one round trip time interval (RTT) 
between the end system and the server, and, depending on the level to which the parent domain’s 
details are already cached by the end system's DNS resolver, this may involve additional queries. 
Because the object contains a unique DNS label we can be confident that the name does not already 
exist in the DNS resolver’s cache, so the end system’s query to its DNS resolver will end up in a query 
being received at our authoritative name server. 
 
The HTTP fetch involves a TCP handshake then a HTTP fetch, and this sequence operates at a 
minimum of 2 x RTTs. There is no visible evidence of pipelining the two HTTP requests in a single 
TCP session from our collected data, so this 2 x RTT interval will apply to each HTTP fetch. 
 
This implies that this entire transaction to fetch a web object will take, at a minimum, a 5 x RTT  
interval, as measured by the end system. 
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If the domain name is DNSSEC-signed, and the DNS resolver is performing DNSSEC validation, then 
the sequence of transactions as seen at the experiment's server now includes additional DNS queries 
related to DNSSEC validation: 
 
    DNS   Query: -ED IN A a.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
    DNS   Query: -ED IN DNSKEY 5e4e3.z.dotnxdomain.net 
    DNS   Query: -ED IN DS 5e4e3.z.dotnxdomain.net 
    HTTP GET /crossdomain.xml a.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
    HTTP GET /1x1.png a.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
 
Again, at a minimum, this sequence of transactions will take 7 x RTTs, with the additional time being 
used to perform the DNSKEY and DS queries. 
 
The expectation here is that if the end system uses DNSSEC-validating DNS resolvers then the elapsed 
time to fetch the A URL (DNSSEC-signed) should take approximately 1.5 times the amount of time 
taken to fetch the B (unsigned) URL.  
 
The C URL, with the invalid DNSSEC signature, presents an interesting case. If the end system is 
using a DNSSEC-validating DNS resolver then the DNS query will generate a DNS response with a 
"Server Fail" error code. This DNSSEC failure would conventionally cause the end system to repeat 
the query to any other configured DNS resolvers. If this second resolver is not a DNSSEC-validating 
end system, then the query will generate a response with the requested address. 
 
    DNS   Query: -ED IN A c.u94278337.s1364428957.v6022.5e4e4.z.dotnxdomain.net 
    DNS   Query: -ED IN DNSKEY 5e4e4.z.dotnxdomain.net 
    DNS   Query: -ED IN DS 5e4e4.z.dotnxdomain.net 
    DNS   Query -EDC IN A c.u94278337.s1364428957.v6022.5e4e4.z.dashnxdomain.net 
    HTTP GET /crossdomain.xml c.u94278337.s1364428957.v6022.5e4e4.z.dashnxdomain.net 
    HTTP GET /1x1.png c.u94278337.s1364428957.v6022.5e4e4.z.dashnxdomain.net 
 
So we would expect that the C URL will take a minimum of twice as long to fetch than the B URL if 
the client is performing DNSSEC validation on only some of its configured DNS resolvers. On the 
other hand, if all the client’s DNS resolvers are performing DNSSEC validation then there will be no 
fetch of the object. 
 

Measuring DNSSEC Performance 

DNS Name Resolution Performance and DNSSEC 
 
The first question to look at is: 

 
“In having DNSSEC-validating DNS resolvers assemble a signature validation chain for the signed 
resource record, what is the incremental time for resolution of DNS queries if the end system uses 
a DNSSEC-validating resolver?” 

 
The experiment has produced a set of client-side times for the retrieval of the three objects.  For each 
experiment we can classify the client as either a client that exclusively uses DNSSEC-validating 
resolvers, a client that uses a mix of DNSSEC-validating resolvers, or a client that does not use 
DNSSEC validating resolvers. If we compare the client-side time to load URL B (unsigned domain 
name) with URL A (validly DNSSEC-signed domain name), then, as shown above we expect to see 
that A will take 1.5 times as long to load as B for clients who use DNSSEC-validing resolvers, and for 
A to load in precisely the same time as B if the resolvers are not performing DNSSEC validation. The 



  Page 6 

result of this experiment which shows the spread of client-measured times for the time to fetch URL a 
minus the time to fetch URL B is shown in Figure 3. 
 

