Net wor k Wor ki ng G oup Fi nl ayson, Mann, Mbogul, Thei mer
Request for Comments: 903 Stanford University
June 1984

A Reverse Address Resol uti on Protocol

Ross Finlayson, Tinothy Mann, Jeffrey Mgul, Marvin Thei mer
Conput er Sci ence Depart nment
Stanford University
June 1984

Status of this Menp

This RFC suggests a nmethod for workstations to dynamically find their
protocol address (e.g., their Internet Address), when they know only
their hardware address (e.g., their attached physical network

addr ess).

This RFC specifies a proposed protocol for the ARPA Internet
conmuni ty, and requests discussion and suggestions for inprovenents.

I . Introduction

Net wor k hosts such as di skl ess workstations frequently do not know
their protocol addresses when booted; they often know only their
hardware interface addresses. To comruni cate using hi gher-1leve
protocols like IP, they nmust discover their protocol address from
sonme external source. Qur problemis that there is no standard
mechani sm for doi ng so.

Pl umrer’ s "Address Resolution Protocol"” (ARP) [1] is designed to
solve a conpl enentary problem resolving a host’s hardware address
given its protocol address. This RFC proposes a "Reverse Address
Resol ution Protocol” (RARP). As with ARP, we assume a broadcast
medi um such as Ethernet.

1. Design Considerations
The foll owi ng considerations gui ded our design of the RARP protocol

A. ARP and RARP are different operations. ARP assunmes that every
host knows the mappi ng between its own hardware address and protoco
address(es). Information gathered about other hosts is accumnul ated
in a smll cache. Al hosts are equal in status; there is no

di stinction between clients and servers.

On the other hand, RARP requires one or nore server hosts to maintain

a dat abase of mappi ngs from hardware address to protocol address and
respond to requests fromclient hosts.

Fi nl ayson, Mann, Mogul, Thei nmer [Page 1]

RFC 903 June 1984

B. As mentioned, RARP requires that server hosts nmaintain |arge

dat abases. It is undesirable and in sone cases inpossible to maintain
such a database in the kernel of a host’s operating system Thus,
nost inplenentations will require sone formof interaction with a
program out si de t he ker nel

C. Ease of inplenmentation and m nimal inpact on existing host
software are inportant. It would be a mistake to design a protoco
that required nodifications to every host’s software, whether or not
it intended to participate.

D. It is desirable to allow for the possibility of sharing code with
exi sting software, to minimze overhead and devel opnent costs.

[11. The Proposed Protoco

We propose that RARP be specified as a separate protocol at the
data-link level. For exanple, if the nediumused is Ethernet, then
RARP packets will have an Ethertype (still to be assigned) different
fromthat of ARP. This recognizes that ARP and RARP are two
fundanental |y different operations, not supported equally by al
hosts. The inpact on existing systens is mnimzed; existing ARP
servers will not be confused by RARP packets. It nakes RARP a genera
facility that can be used for mapping hardware addresses to any

hi gher | evel protocol address.

Thi s approach provides the sinplest inplementation for RARP client
hosts, but also provides the nost difficulties for RARP server hosts.
However, these difficulties should not be insurnountable, as is shown
in Appendi x A, where we sketch two possible inplenmentations for
4.2BSD Uni x.

RARP uses the same packet format that is used by ARP, nanely:

ar$hrd (hardware address space) - 16 bits
ar$pro (protocol address space) - 16 bhits
ar$hl n (hardware address length) - 8 bits
ar$pln (protocol address length) - 8 bits
ar$op (opcode) - 16 bits
ar$sha (source hardware address) - n bytes,
where n is fromthe ar$hin field.
ar$spa (source protocol address) - m bytes,
where mis fromthe ar$pln field
ar$tha (target hardware address) - n bytes
ar$tpa (target protocol address) - mbytes

arhrd, arpro, ar$hln and ar$pln are the same as in regular ARP
(see [1]).

