

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing

THE GOAL, RESOURCE SHARI NG 1

The principal goal of all resource-sharing conputer networks,
i ncluding the now international ARPA Network (the ARPANET), is to
usefully interconnect geographically distributed hardware, software,
and human resources [1]. Achieving this goal requires the design
and i nmpl enentation of various |evels of support software wthin each
constituent computer, and the specification of network-w de
"protocols" (that is, conventions regarding the format and the
relative timng of network nessages) governing their interaction
Thi s paper outlines an alternative to the approach that ARPANET
system bui |l ders have been taking since work in this area began in
1970, and suggests a strategy for nodeling distributed systens
wi thin any | arge conputer networKk. la

The first section of this paper describes the prevailing ARPANET
protocol strategy, which involves specifying a famly of
appl i cati on-dependent protocols with a network-w de inter-process
conmuni cation facility as their common foundation. 1In the second
section, the application-independent command/response discipline
that characterizes this protocol famly is identified and its
i solation as a separate protocol proposed. Such isolation would
reduce the work of the applications progranmer by allow ng the
software that inplenents the protocol to be factored out of each
applications program and supplied as a single,
install ation-maintai ned module. The final section of this paper
proposes an extensible nodel for this class of network interaction
that in itself would even further encourage the use of network
resour ces. 1b

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
The Current Software Approach to Resource Sharing

THE CURRENT SCOFTWARE APPROACH TO RESOURCE SHARI NG 2
Function-Oiented Protocols 2a

The current ARPANET software approach to facilitating resource
sharing has been detailed el sewhere in the literature [2, 3, 4].
Briefly, it involves defining a Host-Host Protocol by which the
operating systens of the various "host" conputers cooperate to
support a network-w de inter-process comunication (IPC) facility,
and then various function-oriented protocols by which processes
deliver and receive specific services via |PC. Each
function-oriented protocol regulates the dial og between a resident
"server process" providing the service, and a "user process" seeking
the service on behalf of a user (the terns "user" and "user process"
wi Il be used consistently throughout this paper to distinguish the
human user fromthe conmputer process acting on his behal f). 2al

The current Host-Host Protocol has been in service since 1970.
Since its initial design and inplementation, a variety of
defici enci es have been recogni zed and several alternative protocols
suggested [5, 6]. Although inprovenents at this level would surely
have a positive effect upon Network resource sharing, the present
paper sinply assumes the exi stence of some formof |PC and focuses
attention upon higher |evel protocol design issues. 2a2

Each of the function-oriented protocols nentioned in this paper
constitutes the official ARPANET protocol for its respective
application domain and is therefore inplenented at nearly all of the
75 host installations that now conprise the Network. It is
primarily upon this widely inplemented protocol famly (and the
phil osophy it represents) that the present paper focuses. Needless
to say, other inmportant resource sharing tools have al so been
constructed within the ARPANET. The Resource Sharing Executive
(RSEXEC), designed and inpl enented by Bolt, Beranek and Newnman, Inc

[7], provides an excellent exanple of such work. 2a3
Experience with and Limtations of Hands-On Resource Sharing 2b
The ol dest and still by far the npbst heavily used

function-oriented protocol is the Tel econmuni cati ons Network

protocol (TELNET) [8], which effectively attaches a termninal on one
conputer to an interactive time-sharing systemon anot her, and

allows a user to interact with the renote systemvia the term nal as

if he were one of its |local users. 2bl

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
The Current Software Approach to Resource Sharing

As depicted in Figure 1, TELNET specifies the nmeans by which a
user process nonitoring the user’'s termnal is interconnected, via
an | PC comuni cation channel, with a server process with access to
the target tine-sharing system TELNET also |egislates a standard
character set in which the user’s commands and the systenis
responses are to be represented in transm ssion between machi nes.
The syntax and semantics of these interchanges, however, vary from
one systemto another and are unregul ated by the protocol; the user
and server processes sinply shuttle characters between the human
user and the target system 2b2

Al t hough the hands-on use of renote resources that TELNET nakes
possible is a natural and highly visible formof resource sharing,
several limtations severely reduce its long-termutility: 2b3

(1) It forces upon the user all of the trappings of the
resource’s own system

To exploit a rempte resource, the user nust |eave the
fam liar working environnent provided by his |ocal system and
enter an alien one with its own peculiar systemstructure
(login, logout, and subsystementry and exit procedures) and
conmand | anguage di scipline (command recognition and
conpl eti on conventions, editing characters, and so on).
Hands-on resource sharing thus fails to provide the user with
the kind of organi zed and consi stent workshop he requires to
work effectively [9].

(2) I't provides no basis for bootstrappi ng new conposite
resources from existing ones.

Because the network access discipline inposed by each
resource i s a human-engi neered command | anguage, rather than a
machi ne-ori ented comuni cation protocol, it is virtually
i mpossi ble for one resource to programatically draw upon the
services of others. Doing so would require that the program
deal successfully with conplicated echoing and feedback
characteristics; unstructured, even unsolicited system
responses; and so forth. Hands-on resource sharing thus does
not hing to provide an environment in which existing resources
can be used as building blocks to construct new, nore powerful
ones.

