

The ISP Column
An occasional column on things Internet

TCP - How it works
July 2004

The Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) are both IP transport-layer
protocols. UDP is a lightweight protocol that allows applications to make direct use of the unreliable datagram
service provided by the underlying IP service. UDP is commonly used to support applications that use simple
query/response transactions, or applications that support real-time communications. TCP provides a reliable data-
transfer service, and is used for both bulk data transfer and interactive data applications. TCP is the major transport
protocol in use in most IP networks, and supports the transfer of over 90 percent of all traffic across the public
Internet today. Given this major role for TCP, the performance of this protocol forms a significant part of the total
picture of service performance for IP networks. In this article we examine TCP in further detail, looking at what
makes a TCP session perform reliably and well. This article draws on material published in the Internet
Performance Survival Guide [1].

Overview of TCP

TCP is the embodiment of reliable end-to-end transmission functionality in the overall Internet architecture. All the
functionality required to take a simple base of IP datagram delivery and build upon this a control model that
implements reliability, sequencing, flow control, and data streaming is embedded within TCP [2] .

TCP provides a communication channel between processes on each host system. The channel is reliable, full-
duplex, and streaming. To achieve this functionality, the TCP drivers break up the session data stream into
discrete segments, and attach a TCP header to each segment. An IP header is attached to this TCP packet, and
the composite packet is then passed to the network for delivery. This TCP header has numerous fields that are
used to support the intended TCP functionality. TCP has the following functional characteristics:

• Unicast protocol: TCP is based on a unicast network model, and supports data exchange between
precisely two parties. It does not support broadcast or multicast network models.

• Connection state: Rather than impose a state within the network to support the connection, TCP uses
synchronized state between the two endpoints. This synchronized state is set up as part of an initial
connection process, so TCP can be regarded as a connection-oriented protocol. Much of the protocol
design is intended to ensure that each local state transition is communicated to, and acknowledged by,
the remote party.

• Reliable: Reliability implies that the stream of octets passed to the TCP driver at one end of the
connection will be transmitted across the network so that the stream is presented to the remote process
as the same sequence of octets, in the same order as that generated by the sender.

This implies that the protocol detects when segments of the data stream have been discarded by the network,
reordered, duplicated, or corrupted. Where necessary, the sender will retransmit damaged segments so as to
allow the receiver to reconstruct the original data stream. This implies that a TCP sender must maintain a local
copy of all transmitted data until it receives an indication that the receiver has completed an accurate transfer of
the data.

• Full duplex: TCP is a full-duplex protocol; it allows both parties to send and receive data within the context
of the single TCP connection.

• Streaming: Although TCP uses a packet structure for network transmission, TCP is a true streaming
protocol, and application-level network operations are not transparent. Some protocols explicitly
encapsulate each application transaction; for every write, there must be a matching read. In this manner,
the application-derived segmentation of the data stream into a logical record structure is preserved across
the network. TCP does not preserve such an implicit structure imposed on the data stream, so that there
is no pairing between write and read operations within the network protocol. For example, a TCP
application may write three data blocks in sequence into the network connection, which may be collected
by the remote reader in a single read operation. The size of the data blocks (segments) used in a TCP
session is negotiated at the start of the session. The sender attempts to use the largest segment size it
can for the data transfer, within the constraints of the maximum segment size of the receiver, the
maximum segment size of the configured sender, and the maximum supportable non-fragmented packet
size of the network path (path Maximum Transmission Unit [MTU]). The path MTU is refreshed
periodically to adjust to any changes that may occur within the network while the TCP connection is active.

• Rate adaptation: TCP is also a rate-adaptive protocol, in that the rate of data transfer is intended to adapt
to the prevailing load conditions within the network and adapt to the processing capacity of the receiver.
There is no predetermined TCP data-transfer rate; if the network and the receiver both have additional
available capacity, a TCP sender will attempt to inject more data into the network to take up this available
space. Conversely, if there is congestion, a TCP sender will reduce its sending rate to allow the network
to recover. This adaptation function attempts to achieve the highest possible data transfer rate without
triggering consistent data loss.

The TCP Protocol Header

The TCP header structure, shown in Figure 1, uses a pair of 16-bit source and destination Port addresses. The
next field is a 32-bit sequence number, which identifies the sequence number of the first data octet in this packet.
The sequence number does not start at an initial value of 1 for each new TCP connection; the selection of an
initial value is critical, because the initial value is intended to prevent delayed data from an old connection from
being incorrectly interpreted as being valid within a current connection. The sequence number is necessary to
ensure that arriving packets can be ordered in the sender’s original order. This field is also used within the flow-
control structure to allow the association of a data packet with its corresponding acknowledgement, allowing a
sender to estimate the current round-trip time across the network.

Figure 1: The TCP/IP Packet Header

The acknowledgment sequence number is used to inform the remote end of the data that has been successfully
received. The acknowledgment sequence number is actually one greater than that of the last octet correctly

received at the local end of the connection. The data offset field indicates the number of four-octet words within
the TCP header. Six single bit flags are used to indicate various conditions. URG is used to indicate whether the
urgent pointer is valid. ACK is used to indicate whether the acknowledgment field is valid. PSH is set when the
sender wants the remote application to push this data to the remote application. RST is used to reset the
connection. SYN (for synchronize) is used within the connection startup phase, and FIN (for finish) is used to
close the connection in an orderly fashion. The window field is a 16-bit count of available buffer space. It is added
to the acknowledgment sequence number to indicate the highest sequence number the receiver can accept. The
TCP checksum is applied to a synthesized header that includes the source and destination addresses from the
outer IP datagram. The final field in the TCP header is the urgent pointer, which, when added to the sequence
number, indicates the sequence number of the final octet of urgent data if the urgent flag is set.

