
[Note that this file is a concatenation of more than one RFC.]

Network Working Group S. Hollenbeck
Request for Comments: 5730 VeriSign, Inc.
STD: 69 August 2009
Obsoletes: 4930
Category: Standards Track

 Extensible Provisioning Protocol (EPP)

Abstract

 This document describes an application-layer client-server protocol
 for the provisioning and management of objects stored in a shared
 central repository. Specified in XML, the protocol defines generic
 object management operations and an extensible framework that maps
 protocol operations to objects. This document includes a protocol
 specification, an object mapping template, and an XML media type
 registration. This document obsoletes RFC 4930.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hollenbeck Standards Track [Page 1]

RFC 5730 EPP August 2009

Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document3
 2. Protocol Description ..4
 2.1. Transport Mapping Considerations7
 2.2. Protocol Identification8
 2.3. Hello Format ...8
 2.4. Greeting Format ..8
 2.5. Command Format ..12
 2.6. Response Format ...13
 2.7. Protocol Extension Framework16
 2.7.1. Protocol Extension16
 2.7.2. Object Extension17
 2.7.3. Command-Response Extension18
 2.8. Object Identification18
 2.9. Protocol Commands ...19
 2.9.1. Session Management Commands19
 2.9.1.1. EPP <login> Command20
 2.9.1.2. EPP <logout> Command22
 2.9.2. Query Commands23
 2.9.2.1. EPP <check> Command23
 2.9.2.2. EPP <info> Command25
 2.9.2.3. EPP <poll> Command26
 2.9.2.4. EPP <transfer> Query Command30
 2.9.3. Object Transform Commands31
 2.9.3.1. EPP <create> Command32
 2.9.3.2. EPP <delete> Command33
 2.9.3.3. EPP <renew> Command34
 2.9.3.4. EPP <transfer> Command35
 2.9.3.5. EPP <update> Command38
 3. Result Codes ...39
 4. Formal Syntax ..45
 4.1. Base Schema ...45
 4.2. Shared Structure Schema56
 5. Internationalization Considerations59
 6. IANA Considerations ..59
 7. Security Considerations ..60
 8. Acknowledgements ...61
 9. References ...62
 9.1. Normative References62
 9.2. Informative References62
 Appendix A. Object Mapping Template64
 Appendix B. Media Type Registration: application/epp+xml66
 Appendix C. Changes from RFC 493067

Hollenbeck Standards Track [Page 2]

RFC 5730 EPP August 2009

1. Introduction

 This document describes specifications for the Extensible
 Provisioning Protocol (EPP) version 1.0, an XML text protocol that
 permits multiple service providers to perform object-provisioning
 operations using a shared central object repository. EPP is
 specified using the Extensible Markup Language (XML) 1.0 as described
 in [W3C.REC-xml-20040204] and XML Schema notation as described in
 [W3C.REC-xmlschema-1-20041028] and [W3C.REC-xmlschema-2-20041028].
 EPP meets and exceeds the requirements for a generic registry
 registrar protocol as described in [RFC3375]. This document
 obsoletes RFC 4930 [RFC4930].

 EPP content is identified by MIME media type application/epp+xml.
 Registration information for this media type is included in an
 appendix to this document.

 EPP is intended for use in diverse operating environments where
 transport and security requirements vary greatly. It is unlikely
 that a single transport or security specification will meet the needs
 of all anticipated operators, so EPP was designed for use in a
 layered protocol environment. Bindings to specific transport and
 security protocols are outside the scope of this specification.

 The original motivation for this protocol was to provide a standard
 Internet domain name registration protocol for use between domain
 name registrars and domain name registries. This protocol provides a
 means of interaction between a registrar’s applications and registry
 applications. It is expected that this protocol will have additional
 uses beyond domain name registration.

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented to develop a conforming implementation.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In examples, "C:" represents lines sent by a protocol client and "S:"
 represents lines returned by a protocol server. Indentation and
 white space in examples are provided only to illustrate element
 relationships and are not REQUIRED features of this protocol. A
 protocol client that is authorized to manage an existing object is
 described as a "sponsoring" client throughout this document.

Hollenbeck Standards Track [Page 3]

RFC 5730 EPP August 2009

2. Protocol Description

 EPP is a stateful XML protocol that can be layered over multiple
 transport protocols. Protected using lower-layer security protocols,
 clients exchange identification, authentication, and option
 information, and then engage in a series of client-initiated command-
 response exchanges. All EPP commands are atomic (there is no partial
 success or partial failure) and designed so that they can be made
 idempotent (executing a command more than once has the same net
 effect on system state as successfully executing the command once).

 EPP provides four basic service elements: service discovery,
 commands, responses, and an extension framework that supports
 definition of managed objects and the relationship of protocol
 requests and responses to those objects.

 An EPP server MUST respond to client-initiated communication (which
 can be either a lower-layer connection request or an EPP service
 discovery message) by returning a greeting to a client. A server
 MUST promptly respond to each EPP command with a coordinated response
 that describes the results of processing the command. The following
 server state machine diagram illustrates the message exchange process
 in detail:

Hollenbeck Standards Track [Page 4]

RFC 5730 EPP August 2009

 |
 V
 +-----------------+ +-----------------+
 | Waiting for | Connected | Prepare |
 | Client |----------------->| Greeting |
 +-----------------+ or <hello> +-----------------+
 ^ |
 | Close Connection Send |
 | or Idle Greeting |
 +-----------------+ V
 | End | Timeout +-----------------+
 | Session |<-----------------| Waiting for |
 +-----------------+ | Client |
 ^ ^ ^ Send +-------->| Authentication |
 | | | Response | +-----------------+
 | | | +--------------+ |
 | | | | Prepare Fail | | <login>
 | | +-----| Response | | Received
 | | Send +--------------+ V
 | | 2501 ^ +-----------------+
 | | Response | | Processing |
 | | +---------| <login> |
 | | Auth Fail +-----------------+
 | | Timeout |
 | +-------------------------------+ | Auth OK
 | | V
 | +-----------------+ <hello> +-----------------+
 | | Prepare |<----------| Waiting for |
 | | Greeting |---------->| Command or |
 | +-----------------+ Send | <hello> |
 | Send x5xx Greeting +-----------------+
 | Response +-----------------+ Send ^ |
 +-----------| Prepare | Response | | Command
 | Response |----------+ | Received
 +-----------------+ V
 ^ +-----------------+
 Command | | Processing |
 Processed +----------| Command |
 +-----------------+

 Figure 1: EPP Server State Machine

 EPP commands fall into three categories: session management commands,
 query commands, and object transform commands. Session management
 commands are used to establish and end persistent sessions with an
 EPP server. Query commands are used to perform read-only object
 information retrieval operations. Transform commands are used to
 perform read-write object management operations.

Hollenbeck Standards Track [Page 5]

RFC 5730 EPP August 2009

 Commands are processed by a server in the order they are received
 from a client. Though an immediate response confirming receipt and
 processing of the command is produced by the server, the protocol
 includes features that allow for offline review of transform commands
 before the requested action is actually completed. In such
 situations, the response from the server MUST clearly note that the
 command has been received and processed but that the requested action
 is pending. The state of the corresponding object MUST clearly
 reflect processing of the pending action. The server MUST also
 notify the client when offline processing of the action has been
 completed. Object mappings SHOULD describe standard formats for
 notices that describe completion of offline processing.

 EPP uses XML namespaces to provide an extensible object management
 framework and to identify schemas required for XML instance parsing
 and validation. These namespaces and schema definitions are used to
 identify both the base protocol schema and the schemas for managed
 objects. The XML namespace prefixes used in examples (such as the
 string "foo" in "xmlns:foo") are solely for illustrative purposes. A
 conforming implementation MUST NOT require the use of these or any
 other specific namespace prefixes.

 All XML instances SHOULD begin with an <?xml?> declaration to
 identify the version of XML that is being used, optionally identify
 use of the character encoding used, and optionally provide a hint to
 an XML parser that an external schema file is needed to validate the
 XML instance. Conformant XML parsers recognize both UTF-8 (defined
 in RFC 3629 [RFC3629]) and UTF-16 (defined in RFC 2781 [RFC2781]);
 per RFC 2277 [RFC2277], UTF-8 is the RECOMMENDED character encoding
 for use with EPP.

 Character encodings other than UTF-8 and UTF-16 are allowed by XML.
 UTF-8 is the default encoding assumed by XML in the absence of an
 "encoding" attribute or a byte order mark (BOM); thus, the "encoding"
 attribute in the XML declaration is OPTIONAL if UTF-8 encoding is
 used. EPP clients and servers MUST accept a UTF-8 BOM if present,
 though emitting a UTF-8 BOM is NOT RECOMMENDED.

 Example XML declarations:

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <?xml version="1.0" standalone="no"?>

 <?xml version="1.0" encoding="UTF-8"?>

 <?xml version="1.0"?>

Hollenbeck Standards Track [Page 6]

RFC 5730 EPP August 2009

2.1. Transport Mapping Considerations

 As described previously, EPP can be layered over multiple transport
 protocols. There are, however, a common set of considerations that
 MUST be addressed by any transport mapping defined for EPP. These
 include:

 - The transport mapping MUST preserve command order.

 - The transport mapping MUST address the relationship between
 sessions and the client-server connection concept.

 - The transport mapping MUST preserve the stateful nature of the
 protocol.

 - The transport mapping MUST frame data units.

 - The transport mapping MUST be onto a transport, such as TCP
 [RFC0793] or Stream Control Transmission Protocol (SCTP)
 [RFC4960], that provides congestion avoidance that follows RFC
 2914 [RFC2914]; or, if it maps onto a protocol such as SMTP
 [RFC5321] or Blocks Extensible Exchange Protocol (BEEP) [RFC3080],
 then the performance issues need to take into account issues of
 overload, server availability, and so forth.

 - The transport mapping MUST ensure reliability.

 - The transport mapping MUST explicitly allow or prohibit
 pipelining.

 Pipelining, also known as command streaming, is when a client sends
 multiple commands to a server without waiting for each corresponding
 response. After sending the commands, the client waits for the
 responses to arrive in the order corresponding to the completed
 commands. Performance gains can sometimes be realized with
 pipelining, especially with high-latency transports, but there are
 additional considerations associated with defining a transport
 mapping that supports pipelining:

 - Commands MUST be processed independent of each other.

 - Depending on the transport, pipelining MAY be possible in the form
 of sending a complete session in a well-defined "batch".

 - The transport mapping MUST describe how an error in processing a
 command affects continued operation of the session.

Hollenbeck Standards Track [Page 7]

RFC 5730 EPP August 2009

 A transport mapping MUST explain how all of these requirements are
 met, given the transport protocol being used to exchange data.

2.2. Protocol Identification

 All EPP XML instances MUST begin with an <epp> element. This element
 identifies the start of an EPP protocol element and the namespace
 used within the protocol. The <epp> start element and the associated
 </epp> ending element MUST be applied to all structures sent by both
 clients and servers.

 Example "start" and "end" EPP elements:

 <epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 </epp>

2.3. Hello Format

 EPP MAY be carried over both connection-oriented and connection-less
 transport protocols. An EPP client MAY request a <greeting> from an
 EPP server at any time between a successful <login> command and a
 <logout> command by sending a <hello> to a server. Use of this
 element is essential in a connection-less environment where a server
 cannot return a <greeting> in response to a client-initiated
 connection. An EPP <hello> MUST be an empty element with no child
 elements.

 Example <hello>:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <hello/>
 C:</epp>

2.4. Greeting Format

 An EPP server responds to a successful connection and <hello> element
 by returning a <greeting> element to the client. An EPP greeting
 contains the following elements:

 - An <svID> element that contains the name of the server.

 - An <svDate> element that contains the server’s current date and
 time in Universal Coordinated Time (UTC).

 - An <svcMenu> element that identifies the services supported by the
 server, including:

Hollenbeck Standards Track [Page 8]

RFC 5730 EPP August 2009

 o One or more <version> elements that identify the protocol
 versions supported by the server.

 o One or more <lang> elements that contain the identifiers of the
 text response languages known by the server. Language
 identifiers MUST be structured as documented in [RFC4646].

 o One or more <objURI> elements that contain namespace URIs
 representing the objects that the server is capable of
 managing. A server MAY limit object management privileges on a
 per-client basis.

 o An OPTIONAL <svcExtension> element that contains one or more
 <extURI> elements that contain namespace URIs representing
 object extensions supported by the server.

 o A <dcp> (data collection policy) element that contains child
 elements used to describe the server’s privacy policy for data
 collection and management. Policy implications usually extend
 beyond the client-server relationship. Both clients and
 servers can have relationships with other entities that need to
 know the server operator’s data collection policy to make
 informed provisioning decisions. Policy information MUST be
 disclosed to provisioning entities, though the method of
 disclosing policy data outside of direct protocol interaction
 is beyond the scope of this specification. Child elements
 include the following:

 * An <access> element that describes the access provided by
 the server to the client on behalf of the originating data
 source. The <access> element MUST contain one of the
 following child elements:

 + <all/>: Access is given to all identified data.

 + <none/>: No access is provided to identified data.

 + <null/>: Data is not persistent, so no access is
 possible.

 + <personal/>: Access is given to identified data relating
 to individuals and organizational entities.

 + <personalAndOther/>: Access is given to identified data
 relating to individuals, organizational entities, and
 other data of a non-personal nature.

Hollenbeck Standards Track [Page 9]

RFC 5730 EPP August 2009

 + <other/>: Access is given to other identified data of a
 non-personal nature.

 * One or more <statement> elements that describe data
 collection purposes, data recipients, and data retention.
 Each <statement> element MUST contain a <purpose> element, a
 <recipient> element, and a <retention> element. The
 <purpose> element MUST contain one or more of the following
 child elements that describe the purposes for which data is
 collected:

 + <admin/>: Administrative purposes. Information can be
 used for administrative and technical support of the
 provisioning system.

 + <contact/>: Contact for marketing purposes. Information
 can be used to contact individuals, through a
 communications channel other than the protocol, for the
 promotion of a product or service.

 + <prov/>: Object-provisioning purposes. Information can
 be used to identify objects and inter-object
 relationships.

 + <other/>: Other purposes. Information may be used in
 other ways not captured by the above definitions.

 * The <recipient> element MUST contain one or more of the
 following child elements that describes the recipients of
 collected data:

 + <other/>: Other entities following unknown practices.

 + <ours>: Server operator and/or entities acting as agents
 or entities for whom the server operator is acting as an
 agent. An agent in this instance is defined as a third
 party that processes data only on behalf of the service
 provider for the completion of the stated purposes. The
 <ours> element contains an OPTIONAL <recDesc> element
 that can be used to describe the recipient.

 + <public/>: Public forums.

 + <same/>: Other entities following server practices.

 + <unrelated/>: Unrelated third parties.

Hollenbeck Standards Track [Page 10]

RFC 5730 EPP August 2009

 * The <retention> element MUST contain one of the following
 child elements that describes data retention practices:

 + <business/>: Data persists per business practices.

 + <indefinite/>: Data persists indefinitely.

 + <legal/>: Data persists per legal requirements.

 + <none/>: Data is not persistent and is not retained for
 more than a brief period of time necessary to make use of
 it during the course of a single online interaction.

 + <stated/>: Data persists to meet the stated purpose.

 * An OPTIONAL <expiry> element that describes the lifetime of
 the policy. The <expiry> element MUST contain one of the
 following child elements:

 + <absolute/>: The policy is valid from the current date
 and time until it expires on the specified date and time.

 + <relative/>: The policy is valid from the current date
 and time until the end of the specified duration.

 Data collection policy elements are based on work described in the
 World Wide Web Consortium’s Platform for Privacy Preferences
 [W3C.REC-P3P-20020416] specification.

 Example greeting:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <greeting>
 S: <svID>Example EPP server epp.example.com</svID>
 S: <svDate>2000-06-08T22:00:00.0Z</svDate>
 S: <svcMenu>
 S: <version>1.0</version>
 S: <lang>en</lang>
 S: <lang>fr</lang>
 S: <objURI>urn:ietf:params:xml:ns:obj1</objURI>
 S: <objURI>urn:ietf:params:xml:ns:obj2</objURI>
 S: <objURI>urn:ietf:params:xml:ns:obj3</objURI>
 S: <svcExtension>
 S: <extURI>http://custom/obj1ext-1.0</extURI>
 S: </svcExtension>
 S: </svcMenu>
 S: <dcp>

Hollenbeck Standards Track [Page 11]

RFC 5730 EPP August 2009

 S: <access><all/></access>
 S: <statement>
 S: <purpose><admin/><prov/></purpose>
 S: <recipient><ours/><public/></recipient>
 S: <retention><stated/></retention>
 S: </statement>
 S: </dcp>
 S: </greeting>
 S:</epp>

2.5. Command Format

 An EPP client interacts with an EPP server by sending a command to
 the server and receiving a response from the server. In addition to
 the standard EPP elements, an EPP command contains the following
 elements:

 - A command element whose tag corresponds to one of the valid EPP
 commands described in this document. The command element MAY
 contain either protocol-specified or object-specified child
 elements.

 - An OPTIONAL <extension> element that MAY be used for server-
 defined command extensions.

 - An OPTIONAL <clTRID> (client transaction identifier) element that
 MAY be used to uniquely identify the command to the client.
 Clients are responsible for maintaining their own transaction
 identifier space to ensure uniqueness.

 Example command with object-specified child elements:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <obj:info xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <obj:name>example</obj:name>
 C: </obj:info>
 C: </info>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

Hollenbeck Standards Track [Page 12]

RFC 5730 EPP August 2009

2.6. Response Format

 An EPP server responds to a client command by returning a response to
 the client. EPP commands are atomic, so a command will either
 succeed completely or fail completely. Success and failure results
 MUST NOT be mixed. In addition to the standard EPP elements, an EPP
 response contains the following elements:

 - One or more <result> elements that document the success or failure
 of command execution. If the command was processed successfully,
 only one <result> element MUST be returned. If the command was
 not processed successfully, multiple <result> elements MAY be
 returned to document failure conditions. Each <result> element
 contains the following attribute and child elements:

 o A "code" attribute whose value is a four-digit, decimal number
 that describes the success or failure of the command.

 o A <msg> element containing a human-readable description of the
 response code. The language of the response is identified via
 an OPTIONAL "lang" attribute. If not specified, the default
 attribute value MUST be "en" (English).

 o Zero or more OPTIONAL <value> elements that identify a client-
 provided element (including XML tag and value) or other
 information that caused a server error condition.

 o Zero or more OPTIONAL <extValue> elements that can be used to
 provide additional error diagnostic information, including:

 * A <value> element that identifies a client-provided element
 (including XML tag and value) that caused a server error
 condition.

 * A <reason> element containing a human-readable message that
 describes the reason for the error. The language of the
 response is identified via an OPTIONAL "lang" attribute. If
 not specified, the default attribute value MUST be "en"
 (English).

 - An OPTIONAL <msgQ> element that describes messages queued for
 client retrieval. A <msgQ> element MUST NOT be present if there
 are no messages queued for client retrieval. A <msgQ> element MAY
 be present in responses to EPP commands other than the <poll>
 command if messages are queued for retrieval. A <msgQ> element
 MUST be present in responses to the EPP <poll> command if messages
 are queued for retrieval. The <msgQ> element contains the
 following attributes:

Hollenbeck Standards Track [Page 13]

RFC 5730 EPP August 2009

 o A "count" attribute that describes the number of messages that
 exist in the queue.

 o An "id" attribute used to uniquely identify the message at the
 head of the queue.

 The <msgQ> element contains the following OPTIONAL child elements
 that MUST be returned in response to a <poll> request command and
 MUST NOT be returned in response to any other command, including a
 <poll> acknowledgement:

 o A <qDate> element that contains the date and time that the
 message was enqueued.

 o A <msg> element containing a human-readable message. The
 language of the response is identified via an OPTIONAL "lang"
 attribute. If not specified, the default attribute value MUST
 be "en" (English). This element MAY contain XML content for
 formatting purposes, but the XML content is not specified by
 the protocol and will thus not be processed for validity.

 - An OPTIONAL <resData> (response data) element that contains child
 elements specific to the command and associated object.

 - An OPTIONAL <extension> element that MAY be used for server-
 defined response extensions.

 - A <trID> (transaction identifier) element containing the
 transaction identifier assigned by the server to the command for
 which the response is being returned. The transaction identifier
 is formed using the <clTRID> associated with the command if
 supplied by the client and a <svTRID> (server transaction
 identifier) that is assigned by and unique to the server.

 Transaction identifiers provide command-response synchronization
 integrity. They SHOULD be logged, retained, and protected to ensure
 that both the client and the server have consistent temporal and
 state-management records.

 Example response without <value> or <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg lang="en">Command completed successfully</msg>
 S: </result>
 S: <trID>

Hollenbeck Standards Track [Page 14]

RFC 5730 EPP August 2009

 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 Example response with <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:creData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:name>example</obj:name>
 S: </obj:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 Example response with error value elements:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="2004">
 S: <msg>Parameter value range error</msg>
 S: <value xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:elem1>2525</obj:elem1>
 S: </value>
 S: </result>
 S: <result code="2005">
 S: <msg>Parameter value syntax error</msg>
 S: <value xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:elem2>ex(ample</obj:elem2>
 S: </value>
 S: <extValue>
 S: <value xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:elem3>abc.ex(ample</obj:elem3>
 S: </value>
 S: <reason>Invalid character found.</reason>
 S: </extValue>

Hollenbeck Standards Track [Page 15]

RFC 5730 EPP August 2009

 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 Example response with notice of waiting server messages:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <msgQ count="5" id="12345"/>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 Command success or failure MUST NOT be assumed if no response is
 returned or if a returned response is malformed. Protocol
 idempotency ensures the safety of retrying a command in cases of
 response-delivery failure.

2.7. Protocol Extension Framework

 EPP provides an extension framework that allows features to be added
 at the protocol, object, and command-response levels.

2.7.1. Protocol Extension

 The EPP extension framework allows for definition of new protocol
 elements identified using XML namespace notation with a reference to
 an XML schema that defines the namespace. The <epp> element that
 identifies the beginning of a protocol instance includes multiple
 child element choices, one of which is an <extension> element whose
 children define the extension. For example, a protocol extension
 element would be described in generic terms as follows:

 C:<epp>
 C: <extension>
 C: <!-- One or more extension elements. -->
 C: <ext:foo xmlns:ext="urn:ietf:params:xml:ns:ext">

Hollenbeck Standards Track [Page 16]

RFC 5730 EPP August 2009

 C: <!-- One or more extension child elements. -->
 C: </ext:foo>
 C: </extension>
 C:</epp>

 This document does not define mappings for specific extensions.
 Extension specifications MUST be described in separate documents that
 define the objects and operations subject to the extension.

2.7.2. Object Extension

 EPP provides an extensible object management framework that defines
 the syntax and semantics of protocol operations applied to a managed
 object. This framework pushes the definition of each protocol
 operation into the context of a specific object, providing the
 ability to add mappings for new objects without having to modify the
 base protocol.

 Protocol elements that contain data specific to objects are
 identified using XML namespace notation with a reference to an XML
 schema that defines the namespace. The schema for EPP supports use
 of dynamic object schemas on a per-command and per-response basis.
 For example, the start of an object-specific command element would be
 described in generic terms as follows:

 C:<EPPCommandName>
 C: <object:command xmlns:object="urn:ietf:params:xml:ns:object">
 C: <!-- One or more object-specific command elements. -->
 C: </object:command>
 C:</EPPCommandName>

 An object-specific response element would be described similarly:

 S:<resData>
 S: <object:resData xmlns:object="urn:ietf:params:xml:ns:object">
 S: <!-- One or more object-specific response elements. -->
 S: </object:resData>
 S:</resData>

 This document does not define mappings for specific objects. The
 mapping of EPP to an object MUST be described in separate documents
 that specifically address each command and response in the context of
 the object. A suggested object mapping outline is included as an
 appendix to this document.

Hollenbeck Standards Track [Page 17]

RFC 5730 EPP August 2009

2.7.3. Command-Response Extension

 EPP provides a facility for protocol command and response extensions.
 Protocol commands and responses MAY be extended by an <extension>
 element that contains additional elements whose syntax and semantics
 are not explicitly defined by EPP or an EPP object mapping. This
 element is OPTIONAL. Extensions are typically defined by agreement
 between client and server and MAY be used to extend EPP for unique
 operational needs. A server-extended command element would be
 described in generic terms as follows:

 C:<command>
 C: <!-- EPPCommandName can be "create", "update", etc. -->
 C: <EPPCommandName>
 C: <object:command xmlns:object="urn:ietf:params:xml:ns:object">
 C: <!-- One or more object-specific command elements. -->
 C: </object:command>
 C: </EPPCommandName>
 C: <extension>
 C: <!-- One or more server-defined elements. -->
 C: </extension>
 C:</command>

 A server-extended response element would be described similarly:

 S:<response>
 S: <result code="1000">
 S: <msg lang="en">Command completed successfully</msg>
 S: </result>
 S: <extension>
 S: <!-- One or more server-defined elements. -->
 S: </extension>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S:</response>

 This document does not define any specific server extensions. The
 mapping of server extensions to EPP MUST be described in separate
 documents that specifically address extended commands and responses
 in the server’s operational context.

2.8. Object Identification

 Some objects, such as name servers and contacts, can have utility in
 multiple repositories. However, maintaining disjoint copies of
 object information in multiple repositories can lead to

Hollenbeck Standards Track [Page 18]

RFC 5730 EPP August 2009

 inconsistencies that have adverse consequences for the Internet. For
 example, changing the name of a name server in one repository but not
 in a second repository that refers to the server for domain name
 delegation can produce unexpected DNS query results.

 Globally unique identifiers can help facilitate object-information
 sharing between repositories. A globally unique identifier MUST be
 assigned to every object when the object is created; the identifier
 MUST be returned to the client as part of any request to retrieve the
 detailed attributes of an object. Specific identifier values are a
 matter of repository policy, but they SHOULD be constructed according
 to the following algorithm:

 a. Divide the provisioning repository world into a number of object
 repository classes.

 b. Each repository within a class is assigned an identifier that is
 maintained by IANA.

 c. Each repository is responsible for assigning a unique local
 identifier for each object within the repository.

 d. The globally unique identifier is a concatenation of the local
 identifier, followed by a hyphen ("-", ASCII value 0x002D),
 followed by the repository identifier.

2.9. Protocol Commands

 EPP provides commands to manage sessions, retrieve object
 information, and perform transformation operations on objects. All
 EPP commands are atomic and designed so that they can be made
 idempotent, either succeeding completely or failing completely and
 producing predictable results in case of repeated executions. This
 section describes each EPP command, including examples with
 representative server responses.

2.9.1. Session Management Commands

 EPP provides two commands for session management: <login> to
 establish a session with a server and <logout> to end a session with
 a server. The <login> command establishes an ongoing server session
 that preserves client identity and authorization information during
 the duration of the session.

Hollenbeck Standards Track [Page 19]

RFC 5730 EPP August 2009

2.9.1.1. EPP <login> Command

 The EPP <login> command is used to establish a session with an EPP
 server in response to a greeting issued by the server. A <login>
 command MUST be sent to a server before any other EPP command to
 establish an ongoing session. A server operator MAY limit the number
 of failed login attempts N, 1 <= N <= infinity, after which a login
 failure results in the connection to the server (if a connection
 exists) being closed.

 A client identifier and initial password MUST be created on the
 server before a client can successfully complete a <login> command.
 The client identifier and initial password MUST be delivered to the
 client using an out-of-band method that protects the identifier and
 password from inadvertent disclosure.

 In addition to the standard EPP command elements, the <login> command
 contains the following child elements:

 - A <clID> element that contains the client identifier assigned to
 the client by the server.

 - A <pw> element that contains the client’s plain text password.
 The value of this element is case sensitive.

 - An OPTIONAL <newPW> element that contains a new plain text
 password to be assigned to the client for use with subsequent
 <login> commands. The value of this element is case sensitive.

 - An <options> element that contains the following child elements:

 - A <version> element that contains the protocol version to be
 used for the command or ongoing server session.

 - A <lang> element that contains the text response language to be
 used for the command or ongoing server session commands.

 The values of the <version> and <lang> elements MUST exactly match
 one of the values presented in the EPP greeting.

 - A <svcs> element that contains one or more <objURI> elements that
 contain namespace URIs representing the objects to be managed
 during the session. The <svcs> element MAY contain an OPTIONAL
 <svcExtension> element that contains one or more <extURI> elements
 that identify object extensions to be used during the session.

Hollenbeck Standards Track [Page 20]

RFC 5730 EPP August 2009

 The PLAIN Simple Authentication and Security Layer (SASL) mechanism
 presented in [RFC4616] describes a format for providing a user
 identifier, an authorization identifier, and a password as part of a
 single plain-text string. The EPP authentication mechanism is
 similar, though EPP does not require a session-level authorization
 identifier and the user identifier and password are separated into
 distinct XML elements. Additional identification and authorization
 schemes MUST be provided at other protocol layers to provide more
 robust security services.

 Example <login> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <login>
 C: <clID>ClientX</clID>
 C: <pw>foo-BAR2</pw>
 C: <newPW>bar-FOO2</newPW>
 C: <options>
 C: <version>1.0</version>
 C: <lang>en</lang>
 C: </options>
 C: <svcs>
 C: <objURI>urn:ietf:params:xml:ns:obj1</objURI>
 C: <objURI>urn:ietf:params:xml:ns:obj2</objURI>
 C: <objURI>urn:ietf:params:xml:ns:obj3</objURI>
 C: <svcExtension>
 C: <extURI>http://custom/obj1ext-1.0</extURI>
 C: </svcExtension>
 C: </svcs>
 C: </login>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <login> command has been processed successfully, a server MUST
 respond with an EPP response with no <resData> element. If
 successful, the server will respond by creating and maintaining a new
 session that SHOULD be terminated by a future <logout> command.

 Example <login> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>

Hollenbeck Standards Track [Page 21]

RFC 5730 EPP August 2009

 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <login> command is used to establish a session with an EPP
 server. A <login> command MUST be rejected if received within the
 bounds of an existing session. This command MUST be available to all
 clients.

2.9.1.2. EPP <logout> Command

 The EPP <logout> command is used to end a session with an EPP server.
 The <logout> command MUST be represented as an empty element with no
 child elements.

 A server MAY end a session due to client inactivity or excessive
 client-session longevity. The parameters for determining excessive
 client inactivity or session longevity are a matter of server policy
 and are not specified by this protocol.