These inherent linmtations of hands-on resource sharing are
renoved by a protocol that sinplifies and standardi zes the dial og
bet ween user and server processes. G ven such a protocol, the

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
The Current Software Approach to Resource Sharing

various renote resources upon which a user mght wish to draw can

i ndeed be nade to appear as a single, coherent workshop by

i nt erposi ng between himand them a command | anguage interpreter that
transforns his commands into the appropriate protocol utterances

[10, 11]. The construction of conposite resources al so becones
feasi bl e, since each resource is accessible by neans of a

machi ne-ori ented protocol and can thus be readily enployed by other
processes within the network. 2b4

St andardi zing the Inter-Machine Dialog in Specific Application Areas 2c

After the TELNET protocol had been designed and wi dely
i mpl enented within the ARPANET, work began on a famly of
function-oriented protocols designed for use by prograns, rather
than human users. Each such protocol standardi zes the inter-nmachi ne
dialog in a particular application area. Wile TELNET dictates only
the manner in which user and server processes are interconnected via
the IPC facility, and the character set in which the two processes
conmuni cate once connected, each nenber of this famly specifies in
addition the syntax and semantics of the commands and responses that
conpri se their dial og. 2cl

Protocols within this fam|ly necessarily differ in substance,
each specifying its own application-specific command set. The File
Transfer Protocol (FTP) [12], for exanple, specifies commands for
mani pul ating files, and the Renote Job Entry Protocol (RIJE) [13]
speci fies commands for mani pul ati ng batch jobs. Protocols
throughout the fanmly are, however, simlar in form each successive
fam |y menber having sinply inherited the physical features of its
predecessors. Thus FTP and RJE enforce the same conventions for
formul ati ng conmands and responses. 2c2

Thi s common conmand/ r esponse di sci pline requires that conmands

and responses have the foll ow ng respective formats: 2c3
conmand- nane <SP> paraneter <CRLF>
response- nunber <SP> text <CRLF>

Each command i nvoked by the user process is identified by NAVE and

is allowed a single PARAMETER. Each response generated by the

server process contains a three-digit decimal response NUMBER (to be
interpreted by the user process) and expl anatory TEXT (for

presentation, if necessary, to the user). Response nunbers are

assigned in such a way that, for exanple, positive and negative

acknow edgnents can be easily distinguished by the user process. 2c4

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
The Current Software Approach to Resource Sharing

FTP contai ns, anong others, the foll ow ng commands (each |isted
with one of its possible responses) for retrieving, appending to,
repl aci ng, and deleting files, respectively, within the server
process’ file system

Conmand Response

RETR <SP> fil ename <CRLF> 250 <SP> Begi nning transfer. <CRLF>

APPE <SP> fil enane <CRLF> 400 <SP> Not i npl enent ed. <CRLF>
STOR <SP> fil ename <CRLF> 453 <SP> Directory overflow. <CRLF>
DELE <SP> fil enanme <CRLF> 450 <SP> File not found. <CRLF>

The first three commands serve only to initiate the transfer of a
file fromone machine to another. The transfer itself occurs on a
separate | PC channel and is governed by what ampbunts to a separate
pr ot ocol

Since the general conmand format admits but a single paraneter,
mul ti paramet er operations nust be inplenented as sequences of
conmmands. Thus two commands are required to renane a file:

Conmand Response
RNFR <SP> ol dname <CRLF> 200 <SP> Next paraneter. <CRLF>
RNTO <SP> newnane <CRLF> 253 <SP> File renamned. <CRLF>

2c5

2c6

2c7

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

A COWAND/ RESPONSE PROTCOCOL, THE BASIS FOR AN ALTERNATI VE APPROACH 3
The | nportance of Factoring Qut the Comrand/ Response Di scipline 3a

That FTP, RJE, and the other protocols within this fanily share a
conmmon command/ response discipline is a fact not formally recognized
within the protocol literature, and each new protocol docunent
describes it in detail, as if for the first tine. Nowhere are these
conventions codified in isolation fromthe various contexts in which
they find use, being viewed as a necessary but relatively

uni mportant facet of each function-oriented protocol. "This conmmon
conmand/ response di sci pline has thus gone unrecogni zed as the
i mportant, application-independent protocol that it is." 3al

Thi s oversight has had two i nportant negative effects upon the
growm h of resource sharing within the ARPANET: 3a2

(1) I't has all owed the conmand/response discipline to remain
crude.

As already noted, operations that require nore than a
singl e parameter are consistently inplemented as two or nore
separ ate commands, each of which requires a response and thus
incurs the overhead of a full round-trip network del ay.
Furthernore, there are no standards for encodi ng paramneter
types other than character strings, nor is there provision for
returning results in a comand response.

(2) I't has placed upon the applications progranmrer the burden of
i mpl enenting the network "run-time environment (RTE)" that
enabl es himto access renote processes at the desired,
functional |evel.

Bef ore he can address renpte processes in terns |like the
foll ow ng:

execute function DELE with argument TEXTFILE
on machine X

the applications programer nust first construct (as he

i nvariably does in every programhe wites) a nodul e that
provi des the desired programinterface while inplenmenting the
agreed upon command/response discipline. This run-tine

envi ronnent contains the code required to properly fornat

out goi ng comuands, to interface with the IPC facility, and to
parse i ncom ng responses. Because the system provi des only

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

the IPC facility as a foundation, the applications programer
is deterred fromusing renote resources by the anount of
speci al i zed know edge and software that nust first be
acqui r ed.