Many options can be carried in a TCP header. Those relevant to TCP performance include:

• Maximum-receive-segment-size option: This option is used when the connection is being opened. It is
intended to inform the remote end of the maximum segment size, measured in octets, that the sender is
willing to receive on the TCP connection. This option is used only in the initial SYN packet (the initial
packet exchange that opens a TCP connection). It sets both the maximum receive segment size and the
maximum size of the advertised TCP window, passed to the remote end of the connection. In a robust
implementation of TCP, this option should be used with path MTU discovery to establish a segment size
that can be passed across the connection without fragmentation, an essential attribute of a high-
performance data flow.

• Window-scale option: This option is intended to address the issue of the maximum window size in the face
of paths that exhibit a high delay bandwidth product. This option allows the window size advertisement to
be right-shifted by the amount specified (in binary arithmetic, a right-shift corresponds to a multiplication
by 2). Without this option, the maximum window size that can be advertised is 65,535 bytes (the
maximum value obtainable in a 16-bit field). The limit of TCP transfer speed is effectively one window size
in transit between the sender and the receiver. For high-speed, long-delay networks, this performance
limitation is a significant factor, because it limits the transfer rate to at most 65,535 bytes per round-trip
interval, regardless of available network capacity. Use of the window scale option allows the TCP sender
to effectively adapt to high-bandwidth, high-delay network paths, by allowing more data to be held in flight.
The maximum window size with this option is 2 30 bytes. This option is negotiated at the start of the TCP
connection, and can be sent in a packet only with the SYN flag. Note that while an MTU discovery
process allows optimal setting of the maximum-receive segment- size option, no corresponding bandwidth
delay product discovery allows the reliable automated setting of the window-scale option [3] .

• SACK-permitted option and SACK option: This option alters the acknowledgment behavior of TCP. SACK
is an acronym for selective acknowledgment. The SACK-permitted option is offered to the remote end
during TCP setup as an option to an opening SYN packet. The SACK option permits selective
acknowledgment of permitted data. The default TCP acknowledgment behavior is to acknowledge the
highest sequence number of in-order bytes. This default behavior is prone to cause unnecessary
retransmission of data, which can exacerbate a congestion condition that may have been the cause of the
original packet loss. The SACK option allows the receiver to modify the acknowledgment field to describe
non-continuous blocks of received data, so that the sender can retransmit only what is missing at the
receiver’s end [4] .

Any robust high-performance implementation of TCP should negotiate these parameters at the start of the TCP
session, ensuring the following: that the session is using the largest possible IP packet size that can be carried
without fragmentation, that the window sizes used in the transfer are adequate for the bandwidth-delay product of
the network path, and that selective acknowledgment can be used for rapid recovery from line-error conditions or
from short periods of marginally degraded network performance. TCP Operation The first phase of a TCP session
is establishment of the connection. This requires a three-way handshake, ensuring that both sides of the
connection have an unambiguous understanding of the sequence number space of the remote side for this
session. The operation of the connection is as follows:

• The local system sends the remote end an initial sequence number to the remote port, using a SYN
packet.

• The remote system responds with an ACK of the initial sequence number and the initial sequence number
of the remote end in a response SYN packet.

• The local end responds with an ACK of this remote sequence number.

The connection is opened. The operation of this algorithm is shown in Figure 2. The performance implication of
this protocol exchange is that it takes one and a half round-trip times (RTTs) for the two systems to synchronize
state before any data can be sent.

Figure 2: TCP Connection Handshake

After the connection has been established, the TCP protocol manages the reliable exchange of data between the
two systems. The algorithms that determine the various retransmission timers have been redefined numerous
times. TCP is a sliding-window protocol, and the general principle of flow control is based on the management of
the advertised window size and the management of retransmission timeouts, attempting to optimize protocol
performance within the observed delay and loss parameters of the connection. Tuning a TCP protocol stack for
optimal performance over a very low-delay, high-bandwidth LAN requires different settings to obtain optimal
performance over a dialup Internet connection, which in turn is different for the requirements of a highspeed wide-
area network. Although TCP attempts to discover the delay bandwidth product of the connection, and attempts to
automatically optimize its flow rates within the estimated parameters of the network path, some estimates will not
be accurate, and the corresponding efforts by TCP to optimize behavior may not be completely successful.

Another critical aspect is that TCP is an adaptive flow-control protocol. TCP uses a basic flow-control algorithm of
increasing the data-flow rate until the network signals that some form of saturation level has been reached
(normally indicated by data loss). When the sender receives an indication of data loss, the TCP flow rate is
reduced; when reliable transmission is reestablished, the flow rate slowly increases again.

If no reliable flow is reestablished, the flow rate backs further off to an initial probe of a single packet, and the
entire adaptive flow-control process starts again.

