
Internet Engineering Task Force (IETF) M. Sethi
Request for Comments: 8387 J. Arkko
Category: Informational A. Keranen
ISSN: 2070-1721 Ericsson
 H. Back
 Nokia
 May 2018

 Practical Considerations and Implementation Experiences in
 Securing Smart Object Networks

Abstract

 This memo describes challenges associated with securing resource-
 constrained smart object devices. The memo describes a possible
 deployment model where resource-constrained devices sign message
 objects, discusses the availability of cryptographic libraries for
 resource-constrained devices, and presents some preliminary
 experiences with those libraries for message signing on resource-
 constrained devices. Lastly, the memo discusses trade-offs involving
 different types of security approaches.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8387.

Sethi, et al. Informational [Page 1]

RFC 8387 Smart Object Security Experiences May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Related Work . 3
 3. Challenges . 4
 4. Proposed Deployment Model 6
 4.1. Provisioning . 6
 4.2. Protocol Architecture 9
 5. Code Availability . 10
 6. Implementation Experiences 12
 7. Example Application . 18
 8. Design Trade-Offs . 21
 8.1. Feasibility . 21
 8.2. Freshness . 22
 8.3. Layering . 24
 8.4. Symmetric vs. Asymmetric Crypto 26
 9. Summary . 27
 10. Security Considerations 27
 11. IANA Considerations . 27
 12. Informative References 27
 Acknowledgments . 33
 Authors’ Addresses . 33

Sethi, et al. Informational [Page 2]

RFC 8387 Smart Object Security Experiences May 2018

1. Introduction

 This memo describes challenges associated with securing smart object
 devices in constrained implementations and environments. In
 Section 3, we specifically discuss three challenges: the
 implementation difficulties encountered on resource-constrained
 platforms, the problem of provisioning keys, and making the choice of
 implementing security at the appropriate layer.

 Section 4 discusses a potential deployment model for constrained
 environments. The model requires a minimal amount of configuration,
 and we believe it is a natural fit with the typical communication
 practices in smart object networking environments.

 Section 5 discusses the availability of cryptographic libraries.
 Section 6 presents some experiences in implementing cryptography on
 resource-constrained devices using those libraries, including
 information about achievable code sizes and speeds on typical
 hardware. Section 7 describes an example proof-of-concept prototype
 implementation that uses public-key cryptography on resource-
 constrained devices to provide end-to-end data authenticity and
 integrity protection.

 Finally, Section 8 discusses trade-offs involving different types of
 security approaches.

2. Related Work

 The Constrained Application Protocol (CoAP) [RFC7252] is a
 lightweight protocol designed to be used in machine-to-machine
 applications such as smart energy and building automation. Our
 discussion uses this protocol as an example, but the conclusions may
 apply to other similar protocols. The CoAP base specification
 [RFC7252] outlines how to use DTLS [RFC6347] and IPsec [RFC4303] for
 securing the protocol. DTLS can be applied with pairwise shared
 keys, raw public keys, or certificates. The security model in all
 cases is mutual authentication, so while there is some commonality to
 HTTP [RFC7230] in verifying the server identity, in practice the
 models are quite different. The use of IPsec with CoAP is described
 with regards to the protocol requirements, noting that lightweight
 implementations of the Internet Key Exchange Protocol Version 2
 (IKEv2) exist [RFC7815]. However, the CoAP specification is silent
 on policy and other aspects that are normally necessary in order to
 implement interoperable use of IPsec in any environment [RFC5406].

 [IoT-SECURITY] documents the different stages in the life cycle of a
 smart object. Next, it highlights the security threats for smart
 objects and the challenges that one might face to protect against

Sethi, et al. Informational [Page 3]

RFC 8387 Smart Object Security Experiences May 2018

 these threats. The document also looks at various security protocols
 available, including IKEv2/IPsec [RFC7296], TLS/SSL [RFC5246], DTLS
 [RFC6347], the Host Identity Protocol (HIP) [RFC7401], HIP Diet
 EXchange [HIP-DEX], a Protocol for Carrying Authentication for
 Network Access (PANA) [RFC5191], and the Extensible Authentication
 Protocol (EAP) [RFC3748]. Lastly, [IoT-BOOTSTRAPPING] discusses
 bootstrapping mechanisms available for resource-constrained Internet
 of Things (IoT) devices.

 [RFC6574] gives an overview of the security discussions at the March
 2011 IAB workshop on smart objects. The workshop recommended that
 additional work should be undertaken in developing suitable
 credential management mechanisms (perhaps something similar to the
 Bluetooth pairing mechanism), understanding the implementability of
 standard security mechanisms in resource-constrained devices, and
 conducting additional research in the area of lightweight
 cryptographic primitives.

 [HIP-DEX] defines a lightweight version of the HIP protocol for low-
 power nodes. This version uses a fixed set of algorithms, Elliptic
 Curve Cryptography (ECC), and eliminates hash functions. The
 protocol still operates based on host identities and runs end-to-end
 between hosts, protecting all IP-layer communications. [RFC6078]
 describes an extension of HIP that can be used to send upper-layer
 protocol messages without running the usual HIP base exchange at all.

 [IPV6-LOWPAN-SEC] makes a comprehensive analysis of security issues
 related to IPv6 over Low-Power Wireless Personal Area Network
 (6LoWPAN) networks, but its findings also apply more generally for
 all low-powered networks. Some of the issues this document discusses
 include the need to minimize the number of transmitted bits and
 simplify implementations, threats in the smart object networking
 environments, and the suitability of 6LoWPAN security mechanisms,
 IPsec, and key management protocols for implementation in these
 environments.

3. Challenges

 This section discusses three challenges: 1) implementation
 difficulties, 2) practical provisioning problems, and 3) layering and
 communication models.

 One of the most often discussed issues in the security for the
 Internet of Things relate to implementation difficulties. The desire
 to build resource-constrained, battery-operated, and inexpensive
 devices drives the creation of devices with a limited protocol and
 application suite. Some of the typical limitations include running
 CoAP instead of HTTP, limited support for security mechanisms,

Sethi, et al. Informational [Page 4]

RFC 8387 Smart Object Security Experiences May 2018

 limited processing power for long key lengths, a sleep schedule that
 does not allow communication at all times, and so on. In addition,
 the devices typically have very limited support for configuration,
 making it hard to set up secrets and trust anchors.

 The implementation difficulties are important, but they should not be
 overemphasized. It is important to select the right security
 mechanisms and avoid duplicated or unnecessary functionality. But at
 the end of the day, if strong cryptographic security is needed, the
 implementations have to support that. It is important for developers
 and product designers to determine what security threats they want to
 tackle and the resulting security requirements before selecting the
 hardware. Often, development work in the wild happens in the wrong
 order: a particular platform with a resource-constrained
 microcontroller is chosen first, and then the security features that
 can fit on it are decided. Also, the most lightweight algorithms and
 cryptographic primitives are useful but should not be the only
 consideration in the design and development. Interoperability is
 also important, and often other parts of the system, such as key
 management protocols or certificate formats, are heavier to implement
 than the algorithms themselves.

 The second challenge relates to practical provisioning problems.
 This is perhaps the most fundamental and difficult issue and is
 unfortunately often neglected in the design. There are several
 problems in the provisioning and management of smart object networks:

 o Resource-constrained devices have no natural user interface for
 configuration that would be required for the installation of
 shared secrets and other security-related parameters. Typically,
 there is no keyboard or display, and there may not even be buttons
 to press. Some devices may only have one interface, the interface
 to the network.

 o Manual configuration is rarely, if at all, possible, as the
 necessary skills are missing in typical installation environments
 (such as in family homes).

 o There may be a large number of devices. Configuration tasks that
 may be acceptable when performed for one device may become
 unacceptable with dozens or hundreds of devices.

 o Smart object networks may rely on different radio technologies.
 Provisioning methods that rely on specific link-layer features may
 not work with other radio technologies in a heterogeneous network.

