
Internet Engineering Task Force (IETF) P. van der Stok
Request for Comments: 8132 Consultant
Category: Standards Track C. Bormann
ISSN: 2070-1721 Universitaet Bremen TZI
 A. Sehgal
 NAVOMI, Inc.
 April 2017

PATCH and FETCH Methods for the Constrained Application Protocol (CoAP)

Abstract

 The methods defined in RFC 7252 for the Constrained Application
 Protocol (CoAP) only allow access to a complete resource, not to
 parts of a resource. In case of resources with larger or complex
 data, or in situations where resource continuity is required,
 replacing or requesting the whole resource is undesirable. Several
 applications using CoAP need to access parts of the resources.

 This specification defines the new CoAP methods, FETCH, PATCH, and
 iPATCH, which are used to access and update parts of a resource.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8132.

van der Stok, et al. Standards Track [Page 1]

RFC 8132 CoAP FETCH PATCH April 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. FETCH . 3
 1.2. PATCH and iPATCH . 4
 1.3. Requirements Language 5
 1.4. Terminology and Acronyms 5
 2. FETCH Method . 5
 2.1. Response Codes . 6
 2.2. Error Handling . 6
 2.3. Option Numbers . 7
 2.3.1. The Content-Format Option 7
 2.3.2. The ETag Option 8
 2.4. Working with Observe 8
 2.5. Working with Block 8
 2.6. Building FETCH Requests 8
 2.7. A Simple Example for FETCH 8
 3. PATCH and iPATCH Methods 9
 3.1. Simple Examples for PATCH and iPATCH 12
 3.2. Response Codes . 14
 3.3. Option Numbers . 14
 3.4. Error Handling . 15
 4. The New Set of CoAP Methods 16
 5. Security Considerations 17
 6. IANA Considerations . 18
 7. References . 19
 7.1. Normative References 19
 7.2. Informative References 19
 Acknowledgements . 20
 Authors’ Addresses . 21

van der Stok, et al. Standards Track [Page 2]

RFC 8132 CoAP FETCH PATCH April 2017

1. Introduction

 Similar to HTTP, the GET method defined in [RFC7252] for the
 Constrained Application Protocol (CoAP) only allows the specification
 of a URI and request parameters in CoAP options, not the transfer of
 a request payload detailing the request. This leads some
 applications to use POST where a cacheable, idempotent, safe request
 is actually desired.

 Again, similar to the original specification of HTTP, the PUT method
 defined in [RFC7252] only allows a complete resource to be replaced.
 This also leads applications to use POST where a cacheable, possibly
 idempotent request is actually desired.

 The present specification adds new CoAP methods: FETCH, to perform
 the equivalent of a GET with a request body; and the twin methods,
 PATCH and iPATCH, to modify parts of a CoAP resource.

1.1. FETCH

 The CoAP GET method [RFC7252] is used to obtain the representation of
 a resource, where the resource is specified by a URI and additional
 request parameters can also shape the representation. This has been
 modeled after the HTTP GET operation and the REST model in general.

 In HTTP, a resource is often used to search for information, and
 existing systems varyingly use the HTTP GET and POST methods to
 perform a search. Often, a POST method is used solely so that a
 larger set of parameters to the search can be supplied in the request
 body than can comfortably be transferred in the URI with a GET
 request. [HTTP-SEARCH] proposes a SEARCH method that is similar to
 GET in most properties but enables sending a request body, as is done
 with POST. The FETCH method defined in the present specification is
 inspired by [HTTP-SEARCH], which updates the definition and semantics
 of the HTTP SEARCH request method previously defined by [RFC5323].
 However, there is no intention to limit FETCH to search-type
 operations, and the resulting properties may not be the same as those
 of HTTP SEARCH.

van der Stok, et al. Standards Track [Page 3]

RFC 8132 CoAP FETCH PATCH April 2017

 A major problem with GET is that the information that controls the
 request needs to be bundled up in some unspecified way into the URI.
 Using the request body for this information has a number of
 advantages:

 o The client can specify a media type (and a content coding) that
 enables the server to unambiguously interpret the request
 parameters in the context of that media type. Also, the request
 body is not limited by the character set limitations of URIs,
 which enables a more natural (and more efficient) representation
 of certain domain-specific parameters.

 o The request parameters are not limited by the maximum size of the
 URI. In HTTP, that is a problem, as the practical limit for this
 size varies. In CoAP, another problem is that the block-wise
 transfer is not available for transferring large URI options in
 multiple rounds.