This process has numerous results relevant to service quality. First, TCP behaves adaptively, rather than
predictively. The flow-control algorithms are intended to increase the data-flow rate to fill all available network path
capacity, but they are also intended to quickly back off if the available capacity changes because of interaction
with other traffic, or if a dynamic change occurs in the end-to-end network path. For example, a single TCP flow
across an otherwise idle network attempts to fill the network path with data, optimizing the flow rate within the
available network capacity. If a second TCP flow opens up across the same path, the two flow-control algorithms
will interact so that both flows will stabilize to use approximately half of the available capacity per flow. The
objective of the TCP algorithms is to adapt so that the network is fully used whenever one or more data flows are

present. In design, tension always exists between the efficiency of network use and the enforcement of
predictable session performance. With TCP, you give up predictable throughput but gain a highly utilized, efficient
network.

Protocol Operation

In this section we examine the transfer of data using the TCP protocol, focusing on the relationship between the
protocol and performance. TCP is generally used within two distinct application areas: short-delay short data
packets sent on demand, to support interactive applications such as Telnet, or rlogin, and large packet data
streams supporting reliable volume data transfers, such as mail transfers, Web-page transfers, and File Transfer
Protocol (FTP). Different protocol mechanisms come into play to support interactive applications, as distinct from
short- and long-held volume transactions.

Interactive TCP

Interactive protocols are typically directed at supporting single-character interactions, where each character is
carried in a single packet, as is its echo. The protocol interaction to support this is indicated in Figure 3. These 2
bytes of data generate four TCP/IP packets, or 160 bytes of protocol overhead. TCP makes some small
improvement in this exchange through the use of piggybacking, where an ACK is carried in the same packet as
the data, and delayed acknowledgment, where an ACK is delayed up to 200 ms before sending, to give the server
application the opportunity to generate data that the ACK can piggyback. The resultant protocol exchange is
indicated in Figure 4.

Figure 3: Interactive Exchange

Figure 4: Interactive Exchange with Delayed ACK

For short-delay LANs, this protocol exchange offers acceptable performance. This protocol exchange for a single
data character and its echo occurs within about 16 ms on an Ethernet LAN, corresponding to an interactive rate of
60 characters per second. When the network delay is increased in a WAN, these small packets can be a source
of congestion load. The TCP mechanism to address this small-packet congestion was described by John Nagle in
RFC 896 [5]. Commonly referred to as the Nagle Algorithm, this mechanism inhibits a sender from transmitting
any additional small segments while the TCP connection has outstanding unacknowledged small segments. On a
LAN, this modification to the algorithm has a negligible effect; in contrast, on a WAN, it has a dramatic effect in
reducing the number of small packets in direct correlation to the network path congestion level (as shown in
Figures 5 and 6). The cost is an increase in session jitter by up to a round-trip time interval. Applications that are
jitter-sensitive typically disable this control algorithm.

TCP is not a highly efficient protocol for the transmission of interactive traffic. The typical carriage efficiency of the
protocol across a LAN is 2 bytes of payload and 120 bytes of protocol overhead. Across a WAN, the Nagle
algorithm may improve this carriage efficiency slightly by increasing the number of bytes of payload for each
payload transaction, although it will do so at the expense of increased session jitter.

Figure 5: WAN Interactive Exchange

Figure 6: WAN Interactive Exchange with Nagle Algorithm

TCP Volume Transfer

The objective for this application is to maximize the efficiency of the data transfer, implying that TCP should
endeavor to locate the point of dynamic equilibrium of maximum network efficiency, where the sending data rate
is maximized just prior to the onset of sustained packet loss.

Further increasing the sending rate from such a point will run the risk of generating a congestion condition within
the network, with rapidly increasing packet-loss levels. This, in turn, will force the TCP protocol to retransmit the
lost data, resulting in reduced data-transfer efficiency. On the other hand, attempting to completely eliminate
packet-loss rates implies that the sender must reduce the sending rate of data into the network so as not to create
transient congestion conditions along the path to the receiver. Such an action will, in all probability, leave the
network with idle capacity, resulting in inefficient use of available network resources.

The notion of a point of equilibrium is an important one. The objective of TCP is to coordinate the actions of the
sender, the network, and the receiver so that the network path has sufficient data such that the network is not idle,
but it is not so overloaded that a congestion backlog builds up and data loss occurs. Maintaining this point of
equilibrium requires the sender and receiver to be synchronized so that the sender passes a packet into the
network at precisely the same time as the receiver removes a packet from the network. If the sender attempts to
exceed this equilibrium rate, network congestion will occur. If the sender attempts to reduce its rate, the efficiency
of the network will drop.

TCP uses a sliding-window protocol to support bulk data transfer (Figure 7). The receiver advertises to the sender
the available buffer space at the receiver. The sender can transmit up to this amount of data before having to
await a further buffer update from the receiver. The sender should have no more than this amount of data in
transit in the network. The sender must also buffer sent data until it has been ACKed by the receiver. The send
window is the minimum of the sender’s buffer size and the advertised receiver window. Each time an ACK is
received, the trailing edge of the send window is advanced. The minimum of the sender’s buffer and the
advertised receiver’s window is used to calculate a new leading edge. If this send window encompasses unsent
data, this data can be sent immediately.