Sethi, et al. Informational [Page 5]

RFC 8387 Smart Object Security Experiences May 2018

 o Network configurations evolve over the lifetime of the devices, as
 additional devices are introduced or addresses change. Various
 central nodes may also receive more frequent updates than
 individual devices such as sensors embedded in building materials.

 In light of the above challenges, resource-constrained devices are
 often shipped with a single static identity. In many cases, it is a
 single raw public key. These long-term static identities makes it
 easy to track the devices (and their owners) when they move. The
 static identities may also allow an attacker to track these devices
 across ownership changes.

 Finally, layering and communication models present difficulties for
 straightforward use of the most obvious security mechanisms. Smart
 object networks typically pass information through multiple
 participating nodes [CoAP-SENSORS], and end-to-end security for IP or
 transport layers may not fit such communication models very well.
 The primary reasons for needing middleboxes relate to the need to
 accommodate for sleeping nodes as well to enable the implementation
 of nodes that store or aggregate information.

4. Proposed Deployment Model

 [CoAP-SECURITY] recognizes the provisioning model as the driver of
 what kind of security architecture is useful. This section
 reintroduces this model briefly here in order to facilitate the
 discussion of the various design alternatives later.

 The basis of the proposed architecture are self-generated secure
 identities, similar to Cryptographically Generated Addresses (CGAs)
 [RFC3972] or Host Identity Tags (HITs) [RFC7401]. That is, we assume
 the following holds:

 I = h(P|O)

 where I is the secure identity of the device, h is a hash function, P
 is the public key from a key pair generated by the device, and O is
 optional other information. "|" (vertical bar) here denotes the
 concatenation operator.

4.1. Provisioning

 As it is difficult to provision security credentials, shared secrets,
 and policy information, the provisioning model is based only on the
 secure identities. A typical network installation involves physical
 placement of a number of devices while noting the identities of these
 devices. This list of short identifiers can then be fed to a central
 server as a list of authorized devices. Secure communications can

Sethi, et al. Informational [Page 6]

RFC 8387 Smart Object Security Experiences May 2018

 then commence with the devices, at least as far as information from
 the devices to the server is concerned, which is what is needed for
 sensor networks.

 The above architecture is a perfect fit for sensor networks where
 information flows from a large number of devices to a small number of
 servers. But it is not sufficient alone for other types of
 applications. For instance, in actuator applications, a large number
 of devices need to take commands from somewhere else. In such
 applications, it is necessary to secure that the commands come from
 an authorized source.

 This can be supported, with some additional provisioning effort and
 optional pairing protocols. The basic provisioning approach is as
 described earlier; however, in addition there must be something that
 informs the devices of the identity of the trusted server(s). There
 are multiple ways to provide this information. One simple approach
 is to feed the identities of the trusted server(s) to devices at
 installation time. This requires a separate user interface, a local
 connection (such as USB), or use of the network interface of the
 device for configuration. In any case, as with sensor networks, the
 amount of configuration information is minimized: just one short
 identity value needs to be fed in (not both an identity and
 certificate or shared secrets that must be kept confidential). An
 even simpler provisioning approach is that the devices in the device
 group trust each other. Then no configuration is needed at
 installation time.

 Once both the parties interested in communicating know the expected
 cryptographic identity of the other offline, secure communications
 can commence. Alternatively, various pairing schemes can be
 employed. Note that these schemes can benefit from the already
 secure identifiers on the device side. For instance, the server can
 send a pairing message to each device after their initial power-on
 and before they have been paired with anyone, encrypted with the
 public key of the device. As with all pairing schemes that do not
 employ a shared secret or the secure identity of both parties, there
 are some remaining vulnerabilities that may or may not be acceptable
 for the application in question. For example, many pairing methods
 based on "leap of faith" or "trust on first use" assume that the
 attacker is not present during the initial setup. Therefore, they
 are vulnerable to eavesdropping or man-in-the-middle (MitM) attacks.

 In any case, the secure identities help again in ensuring that the
 operations are as simple as possible. Only identities need to be
 communicated to the devices, not certificates, shared secrets, or,
 e.g., IPsec policy rules.

Sethi, et al. Informational [Page 7]

RFC 8387 Smart Object Security Experiences May 2018

 Where necessary, the information collected at installation time may
 also include other parameters relevant to the application, such as
 the location or purpose of the devices. This would enable the server
 to know, for instance, that a particular device is the temperature
 sensor for the kitchen.

 Collecting the identity information at installation time can be
 arranged in a number of ways. One simple but not completely secure
 method is where the last few digits of the identity are printed on a
 tiny device just a few millimeters across. Alternatively, the
 packaging for the device may include the full identity (typically 32
 hex digits) retrieved from the device at manufacturing time. This
 identity can be read, for instance, by a bar code reader carried by
 the installation personnel. (Note that the identities are not
 secret; the security of the system is not dependent on the identity
 information leaking to others. The real owner of an identity can
 always prove its ownership with the private key, which never leaves
 the device.) Finally, the device may use its wired network interface
 or proximity-based communications, such as Near-Field Communications
 (NFC) or Radio-Frequency Identity (RFID) tags. Such interfaces allow
 secure communication of the device identity to an information
 gathering device at installation time.

 No matter what the method of information collection is, this
 provisioning model minimizes the effort required to set up the
 security. Each device generates its own identity in a random, secure
 key-generation process. The identities are self-securing in the
 sense that if you know the identity of the peer you want to
 communicate with, messages from the peer can be signed by the peer’s
 private key, and it is trivial to verify that the message came from
 the expected peer. There is no need to configure an identity and
 certificate of that identity separately. There is no need to
 configure a group secret or a shared secret. There is no need to
 configure a trust anchor. In addition, the identities are typically
 collected anyway for application purposes (such as identifying which
 sensor is in which room). Under most circumstances, there is
 actually no additional configuration effort needed for provisioning
 security.

 As discussed in the previous section, long-term static identities
 negatively affect the privacy of the devices and their owners.
 Therefore, it is beneficial for devices to generate new identities at
 appropriate times during their life cycle; an example is after a
 factory reset or an ownership handover. Thus, in our proposed
 deployment model, the devices would generate a new asymmetric key
 pair and use the new public-key P’ to generate the new identity I’.
 It is also desirable that these identities are only used during the
 provisioning stage. Temporary identities (such as dynamic IPv6

Sethi, et al. Informational [Page 8]

RFC 8387 Smart Object Security Experiences May 2018

 addresses) can be used for network communication protocols once the
 device is operational.

 Groups of devices can be managed through single identifiers as well.
 In these deployment cases, it is also possible to configure the
 identity of an entire group of devices, rather than registering the
 individual devices. For instance, many installations employ a kit of
 devices bought from the same manufacturer in one package. It is easy
 to provide an identity for such a set of devices as follows:

 Idev = h(Pdev|Potherdev1|Potherdev2|...|Potherdevn)

 Igrp = h(Pdev1|Pdev2|...|Pdevm)

 where Idev is the identity of an individual device, Pdev is the
 public key of that device, Potherdevi are the public keys of other
 devices in the group, n is all the devices in the group except the
 device with Pdev as its public key, and m is the total number of
 devices in the group. Now, we can define the secure identity of the
 group (Igrp) as a hash of all the public keys of the devices in the
 group (Pdevi).

 The installation personnel can scan the identity of the group from
 the box that the kit came in, and this identity can be stored in a
 server that is expected to receive information from the nodes. Later
 when the individual devices contact this server, they will be able to
 show that they are part of the group, as they can reveal their own
 public key and the public keys of the other devices. Devices that do
 not belong to the kit cannot claim to be in the group, because the
 group identity would change if any new keys were added to the
 identity of the group (Igrp).