If, on the other hand, the conmand/response discipline were
formalized as a separate protocol, its use in subsequent
function-oriented protocols could rightly be anticipated by
the systens programer, and a single run-tinme environnent
constructed for use throughout an installation (in the worst
case, one inplenentation per progranm ng | anguage per nachi ne
m ght be required). This nodule could then be placed in a
library and, as depicted in Figure 2, link |loaded with (or
ot herwi se made avail able to) each new applications program
thereby greatly sinplifying its use of renpte resources.

Furt hernore, since enhancenents to it woul d pay dividends
to every applications programenploying its services, the
run-time environment woul d gradually be augnmented to provide
addi ti onal new services to the programer.

The thesis of the present paper is that one of the keys to
facilitating network resource sharing lies in (1) isolating as a
separate protocol the command/response discipline cormon to a | arge
class of applications protocols; (2) making this new,
appl i cation-independent protocol flexible and efficient; and (3)
constructing at each installation a RTE that enploys it to give the
applications programer easy and hi gh-level access to renpte
resources. 3a3

Speci fications for the Conmand/ Response Prot ocol 3b

Havi ng argued the val ue of a command/response protocol (hereafter
termed the Protocol) as the foundation for a large cl ass of
applications protocols, there remains the task of suggesting the
formthat the Protocol mght take. There are eight requirenents.
First, it nust reproduce the capabilities of the discipline it
repl aces: 3bl

(1) Pernmit invocation of arbitrary, naned commands (or functions)
i mpl enented by the renpte process.

(2) Permit command outcones to be reported in a way that aids
both the programinvoking the command and the user under
whose control it may be executing.

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

Second, the Protocol should renpbve the known deficiencies of its
predecessor, that is: 3b2

(3) Allow an arbitrary nunber of paraneters to be supplied as
argunents to a single comand.

(4) Provide representations for a variety of paranmeter types,
including but not Iimted to character strings.

(5) Pernmit commands to return paranmeters as results as well as
accept them as argunents.

And, finally, the Protocol should provide whatever additiona
capabilities are required by the nore conplex distributed systens

whose creation the Protocol seeks to encourage. Although others may
later be identified, the three capabilities bel ow are recogni zed now

to be inportant: 3b3

(6) Permit the server process to invoke commands in the user
process, that is, elimnate entirely the often inappropriate
user/server distinction, and all ow each process to invoke
comuands in the other.

In the workshop environment alluded to earlier, for
exanpl e, the user process is the comuand | anguage interpreter
and the server process is any of the software tools avail able
to the user. Wile nost commands are issued by the
interpreter and addressed to the tool, occasionally the too
nmust i nvoke commands in the interpreter or in another tool. A
graphi cal text editor, for exanple, nust invoke commands
within the interpreter to update the user’s display screen
after an editing operation.

(7) Permit a process to accept two or nore comuands for
concurrrent execution.

The text editor may wish to permt the user to initiate a
long formatting operation with one command and yet continue to
i ssue additional, shorter commands before there is a response
to the first.

(8) Allow the process issuing a command to suppress the response
the command woul d otherw se elicit.

This feature would pernmit network traffic to be reduced in
those cases in which the process invoking the command deens a

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

response unnecessary. Commands that al ways succeed but never
return results are obvious candidates for this kind of
treat ment.

A Formul ation of the Protocol That Meets These Specifications 3c

The eight requirenents |isted above are net by a protocol in
which the followi ng two nessages are defined: 3cl

nessage-type=COVMAND [tid] command- nanme arguments
nessage-type=RESPONSE tid outcone results

Here and in subsequent protocol descriptions, elenents enclosed in
square brackets are optional. 3c2

The first nessage invokes the command whose NAME is specified
usi ng the ARGUMENTS provi ded. The second is issued in eventua
response to the first and returns the OUTCOVE and RESULTS of the
conpl eted conmand. \Wenever OUTCOME indi cates that a conmmand has
failed, the command’'s RESULTS are required to be an error nunber and
di agnosti c nmessage, the former to help the invoking program
determi ne what to do next, the latter for possible presentation to
the user. The protocol thus provides a framework for reporting
errors, while leaving to the applications programthe tasks of
assigning error nunbers and conposing the text of error nmessages. 3c3

There are several elenents of the Protocol that are absent from
the existing comuand/response discipline: 3c4

(1) RESULTS, in fulfillnment of Requirenent 5.

(2) A MESSACE TYPE that distinguishes commands from responses,
ari sing from Requi renent 6.

In the existing discipline, this distinction is inplicit,
since user and server processes receive only responses and
conmands, respectively.

(3) An optional transaction identifier TID by which a comand and
its response are associated, arising from Requirenents 7 and
8.

The presence of a transaction identifier in a command
inmplies the necessity of a response echoing the identifier
and no two concurrently outstandi ng conmands may bear the sane
identifier.