 
Figure 3 – Client-Side timer Fetch(B) – Fetch(A) 

 
This is highly surprising result. We had expected a result as shown in Figure 4, where the time taken to 
fetch A and B were precisely the same in the non-DNSSEC case, and exclusively longer when the client 
used DNSSEC-validating resolvers. 

 
Figure 4 – Client-Side timer Fetch(B) – Fetch(A) – Theoretical Prediction 

 
Our assumption is that the browser is functioning in a threaded mode, where the fetch of these URLs 
proceeds in parallel, and the operation of fetching one object does not impede the fetch of the other 
objects. However, for this experiment, the fetches are being performed by the user’s Flash engine, and 
the experimental results strongly indicate that this assumption of parallel operation by the user’s Flash 
engine is a flawed assumption. 
 
There is a pointer in the slightly higher proportion of clients that take longer to fetch A in Figure 3 to 
conclude that some clients take longer to perform DNSSEC validation, but it is not a clear outcome 
from the client side timings. 
 
If the use of a Flash engine by the client renders client-side timings in this experiment an unreliable 
indicator of performance, are there server-side measurements that could provide a similar view of the 
difference in fetch times that are imposed by the use of DNSSEC? 
 
What does the server see in terms of the number of DNS queries to resolve each domain name. Figure 
5 shows the number of queries made by clients who exclusively use DNSSEC-aware resolvers, and 
compares that to the number of queries used to resolve the non-DNSSEC-signed experiment. 
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Figure 5 – DNS query count per domain name 
 
Slightly over 70% of the resolutions for the non-DNSSEC-signed domain name, B, complete with a 
single query, and 95% of resolutions are completed with two queries. 
 
The DNSSEC-signed domain names require a minimum of three queries (A, DNSKEY and DS 
queries). For the validly-signed domain name 68% of all clients complete their DNS resolution within 
the three queries. A further 18% of clients perform the resolution function in 6 queries. It is assumed 
that in the majority of cases of 6 queries the original client query has timed out, and the client has 
launched a second query before the first query has returned a result. 
 
The invalidly-signed domain shows three local peaks. Some 10% of clients perform 3 queries. Some 
22% perform 6 queries. However, some 20% of DNS resolution operations for the invalidly-signed 
domain generate 20 or more queries. Clearly the consequences of an invalid DNSSEC signature is one 
that has the potential to significantly increase the DNS query load on the server. 
  
We can look at the elapsed time to complete the DNS query sequence for each experiment, taking the 
server-side elapsed time from the receipt of the first query for each domain name to the final query, 
including in this case A, DNSKEY and DS RR queries. This distribution is shown in Figure 6. 
 
The blue line is the query time for the unsigned domain name (B). 30% of the resolutions for the B 
URL take multiple A queries. Local peaks are visible at 1, 2, 4 and 8 seconds, indicating that some 
resolvers are using some form of exponential backoff on re-queries. 
 
The red line is the A URL, where it takes three queries to complete the name resolution, and the green 
line is the invalid DNSSEC domain. While 2% of all resolutions for the A domain name took longer 
than 10 seconds, 17% of all resolutions for the C domain name (invalid DNSSEC signature) took 
longer than 10 seconds. 
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Figure 6 – DNS Resolution Time Distribution 

 
An expansion of the initial 0.5 seconds in Figure 7 shows the effect of DNSSEC in terms of resolution 
time. There are local peaks at for the A domain name at 150ms, 300ms and 450ms, showing the effects 
of the increased DNS query count on the total resolution time. 
 

 
Figure 7 – DNS Resolution Time Distribution – Initial 0.5 seconds 

 
However, the question we are trying to answer here is to measure the increased time to resolve a DNS 
name when there is the additional factor of DNSSEC validation. Figure 8 shows the cumulative 
distribution of resolution times for the three domain names. 
 

 
 

Figure 8 – DNS Resolution Time Distribution – Cumulative Distribution 
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The green line shows the additional time takes to  resolve the DNS name of the C URL. For some 16% 
of clients that use DNSSEC-validating resolvers the name resolution time took more than 10 seconds. 
One half of all DNS resolution attempts by these clients take an additional 1.5 seconds.  
 