4.2. Protocol Architecture

 As noted above, the starting point of the architecture is that nodes
 self-generate secure identities, which are then communicated out of
 band to the peers that need to know what devices to trust. To
 support this model in a protocol architecture, we also need to use
 these secure identities to implement secure messaging between the
 peers, explain how the system can respond to different types of
 attacks such as replay attempts, and decide what protocol layer and
 endpoints the architecture should use.

 The deployment itself is suitable for a variety of design choices
 regarding layering and protocol mechanisms. [CoAP-SECURITY] was
 mostly focused on employing end-to-end data-object security as
 opposed to hop-by-hop security. But other approaches are possible.
 For instance, HIP in its opportunistic mode could be used to

Sethi, et al. Informational [Page 9]

RFC 8387 Smart Object Security Experiences May 2018

 implement largely the same functionality at the IP layer. However,
 it is our belief that the right layer for this solution is at the
 application layer, and more specifically, in the data formats
 transported in the payload part of CoAP. This approach provides the
 following benefits:

 o Ability for intermediaries to act as caches to support different
 sleep schedules, without the security model being impacted.

 o Ability for intermediaries to be built to perform aggregation,
 filtering, storage, and other actions, again without impacting the
 security of the data being transmitted or stored.

 o Ability to operate in the presence of traditional middleboxes,
 such as a protocol translators or even NATs (not that we recommend
 their use in these environments).

 However, as we will see later, there are also some technical
 implications, namely that link, network, and transport-layer
 solutions are more likely to be able to benefit from sessions where
 the cost of expensive operations can be amortized over multiple data
 transmissions. While this is not impossible in data-object security
 solutions, it is generally not the typical arrangement.

5. Code Availability

 For implementing public-key cryptography on resource-constrained
 environments, we chose the Arduino Uno board [arduino-uno] as the
 test platform. Arduino Uno has an ATmega328 microcontroller, an
 8-bit processor with a clock speed of 16 MHz, 2 kB of RAM, and 32 kB
 of flash memory. Our choice of an 8-bit platform may seem surprising
 since cheaper and more energy-efficient 32-bit platforms are
 available. However, our intention was to evaluate the performance of
 public-key cryptography on the most resource-constrained platforms
 available. It is reasonable to expect better performance results
 from 32-bit microcontrollers.

 For selecting potential asymmetric cryptographic libraries, we
 surveyed and came up with a set of possible code sources and
 performed an initial analysis of how well they fit the Arduino
 environment. Note that the results are preliminary and could easily
 be affected in any direction by implementation bugs, configuration
 errors, and other mistakes. It is advisable to verify the numbers
 before relying on them for building something. No significant effort
 was done to optimize ROM memory usage beyond what the libraries
 provided themselves, so those numbers should be taken as upper
 limits.

Sethi, et al. Informational [Page 10]

RFC 8387 Smart Object Security Experiences May 2018

 Here is the set of libraries we found:

 o AVRCryptoLib [avr-cryptolib]: This library provides symmetric key
 algorithms such as AES. It provides RSA as an asymmetric key
 algorithm. Parts of the library were written in AVR 8-bit
 assembly language to reduce the size and optimize the performance.

 o Relic-toolkit [relic-toolkit]: This library is written entirely in
 C and provides a highly flexible and customizable implementation
 of a large variety of cryptographic algorithms. This not only
 includes RSA and ECC but also pairing-based asymmetric
 cryptography, Boneh-Lynn-Shacham signatures, and Boneh-Boyen short
 signatures. The library has also added support for curve25519
 (for Elliptic Curve Diffie-Hellman key exchange) [RFC7748] and
 edwards25519 (for elliptic curve digital signatures) [RFC8032].
 The toolkit provides an option to build only the desired
 components for the required platform.

 o TinyECC [tinyecc]: TinyECC was designed for using elliptic-curve-
 based public-key cryptography on sensor networks. It is written
 in the nesC programming language [nesC] and as such is designed
 for specific use on TinyOS. However, the library can be ported to
 standard C either with tool chains or by manually rewriting parts
 of the code. It also has one of the smallest memory footprints
 among the set of elliptic curve libraries surveyed so far.

 o Wiselib [wiselib]: Wiselib is a generic library written for sensor
 networks containing a wide variety of algorithms. While the
 stable version contains algorithms for routing only, the test
 version includes algorithms for cryptography, localization,
 topology management, and many more. The library was designed with
 the idea of making it easy to interface the library with operating
 systems like iSense and Contiki. However, since the library is
 written entirely in C++ with a template-based model similar to
 Boost/CGAL, it can be used on any platform directly without using
 any of the operating system interfaces provided. This approach
 was taken to test the code on Arduino Uno.

 o MatrixSSL [matrix-ssl]: This library provides a low footprint
 implementation of several cryptographic algorithms including RSA
 and ECC (with a commercial license). The library in the original
 form takes about 50 kB of ROM and is intended for 32-bit
 platforms.

 This is by no means an exhaustive list, and there exists other
 cryptographic libraries targeting resource-constrained devices.

Sethi, et al. Informational [Page 11]

RFC 8387 Smart Object Security Experiences May 2018

 There are also a number of operating systems that are specifically
 targeted for resource-constrained devices. These operating systems
 may include libraries and code for security. Hahm et al. [hahmos]
 conducted a survey of such operating systems. The ARM Mbed OS [mbed]
 is one such operating system that provides various cryptographic
 primitives that are necessary for SSL/TLS protocol implementation as
 well as X509 certificate handling. The library provides an API for
 developers with a minimal code footprint. It is intended for various
 ARM platforms such as ARM Cortex M0, ARM Cortex M0+, and ARM Cortex
 M3.

6. Implementation Experiences

 While evaluating the implementation experiences, we were particularly
 interested in the signature generation operation. This was because
 our example application discussed in Section 7 required only the
 signature generation operation on the resource-constrained platforms.
 We have summarized the initial results of RSA private-key
 exponentiation performance using AVRCryptoLib [avr-crypto-lib] in
 Table 1. All results are from a single run since repeating the test
 did not change (or had only minimal impact on) the results. The
 execution time for a key size of 2048 bits was inordinately long and
 would be a deterrent in real-world deployments.

 +--------------+------------------------+---------------------------+
 | Key length | Execution time (ms); | Memory footprint (bytes); |
 | (bits) | key in RAM | key in RAM |
 +--------------+------------------------+---------------------------+
 | 2048 | 1587567 | 1280 |
 +--------------+------------------------+---------------------------+

 Table 1: RSA Private-Key Operation Performance

 The code size was about 3.6 kB with potential for further reduction.
 It is also worth noting that the implementation performs basic
 exponentiation and multiplication operations without using any
 mathematical optimizations such as Montgomery multiplication,
 optimized squaring, etc., as described in [rsa-high-speed]. With
 more RAM, we believe that 2048-bit operations can be performed in
 much less time as has been shown in [rsa-8bit].

 In Table 2, we present the results obtained by manually porting
 TinyECC into the C99 standard and running the Elliptic Curve Digital
 Signature Algorithm (ECDSA) on the Arduino Uno board. TinyECC
 supports a variety of SEC-2-recommended elliptic curve domain
 parameters [sec2ecc]. The execution time and memory footprint are

Sethi, et al. Informational [Page 12]

RFC 8387 Smart Object Security Experiences May 2018

 shown next to each of the curve parameters. These results were
 obtained by turning on all the optimizations and using assembly code
 where available.

 The results from the performance evaluation of ECDSA in the following
 tables also contain a column stating the approximate comparable RSA
 key length as documented in [sec2ecc]. It is clearly observable that
 for similar security levels, elliptic curve public-key cryptography
 outperforms RSA.