Figure 7: TCP Sliding Window

The size of TCP buffers in each host is a critical limitation to performance in WANs. The protocol is capable of
transferring one send window of data per round-trip interval. For example, with a send window of 4096 bytes and
a transmission path with an RTT of 600 ms, a TCP session is capable of sustaining a maximum transfer rate of 48
Kbps, regardless of the bandwidth of the network path. Maximum efficiency of the transfer is obtained only if the
sender is capable of completely filling the network path with data. Because the sender will have an amount of
data in forward transit and an equivalent amount of data awaiting reception of an ACK signal, both the sender’s
buffer and the receiver’s advertised window should be no smaller than the Delay-Bandwidth Product of the
network path. That is:

Window size ≥ Bandwidth (bytes/sec) x Round-trip time (sec)

The 16-bit field within the TCP header can contain values up to 65,535, imposing an upper limit on the available
window size of 65,535 bytes. This imposes an upper limit on TCP performance of some 64 KB per RTT, even
when both end systems have arbitrarily large send and receive buffers. This limit can be modified by the use of a
window-scale option, described in RFC 1323, effectively increasing the size of the window to a 30-bit field, but
transmitting only the most significant 16 bits of the value. This allows the sender and receiver to use buffer sizes
that can operate efficiently at speeds that encompass most of the current very-high-speed network transmission
technologies across distances of the scale of the terrestrial intercontinental cable systems.

Although the maximum window size and the RTT together determine the maximum achievable data-transfer rate,
there is an additional element of flow control required for TCP. If a TCP session commenced by injecting a full
window of data into the network, then there is a strong probability that much of the initial burst of data would be
lost because of transient congestion, particularly if a large window is being used. Instead, TCP adopts a more
conservative approach by starting with a modest amount of data that has a high probability of successful
transmission, and then probing the network with increasing amounts of data for as long as the network does not
show signs of congestion. When congestion is experienced, the sending rate is dropped and the probing for
additional capacity is resumed.

The dynamic operation of the window is a critical component of TCP performance for volume transfer. The
mechanics of the protocol involve an additional overriding modifier of the sender’s window, the congestion window,
referred to as cwnd. The objective of the window management algorithm is to start transmitting at a rate that has a
very low probability of packet loss, then to increase the rate (by increasing the cwnd size) until the sender
receives an indication, through the detection of packet loss, that the rate has exceeded the available capacity of
the network. The sender then immediately halves its sending rate by reducing the value of cwnd, and resumes a
gradual increase of the sending rate. The goal is to continually modify the sending rate such that it oscillates
around the true value of available network capacity. This oscillation enables a dynamic adjustment that
automatically senses any increase or decrease in available capacity through the lifetime of the data flow.

The intended outcome is that of a dynamically adjusting cooperative data flow, where a combination of such flows
behaves fairly, in that each flow obtains essentially a fair share of the network, and so that close to maximal use of
available network resources is made. This flow control functionality is achieved through a combination of cwnd
value management and packet-loss and retransmission algorithms. TCP flow control has three major parts: the
flow-control modes of Slow Start and Congestion Avoidance, and the response to packet loss that determines how
TCP switches between these two modes of operation.

TCP Slow Start

The starting value of the cwnd window (the Initial Window, or IW) is set to that of the Sender Maximum Segment
Size (SMSS) value. This SMSS value is based on the receiver’s maximum segment size, obtained during the
SYN handshake, the discovered path MTU (if used), the MTU of the sending interface, or, in the absence of other
information, 536 bytes. The sender then enters a flow-control mode termed Slow Start.

The sender sends a single data segment, and because the window is now full, it then awaits the corresponding
ACK. When the ACK is received, the sender increases its window by increasing the value of cwnd by the value of
SMSS. This then allows the sender to transmit two segments; at that point, the congestion window is again full,
and the sender must await the corresponding ACKs for these segments. This algorithm continues by increasing
the value of cwnd (and, correspondingly, opening the size of the congestion window) by one SMSS for every ACK
received that acknowledges new data.

If the receiver is sending an ACK for every packet, the effect of this algorithm is that the data rate of the sender
doubles every round-trip time interval. If the receiver supports delayed ACKs, the rate of increase will be slightly
lower, but nevertheless the rate will increase by a minimum of one SMSS each round-trip time. Obviously, this
cannot be sustained indefinitely. Either the value of cwnd will exceed the advertised receive window or the
sender’s window, or the capacity of the network will be exceeded, in which case packets will be lost.

There is another limit to the slow-start rate increase, maintained in a variable termed ssthresh, or Slow-Start
Threshold. If the value of cwnd increases past the value of ssthresh, the TCP flow-control mode is changed from
Slow Start to congestion avoidance. Initially the value of ssthresh is set to the receiver’s maximum window size.
However, when congestion is noted, ssthresh is set to half the current window size, providing TCP with a memory
of the point where the onset of network congestion may be anticipated in future.

