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Two Simple Hints for Dual Stack Servers 

It seems that the imminent prospect of IPv4 address exhaustion has managed to generate a 
renewed interest in IPv6. A number of the conversations I have had lately have been about 
setting up dual stack servers, and there is a widespread concern that if you convert a server from 
single stack IPv4 to dual stack then some clients will have problems in accessing your site. The 
same concern has been voiced with converting a mail server from single stack to dual stack. 
 
Here are two very simple hints may be of assistance to you. 
 

1. Drop the interface MTU of the server. 1280 is a prudent value. 
 

2. Run a local 6to4 interface on the server, and use it to route 2002::/16 for outbound 
packets. 

 
That’s all. If you are happy to go off and do just that then you’ve read as much as you need to. If 
you want to understand why these two additional adjustments are helpful, then read on. 
 

Setting the Interface MTU 

If you look on most servers you will see an interface Maximum Transmission Unit (MTU) size of 
1500 octets. This particular number is derived from the old Ethernet specification and has 
remained a persistent feature of the networking environment for many years. The more general 
observation is that hosts set their MTU to be the MTU size of the local subnet to which they are 
attaching. In other words the local host's MTU is set to the maximal size of the interface. 
 
There is a lower bound to this number. In IPv4 it was set to 68 octets. The IPv6 specification says 
that all intermediate systems in a IPv6 network should be able to pass a packet of a total size 
that is no smaller than 1280 octets.  
 
 

In IPv6 the minimum MTU is 1280 bytes, and  every IPv6 
destination must be able to reassemble a fragmented IPv6 
datagram of up to 1500 bytes in length. 
 
   RFC2460: 
   IPv6 requires that every link in the internet have an MTU of 1280 
   octets or greater.  On any link that cannot convey a 1280-octet 
   packet in one piece, link-specific fragmentation and reassembly 
   must be provided at a layer below IPv6. 
 
   … 
 
   A node must be able to accept a fragmented packet that, after 
   reassembly, is as large as 1500 octets.  A node is permitted to 
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   accept fragmented packets that reassemble to more than 1500 
   octets. An upper-layer protocol or application that depends on 
   IPv6 fragmentation to send packets larger than the MTU of a path 
   should not send packets larger than 1500 octets unless it has 
   assurance that the destination is capable of reassembling packets 
   of that larger size. 
 

 
So this interface MTU setting of 1500 octets should be just fine, shouldn’t it? 
 
Unfortunately that's not the case. These days it appears that up to one half of the end systems 
that are capable of running IPv6 do so via the auto-tunnelling technologies of 6to4 and Teredo. 
(http://www.potaroo.net/bgp/stats/1x1/v6types.png).  
 

Tunnel Behaviour 

Tunnels add to the potential for encountering trouble in an end-to-end IPv6 connection. 
 

• A tunnel "inflates" the packet. A tunnel adds an additional overhead of 20 bytes for a basic 
IPv4 header, 24 bytes for a GRE tunnel header, or 40 bytes for a UDP-based IPv4 header.  
There are other forms of tunnels as well, such as the 8 byte PPPoE header, or the 
overheads of the AH and ESP headers of IPSEC tunnels. This additional header overhead 
implies that the tunnel's MTU is smaller than the "raw" interface MTU.  

 
• A tunnel is not aware of its own "path". There may be further tunnels "inside" the tunnel, 

so that the tunnel ingress MTU is not necessarily aware of the tunnel path MTU.  
 

• The routing of the interior of the tunnel may change, so that the tunnel path MTU may be 
variable.  

