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DNSSEC and Google’s Public DNS Service 
 
The Domain Name System, or the DNS, is a critical, yet somewhat invisible component of the 
Internet. The world of the Internet is a world of symbols and words. We invoke applications to interact 
with services such as Google, Facebook and Twitter, and the interaction is phrased in human readable 
symbols. But the interaction with the network is one that is entirely in a binary format. So our symbolic 
view of a service, such as www.google.com, has to be translated into a protocol address, such as 
74.125.237.144. The mapping from symbols to protocol addresses is one of the critical functions of the 
DNS. We rely not only on the continued presence of the DNS, but its correct operation as well. 
Entering mybank.com.au in a browser does not necessarily guarantee that your interaction will be with 
your intended service. One of the more insidious attack vectors for the Internet is to deliberately 
corrupt the operation of the DNS, and thereby dupe the user’s application to open a session with the 
wrong destination. The most robust response we’ve managed to devise to mitigate this longstanding 
vulnerability in the DNS has been to add secure cryptographic signatures into the DNS, using a 
technology called DNSSEC. 
 
The story of DNSSEC has strong similarities to that of IPv6. Like IPv6, DNSSEC has been around for 
many years, but its languishing. Like IPv6, DNSSEC is most effective when everyone is using it, and 
the marginal returns from piecemeal adoption are extremely low. And like IPv6, the relatively low levels 
of deployment and use of DNSSEC does not reflect the longstanding effort to lift the visibility of the 
technology and concerted efforts to publicise the clear long term benefits in the use of this technology. 
 
Even when the insidious dangers of an attack on the integrity of the DNS and the widely used Domain 
Name Certificate infrastructure were clearly demonstrated in the Diginotar incident in 2011 
(http://www.potaroo.net/ispcol/2011-10/hacking.html), the potential benefits of the use of DNSSEC and the 
adoption of a secure binding of the domain name to IP address through digital credentials placed in a 
secure DNS framework failed to gain traction in the Internet. In some ways there’s a form of mutual 
deadlock going on: While so few clients use DNSSEC, there appears to be little motivation on the part 
of domain name admins to use DNSSEC to sign domain names. And while there are so few signed 
domain names, there is little motivation to deploy client tools to incorporate DNSSEC validation into 
DNS resolution. And while domain names are largely unsigned and so few clients use DNSSEC to 
validate DNS name resolution outcomes, there is no motivation for domain name admins or browser 
authors to use the DANE technology to provide a secure form of mapping from a domain name to IP 
address and a public TLS key. 
 
Can we quantify the extent to which DNSSEC has been deployed and used in today’s Internet? One 
way is to measure the extent to which domain names are signed using DNSSEC signatures. Services 
such as SecSpider (http://secspider.cs.ucla.edu/growth.html) track the progress of domain signing across the 
various top level and second level DNS zones by counting the number of domain names that include 
DNSSEC credentials. But the other half of the question is also relevant here. To what extent do end 
user applications use DNS resolvers that perform DNSSEC validation when resolving a name? And, 
most critically, to what extent will end user applications refrain from using a DNS name resolution 
result if the domain name is DNSSEC-signed, and the associated DNSSEC signature validation fails? 
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At APNIC Labs we’ve been looking at this second question, attempting to quantify the extent to which 
clients use DNSSEC validation in conjunction with name resolution. Our initial efforts were 
undertaken in October and November 2012. The first measurement exercise in October 2012 pointed 
to some 9% of clients who appeared to use DNS resolvers that were seen to perform some form of 
DNSSEC validation. A re-run of the experiment in November 2012 provided the result that some 
1.6% of clients who appeared to exclusively use DNS resolvers that consistently performed DNSSEC 
validation (http://www.potaroo.net/ispcol/2012-10/counting-dnssec.html, http://www.potaroo.net/ispcol/2012-10/counting-

dnssec-2.html).  
 
Neither of these results were all that satisfying, and the cause of this level of disquiet with the results 
was attempting to factor in the effects of DNS resolver caching into the experiment’s results. In both 
these experiments we used an online ad campaign to enrol millions of end clients to perform a 
collection of objects to retrieve, and in both cases we used wildcards in the DNS and the dynamic 
generation of unique DNS labels to present each client with a set of unique DNS names to resolve.  
However, the exposed a weakness in this approach, in so far as a single DNSSEC signature chain was 
shared across the experiment. This meant that once a DNS resolver had retrieved the DNSSEC 
Resource Records (RRs) for the experiment’s DNS names (the DNSKEY and DS RRs of the signed 
zone containing the wildcard entry) it served all subsequent DNSSEC RR queries from its local cache, 
only refreshing the cached data upon expiry of the cache lifetime of the stored records (which was set 
to one hour). Given that our observation point for the experiment was the DNS query log at the 
authoritative name server, we were forced to infer the DNSSEC capabilities of each of the visible DNS 
resolvers based on the sequence of DNS queries as seen at the authoritative name server and the 
timings between queries. These experiments found an approximate upper bound of around 9% of 
clients using DNSSEC validating resolvers using a rather liberal test for DNSSEC validation, and an 
approximate lower bound of 1.6% of clients who used DNSSEC validating resolvers using a much 
stricter set of constraints of inference rules. Obviously we are interested in reducing the uncertainty in 
these measurements if we can. 
 