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

Requirenments 3 and 4--the ability to transmt an arbitrary numnber
of paraneters of various types with each command or response--are
nost econom cally and effectively net by defining a small set of
primtive "data types" (for exanple, bool eans, integers, character
strings) fromwhich concrete paranmeters can be nodel ed, and a
"transm ssion format" in which such paranmeters can be encoded.
Appendi x A suggests a set of data types suitable for a |arge class
of applications; Appendix B defines sone possible transm ssion
formats. 3¢5

The protocol description given above is, of course, purely
synmbolic. Appendix C explores one possible encoding of the Protoco
in detail. 3c6

Sunmari zi ng the Argunents Advanced So Far 3d

The author trusts that little of what has been presented thus far
wi Il be considered controversial by the reader. The follow ng
princi pal arguments have been nade: 3d1

(1) The nore effective forns of resource sharing depend upon
renote resources being usefully accessible to other prograns,
not just to human users.

(2) Application-dependent protocols providing such access using
the current approach |eave to the applications progranmer the
task of constructing the additional |ayer of software (above
the IPC facility provided by the system) required to nmake
renote resources accessible at the functional |evel, thus
di scouragi ng their use.

(3) A single, resource-independent protocol providing flexible
and efficient access at the functional level to arbitrary
renote resources can be devised.

(4) This protocol would rmake possible the construction at each
installation of an application-independent, network run-time
envi ronnent naking renpte resources accessible at the
functional |evel and thus encouraging their use by the
appl i cati ons progranmer.

A protocol as sinple as that suggested here has great potentia
for stimulating the sharing of resources within a conputer network.
First, it would reduce the cost of adapting existing resources for
network use by elimnating the need for the design, docunentation
and i npl enentation of specialized delivery protocols. Second, it

-10-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Conmand/ Response Protocol, the Basis for an Alternative Approach

woul d encourage the use of renote resources by elimnating the need

for application-specific interface software. And finally, it would
encour age the construction of new resources built expressly for

renote access, because of the ease with which they could be offered

and used within the network software marketpl ace. 3d2

-11-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Hi gh-Level Mdel of the Network Environnent

A H GH LEVEL MODEL OF THE NETWORK ENVI RONMENT
The | nportance of the Mddel |nposed by the Protoco

The Protocol proposed above inmposes upon the applications
programer a particul ar nmodel of the network environnent. In a
het er ogeneous conput er network, nearly every protocol intended for
general inplenmentation has this effect, since it idealizes a class
of operations that have concrete but slightly different equivalents
in each system Thus the ARPANET' s TELNET Protocol alluded to
earlier, for exanple, specifies a Network Virtual Term nal that
attenpts to provide a best fit to the nany real termnals in use
around t he NetworKk.

As now formul ated, the Protocol nodels a renote resource as an
interactive programwith a sinple, rigidly specified command
| anguage. This nodel follows naturally fromthe fact that the
function-oriented protocols fromwhich the Protocol was extracted
were necessitated by the conplexity and diversity of user-oriented
conmmand | anguages. The Protocol nmay thus legitimately be viewed as
a vehicle for providing, as an adjunct to the sophisticated command
| anguages al ready available to users, a famly of sinple command
| anguages that can readily be enpl oyed by prograns.

VWil e the command/ response nodel is a natural one, others are
possible. A renote resource mght also be nodel ed as a process that
services and replies to requests it receives from other conputer
processes. This request/reply nodel woul d enphasi ze the fact that
the Protocol is a vehicle for inter-process comunication and that
no human user is directly involved.

Substituting the request/reply nodel for the command/response
nodel requires only cosnetic changes to the Protocol

nmessage-t ype=REQUEST [tid] op-code argunents
nmessage-t ype=REPLY tid outcone results

In the formul ati on above, the terns "REQUEST", "REPLY", and
"op-code" have sinply been substituted for "COVMAND', "RESPONSE",
and "conmand- nane", respectively.

The choi ce of nodel need affect neither the content of the
Prot ocol nor the behavior of the processes whose dialog it governs.
Use of the word "command” in the comand/response nodel, for
exanple, is not neant to inply that the renote process can be
coerced into action. Whatever nodel is adopted, a process has

-12-

4a

4al

4a2

4a3

4a4

4a5

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Hi gh-Level Mdel of the Network Environnent

conplete freedomto reject an incomng renpte request that it is
i ncapable of or unwilling to fulfill. 4a6

But even though it has no substantive effect upon the Protocol
the selection of a nodel --comuand/response, request/reply, and so
on--is an inportant task because it determi nes the way in which both
applications and systens progranmmers perceive the network
environnent. |f the network environment is nmade to appear foreign
to him the applications programer may be di scouraged from using
it. The choice of nodel also constrains the kind and range of
protocol extensions that are likely to occur to the systens
programmer; one nodel may suggest a rich set of useful extensions,
anot her | ead nowhere (or worse still, in the wong direction). 4a7

In this final section of the paper, the author suggests a network
nodel (hereafter ternmed the Mddel) that he believes will both
encourage the use of renpte resources by the applications progranmer
and suggest to the systenms progranmer a wi de variety of usefu
Prot ocol extensions. Unlike the substance of the Protocol, however,
the Model has already proven quite controversial w thin the ARPANET
conmuni ty. 4a8