 
However, the default behaviour of IPv4 tunnels should be benign, or so you would think. The 
outer IPv4 "wrapper" will have DF bit (the IPv4 "Don’t Fragment") on the tunnel header cleared, 
so that a MTU mismatch within the tunnel will cause the tunnel packet to be fragmented. The 
fragmentation is not visible on an end-to-end basis as the tunnel egress has the responsibility to 
assemble all the original IPv4 packet fragments. If you added the IPv4 tunnel wrapper to the 
packet before attempting to pass it into the tunnel your assumption would be fine. But that’s not 
the way its done. The tunnel is regarded as the same as any other interface, and if the original 
packet can’t fit into the ingress point of the tunnel then it will get fragmented before having the 
tunnel encapsulation added. So if the original IPv6 packet is too large to fit into the tunnel 
interface without fragmentation, then the original packet is discarded and an ICMPv6 message is 
generated to flag the MTU mismatch.  
 
So what happens when an IPv6 packet encounters a simple protocol 41 IP tunnel? The tunnel will 
add 20 octets of IP packet header to the original IPv6 packet. This would imply that a MTU of 
1500 at the interface level translates to a tunnel MTU of 1480. If the IPv6 packet is 1480 octets 
or smaller it will be accepted by the tunnel. If the packet is larger than 1480 octets then the an 
ICMPv6 "packet too big" message will be directed back to the IPv6 source address and the IPv6 
packet will be discarded. 
 
Oddly enough, once the packet has been passed into the tunnel then the default case is that 
further fragmentation can be performed on the tunnel packet, as the common default option is to 
use an IPv4 tunnel header with the DF bit cleared. For such fragmentation conditions, packet 
reassembly is performed at the tunnel endpoint, rather than at the inner packet's ultimate 
destination. For low speed tunnels this may probably be benign behaviour. For higher speed 
situations the reassembly packet load at the tunnel egress may be unacceptably high.  
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Figure 1 – IPv6 tunnels 

 
 
To avoid this, the tunnel can be configured to map the encapsulated packet's DF bit to the outer 
wrapper IP packet. As long as the tunnel ingress point is prepared to perform ICMP relay 
functions and remap the reverse tunnel ICMP message into a message that has the tunnel 
headers stripped out and the original source and destination addresses placed into the IMCP 
message header then there is the possibility of allowing the end-to-end Path-MTU discovery to 
take account of the additional tunnel overhead. 
 
It should not be surprising that all of this just gets too complex to maintain operationally, and the 
pragmatic result of all of these considerations is that most host systems use an MTU of 1500 
bytes and most interior routers use an MTU of around 9000 bytes or larger on point-to-point links, 
and generally avoid going less than 1500 octets on any interior link. As long as tunnels are 
generally avoided then there is no real path MTU discovery taking place on the Internet, and the 
firewall and tunnel issues and the NAT treatment of ICMP messages are largely irrelevant in such 
a uniform MTU environment, and most of the Internet appears to work acceptably well for most 
of the Internet's users.  
 
But IPv6 is different, particularly in its current use of auto-tunnelling and its different treatment 
of packet fragmentation. 

Packet Fragmentation in IPv6 

IPv6 takes a much more stringent approach to packet fragmentation than IPv4. IPv6 assumes 
that all TCP sessions in IPv6 have Path MTU discovery capability, and also assumes that all UDP 
applications can also perform some equivalent form of path MTU discovery.  
 
The result of this design assumption is that all fragmentation control fields are removed from the 
base IPv6 packet header. All IPv6 routers, or any other intermediate system, must not attempt to 
perform packet fragmentation on an IPv6 packet. If an IPv6 packet is too large for the next hop 
interface, then the router must discard the IPv6 packet and generate an ICMPv6 "Packet too big" 
message and send this back to the IPv6 source. In the case of TCP the IPv6 host system should 
perform Path MTU discovery based on these ICMPv6 messages, and avoid performing packet 
fragmentation at the source. In other cases, such as UDP or "raw" IP, upper level protocol driver 
may not be able to reformat the original payload data into multiple IPv6 packets, and prefer to 
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have the remote upper level protocol instance receive a single packet payload. IPv6 allows the 
source of the packet to perform payload fragmentation, and generate a number of IPv6 packets, 
each with a fragmentation control header that plays a similar role to the IPv4 fragmentation 
control fields. 
 