 As an alternative to using GET, many implementations make use of the
 POST method to perform extended requests (even if they are
 semantically idempotent, safe, and even cacheable) to be able to pass
 along the input parameters within the request payload as opposed to
 using the request URI.

 The FETCH method provides a solution that spans the gap between the
 use of GET and POST. As with POST, the input to the FETCH operation
 is passed along within the payload of the request rather than as part
 of the request URI. Unlike POST, however, the semantics of the FETCH
 method are more specifically defined.

1.2. PATCH and iPATCH

 PATCH is also specified for HTTP in [RFC5789]. Most of the
 motivation for PATCH described in [RFC5789] also applies here. iPATCH
 is the idempotent version of PATCH.

 The PUT method exists to overwrite a resource with completely new
 contents and cannot be used to perform partial changes. When using
 PUT for partial changes, proxies and caches, and even clients and
 servers, may get confused as to the result of the operation. PATCH
 was not adopted in an early design stage of CoAP; however, it has
 become necessary with the arrival of applications that require
 partial updates to resources (e.g., [COAP-MGMNT]). Using PATCH
 avoids transferring all data associated with a resource in case of
 modifications, thereby not burdening the constrained communication
 medium.

van der Stok, et al. Standards Track [Page 4]

RFC 8132 CoAP FETCH PATCH April 2017

 This document relies on knowledge of the PATCH specification for HTTP
 [RFC5789]. This document provides extracts from [RFC5789] to make
 independent reading possible.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

1.4. Terminology and Acronyms

 This document uses terminology defined in [RFC5789] and [RFC7252].

 Specifically, it uses the terms "safe" and "idempotent" as defined in
 Section 5.1 of [RFC7252]. (Further discussion of safe and idempotent
 methods can now be found in Sections 4.2.1 and 4.2.2 of [RFC7231],
 respectively; the implications of idempotence of methods on server
 implementations are also discussed in Section 4.5 of [RFC7252].)

2. FETCH Method

 The CoAP FETCH method is used to obtain a representation of a
 resource, specified by a number of request parameters. Unlike the
 CoAP GET method, which requests that a server return a representation
 of the resource identified by the effective request URI (as defined
 by [RFC7252]), the FETCH method is used by a client to ask the server
 to produce a representation as described by the request parameters
 (including the request options and the payload) based on the resource
 specified by the effective request URI. The payload returned in
 response to a FETCH cannot be assumed to be a complete representation
 of the resource identified by the effective request URI, i.e., it
 cannot be used by a cache as a payload to be returned by a GET
 request.

 Together with the request options, the body of the request (which may
 be constructed from multiple payloads using the block protocol
 [RFC7959]) defines the request parameters. With the FETCH method,
 implementations may submit a request body of any media type that is
 defined with the semantics of selecting information from a resource
 in such a FETCH request; it is outside the scope of this document how
 information about media types admissible for the specific resource is
 obtained by the client (although we can hint that form relations
 [CORE-APP] might be a preferred way). It is RECOMMENDED that any
 discovery method that allows a client to find out that the server
 supports FETCH also provides information regarding what FETCH payload
 media types are applicable.

van der Stok, et al. Standards Track [Page 5]

RFC 8132 CoAP FETCH PATCH April 2017

 FETCH requests are both safe and idempotent with regards to the
 resource identified by the request URI. That is, the performance of
 a FETCH is not intended to alter the state of the targeted resource.
 (However, while processing a FETCH request, a server can be expected
 to allocate computing and memory resources or even create additional
 server resources through which the response to the search can be
 retrieved.)

 A successful response to a FETCH request is expected to provide some
 indication as to the final disposition of the requested operation.
 If a successful response includes a body payload, the payload is
 expected to describe the results of the FETCH operation.

 Depending on the response code as defined by [RFC7252], the response
 to a FETCH request is cacheable; the request body is part of the
 cache key. Specifically, 2.05 (Content) response codes (the
 responses for which are cacheable) are a typical way to respond to a
 FETCH request. (Note that this aspect differs markedly from
 [HTTP-SEARCH] and also that caches that cannot use the request
 payload as part of the cache key will not be able to cache responses
 to FETCH requests at all.) The Max-Age option in the response has
 equivalent semantics to its use in a GET.