The red line in Figure 8 shows the additional time taken by clients who use DNSSEC-validating 
resolvers. Some 10% of clients take 1.5 seconds longer than the single query time, and 25% of clients 
take an additional 0.5 seconds or longer. The detail of the first 0.5 seconds is show in Figure 9. 
 

 
Figure 9 – DNS Resolution Time Distribution – Cumulative Distribution for Initial 0.5 seconds 

 
 
Some 30% of clients who use DNSSEC-validating resolvers complete the DNS query set within an 
additional 100ms over the time taken for a single A query, and 50% of this set of clients complete the 
DNS query operation in 300ms as shown in the red line in Figure 9. 
 
The distribution for the B domain name (blue line) is also worthy of comment. It is noted that 20% of 
clients fetching the B URL generate multiple queries, which is an unexpected form of outcome until 
you factor in the clients who are probing for IPv6 AAAA RRs. But even then it is noted that some 8% 
of clients generate multiple DNS queries that take longer than 500ms to resolve this domain name. 
This is an unexpectedly high result. 
 

There is something less than healthy about an Internet where a some 
8% of clients take more than half a second to perform a very simple 
query of an uncached domain name! 

 
This figure also shows us that 80% of clients resolve and DNSSEC-validate the A DNS name within an 
additional 750ms over the time taken to perform a single DNS query. The median incremental time 
spent to resolve a DNS name by a client who uses DNSSEC-validating resolvers is 280ms when the 
DNSSEC-signature is valid. 
 

So in a world of a “million dollar millisecond” it may appear in the first 
instance that as imposition of some 280 milliseconds additional DNS 
delay is simply too high an imposition. However, there is something 
unusual about this experiment, in that we have negated the effects of 
DNS resolver caching. Every fetch of a domain name is forced to also 
fetch  the DNSKEY and DS RRs. Conventionally, we would expect 
these RR’s to be cached and not fetched upon each and every use. 
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Given that these RR’s apply to the zone file, the likelihood of a cache 
hit is generally far higher than the likelihood of a cache hit on a 
terminal name. This 280ms average time penalty for DNS name 
resolution is only applicable for the “first use” cases where the terminal 
name, and the zone’s DNSKEY and DS records are uncached. When 
the name is held in the cache, the DNS resolution function would be 
confidently anticipated to occur in far shorter time intervals.  

 
The median time for DNS resolution of the C domain name with an invalid DNSSEC signature is a 
significantly longer time penalty of 1.4 seconds, and 80% of all clients complete the name resolution of 
the C URL within 6.5 seconds. There is an issue here, and it relates to the high performance penalty 
that is incurred when a domain name is signed, but when DNSSEC validation cannot validate the 
signature. What appears to be the case here is that when validation failure generates a “Server Fail” 
outcome, the name resolution process then starts a process of launching the query to other DNS 
resolvers to see if they can resolve the name. In this case the search for a successful resolution can take 
a significant amount of time, and some 16% of clients took longer than 10 seconds to perform 
repeated queries to the authoritative name server to resolve the name.  
 
In this case this shows the incremental time penalty of what is perhaps a “best” form of failure. The 
number of name servers at each zone level has been kept to a single name server for all but the second 
level domain zone, where two name servers are used.  Related work on DNSSEC invalidity (“Roll Over 
and Die?”, February 2010, http://www.potaroo.net/ispcol/2010-02/rollover.html) shows that some 
resolvers perform an exhaustive test of all authoritative name servers in the event of validation failure, 
and the more name servers placed on a domain, the larger the query load in the event of validation 
failure (such as an expired key or similar). In this case caching is of marginal help, as DNSSEC-aware 
DNS resolvers should reasonably be expected not to cache DNS names that fail DNSSEC validation. 
In this case our use of a single authoritative name server for the invalid domain produces a DNS 
resolution result for the client in a shorter time than if we had used multiple name authoritative servers 
for the domain. 
 

DNS Authoritative Server Performance and DNSSEC 
 
Now let’s look at the server’s performance. The question we had posed was: 
 

“In serving a DNSSEC-signed zone do we see a considerable increase in the number of queries 
made to the zone's authoritative name server?  Can we quantify the increased server query load?” 

 
 
It must be noted here that we have deliberately structured this experiment in a manner that negates 
caching of answers, so the results presented here are results where the effects of caching are not 
included. 
 