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
secp160k1	2228	892	1024
secp160r1	2250	892	1024
secp160r2	2467	892	1024
secp192k1	3425	1008	1536
secp192r1	3578	1008	1536
 +-------------+---------------+-----------------+-------------------+

 Table 2: Performance of ECDSA Sign Operation with TinyECC

 We also performed experiments by removing the assembly optimization
 and using a C-only form of the library. This gives us an idea of the
 performance that can be achieved with TinyECC on any platform
 regardless of what kind of OS and assembly instruction set is
 available. The memory footprint remains the same with or without
 assembly code. The tables contain the maximum RAM that is used when
 all the possible optimizations are on. However, if the amount of RAM
 available is smaller in size, some of the optimizations can be turned
 off to reduce the memory consumption accordingly.

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
secp160k1	3795	892	1024
secp160r1	3841	892	1024
secp160r2	4118	892	1024
secp192k1	6091	1008	1536
secp192r1	6217	1008	1536
 +-------------+---------------+-----------------+-------------------+

 Table 3: Performance of ECDSA Sign Operation with TinyECC
 (No Assembly Optimizations)

Sethi, et al. Informational [Page 13]

RFC 8387 Smart Object Security Experiences May 2018

 Table 4 documents the performance of Wiselib. Since there were no
 optimizations that could be turned on or off, we have only one set of
 results. By default, Wiselib only supports some of the standard SEC
 2 elliptic curves, but it is easy to change the domain parameters and
 obtain results for all the 128-, 160-, and 192-bit SEC 2 elliptic
 curves. The ROM size for all the experiments was less than 16 kB.

 +-------------+---------------+-----------------+-------------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	footprint	key length
		(bytes)	
+-------------+---------------+-----------------+-------------------+			
secp160k1	10957	842	1024
secp160r1	10972	842	1024
secp160r2	10971	842	1024
secp192k1	18814	952	1536
secp192r1	18825	952	1536
 +-------------+---------------+-----------------+-------------------+

 Table 4: Performance ECDSA Sign Operation with Wiselib

 For testing the relic-toolkit, we used a different board because it
 required more RAM/ROM, and we were unable to perform experiments with
 it on Arduino Uno. Arduino Mega has the same 8-bit architecture as
 Arduino Uno, but it has a much larger RAM/ROM. We used Arduino Mega
 for experimenting with the relic-toolkit. Again, it is important to
 mention that we used Arduino as it is a convenient prototyping
 platform. Our intention was to demonstrate the feasibility of the
 entire architecture with public-key cryptography on an 8-bit
 microcontroller. However, it is important to state that 32-bit
 microcontrollers are much more easily available, at lower costs, and
 are more power efficient. Therefore, real deployments are better off
 using 32-bit microcontrollers that allow developers to include the
 necessary cryptographic libraries. There is no good reason to choose
 platforms that do not provide sufficient computing power to run the
 necessary cryptographic operations.

 The relic-toolkit supports Koblitz curves over prime as well as
 binary fields. We have experimented with Koblitz curves over binary
 fields only. We do not run our experiments with all the curves
 available in the library since the aim of this work is not to prove
 which curves perform the fastest but rather to show that asymmetric
 cryptography is possible on resource-constrained devices.

 The results from relic-toolkit are documented separately in Tables 5
 and 6. The first set of results were performed with the library
 configured for high-speed performance with no consideration given to
 the amount of memory used. For the second set, the library was

Sethi, et al. Informational [Page 14]

RFC 8387 Smart Object Security Experiences May 2018

 configured for low-memory usage irrespective of the execution time
 required by different curves. By turning on/off optimizations
 included in the library, a trade-off between memory and execution
 time between these values can be achieved.

 +-----------------+--------------+----------------+-----------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	footprint	key length
		(bytes)	
+-----------------+--------------+----------------+-----------------+			
sect163k1	261	2804	1024
(assembly math)			
sect163k1	932	2750	1024
sect163r2	2243	2444	1024
sect233k1	1736	3675	2048
sect233r1	4471	3261	2048
 +-----------------+--------------+----------------+-----------------+

 Table 5: Performance of ECDSA Sign Operation with
 relic-toolkit (Fast)

 +-----------------+--------------+----------------+-----------------+
Curve	Execution	Memory	Comparable RSA
parameters	time (ms)	footprint	key length
		(bytes)	
+-----------------+--------------+----------------+-----------------+			
sect163k1	592	2087	1024
(assembly math)			
sect163k1	2950	2215	1024
sect163r2	3213	2071	1024
sect233k1	6450	2935	2048
sect233r1	6100	2737	2048
 +-----------------+--------------+----------------+-----------------+

 Table 6: Performance of ECDSA Sign Operation with relic-toolkit
 (Low Memory)

Sethi, et al. Informational [Page 15]

RFC 8387 Smart Object Security Experiences May 2018

 It is important to note the following points about the elliptic curve
 measurements:

 o Some boards (e.g., Arduino Uno) do not provide a hardware random
 number generator. On such boards, obtaining cryptographic-quality
 randomness is a challenge. Real-world deployments must rely on a
 hardware random number generator for cryptographic operations such
 as generating a public-private key pair. The Nordic nRF52832
 board [nordic], for example, provides a hardware random number
 generator. A detailed discussion on requirements and best
 practices for cryptographic-quality randomness is documented in
 [RFC4086]

 o For measuring the memory footprint of all the ECC libraries, we
 used the Avrora simulator [avrora]. Only stack memory was used to
 easily track the RAM consumption.

 Tschofenig and Pegourie-Gonnard [armecdsa] have also evaluated the
 performance of ECC on an ARM Coretex platform. The results for the
 ECDSA sign operation shown in Table 7 are performed on a Freescale
 FRDM-KL25Z board [freescale] that has an ARM Cortex-M0+ 48MHz
 microcontroller with 128 kB of flash memory and 16 kB of RAM. The
 sliding window technique for efficient exponentiation was used with a
 window size of 2. All other optimizations were disabled for these
 measurements.

 +------------------+---------------------+--------------------------+
 | Curve parameters | Execution time (ms) | Comparable RSA key |
 | | | length |
 +------------------+---------------------+--------------------------+
secp192r1	2165	1536
secp224r1	3014	2048
secp256r1	3649	2048
 +------------------+---------------------+--------------------------+

 Table 7: Performance of ECDSA Sign Operation with an ARM Mbed TLS
 Stack on Freescale FRDM-KL25Z

 Tschofenig and Pegourie-Gonnard [armecdsa] also measured the
 performance of curves on an ST Nucleo F091 (STM32F091RCT6) board
 [stnucleo] that has an ARM Cortex-M0 48 MHz microcontroller with 256
 kB of flash memory and 32 kB of RAM. The execution time for the
 ECDSA sign operation with different curves is shown in Table 8. The
 sliding window technique for efficient exponentiation was used with a
 window size of 7. Fixed-point optimization and NIST curve-specific
 optimizations were used for these measurements.

Sethi, et al. Informational [Page 16]

RFC 8387 Smart Object Security Experiences May 2018

 +------------------+---------------------+--------------------------+
 | Curve parameters | Execution time (ms) | Comparable RSA key |
 | | | length |
 +------------------+---------------------+--------------------------+
secp192k1	291	1536
secp192r1	225	1536
secp224k1	375	2048
secp224r1	307	2048
secp256k1	486	2048
secp256r1	459	2048
secp384r1	811	7680
secp521r1	1602	15360
 +------------------+---------------------+--------------------------+

 Table 8: ECDSA Signature Performance with an ARM Mbed TLS Stack on ST
 Nucleo F091 (STM32F091RCT6)

 Finally, Tschofenig and Pegourie-Gonnard [armecdsa] also measured the
 RAM consumption by calculating the heap consumed for the
 cryptographic operations using a custom memory allocation handler.
 They did not measure the minimal stack memory consumption. Depending
 on the curve and the different optimizations enable or disabled, the
 memory consumption for the ECDSA sign operation varied from 1500
 bytes to 15000 bytes.