 Transport mappings MUST explicitly describe any connection-oriented
 processing that takes place after processing a <logout> command and
 ending a session.

 Example <logout> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <logout/>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <logout> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element. If
 successful, the server MUST also end the current session.

 Example <logout> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1500">

Hollenbeck Standards Track [Page 22]

RFC 5730 EPP August 2009

 S: <msg>Command completed successfully; ending session</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <logout> command is used to end a session with an EPP server.
 A <logout> command MUST be rejected if the command has not been
 preceded by a successful <login> command. This command MUST be
 available to all clients.

2.9.2. Query Commands

2.9.2.1. EPP <check> Command

 The EPP <check> command is used to determine if an object can be
 provisioned within a repository. It provides a hint that allows a
 client to anticipate the success or failure of provisioning an object
 using the <create> command as object-provisioning requirements are
 ultimately a matter of server policy.

 The elements needed to identify an object are object-specific, so the
 child elements of the <check> command are specified using the EPP
 extension framework. In addition to the standard EPP command
 elements, the <check> command contains the following child elements:

 - An object-specific <obj:check> element that identifies the objects
 to be queried. Multiple objects of the same type MAY be queried
 within a single <check> command.

 Example <check> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <check>
 C: <obj:check xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <obj:name>example1</obj:name>
 C: <obj:name>example2</obj:name>
 C: <obj:name>example3</obj:name>
 C: </obj:check>
 C: </check>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

Hollenbeck Standards Track [Page 23]

RFC 5730 EPP August 2009

 When a <check> command has been processed successfully, a server MUST
 respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific, though the EPP <resData>
 element MUST contain a child <obj:chkData> element that contains one
 or more <obj:cd> (check data) elements. Each <obj:cd> element
 contains the following child elements:

 - An object-specific element that identifies the queried object.
 This element MUST contain an "avail" attribute whose value
 indicates object availability (can it be provisioned or not) at
 the moment the <check> command was completed. A value of "1" or
 "true" means that the object can be provisioned. A value of "0"
 or "false" means that the object cannot be provisioned.

 - An OPTIONAL <obj:reason> element that MAY be provided when an
 object cannot be provisioned. If present, this element contains
 server-specific text to help explain why the object cannot be
 provisioned. This text MUST be represented in the response
 language previously negotiated with the client; an OPTIONAL "lang"
 attribute MAY be present to identify the language if the
 negotiated value is something other than the default value of "en"
 (English).

 Example <check> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:chkData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:cd>
 S: <obj:name avail="1">example1</obj:name>
 S: </obj:cd>
 S: <obj:cd>
 S: <obj:name avail="0">example2</obj:name>
 S: <obj:reason>In use</obj:reason>
 S: </obj:cd>
 S: <obj:cd>
 S: <obj:name avail="1">example3</obj:name>
 S: </obj:cd>
 S: </obj:chkData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>

Hollenbeck Standards Track [Page 24]

RFC 5730 EPP August 2009

 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <check> command is used to determine if an object can be
 provisioned within a repository. This action MUST be open to all
 authorized clients.

2.9.2.2. EPP <info> Command

 The EPP <info> command is used to retrieve information associated
 with an existing object. The elements needed to identify an object
 and the type of information associated with an object are both
 object-specific, so the child elements of the <info> command are
 specified using the EPP extension framework. In addition to the
 standard EPP command elements, the <info> command contains the
 following child elements:

 - An object-specific <obj:info> element that identifies the object
 to be queried.

 Example <info> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <obj:info xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:info>
 C: </info>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 When an <info> command has been processed successfully, a server MUST
 respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace and the Repository
 Object IDentifier (ROID) that was assigned to the object when the
 object was created. Other child elements of the <resData> element
 are object-specific.

 Example <info> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>

Hollenbeck Standards Track [Page 25]

RFC 5730 EPP August 2009

 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:infData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:roid>EXAMPLE1-REP</obj:roid>
 S: <!-- Object-specific elements. -->
 S: </obj:infData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <info> command is used to retrieve information associated
 with an existing object. This action SHOULD be limited to authorized
 clients; restricting this action to the sponsoring client is
 RECOMMENDED.

2.9.2.3. EPP <poll> Command

 The EPP <poll> command is used to discover and retrieve service
 messages queued by a server for individual clients. If the message
 queue is not empty, a successful response to a <poll> command MUST
 return the first message from the message queue. Each response
 returned from the server includes a server-unique message identifier
 that MUST be provided to acknowledge receipt of the message, and a
 counter that indicates the number of messages in the queue. After a
 message has been received by the client, the client MUST respond to
 the message with an explicit acknowledgement to confirm that the
 message has been received. A server MUST dequeue the message and
 decrement the queue counter after receiving acknowledgement from the
 client, making the next message in the queue (if any) available for
 retrieval.

 Servers can occasionally perform actions on objects that are not in
 direct response to a client request, or an action taken by one client
 can indirectly involve a second client. Examples of such actions
 include deletion upon expiration, automatic renewal upon expiration,
 and transfer coordination; other types of service information MAY be
 defined as a matter of server policy. Service messages SHOULD be
 created for passive clients affected by an action on an object.
 Service messages MAY also be created for active clients that request
 an action on an object, though such messages MUST NOT replace the
 normal protocol response to the request. For example, <transfer>
 actions SHOULD be reported to the client that has the authority to

Hollenbeck Standards Track [Page 26]

RFC 5730 EPP August 2009

 approve or reject a transfer request. Other methods of server-client
 action notification, such as offline reporting, are also possible and
 are beyond the scope of this specification.

 Message queues can consume server resources if clients do not
 retrieve and acknowledge messages on a regular basis. Servers MAY
 implement other mechanisms to dequeue and deliver messages if queue
 maintenance needs exceed server resource consumption limits. Server
 operators SHOULD consider time-sensitivity and resource management
 factors when selecting a delivery method for service information
 because some message types can be reasonably delivered using non-
 protocol methods that require fewer server resources.

 Some of the information returned in response to a <poll> command can
 be object-specific, so some child elements of the <poll> response MAY
 be specified using the EPP extension framework. The <poll> command
 MUST be represented as an empty element with no child elements. An
 "op" attribute with value "req" is REQUIRED to retrieve the first
 message from the server message queue. An "op" attribute (with value
 "ack") and a "msgID" attribute (whose value corresponds to the value
 of the "id" attribute copied from the <msg> element in the message
 being acknowledged) are REQUIRED to acknowledge receipt of a message.

 Example <poll> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <poll op="req"/>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 The returned result code notes that a message has been dequeued and
 returned in response to a <poll> command.

 Example <poll> response with object-specific information:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1301">
 S: <msg>Command completed successfully; ack to dequeue</msg>
 S: </result>
 S: <msgQ count="5" id="12345">
 S: <qDate>2000-06-08T22:00:00.0Z</qDate>
 S: <msg>Transfer requested.</msg>
 S: </msgQ>

Hollenbeck Standards Track [Page 27]

RFC 5730 EPP August 2009

 S: <resData>
 S: <obj:trnData
 S: xmlns:obj="urn:ietf:params:xml:ns:obj-1.0">
 S: <obj:name>example.com</obj:name>
 S: <obj:trStatus>pending</obj:trStatus>
 S: <obj:reID>ClientX</obj:reID>
 S: <obj:reDate>2000-06-08T22:00:00.0Z</obj:reDate>
 S: <obj:acID>ClientY</obj:acID>
 S: <obj:acDate>2000-06-13T22:00:00.0Z</obj:acDate>
 S: <obj:exDate>2002-09-08T22:00:00.0Z</obj:exDate>
 S: </obj:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 A client MUST acknowledge each response to dequeue the message and
 make subsequent messages available for retrieval.

 Example <poll> acknowledgement command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <poll op="ack" msgID="12345"/>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 A <poll> acknowledgement response notes the ID of the message that
 has been acknowledged and the number of messages remaining in the
 queue.

 Example <poll> acknowledgement response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <msgQ count="4" id="12345"/>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>

Hollenbeck Standards Track [Page 28]

RFC 5730 EPP August 2009

 S: </trID>
 S: </response>
 S:</epp>

 Service messages can also be returned without object information.

 Example <poll> response with mixed message content and without
 object-specific information:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1301">
 S: <msg>Command completed successfully; ack to dequeue</msg>
 S: </result>
 S: <msgQ count="4" id="12346">
 S: <qDate>2000-06-08T22:10:00.0Z</qDate>
 S: <msg lang="en">Credit balance low.
 S: <limit>100</limit><bal>5</bal>
 S: </msg>
 S: </msgQ>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The returned result code and message is used to note an empty server
 message queue.

 Example <poll> response to note an empty message queue:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1300">
 S: <msg>Command completed successfully; no messages</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

Hollenbeck Standards Track [Page 29]

RFC 5730 EPP August 2009

 The EPP <poll> command is used to discover and retrieve client
 service messages from a server. This action SHOULD be limited to
 authorized clients; queuing service messages and limiting queue
 access on a per-client basis is RECOMMENDED.

2.9.2.4. EPP <transfer> Query Command

 The EPP <transfer> command provides a query operation that allows a
 client to determine real-time status of pending and completed
 transfer requests. The elements needed to identify an object that is
 the subject of a transfer request are object-specific, so the child
 elements of the <transfer> query command are specified using the EPP
 extension framework. In addition to the standard EPP command
 elements, the <transfer> command contains an "op" attribute with
 value "query" and the following child elements:

 - An object-specific <obj:transfer> element that identifies the
 object whose transfer status is requested.

 Transfer status is typically considered sensitive information by the
 clients involved in the operation. Object mappings MUST provide
 features to restrict transfer queries to authorized clients, such as
 by requiring authorization information as part of the request.

 Example <transfer> query command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="query">
 C: <obj:transfer xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:transfer>
 C: </transfer>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> query command has been processed successfully, a
 server MUST respond with an EPP <resData> element that MUST contain a
 child element that identifies the object namespace. The child
 elements of the <resData> element are object-specific, but they MUST
 include elements that identify the object, the status of the
 transfer, the identifier of the client that requested the transfer,
 the date and time that the request was made, the identifier of the
 client that is authorized to act on the request, the date and time by

Hollenbeck Standards Track [Page 30]

RFC 5730 EPP August 2009

 which an action is expected, and an OPTIONAL date and time noting
 changes in the object’s validity period (if applicable) that occur as
 a result of the transfer.

 Example <transfer> query response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:trnData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:name>example</obj:name>
 S: <obj:trStatus>pending</obj:trStatus>
 S: <obj:reID>ClientX</obj:reID>
 S: <obj:reDate>2000-06-08T22:00:00.0Z</obj:reDate>
 S: <obj:acID>ClientY</obj:acID>
 S: <obj:acDate>2000-06-13T22:00:00.0Z</obj:acDate>
 S: <obj:exDate>2002-09-08T22:00:00.0Z</obj:exDate>
 S: </obj:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <transfer> command provides a query operation that allows a
 client to determine real-time status of pending and completed
 transfer requests. This action SHOULD be limited to authorized
 clients; restricting queries to the requesting and responding clients
 is RECOMMENDED. Object transfer MAY be unavailable or limited by
 object-specific policies.

2.9.3. Object Transform Commands

 EPP provides five commands to transform objects: <create> to create
 an instance of an object with a server, <delete> to remove an
 instance of an object from a server, <renew> to extend the validity
 period of an object, <transfer> to manage changes in client
 sponsorship of an object, and <update> to change information
 associated with an object.

Hollenbeck Standards Track [Page 31]

RFC 5730 EPP August 2009

2.9.3.1. EPP <create> Command

 The EPP <create> command is used to create an instance of an object.
 An object can be created for an indefinite period of time, or an
 object can be created for a specific validity period. The EPP
 mapping for an object MUST describe the status of an object with
 respect to time in order to include expected client and server
 behavior if a validity period is used.

 The elements needed to identify an object and associated attributes
 are object-specific, so the child elements of the <create> command
 are specified using the EPP extension framework. In addition to the
 standard EPP command elements, the <create> command contains the
 following child elements:

 - An object-specific <obj:create> element that identifies the object
 to be created and the elements that are required to create the
 object.

 Example <create> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <create>
 C: <obj:create xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:create>
 C: </create>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <create> command has been processed successfully, a server MAY
 respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific.

 Example <create> response with <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:creData xmlns:obj="urn:ietf:params:xml:ns:obj">

Hollenbeck Standards Track [Page 32]

RFC 5730 EPP August 2009

 S: <!-- Object-specific elements. -->
 S: </obj:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <create> command is used to create an instance of an object.
 This action SHOULD be limited to authorized clients and MAY be
 restricted on a per-client basis.

2.9.3.2. EPP <delete> Command

 The EPP <delete> command is used to remove an instance of an existing
 object. The elements needed to identify an object are object-
 specific, so the child elements of the <delete> command are specified
 using the EPP extension framework. In addition to the standard EPP
 command elements, the <delete> command contains the following child
 elements:

 - An object-specific <obj:delete> element that identifies the object
 to be deleted.

 Example <delete> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <delete>
 C: <obj:delete xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:delete>
 C: </delete>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 When a <delete> command has been processed successfully, a server MAY
 respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific.

Hollenbeck Standards Track [Page 33]

RFC 5730 EPP August 2009

 Example <delete> response without <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <delete> command is used to remove an instance of an existing
 object. This action SHOULD be limited to authorized clients;
 restricting this action to the sponsoring client is RECOMMENDED.

2.9.3.3. EPP <renew> Command

 The EPP <renew> command is used to extend the validity period of an
 existing object. The elements needed to identify and extend the
 validity period of an object are object-specific, so the child
 elements of the <renew> command are specified using the EPP extension
 framework. In addition to the standard EPP command elements, the
 <renew> command contains the following child elements:

 - An object-specific <obj:renew> element that identifies the object
 to be renewed and the elements that are required to extend the
 validity period of the object.

 Example <renew> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <renew>
 C: <obj:renew xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:renew>
 C: </renew>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

Hollenbeck Standards Track [Page 34]

RFC 5730 EPP August 2009

 When a <renew> command has been processed successfully, a server MAY
 respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific.

 Example <renew> response with <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <obj:renData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <!-- Object-specific elements. -->
 S: </obj:renData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <renew> command is used to extend the validity period of an
 existing object. This action SHOULD be limited to authorized
 clients; restricting this action to the sponsoring client is
 RECOMMENDED. Object renewal MAY be unavailable or limited by object-
 specific policies.

2.9.3.4. EPP <transfer> Command

 The EPP <transfer> command is used to manage changes in client
 sponsorship of an existing object. Clients can initiate a transfer
 request, cancel a transfer request, approve a transfer request, and
 reject a transfer request using the "op" command attribute.

 A client who wishes to assume sponsorship of a known object from
 another client uses the <transfer> command with the value of the "op"
 attribute set to "request". Once a transfer has been requested, the
 same client can cancel the request using a <transfer> command with
 the value of the "op" attribute set to "cancel". A request to cancel
 the transfer MUST be sent to the server before the current sponsoring
 client either approves or rejects the transfer request and before the
 server automatically processes the request due to responding client
 inactivity.

Hollenbeck Standards Track [Page 35]

RFC 5730 EPP August 2009

 Once a transfer request has been received by the server, the server
 MUST notify the current sponsoring client of the requested transfer
 either by queuing a service message for retrieval via the <poll>
 command or by using an out-of-band mechanism to inform the client of
 the request. The current status of a pending <transfer> command for
 any object can be found using the <transfer> query command. Transfer
 service messages MUST include the object-specific elements specified
 for <transfer> command responses.

 The current sponsoring client MAY explicitly approve or reject the
 transfer request. The client can approve the request using a
 <transfer> command with the value of the "op" attribute set to
 "approve". The client can reject the request using a <transfer>
 command with the value of the "op" attribute set to "reject".

 A server MAY automatically approve or reject all transfer requests
 that are not explicitly approved or rejected by the current
 sponsoring client within a fixed amount of time. The amount of time
 to wait for explicit action and the default server behavior are local
 matters not specified by EPP, but they SHOULD be documented in a
 server-specific profile document that describes default server
 behavior for client information.

 Objects eligible for transfer MUST have associated authorization
 information that MUST be provided to complete a <transfer> command.
 The type of authorization information required is object-specific;
 passwords or more complex mechanisms based on public key cryptography
 are typical.

 The elements needed to identify and complete the transfer of an
 object are object-specific, so the child elements of the <transfer>
 command are specified using the EPP extension framework. In addition
 to the standard EPP command elements, the <transfer> command contains
 the following child elements:

 - An object-specific <obj:transfer> element that identifies the
 object to be transferred and the elements that are required to
 process the transfer command.

 Example <transfer> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="request">
 C: <obj:transfer xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:transfer>

Hollenbeck Standards Track [Page 36]

RFC 5730 EPP August 2009

 C: </transfer>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> command has been processed successfully, a server
 MUST respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific, but they MUST include
 elements that identify the object, the status of the transfer, the
 identifier of the client that requested the transfer, the date and
 time that the request was made, the identifier of the client that is
 authorized to act on the request, the date and time by which an
 action is expected, and an OPTIONAL date and time noting changes in
 the object’s validity period (if applicable) that occur as a result
 of the transfer.

 Example <transfer> response with <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <obj:trnData xmlns:obj="urn:ietf:params:xml:ns:obj">
 S: <obj:name>example</obj:name>
 S: <obj:trStatus>pending</obj:trStatus>
 S: <obj:reID>ClientX</obj:reID>
 S: <obj:reDate>2000-06-08T22:00:00.0Z</obj:reDate>
 S: <obj:acID>ClientY</obj:acID>
 S: <obj:acDate>2000-06-13T22:00:00.0Z</obj:acDate>
 S: <obj:exDate>2002-09-08T22:00:00.0Z</obj:exDate>
 S: </obj:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The EPP <transfer> command is used to manage changes in client
 sponsorship of an existing object. This action SHOULD be limited to
 authorized clients; restricting <transfer> requests to a client other
 than the current sponsoring client, <transfer> approval requests to

Hollenbeck Standards Track [Page 37]

RFC 5730 EPP August 2009

 the current sponsoring client, and <transfer> cancellation requests
 to the original requesting client is RECOMMENDED. Object transfer
 MAY be unavailable or limited by object-specific policies.

2.9.3.5. EPP <update> Command

 The EPP <update> command is used to change information associated
 with an existing object. The elements needed to identify and modify
 an object are object-specific, so the child elements of the <update>
 command are specified using the EPP extension framework. In addition
 to the standard EPP command elements, the <update> command contains
 the following child elements:

 - An object-specific <obj:update> element that identifies the object
 to be updated and the elements that are required to modify the
 object. Object-specific elements MUST identify values to be
 added, values to be removed, or values to be changed.

 Example <update> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <update>
 C: <obj:update xmlns:obj="urn:ietf:params:xml:ns:obj">
 C: <!-- Object-specific elements. -->
 C: </obj:update>
 C: </update>
 C: <clTRID>ABC-12346</clTRID>
 C: </command>
 C:</epp>

 When an <update> command has been processed successfully, a server
 MAY respond with an EPP <resData> element that MUST contain a child
 element that identifies the object namespace. The child elements of
 the <resData> element are object-specific.

 Example <update> response without <resData>:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12346</clTRID>
 S: <svTRID>54322-XYZ</svTRID>

Hollenbeck Standards Track [Page 38]

RFC 5730 EPP August 2009

 S: </trID>
 S: </response>
 S:</epp>

 The EPP <update> command is used to change information associated
 with an existing object. This action SHOULD be limited to authorized
 clients; restricting this action to the sponsoring client is
 RECOMMENDED.

3. Result Codes

 EPP result codes are based on the theory of reply codes described in
 section 4.2.1 of [RFC5321]. EPP uses four decimal digits to describe
 the success or failure of each EPP command. Each of the digits of
 the reply have special significance.

 The first digit denotes command success or failure. The second digit
 denotes the response category, such as command syntax or security.
 The third and fourth digits provide explicit response detail within
 each response category.

 There are two values for the first digit of the reply code:

 1yzz Positive completion reply. The command was accepted and
 processed by the system without error.

 2yzz Negative completion reply. The command was not accepted, and
 the requested action did not occur.

 The second digit groups responses into one of six specific
 categories:

 x0zz Protocol Syntax

 x1zz Implementation-specific Rules

 x2zz Security

 x3zz Data Management

 x4zz Server System

 x5zz Connection Management

 The third and fourth digits provide response detail within the
 categories defined by the first and second digits. The complete list
 of valid result codes is enumerated below and in the normative
 schema.

Hollenbeck Standards Track [Page 39]

RFC 5730 EPP August 2009

 Every EPP response MUST include a result code and a human-readable
 description of the result code. The language used to represent the
 description MAY be identified using an instance of the "lang"
 attribute within the <msg> element. If not specified, the default
 language is English, identified as "en". A description of the
 structure of valid values for the "lang" attribute is described in
 [RFC4646].

 Response text MAY be translated into other languages, though the
 translation MUST preserve the meaning of the code as described here.
 Response code values MUST NOT be changed when translating text.

 Response text in the table below is enclosed in quotes to clearly
 mark the beginning and ending of each response string. Quotes MUST
 NOT be used to delimit these strings when returning response text via
 the protocol.

 Successful command completion responses:

 Code Response text in English

 ____ ________________________

 1000 "Command completed successfully"

 This is the usual response code for a successfully
 completed command that is not addressed by any other
 1xxx-series response code.

 1001 "Command completed successfully; action pending"

 This response code MUST be returned when responding to a
 command that requires offline activity before the
 requested action can be completed. See Section 2 for a
 description of other processing requirements.

 1300 "Command completed successfully; no messages"

 This response code MUST be returned when responding to a
 <poll> request command and the server message queue is
 empty.

 1301 "Command completed successfully; ack to dequeue"

 This response code MUST be returned when responding to a
 <poll> request command and a message has been retrieved
 from the server message queue.

Hollenbeck Standards Track [Page 40]

RFC 5730 EPP August 2009

 1500 "Command completed successfully; ending session"

 This response code MUST be returned when responding to a
 successful <logout> command.

 Command error responses:

 Code Response text in English

 ____ ________________________

 2000 "Unknown command"

 This response code MUST be returned when a server receives
 a command element that is not defined by EPP.

 2001 "Command syntax error"

 This response code MUST be returned when a server receives
 an improperly formed command element.

 2002 "Command use error"

 This response code MUST be returned when a server receives
 a properly formed command element but the command cannot
 be executed due to a sequencing or context error. For
 example, a <logout> command cannot be executed without
 having first completed a <login> command.

 2003 "Required parameter missing"

 This response code MUST be returned when a server receives
 a command for which a required parameter value has not
 been provided.

 2004 "Parameter value range error"

 This response code MUST be returned when a server receives
 a command parameter whose value is outside the range of
 values specified by the protocol. The error value SHOULD
 be returned via a <value> element in the EPP response.

 2005 "Parameter value syntax error"

 This response code MUST be returned when a server receives
 a command containing a parameter whose value is improperly
 formed. The error value SHOULD be returned via a <value>
 element in the EPP response.

Hollenbeck Standards Track [Page 41]

RFC 5730 EPP August 2009

 2100 "Unimplemented protocol version"

 This response code MUST be returned when a server receives
 a command element specifying a protocol version that is
 not implemented by the server.

 2101 "Unimplemented command"

 This response code MUST be returned when a server receives
 a valid EPP command element that is not implemented by the
 server. For example, a <transfer> command can be
 unimplemented for certain object types.

 2102 "Unimplemented option"

 This response code MUST be returned when a server receives
 a valid EPP command element that contains a protocol
 option that is not implemented by the server.

 2103 "Unimplemented extension"

 This response code MUST be returned when a server receives
 a valid EPP command element that contains a protocol
 command extension that is not implemented by the server.

 2104 "Billing failure"

 This response code MUST be returned when a server attempts
 to execute a billable operation and the command cannot be
 completed due to a client-billing failure.

 2105 "Object is not eligible for renewal"

 This response code MUST be returned when a client attempts
 to <renew> an object that is not eligible for renewal in
 accordance with server policy.

 2106 "Object is not eligible for transfer"

 This response code MUST be returned when a client attempts
 to <transfer> an object that is not eligible for transfer
 in accordance with server policy.

 2200 "Authentication error"

 This response code MUST be returned when a server notes an
 error when validating client credentials.

Hollenbeck Standards Track [Page 42]

RFC 5730 EPP August 2009

 2201 "Authorization error"

 This response code MUST be returned when a server notes a
 client-authorization error when executing a command. This
 error is used to note that a client lacks privileges to
 execute the requested command.

 2202 "Invalid authorization information"

 This response code MUST be returned when a server receives
 invalid command authorization information when attempting
 to confirm authorization to execute a command. This error
 is used to note that a client has the privileges required
 to execute the requested command, but the authorization
 information provided by the client does not match the
 authorization information archived by the server.

 2300 "Object pending transfer"

 This response code MUST be returned when a server receives
 a command to transfer of an object that is pending
 transfer due to an earlier transfer request.

 2301 "Object not pending transfer"

 This response code MUST be returned when a server receives
 a command to confirm, reject, or cancel the transfer of an
 object when no command has been made to transfer the
 object.

 2302 "Object exists"

 This response code MUST be returned when a server receives
 a command to create an object that already exists in the
 repository.

 2303 "Object does not exist"

 This response code MUST be returned when a server receives
 a command to query or transform an object that does not
 exist in the repository.

 2304 "Object status prohibits operation"

 This response code MUST be returned when a server receives
 a command to transform an object that cannot be completed
 due to server policy or business practices. For example,
 a server can disallow <transfer> commands under terms and

Hollenbeck Standards Track [Page 43]

RFC 5730 EPP August 2009

 conditions that are matters of local policy, or the server
 might have received a <delete> command for an object whose
 status prohibits deletion.

 2305 "Object association prohibits operation"

 This response code MUST be returned when a server receives
 a command to transform an object that cannot be completed
 due to dependencies on other objects that are associated
 with the target object. For example, a server can
 disallow <delete> commands while an object has active
 associations with other objects.

 2306 "Parameter value policy error"

 This response code MUST be returned when a server receives
 a command containing a parameter value that is
 syntactically valid but semantically invalid due to local
 policy. For example, the server can support a subset of a
 range of valid protocol parameter values. The error value
 SHOULD be returned via a <value> element in the EPP
 response.

 2307 "Unimplemented object service"

 This response code MUST be returned when a server receives
 a command to operate on an object service that is not
 supported by the server.

 2308 "Data management policy violation"

 This response code MUST be returned when a server receives
 a command whose execution results in a violation of server
 data management policies. For example, removing all
 attribute values or object associations from an object
 might be a violation of a server’s data management
 policies.

 2400 "Command failed"

 This response code MUST be returned when a server is
 unable to execute a command due to an internal server
 error that is not related to the protocol. The failure
 can be transient. The server MUST keep any ongoing
 session active.

Hollenbeck Standards Track [Page 44]

RFC 5730 EPP August 2009

 2500 "Command failed; server closing connection"

 This response code MUST be returned when a server receives
 a command that cannot be completed due to an internal
 server error that is not related to the protocol. The
 failure is not transient and will cause other commands to
 fail as well. The server MUST end the active session and
 close the existing connection.

 2501 "Authentication error; server closing connection"

 This response code MUST be returned when a server notes an
 error when validating client credentials and a
 server-defined limit on the number of allowable failures
 has been exceeded. The server MUST close the existing
 connection.

 2502 "Session limit exceeded; server closing connection"

 This response code MUST be returned when a server receives
 a <login> command and the command cannot be completed
 because the client has exceeded a system-defined limit on
 the number of sessions that the client can establish. It
 might be possible to establish a session by ending
 existing unused sessions and closing inactive connections.

4. Formal Syntax

 EPP is specified in XML Schema notation. The formal syntax presented
 here is a complete schema representation of EPP suitable for
 automated validation of EPP XML instances.

 Two schemas are presented here. The first schema is the base EPP
 schema. The second schema defines elements and structures that can
 be used by both the base EPP schema and object mapping schema. The
 BEGIN and END tags are not part of the schema; they are used to note
 the beginning and ending of the schema for URI registration purposes.