The query load at the authoritative name server is shown in Figure 10. This load is broken down into 
three categories: the queries for the A, B and C DNS names. This includes all RR query types, including 
A and AAA queries (even though there is no AAAA RR used in this experiment). In the case of the A 
and C DNS names the query load includes the fetches for the DNSKEY and DS records. The absolute 
query load in Figure 10 is an artefact of the Ad impression rate. However, it must be remembered that 
every ad includes one unique name in the A, B and C categories, so if all three names were not 
DNSSEC-signed we would expect all three query traces to show equal query volumes. 
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Figure 10 – Query Load as seen at the Authoritative Name Server 

 
 
Evidently the A query load is visibly higher than the B query load, and the C query load is even higher.  
 
The average over the entire collected data was that the queries for the A URL was 12% higher than the 
B URL. Some 96% of tests use resolvers that only fetch A RRs (and some also perform a AAAA query 
as well). The other 4% of tests are also fetching DNSKEY and DS RRs, presumably  as part of some 
form of DNSSEC validation. The minimal case here is that this DNSSEC validation function will entail 
an additional 2 queries, so that the total query load should rise by 8%. However, as noted above, there 
is a significant proportion of clients who are using resolvers that are generating more than 3 queries to 
resolve the A URL, which would be consistent with the observation of a 12% greater query rate at the 
server for the A domain name. The distribution of the number of DNSSEC RR queries for the A test 
is shown in Table 1. 
 

Number of Number of Tests 
DNSSEC RR  

queries  
1 260 
2 116,137 
3 836 
4 22,547 
5 356 
6 2,493 
7 118 
8 5,084 
9 884 

10 418 
11 79 
12 403 
13 44 
14 123 

15<=x<100 752 
100<=x<1,000 276 

1,000<=x 4 
 
Table 1 – DNSSEC RR Query Distribution for “A” 

 
 
As expected there are a large number of tests with 2 queries, and also peaks at 4, 6, and *, which appear 
to be repeated queries for the DNSKEY and DS pair from different DNS resolvers. Presumably the 
use of these additional resolvers is due to client-side timeouts of the original query, where the client 
poses the query to its alternate DNS resolvers when the initial query does not elicit a response in time. 
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There are a small number of cases with very large query counts. This appears to point to some form of 
unresolved operational bug in certain DNS name resolvers. 
 
It would appear that an authoritative name server for a DNSSEC-signed name could expect to see its 
query rate rise by 12% for the signed domain. But again it must be remembered that this is a worst case 
scenario, in that the names used in this experiment are uncacheable. The DNSSEC RRs refer to the 
zone, not the terminal name, so that a cached value of these RRs could be used for all domain names in 
a signed zone. So it’s perhaps more accurate to state that, at present, the increased query rate arising 
from a DNSSEC-signed zone is estimated to be up to 12%. Obviously if the number of clients using 
DNSSEC-validating resolvers rises, this figure will rise as well. If the entire set of clients and resolvers 
were performing DNSSEC validation then the number would be up to 300%, given the current 
behaviour of DNSSEC-validating DNS resolvers and the observed pattern of client-side behaviours. 
 
What happens when the domain name is not validly signed? 
 
The consequences of invalidity in DNSSEC validation are very serious. In this case these same 4% of 
clients who are performing some form of validation function for the C (invalid-signed) URL caused the 
query rate at the server to rise by an average of 37%. 
 
 What appears to be happening here is that the resolvers return a “Server Fail” code to the client, which 
causes the client to re-try the query. The average number of additional queries at the authoritative name 
server in the case of a domain name with an invalid DNSSEC signature is an average of an additional 9 
queries. The distribution of the number of queries for the DNSKEY and DS RRs for the C domain 
name is shown in Table 2. 
 

