Net wor k Wor ki ng Group Ri chard Schant z
RFC # 671 BBN- TENEX
NI C # 31439 Decenber 6, 1974

A Note on Reconnection Protoco
| NTRODUCTI ON

Thi s note docunents the experience we have had in inplenmenting a
nodi fi ed, experinmental version of the Tel net reconnection protoco
option within the context of the Resource Sharing Executive (RSEXEC)
The reconnection protocol specifies a procedure for transformng a
configuration fromone in which the initiating process has
connections to two correspondent processes, to one in which there is
a direct connection between the correspondents. Wen the procedure is
successfully conpleted, the initiating process is no |longer in the
conmuni cati on path between the correspondents.

Resource sharing computer networks and distributed computing wll
increasingly give rise to specialization by task amobng the conputer
installations. In such an environnent, a "job" is the dynamically
varyi ng interconnection of a subset of these specialized nodul es.
Connections are the "glue" in "bonding" the job together

Reconnection provides for a dynam cally changi ng "bondi ng" structure.
(For a nore conplete discussion of the utility of reconnection, see
RFC 426).

Thi s docunent deals with reconnection in terns of its current ARPANET
definition as a Tel net protocol option. The first section defines a
nodi fi ed reconnection protocol. The second section di scusses genera
network inplenentation details, while the final section describes
aspects of the TENEX/ RSEXEC i npl enent ati on.

Fam liarity with the new ARPANET Tel net protocol (RFC 495) is
assumned.

. PROTOCOL for RECONNECTI NG TELNET COVMUNI CATI ON PATHS

A process initiates the reconnection of two of its Tel net connections
by sending (or requesting its "systenm to send) the

<I AC><DO><RECONNECT> Tel net command sequence over each of the two
send connections. The process initiating the reconnection is
attenpting to cause the direct connection of the objects of the two
Tel net connections. In this manner, the initiating process can renove
itself fromthe commnication path between Tel net objects.

Schant z [Page 1]

RFC 671 A Note on Reconnection Protocol Decenber 1974

The initiating process awaits positive responses to both reconnection
requests before proceeding further with the reconnection. A
reconnection request may be accepted by replying with the Tel net
sequence <|I ACG<W LL><RECONNECT>. It may be rejected by sending the
Tel net sequence <I ACC<WONT><RECONNECT>. Rejection of both requests
means nornmal comruni cation nmay resune at once. Rejection of one
request (but not the other) requires that the process agreeing to the
reconnection be notified by sending it the Tel net sequence

<| ACC<DONT><RECONNECT> in response to its acceptance reply.

After receiving positive responses to both requests, the initiating
agent next sel ects the object of one of the Tel net connections for a
passive role in the subsequent connection attenpt. The other is
designated as the active participant. The passive participant is to
listen on a set of sockets, and the active participant is to send
Request for Connections (RFCs) for those sockets. By designating
roles, we are trying to reduce the probability of synchronization
probl ens.

The initiating process next enters into subnegotiation with the
process desi gnated as bei ng passive. This subnegotiation involves
sendi ng the Tel net sequence <l AC> <SB> <RECONNECT> <PASSI VE>
<NEWHOST> <NEWSOCKET1> <NEWBOCKET2> <NEWSOCKET3> <NEWSOCKET4> <| AC>
<SE>. The <PASSI VE> paraneter indicates that the recipient is to
listen for RFCs fromthe socket pair denoted by <NEWHOST>
<NEWSCCKET1-4>. The "NEWHOST" is one 8-bit byte designating the
address of the host on which the active process (i.e., the one to
reconnect to) resides. NEWSOCKET1-4 are four 8-bit bytes indicating
the 32-bit send socket nunber of the Telnet pair fromthe active
process. The <I AC><SE> fields term nate the subnegoti ation
paranmeters. The initiating agent awaits a response fromthe passive
process before proceeding. The |legal responses are:

1) Tel net sequence <I ACG<WONT>(RECONNECT>
Meani ng: The passive process has decided not to complete the
reconnection, after having initially indicated willingness. This
nmay be due to unexpected paranmeters during the subnegotiation
(e.g., it refuses to connect to NEWHOST), or perhaps sone error
condition at the passive host.