In reviewing the previous experiments we noted that one way to remove the need to infer DNS 
resolver behaviour was to use a DNS configuration that removed, as much as possible, the effects of 
DNS resolver cache behaviour. Rather than use a simple wildcard in a common DNSSEC-signed 
domain, if we could present to each client a unique DNSSEC-signed domain, then the unique label 
would force any DNSSEC-validating resolver to retrieve the DNSSEC RRs from the authoritative 
name server for this unique DNS zone. In other words, if the client’s resolvers were performing 
DNSSEC validation then the authoritative name server would not only receive the A queries for the 
address of the domain name, but also receive the DNSKEY and DS queries as part of the DNSSEC 
validation phase. This approach would allow us to ascertain with a greater level of accuracy  how many 
clients were using DNSSEC to validate DNS names.  This DNS name structure is shown in Figure 1. 
 

 
 

Figure 1: Domain Name Structure used to Measure DNSSEC Validation behaviour 
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We ran this version of the DNSSEC measurement experiment from the 8th to the 18th March 2013. 
 
On the 19th March Google announced (http://googleonlinesecurity.blogspot.com.au/2013/03/google-
public-dns-now-supports-dnssec.html) that their Google Public DNS resolvers supported DNSSEC 
validation. In their announcement, Google reported that: 
 

“Currently Google Public DNS is serving more than 130 billion DNS queries on average (peaking at 
150 billion) from more than 70 million unique IP addresses each day. However, only 7% of queries 
from the client side are DNSSEC-enabled (about 3% requesting validation and 4% requesting 
DNSSEC data but no validation) and about 1% of DNS responses from the name server side are 
signed.” 

 
This announcement appeared to present an ideal opportunity for a “before and after” exercise, in 
performing the DNSSEC measurement exercise in the period immediately following Google’s apparent 
switch to its resolvers to perform DNSSEC validation. Just what impact would this switch have on the 
overall picture of clients performing DNSSEC validation? We re-ran the same experiment from the 
22nd March to the 1st April 2013 in order to measure the extent that this announcement of a shift by 
Google’s Public DNS servers has changed the overall picture of clients who use DNSSEC validation. 
 
At this time Google has not turned on DNSSEC validation unconditionally. To quote from additional 
material published by Google (https://developers.google.com/speed/public-dns/faq#dnssec): 
 

Does Google Public DNS support the DNSSEC protocol? 

Yes. Google Public DNS is a validating, security-aware resolver. Currently this is an opt-in feature: 
for queries coming from clients requesting validation (the AD and/or DO flag is set), Google Public 
DNS verifies that response records are correctly authenticated. Validation by default (i.e. for all 
queries) will be enabled soon. 

 

Which client resolvers currently enable DNSSEC? 

Unfortunately, most standard client stub resolvers do not enable full DNSSEC checking and cannot 
be easily reconfigured to do so. We have decided to make our initial launch only cover resolvers that 
explicitly ask for DNSSEC checking so that we become aware of any problems before exposing our 
users to possible large-scale DNS failures due to DNSSEC misconfigurations or outages. Once we 
are happy that we can safely enable DNSSEC for all users except those who explicitly opt out, we 
will do so. 

 
The implication is that, at present, if the client DNS query does not request DNSSEC validation, then 
the Google Public DNS will return a result without performing any form of DNSSEC validation of the 
response. The Google material indicates that a DNSSEC validation request is marked by a DNS query 
having the AD or the DO flag set.  
 
What are these DNS query flags? 

DNSSEC and DNS Query Flags 
 
The DNS protocol, as defined in RFC1034 and RFC 1035, did not include any specific provision for 
validation of DNS responses. The protocol is a simple query/response protocol. The client generates a 
DNS query consisting of a completed header and a query section, and the response contains the same 
header and query sections together with answer, authority and additional sections.  
 
DNSSEC is a backward compatible extension to the DNS protocol, defined in RFCs 4033, 4034, 4035, 
5155 and 6840. There are three flags in a DNS query that contain explicit DNSSEC instructions to a 
resolver.  
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The DO flag 
The first is part of the Extended Mechanisms for DNS (EDNS0), defined in RFC 2671. If the 
DNSSEC OK (DO) bit is set in a query, then this is interpreted as a signal that the response 
should include DNSSEC data in its response. If the response is a Resource Record from a 
DNSSEC-signed zone, then the response should include the signature of the Resource Record 
(RRSIG RR) in additional to the Resource Record response. If there is no such domain, then 
the response should include NSEC or NSEC3 RRs in its response. 

 
The CD flag 

The second is the Checking Disabled (CD) flag. If this flag is set in a query then the resolver 
should return the requested information, including the RRSIG records as appropriate if the DO 
flag is set, but should not attempt to validate the signatures included in the response. By setting 
the CD bit in its query the originating resolver is indicating that it is taking responsibility for 
performing authentication of the response, and that the recursive name server being queried 
should not interfere with this function.  

 
 
The AD flag  

The last flag is the Authenticated Data (AD) flag. This flag has a somewhat unclear meaning. 
Up until the start of 2013 the standards document was RFC4035: 

 
4.6.  Handling of the CD and AD Bits 
   … 
   A security-aware resolver MUST clear the AD bit when composing query 
   messages to protect against buggy name servers that blindly copy 
   header bits that they do not understand from the query message to the 
   response message. 

 
In February RFC6840 was published, with the following re-definition of the AD bit: 

 
5.7.  Setting the AD Bit on Queries 
 
   The semantics of the Authentic Data (AD) bit in the query were 
   previously undefined.  Section 4.6 of [RFC4035] instructed resolvers 
   to always clear the AD bit when composing queries. 
 
   This document defines setting the AD bit in a query as a signal 
   indicating that the requester understands and is interested in the 
   value of the AD bit in the response.  This allows a requester to 
   indicate that it understands the AD bit without also requesting 
   DNSSEC data via the DO bit. 
 