 The semantics of the FETCH method change to a "conditional FETCH" if
 the request message includes an If-Match or If-None-Match option
 [RFC7252]. A conditional FETCH requests that the query be performed
 only under the circumstances described by the conditional option(s).
 It is important to note, however, that such conditions are evaluated
 against the state of the target resource itself as opposed to the
 results of the FETCH operation.

2.1. Response Codes

 FETCH for CoAP adopts the response codes as specified in Sections 5.9
 and 12.1.2 of [RFC7252] as well as the additional response codes
 mentioned in Section 2.2.

2.2. Error Handling

 A FETCH request may fail under certain known conditions. Beyond the
 conditions already defined in [RFC7252] for GET, noteworthy ones are:

 Malformed FETCH payload: If a server determines that the payload
 provided with a FETCH request is not properly formatted, it can
 return a 4.00 (Bad Request) CoAP error. The definition of a
 malformed payload depends upon the CoAP Content-Format specified
 with the request.

van der Stok, et al. Standards Track [Page 6]

RFC 8132 CoAP FETCH PATCH April 2017

 Unsupported FETCH payload: In case a client sends a payload that is
 inappropriate for the resource identified by the Request-URI, the
 server can return a 4.15 (Unsupported Content-Format) CoAP error.
 The server can determine if the payload is supported by checking
 the CoAP Content-Format specified with the request.

 Unprocessable request: This situation occurs when the payload of a
 FETCH request is determined to be valid (i.e., well-formed and
 supported) but the server is unable to or is incapable of
 processing the request. The server can return a 4.22
 (Unprocessable Entity) CoAP error. In situations when the server
 has insufficient computing resources to complete the request
 successfully, it can return a 4.13 (Request Entity Too Large) CoAP
 error (see also below). If there are more specific errors that
 provide additional insight into the problem, then those should be
 used.

 Request too large: If the payload of the FETCH request is larger
 than a CoAP server can process, then it can return the 4.13
 (Request Entity Too Large) CoAP error.

 It is possible that other error situations not mentioned here are
 encountered by a CoAP server while processing the FETCH request. In
 these situations, other appropriate CoAP response codes can also be
 returned.

2.3. Option Numbers

 FETCH for CoAP adopts the option numbers as specified in Sections
 5.10 and 12.2 of [RFC7252].

 Generally, options defined for GET act in an analogous way for FETCH.
 Two specific cases are called out in the rest of this section.

2.3.1. The Content-Format Option

 A FETCH request MUST include a Content-Format option (see
 Section 5.10.3 of [RFC7252]) to specify the media type and content
 coding of the request body. (Typically, the media type will have
 been specifically designed to specify details for a selection or a
 search on a resource.)

van der Stok, et al. Standards Track [Page 7]

RFC 8132 CoAP FETCH PATCH April 2017

2.3.2. The ETag Option

 The ETag option on a FETCH result has the same semantics as defined
 in Section 5.10.6 of [RFC7252]. In particular, its use as a response
 option describes the "tagged representation", which for FETCH is the
 same as the "selected representation". The FETCH payload is input to
 that selection process and therefore needs to be part of the cache
 key. Similarly, the use of ETag as a request option can elicit a
 2.03 (Valid) response if the representation associated with the ETag
 would still be selected by the FETCH request (including its payload).

2.4. Working with Observe

 The Observe option [RFC7641] can be used with a FETCH request as it
 can be used with a GET request.

2.5. Working with Block

 The Block1 option [RFC7959] can be used with a FETCH request as it
 would be used with a POST request; the Block2 option can then be used
 as it would with GET or POST.

2.6. Building FETCH Requests

 One property of FETCH that may be non-obvious is that a FETCH request
 cannot be generated from a link alone; the client also needs a way to
 generate the request payload. Again, form relations [CORE-APP] may
 be able to fill parts of this gap.

2.7. A Simple Example for FETCH

 The FETCH method needs a media type for its payload (as expressed by
 the Content-Format request option) that specifies the search query in
 similar detail as is shown for the PATCH payload in the PATCH example
 in Section 3.1. ([HTTP-SEARCH] invents a "text/query" format based
 on some hypothetical SQL dialect for its examples.)