 

IPv6 Fragmentation Control 
 
The IPv6 packet header has a 16 bit unsigned Payload Length field, indicating the length 
of the packet, less the 40 byte IPv6 packet header. This allows for a maximum "normal" 
IPv6 packet size of 65575 octets. IPv6 may include a jumbogram header that permits 
larger packets of up to 4G bytes in size, although router support for such large packets is 
optional. 
 
All IPv6 hosts and routers must pass packets up to 1280 octets in length.  
 
Fragmentation of a IPv6 packet may only be performed at the source point of the packet. 
No further fragmentation, nor any form of fragment reassembly, is attempted by any 
intermediate device. Once fragmented at the source, an IPv6 packet is reassembled only 
at the point of the final destination, as per the IPv6 packet's destination address. 
 
As with IPv4, IPv6 uses three control fields, the Packet Identification, More Fragments Flag, 
and Fragment Offset fields. These fields are formatted into an 8-byte IPv6 Fragmentation 
Header, referenced using the IPv6 Next Header code of 44. 
 

    
 
When a host fragments an IPv6 packet is adds a Fragmentation Header to the IPv6 packet. 
The header has three control fields: Identification, More Fragments, and Fragmentation 
Offset: 
 

• Identification. A 32-bit value used to identify all the fragments of a packet, allowing 
the destination host to perform packet reassembly.  
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• More Fragments Flag. When a packet is fragmented, all packets except the final 
fragment have the More Fragments flag set. The fragmentation algorithm operates 
such that only the final fragment of the original IP packet has this field clear (set to 
zero).  

 
• Fragmentation Offset Value. This 13-bit value counts the offset of the start of this 

payload fragment from the start of the original packet. The unit used by this 
counter is octa-bytes, implying that fragmentation must align to 64-bit boundaries. 

 
The fields altered by fragmentation are shown in the figure above, where a 1500-byte IP 
packet has been fragmented into a 1280-byte packet and one 316-byte packet. The IP 
packet length has been altered to reflect the fragment size, and the Fragmentation Offset 
Value field has been set to 154 respectively. The final fragment has the More Fragments 
flag cleared to show that it is the final fragment of the original packet. 
 
IPv6 defines an explicit ordering of IPv6 packet headers: 

- IPv6 packet header 
- Hop-by-Hop Options header 
- Destination Options headers (intermediate destinations) 
- Routing header 
- Fragment header 
- Authentication header 
- Encapsulating Security Payload header 
- Destination Options header (final destination) 
- upper-layer header 

 
The first four header types form the "un-fragmentable part" of the packet, and are 
reproduced in the headers of every fragment packet, while the final four header types are 
treated by the IPv6 fragmentation algorithm as a part of the payload, and are not 
reproduced in every fragment's header. 

 
 
The basic behaviour for IPv6 TCP is to avoid fragmentation. IPv6 TCP uses the local MTU as the 
initial local MSS value (adjusting the MTU for the IP and TCP packet headers), and then use the 
minimum of this MSS value and the remote party's MSS value as the session MSS value, deriving 
an initial MTU value by adjusting to allow for the IP and TCP packet headers. This initial MTU is 
used as the initial path MTU estimate. One the TCP connection is established the sender will rely 
on incoming ICMPv6 "packet too big" messages to trigger the local TCP instance to use a smaller 
MTU, using the MTU indicated in the ICMPv6 packet as the new MTU. So as long as the sender is 
receiving ICMPv6 messages then TCP should adjust correctly when the initial Path MTU estimate 
is too high. 
 
But if there is a condition that prevents the source from receiving packet-too-big ICMPv6 
messages then the algorithm fails, and the application may hang when full-sized TCP packets are 
passed through the network. In some cases this may happen at a point well distanced from the 
two endpoints of the TCP session, so that the ICMPv6 filtering may be occurring at a point that is 
not under the control of the source or the destination. 
 