2) Tel net sequence <I AC><SE>
Meani ng: Positive acknow edgenent of the subnegotiation
sequence. The passive process has accepted the reconnection
paranmeters and will proceed with reconnection

Schant z [Page 2]

RFC 671 A Note on Reconnection Protocol Decenber 1974

If the reply was <WONT><RECONNECT>, the initiator is obliged to send
the Tel net <| ACC<DONT><RECONNECT> to the active participant, to
cancel the outstanding reconnection request. A confirmng

<I ACC<WONT><RECONNECT> shoul d fol | ow.

The <I AC><SE> reply neans that the passive participant has begun its
connection shutdown, and will |isten on the appropriate sockets. The
initiator may now cl ose its connections to the passive participant
and supply the paraneters to the active participant. This can be
done with the assurance that it (the initiator) has done all it can
to ensure that the passive process listens before the active process
sends its RFCs. Failure to coordinate these actions may result in the
failure of the reconnection, if, for exanple, the passive host does
not queue unmatched RFCs. Persistence on the part of the active
partici pant should be an integral part of the protocol, due to
uncertainties of synchronization.

The paraneter |list sent to the active participant is the Tel net
sequence <l AC <SB> <RECONNECT> <ACTI VE> <NEWHOST> <NEWSOCKET1>
<NEWSOCKET2> <NEWSOCKET3> <NEWSOCKET4> <| AC> <SE>. The <ACTI VE>
paraneter indicates to the recipient that it is to send RFCs to the
socket pair denoted by <NEWHOST><NEWSOCKET1-4>. The initiator again
waits for a reply. The legal replies are:

1) Tel net sequence <I ACG<WONT><RECONNECT>
Meani ng: Process will not conplete the reconnection (e.g., it
couldn’t parse the paraneter string).
Possi bl e action of initiator: Attenpt to re-establish
conmuni cati on with the passive partici pant by sending RFCs for
the sockets on which the passive participant is listening. This
will succeed if the listener is willing to accept connections
fromeither the host/socket specified by the reconnect
paranmeters or the host/socket of the former connection. If it is
successful in reestablishing the connection, the initiator could
send the Tel net sequence <|I AC>C<DONT><RECONNECT> to confirmthat
reconnecti on has been aborted.

2) Tel net sequence <I AC><SE>
Meani ng: Positive confirmation of the reconnection
subnegoti ati on. The active participant indicates with this reply
that it will close the connections to the initiator and send the
necessary RFCs to connect to the passive participant. The
initiator may cl ose the connections to the active participant,
thereby removing itself fromthe conmunication path between the
obj ects of the reconnection.

Schant z [Page 3]

RFC 671 A Note on Reconnection Protocol Decenber 1974

DEFAULT CONDI TI ONS and RACES

The default for this option is as for nost other Tel net options: DONT
and WONT. An initiator uses the <DONT><RECONNECT> Tel net sequence to
return to the default state, while a participant uses
<WONT><RECONNECT> to mamintain or return to the default state. The
reconnection state is only a transient one. Wen accepted by al
parties, the reconnection state lasts only until the reconnection is
conpl eted. Upon conpl etion, and without further interaction anong the
parties, the state of the new connection is the default state, with
the negoti ated reconnection forgotten.

Since reconnection is an option concerning the entire Tel net
connection, the asynchronous nature of the option processing
mechani sm exenplified by many other Telnet options (e.g., echo), is
not applicable. That is, a race condition occurs when two

<l AC><DO><RECONNECT> r equests cross each other in the network. A
solution to this problemwas presented in RFC 426; the following is a
nodi fi ed version of that protocol extension. The nodification is
concerned mainly with preserving the right of a process to deny a
reconnection attenpt by another process, while having its own
reconnection request pendi ng.