 The example below illustrates retrieval of a subset of a JSON
 [RFC7159] object (the same object as used in Section 3.1). Using a
 hypothetical media type "application/example-map-keys+json" (with a
 Content-Format ID of NNN, which is not defined as this is just an
 example), the client specifies the items in the object that it wants:
 it supplies a JSON array that gives the map keys for these items. A
 resource located at <coap://www.example.com/object> can be
 represented by a JSON document that we will consider as the target of
 the FETCH. The client wants to learn the contents of the single map
 key "foo" within this target:

van der Stok, et al. Standards Track [Page 8]

RFC 8132 CoAP FETCH PATCH April 2017

 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 FETCH Example: JSON Document Returned by GET

 The example FETCH request specifies a single top-level member desired
 by giving its map key as the sole element of the "example-map-keys"
 payload:

 FETCH CoAP://www.example.com/object
 Content-Format: NNN (application/example-map-keys+json)
 Accept: application/json
 [
 "foo"
]

 FETCH Example: Request

 The server returns a subset document with just the selected member:

 2.05 Content
 Content-Format: 50 (application/json)
 {
 "foo": ["bar","baz"]
 }

 FETCH Example: Response with Subset JSON Document

 By the logic of this example, the requester could have entered more
 than one map key into the request payload array and would have
 received a more complete subset of the top-level JSON object that is
 representing the resource.

3. PATCH and iPATCH Methods

 The PATCH and iPATCH methods request that a set of changes described
 in the request payload be applied to the target resource of the
 request. The set of changes is represented in a format identified by
 a media type. If the Request-URI does not point to an existing
 resource, the server MAY create a new resource with that URI,
 depending on the PATCH document type (whether it can logically modify
 a null resource) and permissions, as well as other conditions such as
 the degree of control the server gives clients in creating new

van der Stok, et al. Standards Track [Page 9]

RFC 8132 CoAP FETCH PATCH April 2017

 entries in its URI space (see also Section 3.4). Creation of a new
 resource would result in a 2.01 (Created) response code dependent on
 the PATCH document type.

 Restrictions to a PATCH or iPATCH request can be made by including
 the If-Match or If-None-Match options in the request (see Sections
 5.10.8.1 and 5.10.8.2 of [RFC7252]). If the resource could not be
 created or modified, then an appropriate error response code SHOULD
 be sent.

 The difference between the PUT and PATCH requests is documented in
 [RFC5789]. When a request is intended to effect a partial update of
 a given resource, clients cannot use PUT while supplying just the
 update, but they might be able to use PATCH or iPATCH.

 The PATCH method is "not safe" and "not idempotent", as is the HTTP
 PATCH method specified in [RFC5789].

 The iPATCH method is not safe but idempotent, as with the CoAP PUT
 method specified in Section 5.8.3 of [RFC7252].

 A client can mark a request as idempotent by using the iPATCH method
 instead of the PATCH method. This is the only difference between the
 two. The indication of idempotence may enable the server to keep
 less state about the interaction; some constrained servers may only
 implement the iPATCH variant for this reason.

 PATCH and iPATCH are both atomic. The server MUST apply the entire
 set of changes atomically and never provide a partially modified
 representation to a concurrently executed GET request. Given the
 constrained nature of the servers, most servers will only execute
 CoAP requests consecutively, thus preventing a concurrent partial
 overlapping of request modifications. In other words, modifications
 MUST NOT be applied to the server state when an error occurs or when
 only a partial execution is possible on the resources present in the
 server.

 The atomicity applies to a single server. When a PATCH or iPATCH
 request is multicast to a set of servers, each server can either
 execute all required modifications or not. It is not required that
 all servers execute all modifications or none. An Atomic Commit
 protocol that provides multiple server atomicity is out of scope.

van der Stok, et al. Standards Track [Page 10]

RFC 8132 CoAP FETCH PATCH April 2017

 A PATCH or iPATCH response can invalidate a cache in a similar manner
 to the PUT response. For the successful (2.xx) response codes, PATCH
 or iPATCH have the following caching behavior:

 o A 2.01 (Created) response invalidates any cache entry for the
 resource indicated by the Location-* options; the payload is a
 representation of the action result.

 o A 2.04 (Changed) response invalidates any cache entry for the
 target resource; the payload is a representation of the action
 result.

 There is no guarantee that a resource can be modified with PATCH or
 iPATCH. Servers MUST ensure that a received PATCH body is
 appropriate for the type of resource identified by the target
 resource of the request.