Fi nl ayson, Mann, Mogul, Thei mer [Page 2]

RFC 903 June 1984

Suppose, for exanple, that 'hardware’ addresses are 48-bit Ethernet
addresses, and 'protocol’ addresses are 32-bit Internet Addresses.
That is, we wish to determ ne Internet Addresses corresponding to
known Et hernet addresses. Then, in each RARP packet, ar$hrd =1
(Ethernet), ar$pro = 2048 decinal (the Ethertype of |P packets),
ar$hln = 6, and ar$pln = 4.

There are two opcodes: 3 ('request reverse’) and 4 ('reply reverse’).
An opcode of 1 or 2 has the same nmeaning as in [1l]; packets with such
opcodes may be passed on to regular ARP code. A packet with any

ot her opcode is undefined. As in ARP, there are no "not found" or
"error" packets, since many RARP servers are free to respond to a
request. The sender of a RARP request packet should tinmeout if it
does not receive a reply for this request within a reasonabl e anount
of time.

The arsha, arspa, artha, and ar$tpa fiel ds of the RARP packet are
interpreted as follows:

VWhen the opcode is 3 (’'request reverse'):

ar$sha is the hardware address of the sender of the packet.

ar$spa i s undefi ned.

ar$tha is the 'target’ hardware address.
In the case where the sender wi shes to determne his own
protocol address, this, like ar$sha, will be the hardware
address of the sender.

ar$tpa i s undefined.

When the opcode is 4 ("reply reverse’):

ar$sha is the hardware address of the responder (the sender of the
reply packet).

ar$spa is the protocol address of the responder (see the note
bel ow) .

ar$tha is the hardware address of the target, and should be the
sane as that which was given in the request.

ar$tpa is the protocol address of the target, that is, the desired
addr ess.

Note that the requirement that ar$spa in opcode 4 packets be filled

Fi nl ayson, Mann, Mogul, Thei mer [Page 3]

RFC 903 June 1984

in with the responder’s protocol is purely for conveni ence. For
instance, if a systemwere to use both ARP and RARP, then the
inclusion of the valid protocol -hardware address pair (ar$spa,
ar$sha) may elimnate the need for a subsequent ARP request.

I V. References

[1] Plumrer, D., "An Ethernet Address Resolution Protocol", RFC 826,
M T-LCS, Novenber 1982.

Appendi x A. Two Exanpl e | nplenentations for 4.2BSD Uni x

The followi ng inplementation sketches outline two different
approaches to inplenmenting a RARP server under 4.2BSD

A. Provide access to data-link |level packets outside the kernel. The
RARP server is inplenented conpletely outside the kernel and
interacts with the kernel only to receive and send RARP packets. The
kernel has to be nodified to provide the appropriate access for these
packets; currently the 4.2 kernel allows access only to | P packets.
One exi sting mechani smthat provides this capability is the CMJ
"packet-filter" pseudo driver. This has been used successfully at
CMJ and Stanford to inplenent simlar sorts of "user-level" network
servers.

B. Maintain a cache of database entries inside the kernel. The ful
RARP server database is mmintained outside the kernel by a user
process. The RARP server itself is inplenented directly in the
kernel and enploys a small cache of database entries for its
responses. This cache could be the same as is used for forward ARP.

The cache gets filled fromthe actual RARP database by means of two
new ioctls. (These are like SIOCIFADDR, in that they are not really
associated with a specific socket.) One neans: "sleep until there is
a translation to be done, then pass the request out to the user
process"; the other neans: "enter this translation into the kerne
table". Thus, when the kernel can't find an entry in the cache, it
puts the request on a (gl obal) queue and then does a wakeup(). The

i mpl enentation of the first ioctl is to sleep() and then pull the
first itemoff of this queue and return it to the user process.

Since the kernel can’t wait around at interrupt |evel until the user
process replies, it can either give up (and assunme that the
requesting host will retransmt the request packet after a second) or
if the second ioctl passes a copy of the request back into the
kernel, formulate and send a response at that tinme.

Fi nl ayson, Mann, Mogul, Thei mer [Page 4]