5.8.  Setting the AD Bit on Replies 
 
   Section 3.2.3 of [RFC4035] describes under which conditions a 
   validating resolver should set or clear the AD bit in a response.  In 
   order to interoperate with legacy stub resolvers and middleboxes that 
   neither understand nor ignore the AD bit, validating resolvers SHOULD 
   only set the AD bit when a response both meets the conditions listed 
   in Section 3.2.3 of [RFC4035], and the request contained either a set 
   DO bit or a set AD bit. 

 
Combined Flag Settings 
 
The effect of various combinations flag settings in queries sent to resolvers  is shown in the following 
table. 
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DO CD AD Effect 
0 0 0 The resolver may or may not perform DNSSEC validation. No DNSSEC RRs are passed 

back in the response. 
0 0 1 The resolver should perform validation. No DNSSEC RRs are passed back in the 

response 
0 1 0 The resolver should not perform DNSSEC validation. No DNSSEC RRs are passed back 

in the response 
0 1 1 Mixed signals! The resolver’s actions are undefined. 
1 0 0 The resolver should perform validation, and return DNSSEC RRs in its response 
1 0 1 The resolver should perform validation, and return DNSSEC RRs in its response 
1 1 0 The resolver should not perform DNSSEC validation, but it should return DNSSEC RRs 

in its response 
1 1 1 Mixed signals! The resolver’s actions are undefined. 

 
Table 1: DNSSEC Flag settings in DNS queries 

 
It should be noted that when the resolver is directed not to perform DNSSEC validation, then the 
resolver should respond with the requested resource records, even in the case that the resource records 
are DNSSEC-signed and the signature is invalid. 
 

DNS Resolver Behaviour and DNSSEC 
 
The simplest conceptual model of DNS resolution involving a client, a DNS resolver and a collection 
of authoritative name servers, as shown in Figure 2. 

 
Figure 2 – Simple Model of DNS Resolution for the domain name “x.y.z” 

 
When the client queries its DNS resolver for resolution of a domain name, such as x.y.z, then the DNS 
resolver, assuming that it has a cleared cache state, would first send this query to a root name server. 
The server would respond with the set of authoritative name servers for the top level domain z.. The 
DNS resolver would then send the same query to one of these name servers for z., which would 
respond with the name servers for the domain y.z.. The DNS resolver will then query one of these 
name servers for the DNS name x.y.z., and it will then pass the response it receives back to the client. 
The sequence of DNS queries sent by this DNS resolver after receiving the initial query from the client 
would be as follows: 
 

# Query RR Name Server Response 
1. A x.y.z. . NS for “z.” 
2. A x.y.z. z. NS for “y.z.” 
3. A x.y.z. y.z. A for x.y.z. 

 
Figure 3 – DNS queries without DNSSEC validation 

 
What if this DNS resolver was a DNSSEC validating resolver? This would involve additional DNS 
queries, as the DNS resolver needs to validate the RRSIG record for the retrieved resource record. This 
validation involves a “back trace” up the DNS delegation hierarchy, following the chain of DNSKEY 
and DS RRs until it reaches a trust point, which, in this case, is the signing key for the root zone. The 
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equivalent set of DNS queries for a DNSSEC validating resolver, after receiving the initial query from 
the client, would be as follows: 
 

# Query RR Name Server Response 
1. A EDC x.y.z. . NS for “z.” + RRSIG 
2. A EDC x.y.z. z. NS for “y.” + RRSIG 
3. A EDC x.y.z. y.z. A for x.y.z. + RRSIG 
4. DNSKEY EDC y.z. y.x DNSKEY for zone “y.z” + RRSIG 
5. DS EDC y.z. z. DS for zone “y.z” + RRSIG 
6. DNSKEY ECD z. z. DNSKEY for zone “z.” + RRSIG 
7. DS EDC z. . DS for zone “z.” + RRSIG 
8. DNSKEY EDC . . DNSKEY for zone “.” 

 
Figure 4 – DNS queries with DNSSEC validation 

 
The initial 3 queries are similar, but now the queries emitted by this DNSSEC-validating DNS resolver 
include the EDNS0 (E) extension, and the DNSSEC OK (D) and the Checking Disabled (C) flags. In 
each case the DO flag signals that the responses from the authoritative servers are to include the 
RRSIG RRs, if the zones are indeed DNSSEC-signed.  
 
If we were to look at the transactions on the authoritative server for zone y.z. we would see an A query 
followed by a DNSKEY query. If we were look at the transactions on the authoritative server for the 
parent zone z., there would be an A query, followed by a DS query and a DNSKEY query. And if we 
were to use the same authoritative name server for both z. and x.z. then this name server would see an 
A query for x.y.z., followed by DNSKEY and DS queries for y.z. 
 
From this example it would appear feasible to categorize DNS resolvers into DNSSEC-validating and 
non-validating resolvers based on the observation of DNSKEY and DS queries at the authoritative name 
server. If we observe queries as in Figure 3 then the DNS resolver is a non-validating resolver, and if they 
are as in Figure 4, then the resolver is a DNSSEC-validating resolver. Unfortunately this simple form a 
categorization is not possible, as the picture of DNS resolution can be far more complex that the 
simple picture of Figure 2.  
 
A DNS resolver can be configured to use a “forwarder”. In this case the DNS resolver will not query 
the authoritative name servers directly, but channel its queries through another DNS resolver. The 
advantage of using a forwarder is to leverage the efficiency of caching of DNS results. Variants of this 
resolver configuration allow the forwarding function to be limited to the resolution of specific DNS 
zones rather than apply it to all queries. A resolver can also be configured to fall back to recursive 
resolution if the forwarders fail to provide an answer. There are also “resolver farms” in the DNS, 
where a single logical forwarder may accept DNS queries, but then use a collection of “slave” DNS 
resolvers to undertake the queries. The idealized picture of DNS resolution in Figure 2 should be 
augmented somewhat to illustrate the level of potential complexity involved with DNS resolution. 
Figure 5 shows some of the possible configurations.  
 