Over the years there has been a fair amount of popular folklore that has cemented itself in the 
form of firewall "rules". One of the more pervasive forms of these networking myths is that all 
incoming ICMP has nothing useful to say to the local network, and can often become a source of 
DOS attack. So many firewalls place ICMNP into the general category of "unsolicited traffic" and 
simply block all forms of ICMP, including this ICMPv6 "packet too big" message. The incidence of 
ICMP delivery failure remains in the "uncomfortably high" category, and, surprisingly, ICMP 
filtering is still see on some transit routes. However, tunnelling adds to this level of uncertainty. 
The location of the tunnel ingress and egress points are not readily determined because of the 
use of anycast addresses in the common auto-tunnelling mechanisms. The implication is that 
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even when the transit path appears to allow ICMP messages, a tunnel ingress point may lie on 
the other side of an edge firewall that is blocking ICMP delivery. 
 

Setting the Interface MTU 

This risk of service failure for some service clients is the basic reason why so many web server 
systems are averse to configuring themselves as dual stack IPv4 and IPv6 servers. The problem 
is that through no fault of their own in the local configuration of the IPv6 server, and through no 
fault in the configuration of the IPv6 client, there are situations where the application fails, even 
though every part of the system appears to be functioning. These faults which happen despite 
everything looking to be working correctly are of course the most difficult, and hence the most 
expensive, to diagnose and correct. 
 
How can this be fixed?  
 
The "fix" answer is to locate and reprogram every single device on the Internet that is blocking 
ICMPv6 messages. That is of course a somewhat ambitious and totally impractical response. So 
are there local actions you can take that will simply help make IPv6 work for you. A more 
practical question is:  
 
How can this be avoided? 
 
The "avoid" answer is to use a local MTU setting that does not require fragmentation for tunnels. 
The client could be configured to use an IPv6 MTU that is at least 40 octets smaller than the MTU 
of the attached subnet. But what about multi-layer tunnels? How low should you go with this 
setting to ensure clear end-to-end un-fragmented connectivity? If you want to avoid all forms of 
path MTU packet fragmentation then the appropriate response is to use an interface MTU equal to 
the minimum IPv6 packet size, namely 1280 octets. 
 
So if you are a dual stack server and you want to maximise the probability that all IPv6 clients 
will successfully connect to your service over IPv6, then the simple approach here is to drop the 
server's MTU to 1280. 
 

# ifconfig en0 mtu 1280 

 
This would be enough to get over most of these fragmentation issues. It would have the side 
effect of dropping the packet size for all packets, but the performance impact of such an 
alteration in the maximum packet size is relatively minor in all but the most demanding of 
environments. 
 
The same advice applies to dual stack clients. If you are seeing your browser deliver a white 
screen and get stuck in "loading…" then try dropping your local MTU size. 

 

Configuring a Local 6to4 Interface 

The second piece of advice concerns making 6to4 more robust. As already noted, 6to4 these days 
appears to represent up to one half of all the potential IPv6 clients, so making 6to4 work well is 
extremely important. 
 
6to4 is asymmetric, and perhaps it is this asymmetry that adds to the potential for breakage.  
 
In the 6to4 model the IPv4 client has no local IPv6 connectivity. In order to send an IPv6 packet, 
it has to undertake a couple of additional actions. It uses a synthetic IPv6 address which is 
generated by joining the prefix 2002::/16 to its local IPv4 address. The outbound IPv6 packet is 
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"wrapped" up with a 20 octet IPv4 header using IP protocol number 41. The destination address 
in the IPv4 packet is 192.88.99.1, which is the anycast address used by 6to4 relays. The IPv4 
packet is routed over IPv4 to the "closest" 6to4 outbound relay ("close" in terms of anycast 
routing of 192.88.99.0/24). The 6to4 outbound relay strips off the IPv4 header and sends the 
inner IPv6 packet towards the original IPv6 destination. 
 