One aspect to highlight concerns the interaction of the slow-start algorithm with high-capacity long-delay networks,
the so-called Long Fat Networks (or LFNs). The behavior of the slow-start algorithm is to send a single packet,
await an ACK, then send two packets, and await the corresponding ACKs, and so on. The TCP activity on LFNs
tends to cluster at each epoch of the round-trip time, with a quiet period that follows after the available window of
data has been transmitted. The received ACKs arrive back at the sender with an inter-ACK spacing that is
equivalent to the data rate of the bottleneck point on the network path. During Slow Start, the sender transmits at
a rate equal to twice this bottleneck rate. The rate adaptation function that must occur within the network takes
place in the router at the entrance to the bottleneck point. The sender’s packets arrive at this router at twice the
rate of egress from the router, and the router stores the overflow within its internal buffer. When this buffer
overflows, packets will be dropped, and the slow-start phase is over. The important conclusion is that the sender
will stop increasing its data rate when there is buffer exhaustion, a condition that may not be the same as
reaching the true available data rate. If the router has a buffer capacity considerably less than the delay-
bandwidth product of the egress circuit, the two values are certainly not the same.

In this case, the TCP slow-start algorithm will finish with a sending rate that is well below the actual available
capacity. The efficient operation of TCP, particularly in LFNs, is critically reliant on adequately large buffers within
the network routers.

Another aspect of Slow Start is the choice of a single segment as the initial sending window. Experimentation
indicates that an initial value of up to four segments can allow for a more efficient session startup, particularly for
those short-duration TCP sessions so prevalent with Web fetches[6]. Observation of Web traffic indicates an
average Web data transfer of 17 segments. A slow start from one segment will take five RTT intervals to transfer
this data, while using an initial value of four will reduce the transfer time to three RTT intervals. However, four
segments may be too many when using low-speed links with limited buffers, so a more robust approach is to use
an initial value of no more than two segments to commence Slow Start[7].

Rate Adjustment

Slow Start attempts to start a TCP session at a rate the network can support and then continually increase the
rate. How does TCP know when to stop this increase? This slow-start rate increase stops when the congestion
window exceeds the receiver’s advertised window, when the rate exceeds the remembered value of the onset of
congestion as recorded in ssthresh, or when the rate is greater than the network can sustain. Addressing the last
condition, how does a TCP sender know that it is sending at a rate greater than the network can sustain? The
answer is that this is shown by data packets being dropped by the network. In this case, TCP has to undertake
many functions:

• The packet loss has to be detected by the sender.
• The missing data has to be retransmitted.
• The sending data rate should be adjusted to reduce the probability of further packet loss.

TCP can detect packet loss in two ways. First, if a single packet is lost within a sequence of packets, the
successful delivery packets following the lost packet will cause the receiver to generate a duplicate ACK for each
successive packet The reception of these duplicate ACKs is a signal of such packet loss. Second, if a packet is
lost at the end of a sequence of sent packets, there are no following packets to generate duplicate ACKs. In this
case, there are no corresponding ACKs for this packet, and the sender’s retransmit timer will expire and the
sender will assume packet loss.

A single duplicate ACK is not a reliable signal of packet loss. When a TCP receiver gets a data packet with an
out-of-order TCP sequence value, the receiver must generate an immediate ACK of the highest inorder data byte
received. This will be a duplicate of an earlier transmitted ACK. Where a single packet is lost from a sequence of
packets, all subsequent packets will generate a duplicate ACK packet.

On the other hand, where a packet is rerouted with an additional incremental delay, the reordering of the packet
stream at the receiver’s end will generate a small number of duplicate ACKs, followed by an ACK of the entire
data sequence, after the errant packet is received. The sender distinguishes between these cases by using three
duplicate ACK packets as a signal of packet loss.

The third duplicate ACK triggers the sender to immediately send the segment referenced by the duplicate ACK
value (fast retransmit) and commence a sequence termed Fast Recovery. In fast recovery, the value of ssthresh
is set to half the current send window size (the send window is the amount of unacknowledged data outstanding).
The congestion window, cwnd, is set three segments greater than ssthresh to allow for three segments already
buffered at the receiver. If this allows additional data to be sent, then this is done. Each additional duplicate ACK
inflates cwnd by a further segment size, allowing more data to be sent. When an ACK arrives that encompasses
new data, the value of cwnd is set back to ssthresh, and TCP enters congestion-avoidance mode. Fast Recovery
is intended to rapidly repair single packet loss, allowing the sender to continue to maintain the ACK-clocked data
rate for new data while the packet loss repair is being undertaken. This is because there is still a sequence of
ACKs arriving at the sender, so that the network is continuing to pass timing signals to the sender indicating the
rate at which packets are arriving at the receiver. Only when the repair has been completed does the sender drop
its window to the ssthresh value as part of the transition to congestion-avoidance mode[8].

The other signal of packet loss is a complete cessation of any ACK packets arriving to the sender. The sender
cannot wait indefinitely for a delayed ACK, but must make the assumption at some point in time that the next
unacknowledged data segment must be retransmitted. This is managed by the sender maintaining a
Retransmission Timer. The maintenance of this timer has performance and efficiency implications. If the timer
triggers too early, the sender will push duplicate data into the network unnecessarily. If the timer triggers too
slowly, the sender will remain idle for too long, unnecessarily slowing down the flow of data. The TCP sender
uses a timer to measure the elapsed time between sending a data segment and receiving the corresponding
acknowledgment. Individual measurements of this time interval will exhibit significant variance, and
implementations of TCP use a smoothing function when updating the retransmission timer of the flow with each
measurement. The commonly used algorithm was originally described by Van Jacobson[9], modified so that the
retransmission timer is set to the smoothed round-trip-time value, plus four times a smoothed mean deviation
factor[10].