 

 
Figure 5 – Some DNS Resolution structures with Forwarders 

 
In the context of the experiment we are undertaking here, we have instrumented only the authoritative 
name server, and we only see the DNS queries submitted by “visible” DNS resolvers to this server. 
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Thus, in terms of directly visible resolvers, the view of the DNS resolution infrastructure is closer to 
that as shown in Figure 6. Here the internal structure of DNS forwarders is effectively occluded from 
the authoritative name server, and the server can only see those resolvers that pass queries to it. 
 

 
Figure 6 –DNS Resolution structures 

 
The implication here is that while this experimental approach can provide a good view of the DNSSEC 
validation capabilities of clients, it requires some level of inference, and an associated level of 
uncertainty of the application inference rules, to infer the DNSSEC validation behavior of DNS 
resolvers. For example, if a DNSEC-validating resolver uses a non-validating forwarder, then the 
authoritative name server will see a sequence of queries from the forwarder with the DO and CD flags 
set that are consistent with DNSSEC validation. If a non-DNSSEC-validating resolver uses as a 
forwarder a DNSSEC-validating resolver, then the authoritative name server may see precisely the 
same sequence of queries from this forwarder.  
 

The DNSSEC Measurement Experiment 
 
In this experiment an Adobe Flash object is embedded in an online ad. The code is executed upon 
presentation of the advertisement, and does not require the user to click on the ad impression.  
 
The code causes the client to retrieve an object from an experiment controller, which feeds the client 
with 4 URLs to fetch. The first three URLs are to be fetched immediately, while the fourth URL is to 
be fetched once the first three objects have been fetched, or upon the expiration of a 10 second timer, 
whichever occurs first. All of these URLs include a unique DNS label. An example set of the four 
URLs is shown below. The URL generator generates a set of unique values for each experiment. These 
unique fields are highlighted in color. 
 

d       
http://d.u7280280162.s1364784185.v6022.69da1.z.dotnxdomain.net/1x1.png?d.u72802
80162.s1364784185.v6022.69da1.z.dotnxdomain.net 

 
e       

http://e.u7280280162.s1364784185.v6022.69da1.z.dashnxdomain.net/1x1.png?e.u7280
280162.s1364784185.v6022.69da1.z.dashnxdomain.net 

 
f       

http://f.u7280280162.s1364784185.v6022.69da2.z.dotnxdomain.net/1x1.png?f.u72802
80162.s1364784185.v6022.69da2.z.dotnxdomain.net 

 
results 

http://results.u7280280162.s1364784185.v6022.69da1.x.rand.apnic.net/1x1.png?res
ults.u7280280162.s1364784185.i767.v6022.69da1&r= 

 
 
As shown in the above example, three URLs share a hexadecimal DNS label, “69da1” in this instance, 
while the other URL includes a label that is one greater in value, “69da2” in this instance. The first 
URL, starting with the d label, uses a combination of a wildcard record and DNSSEC-signed domain. 
In this case the DNSSEC signature of the A resource record is valid. The second URL, starting with 



  Page 8 

the e label, uses the same combination, but in this case the domain is not DNSSEC-signed. The third 
URL, starting with the f label, also uses a combination of a wildcard domain and DNSSEC-signed 
domain. However, in this case the DNSSEC signature is invalid, in so far as the DS record for the zone 
69da2.z.dotnxdomain.net does not match the corresponding DNSKEY records. The results URL 
is not DNSSEC signed. The order of the presentation of the URLs in the script is fixed as the sequence 
<d, e, f, results> with the final URL delayed for either 10 seconds, or the successful fetching of the 
first three URLs, whichever occurs first. The client is instructed to start timers for the fetching of the d, 
e and f URLs, and report the timer values in the results URL. 
 
Our intention was to ensure that each client was presented with a uniquely signed DNS label, ensuring 
that there was no cached state in any DNS resolver or in any Web Proxy server.  The result of this is 
that each experiment causes a set of DNS and HTTP transactions with the authoritative DNS servers 
and the web servers for these domain names. 
 
The experiment uses a single server, which contains both a DNS name server (running BIND 9.9.2-
P1), and a web server (running Apache V2.2.23). This server is the only authoritative name server for 
the domains used in these four URLs, and the A RRs point only to this server. In this experiment we 
deliberately set up the entire experiment using IPv4, leaving investigation of IPv6 and DNSSEC to 
other experiments. 
 
While the DNSSEC validation capabilities of individual DNS resolvers are somewhat challenging to 
infer from this form of experiment, it we take a step back and pose the question of whether the end 
user uses DNSSEC validation via its configured DNS resolvers, then this is possible to infer from the 
log of DNS queries and HTTP fetches at the common server. An example of an extract from the DNS 
and HTTP logs from the server, relating to a single experiment (u5158122700.s1364428847 in this case) is 
shown below. 
 