Model i ng Resources As Col |l ections of Procedures 4b

I deal ly, the goal of both the Protocol and its accompanyi ng RTE
is to nake renpte resources as easy to use as |local ones. Since
| ocal resources usually take the formof resident and/or library
subroutines, the possibility of nobdeling renpte commands as
"procedures" imediately suggests itself. The Mdel is further
confirmed by the simlarity that exists between | ocal procedures and
the renmpte conmmands to which the Protocol provides access. Both
carry out arbitrarily conpl ex, naned operations on behalf of the
requesting program (the caller); are governed by argunents supplied
by the caller; and return to it results that reflect the outcone of
the operation. The procedure call nodel thus acknow edges that, in
a network environnent, progranms rmust sometines call subroutines in
machi nes other than their own. 4b1

Li ke the request/reply nodel already described, the procedure
call nodel requires only cosnetic changes to the Protocol: 4b2

message-t ype=CALL [tid] procedure-nane argunents
nmessage-type=RETURN tid outcone results

In this third fornulation, the terms "CALL", "RETURN', and
"procedur e-name" have been substituted for "COVAND, "RESPONSE", and

-13-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Hi gh-Level Mdel of the Network Environnent

"command- nane", respectively. And in this form the Protocol n ght
aptly be designated a "procedure call protocol (PCP)". 4b3

"The procedure call nodel would elevate the task of creating
applications protocols to that of defining procedures and their
calling sequences. It would also provide the foundation for a true
di stributed programm ng system (DPS) that encourages and facilitates
the work of the applications programrer by gracefully extending the
| ocal programming environnment, via the RTE, to enbrace nodul es on
ot her machines." This integration of |ocal and network programm ng
envi ronnents can even be carried as far as nodifying conmpilers to
provide minor variants of their normal procedure-calling constructs
for addressing rempte procedures (for which calls to the appropriate
RTE primtives would be dropped out). 4b4

Finally, the Mddel is one that can be naturally extended in a
variety of ways (for exanple, coroutine |inkages and signals) to
further enhance the distributed programrm ng environment. 4b5

Clarifying the Procedure Call WNbdel 4c

Al though in many ways it accurately portrays the class of network
interactions with which this paper deals, the Mdel suggested above
may in other respects tend to mslead the applications programer.
The Model mnust therefore be clarified: 4c1

(1) Local procedure calls are cheap; renpte procedure calls are
not .

Local procedure calls are often effected by neans of a
singl e machine instruction and are therefore relatively
i nexpensive. Renote procedure calls, on the other hand, would
be effected by neans of a primtive provided by the |ocal RTE
and require an exchange of nmessages via | PC.

Because of this cost differential, the applications
programrer must exercise discretion in his use of renote
resources, even though the nmechanics of their use will have
been greatly sinplified by the RTE. Like virtual nenory, the
procedure call nodel offers great convenience, and therefore
power, in exchange for reasonable alertness to the
possibilities of abuse.

(2) Conventional prograns usually have a single |ocus of control
di stri buted prograns need not.

-14-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
A Hi gh-Level Mdel of the Network Environnent

Conventional progranms are usually inplemented as a single
process with exactly one locus of control. A procedure call
therefore, traditionally inplies a transfer of control from
caller to callee. Distributed systens, on the other hand, are
i mpl enented as two or nore processes, each of which is capable
of independent execution. |In this new environnent, a renote
procedure call need not suspend the caller, which is capable
of continuing execution in parallel with the called procedure.

The RTE can therefore be expected to provide, for
conveni ence, two nodes of renote procedure invocation: a
bl ocki ng node that suspends the caller until the procedure
returns; and a non-bl ocking node that rel eases the caller as
soon as the CALL nessage has been sent or queued. Most
conventional operating systens al ready provide such a node
choice for 1/0O operations. For non-blocking calls, the RTE
must al so, of course, either arrange to asynchronously notify
the program when the call is conplete, or provide an
additional primtive by which the applications program can
periodically test for that condition

Finally, the applications programrer must recognize that by no
nmeans all useful forns of network conmunication are effectively
nodel ed as procedure calls. The lower level IPC facility that
remains directly accessible to himnmust therefore be enployed in
those applications for which the procedure call nodel is
i nappropriate and RTE-provided primtives sinply will not do. 4c2

-15-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Sone Expectations

SOVE EXPECTATI ONS 5

Both the Procedure Call Protocol and its associ ated Run-Tinme
Envi ronnment have great potential for facilitating the work of the
network programmer; only a small percentage of that potential has
been di scussed in the present paper. Upon the foundation provided
by PCP can be erected higher |evel application-independent protoco
| ayers that further enhance the distributed programm ng environnent
by providing even nore powerful capabilities (see Appendix D). 5a

As the inportance of the RTE becones fully evident, additiona
tasks will gradually be assigned to it, including perhaps those of: 5b

(1) Converting paraneters between the fornat enployed internally
by the applications program and that inposed by the
Pr ot ocol . 5b1

(2) Automatically selecting the nost appropriate inter-process
transm ssion format on the basis of the two nachi nes’ word
si zes. 5b2

(3) Automatically substituting for network IPC a nore efficient
form of comuni cati on when both processes reside on the sane
nmachi ne. 5b3

The RTE will eventually offer the progranmer a wide variety of

appl i cati on-i ndependent, network-programm ng conveni ences, and so,

by means of the Protocol, beconme an increasingly powerful

di stri but ed-system buil ding tool. 5c

-16-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Acknowl edgnent s

ACKNONLEDGVENTS

Many individuals within both SRI's Augrmentation Research Center
(ARC) and the | arger ARPANET conmmunity have contributed their time
and ideas to the devel opment of the Protocol and Model described in
this paper. The contributions of the follow ng individuals are
expressly acknow edged: Dick Watson, Jon Postel, Charles Irby, Ken
Victor, Dave Maynard, and Larry Garlick of ARC, and Bob Thonmas and
Ri ck Schantz of Bolt, Beranek and Newman, |nc.