 At the time of performing these measurements and this study, it was
 unclear which exact elliptic curve(s) would be selected by the IETF
 community for use with resource-constrained devices. However,
 [RFC7748] defines two elliptic curves over prime fields (Curve25519
 and Curve448) that offer a high-level of practical security for
 Diffie-Hellman key exchange. Correspondingly, there is ongoing work
 to specify elliptic curve signature schemes with Edwards-curve
 Digital Signature Algorithm (EdDSA). [RFC8032] specifies the
 recommended parameters for the edwards25519 and edwards448 curves.
 From these, curve25519 (for Elliptic Curve Diffie-Hellman key
 exchange) and edwards25519 (for elliptic curve digital signatures)
 are especially suitable for resource-constrained devices.

 We found that the NaCl [nacl] and MicoNaCl [micronacl] libraries
 provide highly efficient implementations of Diffie-Hellman key
 exchange with curve25519. The results have shown that these
 libraries with curve25519 outperform other elliptic curves that
 provide similar levels of security. Hutter and Schwabe [naclavr]
 also show that the signing of data using the curve Ed25519 from the
 NaCl library needs only 23216241 cycles on the same microcontroller
 that we used for our evaluations (Arduino Mega ATmega2560). This
 corresponds to about 1451 milliseconds of execution time. When
 compared to the results for other curves and libraries that offer a

Sethi, et al. Informational [Page 17]

RFC 8387 Smart Object Security Experiences May 2018

 similar level of security (such as sect233r1 and sect233k1), this
 implementation far outperforms all others. As such, it is
 recommended that the IETF community use these curves for protocol
 specification and implementations.

 A summary library flash memory use is shown in Table 9.

 +------------------------+------------------------------------+
 | Library | Flash memory footprint (kilobytes) |
 +------------------------+------------------------------------+
 | AVRCryptoLib | 3.6 |
 | Wiselib | 16 |
 | TinyECC | 18 |
 | Relic-toolkit | 29 |
 | NaCl Ed25519 [naclavr] | 17-29 |
 +------------------------+------------------------------------+

 Table 9: Summary of Library Flash Memory Consumption

 All the measurements here are only provided as an example to show
 that asymmetric-key cryptography (particularly, digital signatures)
 is possible on resource-constrained devices. By no means are these
 numbers the final source for measurements, and some curves presented
 here may no longer be acceptable for real in-the-wild deployments.
 For example, Mosdorf et al. [mosdorf] and Liu et al. [tinyecc] also
 document the performance of ECDSA on similar resource-constrained
 devices.

7. Example Application

 We developed an example application on the Arduino platform to use
 public-key cryptography, data-object security, and an easy
 provisioning model. Our application was originally developed to test
 different approaches to supporting communications to "always off"
 sensor nodes. These battery-operated or energy-scavenging nodes do
 not have enough power to stay on at all times. They wake up
 periodically and transmit their readings.

 Such sensor nodes can be supported in various ways. [CoAP-SENSORS]
 was an early multicast-based approach. In the current application,
 we have switched to using resource directories [CoRE-RD] and publish-
 subscribe brokers [CoAP-BROKER] instead. Architecturally, the idea
 is that sensors can delegate a part of their role to a node in the
 network. Such a network node could be either a local resource or
 something in the Internet. In the case of CoAP publish-subscribe
 brokers, the network node agrees to hold the web resources on behalf
 of the sensor, while the sensor is asleep. The only role that the
 sensor has is to register itself at the publish-subscribe broker and

Sethi, et al. Informational [Page 18]

RFC 8387 Smart Object Security Experiences May 2018

 periodically update the readings. All queries from the rest of the
 world go to the publish-subscribe broker.

 We constructed a system with four entities:

 Sensor: This is an Arduino-based device that runs a CoAP publish-
 subscribe broker client and relic-toolkit. Relic takes 29 kB of
 flash memory, and the simple CoAP client takes roughly 3 kB.

 Publish-Subscribe Broker: This is a publish-subscribe broker that
 holds resources on the sensor’s behalf. The sensor registers
 itself to this node.

 Resource Directory: While physically in the same node in our
 implementation, a resource directory is a logical function that
 allows sensors and publish-subscribe brokers to register resources
 in the directory. These resources can be queried by applications.

 Application: This is a simple application that runs on a general
 purpose computer and can retrieve both registrations from the
 resource directory and most recent sensor readings from the
 publish-subscribe broker.

 The security of this system relies on a secure-shell-like approach.
 In Step 1, upon first boot, sensors generate keys and register
 themselves in the publish-subscribe broker. Their public key is
 submitted along with the registration as an attribute in the CoRE
 Link Format data [RFC6690].

 In Step 2, when the sensor makes a measurement, it sends an update to
 the publish-subscribe broker and signs the message contents with a
 JSON Object Signing and Encryption (JOSE) signature on the used JSON
 [RFC7515] and Sensor Measurement List (SenML) payload [MT-SenML].
 The sensor can also alternatively use CBOR Object Signing and
 Encryption (COSE) [RFC8152] for signing the sensor measurement.

 In Step 3, any other device in the network -- including the publish-
 subscribe broker, resource directory, and the application -- can
 check that the public key from the registration corresponds to the
 private key used to make the signature in the data update.

 Note that checks can be done at any time, and there is no need for
 the sensor and the checking node to be awake at the same time. In
 our implementation, the checking is done in the application node.
 This demonstrates how it is possible to implement end-to-end security
 even with the presence of assisting middleboxes.

Sethi, et al. Informational [Page 19]

RFC 8387 Smart Object Security Experiences May 2018

 To verify the feasibility of our architecture, we developed a
 proof-of-concept prototype. In our prototype, the sensor was
 implemented using the Arduino Ethernet shield over an Arduino Mega
 board. Our implementation uses the standard C99 programming language
 on the Arduino Mega board. In this prototype, the publish-subscribe
 broker and the Resource Directory (RD) reside on the same physical
 host. A 64-bit x86 Linux machine serves as the broker and the RD,
 while a similar but physically distinct 64-bit x86 Linux machine
 serves as the client that requests data from the sensor. We chose
 the Relic library version 0.3.1 for our sample prototype as it can be
 easily compiled for different bit-length processors. Therefore, we
 were able to use it on the 8-bit processor of the Arduino Mega, as
 well as on the 64-bit processor of the x86 client. We used ECDSA to
 sign and verify data updates with the standard sect163k1 curve
 parameters. While compiling Relic for our prototype, we used the
 fast configuration without any assembly optimizations.

 The gateway implements the CoAP base specification in the Java
 programming language and extends it to add support for publish-
 subscribe broker and Resource Directory Representational State
 Transfer (REST) interfaces. We also developed a minimalistic CoAP
 C-library for the Arduino sensor and for the client requesting data
 updates for a resource. The library has small RAM requirements and
 uses stack-based allocation only. It is interoperable with the Java
 implementation of CoAP running on the gateway. The location of the
 resource directory was configured into the smart object sensor by
 hardcoding the IP address. A real implementation based on this
 prototype would instead use the domain name system for obtaining the
 location of the resource directory.

 Our intention was to demonstrate that it is possible to implement the
 entire architecture with public-key cryptography on an 8-bit
 microcontroller. The stated values can be improved further by a
 considerable amount. For example, the flash memory and RAM
 consumption is relatively high because some of the Arduino libraries
 were used out of the box, and there are several functions that can be
 removed. Similarly, we used the fast version of the Relic library in
 the prototype instead of the low-memory version. However, it is
 important to note that this was only a research prototype to verify
 the feasibility of this architecture and, as stated elsewhere, most
 modern development boards have a 32-bit microcontroller since they
 are more economical and have better energy efficiency.