Server Query 
DNS –ED IN A e.u5158122700.s1364428847.v6022.5e3bf.z.dashnxdomain.net  
DNS –ED IN A f.u5158122700.s1364428847.v6022.5e3c0.z.dotnxdomain.net 
DNS –ED IN A d.u5158122700.s1364428847.v6022.5e3bf.z.dotnxdomain.net 
HTTP GET/crossdomain.xml e.u5158122700.s1364428847.v6022.5e3bf.z.dashnxdomain.net 
HTTP GET /1x1.png e.u5158122700.s1364428847.v6022.5e3bf.z.dashnxdomain.net 
HTTP GET /crossdomain.xml d.u5158122700.s1364428847.v6022.5e3bf.z.dotnxdomain.net 
HTTP GET /1x1.png d.u5158122700.s1364428847.v6022.5e3bf.z.dotnxdomain.net 
HTTP GET /crossdomain.xml f.u5158122700.s1364428847.v6022.5e3c0.z.dotnxdomain.net 
HTTP GET /1x1.png f.u5158122700.s1364428847.v6022.5e3c0.z.dotnxdomain.net 
DNS –ED IN A results.u5158122700.s1364428847.v6022.5e3bf.x.rand.apnic.net 
HTTP GET /crossdomain.xml results.u5158122700.s1364428847.v6022.5e3bf.x.rand.apnic.net 
HTTP GET /1x1.png?results.u5158122700.s1364428847.i767.v6022.5e3bf&r=zd-1923.ze-1578.zf-1578 

 
Figure 7 – Server Logs from an experiment that did not perform DNSSEC validation 

 
 

This experiment generated 4 DNS queries, and 8 HTTP queries. The DNS queries all used the 
DNSSEC OK (DO) flag (“-ED” in the log indicates that recursive resolution of the query was disabled 
(-), EDNS0 was being used (E), and DNSSEC signature Resource Records were requested, if available 
(D)). However, the DNS resolver is asking for A RRs but not asking for DNSKEY or DS RRs. It  
appears that while the resolver has set the DNSSEC OK flag, it is not performing any form of 
DNSSEC validation on the value returned in the RRSIG RRs. 
 
The client retrieved all three (d, e and f) URLs. Considering that the f URL has an invalid DNSSEC 
signature then this confirms that the DNS resolver being used by this client does not perform any 
DNSSEC validation. The result line also includes a client-side timer result, and the client is reporting 
that experiment d took the client 1,923ms to load, e took 1,578ms and f took 1,578ms. The slightly 
longer time to perform the d URL fetch as compared to the f URL fetch could be due to the resolver’s 
caching of the resolution of z.dotnxdomain.net while resolving the d URL, and using the cached 
values when resolving the f URL. 
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Now, by contrast, the following is an extract from the same logs that show the DNS queries received 
by the authoritative name server from a DNS resolver that appears to be performing DNSSEC 
validation 
 

Server Query 
DNS A -EDC IN A d.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
DNS A -EDC IN A e.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
DNS A -EDC IN DNSKEY 5e4e3.z.dotnxdomain.net 
DNS A -EDC IN DS 5e4e3.z.dotnxdomain.net 
DNS A -EDC IN A f.u94278337.s1364428957.v6022.5e4e4.z.dotnxdomain.net 
DNS A -EDC IN DNSKEY 5e4e4.z.dotnxdomain.net 
DNS A -EDC IN DS 5e4e4.z.dotnxdomain.net 
DNS B -EDC IN A f.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
DNS B -EDC IN DNSKEY 5e4e4.z.dotnxdomain.net 
DNS B -EDC IN DS 5e4e4.z.dotnxdomain.net 
HTTP GET /crossdomain.xml d.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
HTTP GET /1x1.png d.u94278337.s1364428957.v6022.5e4e3.z.dotnxdomain.net 
HTTP GET /crossdomain.xml e.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
HTTP GET /1x1.png e.u94278337.s1364428957.v6022.5e4e3.z.dashnxdomain.net 
DNS A -EDC IN A results.u94278337.s1364428957.v6022.5e4e3.x.rand.apnic.net 
HTTP GET /crossdomain.xml results.u94278337.s1364428957.v6022.5e4e3.x.rand.apnic.net 
HTTP GET /1x1.png?results.u94278337.s1364428957.i767.v6022.5e4e3&r=zd-1572.ze-1269.zf-null 

 
Figure 8 – Server Logs from an experiment that performed DNSSEC validation 

 
In this case, the client retrieved two URLs (d and e), and did not retrieve the URL associated with the f 
domain name that failed DNSSEC validation.  
 
The DNS resolver is performing DNSSEC validation, as evidenced by the retrieval of the DNSKEY 
and DS RRs for the d and f domain zones. The first DNS resolution for the f domain name failed 
DNSSEC validation, and the client appears to have received a SERVFAIL response. The client then 
tried its second configured resolver, which also performs DNSSEC validation. At this stage the client 
gave up on attempting to resolve the f domain name. After the expiration of the 10 second timer the 
client fetched the result URL. The result line also includes a client-side timer result, and the client is 
reporting that the d URL took the client 1,572ms to load, e took 1,269ms and f was not retrieved. The 
slightly longer time to perform the d fetch as compared to the e fetch could be due in part to the 
resolver’s retrieval of the DNSKEY and DS RRs for the d domain, and the associated DNSSEC 
validation operation that was performed by the validating resolver, as the client would not receive the 
result of the d DNS query until and the additional queries associated with DNSSEC validation had 
been completed. 
 
The aim of this experiment is to sample a large random set of clients from all over the Internet and get 
their browser to execute this experiment. If the set of transactions at the server resembles the first set 
of transactions shown above then we can conclude and the client is not using DNSSEC, while if the set 
of transactions resembles the second set shown above, then the client is using DNS resolvers that 
perform DNSSEC validation to protect its name resolution function. 
 