The IPv6 server side requires no change at all. It receives an IPv6 packet that has a source 
address drawn from the address block 2002::/16. It can simply reply to this using the source 
address of the incoming packet as its destination address. However that alone is insufficient to 
get that packet back to the client. The server is hoping that there are inbound 6to4 relay servers 
that are announcing a route to 2002::/16. If that’s the case the IPv6 packet will get forwarded to 
the "closest" such relay server. The relay server will generate an IPv4 header, using the IPv4 
destination address it pulled out of the IPv6 address and using its own IPv4 address as the source 
address. 
 

 
 
Figure 2 – 6to4 Data Paths 
 
Of note here is that the two relay servers will probably be different servers, and the path taken 
by the outbound and inbound packets will probably differ. The outbound relay server that strips 
off the IPv4 wrapper and forwards the inner IPv6 packet across the IPv6 network is "close" to the 
client while the inbound relay server is "close" to the server. The IPv6 MTU of the inbound relay 
server is 20 octets smaller than the server's MTU, assuming the general use of the 1500 octet 
MTU, so there is a strong likelihood that the server should receive ICMPv6 "packet too big" 
responses if it attempts to send 1500 octet packets to a remote 6to4 client. However, if the 
server is in the "inside" of some firewall device that discards ICMP, then the potential for 
problems increases. The other problem here is the potential variability of the server's path, as it 
necessarily involves the participation of a 6to4 relay that is reachable via the IPv6 route to 
2002::/16. As this is any anycast route, there is no assurance that the path is stable. 
 
How can a dual stack server mitigate these issues with 6to4?  
 
One simple approach is to run the outbound 6to4 relay on the dual stack server. The server is 
now able to perform the tunnel encapsulation locally, and generate outbound IPv4 protocol 41  
packets that are destined to the client without the need for active relays. The server uses a host 
route to pass all packets destined to 2002::/16 to the local 6to4 interface, and routes the IPv6 
default route as normal. 
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Figure 3 – Local 6to4 at the Server 
 

 

Time to Get Moving! 

I have heard that in terms of the server side of this transition converting an IPv4 server, whether 
it’s a HTTP server, a mail server of a DNS server or any other form of service, the task is basically 
straightforward. It’s a case of turning on the IPv6 protocol support in the service platform, 
configuring the various forms of routing, switching, load sharing and filtering middleware to act 
consistently across both IPv4 and IPv6, and of course obtaining an IPv6 packet transit service. 
And while there are details to work through in each part of this overall activity, its certainly not a 
great leap into the unknown. Yet the number of web sites that are reachable using Ipv6 remains 
frustratingly low. (See http://speedlab01.cmc.co.ndcwest.comcast.net:8088/monitor/ for a report 
on the monitoring of IPv6 web site reachability in the top 1M site list maintained by Alexa.) 
 
Maybe its because there are these lingering concerns over IPv6, where even if you have done 
everything by the book there will still be clients how will no longer be able to access your service. 
I'd like to think that these doubts are without foundation, and with a little additional care in 
locally managing your MTU and in assisting those clients out there who are using 6to4 you can 
set up a fully functional dual stack service environment that is as reliable and as accessible as a 
single protocol IPv4 service. 
 
It really is time to stop just talking about conversion of these IPv4-only services to Dual Stack 
with IPv6,  and start actually doing it! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Page 9 
 
 

 

Disclaimer 

The above views do not necessarily represent the views or positions of the Asia Pacific Network Information 
Centre. 

 

Author 

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the Asia 
Pacific region. He has been closely involved with the development of the Internet for many years, particularly 
within Australia, where he was responsible for the initial build of the Internet within the Australian academic and 
research sector. He is author of a number of Internet-related books, and was a member of the Internet 
Architecture Board from 1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992 
until 2001. 

www.potaroo.net 
 