4.1. Base Schema

 Copyright (c) 2009 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

Hollenbeck Standards Track [Page 45]

RFC 5730 EPP August 2009

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>

 <schema targetNamespace="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:epp="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <!--
 Import common element types.
 -->
 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"/>

 <annotation>
 <documentation>
 Extensible Provisioning Protocol v1.0 schema.
 </documentation>
 </annotation>

 <!--
 Every EPP XML instance must begin with this element.
 -->

Hollenbeck Standards Track [Page 46]

RFC 5730 EPP August 2009

 <element name="epp" type="epp:eppType"/>

 <!--
 An EPP XML instance must contain a greeting, hello, command,
 response, or extension.
 -->
 <complexType name="eppType">
 <choice>
 <element name="greeting" type="epp:greetingType"/>
 <element name="hello"/>
 <element name="command" type="epp:commandType"/>
 <element name="response" type="epp:responseType"/>
 <element name="extension" type="epp:extAnyType"/>
 </choice>
 </complexType>

 <!--
 A greeting is sent by a server in response to a client connection
 or <hello>.
 -->
 <complexType name="greetingType">
 <sequence>
 <element name="svID" type="epp:sIDType"/>
 <element name="svDate" type="dateTime"/>
 <element name="svcMenu" type="epp:svcMenuType"/>
 <element name="dcp" type="epp:dcpType"/>
 </sequence>
 </complexType>

 <!--
 Server IDs are strings with minimum and maximum length restrictions.
 -->
 <simpleType name="sIDType">
 <restriction base="normalizedString">
 <minLength value="3"/>
 <maxLength value="64"/>
 </restriction>
 </simpleType>

 <!--
 A server greeting identifies available object services.
 -->
 <complexType name="svcMenuType">
 <sequence>
 <element name="version" type="epp:versionType"
 maxOccurs="unbounded"/>
 <element name="lang" type="language"
 maxOccurs="unbounded"/>

Hollenbeck Standards Track [Page 47]

RFC 5730 EPP August 2009

 <element name="objURI" type="anyURI"
 maxOccurs="unbounded"/>
 <element name="svcExtension" type="epp:extURIType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Data Collection Policy types.
 -->
 <complexType name="dcpType">
 <sequence>
 <element name="access" type="epp:dcpAccessType"/>
 <element name="statement" type="epp:dcpStatementType"
 maxOccurs="unbounded"/>
 <element name="expiry" type="epp:dcpExpiryType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="dcpAccessType">
 <choice>
 <element name="all"/>
 <element name="none"/>
 <element name="null"/>
 <element name="other"/>
 <element name="personal"/>
 <element name="personalAndOther"/>
 </choice>
 </complexType>

 <complexType name="dcpStatementType">
 <sequence>
 <element name="purpose" type="epp:dcpPurposeType"/>
 <element name="recipient" type="epp:dcpRecipientType"/>
 <element name="retention" type="epp:dcpRetentionType"/>
 </sequence>
 </complexType>

 <complexType name="dcpPurposeType">
 <sequence>
 <element name="admin"
 minOccurs="0"/>
 <element name="contact"
 minOccurs="0"/>
 <element name="other"
 minOccurs="0"/>
 <element name="prov"

Hollenbeck Standards Track [Page 48]

RFC 5730 EPP August 2009

 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="dcpRecipientType">
 <sequence>
 <element name="other"
 minOccurs="0"/>
 <element name="ours" type="epp:dcpOursType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="public"
 minOccurs="0"/>
 <element name="same"
 minOccurs="0"/>
 <element name="unrelated"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="dcpOursType">
 <sequence>
 <element name="recDesc" type="epp:dcpRecDescType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <simpleType name="dcpRecDescType">
 <restriction base="token">
 <minLength value="1"/>
 <maxLength value="255"/>
 </restriction>
 </simpleType>

 <complexType name="dcpRetentionType">
 <choice>
 <element name="business"/>
 <element name="indefinite"/>
 <element name="legal"/>
 <element name="none"/>
 <element name="stated"/>
 </choice>
 </complexType>

 <complexType name="dcpExpiryType">
 <choice>
 <element name="absolute" type="dateTime"/>
 <element name="relative" type="duration"/>
 </choice>

Hollenbeck Standards Track [Page 49]

RFC 5730 EPP August 2009

 </complexType>

 <!--
 Extension framework types.
 -->
 <complexType name="extAnyType">
 <sequence>
 <any namespace="##other"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="extURIType">
 <sequence>
 <element name="extURI" type="anyURI"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <!--
 An EPP version number is a dotted pair of decimal numbers.
 -->
 <simpleType name="versionType">
 <restriction base="token">
 <pattern value="[1-9]+\.[0-9]+"/>
 <enumeration value="1.0"/>
 </restriction>
 </simpleType>

 <!--
 Command types.
 -->
 <complexType name="commandType">
 <sequence>
 <choice>
 <element name="check" type="epp:readWriteType"/>
 <element name="create" type="epp:readWriteType"/>
 <element name="delete" type="epp:readWriteType"/>
 <element name="info" type="epp:readWriteType"/>
 <element name="login" type="epp:loginType"/>
 <element name="logout"/>
 <element name="poll" type="epp:pollType"/>
 <element name="renew" type="epp:readWriteType"/>
 <element name="transfer" type="epp:transferType"/>
 <element name="update" type="epp:readWriteType"/>
 </choice>
 <element name="extension" type="epp:extAnyType"
 minOccurs="0"/>

Hollenbeck Standards Track [Page 50]

RFC 5730 EPP August 2009

 <element name="clTRID" type="epp:trIDStringType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 The <login> command.
 -->
 <complexType name="loginType">
 <sequence>
 <element name="clID" type="eppcom:clIDType"/>
 <element name="pw" type="epp:pwType"/>
 <element name="newPW" type="epp:pwType"
 minOccurs="0"/>
 <element name="options" type="epp:credsOptionsType"/>
 <element name="svcs" type="epp:loginSvcType"/>
 </sequence>
 </complexType>

 <complexType name="credsOptionsType">
 <sequence>
 <element name="version" type="epp:versionType"/>
 <element name="lang" type="language"/>
 </sequence>
 </complexType>

 <simpleType name="pwType">
 <restriction base="token">
 <minLength value="6"/>
 <maxLength value="16"/>
 </restriction>
 </simpleType>

 <complexType name="loginSvcType">
 <sequence>
 <element name="objURI" type="anyURI"
 maxOccurs="unbounded"/>
 <element name="svcExtension" type="epp:extURIType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 The <poll> command.
 -->
 <complexType name="pollType">
 <attribute name="op" type="epp:pollOpType"
 use="required"/>

Hollenbeck Standards Track [Page 51]

RFC 5730 EPP August 2009

 <attribute name="msgID" type="token"/>
 </complexType>

 <simpleType name="pollOpType">
 <restriction base="token">
 <enumeration value="ack"/>
 <enumeration value="req"/>
 </restriction>
 </simpleType>

 <!--
 The <transfer> command. This is object-specific, and uses attributes
 to identify the requested operation.
 -->
 <complexType name="transferType">
 <sequence>
 <any namespace="##other"/>
 </sequence>
 <attribute name="op" type="epp:transferOpType"
 use="required"/>
 </complexType>

 <simpleType name="transferOpType">
 <restriction base="token">
 <enumeration value="approve"/>
 <enumeration value="cancel"/>
 <enumeration value="query"/>
 <enumeration value="reject"/>
 <enumeration value="request"/>
 </restriction>
 </simpleType>

 <!--
 All other object-centric commands. EPP doesn’t specify the syntax or
 semantics of object-centric command elements. The elements MUST be
 described in detail in another schema specific to the object.
 -->
 <complexType name="readWriteType">
 <sequence>
 <any namespace="##other"/>
 </sequence>
 </complexType>

 <complexType name="trIDType">
 <sequence>
 <element name="clTRID" type="epp:trIDStringType"
 minOccurs="0"/>
 <element name="svTRID" type="epp:trIDStringType"/>

Hollenbeck Standards Track [Page 52]

RFC 5730 EPP August 2009

 </sequence>
 </complexType>

 <simpleType name="trIDStringType">
 <restriction base="token">
 <minLength value="3"/>
 <maxLength value="64"/>
 </restriction>
 </simpleType>

 <!--
 Response types.
 -->
 <complexType name="responseType">
 <sequence>
 <element name="result" type="epp:resultType"
 maxOccurs="unbounded"/>
 <element name="msgQ" type="epp:msgQType"
 minOccurs="0"/>

 <element name="resData" type="epp:extAnyType"
 minOccurs="0"/>
 <element name="extension" type="epp:extAnyType"
 minOccurs="0"/>
 <element name="trID" type="epp:trIDType"/>
 </sequence>
 </complexType>

 <complexType name="resultType">
 <sequence>
 <element name="msg" type="epp:msgType"/>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="value" type="epp:errValueType"/>
 <element name="extValue" type="epp:extErrValueType"/>
 </choice>
 </sequence>
 <attribute name="code" type="epp:resultCodeType"
 use="required"/>
 </complexType>

 <complexType name="errValueType" mixed="true">
 <sequence>
 <any namespace="##any" processContents="skip"/>
 </sequence>
 <anyAttribute namespace="##any" processContents="skip"/>
 </complexType>

Hollenbeck Standards Track [Page 53]

RFC 5730 EPP August 2009

 <complexType name="extErrValueType">
 <sequence>
 <element name="value" type="epp:errValueType"/>
 <element name="reason" type="epp:msgType"/>
 </sequence>
 </complexType>

 <complexType name="msgQType">
 <sequence>
 <element name="qDate" type="dateTime"
 minOccurs="0"/>
 <element name="msg" type="epp:mixedMsgType"
 minOccurs="0"/>
 </sequence>
 <attribute name="count" type="unsignedLong"
 use="required"/>
 <attribute name="id" type="eppcom:minTokenType"
 use="required"/>
 </complexType>

 <complexType name="mixedMsgType" mixed="true">
 <sequence>
 <any processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="lang" type="language"
 default="en"/>
 </complexType>

 <!--
 Human-readable text may be expressed in languages other than English.
 -->
 <complexType name="msgType">
 <simpleContent>
 <extension base="normalizedString">
 <attribute name="lang" type="language"
 default="en"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 EPP result codes.
 -->
 <simpleType name="resultCodeType">
 <restriction base="unsignedShort">
 <enumeration value="1000"/>
 <enumeration value="1001"/>

Hollenbeck Standards Track [Page 54]

RFC 5730 EPP August 2009

 <enumeration value="1300"/>
 <enumeration value="1301"/>
 <enumeration value="1500"/>
 <enumeration value="2000"/>
 <enumeration value="2001"/>
 <enumeration value="2002"/>
 <enumeration value="2003"/>
 <enumeration value="2004"/>
 <enumeration value="2005"/>
 <enumeration value="2100"/>
 <enumeration value="2101"/>
 <enumeration value="2102"/>
 <enumeration value="2103"/>
 <enumeration value="2104"/>
 <enumeration value="2105"/>
 <enumeration value="2106"/>
 <enumeration value="2200"/>
 <enumeration value="2201"/>
 <enumeration value="2202"/>
 <enumeration value="2300"/>
 <enumeration value="2301"/>
 <enumeration value="2302"/>
 <enumeration value="2303"/>
 <enumeration value="2304"/>
 <enumeration value="2305"/>
 <enumeration value="2306"/>
 <enumeration value="2307"/>
 <enumeration value="2308"/>
 <enumeration value="2400"/>
 <enumeration value="2500"/>
 <enumeration value="2501"/>
 <enumeration value="2502"/>
 </restriction>
 </simpleType>

 <!--
 End of schema.
 -->
 </schema>
 END

Hollenbeck Standards Track [Page 55]

RFC 5730 EPP August 2009

4.2. Shared Structure Schema

 Copyright (c) 2009 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>

 <schema targetNamespace="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <annotation>
 <documentation>
 Extensible Provisioning Protocol v1.0
 shared structures schema.
 </documentation>
 </annotation>

Hollenbeck Standards Track [Page 56]

RFC 5730 EPP August 2009

 <!--
 Object authorization information types.
 -->
 <complexType name="pwAuthInfoType">
 <simpleContent>
 <extension base="normalizedString">
 <attribute name="roid" type="eppcom:roidType"/>
 </extension>
 </simpleContent>
 </complexType>

 <complexType name="extAuthInfoType">
 <sequence>
 <any namespace="##other"/>
 </sequence>
 </complexType>

 <!--
 <check> response types.
 -->
 <complexType name="reasonType">
 <simpleContent>
 <extension base="eppcom:reasonBaseType">
 <attribute name="lang" type="language"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="reasonBaseType">
 <restriction base="token">
 <minLength value="1"/>
 <maxLength value="32"/>
 </restriction>
 </simpleType>

 <!--
 Abstract client and object identifier type.
 -->
 <simpleType name="clIDType">
 <restriction base="token">
 <minLength value="3"/>
 <maxLength value="16"/>
 </restriction>
 </simpleType>

 <!--
 DNS label type.
 -->

Hollenbeck Standards Track [Page 57]

RFC 5730 EPP August 2009

 <simpleType name="labelType">
 <restriction base="token">
 <minLength value="1"/>
 <maxLength value="255"/>
 </restriction>
 </simpleType>

 <!--
 Non-empty token type.
 -->
 <simpleType name="minTokenType">
 <restriction base="token">
 <minLength value="1"/>
 </restriction>
 </simpleType>

 <!--
 Repository Object IDentifier type.
 -->
 <simpleType name="roidType">
 <restriction base="token">
 <pattern value="(\w|_){1,80}-\w{1,8}"/>
 </restriction>
 </simpleType>

 <!--
 Transfer status identifiers.
 -->

 <simpleType name="trStatusType">
 <restriction base="token">
 <enumeration value="clientApproved"/>
 <enumeration value="clientCancelled"/>
 <enumeration value="clientRejected"/>
 <enumeration value="pending"/>
 <enumeration value="serverApproved"/>
 <enumeration value="serverCancelled"/>
 </restriction>
 </simpleType>

 <!--
 End of schema.
 -->
 </schema>
 END

Hollenbeck Standards Track [Page 58]

RFC 5730 EPP August 2009

5. Internationalization Considerations

 EPP is represented in XML, which provides native support for encoding
 information using the Unicode character set and its more compact
 representations including UTF-8. Conformant XML processors recognize
 both UTF-8 and UTF-16. Though XML includes provisions to identify
 and use other character encodings through use of an "encoding"
 attribute in an <?xml?> declaration, use of UTF-8 is RECOMMENDED in
 environments where parser-encoding-support incompatibility exists.

 EPP includes a provision for returning a human-readable message with
 every result code. This document describes result codes in English,
 but the actual text returned with a result MAY be provided in a
 language negotiated when a session is established. Languages other
 than English MUST be noted through specification of a "lang"
 attribute for each message. Valid values for the "lang" attribute
 and "lang" negotiation elements are described in [RFC4646].

 All date-time values presented via EPP MUST be expressed in Universal
 Coordinated Time using the Gregorian calendar. XML Schema allows use
 of time zone identifiers to indicate offsets from the zero meridian,
 but this option MUST NOT be used with EPP. The extended date-time
 form using upper case "T" and "Z" characters defined in
 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

6. IANA Considerations

 This document uses URNs to describe XML namespaces and XML schemas
 conforming to a registry mechanism described in [RFC3688]. Four URI
 assignments have been registered by the IANA.

 Registration request for the EPP namespace:

 URI: urn:ietf:params:xml:ns:epp-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

 Registration request for the EPP XML schema:

 URI: urn:ietf:params:xml:schema:epp-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

Hollenbeck Standards Track [Page 59]

RFC 5730 EPP August 2009

 XML: See the "Base Schema" section of this document.

 Registration request for the EPP shared structure namespace:

 URI: urn:ietf:params:xml:ns:eppcom-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

 Registration request for the EPP shared structure XML schema:

 URI: urn:ietf:params:xml:schema:eppcom-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: See the "Shared Structure Schema" section of this document.

 A MIME media type registration template is included in Appendix B.

7. Security Considerations

 EPP provides only simple client-authentication services. A passive
 attack is sufficient to recover client identifiers and passwords,
 allowing trivial command forgery. Protection against most common
 attacks and more robust security services MUST be provided by other
 protocol layers. Specifically, EPP instances MUST be protected using
 a transport mechanism or application protocol that provides
 integrity, confidentiality, and mutual, strong client-server
 authentication.

 EPP uses a variant of the PLAIN SASL mechanism described in [RFC4616]
 to provide a simple application-layer authentication service that
 augments or supplements authentication and identification services
 that might be available at other protocol layers. Where the PLAIN
 SASL mechanism specifies provision of an authorization identifier,
 authentication identifier, and password as a single string separated
 by ASCII NUL characters, EPP specifies use of a combined
 authorization and authentication identifier and a password provided
 as distinct XML elements.

 Repeated password guessing attempts can be discouraged by limiting
 the number of <login> attempts that can be attempted on an open
 connection. A server MAY close an open connection if multiple
 <login> attempts are made with either an invalid client identifier,

Hollenbeck Standards Track [Page 60]

RFC 5730 EPP August 2009

 an invalid password, or both an invalid client identifier and an
 invalid password.

 EPP uses authentication information associated with objects to
 confirm object-transfer authority. Authentication information
 exchanged between EPP clients and third-party entities MUST be
 exchanged using a facility that provides privacy and integrity
 services to protect against unintended disclosure and modification
 while in transit.

 EPP instances SHOULD be protected using a transport mechanism or
 application protocol that provides anti-replay protection. EPP
 provides some protection against replay attacks through command
 idempotency and client-initiated transaction identification.
 Consecutive command replays will not change the state of an object in
 any way. There is, however, a chance of unintended or malicious
 consequence if a command is replayed after intervening commands have
 changed the object state and client identifiers are not used to
 detect replays. For example, a replayed <create> command that
 follows a <delete> command might succeed without additional
 facilities to prevent or detect the replay.

 As described in Section 2, EPP includes features that allow for
 offline review of transform commands before the requested action is
 actually completed. The server is required to notify the client when
 offline processing of the action has been completed. Notifications
 can be sent using an out-of-band mechanism that is not protected by
 the mechanism used to provide EPP transport security. Notifications
 sent without EPP’s transport-security services should be protected
 using another mechanism that provides an appropriate level of
 protection for the notification.

8. Acknowledgements

 RFC 3730 is a product of the PROVREG working group, which suggested
 improvements and provided many invaluable comments. The author
 wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
 Akkerhuis for their process and editorial contributions. RFC 4930
 and this document are individual submissions, based on the work done
 in RFC 3730.

 Specific suggestions that have been incorporated into this document
 were provided by Chris Bason, Eric Brunner-Williams, Jordyn Buchanan,
 Roger Castillo Cortazar, Dave Crocker, Ayesha Damaraju, Sheer
 El-Showk, Patrik Faltstrom, James Gould, John Immordino, Dan Kohn,
 Hong Liu, Klaus Malorny, Dan Manley, Michael Mealling, Patrick
 Mevzek, Andrew Newton, Budi Rahardjo, Asbjorn Steira, Rick Wesson,
 and Jay Westerdal.

Hollenbeck Standards Track [Page 61]

RFC 5730 EPP August 2009

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, September 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 4646, September 2006.

 [W3C.REC-xml-20040204]
 Sperberg-McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium FirstEdition REC-xml-
 20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204>.

 [W3C.REC-xmlschema-1-20041028]
 Maloney, M., Thompson, H., Mendelsohn, N., and D. Beech,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

9.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

Hollenbeck Standards Track [Page 62]

RFC 5730 EPP August 2009

 [RFC2781] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
 10646", RFC 2781, February 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3080] Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, March 2001.

 [RFC3375] Hollenbeck, S., "Generic Registry-Registrar Protocol
 Requirements", RFC 3375, September 2002.

 [RFC4616] Zeilenga, K., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616, August 2006.

 [RFC4930] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 RFC 4930, May 2007.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [W3C.REC-P3P-20020416]
 Marchiori, M., "The Platform for Privacy Preferences 1.0
 (P3P1.0) Specification", World Wide Web Consortium
 Recommendation REC-P3P-20020416, April 2002,
 <http://www.w3.org/TR/2002/REC-P3P-20020416>.

Hollenbeck Standards Track [Page 63]

RFC 5730 EPP August 2009

Appendix A. Object Mapping Template

 This appendix describes a recommended outline for documenting the EPP
 mapping of an object. Documents that describe EPP object mappings
 SHOULD describe the mapping in a format similar to the one used here.
 Additional sections are required if the object mapping is written in
 Internet-Draft or RFC format.

 1. Introduction

 Provide an introduction that describes the object and gives an
 overview of the mapping to EPP.

 2. Object Attributes

 Describe the attributes associated with the object, including
 references to syntax specifications as appropriate. Examples of
 object attributes include a name or identifier and dates
 associated with modification events.

 3. EPP Command Mapping

 3.1. EPP Query Commands

 3.1.1. EPP <check> Command

 Describe the object-specific mappings required to implement the
 EPP <check> command. Include both sample commands and sample
 responses.

 3.1.2. EPP <info> Command

 Describe the object-specific mappings required to implement the
 EPP <info> command. Include both sample commands and sample
 responses.

 3.1.3. EPP <poll> Command

 Describe the object-specific mappings required to implement the
 EPP <poll> command. Include both sample commands and sample
 responses.

 3.1.4. EPP <transfer> Command

 Describe the object-specific mappings required to implement the
 EPP <transfer> query command. Include both sample commands and
 sample responses.

Hollenbeck Standards Track [Page 64]

RFC 5730 EPP August 2009

 3.2. EPP Transform Commands

 3.2.1. EPP <create> Command

 Describe the object-specific mappings required to implement the
 EPP <create> command. Include both sample commands and sample
 responses. Describe the status of the object with respect to
 time, including expected client and server behavior if a validity
 period is used.

 3.2.2. EPP <delete> Command

 Describe the object-specific mappings required to implement the
 EPP <delete> command. Include both sample commands and sample
 responses.

 3.2.3. EPP <renew> Command

 Describe the object-specific mappings required to implement the
 EPP <renew> command. Include both sample commands and sample
 responses.

 3.2.4. EPP <transfer> Command

 Describe the object-specific mappings required to implement the
 EPP <transfer> command. Include both sample commands and sample
 responses.

 3.2.4. EPP <update> Command

 Describe the object-specific mappings required to implement the
 EPP <update> command. Include both sample commands and sample
 responses.

 4. Formal Syntax

 Provide the XML schema for the object mapping. An XML DTD MUST
 NOT be used, as DTDs do not provide sufficient support for XML
 namespaces and strong data typing.

Hollenbeck Standards Track [Page 65]

RFC 5730 EPP August 2009

Appendix B. Media Type Registration: application/epp+xml

 MIME media type name: application

 MIME subtype name: epp+xml

 Required parameters: none

 Optional parameters: Same as the charset parameter of application/xml
 as specified in [RFC3023].

 Encoding considerations: Same as the encoding considerations of
 application/xml as specified in [RFC3023].

 Security considerations: This type has all of the security
 considerations described in [RFC3023] plus the considerations
 specified in the Security Considerations section of this document.

 Interoperability considerations: XML has proven to be interoperable
 across WWW Distributed Authoring and Versioning (WebDAV) clients and
 servers, and for import and export from multiple XML authoring tools.
 For maximum interoperability, validating processors are recommended.
 Although non-validating processors can be more efficient, they are
 not required to handle all features of XML. For further information,
 see Section 2.9, "Standalone Document Declaration", and Section 5,
 "Conformance", of [W3C.REC-xml-20040204].

 Published specification: This document.

 Applications that use this media type: EPP is device-, platform-, and
 vendor-neutral and is supported by multiple service providers.

 Additional information: If used, magic numbers, fragment identifiers,
 base URIs, and use of the BOM should be as specified in [RFC3023].

 Magic number(s): None.

 File extension(s): .xml

 Macintosh file type code(s): "TEXT"

 Person & email address for further information: See the "Author’s
 Address" section of this document.

 Intended usage: COMMON

 Author/Change controller: IETF

Hollenbeck Standards Track [Page 66]

RFC 5730 EPP August 2009

Appendix C. Changes from RFC 4930

 1. Changed "This document obsoletes RFC 3730" to "This document
 obsoletes RFC 4930".

 2. Replaced references to RFC 2595 with references to RFC 4616.

 3. Replaced references to RFC 2821 with references to RFC 5321.

 4. Replaced references to RFC 2960 with references to RFC 4960.

 5. Replaced references to RFC 3066 with references to RFC 4646.

 6. Replaced references to RFC 3730 with references to RFC 4930.

 7. Added "A protocol client that is authorized to manage an
 existing object is described as a "sponsoring" client throughout
 this document" in Section 1.1.

 8. Changed "This action MUST be open to all authorized clients" to
 "This command MUST be available to all clients" in the
 descriptions of the <login> and <logout> commands.

 9. Changed "Specific result codes are listed in the table below" to
 "The complete list of valid result codes is enumerated below and
 in the normative schema" in Section 3.

 10. Added new paragraph to Section 7 to give guidance on the need to
 protect offline transaction notices.

 11. Added reference to Appendix B in the IANA Considerations
 section.

 12. Added BSD license text to XML schema section.

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 67]

===

Network Working Group S. Hollenbeck
Request for Comments: 5731 VeriSign, Inc.
STD: 69 August 2009
Obsoletes: 4931
Category: Standards Track

 Extensible Provisioning Protocol (EPP) Domain Name Mapping

Abstract

 This document describes an Extensible Provisioning Protocol (EPP)
 mapping for the provisioning and management of Internet domain names
 stored in a shared central repository. Specified in XML, the mapping
 defines EPP command syntax and semantics as applied to domain names.
 This document obsoletes RFC 4931.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hollenbeck Standards Track [Page 1]

RFC 5731 EPP Domain Name Mapping August 2009

Table of Contents

 1. Introduction ..3
 1.1. Relationship of Domain Objects and Host Objects3
 1.2. Conventions Used in This Document5
 2. Object Attributes ...5
 2.1. Domain and Host Names5
 2.2. Contact and Client Identifiers5
 2.3. Status Values ..5
 2.4. Dates and Times ..7
 2.5. Validity Periods ...8
 2.6. Authorization Information8
 2.7. Other DNS Resource Record Attributes8
 3. EPP Command Mapping ...9
 3.1. EPP Query Commands ...9
 3.1.1. EPP <check> Command9
 3.1.2. EPP <info> Command11
 3.1.3. EPP <transfer> Query Command15
 3.2. EPP Transform Commands17
 3.2.1. EPP <create> Command18
 3.2.2. EPP <delete> Command20
 3.2.3. EPP <renew> Command22
 3.2.4. EPP <transfer> Command23
 3.2.5. EPP <update> Command25
 3.3. Offline Review of Requested Actions28
 4. Formal Syntax ..30
 5. Internationalization Considerations40
 6. IANA Considerations ..40
 7. Security Considerations ..41
 8. Acknowledgements ...41
 9. References ...42
 9.1. Normative References42
 9.2. Informative References43
 Appendix A. Changes from RFC 493144

Hollenbeck Standards Track [Page 2]

RFC 5731 EPP Domain Name Mapping August 2009

1. Introduction

 This document describes an Internet domain name mapping for version
 1.0 of the Extensible Provisioning Protocol (EPP). This mapping is
 specified using the Extensible Markup Language (XML) 1.0 as described
 in [W3C.REC-xml-20040204] and XML Schema notation as described in
 [W3C.REC-xmlschema-1-20041028] and [W3C.REC-xmlschema-2-20041028].
 This document obsoletes RFC 4931 [RFC4931].

 [RFC5730] provides a complete description of EPP command and response
 structures. A thorough understanding of the base protocol
 specification is necessary to understand the mapping described in
 this document.

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented to develop a conforming implementation.

1.1. Relationship of Domain Objects and Host Objects

 The EPP mapping for host objects is described in [RFC5732]. This
 document assumes that domain name objects have a superordinate
 relationship to subordinate host name objects. For example, domain
 name "example.com" has a superordinate relationship to host name
 "ns1.example.com". EPP actions (such as object transfers) that do
 not preserve this relationship MUST be explicitly disallowed.

 A host name object can be created in a repository for which no
 superordinate domain name object exists. For example, host name
 "ns1.example.com" can be created in the ".example" repository so that
 DNS domains in ".example" can be delegated to the host. Such hosts
 are described as "external" hosts in this specification since the
 name of the host does not belong to the namespace of the repository
 in which the host is being used for delegation purposes.

 Whether a host is external or internal relates to the repository in
 which the host is being used for delegation purposes. Whether or not
 an internal host is subordinate relates to a domain within the
 repository. For example, host ns1.example1.com is a subordinate host
 of domain example1.com, but it is not a subordinate host of domain
 example2.com. ns1.example1.com can be used as a name server for
 example2.com. In this case, ns1.example1.com MUST be treated as an
 internal host, subject to the rules governing operations on
 subordinate hosts within the same repository.

 Name server hosts for domain delegation can be specified either as
 references to existing host objects or as domain attributes that
 describe a host machine. A server operator MUST use one name server

Hollenbeck Standards Track [Page 3]

RFC 5731 EPP Domain Name Mapping August 2009

 specification form consistently. A server operator that announces
 support for host objects in an EPP greeting MUST NOT allow domain
 attributes to describe a name server host machine. A server operator
 that does not announce support for host objects MUST allow domain
 attributes to describe a name server host machine. When domain
 attributes are used to describe a name server host machine, IP
 addresses SHOULD be required only as needed to generate DNS glue
 records.

 Name servers are specified within a <domain:ns> element. This
 element MUST contain one or more <domain:hostObj> elements or one or
 more <domain:hostAttr> elements. A <domain:hostObj> element contains
 the fully qualified name of a known name server host object. A
 <domain:hostAttr> element contains the following child elements:

 - A <domain:hostName> element that contains the fully qualified name
 of a host.

 - Zero or more OPTIONAL <domain:hostAddr> elements that contain the
 IP addresses to be associated with the host. Each element MAY
 contain an "ip" attribute to identify the IP address format.
 Attribute value "v4" is used to note IPv4 address format.
 Attribute value "v6" is used to note IPv6 address format. If the
 "ip" attribute is not specified, "v4" is the default attribute
 value. IP address syntax requirements are described in Section
 2.5 of the EPP host mapping [RFC5732].

 Example host-object name server elements for domain example.com:

 <domain:ns>
 <domain:hostObj>ns1.example.net</domain:hostObj>
 <domain:hostObj>ns2.example.net</domain:hostObj>
 </domain:ns>

 Example host-attribute name server elements for domain example.com:

 <domain:ns>
 <domain:hostAttr>
 <domain:hostName>ns1.example.net</domain:hostName>
 <domain:hostAddr
 ip="v4">192.0.2.2</domain:hostAddr>
 <domain:hostAddr
 ip="v6">1080:0:0:0:8:800:200C:417A</domain:hostAddr>
 </domain:hostAttr>
 <domain:hostAttr>
 <domain:hostName>ns2.example.net</domain:hostName>
 </domain:hostAttr>
 </domain:ns>

Hollenbeck Standards Track [Page 4]

RFC 5731 EPP Domain Name Mapping August 2009

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In examples, "C:" represents lines sent by a protocol client and "S:"
 represents lines returned by a protocol server. Indentation and
 white space in examples are provided only to illustrate element
 relationships and are not a REQUIRED feature of this protocol.

2. Object Attributes

 An EPP domain object has attributes and associated values that can be
 viewed and modified by the sponsoring client or the server. This
 section describes each attribute type in detail. The formal syntax
 for the attribute values described here can be found in the "Formal
 Syntax" section of this document and in the appropriate normative
 references.

2.1. Domain and Host Names

 The syntax for domain and host names described in this document MUST
 conform to [RFC0952] and [RFC1123]. At the time of this writing, RFC
 3490 [RFC3490] describes a standard to use certain ASCII name labels
 to represent non-ASCII name labels. These conformance requirements
 might change as a result of progressing work in developing standards
 for internationalized domain names. A server MAY restrict allowable
 domain names to a particular top-level domain, second-level domain,
 or other domain for which the server is authoritative. The trailing
 dot required when these names are stored in a DNS zone is implicit
 and MUST NOT be provided when exchanging host and domain names.

2.2. Contact and Client Identifiers

 All EPP contacts are identified by a server-unique identifier.
 Contact identifiers are character strings with a specified minimum
 length, a specified maximum length, and a specified format. Contact
 identifiers use the "clIDType" client identifier syntax described in
 [RFC5730].

2.3. Status Values

 A domain object MUST always have at least one associated status
 value. Status values can be set only by the client that sponsors a
 domain object and by the server on which the object resides. A
 client can change the status of a domain object using the EPP

Hollenbeck Standards Track [Page 5]

RFC 5731 EPP Domain Name Mapping August 2009

 <update> command. Each status value MAY be accompanied by a string
 of human-readable text that describes the rationale for the status
 applied to the object.