In this experimental setup the only accessible component that we can equip with instrumentation is the 
authoritative server for the domain “dotnxdomain.net.”. If the DNS resolver was not performing 
DNSSEC validation then we would expect to see a single query for an A RR made to the authoritative 
server, while if the DNS resolver was a DNSSEC validating resolver then we would expect to see an A 
RR query, followed by a DNSKEY and a DS query. 
 
And this is what is seen. The following queries were logged by the authoritative name server  from a 
non-validating DNS resolver: 
 
22-Mar-2013 01:46:34.209 10.0.0.1#59296: query: e.u3435434437.s1363916793.v6022.58cb7.z.dashnxdomain.net IN A -ED  
22-Mar-2013 01:46:34.311 10.0.0.1#57571: query: d.u3435434437.s1363916793.v6022.58cb7.z.dotnxdomain.net IN A –ED 
22-Mar-2013 01:46:34.245 10.0.0.1#6322e: query: f.u3435434437.s1363916793.v6022.58cb8.z.dotnxdomain.net IN A –ED 

 
The following queries were logged by the authoritative name server from a set of DNS resolvers that 
appear to perform DNSSEC validation: 
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22-Mar-2013 01:40:48.029 10.0.0.2#17283 query: d.u2867716218.s1363916447.v6022.58721.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.038 10.0.0.2#22572 query: 58721.z.dotnxdomain.net IN DS -ED 
22-Mar-2013 01:40:48.056 10.0.0.2#54384 query: 58721.z.dotnxdomain.net IN DNSKEY -ED 
22-Mar-2013 01:40:48.229 10.0.0.3#18024 query: e.u2867716218.s1363916447.v6022.58721.z.dashnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.024 10.0.0.4#19869 query: f.u2867716218.s1363916447.v6022.58722.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.032 10.0.0.4#52521 query: 58722.z.dotnxdomain.net IN DS -ED 
22-Mar-2013 01:40:48.049 10.0.0.4#35302 query: 58722.z.dotnxdomain.net IN DNSKEY -ED 
22-Mar-2013 01:40:48.084 10.0.0.5#44543 query: f.u2867716218.s1363916447.v6022.58722.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.092 10.0.0.5#46424 query: 58722.z.dotnxdomain.net IN DS -ED 
22-Mar-2013 01:40:48.109 10.0.0.5#17802 query: 58722.z.dotnxdomain.net IN DNSKEY -ED 
22-Mar-2013 01:40:48.139 10.0.0.6#24334 query: f.u2867716218.s1363916447.v6022.58722.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.147 10.0.0.6#18014 query: 58722.z.dotnxdomain.net IN DS -ED 
22-Mar-2013 01:40:48.164 10.0.0.6#43916 query: 58722.z.dotnxdomain.net IN DNSKEY -ED 
22-Mar-2013 01:40:48.197 10.0.0.6#51221 query: f.u2867716218.s1363916447.v6022.58722.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.230 10.0.0.7#58295 query: f.u2867716218.s1363916447.v6022.58722.z.dotnxdomain.net IN A -ED 
22-Mar-2013 01:40:48.239 10.0.0.7#34658 query: 58722.z.dotnxdomain.net IN DS -ED 
22-Mar-2013 01:40:48.255 10.0.0.7#31055 query: 58722.z.dotnxdomain.net IN DNSKEY -ED 

 
In this case the f URL, which contains an invalid DNSSEC signature, apparently generates a 
SERVFAIL error response from the initial DNS query that, in turn, triggers the client’s name 
resolution process to retry the entire DNS query using a different resolver. A repetition of the same 
failure causes the client to perform a third and final retry on another configured resolver. 

Experiment Results 
 
The first run of this experiment had the following results: 
 

Presented Experiments: 2,802,390 
Presented Experiments with Web Fetches: 2,632,322 
Presented Experiments with Result Web Fetch: 2,142,141 

 
Table 2 – Experiment A Counts 

 
This shows the “drop off” rate in the experiment. When the ad is presented to the user (an 
“impression”) the end user’s browser is passed a Flash object. Execution of the Flash object causes the 
end-user’s browser to collect the parameters for the experiment, which consists of the three experiment 
URLs and the result URL. The browser will then commence fetches of the three URLs by resolving the 
DNS names for the URLs. The first measurement of “Presented Experiments” at the authoritative 
name server is the total count of the number of unique identifiers that generated DNS queries. The end 
user browser will then perform fetches of the URLs. The difference between the DNS query count and 
the Web fetch count shows that some 6% of experiment runs are aborted before proceeding to the 
Web fetch part of the experiment.  When either all three URLs have been fetched, or 10 seconds have 
elapsed, the end user’s browser will then perform a DNS resolution query for the result URL and then 
fetch the URL. A further 19% of experiment runs do not get to this result fetch phase. In order to 
ensure that the effect of aborting the experiment run is minimized, the following summary relates only 
to those 2,142,141 experiments that have completed the fetch of the result URL. 
 
The experiment consists of fetching the d, e and f URLs. The following table shows the number of 
clients who fetched various combinations of these URLs (and also fetched the result URL). 
 

d e f Count 
No No No 4,325   (0.20%) 
Yes No No 1,024   (0.05%) 
No Yes No 2,627   (0.12%) 

Yes Yes No 60,988   (2.85%) 
No No Yes 1,045   (0.05%) 
Yes No Yes 6,108   (0.29%) 
No Yes Yes 3,291   (0.15%) 

Yes Yes Yes 2,059,990 (96.17%) 
 
Table 3 – Experiment A URL fetch combinations 
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There were a total of 60,998 experiments that fetched d and e, but not f. It is possible that this is due to 
the client being unable to validate the DNSSEC signatures on the f domain name, but it is also a 
possibility that the client simply did not fetch f due to some form of premature end of the experiment’s 
execution, even though the result URL had been fetched. It is possible to use the DNS logs to confirm 
whether or not the client attempted to validate the f domain name by looking for those clients who 
retrieved the DS and DNSKEY RRs for both d and f, but only fetched d and e. As shown in the table 
below, there were 58,303 such experiment runs, or 2.72% of the total. 
 