 It is RECOMMENDED that any discovery method that allows a client to
 find out that the server supports one of PATCH and iPATCH also
 provide information regarding what PATCH payload media types are
 applicable and which of the two methods are implemented by the server
 for each of these media types.

 Servers that do not rely on the idempotence of iPATCH can easily
 support both PATCH and iPATCH, and it is RECOMMENDED they do so.
 This is inexpensive to do, as, for iPATCH, there is no requirement on
 the server to check that the client’s intention that the request be
 idempotent is fulfilled (although there is diagnostic value in that
 check, so a less-constrained implementation may want to perform it).

van der Stok, et al. Standards Track [Page 11]

RFC 8132 CoAP FETCH PATCH April 2017

3.1. Simple Examples for PATCH and iPATCH

 The example is taken over from [RFC6902], which specifies a JSON
 notation for PATCH operations. A resource located at
 <coap://www.example.com/object> contains a target JSON document.

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"replace", "path":"x-coord", "value":45}
]

 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 This example illustrates use of an idempotent modification to the
 x-coord member of the existing resource "object". The 2.04 (Changed)
 response code conforms with the CoAP PUT method.

van der Stok, et al. Standards Track [Page 12]

RFC 8132 CoAP FETCH PATCH April 2017

 The same example using the Content-Format application/merge-
 patch+json from [RFC7396] looks like the following:

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 52 (application/merge-patch+json)
 { "x-coord":45}

 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 The examples show the use of the iPATCH method, but the use of the
 PATCH method would have led to the same result. Below, a non-
 idempotent modification is shown. Because the action is non-
 idempotent, iPATCH returns an error, while PATCH executes the action.

van der Stok, et al. Standards Track [Page 13]

RFC 8132 CoAP FETCH PATCH April 2017

 JSON document original state:
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ: iPATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET: CoAP 4.00 Bad Request
 Diagnostic payload: Patch format not idempotent

 JSON document final state is unchanged

 REQ: PATCH CoAP://www.example.com/object
 Content-Format: 51 (application/json-patch+json)
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET: CoAP 2.04 Changed

 JSON document final state:
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","bar","baz"]
 }

3.2. Response Codes

 PATCH and iPATCH for CoAP adopt the response codes as specified in
 Sections 5.9 and 12.1.2 of [RFC7252] and add 4.09 (Conflict) and 4.22
 (Unprocessable Entity) with the semantics specified in Section 3.4 of
 the present specification.

3.3. Option Numbers

 PATCH and iPATCH for CoAP adopt the option numbers as specified in
 Sections 5.10 and 12.2 of [RFC7252].

van der Stok, et al. Standards Track [Page 14]

RFC 8132 CoAP FETCH PATCH April 2017

3.4. Error Handling

 A PATCH or iPATCH request may fail under certain known conditions.
 These situations should be dealt with as expressed below.

 Malformed PATCH or iPATCH payload: If a server determines that the
 payload provided with a PATCH or iPATCH request is not properly
 formatted, it can return a 4.00 (Bad Request) CoAP error. The
 definition of a malformed payload depends upon the CoAP Content-
 Format specified with the request.

 Unsupported PATCH or iPATCH payload: In case a client sends a
 payload that is inappropriate for the resource identified by the
 Request-URI, the server can return a 4.15 (Unsupported Content-
 Format) CoAP error. The server can determine if the payload is
 supported by checking the CoAP Content-Format specified with the
 request.

 Unprocessable request: This situation occurs when the payload of a
 PATCH request is determined to be valid (i.e., well-formed and
 supported) but the server is unable to or is incapable of
 processing the request. The server can return a 4.22
 (Unprocessable Entity) CoAP error. More specific scenarios might
 include situations such as:

 * the server has insufficient computing resources to complete the
 request successfully -- 4.13 (Request Entity Too Large) CoAP
 response code (see below); or

 * the resource specified in the request becomes invalid by
 applying the payload -- 4.09 (Conflict) CoAP response code (see
 "Conflicting state" below)).

 In case there are more specific errors that provide additional
 insight into the problem, then those should be used.

 Resource not found: The 4.04 (Not Found) error should be returned if
 the payload of a PATCH request cannot be applied to a non-existent
 resource.