ARC has been working toward a high-1evel franework for
net wor k- based di stributed systens for a nunber of years now [14].
The particul ar Protocol and Mddel described here result from
research begun by ARC in July of 1974. This research included
devel opi ng the Mddel ; designing and docunenting the Protoco
required to support it [15]; and designing, docunenting, and
i mpl ementing a prototype run-time environment for a particular
machi ne [16, 17], specifically a PDP-10 running the Tenex operating
system devel oped by Bolt, Beranek and Newran, Inc [18]. Three
design iterations were carried out during a 12-nonth period, and the
resulting specification inplemented for Tenex. The Tenex RTE
provi des a superset of the capabilities presented in the body of
this paper and Appendices A through C as well as those alluded to in
Appendi x D

The work reported here was supported by the Advanced Research

Proj ects Agency of the Departnent of Defense, and by the Rome Air
Devel opnent Center of the Air Force

-17-

6a

6b

6¢C

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x A Suggested Data Types

APPENDI X A: SUGGESTED DATA TYPES 7

The Protocol requires that every paraneter or "data object" be
represented by one of several primtive data types defined by the
Model . The set of data types belowis sufficient to conveniently
nodel a large class of data objects, but since the need for
additional data types (for exanple, floating-point nunbers) wll
surely arise, the set nust remai n open-ended. Throughout the
descriptions below, Nis confined to the range [0, 2**15-1]: 7a

LIST: A list is an ordered sequence of N data objects called

"elenents”. A LIST may contain other LISTs as elenments, and can
therefore be enployed to construct arbitrarily conplex conposite
dat a obj ects. 7al

CHARSTR: A character string is an ordered sequence of N ASCl
characters, and conveniently nodels a variety of textua
entities, fromshort user nanes to whol e paragraphs of text. 7a2

BITSTR. A bit string is an ordered sequence of N bits and,
therefore, provides a nmeans for representing arbitrary binary
data (for exanple, the contents of a word of menory). 7a3

INTEGER An integer is a fixed-point nunber in the range
[-2**31, 2**31-1], and conveniently nodels various kinds of
nunerical data, including tine intervals, distances, and so on. 7a4

INDEX: An index is an integer in the range [1, 2**15-1]. As
its name and val ue range suggest, an |INDEX can be used to address
a particular bit or character within a string, or element wthin
alist. |NDEXes have other uses as well, including the nodeling
of handles or identifiers for open files, created processes, and
the like. Also, because of their restricted range, | NDEXes are
nore conpact in transm ssion than | NTEGERs (see Appendi x B). 7ab

BOOLEAN: A bool ean represents a single bit of information,
and has either the value true or false. 7ab6

EMPTY: An enpty is a valuel ess place holder within a LIST or
paraneter |ist. 7a7

-18-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x B: Suggested Transm ssion Formats

APPENDI X B: SUGGESTED TRANSM SSI ON FORVATS

Paraneters nmust be encoded in a standard transmni ssion format
bef ore they can be sent fromone process to another via the
Protocol. An effective strategy is to define several formats and
sel ect the npst appropriate one at run-time, adding to the Protoco
a nmechani smfor format negotiation. Format negotiati on woul d be
another responsibility of the RTE and could thus be nmade conpletely
invisible to the applications program

Suggested below are two transmi ssion formats. The first is a
36-bit binary format for use between 36-bit machi nes, the second an
8-bit binary, "universal" format for use between dissimlar
machi nes. Data objects are fully typed in each format to enable the
RTE to automatically decode and internalize incomng paraneters
should it be desired to provide this service to the applications
program

PCPB36, For Use Between 36-Bit NMachi nes

Bits 0-13 Unused (zero)
Bits 14-17 Data type
EMPTY =1 |INTEGER=4 LI ST=7
BOOLEAN=2 BI TSTR =5
| NDEX =3 CHARSTR=6
Bits 18-20 Unused (zero)
Bits 21-35 Value or length N
EMPTY unused (zero)
BOOLEAN 14 zero-bits + 1-bit val ue (TRUE=1/ FALSE=0)
| NDEX unsi gned val ue
| NTEGER wunused (zero)
BI TSTR unsigned bit count N
CHARSTR unsi gned character count N
LI ST unsi gned el enent count N
Bits 36- Val ue
EMPTY unused (nonexistent)
BOOLEAN unused (nonexi stent)
| NDEX unused (nonexistent)
I NTEGER two's conpl enent full-word val ue
BITSTR bit string + zero padding to word boundary
CHARSTR ASCI| string + zero padding to word boundary
LI ST el ement data objects

-10-

8a

8b
8c

8cl
8c2

8c3
8c4

8c5

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x B: Suggested Transm ssion Formats

PCPB8, For Use Between Dissim | ar Machi nes 8d

Byt e 0 Data type 8d1l
EMPTY =1 |INTEGER=4 LI ST=7
BOOLEAN=2 BITSTR =5
| NDEX =3 CHARSTR=6