 A client MUST NOT alter status values set by the server. A server
 MAY alter or override status values set by a client, subject to local
 server policies. The status of an object MAY change as a result of
 either a client-initiated transform command or an action performed by
 a server operator.

 Status values that can be added or removed by a client are prefixed
 with "client". Corresponding status values that can be added or
 removed by a server are prefixed with "server". Status values that
 do not begin with either "client" or "server" are server-managed.

 Status Value Descriptions:

 - clientDeleteProhibited, serverDeleteProhibited

 Requests to delete the object MUST be rejected.

 - clientHold, serverHold

 DNS delegation information MUST NOT be published for the object.

 - clientRenewProhibited, serverRenewProhibited

 Requests to renew the object MUST be rejected.

 - clientTransferProhibited, serverTransferProhibited

 Requests to transfer the object MUST be rejected.

 - clientUpdateProhibited, serverUpdateProhibited

 Requests to update the object (other than to remove this status)
 MUST be rejected.

 - inactive

 Delegation information has not been associated with the object.
 This is the default status when a domain object is first created
 and there are no associated host objects for the DNS delegation.
 This status can also be set by the server when all host-object
 associations are removed.

Hollenbeck Standards Track [Page 6]

RFC 5731 EPP Domain Name Mapping August 2009

 - ok

 This is the normal status value for an object that has no pending
 operations or prohibitions. This value is set and removed by the
 server as other status values are added or removed.

 - pendingCreate, pendingDelete, pendingRenew, pendingTransfer,
 pendingUpdate

 A transform command has been processed for the object, but the
 action has not been completed by the server. Server operators can
 delay action completion for a variety of reasons, such as to allow
 for human review or third-party action. A transform command that
 is processed, but whose requested action is pending, is noted with
 response code 1001.

 When the requested action has been completed, the pendingCreate,
 pendingDelete, pendingRenew, pendingTransfer, or pendingUpdate status
 value MUST be removed. All clients involved in the transaction MUST
 be notified using a service message that the action has been
 completed and that the status of the object has changed.

 "ok" status MUST NOT be combined with any other status.

 "pendingDelete" status MUST NOT be combined with either
 "clientDeleteProhibited" or "serverDeleteProhibited" status.

 "pendingRenew" status MUST NOT be combined with either
 "clientRenewProhibited" or "serverRenewProhibited" status.

 "pendingTransfer" status MUST NOT be combined with either
 "clientTransferProhibited" or "serverTransferProhibited" status.

 "pendingUpdate" status MUST NOT be combined with either
 "clientUpdateProhibited" or "serverUpdateProhibited" status.

 The pendingCreate, pendingDelete, pendingRenew, pendingTransfer, and
 pendingUpdate status values MUST NOT be combined with each other.

 Other status combinations not expressly prohibited MAY be used.

2.4. Dates and Times

 Date and time attribute values MUST be represented in Universal
 Coordinated Time (UTC) using the Gregorian calendar. The extended
 date-time form using upper case "T" and "Z" characters defined in

Hollenbeck Standards Track [Page 7]

RFC 5731 EPP Domain Name Mapping August 2009

 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

2.5. Validity Periods

 A domain name object MAY have a specified validity period. If server
 policy supports domain-object validity periods, the validity period
 is defined when a domain object is created, and it MAY be extended by
 the EPP <renew> or <transfer> commands. As a matter of server
 policy, this specification does not define actions to be taken upon
 expiration of a domain object’s validity period.

 Validity periods are measured in years or months with the appropriate
 units specified using the "unit" attribute. Valid values for the
 "unit" attribute are "y" for years and "m" for months. The minimum
 allowable period value is one (1). The maximum allowable value is
 ninety-nine decimal (99). A server MAY support a lower maximum
 value.

2.6. Authorization Information

 Authorization information is associated with domain objects to
 facilitate transfer operations. Authorization information is
 assigned when a domain object is created, and it might be updated in
 the future. This specification describes password-based
 authorization information, though other mechanisms are possible.

2.7. Other DNS Resource Record Attributes

 While the DNS allows many resource record types to be associated with
 a domain, this mapping only explicitly specifies elements that
 describe resource records used for domain delegation and resolution.
 Facilities to provision other domain-related resource record types
 can be developed by extending this mapping.

 The provisioning method described in this mapping separates discrete
 data elements by data type. This method of data definition allows
 XML Schema processors to perform basic syntax-validation tasks,
 reducing ambiguity and the amount of parsing and syntax-checking work
 required of protocol processors. Provisioning and extension methods
 that aggregate data into opaque strings are possible, but such
 methods should not be used because they impose additional parsing,
 interpretation, and validation requirements on protocol processors.

Hollenbeck Standards Track [Page 8]

RFC 5731 EPP Domain Name Mapping August 2009

3. EPP Command Mapping

 A detailed description of the EPP syntax and semantics can be found
 in [RFC5730]. The command mappings described here are specifically
 for use in provisioning and managing Internet domain names via EPP.

3.1. EPP Query Commands

 EPP provides three commands to retrieve domain information: <check>
 to determine if a domain object can be provisioned within a
 repository, <info> to retrieve detailed information associated with a
 domain object, and <transfer> to retrieve domain-object transfer
 status information.

3.1.1. EPP <check> Command

 The EPP <check> command is used to determine if an object can be
 provisioned within a repository. It provides a hint that allows a
 client to anticipate the success or failure of provisioning an object
 using the <create> command, as object-provisioning requirements are
 ultimately a matter of server policy.

 In addition to the standard EPP command elements, the <check> command
 MUST contain a <domain:check> element that identifies the domain
 namespace. The <domain:check> element contains the following child
 elements:

 - One or more <domain:name> elements that contain the fully
 qualified names of the domain objects to be queried.

 Example <check> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <check>
 C: <domain:check
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:name>example.net</domain:name>
 C: <domain:name>example.org</domain:name>
 C: </domain:check>
 C: </check>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

Hollenbeck Standards Track [Page 9]

RFC 5731 EPP Domain Name Mapping August 2009

 When a <check> command has been processed successfully, the EPP
 <resData> element MUST contain a child <domain:chkData> element that
 identifies the domain namespace. The <domain:chkData> element
 contains one or more <domain:cd> elements that contain the following
 child elements:

 - A <domain:name> element that contains the fully qualified name of
 the queried domain object. This element MUST contain an "avail"
 attribute whose value indicates object availability (can it be
 provisioned or not) at the moment the <check> command was
 completed. A value of "1" or "true" means that the object can be
 provisioned. A value of "0" or "false" means that the object can
 not be provisioned.

 - An OPTIONAL <domain:reason> element that MAY be provided when an
 object cannot be provisioned. If present, this element contains
 server-specific text to help explain why the object cannot be
 provisioned. This text MUST be represented in the response
 language previously negotiated with the client; an OPTIONAL "lang"
 attribute MAY be present to identify the language if the
 negotiated value is something other than the default value of "en"
 (English).

 Example <check> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:chkData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:cd>
 S: <domain:name avail="1">example.com</domain:name>
 S: </domain:cd>
 S: <domain:cd>
 S: <domain:name avail="0">example.net</domain:name>
 S: <domain:reason>In use</domain:reason>
 S: </domain:cd>
 S: <domain:cd>
 S: <domain:name avail="1">example.org</domain:name>
 S: </domain:cd>
 S: </domain:chkData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>

Hollenbeck Standards Track [Page 10]

RFC 5731 EPP Domain Name Mapping August 2009

 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <check> command cannot be
 processed for any reason.

3.1.2. EPP <info> Command

 The EPP <info> command is used to retrieve information associated
 with a domain object. The response to this command MAY vary
 depending on the identity of the querying client, use of
 authorization information, and server policy towards unauthorized
 clients. If the querying client is the sponsoring client, all
 available information MUST be returned. If the querying client is
 not the sponsoring client but the client provides valid authorization
 information, all available information MUST be returned. If the
 querying client is not the sponsoring client and the client does not
 provide valid authorization information, server policy determines
 which OPTIONAL elements are returned.

 In addition to the standard EPP command elements, the <info> command
 MUST contain a <domain:info> element that identifies the domain
 namespace. The <domain:info> element contains the following child
 elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object to be queried. An OPTIONAL "hosts" attribute is
 available to control return of information describing hosts
 related to the domain object. A value of "all" (the default,
 which MAY be absent) returns information describing both
 subordinate and delegated hosts. A value of "del" returns
 information describing only delegated hosts. A value of "sub"
 returns information describing only subordinate hosts. A value of
 "none" returns no information describing delegated or subordinate
 hosts.

 - An OPTIONAL <domain:authInfo> element that contains authorization
 information associated with the domain object or authorization
 information associated with the domain object’s registrant or
 associated contacts. An OPTIONAL "roid" attribute MUST be used to
 identify the registrant or contact object if and only if the given
 authInfo is associated with a registrant or contact object, and
 not the domain object itself. If this element is not provided or
 if the authorization information is invalid, server policy
 determines if the command is rejected or if response information
 will be returned to the client.

Hollenbeck Standards Track [Page 11]

RFC 5731 EPP Domain Name Mapping August 2009

 Example <info> command without authorization information:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <domain:info
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name hosts="all">example.com</domain:name>
 C: </domain:info>
 C: </info>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 Example <info> command with authorization information:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <domain:info
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name hosts="all">example.com</domain:name>
 C: <domain:authInfo>
 C: <domain:pw>2fooBAR</domain:pw>
 C: </domain:authInfo>
 C: </domain:info>
 C: </info>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <info> command has been processed successfully, the EPP
 <resData> element MUST contain a child <domain:infData> element that
 identifies the domain namespace. Elements that are not OPTIONAL MUST
 be returned; OPTIONAL elements are returned based on client
 authorization and server policy. The <domain:infData> element
 contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object.

 - A <domain:roid> element that contains the Repository Object
 IDentifier assigned to the domain object when the object was
 created.

Hollenbeck Standards Track [Page 12]

RFC 5731 EPP Domain Name Mapping August 2009

 - Zero or more OPTIONAL <domain:status> elements that contain the
 current status descriptors associated with the domain.

 - If supported by the server, one OPTIONAL <domain:registrant>
 element and one or more OPTIONAL <domain:contact> elements that
 contain identifiers for the human or organizational social
 information objects associated with the domain object.

 - An OPTIONAL <domain:ns> element that contains the fully qualified
 names of the delegated host objects or host attributes (name
 servers) associated with the domain object. See Section 1.1 for a
 description of the elements used to specify host objects or host
 attributes.

 - Zero or more OPTIONAL <domain:host> elements that contain the
 fully qualified names of the subordinate host objects that exist
 under this superordinate domain object.

 - A <domain:clID> element that contains the identifier of the
 sponsoring client.

 - An OPTIONAL <domain:crID> element that contains the identifier of
 the client that created the domain object.

 - An OPTIONAL <domain:crDate> element that contains the date and
 time of domain object creation.

 - An OPTIONAL <domain:exDate> element that contains the date and
 time identifying the end of the domain object’s registration
 period.

 - An OPTIONAL <domain:upID> element that contains the identifier of
 the client that last updated the domain object. This element MUST
 NOT be present if the domain has never been modified.

 - An OPTIONAL <domain:upDate> element that contains the date and
 time of the most recent domain-object modification. This element
 MUST NOT be present if the domain object has never been modified.

 - An OPTIONAL <domain:trDate> element that contains the date and
 time of the most recent successful domain-object transfer. This
 element MUST NOT be provided if the domain object has never been
 transferred.

Hollenbeck Standards Track [Page 13]

RFC 5731 EPP Domain Name Mapping August 2009

 - An OPTIONAL <domain:authInfo> element that contains authorization
 information associated with the domain object. This element MUST
 only be returned if the querying client is the current sponsoring
 client or if the client supplied valid authorization information
 with the command.

 Example <info> response for an authorized client:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:infData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:roid>EXAMPLE1-REP</domain:roid>
 S: <domain:status s="ok"/>
 S: <domain:registrant>jd1234</domain:registrant>
 S: <domain:contact type="admin">sh8013</domain:contact>
 S: <domain:contact type="tech">sh8013</domain:contact>
 S: <domain:ns>
 S: <domain:hostObj>ns1.example.com</domain:hostObj>
 S: <domain:hostObj>ns1.example.net</domain:hostObj>
 S: </domain:ns>
 S: <domain:host>ns1.example.com</domain:host>
 S: <domain:host>ns2.example.com</domain:host>
 S: <domain:clID>ClientX</domain:clID>
 S: <domain:crID>ClientY</domain:crID>
 S: <domain:crDate>1999-04-03T22:00:00.0Z</domain:crDate>
 S: <domain:upID>ClientX</domain:upID>
 S: <domain:upDate>1999-12-03T09:00:00.0Z</domain:upDate>
 S: <domain:exDate>2005-04-03T22:00:00.0Z</domain:exDate>
 S: <domain:trDate>2000-04-08T09:00:00.0Z</domain:trDate>
 S: <domain:authInfo>
 S: <domain:pw>2fooBAR</domain:pw>
 S: </domain:authInfo>
 S: </domain:infData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

Hollenbeck Standards Track [Page 14]

RFC 5731 EPP Domain Name Mapping August 2009

 A server with a different information-return policy MAY provide less
 information in a response.

 Example <info> response for an unauthorized client:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:infData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:roid>EXAMPLE1-REP</domain:roid>
 S: <domain:clID>ClientX</domain:clID>
 S: </domain:infData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <info> command cannot be
 processed for any reason.

3.1.3. EPP <transfer> Query Command

 The EPP <transfer> command provides a query operation that allows a
 client to determine the real-time status of pending and completed
 transfer requests. In addition to the standard EPP command elements,
 the <transfer> command MUST contain an "op" attribute with value
 "query", and a <domain:transfer> element that identifies the domain
 namespace. The <domain:transfer> element contains the following
 child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object to be queried.

 - An OPTIONAL <domain:authInfo> element that contains authorization
 information associated with the domain object or authorization
 information associated with the domain object’s registrant or
 associated contacts. An OPTIONAL "roid" attribute MUST be used to
 identify the registrant or contact object if and only if the given
 authInfo is associated with a registrant or contact object, and

Hollenbeck Standards Track [Page 15]

RFC 5731 EPP Domain Name Mapping August 2009

 not the domain object itself. If this element is not provided or
 if the authorization information is invalid, server policy
 determines if the command is rejected or if response information
 will be returned to the client.

 Example <transfer> query command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="query">
 C: <domain:transfer
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:authInfo>
 C: <domain:pw roid="JD1234-REP">2fooBAR</domain:pw>
 C: </domain:authInfo>
 C: </domain:transfer>
 C: </transfer>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> query command has been processed successfully, the
 EPP <resData> element MUST contain a child <domain:trnData> element
 that identifies the domain namespace. The <domain:trnData> element
 contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object.

 - A <domain:trStatus> element that contains the state of the most
 recent transfer request.

 - A <domain:reID> element that contains the identifier of the client
 that requested the object transfer.

 - A <domain:reDate> element that contains the date and time that the
 transfer was requested.

 - A <domain:acID> element that contains the identifier of the client
 that SHOULD act upon a PENDING transfer request. For all other
 status types, the value identifies the client that took the
 indicated action.

 - A <domain:acDate> element that contains the date and time of a
 required or completed response. For a PENDING request, the value
 identifies the date and time by which a response is required

Hollenbeck Standards Track [Page 16]

RFC 5731 EPP Domain Name Mapping August 2009

 before an automated response action will be taken by the server.
 For all other status types, the value identifies the date and time
 when the request was completed.

 - An OPTIONAL <domain:exDate> element that contains the end of the
 domain object’s validity period if the <transfer> command caused
 or causes a change in the validity period.

 Example <transfer> query response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:trnData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:trStatus>pending</domain:trStatus>
 S: <domain:reID>ClientX</domain:reID>
 S: <domain:reDate>2000-06-06T22:00:00.0Z</domain:reDate>
 S: <domain:acID>ClientY</domain:acID>
 S: <domain:acDate>2000-06-11T22:00:00.0Z</domain:acDate>
 S: <domain:exDate>2002-09-08T22:00:00.0Z</domain:exDate>
 S: </domain:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <transfer> query command
 cannot be processed for any reason.

3.2. EPP Transform Commands

 EPP provides five commands to transform domain objects: <create> to
 create an instance of a domain object, <delete> to delete an instance
 of a domain object, <renew> to extend the validity period of a domain
 object, <transfer> to manage domain object sponsorship changes, and
 <update> to change information associated with a domain object.

Hollenbeck Standards Track [Page 17]

RFC 5731 EPP Domain Name Mapping August 2009

 Transform commands are typically processed and completed in real
 time. Server operators MAY receive and process transform commands
 but defer completing the requested action if human or third-party
 review is required before the requested action can be completed. In
 such situations the server MUST return a 1001 response code to the
 client to note that the command has been received and processed but
 that the requested action is pending. The server MUST also manage
 the status of the object that is the subject of the command to
 reflect the initiation and completion of the requested action. Once
 the action has been completed, all clients involved in the
 transaction MUST be notified using a service message that the action
 has been completed and that the status of the object has changed.
 Other notification methods MAY be used in addition to the required
 service message.

 Server operators SHOULD confirm that a client is authorized to
 perform a transform command on a given object. Any attempt to
 transform an object by an unauthorized client MUST be rejected, and
 the server MUST return a 2201 response code to the client to note
 that the client lacks privileges to execute the requested command.

3.2.1. EPP <create> Command

 The EPP <create> command provides a transform operation that allows a
 client to create a domain object. In addition to the standard EPP
 command elements, the <create> command MUST contain a <domain:create>
 element that identifies the domain namespace. The <domain:create>
 element contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object to be created.

 - An OPTIONAL <domain:period> element that contains the initial
 registration period of the domain object. A server MAY define a
 default initial registration period if not specified by the
 client.

 - An OPTIONAL <domain:ns> element that contains the fully qualified
 names of the delegated host objects or host attributes (name
 servers) associated with the domain object to provide resolution
 services for the domain; see Section 1.1 for a description of the
 elements used to specify host objects or host attributes. A host
 object MUST be known to the server before the host object can be
 associated with a domain object.

 - An OPTIONAL <domain:registrant> element that contains the
 identifier for the human or organizational social information
 (contact) object to be associated with the domain object as the

Hollenbeck Standards Track [Page 18]

RFC 5731 EPP Domain Name Mapping August 2009

 object registrant. This object identifier MUST be known to the
 server before the contact object can be associated with the domain
 object. The EPP mapping for contact objects is described in
 [RFC5733].

 - Zero or more OPTIONAL <domain:contact> elements that contain the
 identifiers for other contact objects to be associated with the
 domain object. Contact object identifiers MUST be known to the
 server before the contact object can be associated with the domain
 object.

 - A <domain:authInfo> element that contains authorization
 information to be associated with the domain object. This mapping
 includes a password-based authentication mechanism, but the schema
 allows new mechanisms to be defined in new schemas.

 Example <create> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <create>
 C: <domain:create
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:period unit="y">2</domain:period>
 C: <domain:ns>
 C: <domain:hostObj>ns1.example.net</domain:hostObj>
 C: <domain:hostObj>ns2.example.net</domain:hostObj>
 C: </domain:ns>
 C: <domain:registrant>jd1234</domain:registrant>
 C: <domain:contact type="admin">sh8013</domain:contact>
 C: <domain:contact type="tech">sh8013</domain:contact>
 C: <domain:authInfo>
 C: <domain:pw>2fooBAR</domain:pw>
 C: </domain:authInfo>
 C: </domain:create>
 C: </create>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <create> command has been processed successfully, the EPP
 <resData> element MUST contain a child <domain:creData> element that
 identifies the domain namespace. The <domain:creData> element
 contains the following child elements:

Hollenbeck Standards Track [Page 19]

RFC 5731 EPP Domain Name Mapping August 2009

 - A <domain:name> element that contains the fully qualified name of
 the domain object.

 - A <domain:crDate> element that contains the date and time of
 domain object creation.

 - An OPTIONAL <domain:exDate> element that contains the date and
 time identifying the end of the domain object’s registration
 period.

 Example <create> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:creData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:crDate>1999-04-03T22:00:00.0Z</domain:crDate>
 S: <domain:exDate>2001-04-03T22:00:00.0Z</domain:exDate>
 S: </domain:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <create> command cannot
 be processed for any reason.

3.2.2. EPP <delete> Command

 The EPP <delete> command provides a transform operation that allows a
 client to delete a domain object. In addition to the standard EPP
 command elements, the <delete> command MUST contain a <domain:delete>
 element that identifies the domain namespace. The <domain:delete>
 element contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object to be deleted.

Hollenbeck Standards Track [Page 20]

RFC 5731 EPP Domain Name Mapping August 2009

 A domain object SHOULD NOT be deleted if subordinate host objects are
 associated with the domain object. For example, if domain
 "example.com" exists and host object "ns1.example.com" also exists,
 then domain "example.com" SHOULD NOT be deleted until host
 "ns1.example.com" has either been deleted or renamed to exist in a
 different superordinate domain. A server SHOULD notify clients that
 object relationships exist by sending a 2305 error response code when
 a <delete> command is attempted and fails due to existing object
 relationships. Delegated and subordinate host objects associated
 with a domain object can be determined using the <info> query command
 for the domain object.

 Example <delete> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <delete>
 C: <domain:delete
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: </domain:delete>
 C: </delete>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <delete> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

 Example <delete> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <delete> command cannot
 be processed for any reason.

Hollenbeck Standards Track [Page 21]

RFC 5731 EPP Domain Name Mapping August 2009

3.2.3. EPP <renew> Command

 The EPP <renew> command provides a transform operation that allows a
 client to extend the validity period of a domain object. In addition
 to the standard EPP command elements, the <renew> command MUST
 contain a <domain:renew> element that identifies the domain
 namespace. The <domain:renew> element contains the following child
 elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object whose validity period is to be extended.

 - A <domain:curExpDate> element that contains the date on which the
 current validity period ends. This value ensures that repeated
 <renew> commands do not result in multiple, unanticipated
 successful renewals.

 - An OPTIONAL <domain:period> element that contains the number of
 units to be added to the registration period of the domain object.
 The number of units available MAY be subject to limits imposed by
 the server.

 Example <renew> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <renew>
 C: <domain:renew
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:curExpDate>2000-04-03</domain:curExpDate>
 C: <domain:period unit="y">5</domain:period>
 C: </domain:renew>
 C: </renew>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <renew> command has been processed successfully, the EPP
 <resData> element MUST contain a child <domain:renData> element that
 identifies the domain namespace. The <domain:renData> element
 contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object.

Hollenbeck Standards Track [Page 22]

RFC 5731 EPP Domain Name Mapping August 2009

 - An OPTIONAL <domain:exDate> element that contains the date and
 time identifying the end of the domain object’s registration
 period.

 Example <renew> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <domain:renData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:exDate>2005-04-03T22:00:00.0Z</domain:exDate>
 S: </domain:renData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <renew> command cannot be
 processed for any reason.

3.2.4. EPP <transfer> Command

 The EPP <transfer> command provides a transform operation that allows
 a client to manage requests to transfer the sponsorship of a domain
 object. In addition to the standard EPP command elements, the
 <transfer> command MUST contain a <domain:transfer> element that
 identifies the domain namespace. The <domain:transfer> element
 contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object for which a transfer request is to be created,
 approved, rejected, or cancelled.

 - An OPTIONAL <domain:period> element that contains the number of
 units to be added to the registration period of the domain object
 at completion of the transfer process. This element can only be
 used when a transfer is requested, and it MUST be ignored if used
 otherwise. The number of units available MAY be subject to limits
 imposed by the server.

Hollenbeck Standards Track [Page 23]

RFC 5731 EPP Domain Name Mapping August 2009

 - A <domain:authInfo> element that contains authorization
 information associated with the domain object or authorization
 information associated with the domain object’s registrant or
 associated contacts. An OPTIONAL "roid" attribute MUST be used to
 identify the registrant or contact object if and only if the given
 authInfo is associated with a registrant or contact object, and
 not the domain object itself.

 Every EPP <transfer> command MUST contain an "op" attribute that
 identifies the transfer operation to be performed. Valid values,
 definitions, and authorizations for all attribute values are defined
 in [RFC5730].

 Transfer of a domain object MUST implicitly transfer all host objects
 that are subordinate to the domain object. For example, if domain
 object "example.com" is transferred and host object "ns1.example.com"
 exists, the host object MUST be transferred as part of the
 "example.com" transfer process. Host objects that are subject to
 transfer when transferring a domain object are listed in the response
 to an EPP <info> command performed on the domain object.

 Example <transfer> request command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="request">
 C: <domain:transfer
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:period unit="y">1</domain:period>
 C: <domain:authInfo>
 C: <domain:pw roid="JD1234-REP">2fooBAR</domain:pw>
 C: </domain:authInfo>
 C: </domain:transfer>
 C: </transfer>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> command has been processed successfully, the EPP
 <resData> element MUST contain a child <domain:trnData> element that
 identifies the domain namespace. The <domain:trnData> element
 contains the same child elements defined for a transfer query
 response.

Hollenbeck Standards Track [Page 24]

RFC 5731 EPP Domain Name Mapping August 2009

 Example <transfer> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <domain:trnData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:trStatus>pending</domain:trStatus>
 S: <domain:reID>ClientX</domain:reID>
 S: <domain:reDate>2000-06-08T22:00:00.0Z</domain:reDate>
 S: <domain:acID>ClientY</domain:acID>
 S: <domain:acDate>2000-06-13T22:00:00.0Z</domain:acDate>
 S: <domain:exDate>2002-09-08T22:00:00.0Z</domain:exDate>
 S: </domain:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <transfer> command can
 not be processed for any reason.

3.2.5. EPP <update> Command

 The EPP <update> command provides a transform operation that allows a
 client to modify the attributes of a domain object. In addition to
 the standard EPP command elements, the <update> command MUST contain
 a <domain:update> element that identifies the domain namespace. The
 <domain:update> element contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object to be updated.

 - An OPTIONAL <domain:add> element that contains attribute values to
 be added to the object.

 - An OPTIONAL <domain:rem> element that contains attribute values to
 be removed from the object.

Hollenbeck Standards Track [Page 25]

RFC 5731 EPP Domain Name Mapping August 2009

 - An OPTIONAL <domain:chg> element that contains object attribute
 values to be changed.

 At least one <domain:add>, <domain:rem>, or <domain:chg> element MUST
 be provided if the command is not being extended. All of these
 elements MAY be omitted if an <update> extension is present. The
 <domain:add> and <domain:rem> elements contain the following child
 elements:

 - An OPTIONAL <domain:ns> element that contains the fully qualified
 names of the delegated host objects or host attributes (name
 servers) associated with the domain object to provide resolution
 services for the domain; see Section 1.1 for a description of the
 elements used to specify host objects or host attributes. A host
 object MUST be known to the server before the host object can be
 associated with a domain object. If host attributes are used to
 specify name servers, note that IP address elements are not needed
 to identify a name server that is being removed. IP address
 elements can safely be absent or ignored in this situation.

 - Zero or more <domain:contact> elements that contain the
 identifiers for contact objects to be associated with or removed
 from the domain object. Contact object identifiers MUST be known
 to the server before the contact object can be associated with the
 domain object.

 - Zero or more <domain:status> elements that contain status values
 to be applied to or removed from the object. When specifying a
 value to be removed, only the attribute value is significant;
 element text is not required to match a value for removal.

 A <domain:chg> element contains the following child elements:

 - A <domain:registrant> element that contains the identifier for the
 human or organizational social information (contact) object to be
 associated with the domain object as the object registrant. This
 object identifier MUST be known to the server before the contact
 object can be associated with the domain object. An empty element
 can be used to remove registrant information.

 - A <domain:authInfo> element that contains authorization
 information associated with the domain object. This mapping
 includes a password-based authentication mechanism, but the schema
 allows new mechanisms to be defined in new schemas. A <domain:
 null> element can be used within the <domain:authInfo> element to
 remove authorization information.

Hollenbeck Standards Track [Page 26]

RFC 5731 EPP Domain Name Mapping August 2009

 Example <update> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <update>
 C: <domain:update
 C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 C: <domain:name>example.com</domain:name>
 C: <domain:add>
 C: <domain:ns>
 C: <domain:hostObj>ns2.example.com</domain:hostObj>
 C: </domain:ns>
 C: <domain:contact type="tech">mak21</domain:contact>
 C: <domain:status s="clientHold"
 C: lang="en">Payment overdue.</domain:status>
 C: </domain:add>
 C: <domain:rem>
 C: <domain:ns>
 C: <domain:hostObj>ns1.example.com</domain:hostObj>
 C: </domain:ns>
 C: <domain:contact type="tech">sh8013</domain:contact>
 C: <domain:status s="clientUpdateProhibited"/>
 C: </domain:rem>
 C: <domain:chg>
 C: <domain:registrant>sh8013</domain:registrant>
 C: <domain:authInfo>
 C: <domain:pw>2BARfoo</domain:pw>
 C: </domain:authInfo>
 C: </domain:chg>
 C: </domain:update>
 C: </update>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <update> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

 Example <update> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>

Hollenbeck Standards Track [Page 27]

RFC 5731 EPP Domain Name Mapping August 2009

 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <update> command cannot
 be processed for any reason.

3.3. Offline Review of Requested Actions

 Commands are processed by a server in the order they are received
 from a client. Though an immediate response confirming receipt and
 processing of the command is produced by the server, a server
 operator MAY perform an offline review of requested transform
 commands before completing the requested action. In such situations,
 the response from the server MUST clearly note that the transform
 command has been received and processed but that the requested action
 is pending. The status of the corresponding object MUST clearly
 reflect processing of the pending action. The server MUST notify the
 client when offline processing of the action has been completed.

 Examples describing a <create> command that requires offline review
 are included here. Note the result code and message returned in
 response to the <create> command.

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <domain:creData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name>example.com</domain:name>
 S: <domain:crDate>1999-04-03T22:00:00.0Z</domain:crDate>
 S: <domain:exDate>2001-04-03T22:00:00.0Z</domain:exDate>
 S: </domain:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

Hollenbeck Standards Track [Page 28]

RFC 5731 EPP Domain Name Mapping August 2009

 The status of the domain object after returning this response MUST
 include "pendingCreate". The server operator reviews the request
 offline, and informs the client of the outcome of the review either
 by queuing a service message for retrieval via the <poll> command or
 by using an out-of-band mechanism to inform the client of the
 request.