When the retransmission timer expires, the actions are similar to that of duplicate ACK packets, in that the sender
must reduce its sending rate in response to congestion. The threshold value, ssthresh, is set to half of the current
value of outstanding unacknowledged data, as in the duplicate ACK case. However, the sender cannot make any
valid assumptions about the current state of the network, given that no useful information has been provided to
the sender for more than one RTT interval. In this case, the sender closes the congestion window back to one
segment, and restarts the flow in slow start-mode by sending a single segment. The difference from the initial slow
start is that, in this case, the ssthresh value is set so that the sender will probe the congestion area more slowly
using a linear sending rate increase when the congestion window reaches the remembered ssthresh value.

Congestion Avoidance

Compared to Slow Start, congestion avoidance is a more tentative probing of the network to discover the point of
threshold of packet loss. Where Slow Start uses an exponential increase in the sending rate to find a first-level
approximation of the loss threshold, congestion avoidance uses a linear growth function.

When the value of cwnd is greater than ssthresh, the sender increments the value of cwnd by the value SMSS ´
SMSS/cwnd, in response to each received non-duplicate ACK[7], ensuring that the congestion window opens by
one segment within each RTT time interval.

The congestion window continues to open in this fashion until packet loss occurs. If the packet loss is isolated to a
single packet within a packet sequence, the resultant duplicate ACKs will trigger the sender to halve the sending

rate and continue a linear growth of the congestion window from this new point, as described above in fast
recovery.

The behavior of cwnd in an idealized configuration is shown in Figure 8, along with the corresponding data-flow
rates. The overall characteristics of the TCP algorithm are an initial relatively fast scan of the network capacity to
establish the approximate bounds of maximal efficiency, followed by a cyclic mode of adaptive behavior that
reacts quickly to congestion, and then slowly increases the sending rate across the area of maximal transfer
efficiency.

Packet loss, as signaled by the triggering of the retransmission timer, causes the sender to recommence slow-
start mode, following a timeout interval. The corresponding data-flow rates are indicated in Figure 9.

Figure 8: Simulation of Single TCP Transfer

The inefficiency of this mode of performance is caused by the complete cessation of any form of flow signaling
from the receiver to the sender. In the absence of any information, the sender can only assume that the network
is heavily congested, and so must restart its probing of the network capacity with an initial congestion window of a
single segment. This leads to the performance observation that any form of packet-drop management that tends
to discard the trailing end of a sequence of data packets may cause significant TCP performance degradation,
because such drop behavior forces the TCP session to continually time out and restart the flow from a single
segment again.

Figure 9: Simulation of TCP Transfer with Tail Drop Queue

Assisting TCP Performance within the Network — RED and ECN

Although TCP is an end-to-end protocol, it is possible for the network to assist TCP in optimizing performance.
One approach is to alter the queue behaviour of the network through the use of Random Early Detection (RED).
RED permits a network router to discard a packet even when there is additional space in the queue. Although this
may sound inefficient, the interaction between this early packet-drop behaviour and TCP is very effective.

RED uses a the weighted average queue length as the probability factor for packet drop. As the average queue
length increases, the probability of a packet being dropped, rather than being queued, increases. As the queue
length decreases, so does the packet-drop probability. (See Figure 10). Small packet bursts can pass through a
RED filter relatively intact, while larger packet bursts will experience increasingly higher packet-discard rates.
Sustained load will further increase the packet-discard rates. This implies that the TCP sessions with the largest
open windows will have a higher probability of experiencing packet drop, causing a backoff in the window size.

Figure 10: RED Behavior

A major goal of RED is to avoid a situation in which all TCP flows experience congestion at the same time, all
then back off and resume at the same rate, and tend to synchronize their behaviour[11,12]. With RED, the larger
bursting flows experience a higher probability of packet drop, while flows with smaller burst rates can continue
without undue impact. RED is also intended to reduce the incidence of complete loss of ACK signals, leading to
timeout and session restart in slow-start mode. The intent is to signal the heaviest bursting TCP sessions the
likelihood of pending queue saturation and tail drop before the onset of such a taildrop congestion condition,
allowing the TCP session to undertake a fast retransmit recovery under conditions of congestion avoidance.
Another objective of RED is to allow the queue to operate efficiently, with the queue depth ranging across the
entire queue size within a timescale of queue depth oscillation the same order as the average RTT of the traffic
flows.

Behind RED is the observation that TCP sets very few assumptions about the networks over which it must
operate, and that it cannot count on any consistent performance feedback signal being generated by the network.
As a minimal approach, TCP uses packet loss as its performance signal, interpreting small-scale packet-loss
events as peak load congestion events and extended packet loss events as a sign of more critical congestion
load. RED attempts to increase the number of small-scale congestion signals, and in so doing avoid long-period
sustained congestion conditions.

It is not necessary for RED to discard the randomly selected packet. The intent of RED is to signal the sender that
there is the potential for queue exhaustion, and that the sender should adapt to this condition. An alternative
mechanism is for the router experiencing the load to mark packets with an explicit Congestion Experienced (CE)
bit flag, on the assumption that the sender will see and react to this flag setting in a manner comparable to its
response to single packet drop[13] [14]. This mechanism, Explicit Congestion Notification (ECN), uses a 2-bit
scheme, claiming bits 6 and 7 of the IP Version 4 Type-of-Service (ToS) field (or the two Currently Unused [CU]
bits of the IP Differentiated Services field). Bit 6 is set by the sender to indicate that it is an ECN-capable transport
system (the ECT bit). Bit 7 is the CE bit, and is set by a router when the average queue length exceeds
configured threshold levels.