We are also interested in the number of clients who use multiple DNS resolvers where only some of 
the resolvers perform DNSSEC validation. In the event that a DNSSEC-validating resolver returns the 
SERVFAIL error code it is likely that a client will then pass the query to other resolvers. If these 
resolvers do not perform DNSSEC validation then the client will receive a response for the f domain 
name. So the next category is the number of clients who fetched d, e and f, and fetched the DS and 
DNSKEY RRs for both d and f. These users appear to be using a mix of DNSSEC-validating and non-
DNSSEC validating clients. As shown in the table below, there were 52,713 such experiment runs, or 
2.46% of the total. 
 
Of the remaining experiments we have extracted out those experiment runs where only A RRs were 
queried, which accounted for 2,026,014 experiment runs, or 94,58% of the total.  
 
What is left are some 2,368 experiment runs which appears to fetch some DNSSEC RRs, but could not 
be classified into either of the above two categories.  
 

Used DNSSEC Validating Resolvers: 58,303 2.72% 
Used a mix of validating and non-validating resolvers: 52,713 2.46% 
Fetched DNSSEC RRs some of the time: 2,368 0.11% 
Did not fetch any DNSSEC RRs: 2,026,014 94.58% 

 
Table 4 – Experiment A Client Capabilities for DNSSEC 

 
The result of this experiment shows that some 2.72% of all clients appear to exclusively use DNSSEC 
validating resolvers, and will be unable to resolve a DNS name when the DNSSEC signature is invalid. 
A further 2.46% of clients use a mix of DNSSEC-validating and non-validating resolvers, so that they 
do not derive any tangible “protection” from this mixed configuration. 
 
What changed following the announcement of DNSSEC validation from Google’s Public DNS 
resolvers? The following is the same data from the experiment that was conducted form the 22nd March 
to the 1st April. 
 

Presented Experiments: 2,590,330 
Presented Experiments with Web Fetches: 2,421,138 
Presented Experiments with Result Web Fetch: 1,930,180 
 
Table 5 – Experiment B Counts 

 
d e f Count 
No No No 3,471   (0.18%) 
Yes No No 797   (0.04%) 
No Yes No 2,698   (0.14%) 

Yes Yes No 67,487  (3.50%) 
No No Yes 832   (0.04%) 
Yes No Yes 4,027   (0.21%) 
No Yes Yes 3,352   (0.17%) 

Yes Yes Yes 1,844,790 (95.58%) 
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Table 6 – Experiment A URL fetch combinations 
 

Used DNSSEC Validating Resolvers: 64,690 3.35% 
Used a mix of validating and non-validating resolvers: 43,657 2.26% 
Fetched DNSSEC RRs some of the time: 2,652 0.11% 
Did not fetch any DNSSEC RRs: 1,816,968 94.13% 

 
 

Table 7 – Experiment B Client Capabilities for DNSSEC 
 
The result of this second run of the experiment shows that some 3.35% of all clients appear to 
exclusively use DNSSEC validating resolvers, and, correctly, will be unable to resolve a DNS name 
when its DNSSEC signature is invalid. A further 2.26% of clients use a mix of DNSSEC-validating and 
non-validating resolvers. The level of DNSSEC-validating clients appears to have risen by slightly more 
than 0.5%.  
 
Is this positive change of the levels of clients who perform DNSSEC validation attributable to a change 
in the behavior of Google’s Public DNS servers? 
 

Google’s Public DNS Servers 
 
This increase of 0.5% in the number of clients performing DNSSEC validation from Experiment A to 
Experiment B could possibly be attributed to Google turning on DNSSC validation in its Public DNS 
servers at the time of the announcement, or it could be within the bounds of experimental error, or it 
could be the outcome of some other set of resolvers turning on DNSSEC validation in this period. It's 
a reasonable question to ask whether the data sets of DNS queries from Google’s DNS name servers 
before and after Google’s announcement show any difference in the extent to which they perform 
DNSSEC validation. 
 
Google’s Public DNS is a DNS forwarder, so in looking at the profile of DNS queries that are 
generated by Google resolvers, it may be useful to look at the set of transforms between queries sent to 
Google and queries that the Google DNS resolvers will make to the authoritative name servers. 
(assuming a set of unique domain names that are not already loaded into Google’s local DNS cache). 
 

Original Query Google’s corresponding query 
 Non-Validating Validating 
   
A A A 
A(cd) A A 
A(do) A(do) A(do), DS(do), DNSKEY(do) 
A(do, cd) A(do) A(do) 
   
DS(cd) DS(do) DS(do) 
DNSKEY(do, cd) DNSKEY(do) DNSKEY(do) 

 
In this table ‘cd’ is the Checking Disabled flag set, and ‘do’ is the EDNS0 option present and the DNSSEC OK 
flag set 