Sethi, et al. Informational [Page 20]

RFC 8387 Smart Object Security Experiences May 2018

8. Design Trade-Offs

 This section attempts to make some early conclusions regarding trade-
 offs in the design space, based on deployment considerations for
 various mechanisms and the relative ease or difficulty of
 implementing them. In particular, this analysis looks at layering,
 freshness, and the choice of symmetric vs. asymmetric cryptography.

8.1. Feasibility

 The first question is whether using cryptographic security and
 asymmetric cryptography in particular is feasible at all on resource-
 constrained devices. The numbers above give a mixed message.
 Clearly, an implementation of a significant cryptographic operation
 such as public-key signing can be done in a surprisingly small amount
 of code space. It could even be argued that our chosen prototype
 platform was unnecessarily restrictive in the amount of code space it
 allows: we chose this platform on purpose to demonstrate something
 that is as resource constrained and difficult as possible.

 A recent trend in microcontrollers is the introduction of 32-bit CPUs
 that are becoming cheaper and more easily available than 8-bit CPUs,
 in addition to being more easily programmable. The flash memory size
 is probably easier to grow than other parameters in microcontrollers.
 Flash memory size is not expected to be the most significant limiting
 factor. Before picking a platform, developers should also plan for
 firmware updates. This would essentially mean that the platform
 should at least have a flash memory size of the total code size * 2,
 plus some space for buffer.

 The situation is less clear with regards to the amount of CPU power
 needed to run the algorithms. The demonstrated speeds are sufficient
 for many applications. For instance, a sensor that wakes up every
 now and then can likely spend a fraction of a second, or even spend
 multiple seconds in some cases, for the computation of a signature
 for the message that it is about to send. Most applications that use
 protocols such as DTLS that use public-key cryptography only at the
 beginning of the session would also be fine with any of these
 execution times.

 Yet, with reasonably long key sizes, the execution times are in the
 seconds, dozens of seconds, or even longer. For some applications,
 this is too long. Nevertheless, these algorithms can successfully be
 employed in resource-constrained devices for the following reasons:

 o With the right selection of algorithms and libraries, the
 execution times can actually be very small (less than 500 ms).

Sethi, et al. Informational [Page 21]

RFC 8387 Smart Object Security Experiences May 2018

 o As discussed in [wiman], in general, the power requirements
 necessary to turn the radio on/off and sending or receiving
 messages are far bigger than those needed to execute cryptographic
 operations. While there are newer radios that significantly lower
 the energy consumption of sending and receiving messages, there is
 no good reason to choose platforms that do not provide sufficient
 computing power to run the necessary cryptographic operations.

 o Commercial libraries and the use of full potential for various
 optimizations will provide a better result than what we arrived at
 in this memo.

 o Using public-key cryptography only at the beginning of a session
 will reduce the per-packet processing times significantly.

 While we did not do an exhaustive performance evaluation of
 asymmetric key-pair generation on resource-constrained devices, we
 did note that it is possible for such devices to generate a new key
 pair. Given that this operation would only occur in rare
 circumstances (such as a factory reset or ownership change) and its
 potential privacy benefits, developers should provide mechanisms for
 generating new identities. However, it is extremely important to
 note that the security of this operation relies on access to
 cryptographic-quality randomness.

8.2. Freshness

 In our architecture, if implemented as described thus far, messages
 along with their signatures sent from the sensors to the publish-
 subscribe broker can be recorded and replayed by an eavesdropper.
 The publish-subscribe broker has no mechanism to distinguish
 previously received packets from those that are retransmitted by the
 sender or replayed by an eavesdropper. Therefore, it is essential
 for the smart objects to ensure that data updates include a freshness
 indicator. However, ensuring freshness on constrained devices can be
 non-trivial because of several reasons, which include:

 o Communication is mostly unidirectional to save energy.

 o Internal clocks might not be accurate and may be reset several
 times during the operational phase of the smart object.

 o Network time synchronization protocols such as the Network Time
 Protocol (NTP) [RFC5905] are resource intensive and therefore may
 be undesirable in many smart object networks.

Sethi, et al. Informational [Page 22]

RFC 8387 Smart Object Security Experiences May 2018

 There are several different methods that can be used in our
 architecture for replay protection. The selection of the appropriate
 choice depends on the actual deployment scenario.

 Including sequence numbers in signed messages can provide an
 effective method of replay protection. The publish-subscribe broker
 should verify the sequence number of each incoming message and accept
 it only if it is greater than the highest previously seen sequence
 number. The publish-subscribe broker drops any packet with a
 sequence number that has already been received or if the received
 sequence number is greater than the highest previously seen sequence
 number by an amount larger than the preset threshold.

 Sequence numbers can wrap around at their maximum value; therefore,
 it is essential to ensure that sequence numbers are sufficiently
 long. However, including long sequence numbers in packets can
 increase the network traffic originating from the sensor and can thus
 decrease its energy efficiency. To overcome the problem of long
 sequence numbers, we can use a scheme similar to that of Huang
 [huang], where the sender and receiver maintain and sign long
 sequence numbers of equal bit lengths, but they transmit only the
 least-significant bits.

 It is important for the smart object to write the sequence number
 into the permanent flash memory after each increment and before it is
 included in the message to be transmitted. This ensures that the
 sensor can obtain the last sequence number it had intended to send in
 case of a reset or a power failure. However, the sensor and the
 publish-subscribe broker can still end up in a discordant state where
 the sequence number received by the publish-subscribe broker exceeds
 the expected sequence number by an amount greater than the preset
 threshold. This may happen because of a prolonged network outage or
 if the publish-subscribe broker experiences a power failure for some
 reason. Therefore, it is essential for sensors that normally send
 Non-Confirmable data updates to send some Confirmable updates and
 resynchronize with the publish-subscribe broker if a reset message is
 received. The sensors resynchronize by sending a new registration
 message with the current sequence number.

 Although sequence numbers protect the system from replay attacks, a
 publish-subscribe broker has no mechanism to determine the time at
 which updates were created by the sensor. Moreover, if sequence
 numbers are the only freshness indicator used, a malicious
 eavesdropper can induce inordinate delays to the communication of
 signed updates by buffering messages. It may be important in certain
 smart object networks for sensors to send data updates that include
 timestamps to allow the publish-subscribe broker to determine the
 time when the update was created. For example, when the publish-

Sethi, et al. Informational [Page 23]

RFC 8387 Smart Object Security Experiences May 2018

 subscribe broker is collecting temperature data, it may be necessary
 to know when exactly the temperature measurement was made by the
 sensor. A simple solution to this problem is for the publish-
 subscribe broker to assume that the data object was created when it
 receives the update. In a relatively reliable network with low RTT,
 it can be acceptable to make such an assumption. However, most
 networks are susceptible to packet loss and hostile attacks making
 this assumption unsustainable.

 Depending on the hardware used by the smart objects, they may have
 access to accurate hardware clocks, which can be used to include
 timestamps in the signed updates. These timestamps are included in
 addition to sequence numbers. The clock time in the smart objects
 can be set by the manufacturer, or the current time can be
 communicated by the publish-subscribe broker during the registration
 phase. However, these approaches require the smart objects to either
 rely on the long-term accuracy of the clock set by the manufacturer
 or trust the publish-subscribe broker thereby increasing the
 potential vulnerability of the system. The smart objects could also
 obtain the current time from NTP, but this may consume additional
 energy and give rise to security issues discussed in [RFC5905]. The
 smart objects could also have access to a mobile network or the
 Global Positioning System (GPS), and they can be used obtain the
 current time. Finally, if the sensors need to coordinate their sleep
 cycles, or if the publish-subscribe broker computes an average or
 mean of updates collected from multiple smart objects, it is
 important for the network nodes to synchronize the time among them.
 This can be done by using existing synchronization schemes.