Bytes 1- Val ue 8d2
EMPTY unused (nonexi stent)
BOOLEAN 7 zero-bits + 1-bit value (TRUE=1/ FALSE=0)
| NDEX 2-byte unsigned val ue

I NTEGCER 4-byte two’s conpl enent val ue
Bl TSTR 2-byte unsigned bit count N + bit string
+ zero padding to byte boundary
CHARSTR 2-byte unsigned character count N + ASCI| string
LI ST 2-byte el ement count N + el enent data objects

-20-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x C. A Detail ed Encoding of the Procedure Call Protoco

APPENDI X C. A DETAI LED ENCODI NG OF THE PROCEDURE CALL PROTCCOL

Al t hough the data types and transm ssion formats detailed in the
previ ous appendi xes serve primarily as vehicles for representing the
argunents and results of renote procedures, they can just as readily
and effectively be enployed to represent the commands and responses
by which those paranmeters are transmtted.

Taki ng this approach, one m ght nodel each of the two Protoco
nessages as a PCP data object, specifically a LI ST whose first
el ement is an | NDEX nessage type. The follow ng conci se statenent
of the Protocol then results:

LI ST (CALL, tid, procedure, argunents)
| NDEX=1 | NDEX/ EMPTY CHARSTR LI ST

LI ST (RETURN, tid, out cone, results)
| NDEX=2 | NDEX BOOLEAN LI ST

The RESULTS of an unsuccessful procedure would be represented as
fol | ows:

LI ST (error, diagnostic)
| NDEX CHARSTR

-21-

9a

9b

9b1
9b2

9c

9cl

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x D: A Look at Sone Possible Extensions to the Mde

APPENDI X D. A LOOK AT SOVE PGOSSI BLE EXTENSI ONS TO THE MODEL 10

The result of the distributed-systembuilding strategy proposed
in the body of this paper and the preceedi ng appendices is depicted
in Figure DD1. At the core of each process is the inter-process
conmuni cation facility provided by the operating system which
effects the transm ssion of arbitrary binary data between distant
processes. Surrounding this core are conventions regarding first
the format in which a few, primtive types of data objects are
encoded in binary for IPC, and then the formats of several conposite
data objects (that is, nessages) whose transm ssion either invokes
or acknow edges the previous invocation of a renpte procedure.
| mredi atel y above |ies an open-ended protocol |ayer in which an
arbitrary nunber of enhancenments to the distributed progranmm ng
envi ronnent can be inplenmented. Encapsul ating these various
protocol layers is the installation-provided run-tinme environnent,
whi ch delivers DPS services to the applications program according to
machi ne- and possi bly program ng-| anguage- dependent conventi ons. 10a

The Protocol proposed in the present paper recognizes only the
nost fundanental aspects of renpte procedure calling. It pernits
the caller to identify the procedure to be called, supply the
necessary argunents, deternine the outconme of the procedure, and
recover its results. |In a second paper [19], the author proposes
some extensions to this sinple procedure call nodel, and attenpts to
identify other commopn forms of inter-process interaction whose
st andardi zati on woul d enhance the distributed programm ng
environnent. Included anong the topics discussed are: 10b

(1) Coroutine linkages and other forns of conmunication between
the caller and call ee. 10b1

(2) Propagation of notices and requests up the thread of contro
that results fromnested procedure calls. 10b2

(3) Standard mechani sms for renotely reading or witing
system gl obal data objects wi thin another program 10b3

(4) Access controls for collections of related procedures. 10b4

(5) A standard neans for creating and initializing processes,
that is, for establishing contact with and | ogging into a
renote machi ne, identifying the programto be executed, and
so forth. This facility would permt arbitrarily conpl ex
process hierarchies to be created. 10b5

-22-

NWGE RFCH 707 JEW 14- JAN-76 19:51 34263
NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Appendi x D: A Look at Sone Possible Extensions to the Mde

(6) A mechanismfor introducing processes to one another, that
is, for superinposing nore general conmunication paths upon
the process hierarchy. 10b6

These and ot her extensions can all find a place in the open-ended
protocol |ayer of Figure D-1. The particular extensions explored in
[19] are offered not as dogma but rather as a neans of suggesting

the possibilities and stinulating further research. 10c

-23-

NWGE RFCH 707

JEW 14-JAN-76 19:51 34263

NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Ref er ences

REFERENCES

1

10.

11.

Kahn, R E., "Resource-Sharing Conmputer Conmunications
Net wor ks, " Proceedi ngs of the | EEE, Vol. 60, No. 11, pp
1397- 1407, Novenber 1972.

Crocker, S. D., Heafner, J. F., Metcalfe, R M, Postel, J. B.,
"Function-oriented Protocols for the ARPA Conputer Network,"
AFI PS Proceedi ngs, Spring Joint Conputer Conference, Vol. 40,
pp. 271-279, 1972.

Carr, C. S., Crocker, S. D., Cerf, V. G, "Host-Host

Conmuni cati on Protocol in the ARPA Network," AFIPS Proceedi ngs,
Spring Joint Conputer Conference, Vol. 36, pp. 589-597, 1970.
M Kenzie, A A, Host/Host Protocol for the ARPA Network, Bolt
Ber anek and Newman |nc., Canbridge, Massachusetts, January 1972
(SRI - ARC Catal og I'tem 8246).