 The service message MUST contain text that describes the notification
 in the child <msg> element of the response <msgQ> element. In
 addition, the EPP <resData> element MUST contain a child <domain:
 panData> element that identifies the domain namespace. The <domain:
 panData> element contains the following child elements:

 - A <domain:name> element that contains the fully qualified name of
 the domain object. The <domain:name> element contains a REQUIRED
 "paResult" attribute. A positive boolean value indicates that the
 request has been approved and completed. A negative boolean value
 indicates that the request has been denied and the requested
 action has not been taken.

 - A <domain:paTRID> element that contains the client transaction
 identifier and server transaction identifier returned with the
 original response to process the command. The client transaction
 identifier is OPTIONAL and will only be returned if the client
 provided an identifier with the original <create> command.

 - A <domain:paDate> element that contains the date and time
 describing when review of the requested action was completed.

 Example "review completed" service message:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1301">
 S: <msg>Command completed successfully; ack to dequeue</msg>
 S: </result>
 S: <msgQ count="5" id="12345">
 S: <qDate>1999-04-04T22:01:00.0Z</qDate>
 S: <msg>Pending action completed successfully.</msg>
 S: </msgQ>
 S: <resData>
 S: <domain:panData
 S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
 S: <domain:name paResult="1">example.com</domain:name>
 S: <domain:paTRID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>

Hollenbeck Standards Track [Page 29]

RFC 5731 EPP Domain Name Mapping August 2009

 S: </domain:paTRID>
 S: <domain:paDate>1999-04-04T22:00:00.0Z</domain:paDate>
 S: </domain:panData>
 S: </resData>
 S: <trID>
 S: <clTRID>BCD-23456</clTRID>
 S: <svTRID>65432-WXY</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

4. Formal Syntax

 An EPP object mapping is specified in XML Schema notation. The
 formal syntax presented here is a complete schema representation of
 the object mapping suitable for automated validation of EPP XML
 instances. The BEGIN and END tags are not part of the schema; they
 are used to note the beginning and ending of the schema for URI
 registration purposes.

 Copyright (c) 2009 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

Hollenbeck Standards Track [Page 30]

RFC 5731 EPP Domain Name Mapping August 2009

 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>

 <schema targetNamespace="urn:ietf:params:xml:ns:domain-1.0"
 xmlns:domain="urn:ietf:params:xml:ns:domain-1.0"
 xmlns:host="urn:ietf:params:xml:ns:host-1.0"
 xmlns:epp="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <!--
 Import common element types.
 -->
 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"/>
 <import namespace="urn:ietf:params:xml:ns:epp-1.0"/>
 <import namespace="urn:ietf:params:xml:ns:host-1.0"/>

 <annotation>
 <documentation>
 Extensible Provisioning Protocol v1.0
 domain provisioning schema.
 </documentation>
 </annotation>

 <!--
 Child elements found in EPP commands.
 -->
 <element name="check" type="domain:mNameType"/>
 <element name="create" type="domain:createType"/>
 <element name="delete" type="domain:sNameType"/>
 <element name="info" type="domain:infoType"/>
 <element name="renew" type="domain:renewType"/>
 <element name="transfer" type="domain:transferType"/>
 <element name="update" type="domain:updateType"/>
 <!--
 Child elements of the <create> command.
 -->
 <complexType name="createType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="period" type="domain:periodType"
 minOccurs="0"/>
 <element name="ns" type="domain:nsType"

Hollenbeck Standards Track [Page 31]

RFC 5731 EPP Domain Name Mapping August 2009

 minOccurs="0"/>
 <element name="registrant" type="eppcom:clIDType"
 minOccurs="0"/>
 <element name="contact" type="domain:contactType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="authInfo" type="domain:authInfoType"/>
 </sequence>
 </complexType>

 <complexType name="periodType">
 <simpleContent>
 <extension base="domain:pLimitType">
 <attribute name="unit" type="domain:pUnitType"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="pLimitType">
 <restriction base="unsignedShort">
 <minInclusive value="1"/>
 <maxInclusive value="99"/>
 </restriction>
 </simpleType>

 <simpleType name="pUnitType">
 <restriction base="token">
 <enumeration value="y"/>
 <enumeration value="m"/>
 </restriction>
 </simpleType>

 <complexType name="nsType">
 <choice>
 <element name="hostObj" type="eppcom:labelType"
 maxOccurs="unbounded"/>
 <element name="hostAttr" type="domain:hostAttrType"
 maxOccurs="unbounded"/>
 </choice>
 </complexType>
 <!--
 Name servers are either host objects or attributes.
 -->

 <complexType name="hostAttrType">
 <sequence>
 <element name="hostName" type="eppcom:labelType"/>
 <element name="hostAddr" type="host:addrType"

Hollenbeck Standards Track [Page 32]

RFC 5731 EPP Domain Name Mapping August 2009

 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <!--
 If attributes, addresses are optional and follow the
 structure defined in the host mapping.
 -->

 <complexType name="contactType">
 <simpleContent>
 <extension base="eppcom:clIDType">
 <attribute name="type" type="domain:contactAttrType"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="contactAttrType">
 <restriction base="token">
 <enumeration value="admin"/>
 <enumeration value="billing"/>
 <enumeration value="tech"/>
 </restriction>
 </simpleType>

 <complexType name="authInfoType">
 <choice>
 <element name="pw" type="eppcom:pwAuthInfoType"/>
 <element name="ext" type="eppcom:extAuthInfoType"/>
 </choice>
 </complexType>

 <!--
 Child element of commands that require a single name.
 -->
 <complexType name="sNameType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 </sequence>
 </complexType>
 <!--
 Child element of commands that accept multiple names.
 -->
 <complexType name="mNameType">
 <sequence>
 <element name="name" type="eppcom:labelType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

Hollenbeck Standards Track [Page 33]

RFC 5731 EPP Domain Name Mapping August 2009

 <!--
 Child elements of the <info> command.
 -->
 <complexType name="infoType">
 <sequence>
 <element name="name" type="domain:infoNameType"/>
 <element name="authInfo" type="domain:authInfoType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="infoNameType">
 <simpleContent>
 <extension base = "eppcom:labelType">
 <attribute name="hosts" type="domain:hostsType"
 default="all"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="hostsType">
 <restriction base="token">
 <enumeration value="all"/>
 <enumeration value="del"/>
 <enumeration value="none"/>
 <enumeration value="sub"/>
 </restriction>
 </simpleType>

 <!--
 Child elements of the <renew> command.
 -->
 <complexType name="renewType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="curExpDate" type="date"/>
 <element name="period" type="domain:periodType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Child elements of the <transfer> command.
 -->
 <complexType name="transferType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="period" type="domain:periodType"

Hollenbeck Standards Track [Page 34]

RFC 5731 EPP Domain Name Mapping August 2009

 minOccurs="0"/>
 <element name="authInfo" type="domain:authInfoType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Child elements of the <update> command.
 -->
 <complexType name="updateType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="add" type="domain:addRemType"
 minOccurs="0"/>
 <element name="rem" type="domain:addRemType"
 minOccurs="0"/>
 <element name="chg" type="domain:chgType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be added or removed.
 -->
 <complexType name="addRemType">
 <sequence>
 <element name="ns" type="domain:nsType"
 minOccurs="0"/>
 <element name="contact" type="domain:contactType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="status" type="domain:statusType"
 minOccurs="0" maxOccurs="11"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be changed.
 -->
 <complexType name="chgType">
 <sequence>
 <element name="registrant" type="domain:clIDChgType"
 minOccurs="0"/>
 <element name="authInfo" type="domain:authInfoChgType"
 minOccurs="0"/>
 </sequence>
 </complexType>

Hollenbeck Standards Track [Page 35]

RFC 5731 EPP Domain Name Mapping August 2009

 <!--
 Allow the registrant value to be nullified by changing the
 minLength restriction to "0".
 -->
 <simpleType name="clIDChgType">
 <restriction base="token">
 <minLength value="0"/>
 <maxLength value="16"/>
 </restriction>
 </simpleType>

 <!--
 Allow the authInfo value to be nullified by including an
 empty element within the choice.
 -->
 <complexType name="authInfoChgType">
 <choice>
 <element name="pw" type="eppcom:pwAuthInfoType"/>
 <element name="ext" type="eppcom:extAuthInfoType"/>
 <element name="null"/>
 </choice>
 </complexType>

 <!--
 Child response elements.
 -->
 <element name="chkData" type="domain:chkDataType"/>
 <element name="creData" type="domain:creDataType"/>
 <element name="infData" type="domain:infDataType"/>
 <element name="panData" type="domain:panDataType"/>
 <element name="renData" type="domain:renDataType"/>
 <element name="trnData" type="domain:trnDataType"/>

 <!--
 <check> response elements.
 -->
 <complexType name="chkDataType">
 <sequence>
 <element name="cd" type="domain:checkType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="checkType">
 <sequence>
 <element name="name" type="domain:checkNameType"/>
 <element name="reason" type="eppcom:reasonType"
 minOccurs="0"/>

Hollenbeck Standards Track [Page 36]

RFC 5731 EPP Domain Name Mapping August 2009

 </sequence>
 </complexType>

 <complexType name="checkNameType">
 <simpleContent>
 <extension base="eppcom:labelType">
 <attribute name="avail" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 <create> response elements.
 -->
 <complexType name="creDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="crDate" type="dateTime"/>
 <element name="exDate" type="dateTime"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 <info> response elements.
 -->

 <complexType name="infDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="roid" type="eppcom:roidType"/>
 <element name="status" type="domain:statusType"
 minOccurs="0" maxOccurs="11"/>
 <element name="registrant" type="eppcom:clIDType"
 minOccurs="0"/>
 <element name="contact" type="domain:contactType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="ns" type="domain:nsType"
 minOccurs="0"/>
 <element name="host" type="eppcom:labelType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="clID" type="eppcom:clIDType"/>
 <element name="crID" type="eppcom:clIDType"
 minOccurs="0"/>
 <element name="crDate" type="dateTime"
 minOccurs="0"/>
 <element name="upID" type="eppcom:clIDType"

Hollenbeck Standards Track [Page 37]

RFC 5731 EPP Domain Name Mapping August 2009

 minOccurs="0"/>
 <element name="upDate" type="dateTime"
 minOccurs="0"/>
 <element name="exDate" type="dateTime"
 minOccurs="0"/>
 <element name="trDate" type="dateTime"
 minOccurs="0"/>
 <element name="authInfo" type="domain:authInfoType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Status is a combination of attributes and an optional
 human-readable message that may be expressed in languages other
 than English.
 -->
 <complexType name="statusType">
 <simpleContent>
 <extension base="normalizedString">
 <attribute name="s" type="domain:statusValueType"
 use="required"/>
 <attribute name="lang" type="language"
 default="en"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="statusValueType">
 <restriction base="token">
 <enumeration value="clientDeleteProhibited"/>
 <enumeration value="clientHold"/>
 <enumeration value="clientRenewProhibited"/>
 <enumeration value="clientTransferProhibited"/>
 <enumeration value="clientUpdateProhibited"/>
 <enumeration value="inactive"/>
 <enumeration value="ok"/>
 <enumeration value="pendingCreate"/>
 <enumeration value="pendingDelete"/>
 <enumeration value="pendingRenew"/>
 <enumeration value="pendingTransfer"/>
 <enumeration value="pendingUpdate"/>
 <enumeration value="serverDeleteProhibited"/>
 <enumeration value="serverHold"/>
 <enumeration value="serverRenewProhibited"/>
 <enumeration value="serverTransferProhibited"/>
 <enumeration value="serverUpdateProhibited"/>
 </restriction>

Hollenbeck Standards Track [Page 38]

RFC 5731 EPP Domain Name Mapping August 2009

 </simpleType>

 <!--
 Pending action notification response elements.
 -->
 <complexType name="panDataType">
 <sequence>
 <element name="name" type="domain:paNameType"/>
 <element name="paTRID" type="epp:trIDType"/>
 <element name="paDate" type="dateTime"/>
 </sequence>
 </complexType>

 <complexType name="paNameType">
 <simpleContent>
 <extension base="eppcom:labelType">
 <attribute name="paResult" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 <renew> response elements.
 -->
 <complexType name="renDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="exDate" type="dateTime"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 <transfer> response elements.
 -->
 <complexType name="trnDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="trStatus" type="eppcom:trStatusType"/>
 <element name="reID" type="eppcom:clIDType"/>
 <element name="reDate" type="dateTime"/>
 <element name="acID" type="eppcom:clIDType"/>
 <element name="acDate" type="dateTime"/>
 <element name="exDate" type="dateTime"
 minOccurs="0"/>
 </sequence>
 </complexType>

Hollenbeck Standards Track [Page 39]

RFC 5731 EPP Domain Name Mapping August 2009

 <!--
 End of schema.
 -->
 </schema>
 END

5. Internationalization Considerations

 EPP is represented in XML, which provides native support for encoding
 information using the Unicode character set and its more compact
 representations including UTF-8. Conformant XML processors recognize
 both UTF-8 and UTF-16 [RFC2781]. Though XML includes provisions to
 identify and use other character encodings through use of an
 "encoding" attribute in an <?xml?> declaration, use of UTF-8 is
 RECOMMENDED in environments where parser encoding support
 incompatibility exists.

 All date-time values presented via EPP MUST be expressed in Universal
 Coordinated Time using the Gregorian calendar. XML Schema allows use
 of time zone identifiers to indicate offsets from the zero meridian,
 but this option MUST NOT be used with EPP. The extended date-time
 form using upper case "T" and "Z" characters, defined in
 [W3C.REC-xmlschema-2-20041028], MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

 This document requires domain and host name syntax as specified in
 [RFC0952] as updated by [RFC1123]. At the time of this writing, RFC
 3490 [RFC3490] describes a standard to use certain ASCII name labels
 to represent non-ASCII name labels. These conformance requirements
 might change as a result of progressing work in developing standards
 for internationalized domain names.

6. IANA Considerations

 This document uses URNs to describe XML namespaces and XML schemas
 conforming to a registry mechanism described in [RFC3688]. Two URI
 assignments have been registered by the IANA.

 Registration request for the domain namespace:

 URI: urn:ietf:params:xml:ns:domain-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

Hollenbeck Standards Track [Page 40]

RFC 5731 EPP Domain Name Mapping August 2009

 Registration request for the domain XML schema:

 URI: urn:ietf:params:xml:schema:domain-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: See the "Formal Syntax" section of this document.

7. Security Considerations

 Authorization information as described in Section 2.6 is REQUIRED to
 create a domain object. This information is used in some query and
 transfer operations as an additional means of determining client
 authorization to perform the command. Failure to protect
 authorization information from inadvertent disclosure can result in
 unauthorized transfer operations and unauthorized information
 release. Both client and server MUST ensure that authorization
 information is stored and exchanged with high-grade encryption
 mechanisms to provide privacy services.

 The object mapping described in this document does not provide any
 other security services or introduce any additional considerations
 beyond those described by [RFC5730] or those caused by the protocol
 layers used by EPP.

8. Acknowledgements

 RFC 3731 is a product of the PROVREG working group, which suggested
 improvements and provided many invaluable comments. The author
 wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
 Akkerhuis for their process and editorial contributions. RFC 4931
 and this document are individual submissions, based on the work done
 in RFC 3731.

 Specific suggestions that have been incorporated into this document
 were provided by Joe Abley, Chris Bason, Eric Brunner-Williams,
 Jordyn Buchanan, Dave Crocker, Ayesha Damaraju, Anthony Eden, Sheer
 El-Showk, Klaus Malorny, Dan Manley, Michael Mealling, Patrick
 Mevzek, Asbjorn Steira, Bruce Tonkin, and Rick Wesson.

Hollenbeck Standards Track [Page 41]

RFC 5731 EPP Domain Name Mapping August 2009

9. References

9.1. Normative References

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet
 host table specification", RFC 952, October 1985.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, August 2009.

 [RFC5732] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Host Mapping", STD 69, RFC 5732, August 2009.

 [RFC5733] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Contact Mapping", STD 69, RFC 5733, August 2009.

 [W3C.REC-xml-20040204]
 Sperberg-McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium FirstEdition REC-xml-
 20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204>.

 [W3C.REC-xmlschema-1-20041028]
 Maloney, M., Thompson, H., Mendelsohn, N., and D. Beech,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

Hollenbeck Standards Track [Page 42]

RFC 5731 EPP Domain Name Mapping August 2009

9.2. Informative References

 [RFC2781] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
 10646", RFC 2781, February 2000.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC4931] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Domain Name Mapping", RFC 4931, May 2007.

Hollenbeck Standards Track [Page 43]

RFC 5731 EPP Domain Name Mapping August 2009

Appendix A. Changes from RFC 4931

 1. Changed "This document obsoletes RFC 3731" to "This document
 obsoletes RFC 4931".

 2. Replaced references to RFC 3731 with references to 4931.

 3. Replaced references to RFC 4930 with references to 5730.

 4. Replaced references to RFC 4932 with references to 5732.

 5. Replaced references to RFC 4933 with references to 5733.

 6. Updated description of inactive status in Section 2.3.

 7. Fixed example host names in the Section 1.1 and Section 3.2.1
 examples.

 8. Changed "but such methods SHOULD NOT be used" to "but such
 methods should not be used" in Section 2.7.

 9. Added "Other notification methods MAY be used in addition to the
 required service message" in Section 3.2.

 10. Added 2201 response code text in Section 3.2.

 11. Added BSD license text to XML schema section.

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 44]

===

Network Working Group S. Hollenbeck
Request for Comments: 5732 VeriSign, Inc.
STD: 69 August 2009
Obsoletes: 4932
Category: Standards Track

 Extensible Provisioning Protocol (EPP) Host Mapping

Abstract

 This document describes an Extensible Provisioning Protocol (EPP)
 mapping for the provisioning and management of Internet host names
 stored in a shared central repository. Specified in XML, the mapping
 defines EPP command syntax and semantics as applied to host names.
 This document obsoletes RFC 4932.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hollenbeck Standards Track [Page 1]

RFC 5732 EPP Host Mapping August 2009

Table of Contents

 1. Introduction ..3
 1.1. Relationship of Host Objects and Domain Objects3
 1.2. Conventions Used in This Document4
 2. Object Attributes ...4
 2.1. Host Names ...4
 2.2. Client Identifiers ...4
 2.3. Status Values ..4
 2.4. Dates and Times ..6
 2.5. IP Addresses ...6
 3. EPP Command Mapping ...6
 3.1. EPP Query Commands ...7
 3.1.1. EPP <check> Command7
 3.1.2. EPP <info> Command9
 3.1.3. EPP <transfer> Query Command11
 3.2. EPP Transform Commands11
 3.2.1. EPP <create> Command12
 3.2.2. EPP <delete> Command13
 3.2.3. EPP <renew> Command15
 3.2.4. EPP <transfer> Command15
 3.2.5. EPP <update> Command15
 3.3. Offline Review of Requested Actions17
 4. Formal Syntax ..19
 5. Internationalization Considerations25
 6. IANA Considerations ..25
 7. Security Considerations ..26
 8. Acknowledgements ...26
 9. References ...26
 9.1. Normative References26
 9.2. Informative References27
 Appendix A. Changes from RFC 493229

Hollenbeck Standards Track [Page 2]

RFC 5732 EPP Host Mapping August 2009

1. Introduction

 This document describes an Internet host name mapping for version 1.0
 of the Extensible Provisioning Protocol (EPP). This mapping is
 specified using the Extensible Markup Language (XML) 1.0 as described
 in [W3C.REC-xml-20040204] and XML Schema notation as described in
 [W3C.REC-xmlschema-1-20041028] and [W3C.REC-xmlschema-2-20041028].
 This document obsoletes RFC 4932 [RFC4932].

 [RFC5730] provides a complete description of EPP command and response
 structures. A thorough understanding of the base protocol
 specification is necessary to understand the mapping described in
 this document.

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented to develop a conforming implementation.

1.1. Relationship of Host Objects and Domain Objects

 This document assumes that host name objects have a subordinate
 relationship to a superordinate domain name object. For example,
 host name "ns1.example.com" has a subordinate relationship to domain
 name "example.com". EPP actions (such as object transfers) that do
 not preserve this relationship MUST be explicitly disallowed.

 A host name object can be created in a repository for which no
 superordinate domain name object exists. For example, host name
 "ns1.example.com" can be created in the ".example" repository so that
 DNS domains in ".example" can be delegated to the host. Such hosts
 are described as "external" hosts in this specification since the
 name of the host does not belong to the namespace of the repository
 in which the host is being used for delegation purposes.

 Whether a host is external or internal relates to the repository in
 which the host is being used for delegation purposes. An internal
 host is subordinate if the name of the host belongs to the domain
 within the repository in which the host is being used for delegation
 purposes. For example, host ns1.example1.com is a subordinate host
 of domain example1.com, but it is not a subordinate host of domain
 example2.com. ns1.example1.com can be used as a name server for
 example2.com. In this case, ns1.example1.com MUST be treated as an
 internal host, subject to the rules governing operations on
 subordinate hosts within the same repository.

Hollenbeck Standards Track [Page 3]

RFC 5732 EPP Host Mapping August 2009

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In examples, "C:" represents lines sent by a protocol client and "S:"
 represents lines returned by a protocol server. Indentation and
 white space in examples are provided only to illustrate element
 relationships and are not a REQUIRED feature of this protocol.

2. Object Attributes

 An EPP host object has attributes and associated values that can be
 viewed and modified by the sponsoring client or the server. This
 section describes each attribute type in detail. The formal syntax
 for the attribute values described here can be found in the "Formal
 Syntax" section of this document and in the appropriate normative
 references.

2.1. Host Names

 The syntax for host names described in this document MUST conform to
 [RFC0952] as updated by [RFC1123]. At the time of this writing, RFC
 3490 [RFC3490] describes a standard to use certain ASCII name labels
 to represent non-ASCII name labels. These conformance requirements
 might change in the future as a result of progressing work in
 developing standards for internationalized host names.

2.2. Client Identifiers

 All EPP clients are identified by a server-unique identifier. Client
 identifiers conform to the "clIDType" syntax described in [RFC5730].

2.3. Status Values

 A host object MUST always have at least one associated status value.
 Status values MAY be set only by the client that sponsors a host
 object and by the server on which the object resides. A client can
 change the status of a host object using the EPP <update> command.
 Each status value MAY be accompanied by a string of human-readable
 text that describes the rationale for the status applied to the
 object.

Hollenbeck Standards Track [Page 4]

RFC 5732 EPP Host Mapping August 2009

 A client MUST NOT alter status values set by the server. A server
 MAY alter or override status values set by a client, subject to local
 server policies. The status of an object MAY change as a result of
 either a client-initiated transform command or an action performed by
 a server operator.

 Status values that can be added or removed by a client are prefixed
 with "client". Corresponding status values that can be added or
 removed by a server are prefixed with "server". Status values that
 do not begin with either "client" or "server" are server-managed.

 Status Value Descriptions:

 - clientDeleteProhibited, serverDeleteProhibited

 Requests to delete the object MUST be rejected.

 - clientUpdateProhibited, serverUpdateProhibited

 Requests to update the object (other than to remove this status)
 MUST be rejected.

 - linked

 The host object has at least one active association with another
 object, such as a domain object. Servers SHOULD provide services
 to determine existing object associations.

 - ok

 This is the normal status value for an object that has no pending
 operations or prohibitions. This value is set and removed by the
 server as other status values are added or removed.

 - pendingCreate, pendingDelete, pendingTransfer, pendingUpdate

 A transform command has been processed for the object (or in the
 case of a <transfer> command, for the host object’s superordinate
 domain object), but the action has not been completed by the
 server. Server operators can delay action completion for a
 variety of reasons, such as to allow for human review or third-
 party action. A transform command that is processed, but whose
 requested action is pending, is noted with response code 1001.

Hollenbeck Standards Track [Page 5]

RFC 5732 EPP Host Mapping August 2009

 When the requested action has been completed, the pendingCreate,
 pendingDelete, pendingTransfer, or pendingUpdate status value MUST be
 removed. All clients involved in the transaction MUST be notified
 using a service message that the action has been completed and that
 the status of the object has changed.

 "ok" status MAY only be combined with "linked" status.

 "linked" status MAY be combined with any status.

 "pendingDelete" status MUST NOT be combined with either
 "clientDeleteProhibited" or "serverDeleteProhibited" status.

 "pendingUpdate" status MUST NOT be combined with either
 "clientUpdateProhibited" or "serverUpdateProhibited" status.

 The pendingCreate, pendingDelete, pendingTransfer, and pendingUpdate
 status values MUST NOT be combined with each other.

 Other status combinations not expressly prohibited MAY be used.

2.4. Dates and Times

 Date and time attribute values MUST be represented in Universal
 Coordinated Time (UTC) using the Gregorian calendar. The extended
 date-time form using upper case "T" and "Z" characters defined in
 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

2.5. IP Addresses

 The syntax for IPv4 addresses described in this document MUST conform
 to [RFC0791]. The syntax for IPv6 addresses described in this
 document MUST conform to [RFC4291]. Practical considerations for
 publishing IPv6 address information in zone files are documented in
 [RFC2874] and [RFC3596]. A server MAY reject IP addresses that have
 not been allocated for public use by IANA. When a host object is
 provisioned for use as a DNS name server, IP addresses SHOULD be
 required only as needed to generate DNS glue records.

3. EPP Command Mapping

 A detailed description of the EPP syntax and semantics can be found
 in [RFC5730]. The command mappings described here are specifically
 for use in provisioning and managing Internet host names via EPP.

Hollenbeck Standards Track [Page 6]

RFC 5732 EPP Host Mapping August 2009

3.1. EPP Query Commands

 EPP provides two commands to retrieve host information: <check> to
 determine if a host object can be provisioned within a repository,
 and <info> to retrieve detailed information associated with a host
 object.

3.1.1. EPP <check> Command

 The EPP <check> command is used to determine if an object can be
 provisioned within a repository. It provides a hint that allows a
 client to anticipate the success or failure of provisioning an object
 using the <create> command, as object-provisioning requirements are
 ultimately a matter of server policy.

 In addition to the standard EPP command elements, the <check> command
 MUST contain a <host:check> element that identifies the host
 namespace. The <host:check> element contains the following child
 elements:

 - One or more <host:name> elements that contain the fully qualified
 names of the host objects to be queried.

 Example <check> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <check>
 C: <host:check
 C: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 C: <host:name>ns1.example.com</host:name>
 C: <host:name>ns2.example.com</host:name>
 C: <host:name>ns3.example.com</host:name>
 C: </host:check>
 C: </check>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <check> command has been processed successfully, the EPP
 <resData> element MUST contain a child <host:chkData> element that
 identifies the host namespace. The <host:chkData> element contains
 one or more <host:cd> elements that contain the following child
 elements:

Hollenbeck Standards Track [Page 7]

RFC 5732 EPP Host Mapping August 2009

 - A <host:name> element that contains the fully qualified name of
 the queried host object. This element MUST contain an "avail"
 attribute whose value indicates object availability (can it be
 provisioned or not) at the moment the <check> command was
 completed. A value of "1" or "true" means that the object can be
 provisioned. A value of "0" or "false" means that the object
 cannot be provisioned.

 - An OPTIONAL <host:reason> element that MAY be provided when an
 object cannot be provisioned. If present, this element contains
 server-specific text to help explain why the object cannot be
 provisioned. This text MUST be represented in the response
 language previously negotiated with the client; an OPTIONAL "lang"
 attribute MAY be present to identify the language if the
 negotiated value is something other than the default value of "en"
 (English).

 Example <check> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <host:chkData
 S: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 S: <host:cd>
 S: <host:name avail="1">ns1.example.com</host:name>
 S: </host:cd>
 S: <host:cd>
 S: <host:name avail="0">ns2.example2.com</host:name>
 S: <host:reason>In use</host:reason>
 S: </host:cd>
 S: <host:cd>
 S: <host:name avail="1">ns3.example3.com</host:name>
 S: </host:cd>
 S: </host:chkData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

Hollenbeck Standards Track [Page 8]

RFC 5732 EPP Host Mapping August 2009

 An EPP error response MUST be returned if a <check> command cannot be
 processed for any reason.

3.1.2. EPP <info> Command

 The EPP <info> command is used to retrieve information associated
 with a host object. In addition to the standard EPP command
 elements, the <info> command MUST contain a <host:info> element that
 identifies the host namespace. The <host:info> element contains the
 following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object for which information is requested.

 Example <info> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <host:info
 C: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 C: <host:name>ns1.example.com</host:name>
 C: </host:info>
 C: </info>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <info> command has been processed successfully, the EPP
 <resData> element MUST contain a child <host:infData> element that
 identifies the host namespace. The <host:infData> element contains
 the following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object.

 - A <host:roid> element that contains the Repository Object
 IDentifier assigned to the host object when the object was
 created.

 - One or more <host:status> elements that describe the status of the
 host object.

 - Zero or more <host:addr> elements that contain the IP addresses
 associated with the host object.

Hollenbeck Standards Track [Page 9]

RFC 5732 EPP Host Mapping August 2009

 - A <host:clID> element that contains the identifier of the
 sponsoring client.

 - A <host:crID> element that contains the identifier of the client
 that created the host object.

 - A <host:crDate> element that contains the date and time of host-
 object creation.

 - A <host:upID> element that contains the identifier of the client
 that last updated the host object. This element MUST NOT be
 present if the host object has never been modified.

 - A <host:upDate> element that contains the date and time of the
 most recent host-object modification. This element MUST NOT be
 present if the host object has never been modified.

 - A <host:trDate> element that contains the date and time of the
 most recent successful host-object transfer. This element MUST
 NOT be provided if the host object has never been transferred.
 Note that host objects MUST NOT be transferred directly; host
 objects MUST be transferred implicitly when the host object’s
 superordinate domain object is transferred. Host objects that are
 subject to transfer when transferring a domain object are listed
 in the response to an EPP <info> command performed on the domain
 object.

 Example <info> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <host:infData
 S: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 S: <host:name>ns1.example.com</host:name>
 S: <host:roid>NS1_EXAMPLE1-REP</host:roid>
 S: <host:status s="linked"/>
 S: <host:status s="clientUpdateProhibited"/>
 S: <host:addr ip="v4">192.0.2.2</host:addr>
 S: <host:addr ip="v4">192.0.2.29</host:addr>
 S: <host:addr ip="v6">1080:0:0:0:8:800:200C:417A</host:addr>
 S: <host:clID>ClientY</host:clID>
 S: <host:crID>ClientX</host:crID>
 S: <host:crDate>1999-04-03T22:00:00.0Z</host:crDate>

Hollenbeck Standards Track [Page 10]

RFC 5732 EPP Host Mapping August 2009

 S: <host:upID>ClientX</host:upID>
 S: <host:upDate>1999-12-03T09:00:00.0Z</host:upDate>
 S: <host:trDate>2000-04-08T09:00:00.0Z</host:trDate>
 S: </host:infData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <info> command cannot be
 processed for any reason.