8.3. Layering

 It would be useful to select just one layer where security is
 provided at. Otherwise, a simple device needs to implement multiple
 security mechanisms. While some code can probably be shared across
 such implementations (like algorithms), it is likely that most of the
 code involving the actual protocol machinery cannot. Looking at the
 different layers, here are the choices and their implications:

 link layer: This is probably the most common solution today. The
 primary benefits of this choice of layer are that security
 services are commonly available (WLAN secrets, cellular SIM cards,
 etc.) and that their application protects the entire
 communications.

 The main drawback is that there is no security beyond the first
 hop. This can be problematic, e.g., in many devices that
 communicate to a server in the Internet. A smart home weighing
 scale, for instance, can support WLAN security, but without some

Sethi, et al. Informational [Page 24]

RFC 8387 Smart Object Security Experiences May 2018

 level of end-to-end security, it would be difficult to prevent
 fraudulent data submissions to the servers.

 Another drawback is that some commonly implemented link-layer
 security designs use group secrets. This allows any device within
 the local network (e.g., an infected laptop) to attack the
 communications.

 network layer: There are a number of solutions in this space and
 many new ones and variations thereof being proposed: IPsec, PANA,
 and so on. In general, these solutions have similar
 characteristics to those in the transport layer: they work across
 forwarding hops but only as far as to the next middlebox or
 application entity. There is plenty of existing solutions and
 designs.

 Experience has shown that it is difficult to control IP-layer
 entities from an application process. While this is theoretically
 easy, in practice the necessary APIs do not exist. For instance,
 most IPsec software has been built for the VPN use case and is
 difficult or impossible to tweak to be used on a per-application
 basis. As a result, the authors are not particularly enthusiastic
 about recommending these solutions.

 transport and application layer: This is another popular solution
 along with link-layer designs. TLS with HTTP (HTTPS) and DTLS
 with CoAP are examples of solutions in this space and have been
 proven to work well. These solutions are typically easy to take
 into use in an application, without assuming anything from the
 underlying OS, and they are easy to control as needed by the
 applications. The main drawback is that generally speaking, these
 solutions only run as far as the next application level entity.
 And even for this case, HTTPS can be made to work through proxies,
 so this limit is not unsolvable. Another drawback is that attacks
 on the link layer, network layer, and in some cases, transport
 layer, cannot be protected against. However, if the upper layers
 have been protected, such attacks can at most result in a denial
 of service. Since denial of service can often be caused anyway,
 it is not clear if this is a real drawback.

 data-object layer: This solution does not protect any of the
 protocol layers but protects individual data elements being sent.
 It works particularly well when there are multiple application-
 layer entities on the path of the data. Smart object networks are
 likely to employ such entities for storage, filtering, aggregation
 and other reasons, and as such, an end-to-end solution is the only
 one that can protect the actual data.

Sethi, et al. Informational [Page 25]

RFC 8387 Smart Object Security Experiences May 2018

 The downside is that the lower layers are not protected. But
 again, as long as the data is protected and checked upon every
 time it passes through an application-level entity, it is not
 clear that there are attacks beyond denial of service.

 The main question mark is whether this type of a solution provides
 sufficient advantages over the more commonly implemented transport
 and application-layer solutions.

8.4. Symmetric vs. Asymmetric Crypto

 The second trade-off that is worth discussing is the use of plain
 asymmetric cryptographic mechanisms, plain symmetric cryptographic
 mechanisms, or some mixture thereof.

 Contrary to popular cryptographic community beliefs, a symmetric
 cryptographic solution can be deployed in large scale. In fact, one
 of the largest deployments of cryptographic security, the cellular
 network authentication system, uses Subscriber Identification Module
 (SIM) cards that are based on symmetric secrets. In contrast,
 public-key systems have yet to show an ability to scale to hundreds
 of millions of devices, let alone billions. But the authors do not
 believe scaling is an important differentiator when comparing the
 solutions.

 As can be seen from Section 6, the time needed to calculate some of
 the asymmetric cryptographic operations with reasonable key lengths
 can be significant. There are two contrary observations that can be
 made from this. First, recent wisdom indicates that computing power
 on resource-constrained devices is far cheaper than transmission
 power [wiman], and it keeps on becoming more efficient very quickly.
 From this we can conclude that the sufficient CPU is or at least will
 be easily available.

 But the other observation is that when there are very costly
 asymmetric operations, doing a key exchange followed by the use of
 generated symmetric keys would make sense. This model works very
 well for DTLS and other transport-layer solutions, but it works less
 well for data-object security, particularly when the number of
 communicating entities is not exactly two.

Sethi, et al. Informational [Page 26]

RFC 8387 Smart Object Security Experiences May 2018

9. Summary

 This document makes several security recommendations based on our
 implementation experience. We summarize some of the important ones
 here:

 o Developers and product designers should choose the hardware after
 determining the security requirements for their application
 scenario.

 o ECC outperforms RSA-based operations; therefore, it is recommended
 for resource-constrained devices.

 o Cryptographic-quality randomness is needed for many security
 protocols. Developers and vendors should ensure that the
 sufficient randomness is available for security critical tasks.

 o 32-bit microcontrollers are much more easily available, at lower
 costs, and are more power efficient. Therefore, real-world
 deployments are better off using 32-bit microcontrollers.

 o Developers should provide mechanisms for devices to generate new
 identities at appropriate times during their life cycle, for
 example, after a factory reset or an ownership handover.

 o Planning for firmware updates is important. The hardware platform
 chosen should at least have a flash memory size of the total code
 size * 2, plus some space for buffer.

10. Security Considerations

 This entire memo deals with security issues.

11. IANA Considerations

 This document has no IANA actions.

12. Informative References

 [arduino-uno]
 Arduino, "Arduino Uno REV3",
 <http://arduino.cc/en/Main/arduinoBoardUno>.

 [armecdsa] Tschofenig, H. and M. Pegourie-Gonnard, "Performance
 Investigations", March 2015,
 <https://www.ietf.org/proceedings/92/slides/
 slides-92-lwig-3.pdf>.

Sethi, et al. Informational [Page 27]

RFC 8387 Smart Object Security Experiences May 2018

 [avr-crypto-lib]
 Das Labor, "AVR-Crypto-Lib", February 2014,
 <http://www.das-labor.org/wiki/AVR-Crypto-Lib/en>.

 [avr-cryptolib]
 "AVRCryptoLib", <http://www.emsign.nl/>.

 [avrora] Avora, "The AVR Simulation and Analysis Framework",
 <http://compilers.cs.ucla.edu/avrora/>.

 [CoAP-BROKER]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", Work in Progress, draft-ietf-core-coap-pubsub-04,
 March 2018.

 [CoAP-SECURITY]
 Arkko, J. and A. Keranen, "CoAP Security Architecture",
 Work n Progress, draft-arkko-core-security-arch-00, July
 2011.

 [CoAP-SENSORS]
 Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O.
 Novo, "Implementing Tiny COAP Sensors", Wok in Progress,
 draft-arkko-core-sleepy-sensors-01, July 2011.

 [CoRE-RD] Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", Work in Progress,
 draft-ietf-core-resource-directory-13, March 2018.

 [freescale]
 ARM Mbed, "FRDM-KL25Z",
 <https://developer.mbed.org/platforms/KL25Z/>.

 [hahmos] Hahm, O., Baccelli, E., Petersen, H., and N. Tsiftes,
 "Operating systems for low-end devices in the internet of
 things: a survey", IEEE Internet of Things Journal,
 Vol. 3, Issue 5, DOI 10.1109/JIOT.2015.2505901, October
 2016.