Wal den, D. C., "A Systemfor Interprocess Comruni cation in a

Resource Sharing Conputer Network," Comuni cations of the ACM
Vol . 15, No. 4, pp. 221-230, April 1972.

Cerf, V. G, Kahn, R E., "A Protocol for Packet Network
| nt ercomruni cation,” | EEE Transacti ons on Communi cati ons, Vol .
Com 22, No. 5, pp. 637-648, May 1974.

Thomas, R H., "A Resource-Sharing Executive for the ARPANET,"
AFI PS Proceedi ngs, National Computer Conference, Vol. 42, pp
155-163, 1973.

TELNET Protocol Specification, Stanford Research Institute,
Menl o Park, California, August 1973 (SRI-ARC Catal og |Item
18639).

Engel bart, D. C., Watson, R W, Norton, J. C, "The Augnented
Knowl edge Wor kshop, " AFIPS Proceedi ngs, National Computer
Conference, Vol. 42, pp. 9-21, 1973.

Engel bart, D. C., English, W K., "A Research Center for
Augnenting Human Intellect," AFIPS Proceedings, Fall Joint
Conput er Conference, Vol. 33, pp. 395-410, 1968.

Irby, C. H, Dornbush, C. F., Victor, K E., Wallace, D. C, "A
Conmand Meta Language for NLS," Final Report, Contract

-24-

11

1l1la

11b

11c

11d

1lle

11f

119

11h

11i

11]

NWGE RFCH 707

JEW 14-JAN-76 19:51 34263

NCC 76 A Hi gh-Level Franework for Network-Based Resource Sharing
Ref er ences

12.

13.

14.

15.

16.

17.

18.

19.

RADC- TR- 75-304, SRI Project 1868, Stanford Research Institute,
Menl o Park, California, Decenber, 1975.

Neigus, N. J., File Transfer Protocol, ARPA Network WrKking
Group Request for Conments 542, Bolt Beranek and Newmran Inc.,
Canbri dge, Massachusetts, July 1973 (SR -ARC Catalog Item
17759).

Bressler, R D., Guida, R, M Kenzie, A A, Renote Job Entry
Prot ocol, ARPA Network Worki ng Group Request for Comments 360,
Dynam ¢ Model i ng Group, Massachusetts Institute of Technol ogy,
Canbri dge, Massachusetts, (undated) (SRI-ARC Catalog Item
12112).

Wat son, R W, Sonme Thoughts on System Design to Facilitate
Resource Sharing, ARPA Network Working Group Request for
Conmments 592, Augnentation Research Center, Stanford Research
Institute, Menlo Park, California, Novermber 20, 1973 (SRl -ARC
Catal og Item 20391).

Wiite, J. E., DPS-10 Version 2.5 Inplenmenter’s Cuide,

Augnent ati on Research Center, Stanford Research Institute, Menlo

Park, California, August 15, 1975 (SRl -ARC Catal og Item 26282).

Wiite, J. E., DPS-10 Version 2.5 Programrer’s Qui de,

Augnent ati on Research Center, Stanford Research Institute, Menlo

Park, California, August 13, 1975 (SRI-ARC Catal og Item 26271).

VWite, J. E., DPS-10 Version 2.5 Source Code, Augmrentation
Research Center, Stanford Research Institute, Menlo Park,
California, August 13, 1975 (SRI-ARC Catalog Item 26267).

Bobrow, D. G, Burchfiel, J. D., Murphy, D. L., Tominson, R
S., "TENEX, a Paged Tine Sharing Systemfor the PDP-10,"
Conmuni cati ons of the ACM Vol. 15, No. 3, pp. 135-143, March
1972.

Wiite, J. E., "Elenents of a Distributed Programm ng System"

Submitted for publication in the Journal of Conputer Languages,
1976.

-25-

11k

111

11m

11n

110

11p

11q

11r

11s

NWGE RFCH 707
NCC 76

FI GURE LI ST

Fi gure 1.

Fi gure 2.

Fi gure D-1.

JEW 14- JAN-76 19:51 34263
A Hi gh-Level Franework for Network-Based Resource Sharing
Fi gure List
12
Interfacing a renote terminal to a local tinme-sharing
system via the TELNET Protocol . 12a
Interfacing distant applications progranms via their
run-time environnents. 12b
Sof tware and protocol |ayers conprising a process

within the distributed progranm ng system 12c

-26-

NWGE RFCH 707 JEW 14-JAN-76 19:51 34263

-27-

NWGE RFCH 707 JEW 14-JAN-76 19:51 34263

A Hi gh-Level Franmework for Network-Based Resource Sharing

23-DEC- 75

Janes E. Wite
Augnent ati on Research Center

Stanford Research Institute
Menl o Park, California 94025

(415) 326- 6200 x2960

Thi s paper proposes a high-level, application-independent
protocol and software framework that woul d extend the | oca
programm ng environment to enbrace nodul es in other computers
within a resource sharing conputer network, and thereby
facilitate the construction of distributed systens and encourage
the sharing of resources.

The work reported here was supported by the Advanced Research
Projects Agency of the Departnent of Defense, and by the Rome Air
Devel opnent Center of the Air Force

Thi s paper has been submitted for publication in the
Proceedi ngs of the 1976 National Conputer Conference.