3.1.3. EPP <transfer> Query Command

 Transfer semantics do not directly apply to host objects, so there is
 no mapping defined for the EPP <transfer> query command.

3.2. EPP Transform Commands

 EPP provides three commands to transform host objects: <create> to
 create an instance of a host object, <delete> to delete an instance
 of a host object, and <update> to change information associated with
 a host object. This document does not define host-object mappings
 for the EPP <renew> and <transfer> commands.

 Transform commands are typically processed and completed in real
 time. Server operators MAY receive and process transform commands
 but defer completing the requested action if human or third-party
 review is required before the requested action can be completed. In
 such situations, the server MUST return a 1001 response code to the
 client to note that the command has been received and processed but
 that the requested action is pending. The server MUST also manage
 the status of the object that is the subject of the command to
 reflect the initiation and completion of the requested action. Once
 the action has been completed, all clients involved in the
 transaction MUST be notified using a service message that the action
 has been completed and that the status of the object has changed.
 Other notification methods MAY be used in addition to the required
 service message.

 Server operators SHOULD confirm that a client is authorized to
 perform a transform command on a given object. Any attempt to
 transform an object by an unauthorized client MUST be rejected, and
 the server MUST return a 2201 response code to the client to note
 that the client lacks privileges to execute the requested command.

Hollenbeck Standards Track [Page 11]

RFC 5732 EPP Host Mapping August 2009

3.2.1. EPP <create> Command

 The EPP <create> command provides a transform operation that allows a
 client to create a host object. In addition to the standard EPP
 command elements, the <create> command MUST contain a <host:create>
 element that identifies the host namespace. The <host:create>
 element contains the following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object to be created.

 - Zero or more <host:addr> elements that contain the IP addresses to
 be associated with the host. Each element MAY contain an "ip"
 attribute to identify the IP address format. Attribute value "v4"
 is used to note IPv4 address format. Attribute value "v6" is used
 to note IPv6 address format. If the "ip" attribute is not
 specified, "v4" is the default attribute value.

 Hosts can be provisioned for use as name servers in the Domain Name
 System (DNS), described in [RFC1034] and [RFC1035]. Hosts
 provisioned as name servers might be subject to server-operator
 policies that require or prohibit specification of IP addresses,
 depending on the name of the host and the namespace in which the
 server will be used as a name server. When provisioned for use as a
 name server, IP addresses are REQUIRED only as needed to produce DNS
 glue records. For example, if the server is authoritative for the
 "com" namespace and the name of the server is "ns1.example.net", the
 server is not required to produce DNS glue records for the name
 server, and IP addresses for the server are not required by the DNS.

 If the host name exists in a namespace for which the server is
 authoritative, then the superordinate domain of the host MUST be
 known to the server before the host object can be created.

 Example <create> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <create>
 C: <host:create
 C: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 C: <host:name>ns1.example.com</host:name>
 C: <host:addr ip="v4">192.0.2.2</host:addr>
 C: <host:addr ip="v4">192.0.2.29</host:addr>
 C: <host:addr ip="v6">1080:0:0:0:8:800:200C:417A</host:addr>
 C: </host:create>
 C: </create>

Hollenbeck Standards Track [Page 12]

RFC 5732 EPP Host Mapping August 2009

 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <create> command has been processed successfully, the EPP
 <resData> element MUST contain a child <host:creData> element that
 identifies the host namespace. The <host:creData> element contains
 the following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object.

 - A <host:crDate> element that contains the date and time of host-
 object creation.

 Example <create> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <host:creData
 S: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 S: <host:name>ns1.example.com</host:name>
 S: <host:crDate>1999-04-03T22:00:00.0Z</host:crDate>
 S: </host:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <create> command cannot
 be processed for any reason.

3.2.2. EPP <delete> Command

 The EPP <delete> command provides a transform operation that allows a
 client to delete a host object. In addition to the standard EPP
 command elements, the <delete> command MUST contain a <host:delete>
 element that identifies the host namespace. The <host:delete>
 element contains the following child elements:

Hollenbeck Standards Track [Page 13]

RFC 5732 EPP Host Mapping August 2009

 - A <host:name> element that contains the fully qualified name of
 the host object to be deleted.

 A host name object SHOULD NOT be deleted if the host object is
 associated with any other object. For example, if the host object is
 associated with a domain object, the host object SHOULD NOT be
 deleted until the existing association has been broken. Deleting a
 host object without first breaking existing associations can cause
 DNS resolution failure for domain objects that refer to the deleted
 host object.

 Example <delete> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <delete>
 C: <host:delete
 C: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 C: <host:name>ns1.example.com</host:name>
 C: </host:delete>
 C: </delete>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <delete> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

 Example <delete> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <delete> command cannot
 be processed for any reason.

Hollenbeck Standards Track [Page 14]

RFC 5732 EPP Host Mapping August 2009

3.2.3. EPP <renew> Command

 Renewal semantics do not apply to host objects, so there is no
 mapping defined for the EPP <renew> command.

3.2.4. EPP <transfer> Command

 Transfer semantics do not directly apply to host objects, so there is
 no mapping defined for the EPP <transfer> command. Host objects are
 subordinate to an existing superordinate domain object and, as such,
 they are subject to transfer when a domain object is transferred.

3.2.5. EPP <update> Command

 The EPP <update> command provides a transform operation that allows a
 client to modify the attributes of a host object. In addition to the
 standard EPP command elements, the <update> command MUST contain a
 <host:update> element that identifies the host namespace. The <host:
 update> element contains the following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object to be updated.

 - An OPTIONAL <host:add> element that contains attribute values to
 be added to the object.

 - An OPTIONAL <host:rem> element that contains attribute values to
 be removed from the object.

 - An OPTIONAL <host:chg> element that contains object attribute
 values to be changed.

 At least one <host:add>, <host:rem>, or <host:chg> element MUST be
 provided if the command is not being extended. All of these elements
 MAY be omitted if an <update> extension is present. The <host:add>
 and <host:rem> elements contain the following child elements:

 - One or more <host:addr> elements that contain IP addresses to be
 associated with or removed from the host object. IP address
 restrictions described in the <create> command mapping apply here
 as well.

 - One or more <host:status> elements that contain status values to
 be associated with or removed from the object. When specifying a
 value to be removed, only the attribute value is significant;
 element text is not required to match a value for removal.

Hollenbeck Standards Track [Page 15]

RFC 5732 EPP Host Mapping August 2009

 A <host:chg> element contains the following child elements:

 - A <host:name> element that contains a new fully qualified host
 name by which the host object will be known.

 Host name changes MAY require the addition or removal of IP addresses
 to be accepted by the server. IP address association MAY be subject
 to server policies for provisioning hosts as name servers.

 Host name changes can have an impact on associated objects that refer
 to the host object. A host name change SHOULD NOT require additional
 updates of associated objects to preserve existing associations, with
 one exception: changing an external host object that has associations
 with objects that are sponsored by a different client. Attempts to
 update such hosts directly MUST fail with EPP error code 2305. The
 change can be provisioned by creating a new external host with a new
 name and any needed new attributes, and subsequently updating the
 other objects sponsored by the client.

 Example <update> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <update>
 C: <host:update
 C: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 C: <host:name>ns1.example.com</host:name>
 C: <host:add>
 C: <host:addr ip="v4">192.0.2.22</host:addr>
 C: <host:status s="clientUpdateProhibited"/>
 C: </host:add>
 C: <host:rem>
 C: <host:addr ip="v6">1080:0:0:0:8:800:200C:417A</host:addr>
 C: </host:rem>
 C: <host:chg>
 C: <host:name>ns2.example.com</host:name>
 C: </host:chg>
 C: </host:update>
 C: </update>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <update> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

Hollenbeck Standards Track [Page 16]

RFC 5732 EPP Host Mapping August 2009

 Example <update> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <update> command could
 not be processed for any reason.

3.3. Offline Review of Requested Actions

 Commands are processed by a server in the order they are received
 from a client. Though an immediate response confirming receipt and
 processing of the command is produced by the server, a server
 operator MAY perform an offline review of requested transform
 commands before completing the requested action. In such situations,
 the response from the server MUST clearly note that the transform
 command has been received and processed, but the requested action is
 pending. The status of the corresponding object MUST clearly reflect
 processing of the pending action. The server MUST notify the client
 when offline processing of the action has been completed.

 Examples describing a <create> command that requires offline review
 are included here. Note the result code and message returned in
 response to the <create> command.

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <host:creData
 S: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 S: <host:name>ns1.example.com</host:name>
 S: <host:crDate>1999-04-03T22:00:00.0Z</host:crDate>
 S: </host:creData>
 S: </resData>

Hollenbeck Standards Track [Page 17]

RFC 5732 EPP Host Mapping August 2009

 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 The status of the host object after returning this response MUST
 include "pendingCreate". The server operator reviews the request
 offline and informs the client of the outcome of the review either by
 queuing a service message for retrieval via the <poll> command or by
 using an out-of-band mechanism to inform the client of the request.

 The service message MUST contain text that describes the notification
 in the child <msg> element of the response <msgQ> element. In
 addition, the EPP <resData> element MUST contain a child <host:
 panData> element that identifies the host namespace. The <host:
 panData> element contains the following child elements:

 - A <host:name> element that contains the fully qualified name of
 the host object. The <host:name> element contains a REQUIRED
 "paResult" attribute. A positive boolean value indicates that the
 request has been approved and completed. A negative boolean value
 indicates that the request has been denied and the requested
 action has not been taken.

 - A <host:paTRID> element that contains the client transaction
 identifier and server transaction identifier returned with the
 original response to process the command. The client transaction
 identifier is OPTIONAL and will only be returned if the client
 provided an identifier with the original <create> command.

 - A <host:paDate> element that contains the date and time describing
 when review of the requested action was completed.

 Example "review completed" service message:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1301">
 S: <msg>Command completed successfully; ack to dequeue</msg>
 S: </result>
 S: <msgQ count="5" id="12345">
 S: <qDate>1999-04-04T22:01:00.0Z</qDate>
 S: <msg>Pending action completed successfully.</msg>
 S: </msgQ>
 S: <resData>

Hollenbeck Standards Track [Page 18]

RFC 5732 EPP Host Mapping August 2009

 S: <host:panData
 S: xmlns:host="urn:ietf:params:xml:ns:host-1.0">
 S: <host:name paResult="1">ns1.example.com</host:name>
 S: <host:paTRID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </host:paTRID>
 S: <host:paDate>1999-04-04T22:00:00.0Z</host:paDate>
 S: </host:panData>
 S: </resData>
 S: <trID>
 S: <clTRID>BCD-23456</clTRID>
 S: <svTRID>65432-WXY</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

4. Formal Syntax

 An EPP object mapping is specified in XML Schema notation. The
 formal syntax presented here is a complete schema representation of
 the object mapping suitable for automated validation of EPP XML
 instances. The BEGIN and END tags are not part of the schema; they
 are used to note the beginning and ending of the schema for URI
 registration purposes.

 Copyright (c) 2009 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

Hollenbeck Standards Track [Page 19]

RFC 5732 EPP Host Mapping August 2009

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>

 <schema targetNamespace="urn:ietf:params:xml:ns:host-1.0"
 xmlns:host="urn:ietf:params:xml:ns:host-1.0"
 xmlns:epp="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <!--
 Import common element types.
 -->
 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"/>
 <import namespace="urn:ietf:params:xml:ns:epp-1.0"/>

 <annotation>
 <documentation>
 Extensible Provisioning Protocol v1.0
 host provisioning schema.
 </documentation>
 </annotation>

 <!--
 Child elements found in EPP commands.
 -->
 <element name="check" type="host:mNameType"/>
 <element name="create" type="host:createType"/>
 <element name="delete" type="host:sNameType"/>
 <element name="info" type="host:sNameType"/>
 <element name="update" type="host:updateType"/>

 <!--
 Child elements of the <create> command.
 -->
 <complexType name="createType">

Hollenbeck Standards Track [Page 20]

RFC 5732 EPP Host Mapping August 2009

 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="addr" type="host:addrType"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="addrType">
 <simpleContent>
 <extension base="host:addrStringType">
 <attribute name="ip" type="host:ipType"
 default="v4"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="addrStringType">
 <restriction base="token">
 <minLength value="3"/>
 <maxLength value="45"/>
 </restriction>
 </simpleType>

 <simpleType name="ipType">
 <restriction base="token">
 <enumeration value="v4"/>
 <enumeration value="v6"/>
 </restriction>
 </simpleType>

 <!--
 Child elements of the <delete> and <info> commands.
 -->
 <complexType name="sNameType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 </sequence>
 </complexType>

 <!--
 Child element of commands that accept multiple names.
 -->
 <complexType name="mNameType">
 <sequence>
 <element name="name" type="eppcom:labelType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

Hollenbeck Standards Track [Page 21]

RFC 5732 EPP Host Mapping August 2009

 <!--
 Child elements of the <update> command.
 -->
 <complexType name="updateType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="add" type="host:addRemType"
 minOccurs="0"/>
 <element name="rem" type="host:addRemType"
 minOccurs="0"/>
 <element name="chg" type="host:chgType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be added or removed.
 -->
 <complexType name="addRemType">
 <sequence>
 <element name="addr" type="host:addrType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="status" type="host:statusType"
 minOccurs="0" maxOccurs="7"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be changed.
 -->
 <complexType name="chgType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 </sequence>
 </complexType>

 <!--
 Child response elements.
 -->
 <element name="chkData" type="host:chkDataType"/>
 <element name="creData" type="host:creDataType"/>
 <element name="infData" type="host:infDataType"/>
 <element name="panData" type="host:panDataType"/>

 <!--
 <check> response elements.
 -->
 <complexType name="chkDataType">

Hollenbeck Standards Track [Page 22]

RFC 5732 EPP Host Mapping August 2009

 <sequence>
 <element name="cd" type="host:checkType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="checkType">
 <sequence>
 <element name="name" type="host:checkNameType"/>
 <element name="reason" type="eppcom:reasonType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="checkNameType">
 <simpleContent>
 <extension base="eppcom:labelType">
 <attribute name="avail" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 <create> response elements.
 -->
 <complexType name="creDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="crDate" type="dateTime"/>
 </sequence>
 </complexType>

 <!--
 <info> response elements.
 -->
 <complexType name="infDataType">
 <sequence>
 <element name="name" type="eppcom:labelType"/>
 <element name="roid" type="eppcom:roidType"/>
 <element name="status" type="host:statusType"
 maxOccurs="7"/>
 <element name="addr" type="host:addrType"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="clID" type="eppcom:clIDType"/>
 <element name="crID" type="eppcom:clIDType"/>
 <element name="crDate" type="dateTime"/>
 <element name="upID" type="eppcom:clIDType"

Hollenbeck Standards Track [Page 23]

RFC 5732 EPP Host Mapping August 2009

 minOccurs="0"/>
 <element name="upDate" type="dateTime"
 minOccurs="0"/>
 <element name="trDate" type="dateTime"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Status is a combination of attributes and an optional human-readable
 message that may be expressed in languages other than English.
 -->
 <complexType name="statusType">
 <simpleContent>
 <extension base="normalizedString">
 <attribute name="s" type="host:statusValueType"
 use="required"/>
 <attribute name="lang" type="language"
 default="en"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="statusValueType">
 <restriction base="token">
 <enumeration value="clientDeleteProhibited"/>
 <enumeration value="clientUpdateProhibited"/>
 <enumeration value="linked"/>
 <enumeration value="ok"/>
 <enumeration value="pendingCreate"/>
 <enumeration value="pendingDelete"/>
 <enumeration value="pendingTransfer"/>
 <enumeration value="pendingUpdate"/>
 <enumeration value="serverDeleteProhibited"/>
 <enumeration value="serverUpdateProhibited"/>
 </restriction>
 </simpleType>

 <!--
 Pending action notification response elements.
 -->
 <complexType name="panDataType">
 <sequence>
 <element name="name" type="host:paNameType"/>
 <element name="paTRID" type="epp:trIDType"/>
 <element name="paDate" type="dateTime"/>
 </sequence>
 </complexType>

Hollenbeck Standards Track [Page 24]

RFC 5732 EPP Host Mapping August 2009

 <complexType name="paNameType">
 <simpleContent>
 <extension base="eppcom:labelType">
 <attribute name="paResult" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 End of schema.
 -->
 </schema>
 END

5. Internationalization Considerations

 EPP is represented in XML, which provides native support for encoding
 information using the Unicode character set and its more compact
 representations including UTF-8. Conformant XML processors recognize
 both UTF-8 and UTF-16 [RFC2781]. Though XML includes provisions to
 identify and use other character encodings through use of an
 "encoding" attribute in an <?xml?> declaration, use of UTF-8 is
 RECOMMENDED in environments where parser encoding support
 incompatibility exists.

 All date-time values presented via EPP MUST be expressed in Universal
 Coordinated Time using the Gregorian calendar. XML Schema allows use
 of time zone identifiers to indicate offsets from the zero meridian,
 but this option MUST NOT be used with EPP. The extended date-time
 form using upper case "T" and "Z" characters defined in
 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

 The syntax for domain and host names described in this document MUST
 conform to [RFC0952] and [RFC1123]. At the time of this writing, RFC
 3490 [RFC3490] describes a standard to use certain ASCII name labels
 to represent non-ASCII name labels. These conformance requirements
 might change as a result of progressing work in developing standards
 for internationalized host names.

6. IANA Considerations

 This document uses URNs to describe XML namespaces and XML schemas
 conforming to a registry mechanism described in [RFC3688]. Two URI
 assignments have been registered by the IANA.

Hollenbeck Standards Track [Page 25]

RFC 5732 EPP Host Mapping August 2009

 Registration request for the host namespace:

 URI: urn:ietf:params:xml:ns:host-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

 Registration request for the host XML schema:

 URI: urn:ietf:params:xml:schema:host-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: See the "Formal Syntax" section of this document.

7. Security Considerations

 The object mapping described in this document does not provide any
 security services or introduce any additional considerations beyond
 those described by [RFC5730] or those caused by the protocol layers
 used by EPP.

8. Acknowledgements

 RFC 3732 is a product of the PROVREG working group, which suggested
 improvements and provided many invaluable comments. The author
 wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
 Akkerhuis for their process and editorial contributions. RFC 4932
 and this document are individual submissions, based on the work done
 in RFC 3732.

 Specific suggestions that have been incorporated into this document
 were provided by Chris Bason, Jordyn Buchanan, Dave Crocker, Anthony
 Eden, Sheer El-Showk, Klaus Malorny, Dan Manley, Michael Mealling,
 Patrick Mevzek, and Rick Wesson.

9. References

9.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet
 host table specification", RFC 952, October 1985.

Hollenbeck Standards Track [Page 26]

RFC 5732 EPP Host Mapping August 2009

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, August 2009.

 [W3C.REC-xml-20040204]
 Sperberg-McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium FirstEdition REC-xml-
 20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204>.

 [W3C.REC-xmlschema-1-20041028]
 Maloney, M., Thompson, H., Mendelsohn, N., and D. Beech,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

9.2. Informative References

 [RFC2781] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
 10646", RFC 2781, February 2000.

Hollenbeck Standards Track [Page 27]

RFC 5732 EPP Host Mapping August 2009

 [RFC2874] Crawford, M. and C. Huitema, "DNS Extensions to Support
 IPv6 Address Aggregation and Renumbering", RFC 2874,
 July 2000.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
 "DNS Extensions to Support IP Version 6", RFC 3596,
 October 2003.

 [RFC4932] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Host Mapping", RFC 4932, May 2007.

Hollenbeck Standards Track [Page 28]

RFC 5732 EPP Host Mapping August 2009

Appendix A. Changes from RFC 4932

 1. Changed "This document obsoletes RFC 3732" to "This document
 obsoletes RFC 4932".

 2. Replaced references to RFC 1886 with references to 3596.

 3. Removed references to RFC 3152 since both it and 1886 have been
 obsoleted by 3596.

 4. Replaced references to RFC 3732 with references to 4932.

 5. Replaced references to RFC 4930 with references to 5730.

 6. Added "Other notification methods MAY be used in addition to the
 required service message" in Section 3.2.

 7. Added 2201 response code text in Section 3.2.

 8. Added BSD license text to XML schema section.

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 29]

===

Network Working Group S. Hollenbeck
Request for Comments: 5733 VeriSign, Inc.
STD: 69 August 2009
Obsoletes: 4933
Category: Standards Track

 Extensible Provisioning Protocol (EPP) Contact Mapping

Abstract

 This document describes an Extensible Provisioning Protocol (EPP)
 mapping for the provisioning and management of individual or
 organizational social information identifiers (known as "contacts")
 stored in a shared central repository. Specified in Extensible
 Markup Language (XML), the mapping defines EPP command syntax and
 semantics as applied to contacts. This document obsoletes RFC 4933.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hollenbeck Standards Track [Page 1]

RFC 5733 EPP Contact Mapping August 2009

Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document3
 2. Object Attributes ...3
 2.1. Contact and Client Identifiers3
 2.2. Status Values ..4
 2.3. Individual and Organizational Names5
 2.4. Address ..6
 2.4.1. Street, City, and State or Province6
 2.4.2. Postal Code ...6
 2.4.3. Country ...6
 2.5. Telephone Numbers ..6
 2.6. Email Addresses ..6
 2.7. Dates and Times ..6
 2.8. Authorization Information7
 2.9. Disclosure of Data Elements and Attributes7
 3. EPP Command Mapping ...8
 3.1. EPP Query Commands ...8
 3.1.1. EPP <check> Command9
 3.1.2. EPP <info> Command11
 3.1.3. EPP <transfer> Query Command14
 3.2. EPP Transform Commands16
 3.2.1. EPP <create> Command17
 3.2.2. EPP <delete> Command20
 3.2.3. EPP <renew> Command21
 3.2.4. EPP <transfer> Command21
 3.2.5. EPP <update> Command23
 3.3. Offline Review of Requested Actions26
 4. Formal Syntax ..28
 5. Internationalization Considerations37
 6. IANA Considerations ..37
 7. Security Considerations ..38
 8. Acknowledgements ...38
 9. References ...39
 9.1. Normative References39
 9.2. Informative References40
 Appendix A. Changes from RFC 4933 42

Hollenbeck Standards Track [Page 2]

RFC 5733 EPP Contact Mapping August 2009

1. Introduction

 This document describes a personal and organizational identifier
 mapping for version 1.0 of the Extensible Provisioning Protocol
 (EPP). This mapping is specified using the Extensible Markup
 Language (XML) 1.0 as described in [W3C.REC-xml-20040204] and XML
 Schema notation as described in [W3C.REC-xmlschema-1-20041028] and
 [W3C.REC-xmlschema-2-20041028]. This document obsoletes RFC 4933
 [RFC4933].

 [RFC5730] provides a complete description of EPP command and response
 structures. A thorough understanding of the base protocol
 specification is necessary to understand the mapping described in
 this document.

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented to develop a conforming implementation.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In examples, "C:" represents lines sent by a protocol client and "S:"
 represents lines returned by a protocol server. Indentation and
 white space in examples are provided only to illustrate element
 relationships and are not a REQUIRED feature of this protocol.

2. Object Attributes

 An EPP contact object has attributes and associated values that can
 be viewed and modified by the sponsoring client or the server. This
 section describes each attribute type in detail. The formal syntax
 for the attribute values described here can be found in the "Formal
 Syntax" section of this document and in the appropriate normative
 references.

2.1. Contact and Client Identifiers

 All EPP contacts are identified by a server-unique identifier.
 Contact identifiers are character strings with a specified minimum
 length, a specified maximum length, and a specified format. Contact
 identifiers use the "clIDType" client identifier syntax described in
 [RFC5730].

Hollenbeck Standards Track [Page 3]

RFC 5733 EPP Contact Mapping August 2009

2.2. Status Values

 A contact object MUST always have at least one associated status
 value. Status values can be set only by the client that sponsors a
 contact object and by the server on which the object resides. A
 client can change the status of a contact object using the EPP
 <update> command. Each status value MAY be accompanied by a string
 of human-readable text that describes the rationale for the status
 applied to the object.

 A client MUST NOT alter status values set by the server. A server
 MAY alter or override status values set by a client, subject to local
 server policies. The status of an object MAY change as a result of
 either a client-initiated transform command or an action performed by
 a server operator.

 Status values that can be added or removed by a client are prefixed
 with "client". Corresponding status values that can be added or
 removed by a server are prefixed with "server". Status values that
 do not begin with either "client" or "server" are server-managed.

 Status Value Descriptions:

 - clientDeleteProhibited, serverDeleteProhibited

 Requests to delete the object MUST be rejected.

 - clientTransferProhibited, serverTransferProhibited

 Requests to transfer the object MUST be rejected.

 - clientUpdateProhibited, serverUpdateProhibited

 Requests to update the object (other than to remove this status)
 MUST be rejected.

 - linked

 The contact object has at least one active association with
 another object, such as a domain object. Servers SHOULD provide
 services to determine existing object associations.

 - ok

 This is the normal status value for an object that has no pending
 operations or prohibitions. This value is set and removed by the
 server as other status values are added or removed.

Hollenbeck Standards Track [Page 4]

RFC 5733 EPP Contact Mapping August 2009

 - pendingCreate, pendingDelete, pendingTransfer, pendingUpdate

 A transform command has been processed for the object, but the
 action has not been completed by the server. Server operators can
 delay action completion for a variety of reasons, such as to allow
 for human review or third-party action. A transform command that
 is processed, but whose requested action is pending, is noted with
 response code 1001.

 When the requested action has been completed, the pendingCreate,
 pendingDelete, pendingTransfer, or pendingUpdate status value MUST be
 removed. All clients involved in the transaction MUST be notified
 using a service message that the action has been completed and that
 the status of the object has changed.

 "ok" status MAY only be combined with "linked" status.

 "linked" status MAY be combined with any status.

 "pendingDelete" status MUST NOT be combined with either
 "clientDeleteProhibited" or "serverDeleteProhibited" status.

 "pendingTransfer" status MUST NOT be combined with either
 "clientTransferProhibited" or "serverTransferProhibited" status.
 "pendingUpdate" status MUST NOT be combined with either
 "clientUpdateProhibited" or "serverUpdateProhibited" status.

 The pendingCreate, pendingDelete, pendingTransfer, and pendingUpdate
 status values MUST NOT be combined with each other.

 Other status combinations not expressly prohibited MAY be used.

2.3. Individual and Organizational Names

 Individual and organizational names associated with a contact are
 represented using character strings. These strings have a specified
 minimum length and a specified maximum length. Individual and
 organizational names MAY be provided in either UTF-8 [RFC3629] or a
 subset of UTF-8 that can be represented in 7-bit ASCII, depending on
 local needs.

Hollenbeck Standards Track [Page 5]

RFC 5733 EPP Contact Mapping August 2009

2.4. Address

 Every contact has associated postal-address information. A postal
 address contains OPTIONAL street information, city information,
 OPTIONAL state/province information, an OPTIONAL postal code, and a
 country identifier. Address information MAY be provided in either
 UTF-8 or a subset of UTF-8 that can be represented in 7-bit ASCII,
 depending on local needs.

2.4.1. Street, City, and State or Province

 Contact street, city, and state or province information is
 represented using character strings. These strings have a specified
 minimum length and a specified maximum length.

2.4.2. Postal Code

 Contact postal codes are represented using character strings. These
 strings have a specified minimum length and a specified maximum
 length.

2.4.3. Country

 Contact country identifiers are represented using two-character
 identifiers specified in [ISO3166-1].

2.5. Telephone Numbers

 Contact telephone number structure is derived from structures defined
 in [ITU.E164.2005]. Telephone numbers described in this mapping are
 character strings that MUST begin with a plus sign ("+", ASCII value
 0x002B), followed by a country code defined in [ITU.E164.2005],
 followed by a dot (".", ASCII value 0x002E), followed by a sequence
 of digits representing the telephone number. An optional "x"
 attribute is provided to note telephone extension information.

2.6. Email Addresses

 Email address syntax is defined in [RFC5322]. This mapping does not
 prescribe minimum or maximum lengths for character strings used to
 represent email addresses.

2.7. Dates and Times

 Date and time attribute values MUST be represented in Universal
 Coordinated Time (UTC) using the Gregorian calendar. The extended
 date-time form using upper case "T" and "Z" characters defined in

Hollenbeck Standards Track [Page 6]

RFC 5733 EPP Contact Mapping August 2009

 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as XML Schema does not support truncated date-time forms or
 lower case "T" and "Z" characters.

2.8. Authorization Information

 Authorization information is associated with contact objects to
 facilitate transfer operations. Authorization information is
 assigned when a contact object is created, and it might be updated in
 the future. This specification describes password-based
 authorization information, though other mechanisms are possible.

2.9. Disclosure of Data Elements and Attributes

 The EPP core protocol requires a server operator to announce data-
 collection policies to clients; see Section 2.4 of [RFC5730]. In
 conjunction with this disclosure requirement, this mapping includes
 data elements that allow a client to identify elements that require
 exceptional server-operator handling to allow or restrict disclosure
 to third parties.

 A server operator announces a default disclosure policy when
 establishing a session with a client. When an object is created or
 updated, the client can specify contact attributes that require
 exceptional disclosure handling using an OPTIONAL <contact:disclose>
 element. Once set, disclosure preferences can be reviewed using a
 contact-information query. A server operator MUST reject any
 transaction that requests disclosure practices that do not conform to
 the announced data-collection policy with a 2308 error response code.

 If present, the <contact:disclose> element MUST contain a "flag"
 attribute. The "flag" attribute contains an XML Schema boolean
 value. A value of "true" or "1" (one) notes a client preference to
 allow disclosure of the specified elements as an exception to the
 stated data-collection policy. A value of "false" or "0" (zero)
 notes a client preference to not allow disclosure of the specified
 elements as an exception to the stated data-collection policy.