 [HIP-DEX] Moskowitz, R., Ed. and R. Hummen, "HIP Diet EXchange
 (DEX)", Work in Progress, draft-ietf-hip-dex-06, December
 2017.

 [huang] Huang, C., "LOFT: Low-overhead freshness transmission in
 sensor networks", IEEE, DOI 10.1109/SUTC.2008.38, June
 2008.

Sethi, et al. Informational [Page 28]

RFC 8387 Smart Object Security Experiences May 2018

 [IoT-BOOTSTRAPPING]
 Sarikaya, B., Sethi, M., and A. Sangi, "Secure IoT
 Bootstrapping: A Survey", Work in Progress,
 draft-sarikaya-t2trg-sbootstrapping-03, February 2017.

 [IoT-SECURITY]
 Garcia-Morchon, O., Kumar, S., and M. Sethi,
 "State-of-the-Art and Challenges for the Internet of
 Things Security", Work in Progress,
 draft-irtf-t2trg-iot-seccons-14, April 2018.

 [IPV6-LOWPAN-SEC]
 Park, S., Kim, K., Haddad, W., Chakrabarti, S., and J.
 Laganier, "IPv6 over Low Power WPAN Security Analysis",
 Work in Progress, draft-daniel-6lowpan-security-
 analysis-05, March 2011.

 [matrix-ssl]
 Inside Secure, "GUARD TLS Toolkit (formerly Matrix SSL)",
 <http://www.matrixssl.org/>.

 [mbed] ARM Mbed, "Mbed TLS",
 <https://www.mbed.com/en/technologies/security/mbed-tls/>.

 [micronacl]
 MicroNaCl, "The Networking and Cryptography library for
 microcontrollers", <http://munacl.cryptojedi.org/>.

 [mosdorf] Mosdorf, M. and W. Zabolotny, "Implementation of elliptic
 curve cryptography for 8-bit and 32-bit embedded systems -
 time efficiency and power consumption analysis", Pomiary
 Automatyka Kontrola, 2010.

 [MT-SenML] Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.
 Bormann, "Sensor Measurement Lists (SenML)", Work in
 Progress, draft-ietf-core-senml-15, May 2018.

 [nacl] NaCl, "Networking and Cryptography library",
 <http://nacl.cr.yp.to/>.

 [naclavr] Hutter, M. and P. Schwabe, "NaCl on 8-Bit AVR
 Microcontrollers", International Conference on
 Cryptology in Africa, Computer Science, Vol. 7918, pp.
 156-172, February 2013,
 <https://doi.org/10.1007/978-3-642-38553-7_9>.

Sethi, et al. Informational [Page 29]

RFC 8387 Smart Object Security Experiences May 2018

 [nesC] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E.,
 and D. Culler, "The nesC language: A holistic approach to
 networked embedded systems", ACM SIGPLAN Notices, Vol. 38,
 Issue 5, DOI 10.1145/781131.781133, 2003.

 [nordic] Nordic Semiconductor, "nRF52832 Product Specification
 v1.3", March 2017, <http://infocenter.nordicsemi.com/pdf/
 nRF52832_PS_v1.3.pdf>.

 [relic-toolkit]
 "relic", March 2017,
 <https://github.com/relic-toolkit/relic>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
 RFC 3972, DOI 10.17487/RFC3972, March 2005,
 <https://www.rfc-editor.org/info/rfc3972>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC5191] Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H.,
 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,
 May 2008, <https://www.rfc-editor.org/info/rfc5191>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5406] Bellovin, S., "Guidelines for Specifying the Use of IPsec
 Version 2", BCP 146, RFC 5406, DOI 10.17487/RFC5406,
 February 2009, <https://www.rfc-editor.org/info/rfc5406>.

Sethi, et al. Informational [Page 30]

RFC 8387 Smart Object Security Experiences May 2018

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6078] Camarillo, G. and J. Melen, "Host Identity Protocol (HIP)
 Immediate Carriage and Conveyance of Upper-Layer Protocol
 Signaling (HICCUPS)", RFC 6078, DOI 10.17487/RFC6078,
 January 2011, <https://www.rfc-editor.org/info/rfc6078>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6574] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, DOI 10.17487/RFC6574, April 2012,
 <https://www.rfc-editor.org/info/rfc6574>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7401] Moskowitz, R., Ed., Heer, T., Jokela, P., and T.
 Henderson, "Host Identity Protocol Version 2 (HIPv2)",
 RFC 7401, DOI 10.17487/RFC7401, April 2015,
 <https://www.rfc-editor.org/info/rfc7401>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

Sethi, et al. Informational [Page 31]

RFC 8387 Smart Object Security Experiences May 2018

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC7815] Kivinen, T., "Minimal Internet Key Exchange Version 2
 (IKEv2) Initiator Implementation", RFC 7815,
 DOI 10.17487/RFC7815, March 2016,
 <https://www.rfc-editor.org/info/rfc7815>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [rsa-8bit] Gura, N., Patel, A., Wander, A., Eberle, H., and S.
 Shantz, "Comparing Elliptic Curve Cryptography and RSA on
 8-bit CPUs", DOI 10.1007/978-3-540-28632-5_9, 2004.

 [rsa-high-speed]
 Koc, C., "High-Speed RSA Implementation", November 1994,
 <http://storage.jak-stik.ac.id/rsasecurity/tr201.pdf>.

 [sec2ecc] Certicom Research, "SEC 2: Recommended Elliptic Curve
 Domain Parameters", Version 2.0, January 2010.

 [stnucleo] STMicroelectronics, "NUCLEO-F091RC",
 <http://www.st.com/en/evaluation-tools/
 nucleo-f091rc.html/>.

 [tinyecc] Liu, A. and P. Nig, "TinyECC: A Configurable Library for
 Elliptic Curve Cryptography in Wireless Sensor Networks
 (Version 2.0)", NCSU College of Engineering, February
 2011, <http://discovery.csc.ncsu.edu/software/TinyECC/>.

 [wiman] Margi, C., Oliveira, B., Sousa, G., Simplicio, M., Paulo,
 S., Carvalho, T., Naslund, M., and R. Gold, "Impact of
 Operating Systems on Wireless Sensor Networks (Security)
 Applications and Testbeds", Proceedings of the 19th
 International Conference on Computer Communciations and
 Networks, DOI 10.1109/ICCCN.2010.5560028, 2010.

 [wiselib] "wiselib", February 2015,
 <https://github.com/ibr-alg/wiselib>.

Sethi, et al. Informational [Page 32]

RFC 8387 Smart Object Security Experiences May 2018

Acknowledgments

 The authors would like to thank Mats Naslund, Salvatore Loreto, Bob
 Moskowitz, Oscar Novo, Vlasios Tsiatsis, Daoyuan Li, Muhammad Waqas,
 Eric Rescorla, and Tero Kivinen for interesting discussions in this
 problem space. The authors would also like to thank Diego Aranha for
 helping with the relic-toolkit configurations and Tobias Baumgartner
 for helping with questions regarding wiselib.

 Tim Chown, Samita Chakrabarti, Christian Huitema, Dan Romascanu, Eric
 Vyncke, and Emmanuel Baccelli provided valuable comments that helped
 us improve this document.

Authors’ Addresses

 Mohit Sethi
 Ericsson
 Jorvas 02420
 Finland

 Email: mohit@piuha.net

 Jari Arkko
 Ericsson
 Jorvas 02420
 Finland

 Email: jari.arkko@piuha.net

 Ari Keranen
 Ericsson
 Jorvas 02420
 Finland

 Email: ari.keranen@ericsson.com

 Heidi-Maria Back
 Nokia
 Helsinki 00181
 Finland

 Email: heidi.back@nokia.com

Sethi, et al. Informational [Page 33]