 Failed precondition: In case the client uses the conditional
 If-Match or If-None-Match option to define a precondition for the
 PATCH request, and that precondition fails, then the server can
 return the 4.12 (Precondition Failed) CoAP error.

 Request too large: If the payload of the PATCH request is larger
 than a CoAP server can process, then it can return the 4.13
 (Request Entity Too Large) CoAP error.

van der Stok, et al. Standards Track [Page 15]

RFC 8132 CoAP FETCH PATCH April 2017

 Conflicting state: If the modification specified by a PATCH or
 iPATCH request causes the resource to enter an inconsistent state
 that the server cannot resolve, the server can return the 4.09
 (Conflict) CoAP response. The server SHOULD generate a payload
 that includes enough information for a user to recognize the
 source of the conflict. The server MAY return the actual resource
 state to provide the client with the means to create a new
 consistent resource state. Such a situation might be encountered
 when a structural modification is applied to a configuration data
 store but the structures being modified do not exist.

 Concurrent modification: Resource-constrained devices might need to
 process requests in the order they are received. In case requests
 are received concurrently to modify the same resource but they
 cannot be queued, the server can return a 5.03 (Service
 Unavailable) CoAP response code.

 Conflict handling failure: If the modification implies the
 reservation of resources or the wait time for conditions to become
 true leads to a too-long request execution time, the server can
 return a 5.03 (Service Unavailable) response code.

 It is possible that other error situations not mentioned here are
 encountered by a CoAP server while processing the PATCH request. In
 these situations, other appropriate CoAP status codes can also be
 returned.

4. The New Set of CoAP Methods

 Adding three new methods to CoAP’s existing four may seem like a
 major change. However, FETCH and the two PATCH variants fit well
 into the REST paradigm and have been anticipated on the HTTP side.
 Adding both a non-idempotent and an idempotent PATCH variant allows
 interoperability with HTTP’s PATCH method to be kept and allows the
 use/indication of an idempotent PATCH when that is possible, which
 saves significant effort on the server side.

van der Stok, et al. Standards Track [Page 16]

RFC 8132 CoAP FETCH PATCH April 2017

 Interestingly, the three new methods fit into the old table of
 methods with a surprising similarity in the idempotence and safety
 attributes:

 +------+--------+------+--------+------+------------+
 | Code | Name | Code | Name | safe | idempotent |
 +------+--------+------+--------+------+------------+
 | 0.01 | GET | 0.05 | FETCH | yes | yes |
 | 0.02 | POST | 0.06 | PATCH | no | no |
 | 0.03 | PUT | 0.07 | iPATCH | no | yes |
 | 0.04 | DELETE | | | no | yes |
 +------+--------+------+--------+------+------------+

5. Security Considerations

 This section analyzes the possible threats to the CoAP FETCH and
 PATCH or iPATCH methods. It is meant to inform protocol and
 application developers about the security limitations of CoAP FETCH
 and PATCH or iPATCH as described in this document.

 The FETCH method is subject to the same general security
 considerations as all CoAP methods as described in Section 11 of
 [RFC7252]. Specifically, the security considerations for FETCH are
 closest to those of GET, except that the FETCH request carries a
 payload that may need additional protection. The payload of a FETCH
 request may reveal more detailed information about the specific
 portions of a resource of interest to the requester than a GET
 request for the entire resource would; this may mean that
 confidentiality protection of the request by Datagram Transport Layer
 Security (DTLS) or other means is needed for FETCH where it wouldn’t
 be needed for GET.

 The PATCH and iPATCH methods are subject to the same general security
 considerations as all CoAP methods as described in Section 11 of
 [RFC7252]. The specific security considerations for PATCH or iPATCH
 are nearly identical to the security considerations for PUT
 [RFC7252]; the security considerations of Section 5 of [RFC5789] also
 apply to PATCH and iPATCH. Specifically, there is likely to be a
 need for authorizing requests (possibly through access control and/or
 authentication) and for ensuring that data is not corrupted through
 transport errors or through accidental overwrites. The mechanisms
 used for PUT can be used for PATCH or iPATCH as well.