The ECN algorithm is that an active router will perform RED, as described. After a packet has been selected, the
router may mark the CE bit of the packet if the ECT bit is set; otherwise, it will discard the selected packet. (See
Figure 11).

Figure 11: Operation of Explicit Congestion Notification

The TCP interaction is slightly more involved. The initial TCP SYN handshake includes the addition of ECN-echo
capability and Congestion Window Reduced (CWR) capability flags to allow each system to negotiate with its
peer as to whether it will properly handle packets with the CE bit set during the data transfer. The sender sets the

ECT bit in all packets sent. If the sender receives a TCP packet with the ECN-echo flag set in the TCP header,
the sender will adjust its congestion window as if it had undergone fast recovery from a single lost packet.

The next sent packet will set the TCP CWR flag, to indicate to the receiver that it has reacted to the congestion.
The additional caveat is that the sender will react in this way at most once every RTT interval. Further, TCP
packets with the ECN-echo flag set will have no further effect on the sender within the same RTT interval. The
receiver will set the ECN-echo flag in all packets when it receives a packet with the CE bit set. This will continue
until it receives a packet with the CWR bit set, indicating that the sender has reacted to the congestion. The ECT
flag is set only in packets that contain a data payload. TCP ACK packets that contain no data payload should be
sent with the ECT bit clear.

The connection does not have to await the reception of three duplicate ACKs to detect the congestion condition.
Instead, the receiver is notified of the incipient congestion condition through the explicit setting of a notification bit,
which is in turn echoed back to the sender in the corresponding ACK. Simulations of ECN using a RED marking
function indicate slightly superior throughput in comparison to configuring RED as a packet-discard function.

However, widespread deployment of ECN is not considered likely in the near future, at least in the context of
Version 4 of IP. At this stage, there has been no explicit standardization of the field within the IPv4 header to carry
this information, and the deployment base of IP is now so wide that any modifications to the semantics of fields in
the IPv4 header would need to be very carefully considered to ensure that the changed field interpretation did not
exercise some malformed behavior in older versions of the TCP stack or in older router software implementations.

ECN provides some level of performance improvement over a packetdrop RED scheme. With large bulk data
transfers, the improvement is moderate, based on the difference between the packet retransmission and
congestion-window adjustment of RED and the congestion-window adjustment of ECN. The most notable
improvements indicated in ECN simulation experiments occur with short TCP transactions (commonly seen in
Web transactions), where a RED packet drop of the initial data packet may cause a six-second retransmit delay.
Comparatively, the ECN approach allows the transfer to proceed without this lengthy delay.

The major issue with ECN is the need to change the operation of both the routers and the TCP software stacks to
accommodate the operation of ECN. While the ECN proposal is carefully constructed to allow an essentially
uncoordinated introduction into the Internet without negative side effects, the effectiveness of ECN in improving
overall network throughput will be apparent only after this approach has been widely adopted. As the Internet
grows, its inertial mass generates a natural resistance to further technological change; therefore, it may be some
years before ECN is widely adopted in both host software and Internet routing systems. RED, on the other hand,
has had a more rapid introduction to the Internet, because it requires only a local modification to router behavior,
and relies on existing TCP behavior to react to the packet drop.

Some encouragement to use ECN is certainly timely. As RFC 2481 notes: “Given the current effort to implement
RED, we believe this is the right time for router vendors to examine how to implement congestion avoidance
mechanisms that do not depend on packet drops alone. With the increased deployment of applications and
transports sensitive to the delay and loss of a single packet (e.g., real time traffic, short web transfers), depending
on packet loss as a normal congestion notification mechanism appears to be insufficient (or at the very least, non
optimal).”

Tuning TCP

How can the host optimize its TCP stack for optimum performance? Many recommendations can be considered.
The following suggestions are a combination of those measures that have been well studied and are known to
improve TCP performance, and those that appear to be highly productive areas of further research and
investigation.

• Use a good TCP protocol stack: Many of the performance pathologies that exist in the network today are
not necessarily the byproduct of oversubscribed networks and consequent congestion. Many of these

performance pathologies exist because of poor implementations of TCP flow-control algorithms;
inadequate buffers within the receiver; poor (or no) use of path-MTU discovery; no support for fast-
retransmit flow recovery, no use of window scaling and SACK, imprecise use of protocol-required timers,
and very coarsegrained timers. It is unclear whether network ingress-imposed Quality- of-Service (QoS)
structures will adequately compensate for such implementation deficiencies. The conclusion is that
attempting to address the symptoms is not the same as curing the disease. A good protocol stack can
produce even better results in the right environment.

• Enable TCP Selective Acknowledgment (SACK): SACK, combined with a selective repeat-transmission
policy, can help overcome the limitation that traditional TCP experiences when a sender can learn only
about a single lost packet per RTT.

• Enable larger buffers with TCP window-scaling options: The TCP flow algorithm attempts to work at a
data rate that is the minimum of the delay-bandwidth product of the end-to-end network path and the
available buffer space of the sender. Larger buffers at the sender and the receiver assist the sender in
adapting more efficiently to a wider diversity of network paths by permitting a larger volume of traffic to be
placed in flight across the end-to-end path.