 The <contact:disclose> element MUST contain at least one of the
 following child elements:

 <contact:name type="int"/>
 <contact:name type="loc"/>
 <contact:org type="int"/>
 <contact:org type="loc"/>
 <contact:addr type="int"/>
 <contact:addr type="loc"/>

Hollenbeck Standards Track [Page 7]

RFC 5733 EPP Contact Mapping August 2009

 <contact:voice/>
 <contact:fax/>
 <contact:email/>

 Example <contact:disclose> element, flag="0":

 <contact:disclose flag="0">
 <contact:email/>
 <contact:voice/>
 </contact:disclose>

 In this example, the contact email address and voice telephone number
 cannot be disclosed. All other elements are subject to disclosure in
 accordance with the server’s data-collection policy.

 Example <contact:disclose> element, flag="1":

 <contact:disclose flag="1">
 <contact:name type="int"/>
 <contact:org type="int"/>
 <contact:addr type="int"/>
 </contact:disclose>

 In this example, the internationalized contact name, organization,
 and address information can be disclosed. All other elements are
 subject to disclosure in accordance with the server’s data-collection
 policy.

 Client-identification features provided by the EPP <login> command
 and contact-authorization information are used to determine if a
 client is authorized to perform contact-information query commands.
 These features also determine if a client is authorized to receive
 data that is otherwise marked for non-disclosure in a query response.

3. EPP Command Mapping

 A detailed description of the EPP syntax and semantics can be found
 in [RFC5730]. The command mappings described here are specifically
 for use in provisioning and managing contact objects via EPP.

3.1. EPP Query Commands

 EPP provides three commands to retrieve contact information: <check>
 to determine if a contact object can be provisioned within a
 repository, <info> to retrieve detailed information associated with a
 contact object, and <transfer> to retrieve information regarding the
 transfer status of the contact object.

Hollenbeck Standards Track [Page 8]

RFC 5733 EPP Contact Mapping August 2009

3.1.1. EPP <check> Command

 The EPP <check> command is used to determine if an object can be
 provisioned within a repository. It provides a hint that allows a
 client to anticipate the success or failure of provisioning an object
 using the <create> command, as object-provisioning requirements are
 ultimately a matter of server policy.

 In addition to the standard EPP command elements, the <check> command
 MUST contain a <contact:check> element that identifies the contact
 namespace. The <contact:check> element contains the following child
 elements:

 - One or more <contact:id> elements that contain the server-unique
 identifier of the contact objects to be queried.

 Example <check> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <check>
 C: <contact:check
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:id>sah8013</contact:id>
 C: <contact:id>8013sah</contact:id>
 C: </contact:check>
 C: </check>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <check> command has been processed successfully, the EPP
 <resData> element MUST contain a child <contact:chkData> element that
 identifies the contact namespace. The <contact:chkData> element
 contains one or more <contact:cd> elements that contain the following
 child elements:

 - A <contact:id> element that identifies the queried object. This
 element MUST contain an "avail" attribute whose value indicates
 object availability (can it be provisioned or not) at the moment
 the <check> command was completed. A value of "1" or "true" means
 that the object can be provisioned. A value of "0" or "false"
 means that the object cannot be provisioned.

Hollenbeck Standards Track [Page 9]

RFC 5733 EPP Contact Mapping August 2009

 - An OPTIONAL <contact:reason> element that MAY be provided when an
 object cannot be provisioned. If present, this element contains
 server-specific text to help explain why the object cannot be
 provisioned. This text MUST be represented in the response
 language previously negotiated with the client; an OPTIONAL "lang"
 attribute MAY be present to identify the language if the
 negotiated value is something other than the default value of "en"
 (English).

 Example <check> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <contact:chkData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:cd>
 S: <contact:id avail="1">sh8013</contact:id>
 S: </contact:cd>
 S: <contact:cd>
 S: <contact:id avail="0">sah8013</contact:id>
 S: <contact:reason>In use</contact:reason>
 S: </contact:cd>
 S: <contact:cd>
 S: <contact:id avail="1">8013sah</contact:id>
 S: </contact:cd>
 S: </contact:chkData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <check> command cannot be
 processed for any reason.

Hollenbeck Standards Track [Page 10]

RFC 5733 EPP Contact Mapping August 2009

3.1.2. EPP <info> Command

 The EPP <info> command is used to retrieve information associated
 with a contact object. In addition to the standard EPP command
 elements, the <info> command MUST contain a <contact:info> element
 that identifies the contact namespace. The <contact:info> element
 contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object to be queried.

 - An OPTIONAL <contact:authInfo> element that contains authorization
 information associated with the contact object. If this element
 is not provided or if the authorization information is invalid,
 server policy determines if the command is rejected or if response
 information will be returned to the client.

 Example <info> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <info>
 C: <contact:info
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:authInfo>
 C: <contact:pw>2fooBAR</contact:pw>
 C: </contact:authInfo>
 C: </contact:info>
 C: </info>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <info> command has been processed successfully, the EPP
 <resData> element MUST contain a child <contact:infData> element that
 identifies the contact namespace. The <contact:infData> element
 contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object.

 - A <contact:roid> element that contains the Repository Object
 IDentifier assigned to the contact object when the object was
 created.

Hollenbeck Standards Track [Page 11]

RFC 5733 EPP Contact Mapping August 2009

 - One or more <contact:status> elements that describe the status of
 the contact object.

 - One or two <contact:postalInfo> elements that contain postal-
 address information. Two elements are provided so that address
 information can be provided in both internationalized and
 localized forms; a "type" attribute is used to identify the two
 forms. If an internationalized form (type="int") is provided,
 element content MUST be represented in a subset of UTF-8 that can
 be represented in the 7-bit US-ASCII character set. If a
 localized form (type="loc") is provided, element content MAY be
 represented in unrestricted UTF-8. The <contact:postalInfo>
 element contains the following child elements:

 - A <contact:name> element that contains the name of the
 individual or role represented by the contact.

 - An OPTIONAL <contact:org> element that contains the name of the
 organization with which the contact is affiliated.

 - A <contact:addr> element that contains address information
 associated with the contact. A <contact:addr> element contains
 the following child elements:

 - One, two, or three OPTIONAL <contact:street> elements that
 contain the contact’s street address.

 - A <contact:city> element that contains the contact’s city.

 - An OPTIONAL <contact:sp> element that contains the contact’s
 state or province.

 - An OPTIONAL <contact:pc> element that contains the contact’s
 postal code.

 - A <contact:cc> element that contains the contact’s country
 code.

 - An OPTIONAL <contact:voice> element that contains the contact’s
 voice telephone number.

 - An OPTIONAL <contact:fax> element that contains the contact’s
 facsimile telephone number.

 - A <contact:email> element that contains the contact’s email
 address.

Hollenbeck Standards Track [Page 12]

RFC 5733 EPP Contact Mapping August 2009

 - A <contact:clID> element that contains the identifier of the
 sponsoring client.

 - A <contact:crID> element that contains the identifier of the
 client that created the contact object.

 - A <contact:crDate> element that contains the date and time of
 contact-object creation.

 - A <contact:upID> element that contains the identifier of the
 client that last updated the contact object. This element MUST
 NOT be present if the contact has never been modified.

 - A <contact:upDate> element that contains the date and time of the
 most recent contact-object modification. This element MUST NOT be
 present if the contact object has never been modified.

 - A <contact:trDate> element that contains the date and time of the
 most recent successful contact-object transfer. This element MUST
 NOT be provided if the contact object has never been transferred.

 - A <contact:authInfo> element that contains authorization
 information associated with the contact object. This element MUST
 NOT be provided if the querying client is not the current
 sponsoring client.

 - An OPTIONAL <contact:disclose> element that identifies elements
 that require exceptional server-operator handling to allow or
 restrict disclosure to third parties. See Section 2.9 for a
 description of the child elements contained within the <contact:
 disclose> element.

 Example <info> response for an authorized client:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <contact:infData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id>sh8013</contact:id>
 S: <contact:roid>SH8013-REP</contact:roid>
 S: <contact:status s="linked"/>
 S: <contact:status s="clientDeleteProhibited"/>
 S: <contact:postalInfo type="int">

Hollenbeck Standards Track [Page 13]

RFC 5733 EPP Contact Mapping August 2009

 S: <contact:name>John Doe</contact:name>
 S: <contact:org>Example Inc.</contact:org>
 S: <contact:addr>
 S: <contact:street>123 Example Dr.</contact:street>
 S: <contact:street>Suite 100</contact:street>
 S: <contact:city>Dulles</contact:city>
 S: <contact:sp>VA</contact:sp>
 S: <contact:pc>20166-6503</contact:pc>
 S: <contact:cc>US</contact:cc>
 S: </contact:addr>
 S: </contact:postalInfo>
 S: <contact:voice x="1234">+1.7035555555</contact:voice>
 S: <contact:fax>+1.7035555556</contact:fax>
 S: <contact:email>jdoe@example.com</contact:email>
 S: <contact:clID>ClientY</contact:clID>
 S: <contact:crID>ClientX</contact:crID>
 S: <contact:crDate>1999-04-03T22:00:00.0Z</contact:crDate>
 S: <contact:upID>ClientX</contact:upID>
 S: <contact:upDate>1999-12-03T09:00:00.0Z</contact:upDate>
 S: <contact:trDate>2000-04-08T09:00:00.0Z</contact:trDate>
 S: <contact:authInfo>
 S: <contact:pw>2fooBAR</contact:pw>
 S: </contact:authInfo>
 S: <contact:disclose flag="0">
 S: <contact:voice/>
 S: <contact:email/>
 S: </contact:disclose>
 S: </contact:infData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <info> command cannot be
 processed for any reason.

3.1.3. EPP <transfer> Query Command

 The EPP <transfer> command provides a query operation that allows a
 client to determine the real-time status of pending and completed
 transfer requests. In addition to the standard EPP command elements,
 the <transfer> command MUST contain an "op" attribute with value
 "query", and a <contact:transfer> element that identifies the contact
 namespace. The <contact:transfer> element MUST contain the following
 child elements:

Hollenbeck Standards Track [Page 14]

RFC 5733 EPP Contact Mapping August 2009

 - A <contact:id> element that contains the server-unique identifier
 of the contact object to be queried.

 - An OPTIONAL <contact:authInfo> element that contains authorization
 information associated with the contact object. If this element
 is not provided or if the authorization information is invalid,
 server policy determines if the command is rejected or if response
 information will be returned to the client.

 Example <transfer> query command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="query">
 C: <contact:transfer
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:authInfo>
 C: <contact:pw>2fooBAR</contact:pw>
 C: </contact:authInfo>
 C: </contact:transfer>
 C: </transfer>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> query command has been processed successfully, the
 EPP <resData> element MUST contain a child <contact:trnData> element
 that identifies the contact namespace. The <contact:trnData> element
 contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 for the queried contact.

 - A <contact:trStatus> element that contains the state of the most
 recent transfer request.

 - A <contact:reID> element that contains the identifier of the
 client that requested the object transfer.

 - A <contact:reDate> element that contains the date and time that
 the transfer was requested.

 - A <contact:acID> element that contains the identifier of the
 client that SHOULD act upon a PENDING transfer request. For all
 other status types, the value identifies the client that took the
 indicated action.

Hollenbeck Standards Track [Page 15]

RFC 5733 EPP Contact Mapping August 2009

 - A <contact:acDate> element that contains the date and time of a
 required or completed response. For a pending request, the value
 identifies the date and time by which a response is required
 before an automated response action SHOULD be taken by the server.
 For all other status types, the value identifies the date and time
 when the request was completed.

 Example <transfer> query response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <contact:trnData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id>sh8013</contact:id>
 S: <contact:trStatus>pending</contact:trStatus>
 S: <contact:reID>ClientX</contact:reID>
 S: <contact:reDate>2000-06-06T22:00:00.0Z</contact:reDate>
 S: <contact:acID>ClientY</contact:acID>
 S: <contact:acDate>2000-06-11T22:00:00.0Z</contact:acDate>
 S: </contact:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <transfer> query command
 cannot be processed for any reason.

3.2. EPP Transform Commands

 EPP provides four commands to transform contact-object information:
 <create> to create an instance of a contact object, <delete> to
 delete an instance of a contact object, <transfer> to manage contact-
 object sponsorship changes, and <update> to change information
 associated with a contact object. This document does not define a
 mapping for the EPP <renew> command.

 Transform commands are typically processed and completed in real
 time. Server operators MAY receive and process transform commands
 but defer completing the requested action if human or third-party

Hollenbeck Standards Track [Page 16]

RFC 5733 EPP Contact Mapping August 2009

 review is required before the requested action can be completed. In
 such situations, the server MUST return a 1001 response code to the
 client to note that the command has been received and processed but
 that the requested action is pending. The server MUST also manage
 the status of the object that is the subject of the command to
 reflect the initiation and completion of the requested action. Once
 the action has been completed, all clients involved in the
 transaction MUST be notified using a service message that the action
 has been completed and that the status of the object has changed.
 Other notification methods MAY be used in addition to the required
 service message.

 Server operators SHOULD confirm that a client is authorized to
 perform a transform command on a given object. Any attempt to
 transform an object by an unauthorized client MUST be rejected, and
 the server MUST return a 2201 response code to the client to note
 that the client lacks privileges to execute the requested command.

3.2.1. EPP <create> Command

 The EPP <create> command provides a transform operation that allows a
 client to create a contact object. In addition to the standard EPP
 command elements, the <create> command MUST contain a <contact:
 create> element that identifies the contact namespace. The <contact:
 create> element contains the following child elements:

 - A <contact:id> element that contains the desired server-unique
 identifier for the contact to be created.

 - One or two <contact:postalInfo> elements that contain postal-
 address information. Two elements are provided so that address
 information can be provided in both internationalized and
 localized forms; a "type" attribute is used to identify the two
 forms. If an internationalized form (type="int") is provided,
 element content MUST be represented in a subset of UTF-8 that can
 be represented in the 7-bit US-ASCII character set. If a
 localized form (type="loc") is provided, element content MAY be
 represented in unrestricted UTF-8. The <contact:postalInfo>
 element contains the following child elements:

 o A <contact:name> element that contains the name of the
 individual or role represented by the contact.

 o An OPTIONAL <contact:org> element that contains the name of the
 organization with which the contact is affiliated.

Hollenbeck Standards Track [Page 17]

RFC 5733 EPP Contact Mapping August 2009

 o A <contact:addr> element that contains address information
 associated with the contact. A <contact:addr> element contains
 the following child elements:

 * One, two, or three OPTIONAL <contact:street> elements that
 contain the contact’s street address.

 * A <contact:city> element that contains the contact’s city.

 * An OPTIONAL <contact:sp> element that contains the contact’s
 state or province.

 * An OPTIONAL <contact:pc> element that contains the contact’s
 postal code.

 * A <contact:cc> element that contains the contact’s country
 code.

 - An OPTIONAL <contact:voice> element that contains the contact’s
 voice telephone number.

 - An OPTIONAL <contact:fax> element that contains the contact’s
 facsimile telephone number.

 - A <contact:email> element that contains the contact’s email
 address.

 - A <contact:authInfo> element that contains authorization
 information to be associated with the contact object. This
 mapping includes a password-based authentication mechanism, but
 the schema allows new mechanisms to be defined in new schemas.

 - An OPTIONAL <contact:disclose> element that allows a client to
 identify elements that require exceptional server-operator
 handling to allow or restrict disclosure to third parties. See
 Section 2.9 for a description of the child elements contained
 within the <contact:disclose> element.

 Example <create> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <create>
 C: <contact:create
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:postalInfo type="int">

Hollenbeck Standards Track [Page 18]

RFC 5733 EPP Contact Mapping August 2009

 C: <contact:name>John Doe</contact:name>
 C: <contact:org>Example Inc.</contact:org>
 C: <contact:addr>
 C: <contact:street>123 Example Dr.</contact:street>
 C: <contact:street>Suite 100</contact:street>
 C: <contact:city>Dulles</contact:city>
 C: <contact:sp>VA</contact:sp>
 C: <contact:pc>20166-6503</contact:pc>
 C: <contact:cc>US</contact:cc>
 C: </contact:addr>
 C: </contact:postalInfo>
 C: <contact:voice x="1234">+1.7035555555</contact:voice>
 C: <contact:fax>+1.7035555556</contact:fax>
 C: <contact:email>jdoe@example.com</contact:email>
 C: <contact:authInfo>
 C: <contact:pw>2fooBAR</contact:pw>
 C: </contact:authInfo>
 C: <contact:disclose flag="0">
 C: <contact:voice/>
 C: <contact:email/>
 C: </contact:disclose>
 C: </contact:create>
 C: </create>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <create> command has been processed successfully, the EPP
 <resData> element MUST contain a child <contact:creData> element that
 identifies the contact namespace. The <contact:creData> element
 contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 for the created contact.

 - A <contact:crDate> element that contains the date and time of
 contact-object creation.

 Example <create> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <resData>
 S: <contact:creData

Hollenbeck Standards Track [Page 19]

RFC 5733 EPP Contact Mapping August 2009

 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id>sh8013</contact:id>
 S: <contact:crDate>1999-04-03T22:00:00.0Z</contact:crDate>
 S: </contact:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <create> command cannot
 be processed for any reason.

3.2.2. EPP <delete> Command

 The EPP <delete> command provides a transform operation that allows a
 client to delete a contact object. In addition to the standard EPP
 command elements, the <delete> command MUST contain a <contact:
 delete> element that identifies the contact namespace. The <contact:
 delete> element MUST contain the following child element:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object to be deleted.

 A contact object SHOULD NOT be deleted if it is associated with other
 known objects. An associated contact SHOULD NOT be deleted until
 associations with other known objects have been broken. A server
 SHOULD notify clients that object relationships exist by sending a
 2305 error response code when a <delete> command is attempted and
 fails due to existing object relationships.

 Example <delete> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <delete>
 C: <contact:delete
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: </contact:delete>
 C: </delete>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

Hollenbeck Standards Track [Page 20]

RFC 5733 EPP Contact Mapping August 2009

 When a <delete> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

 Example <delete> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <delete> command cannot
 be processed for any reason.

3.2.3. EPP <renew> Command

 Renewal semantics do not apply to contact objects, so there is no
 mapping defined for the EPP <renew> command.

3.2.4. EPP <transfer> Command

 The EPP <transfer> command provides a transform operation that allows
 a client to manage requests to transfer the sponsorship of a contact
 object. In addition to the standard EPP command elements, the
 <transfer> command MUST contain a <contact:transfer> element that
 identifies the contact namespace. The <contact:transfer> element
 contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object for which a transfer request is to be
 created, approved, rejected, or cancelled.

 - A <contact:authInfo> element that contains authorization
 information associated with the contact object.

 Every EPP <transfer> command MUST contain an "op" attribute that
 identifies the transfer operation to be performed, as defined in
 [RFC5730].

Hollenbeck Standards Track [Page 21]

RFC 5733 EPP Contact Mapping August 2009

 Example <transfer> request command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <transfer op="request">
 C: <contact:transfer
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:authInfo>
 C: <contact:pw>2fooBAR</contact:pw>
 C: </contact:authInfo>
 C: </contact:transfer>
 C: </transfer>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When a <transfer> command has been processed successfully, the EPP
 <resData> element MUST contain a child <contact:trnData> element that
 identifies the contact namespace. The <contact:trnData> element
 contains the same child elements defined for a <transfer> query
 response.

 Example <transfer> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <contact:trnData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id>sh8013</contact:id>
 S: <contact:trStatus>pending</contact:trStatus>
 S: <contact:reID>ClientX</contact:reID>
 S: <contact:reDate>2000-06-08T22:00:00.0Z</contact:reDate>
 S: <contact:acID>ClientY</contact:acID>
 S: <contact:acDate>2000-06-13T22:00:00.0Z</contact:acDate>
 S: </contact:trnData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54322-XYZ</svTRID>

Hollenbeck Standards Track [Page 22]

RFC 5733 EPP Contact Mapping August 2009

 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if a <transfer> command cannot
 be processed for any reason.

3.2.5. EPP <update> Command

 The EPP <update> command provides a transform operation that allows a
 client to modify the attributes of a contact object. In addition to
 the standard EPP command elements, the <update> command MUST contain
 a <contact:update> element that identifies the contact namespace.
 The <contact:update> element contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object to be updated.

 - An OPTIONAL <contact:add> element that contains attribute values
 to be added to the object.

 - An OPTIONAL <contact:rem> element that contains attribute values
 to be removed from the object.

 - An OPTIONAL <contact:chg> element that contains object attribute
 values to be changed.

 At least one <contact:add>, <contact:rem>, or <contact:chg> element
 MUST be provided if the command is not being extended. All of these
 elements MAY be omitted if an <update> extension is present. The
 <contact:add> and <contact:rem> elements contain the following child
 elements:

 - One or more <contact:status> elements that contain status values
 to be associated with or removed from the object. When specifying
 a value to be removed, only the attribute value is significant;
 element text is not required to match a value for removal.

 A <contact:chg> element contains the following OPTIONAL child
 elements. At least one child element MUST be present:

 - One or two <contact:postalInfo> elements that contain postal-
 address information. Two elements are provided so that address
 information can be provided in both internationalized and
 localized forms; a "type" attribute is used to identify the two
 forms. If an internationalized form (type="int") is provided,
 element content MUST be represented in a subset of UTF-8 that can
 be represented in the 7-bit US-ASCII character set. If a

Hollenbeck Standards Track [Page 23]

RFC 5733 EPP Contact Mapping August 2009

 localized form (type="loc") is provided, element content MAY be
 represented in unrestricted UTF-8. The <contact:postalInfo>
 element contains the following OPTIONAL child elements:

 o A <contact:name> element that contains the name of the
 individual or role represented by the contact.

 o A <contact:org> element that contains the name of the
 organization with which the contact is affiliated.

 o A <contact:addr> element that contains address information
 associated with the contact. A <contact:addr> element contains
 the following child elements:

 * One, two, or three OPTIONAL <contact:street> elements that
 contain the contact’s street address.

 * A <contact:city> element that contains the contact’s city.

 * An OPTIONAL <contact:sp> element that contains the contact’s
 state or province.

 * An OPTIONAL <contact:pc> element that contains the contact’s
 postal code.

 * A <contact:cc> element that contains the contact’s country
 code.

 - A <contact:voice> element that contains the contact’s voice
 telephone number.

 - A <contact:fax> element that contains the contact’s facsimile
 telephone number.

 - A <contact:email> element that contains the contact’s email
 address.

 - A <contact:authInfo> element that contains authorization
 information associated with the contact object. This mapping
 includes a password-based authentication mechanism, but the schema
 allows new mechanisms to be defined in new schemas.

 - A <contact:disclose> element that allows a client to identify
 elements that require exceptional server-operator handling to
 allow or restrict disclosure to third parties. See Section 2.9
 for a description of the child elements contained within the
 <contact:disclose> element.

Hollenbeck Standards Track [Page 24]

RFC 5733 EPP Contact Mapping August 2009

 Example <update> command:

 C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 C: <command>
 C: <update>
 C: <contact:update
 C: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 C: <contact:id>sh8013</contact:id>
 C: <contact:add>
 C: <contact:status s="clientDeleteProhibited"/>
 C: </contact:add>
 C: <contact:chg>
 C: <contact:postalInfo type="int">
 C: <contact:org/>
 C: <contact:addr>
 C: <contact:street>124 Example Dr.</contact:street>
 C: <contact:street>Suite 200</contact:street>
 C: <contact:city>Dulles</contact:city>
 C: <contact:sp>VA</contact:sp>
 C: <contact:pc>20166-6503</contact:pc>
 C: <contact:cc>US</contact:cc>
 C: </contact:addr>
 C: </contact:postalInfo>
 C: <contact:voice>+1.7034444444</contact:voice>
 C: <contact:fax/>
 C: <contact:authInfo>
 C: <contact:pw>2fooBAR</contact:pw>
 C: </contact:authInfo>
 C: <contact:disclose flag="1">
 C: <contact:voice/>
 C: <contact:email/>
 C: </contact:disclose>
 C: </contact:chg>
 C: </contact:update>
 C: </update>
 C: <clTRID>ABC-12345</clTRID>
 C: </command>
 C:</epp>

 When an <update> command has been processed successfully, a server
 MUST respond with an EPP response with no <resData> element.

 Example <update> response:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>

Hollenbeck Standards Track [Page 25]

RFC 5733 EPP Contact Mapping August 2009

 S: <result code="1000">
 S: <msg>Command completed successfully</msg>
 S: </result>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

 An EPP error response MUST be returned if an <update> command cannot
 be processed for any reason.

3.3. Offline Review of Requested Actions

 Commands are processed by a server in the order they are received
 from a client. Though an immediate response confirming receipt and
 processing of the command is produced by the server, a server
 operator MAY perform an offline review of requested transform
 commands before completing the requested action. In such situations,
 the response from the server MUST clearly note that the transform
 command has been received and processed but that the requested action
 is pending. The status of the corresponding object MUST clearly
 reflect processing of the pending action. The server MUST notify the
 client when offline processing of the action has been completed.

 Examples describing a <create> command that requires offline review
 are included here. Note the result code and message returned in
 response to the <create> command.

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1001">
 S: <msg>Command completed successfully; action pending</msg>
 S: </result>
 S: <resData>
 S: <contact:creData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id>sh8013</contact:id>
 S: <contact:crDate>1999-04-03T22:00:00.0Z</contact:crDate>
 S: </contact:creData>
 S: </resData>
 S: <trID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>

Hollenbeck Standards Track [Page 26]

RFC 5733 EPP Contact Mapping August 2009

 S: </trID>
 S: </response>
 S:</epp>

 The status of the contact object after returning this response MUST
 include "pendingCreate". The server operator reviews the request
 offline and informs the client of the outcome of the review either by
 queuing a service message for retrieval via the <poll> command or by
 using an out-of-band mechanism to inform the client of the request.

 The service message MUST contain text that describes the notification
 in the child <msg> element of the response <msgQ> element. In
 addition, the EPP <resData> element MUST contain a child <contact:
 panData> element that identifies the contact namespace. The
 <contact:panData> element contains the following child elements:

 - A <contact:id> element that contains the server-unique identifier
 of the contact object. The <contact:id> element contains a
 REQUIRED "paResult" attribute. A positive boolean value indicates
 that the request has been approved and completed. A negative
 boolean value indicates that the request has been denied and the
 requested action has not been taken.

 - A <contact:paTRID> element that contains the client transaction
 identifier and server transaction identifier returned with the
 original response to process the command. The client transaction
 identifier is OPTIONAL and will only be returned if the client
 provided an identifier with the original <create> command.

 - A <contact:paDate> element that contains the date and time
 describing when review of the requested action was completed.

 Example "review completed" service message:

 S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
 S: <response>
 S: <result code="1301">
 S: <msg>Command completed successfully; ack to dequeue</msg>
 S: </result>
 S: <msgQ count="5" id="12345">
 S: <qDate>1999-04-04T22:01:00.0Z</qDate>
 S: <msg>Pending action completed successfully.</msg>
 S: </msgQ>
 S: <resData>
 S: <contact:panData
 S: xmlns:contact="urn:ietf:params:xml:ns:contact-1.0">
 S: <contact:id paResult="1">sh8013</contact:id>

Hollenbeck Standards Track [Page 27]

RFC 5733 EPP Contact Mapping August 2009

 S: <contact:paTRID>
 S: <clTRID>ABC-12345</clTRID>
 S: <svTRID>54321-XYZ</svTRID>
 S: </contact:paTRID>
 S: <contact:paDate>1999-04-04T22:00:00.0Z</contact:paDate>
 S: </contact:panData>
 S: </resData>
 S: <trID>
 S: <clTRID>BCD-23456</clTRID>
 S: <svTRID>65432-WXY</svTRID>
 S: </trID>
 S: </response>
 S:</epp>

4. Formal Syntax

 An EPP object mapping is specified in XML Schema notation. The
 formal syntax presented here is a complete schema representation of
 the object mapping suitable for automated validation of EPP XML
 instances. The BEGIN and END tags are not part of the schema; they
 are used to note the beginning and ending of the schema for URI
 registration purposes.