Number of Number of Tests 
DNSSEC RR  

Queries  
1 275 
2 52,177 
3 5,775 
4 38,986 
5 589 
6 5,451 
7 6,110 
8 9,697 
9 1,425 

10 3,537 
11 204 
12 4,467 
13 204 
14 6,717 
15 210 
16 2,151 
17 147 
18 1,056 
19 1,361 
20 996 
21 2,063 
22 604 
23 121 
24 882 
25 123 
26 1,439 
27 234 
28 1,042 
29 121 

30<=x<100 3,260 
100<=x<=1,000 40 

1000<x 0 

 
Table 2 – DNSSEC RR Query Distribution for “C” 
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In this case the use of additional resolvers is presumably due to the client re-issuing the query to its 
alternate resolvers upon receipt of the “Server Fail” response from DNSSEC-validating resolvers that 
are unable to complete validation. 
 
This 37% increase in the query load is generated by 4% of clients who are performing some form of 
DNSSEC validation. At this rate it the entire client base of the Internet was using DNSSEC-validating 
resolvers then the increase in query load at the authoritative server caused by an invalid DNSSEC 
signature would be some 900% . The effects that caching would have on this figure is uncertain, and 
the nature of the failure would have some bearing on this. This domain also has a single NS record and 
a single authoritative name server. Adding further authoritative name servers would be anticipated to 
increase the query load. 
 

There is a current (April 2013) proposal by the operators of the root 
zone of the DNS to roll the key-signing-key of the root of the DNS. 
The consequences of this key change would be that DNS resolvers that 
are not running with up-to-date root keys, or have not upgraded their 
software to support RFC5011 mechanisms for trust key rollover, will 
then find that all DNSSEC validation operations that depend on the 
root key will then fail. This scenario has not been modelled in this 
particular experiment, but there is some legitimate cause for 
consternation with this proposal. Not only will this cause all signed 
domain names to fail DNSSEC validation for all clients who use these 
validating resolvers who continue to use stale root key information as 
their trust key set, but the other consequence of such a failure is the 
potential to generate a significant increase in the query load on the 
authoritative name servers for the DNSSEC-signed zones if these 
DNS resolvers perform an exhaustive hunt for a valid DNSSEC key 
validation path to the root for every query. 

 
The related DNSSEC authoritative name server performance question related to the traffic load 
imposed on the server: 
 

“In providing signatures to DNSSEC responses what is the extent of increased DNS traffic due 
to the larger DNS response packets?” 

 
In this experiment we’ve been able to isolate the traffic associated with queries and responses for each 
of the three domain names. They are shown in Figures 11 and 12. 
 

 
Figure 11 – Input (Query) Traffic Load as seen at the Authoritative Name Server 
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Figure 12 – Output (Response) Traffic Load as seen at the Authoritative Name Server 
 
 
The traffic for the B domain name shows that the output (response) data rate is some 60% greater than 
the input (query) data rate, corresponding the average packet sizes of the UDP DNS query and 
response packets. 
 
For the A DNS name there are 12% more queries, and 16% of the packets now contain DNSSEC 
signature information. The A response with signatures has grown from some 150 bytes in size to 923 
bytes. The DNSKEY RR response is 723 bytes and the DS RR response is 313 bytes. These 
significantly larger packets increase the traffic load of responses by a factor of 4.3.  
 
This is a significant increase, and perhaps it’s worth a little more analysis. The unsigned response is 150 
bytes in size, while the signed response of the A resource record, plus the size of the DNSKEY and DS 
responses is a total of some 1,950 bytes. The inference is that if all clients used DNSSEC-validating 
resolvers, the traffic levels of an authoritative name server for a DNSSEC-signed domain would 
increase by up to 13 times if all clients queried efficiently. But as only 4% of clients are performing 
DNSSEC validation of some form, then we should expect to see some 4% of clients increase their 
response traffic by some 13 times. That would account for a rise in response traffic volumes by 52%, 
not by 330%. What we observe is a large set of clients are using resolvers that generate queries with the 
DNSSEC OK bit set in the query, but do not follow up with any DNSSEC validation queries. For the 
A URL we observe that 70% of all A queries have the DNSSEC OK bit set. Given that the response to 
a DNSSEC OK query is 923 bytes, or 6 times the size of the query, then if 70% of all queries elicit this 
larger response then this would account for the a traffic increase factor of 4.2, while the additional 
responses for the DNSKEY and DS queries in 4% of cases would account for the additional traffic 
increase. 
 