• Support TCP ECN negotiation: ECN enables the host to be explicitly informed of conditions relating to
the onset of congestion without having to infer such a condition from the reserve stream of ACK packets
from the receiver. The host can react to such a condition promptly and effectively with a data flow-control
response without having to invoke packet retransmission.

• Use a higher initial TCP slow-start rate than the current 1 MSS (Maximum Segment Size) per RTT. A
size that seems feasible is an initial burst of 2 MSS segments. The assumption is that there will be
adequate queuing capability to manage this initial packet burst; the provision to back off the send window
to 1 MSS segment should remain intact to allow stable operation if the initial choice was too large for the
path. A robust initial choice is two segments, although simulations have indicated that four initial segments
is also highly effective in many situations.

• Use a host platform that has sufficient processor and memory capacity to drive the network. The
highest-quality service network and optimally provisioned access circuits cannot compensate for a host
system that does not have sufficient capacity to drive the service load. This is a condition that can be
observed in large or very popular public Web servers, where the peak application load on the server drives
the platform into a state of memory and processor exhaustion, even though the network itself has
adequate resources to manage the traffic load.

All these actions have one thing in common: They can be deployed incrementally at the edge of the network and
can be deployed individually. This allows end systems to obtain superior performance even in the absence of the
network provider tuning the network’s service response with various internal QoS mechanisms.

Conclusion

TCP is not a predictive protocol. It is an adaptive protocol that attempts to operate the network at the point of
greatest efficiency. Tuning TCP is not a case of making TCP pass more packets into the network. Tuning TCP
involves recognizing how TCP senses current network load conditions, working through the inevitable
compromise between making TCP highly sensitive to transient network conditions, and making TCP resilient to
what can be regarded as noise signals.

If the performance of end-to-end TCP is the perceived problem, the most effective answer is not necessarily to
add QoS service differentiation into the network. Often, the greatest performance improvement can be made by
upgrading the way that hosts and the network interact through the appropriate configuration of the host TCP
stacks.

In the next article on this topic, we will examine how TCP is facing new challenges with increasing use of wireless,
short-lived connections, and bandwidth-limited mobile devices, as well as the continuing effort for improved TCP
performance. We’ll look at a number of proposals to change the standard actions of TCP to meet these various
requirements and how they would interact with the existing TCP protocol.

References and Further Reading

[1] Huston, G., Internet Performance Survival Guide: QoS Strategies for Multiservice Networks, ISBN
0471-378089, John Wiley & Sons, January 2000.

[2] Postel, J., Transmission Control Protocol, RFC 793, September 1981.

[3] Jacobson, V., Braden, R., and Borman, D., TCP Extensions for High Performance, RFC 1323, May
1992.

[4] Mathis, M., Madavi, J., Floyd, S., and Romanow, A., TCP Selective Acknowledgement Options, RFC
2018, October 1996.

[5] Nagle, J., Congestion Control in IP/TCP Internetworks, RFC 896, January 1984.

[6] Allman, M., Floyd, S., and Partridge, C., Increasing TCP’s Initial Window, RFC 2414, September 1998.

[7] Allman, M., Paxson, V., and Stevens, W., TCP Congestion Control, RFC 2581, April 1999.

[8] Stevens, W. R., TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.

[9] Jacobson V., Congestion Avoidance and Control, ACM Computer Communication Review, Vol. 18, No.
4, August 1988.

[10] Jacobson, V., Berkeley TCP Evolution from 4.3-Tahoe to 4.3, Reno, Proceedings of the 18th Internet
Engineering Task Force, University of British Colombia, Vancouver, BC, September 1990.

[11] Floyd, S., and Jacobson, V., Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM
Transactions on Networking, Vol. 1, No. 4, August 1993.

[12] Braden, R. et al., Recommendations on Queue Management and Congestion Avoidance in the
Internet,”RFC 2309, April 1998.

[13] Floyd, S., TCP and Explicit Congestion Notification, ACM Computer Communication Review, Vol. 24,
No. 5, October 1994.

[14] Ramakrishnan, K., and Floyd, S., A Proposal to Add Explicit Congestion Notification (ECN) to IP, RFC
2481, January 1999.

Geoff Huston

Disclaimer

The above views do not represent the views of the Internet Society. They were possibly the opinions of the author
at the time of writing this article, but things always change, including the author's opinions!

About the Author

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University. He has been closely involved
with the development of the Internet for the past decade, particularly within Australia, where he was responsible for
the initial build of the Internet within the Australian academic and research sector. He is the Executive Director of
the Internet Architecture Board, and a member of the Board of the Public Interest Registry. He was an inaugural
Trustee of the Internet Society, and served as Secretary of the Board of Trustees from 1993 until 2001, with a term
of service as chair of the Board of Trustees in 1999 and 2000. He is author of a number of Internet-related books.

	The TCP Protocol Header
	Interactive TCP
	TCP Volume Transfer
	TCP Slow Start
	Rate Adjustment
	Congestion Avoidance
	Assisting TCP Performance within the Network — RED and ECN
	Tuning TCP
	Conclusion
	References and Further Reading
	Disclaimer
	About the Author