 
Table 8 – DNS Query Transforms as performed by Google’s Public DNS Forwarders 

 
Google’s Public DNS resolvers do not set the CD flag on any of the queries they make to authoritative 
name servers (contrary to the explicit advice in section 5.9 of RFC6840, but as the server is an 
authoritative name server, the advice in this RFC in this particular case is of dubious value! Google’s 
DNS resolvers do not appear to alter any DNS resolution behaviour in not setting the CD flag when 
making queries to authoritative name servers).  
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Aside from this change to the query profile, the only other change we would expect to see from the 
perspective of the queries received at an authoritative name server between a Google resolver that did 
not perform DNSSEC validation and one that did perform validation is that the proportion of queries 
for an A RR with the DNSSEC OK flag set should be slightly lower, while the proportion of queries 
for the sequence of A, DS and DNSKEY RRs, all with the DNSSEC Ok flag should rise. The 
reasoning is that if Google receive a query with the DO flag set and the CD flag clear, then it will itself 
perform DNSSEC validation on the result, and in so doing will generate the A, DS and DNSKEY 
queries. If Google receive a query with the DO and CD flags set, then it will send the query to the 
authoritative name server with just the DO flag set, but will not perform any DNSSEC validation in its 
own right, as the CD flag has directed it not to do so.  
So here are the results from the two runs of this measurement experiment. Experiment A is the period 
from the 8th to the 18th February 2013, and Experiment B is the period from the 22nd March to 1st April 
2013. 
 

 Experiment A Experiment B 
Total number of queries passed to Google:  309,043              .   328,059              . 
Single A query: 256,708  83.07%  289,428  88.22% 
Single A query with DO set: 23,134    7.48%  20,119    6.13% 
Multiple A queries: 11,700    3.79%  7,916    2.41% 
Multiple A queries, all with DO set: 1,179    0.38%  578    0.18% 
Multiple A queries, some with DO set: 1,194    0.39%  877    0.27% 
Single DNSSEC-Validate query sequence: 5,904    1.91%  3,196    0.97% 
Other query sequences: 7,482    2.42%  4,706    1.43% 

 
Table 9 – Google’s Public DNS resolvers DNS Query profile  

 
This outcome is not very illuminating. The proportion of a single DNSSEC-validation query sequence 
(an A query followed by DS and DNSKEY queries in either order) actually fell in Experiment B. This 
leads to the tentative conclusion that, within the bounds of data variation in this experiment, it appears 
that Google’s Public DNS Servers have been performing DNSSEC validation for some time, and 
DNSSEC validation was not simply switched on at the time of Google’s announcement on  the 19th 
March 2013. 
 
There is another potential way to detect Google’s DNS resolver performing DNSSEC validation. If 
you query for an A RR from Google’s public DNS servers with the DNSSEC OK bit set, and the 
domain name is DNSSEC signed, and the DNSSEC signature is valid, then while the first query will 
cause the DNS resolvers to query the authoritative name servers, subsequent queries for the same name 
will be answered from the DNS resolvers’ cache, and will not cause any queries to be sent to the 
authoritative name servers. On the other hand if the DNSSEC signature of the domain name is not 
valid, then subsequent queries for the same domain name (with the DNSSEC OK bit set) will cause the 
DNS resolvers to re-query the authoritative name servers. This experiment has DNSSEC-valid and 
DNSSEC-invalid signatures with the d and f domain names. Are the visible differences in the query 
patterns from Google’s Public DNS resolvers? 
 
Category Experiment A   Experiment B 
 Valid (%) Invalid (%)  Valid (%) Invalid (%) 
          
Total number of queries: 153,540  154,907    164,043  165,623  
Single A query: 127,366 82.95% 128,134 82.72%  144,561 88.12% 145,725 87.99% 
Single A query with DO set: 5,465 3.56% 5,386 3.48%  6,308 3.85% 6,259 3.78% 
Multiple A queries: 5,557 3.62% 5,789 3.74%  3,780 2.30% 4,038 2.44% 
Multiple A queries, all with DO set: 245 0.16% 248 0.16%  226 0.14% 236 0.14% 
Multiple A queries, some with DO set: 202 0.13% 222 0.14%  231 0.14% 224 0.14% 
Single DNSSEC-Validate query sequence: 10,818 7.05% 5,904 3.81%  6,434 3.92% 3,196 1.93% 
DNSSEC Validate plus additional queries 1,864 1.21% 7,482 4.83%  1,124 0.69% 4,706 2.84% 
Other 2,023 1.32% 1,742 1.12%  1,379 0.84% 1,239 0.74% 
 

Table 10 – Google’s Public DNS resolvers DNS Query profile 
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This table does not show any appreciable change in the query volume between the valid and invalid 
DNS  names. His is probably due to the nature of this experiment, where the use of unique DNS labels 
in each experiment was deliberately designed to circumvent caching. 
 
There is, however, one case where there is some evidence of repeated DNS queries. The drop in the 
relative proportion of single DNSSEC validation query sequences between the valid and invalid domain 
names is illustrative of a form of client behaviour where an error response of SERVFAIL from the 
initial DNS query causes the client to retry the same query on the next resolver in its local list of DNS 
name resolvers. The perhaps ironic part of this particular behaviour is that what we are seeing here in 
this table is the outcome of those cases where a number of DNS resolvers in the client’s list of available 
resolvers end up forwarding these supposedly distinct queries onto the common point of Google’s 
Public DNS servers. 
 
So we can say with some certainty that Google did not switch on DNSSEC validation at the time of its 

public announcement on the 19th March 2013, and Google had been performing DNSSEC validation 
for some time before the announcement. It would appear that the 0.5% change in the level of end 

client use of DNSSEC validation is more likely the outcome of variability in the experi-ment. 

 

The Results – Use of DNSSEC by End Users 
 
This experiment shows that at the start of  2013 some 3% of all clients appear to exclusively use 
DNSSEC validating resolvers, and, appropriately, will be unable to resolve a DNS name when its 
DNSSEC signature is invalid. A further 2% of clients use a mix of DNSSEC-validating and non-
validating resolvers. 
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