So the overall result is that if you DNSSEC sign a domain today then some 70% of the received A 
queries will request DNSSEC additional information, and the traffic level in responses will rise by a 
factor of 4.5 over traffic levels for an unsigned domain. If every client used DNSSEC validating 
resolvers then the total traffic levels would increase by a factor of up to 13 over levels associated with 
an unsigned domain. Obviously, once more, caching of the DNSSEC zone values would have some 
impact on this number, and a more accurate working projection is that traffic volumes would increase 
by a factor of between 6 and 13, depending on the zone’s key lifetime and query activity. 
 
For the invalidly-signed domain name the traffic levels in the responses have increased by a factor of 
5.5.  When the DNSSEC-signatures cannot be validated the client will repeat the query on any alternate 
DNS resolvers that have been configured. One way to look at this is to compare it to the validly signed 
domain. DNSSEC-invalidity is observed to increase the total response traffic volume by 20%. But this 
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condition is being encountered by at most 4% of clients. If every client was using resolvers that 
performed DNSSEC validation then the consequence of key expiration, or any other event that caused 
the signature information be become invalid, would increase the traffic levels by 500%. In other words, 
the total traffic volume would be 6 times greater than that of a validly signed domain, or some 96 times 
higher than that of a validly signed domain, when using a single name server in the case where none of 
the responses are cached in DNS resolvers.  
 

Conclusions 
 
If you DNSSEC-sign your domain, then it would be prudent to assume that the small fraction of 
client’s DNS resolvers that currently perform DNSSEC signature validation will only increase over 
time. If you want to plan for a time when the entirety of the DNS resolution function includes the 
capability to perform DNSSEC validation, then signing your domain should entail a prudent provision 
for ensure that your authoritative name servers can handle 4 times the query volume for an unsigned 
version of the domain, and some 15 times the response traffic volumes.  
 
But while it’s good to plan for success, you should perhaps also factor in a plan for failure. Even if you 
operate with precision and care in your own DNSSEC key management and signing practices in zone 
administration, the validity of DNSSEC validation operations depends on an equal level of precision, 
care, and above all stability, all the way to the DNS root keys. If the DNS root keys become invalid for 
any reason, or if the inter-linked chain of DS and DNSKEY key values is broken in any of your 
ancestor DNS zones, then your domain becomes invalid in DNSSEC terms, despite your own efforts 
on local zone management, and you should plan for this eventuality. The consequences of failure are 
serious. In our experiment we’ve used a single name server, and the figure point to a conclusion that if 
you want to plan for a time when the entirety of the DNS resolution function includes the capability to 
perform DNSSEC validation, then making provision for signing your domain should entail a prudent 
provision for ensure that your authoritative name servers can handle 10 times the query volume that 
would be experienced for an unsigned version of the domain, and a total response traffic volume of 
100 times greater. If you have multiple name servers for your domain, and many domains do, then the 
traffic volumes for the domain when the DNSSEC signature is invalid would be expected to rise 
proportionately. This is probably a fruitful area for further measurement in DNSSEC behaviour modes. 
 
For clients, the penalty is one of adding the time to undertake additional queries for DNSKEY and DS 
RRs. Given the serial nature of the query behaviour this can add some delay in name resolution, but 
this would be conventionally anticipated to be offset by cache behaviour, where the DNSSEC RRs are 
per zone rather than terminal names, so DNS caching is potentially highly efficient for DNSSEC. 
 
However, failure is the issue here. When a client’s DNS resolver encounters a failed DNSSEC signature 
validation chain, then the DNS resolver will requery the other name servers, and the client will requery 
the alternate DNS resolvers. This all takes additional time, and in the case of failure  we observe that 
failure takes not just additional milliseconds, but for a large proportion of the client base some 
additional seconds to complete the name resolution process. 
 
The issue here is that in DNSSEC the consequences of failure are extremely severe. Severe both in 
terms of causing client DNS resolvers to thrash, and severe in terms of dramatic increases in the load 
imposed on authoritative name servers. It has probably been said before in other contexts, but in the 
case of DNSSEC what we would really appreciate right now is a better form of failure! 
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Disclaimer 

The views expressed are the authors’ and not those of APNIC, unless APNIC is specifically identified 
as the author of the communication. APNIC will not be legally responsible in contract, tort or 
otherwise for any statement made in this publication. 
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