 The new methods defined in the present specification are secured
 following the CoAP recommendations for the existing methods as
 specified in Section 9 of [RFC7252]. When additional security
 techniques are standardized for CoAP (e.g., Object Security), these
 techniques are then also available for securing the new methods.

van der Stok, et al. Standards Track [Page 17]

RFC 8132 CoAP FETCH PATCH April 2017

6. IANA Considerations

 IANA has added the following entries to the subregistry "CoAP Method
 Codes":

 +------+--------+-----------+
 | Code | Name | Reference |
 +------+--------+-----------+
 | 0.05 | FETCH | RFC 8132 |
 | 0.06 | PATCH | RFC 8132 |
 | 0.07 | iPATCH | RFC 8132 |
 +------+--------+-----------+

 The FETCH method is idempotent and safe, and it returns the same
 response codes that GET can return, plus 4.13 (Request Entity Too
 Large), 4.15 (Unsupported Content-Format), and 4.22 (Unprocessable
 Entity) with the semantics specified in Section 2.2.

 The PATCH method is neither idempotent nor safe. It returns the same
 response codes that POST can return, plus 4.09 (Conflict) and 4.22
 (Unprocessable Entity) with the semantics specified in Section 3.4.

 The iPATCH method is identical to the PATCH method, except that it is
 idempotent.

 IANA has added the following code to the subregistry "CoAP Response
 Codes":

 +------+----------------------+-----------+
 | Code | Name | Reference |
 +------+----------------------+-----------+
 | 4.09 | Conflict | RFC 8132 |
 | 4.22 | Unprocessable Entity | RFC 8132 |
 +------+----------------------+-----------+

 IANA has added entries to the subregistry "CoAP Content-Formats":

 +------------------------------+----------------+----+-----------+
 | Media Type | Content Coding | ID | Reference |
 +------------------------------+----------------+----+-----------+
 | application/json-patch+json | identity | 51 | [RFC6902] |
 | application/merge-patch+json | identity | 52 | [RFC7396] |
 +------------------------------+----------------+----+-----------+

van der Stok, et al. Standards Track [Page 18]

RFC 8132 CoAP FETCH PATCH April 2017

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

7.2. Informative References

 [RFC5323] Reschke, J., Ed., Reddy, S., Davis, J., and A. Babich,
 "Web Distributed Authoring and Versioning (WebDAV)
 SEARCH", RFC 5323, DOI 10.17487/RFC5323, November 2008,
 <http://www.rfc-editor.org/info/rfc5323>.

 [RFC6902] Bryan, P., Ed. and M. Nottingham, Ed., "JavaScript Object
 Notation (JSON) Patch", RFC 6902, DOI 10.17487/RFC6902,
 April 2013, <http://www.rfc-editor.org/info/rfc6902>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

van der Stok, et al. Standards Track [Page 19]

RFC 8132 CoAP FETCH PATCH April 2017

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <http://www.rfc-editor.org/info/rfc7396>.

 [COAP-MGMNT]
 Stok, P., Bierman, A., Veillette, M., and A. Pelov, "CoAP
 Management Interface", Work in Progress,
 draft-ietf-core-comi-00, January 2017.

 [CORE-APP] Hartke, K., "CoRE Application Descriptions", Work in
 Progress, draft-hartke-core-apps-07, February 2017.

 [HTTP-SEARCH]
 Reschke, J., Malhotra, A., and J. Snell, "HTTP SEARCH
 Method", Work in Progress, draft-snell-search-method-00,
 April 2015.

Acknowledgements

 Klaus Hartke has pointed out some essential differences between CoAP
 and HTTP concerning PATCH and found a number of problems in an
 earlier draft version of Section 2. We are grateful for discussions
 with Christian Amsuss, Andy Bierman, Timothy Carey, Paul Duffy,
 Matthias Kovatsch, Michel Veillette, Michael Verschoor, Thomas
 Watteyne, and Gengyu Wei. Christian Groves provided detailed
 comments during the Working Group Last Call, and Christer Holmberg’s
 Gen-ART review provided some further editorial improvement. Further
 Last Call reviews were provided by Sheng Jiang and Phillip Hallam-
 Baker. As usual, the IESG had some very good reviews, and we would
 like to specifically call out those by Alexey Melnikov (responsible
 AD) and Alissa Cooper.

van der Stok, et al. Standards Track [Page 20]

RFC 8132 CoAP FETCH PATCH April 2017

Authors’ Addresses

 Peter van der Stok
 Consultant

 Email: consultancy@vanderstok.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Anuj Sehgal
 NAVOMI, Inc.

 Email: anuj.sehgal@navomi.com

van der Stok, et al. Standards Track [Page 21]