 Copyright (c) 2009 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 o Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 o Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 o Neither the name of Internet Society, IETF or IETF Trust, nor the
 names of specific contributors, may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

Hollenbeck Standards Track [Page 28]

RFC 5733 EPP Contact Mapping August 2009

 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 BEGIN
 <?xml version="1.0" encoding="UTF-8"?>

 <schema targetNamespace="urn:ietf:params:xml:ns:contact-1.0"
 xmlns:contact="urn:ietf:params:xml:ns:contact-1.0"
 xmlns:epp="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <!--
 Import common element types.
 -->
 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"/>
 <import namespace="urn:ietf:params:xml:ns:epp-1.0"/>

 <annotation>
 <documentation>
 Extensible Provisioning Protocol v1.0
 contact provisioning schema.
 </documentation>
 </annotation>

 <!--
 Child elements found in EPP commands.
 -->
 <element name="check" type="contact:mIDType"/>
 <element name="create" type="contact:createType"/>
 <element name="delete" type="contact:sIDType"/>
 <element name="info" type="contact:authIDType"/>
 <element name="transfer" type="contact:authIDType"/>
 <element name="update" type="contact:updateType"/>

 <!--
 Utility types.
 -->
 <simpleType name="ccType">
 <restriction base="token">
 <length value="2"/>
 </restriction>
 </simpleType>

Hollenbeck Standards Track [Page 29]

RFC 5733 EPP Contact Mapping August 2009

 <complexType name="e164Type">
 <simpleContent>
 <extension base="contact:e164StringType">
 <attribute name="x" type="token"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="e164StringType">
 <restriction base="token">
 <pattern value="(\+[0-9]{1,3}\.[0-9]{1,14})?"/>
 <maxLength value="17"/>
 </restriction>
 </simpleType>

 <simpleType name="pcType">
 <restriction base="token">
 <maxLength value="16"/>
 </restriction>
 </simpleType>

 <simpleType name="postalLineType">
 <restriction base="normalizedString">
 <minLength value="1"/>
 <maxLength value="255"/>
 </restriction>
 </simpleType>

 <simpleType name="optPostalLineType">
 <restriction base="normalizedString">
 <maxLength value="255"/>
 </restriction>
 </simpleType>

 <!--
 Child elements of the <create> command.
 -->
 <complexType name="createType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 <element name="postalInfo" type="contact:postalInfoType"
 maxOccurs="2"/>
 <element name="voice" type="contact:e164Type"
 minOccurs="0"/>
 <element name="fax" type="contact:e164Type"
 minOccurs="0"/>
 <element name="email" type="eppcom:minTokenType"/>
 <element name="authInfo" type="contact:authInfoType"/>

Hollenbeck Standards Track [Page 30]

RFC 5733 EPP Contact Mapping August 2009

 <element name="disclose" type="contact:discloseType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="postalInfoType">
 <sequence>
 <element name="name" type="contact:postalLineType"/>
 <element name="org" type="contact:optPostalLineType"
 minOccurs="0"/>
 <element name="addr" type="contact:addrType"/>
 </sequence>
 <attribute name="type" type="contact:postalInfoEnumType"
 use="required"/>
 </complexType>

 <simpleType name="postalInfoEnumType">
 <restriction base="token">
 <enumeration value="loc"/>
 <enumeration value="int"/>
 </restriction>
 </simpleType>

 <complexType name="addrType">
 <sequence>
 <element name="street" type="contact:optPostalLineType"
 minOccurs="0" maxOccurs="3"/>
 <element name="city" type="contact:postalLineType"/>
 <element name="sp" type="contact:optPostalLineType"
 minOccurs="0"/>
 <element name="pc" type="contact:pcType"
 minOccurs="0"/>
 <element name="cc" type="contact:ccType"/>
 </sequence>
 </complexType>

 <complexType name="authInfoType">
 <choice>
 <element name="pw" type="eppcom:pwAuthInfoType"/>
 <element name="ext" type="eppcom:extAuthInfoType"/>
 </choice>
 </complexType>

 <complexType name="discloseType">
 <sequence>
 <element name="name" type="contact:intLocType"
 minOccurs="0" maxOccurs="2"/>
 <element name="org" type="contact:intLocType"

Hollenbeck Standards Track [Page 31]

RFC 5733 EPP Contact Mapping August 2009

 minOccurs="0" maxOccurs="2"/>
 <element name="addr" type="contact:intLocType"
 minOccurs="0" maxOccurs="2"/>
 <element name="voice" minOccurs="0"/>
 <element name="fax" minOccurs="0"/>
 <element name="email" minOccurs="0"/>
 </sequence>
 <attribute name="flag" type="boolean" use="required"/>
 </complexType>

 <complexType name="intLocType">
 <attribute name="type" type="contact:postalInfoEnumType"
 use="required"/>
 </complexType>

 <!--
 Child element of commands that require only an identifier.
 -->
 <complexType name="sIDType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 </sequence>
 </complexType>

 <!--
 Child element of commands that accept multiple identifiers.
 -->
 <complexType name="mIDType">
 <sequence>
 <element name="id" type="eppcom:clIDType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <!--
 Child elements of the <info> and <transfer> commands.
 -->
 <complexType name="authIDType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 <element name="authInfo" type="contact:authInfoType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Child elements of the <update> command.
 -->

Hollenbeck Standards Track [Page 32]

RFC 5733 EPP Contact Mapping August 2009

 <complexType name="updateType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 <element name="add" type="contact:addRemType"
 minOccurs="0"/>
 <element name="rem" type="contact:addRemType"
 minOccurs="0"/>
 <element name="chg" type="contact:chgType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be added or removed.
 -->
 <complexType name="addRemType">
 <sequence>
 <element name="status" type="contact:statusType"
 maxOccurs="7"/>
 </sequence>
 </complexType>

 <!--
 Data elements that can be changed.
 -->
 <complexType name="chgType">
 <sequence>
 <element name="postalInfo" type="contact:chgPostalInfoType"
 minOccurs="0" maxOccurs="2"/>
 <element name="voice" type="contact:e164Type"
 minOccurs="0"/>
 <element name="fax" type="contact:e164Type"
 minOccurs="0"/>
 <element name="email" type="eppcom:minTokenType"
 minOccurs="0"/>
 <element name="authInfo" type="contact:authInfoType"
 minOccurs="0"/>
 <element name="disclose" type="contact:discloseType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="chgPostalInfoType">
 <sequence>
 <element name="name" type="contact:postalLineType"
 minOccurs="0"/>
 <element name="org" type="contact:optPostalLineType"
 minOccurs="0"/>

Hollenbeck Standards Track [Page 33]

RFC 5733 EPP Contact Mapping August 2009

 <element name="addr" type="contact:addrType"
 minOccurs="0"/>
 </sequence>
 <attribute name="type" type="contact:postalInfoEnumType"
 use="required"/>
 </complexType>

 <!--
 Child response elements.
 -->
 <element name="chkData" type="contact:chkDataType"/>
 <element name="creData" type="contact:creDataType"/>
 <element name="infData" type="contact:infDataType"/>
 <element name="panData" type="contact:panDataType"/>
 <element name="trnData" type="contact:trnDataType"/>

 <!--
 <check> response elements.
 -->
 <complexType name="chkDataType">
 <sequence>
 <element name="cd" type="contact:checkType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="checkType">
 <sequence>
 <element name="id" type="contact:checkIDType"/>
 <element name="reason" type="eppcom:reasonType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="checkIDType">
 <simpleContent>
 <extension base="eppcom:clIDType">
 <attribute name="avail" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 <create> response elements.
 -->
 <complexType name="creDataType">
 <sequence>

Hollenbeck Standards Track [Page 34]

RFC 5733 EPP Contact Mapping August 2009

 <element name="id" type="eppcom:clIDType"/>
 <element name="crDate" type="dateTime"/>
 </sequence>
 </complexType>

 <!--
 <info> response elements.
 -->
 <complexType name="infDataType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 <element name="roid" type="eppcom:roidType"/>
 <element name="status" type="contact:statusType"
 maxOccurs="7"/>
 <element name="postalInfo" type="contact:postalInfoType"
 maxOccurs="2"/>
 <element name="voice" type="contact:e164Type"
 minOccurs="0"/>
 <element name="fax" type="contact:e164Type"
 minOccurs="0"/>
 <element name="email" type="eppcom:minTokenType"/>
 <element name="clID" type="eppcom:clIDType"/>
 <element name="crID" type="eppcom:clIDType"/>
 <element name="crDate" type="dateTime"/>
 <element name="upID" type="eppcom:clIDType"
 minOccurs="0"/>
 <element name="upDate" type="dateTime"
 minOccurs="0"/>
 <element name="trDate" type="dateTime"
 minOccurs="0"/>
 <element name="authInfo" type="contact:authInfoType"
 minOccurs="0"/>
 <element name="disclose" type="contact:discloseType"
 minOccurs="0"/>
 </sequence>
 </complexType>

 <!--
 Status is a combination of attributes and an optional human-readable
 message that may be expressed in languages other than English.
 -->
 <complexType name="statusType">
 <simpleContent>
 <extension base="normalizedString">
 <attribute name="s" type="contact:statusValueType"
 use="required"/>
 <attribute name="lang" type="language"
 default="en"/>

Hollenbeck Standards Track [Page 35]

RFC 5733 EPP Contact Mapping August 2009

 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="statusValueType">
 <restriction base="token">
 <enumeration value="clientDeleteProhibited"/>
 <enumeration value="clientTransferProhibited"/>
 <enumeration value="clientUpdateProhibited"/>
 <enumeration value="linked"/>
 <enumeration value="ok"/>
 <enumeration value="pendingCreate"/>
 <enumeration value="pendingDelete"/>
 <enumeration value="pendingTransfer"/>
 <enumeration value="pendingUpdate"/>
 <enumeration value="serverDeleteProhibited"/>
 <enumeration value="serverTransferProhibited"/>
 <enumeration value="serverUpdateProhibited"/>
 </restriction>
 </simpleType>

 <!--
 Pending action notification response elements.
 -->
 <complexType name="panDataType">
 <sequence>
 <element name="id" type="contact:paCLIDType"/>
 <element name="paTRID" type="epp:trIDType"/>
 <element name="paDate" type="dateTime"/>
 </sequence>
 </complexType>

 <complexType name="paCLIDType">
 <simpleContent>
 <extension base="eppcom:clIDType">
 <attribute name="paResult" type="boolean"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <!--
 <transfer> response elements.
 -->
 <complexType name="trnDataType">
 <sequence>
 <element name="id" type="eppcom:clIDType"/>
 <element name="trStatus" type="eppcom:trStatusType"/>

Hollenbeck Standards Track [Page 36]

RFC 5733 EPP Contact Mapping August 2009

 <element name="reID" type="eppcom:clIDType"/>
 <element name="reDate" type="dateTime"/>
 <element name="acID" type="eppcom:clIDType"/>
 <element name="acDate" type="dateTime"/>
 </sequence>
 </complexType>

 <!--
 End of schema.
 -->
 </schema>
 END

5. Internationalization Considerations

 EPP is represented in XML, which provides native support for encoding
 information using the Unicode character set and its more compact
 representations including UTF-8. Conformant XML processors recognize
 both UTF-8 and UTF-16 [RFC2781]. Though XML includes provisions to
 identify and use other character encodings through use of an
 "encoding" attribute in an <?xml?> declaration, use of UTF-8 is
 RECOMMENDED in environments where parser encoding support
 incompatibility exists.

 All date-time values presented via EPP MUST be expressed in Universal
 Coordinated Time using the Gregorian calendar. The XML Schema allows
 use of time zone identifiers to indicate offsets from the zero
 meridian, but this option MUST NOT be used with EPP. The extended
 date-time form using upper case "T" and "Z" characters defined in
 [W3C.REC-xmlschema-2-20041028] MUST be used to represent date-time
 values, as the XML Schema does not support truncated date-time forms
 or lower case "T" and "Z" characters.

 Humans, organizations, and other entities often need to represent
 social information in both a commonly understood character set and a
 locally optimized character set. This specification provides
 features allowing representation of social information in both a
 subset of UTF-8 for broad readability and unrestricted UTF-8 for
 local optimization.

6. IANA Considerations

 This document uses URNs to describe XML namespaces and XML schemas
 conforming to a registry mechanism described in [RFC3688]. Two URI
 assignments have been registered by the IANA.

Hollenbeck Standards Track [Page 37]

RFC 5733 EPP Contact Mapping August 2009

 Registration request for the contact namespace:

 URI: urn:ietf:params:xml:ns:contact-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

 Registration request for the contact XML schema:

 URI: urn:ietf:params:xml:schema:contact-1.0

 Registrant Contact: See the "Author’s Address" section of this
 document.

 XML: See the "Formal Syntax" section of this document.

7. Security Considerations

 Authorization information as described in Section 2.8 is REQUIRED to
 create a contact object. This information is used in some query and
 transfer operations as an additional means of determining client
 authorization to perform the command. Failure to protect
 authorization information from inadvertent disclosure can result in
 unauthorized transfer operations and unauthorized information
 release. Both client and server MUST ensure that authorization
 information is stored and exchanged with high-grade encryption
 mechanisms to provide privacy services.

 The object mapping described in this document does not provide any
 other security services or introduce any additional considerations
 beyond those described by [RFC5730] or those caused by the protocol
 layers used by EPP.

8. Acknowledgements

 RFC 3733 is a product of the PROVREG working group, which suggested
 improvements and provided many invaluable comments. The author
 wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
 Akkerhuis for their process and editorial contributions. RFC 4933
 and this document are individual submissions, based on the work done
 in RFC 3733.

Hollenbeck Standards Track [Page 38]

RFC 5733 EPP Contact Mapping August 2009

 Specific suggestions that have been incorporated into this document
 were provided by Chris Bason, Eric Brunner-Williams, Jordyn Buchanan,
 Robert Burbidge, Dave Crocker, Ayesha Damaraju, Anthony Eden, Sheer
 El-Showk, Dipankar Ghosh, Klaus Malorny, Dan Manley, Michael
 Mealling, Patrick Mevzek, Asbjorn Steira, and Rick Wesson.

9. References

9.1. Normative References

 [ISO3166-1]
 International Organization for Standardization, "Codes for
 the representation of names of countries and their
 subdivisions -- Part 1: Country codes", ISO Standard 3166,
 November 2006.

 [ITU.E164.2005]
 International Telecommunication Union, "The international
 public telecommunication numbering plan", ITU-
 T Recommendation E.164, February 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, August 2009.

 [W3C.REC-xml-20040204]
 Sperberg-McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium FirstEdition REC-xml-
 20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204>.

Hollenbeck Standards Track [Page 39]

RFC 5733 EPP Contact Mapping August 2009

 [W3C.REC-xmlschema-1-20041028]
 Maloney, M., Thompson, H., Mendelsohn, N., and D. Beech,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

9.2. Informative References

 [RFC2781] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
 10646", RFC 2781, February 2000.

 [RFC4933] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Contact Mapping", RFC 4933, May 2007.

Hollenbeck Standards Track [Page 40]

RFC 5733 EPP Contact Mapping August 2009

Appendix A. Changes from RFC 4933

 1. Changed "This document obsoletes RFC 3733" to "This document
 obsoletes RFC 4933".

 2. Replaced references to RFC 0822 with references to 5322.

 3. Replaced references to RFC 3733 with references to 4933.

 4. Replaced references to RFC 4930 with references to 5730.

 5. Updated reference to ISO 3166-1.

 6. Removed pendingRenew status from Section 2.2 because this
 document does not define a mapping for the EPP <renew> command.

 7. Modified text in Section 3.2.2 to include 2305 response code.

 8. Updated Section 5.

 9. Added "Other notification methods MAY be used in addition to the
 required service message" in Section 3.2.

 10. Added 2201 response code text in Section 3.2.

 11. Added BSD license text to XML schema section.

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 41]

===

Network Working Group S. Hollenbeck
Request for Comments: 5734 VeriSign, Inc.
STD: 69 August 2009
Obsoletes: 4934
Category: Standards Track

 Extensible Provisioning Protocol (EPP) Transport over TCP

Abstract

 This document describes how an Extensible Provisioning Protocol (EPP)
 session is mapped onto a single Transmission Control Protocol (TCP)
 connection. This mapping requires use of the Transport Layer
 Security (TLS) protocol to protect information exchanged between an
 EPP client and an EPP server. This document obsoletes RFC 4934.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hollenbeck Standards Track [Page 1]

RFC 5734 EPP TCP Transport August 2009

Table of Contents

 1. Introduction ..2
 1.1. Conventions Used in This Document2
 2. Session Management ..2
 3. Message Exchange ..3
 4. Data Unit Format ..6
 5. Transport Considerations ..6
 6. Internationalization Considerations7
 7. IANA Considerations ...7
 8. Security Considerations ...7
 9. TLS Usage Profile ...8
 10. Acknowledgements ..11
 11. References ..11
 11.1. Normative References11
 11.2. Informative References12
 Appendix A. Changes from RFC 493413

1. Introduction

 This document describes how the Extensible Provisioning Protocol
 (EPP) is mapped onto a single client-server TCP connection. Security
 services beyond those defined in EPP are provided by the Transport
 Layer Security (TLS) Protocol [RFC2246]. EPP is described in
 [RFC5730]. TCP is described in [RFC0793]. This document obsoletes
 RFC 4934 [RFC4934].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Session Management

 Mapping EPP session management facilities onto the TCP service is
 straightforward. An EPP session first requires creation of a TCP
 connection between two peers, one that initiates the connection
 request and one that responds to the connection request. The
 initiating peer is called the "client", and the responding peer is
 called the "server". An EPP server MUST listen for TCP connection
 requests on a standard TCP port assigned by IANA.

 The client MUST issue an active OPEN call, specifying the TCP port
 number on which the server is listening for EPP connection attempts.
 The EPP server MUST return an EPP <greeting> to the client after the
 TCP session has been established.

Hollenbeck Standards Track [Page 2]

RFC 5734 EPP TCP Transport August 2009

 An EPP session is normally ended by the client issuing an EPP
 <logout> command. A server receiving an EPP <logout> command MUST
 end the EPP session and close the TCP connection with a CLOSE call.
 A client MAY end an EPP session by issuing a CLOSE call.

 A server MAY limit the life span of an established TCP connection.
 EPP sessions that are inactive for more than a server-defined period
 MAY be ended by a server issuing a CLOSE call. A server MAY also
 close TCP connections that have been open and active for longer than
 a server-defined period.

3. Message Exchange

 With the exception of the EPP server greeting, EPP messages are
 initiated by the EPP client in the form of EPP commands. An EPP
 server MUST return an EPP response to an EPP command on the same TCP
 connection that carried the command. If the TCP connection is closed
 after a server receives and successfully processes a command but
 before the response can be returned to the client, the server MAY
 attempt to undo the effects of the command to ensure a consistent
 state between the client and the server. EPP commands are
 idempotent, so processing a command more than once produces the same
 net effect on the repository as successfully processing the command
 once.

 An EPP client streams EPP commands to an EPP server on an established
 TCP connection. A client MUST NOT distribute commands from a single
 EPP session over multiple TCP connections. A client MAY establish
 multiple TCP connections to support multiple EPP sessions with each
 session mapped to a single connection. A server SHOULD limit a
 client to a maximum number of TCP connections based on server
 capabilities and operational load.

 EPP describes client-server interaction as a command-response
 exchange where the client sends one command to the server and the
 server returns one response to the client. A client might be able to
 realize a slight performance gain by pipelining (sending more than
 one command before a response for the first command is received)
 commands with TCP transport, but this feature does not change the
 basic single command, single response operating mode of the core
 protocol.

 Each EPP data unit MUST contain a single EPP message. Commands MUST
 be processed independently and in the same order as sent from the
 client.

Hollenbeck Standards Track [Page 3]

RFC 5734 EPP TCP Transport August 2009

 A server SHOULD impose a limit on the amount of time required for a
 client to issue a well-formed EPP command. A server SHOULD end an
 EPP session and close an open TCP connection if a well-formed command
 is not received within the time limit.

 A general state machine for an EPP server is described in Section 2
 of [RFC5730]. General client-server message exchange using TCP
 transport is illustrated in Figure 1.

Hollenbeck Standards Track [Page 4]

RFC 5734 EPP TCP Transport August 2009

 Client Server
 | |
 | Connect |
 | >>------------------------------->> |
 | |
 | Send Greeting |
 | <<-------------------------------<< |
 | |
 | Send <login> |
 | >>------------------------------->> |
 | |
 | Send Response |
 | <<-------------------------------<< |
 | |
 | Send Command |
 | >>------------------------------->> |
 | |
 | Send Response |
 | <<-------------------------------<< |
 | |
 | Send Command X |
 | >>------------------------------->> |
 | |
 | Send Command Y |
 | >>---------------+ |
 | | |
 | | |
 | Send Response X |
 | <<---------------(---------------<< |
 | | |
 | | |
 | +--------------->> |
 | |
 | Send Response Y |
 | <<-------------------------------<< |
 | |
 | Send <logout> |
 | >>------------------------------->> |
 | |
 | Send Response & Disconnect |
 | <<-------------------------------<< |
 | |

 Figure 1: TCP Client-Server Message Exchange

Hollenbeck Standards Track [Page 5]

RFC 5734 EPP TCP Transport August 2009

4. Data Unit Format

 The EPP data unit contains two fields: a 32-bit header that describes
 the total length of the data unit, and the EPP XML instance. The
 length of the EPP XML instance is determined by subtracting four
 octets from the total length of the data unit. A receiver must
 successfully read that many octets to retrieve the complete EPP XML
 instance before processing the EPP message.

 EPP Data Unit Format (one tick mark represents one bit position):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Total Length |
 +-+
 | EPP XML Instance |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+//-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Total Length (32 bits): The total length of the EPP data unit
 measured in octets in network (big endian) byte order. The octets
 contained in this field MUST be included in the total length
 calculation.

 EPP XML Instance (variable length): The EPP XML instance carried in
 the data unit.

5. Transport Considerations

 Section 2.1 of the EPP core protocol specification [RFC5730]
 describes considerations to be addressed by protocol transport
 mappings. This document addresses each of the considerations using a
 combination of features described in this document and features
 provided by TCP as follows:

 - TCP includes features to provide reliability, flow control,
 ordered delivery, and congestion control. Section 1.5 of RFC 793
 [RFC0793] describes these features in detail; congestion control
 principles are described further in RFC 2581 [RFC2581] and RFC
 2914 [RFC2914]. TCP is a connection-oriented protocol, and
 Section 2 of this document describes how EPP sessions are mapped
 to TCP connections.

 - Sections 2 and 3 of this document describe how the stateful nature
 of EPP is preserved through managed sessions and controlled
 message exchanges.

Hollenbeck Standards Track [Page 6]

RFC 5734 EPP TCP Transport August 2009

 - Section 3 of this document notes that command pipelining is
 possible with TCP, though batch-oriented processing (combining
 multiple EPP commands in a single data unit) is not permitted.

 - Section 4 of this document describes features to frame data units
 by explicitly specifying the number of octets used to represent a
 data unit.

6. Internationalization Considerations

 This document does not introduce or present any internationalization
 or localization issues.

7. IANA Considerations

 System port number 700 has been assigned by the IANA for mapping EPP
 onto TCP.

 User port number 3121 (which was used for development and test
 purposes) has been reclaimed by the IANA.

8. Security Considerations

 EPP as-is provides only simple client authentication services using
 identifiers and plain text passwords. A passive attack is sufficient
 to recover client identifiers and passwords, allowing trivial command
 forgery. Protection against most other common attacks MUST be
 provided by other layered protocols.

 When layered over TCP, the Transport Layer Security (TLS) Protocol
 version 1.0 [RFC2246] or its successors (such as TLS 1.2 [RFC5246]),
 using the latest version supported by both parties, MUST be used to
 provide integrity, confidentiality, and mutual strong client-server
 authentication. Implementations of TLS often contain a weak
 cryptographic mode that SHOULD NOT be used to protect EPP. Clients
 and servers desiring high security SHOULD instead use TLS with
 cryptographic algorithms that are less susceptible to compromise.

 Authentication using the TLS Handshake Protocol confirms the identity
 of the client and server machines. EPP uses an additional client
 identifier and password to identify and authenticate the client’s
 user identity to the server, supplementing the machine authentication
 provided by TLS. The identity described in the client certificate
 and the identity described in the EPP client identifier can differ,
 as a server can assign multiple user identities for use from any
 particular client machine. Acceptable certificate identities MUST be

Hollenbeck Standards Track [Page 7]

RFC 5734 EPP TCP Transport August 2009

 negotiated between client operators and server operators using an
 out-of-band mechanism. Presented certificate identities MUST match
 negotiated identities before EPP service is granted.

 There is a risk of login credential compromise if a client does not
 properly identify a server before attempting to establish an EPP
 session. Before sending login credentials to the server, a client
 needs to confirm that the server certificate received in the TLS
 handshake is an expected certificate for the server. A client also
 needs to confirm that the greeting received from the server contains
 expected identification information. After establishing a TLS
 session and receiving an EPP greeting on a protected TCP connection,
 clients MUST compare the certificate subject and/or subjectAltName to
 expected server identification information and abort processing if a
 mismatch is detected. If certificate validation is successful, the
 client then needs to ensure that the information contained in the
 received certificate and greeting is consistent and appropriate. As
 described above, both checks typically require an out-of-band
 exchange of information between client and server to identify
 expected values before in-band connections are attempted.

 EPP TCP servers are vulnerable to common TCP denial-of-service
 attacks including TCP SYN flooding. Servers SHOULD take steps to
 minimize the impact of a denial-of-service attack using combinations
 of easily implemented solutions, such as deployment of firewall
 technology and border router filters to restrict inbound server
 access to known, trusted clients.

9. TLS Usage Profile

 The client should initiate a connection to the server and then send
 the TLS Client Hello to begin the TLS handshake. When the TLS
 handshake has finished, the client can then send the first EPP
 message.

 TLS implementations are REQUIRED to support the mandatory cipher
 suite specified in the implemented version:

 o TLS 1.0 [RFC2246]: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

 o TLS 1.1 [RFC4346]: TLS_RSA_WITH_3DES_EDE_CBC_SHA

 o TLS 1.2 [RFC5246]: TLS_RSA_WITH_AES_128_CBC_SHA

 This document is assumed to apply to future versions of TLS, in which
 case the mandatory cipher suite for the implemented version MUST be
 supported.

Hollenbeck Standards Track [Page 8]

RFC 5734 EPP TCP Transport August 2009

 Mutual client and server authentication using the TLS Handshake
 Protocol is REQUIRED. Signatures on the complete certification path
 for both client machine and server machine MUST be validated as part
 of the TLS handshake. Information included in the client and server
 certificates, such as validity periods and machine names, MUST also
 be validated. A complete description of the issues associated with
 certification path validation can be found in RFC 5280 [RFC5280].
 EPP service MUST NOT be granted until successful completion of a TLS
 handshake and certificate validation, ensuring that both the client
 machine and the server machine have been authenticated and
 cryptographic protections are in place.

 If the client has external information as to the expected identity of
 the server, the server name check MAY be omitted. For instance, a
 client may be connecting to a machine whose address and server name
 are dynamic, but the client knows the certificate that the server
 will present. In such cases, it is important to narrow the scope of
 acceptable certificates as much as possible in order to prevent man-
 in-the-middle attacks. In special cases, it might be appropriate for
 the client to simply ignore the server’s identity, but it needs to be
 understood that this leaves the connection open to active attack.

 During the TLS negotiation, the EPP client MUST check its
 understanding of the server name / IP address against the server’s
 identity as presented in the server Certificate message in order to
 prevent man-in-the-middle attacks. In this section, the client’s
 understanding of the server’s identity is called the "reference
 identity". Checking is performed according to the following rules in
 the specified order:

 o If the reference identity is a server name:

 * If a subjectAltName extension of the dNSName [CCITT.X509.1988]
 type is present in the server’s certificate, then it SHOULD be
 used as the source of the server’s identity. Matching is
 performed as described in Section 7.2 of [RFC5280], with the
 exception that wildcard matching (see below) is allowed for
 dNSName type. If the certificate contains multiple names
 (e.g., more than one dNSName field), then a match with any one
 of the fields is considered acceptable.

 * The ’*’ (ASCII 42) wildcard character is allowed in
 subjectAltName values of type dNSName, and then only as the
 left-most (least significant) DNS label in that value. This
 wildcard matches any left-most DNS label in the server name.
 That is, the subject *.example.com matches the server names
 a.example.com and b.example.com, but does not match example.com
 or a.b.example.com.

Hollenbeck Standards Track [Page 9]

RFC 5734 EPP TCP Transport August 2009

 * The server’s identity MAY also be verified by comparing the
 reference identity to the Common Name (CN) [RFC4519] value in
 the leaf Relative Distinguished Name (RDN) of the subjectName
 field of the server’s certificate. This comparison is
 performed using the rules for comparison of DNS names in bullet
 1 above (including wildcard matching). Although the use of the
 Common Name value is existing practice, it is deprecated, and
 Certification Authorities are encouraged to provide
 subjectAltName values instead. Note that the TLS
 implementation may represent DNs in certificates according to
 X.500 or other conventions. For example, some X.500
 implementations order the RDNs in a DN using a left-to-right
 (most significant to least significant) convention instead of
 LDAP’s right-to-left convention.

 o If the reference identity is an IP address:

 * The iPAddress subjectAltName SHOULD be used by the client for
 comparison. In such a case, the reference identity MUST be
 converted to the "network byte order" octet string
 representation. For IP Version 4 (as specified in RFC 791
 [RFC0791]), the octet string will contain exactly four octets.
 For IP Version 6 (as specified in RFC 2460 [RFC2460]), the
 octet string will contain exactly sixteen octets. This octet
 string is then compared against subjectAltName values of type
 iPAddress. A match occurs if the reference identity octet
 string and value octet strings are identical.

 If the server identity check fails, user-oriented clients SHOULD
 either notify the user (clients MAY give the user the opportunity to
 continue with the EPP session in this case) or close the transport
 connection and indicate that the server’s identity is suspect.
 Automated clients SHOULD return or log an error indicating that the
 server’s identity is suspect and/or SHOULD close the transport
 connection. Automated clients MAY provide a configuration setting
 that disables this check, but MUST provide a setting which enables
 it.

 During the TLS negotiation, the EPP server MUST verify that the
 client certificate matches the reference identity previously
 negotiated out of band, as specified in Section 8. The server should
 match the entire subject name or the subjectAltName as described in
 RFC 5280. The server MAY enforce other restrictions on the
 subjectAltName, for example if it knows that a particular client is
 always connecting from a particular hostname / IP address.

Hollenbeck Standards Track [Page 10]

RFC 5734 EPP TCP Transport August 2009

 All EPP messages MUST be sent as TLS "application data". It is
 possible that multiple EPP messages are contained in one TLS record,
 or that an EPP message is transferred in multiple TLS records.

 When no data is received from a connection for a long time (where the
 application decides what "long" means), a server MAY close the
 connection. The server MUST attempt to initiate an exchange of
 close_notify alerts with the client before closing the connection.
 Servers that are unprepared to receive any more data MAY close the
 connection after sending the close_notify alert, thus generating an
 incomplete close on the client side.

10. Acknowledgements

 RFC 3734 is a product of the PROVREG working group, which suggested
 improvements and provided many invaluable comments. The author
 wishes to acknowledge the efforts of WG chairs Edward Lewis and Jaap
 Akkerhuis for their process and editorial contributions. RFC 4934
 and this document are individual submissions, based on the work done
 in RFC 3734.

 Specific suggestions that have been incorporated into this document
 were provided by Chris Bason, Randy Bush, Patrik Faltstrom, Ned
 Freed, James Gould, Dan Manley, and John Immordino.

11. References

11.1. Normative References

 [CCITT.X509.1988]
 International Telephone and Telegraph Consultative
 Committee, "Information Technology - Open Systems
 Interconnection - The Directory: Authentication
 Framework", CCITT Recommendation X.509, November 1988.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

Hollenbeck Standards Track [Page 11]

RFC 5734 EPP TCP Transport August 2009

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4519] Sciberras, A., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519,
 June 2006.

 [RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
 STD 69, RFC 5730, August 2009.

11.2. Informative References

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, September 2000.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4934] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
 Transport Over TCP", RFC 4934, May 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

Hollenbeck Standards Track [Page 12]

RFC 5734 EPP TCP Transport August 2009

Appendix A. Changes from RFC 4934

 1. Changed "This document obsoletes RFC 3734" to "This document
 obsoletes RFC 4934".

 2. Replaced references to RFC 3280 with references to 5280.

 3. Replaced references to RFC 3734 with references to 4934.

 4. Updated references to RFC 4346 and TLS 1.1 with references to
 5246 and TLS 1.2.

 5. Replaced references to RFC 4930 with references to 5730.

 6. Added clarifying TLS Usage Profile section and included
 references.

 7. Moved the paragraph that begins with "Mutual client and server
 authentication" from the Security Considerations section to the
 TLS Usage Profile section.

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 13]