The race condition is detected when a process receives a
<DO><RECONNECT> while awaiting a reply to a <DO><RECONNECT> it has
previously issued on the sanme Tel net connection. (This condition is
detected at both ends of the connection). The strategy to resol ve the
race utilizes a function, evaluated at both ends of the connecti on,
to determ ne which reconnection request shall take precedence. The
eval uation involves conparing the nunbers obtained by concatenating
the host address (which becones the high order 8 bits) and the
recei ve socket nunber (becones the | ow order 32 bits) for the two
ends of the Tel net connection. The process owning the receive socket
with the |arger of the two concatenated nunbers will have its
reconnection attenpt precede that of the other process. Thus, if
there is a Telnet connection between host A |ocal sockets X, X+1 and
host B local sockets Y,Y+1l, and if <A><X> is greater than <Y>,
then the reconnect request from <A><X> nust he conpleted (or aborted)
bef ore the reconnection request from <Y> can be considered. This
is achieved by requiring that the process with the higher

<host ><socket > nunber reply to the reconnect request of the other
process with an <lI ACG<WONT><RECONNECT>, thereby canceling
(tenporarily) the reconnection attenpted fromthe | ower nunbered
<host ><socket >. Since the request enanating fromthe higher

<host ><socket > process is given precedence, the process with the

| ower <host ><socket> can reply to the reconnection request as if it
had not issued a reconnection request of its own. That is, it may
reply <I AC><W LL><RECONNECT> to accept the reconnection attenpt or

Schant z [Page 4]

RFC 671 A Note on Reconnection Protocol Decenber 1974

<I ACG<WONT><RECONNECT> to refuse the attenpt. This process shoul d
note, however, that the rejection it receives to its reconnect
request is due to protocol requirenent, and nmay not reflect the
actual desire of the corresponding process. It should al so note that
its reconnection request may be re-issued after the first
reconnection activity is conplete. This is an exanple of a situation
where an option change request can be re-issued after a denial

wi t hout a correspondi ng change in state.

ASI DE

The useful ness of reconnection is severely limted by its
specification as an option for Telnet (i.e., termnal |ike)
connections, rather than as part of a host-host protocol, which would
allowit to be applied to general connections. First, it is

guesti onabl e whet her nost systenms will allow a user task to mmintain
nore than one Tel net connection. If not, a process on such a system
can not readily initiate a reconnection request.

Second, there are certain indirect benefits that would result from

i ncludi ng reconnection in a host-host protocol. Placing it at that

| evel could sinplify sone of the timng problenms in establishing the
new connection. For exanple, an NCP woul d be aware when a
reconnection was in progress, and therefore would not need to act as
hastily with an RFC for a socket currently in use (i.e., connection
still open) but involved in the reconnection. Since it is dealing
with another NCP directly, it can expect to receive the "reconnect go
ahead" reasonably soon, barring systemcrash. Also, the informtion
necessary to conplete the reconnecti on subnegotiation is avail able at
the NCP | evel, whereas it nust be duplicately mmintained by the

Tel net service routine when the potential for reconnection exists.

Finally, the entire notion of reconnection is framed in terns of the
entities of host-host protocol. By placing it at a higher |eve

wi t hout adequate provision at the host-host level, an artificial and
rigid constraint is placed on the type of communication path, which
may be part of a reconnection. Since host-host protocol is the basis
for function oriented | evels, the notion of redirecting comrunication
paths certainly is nore suited to the semantically uninterrupted
real m of OPENi ng and CLOSEi ng connections, rather than the real m of
"open an 8 bit ASCIl path with the conventions that "

| MPLEMENTATI ON DETAI LS

1. A process initiating a reconnection designates one of the object
processes as passive (i.e., to listen for RFCs), and the other as
active (i.e., to send RFCs). The reconnecti on protocol does not
specify the assignment of the activel/passive roles, so the process

Schant z [Page 5]

RFC 671 A Note on Reconnection Protocol Decenber 1974

is free in its selection. However, information regarding the types
of participants in the reconnection attenmpt may dictate a role
selection which will contribute to the eventual successfu

conpl etion of the reconnection. lIgnoring such information could
concei vably force cancellation of the attenpt. Certain types of
hosts (e.g., space limted TIPs) may be better suited for active
participation, since it need not go through the procedure of
verifying the identity of the sender. The passive process should
go through such verification. Oher types of hosts (e.g., one
whose NCP will not let an arbitrary process listen on a socket)
may be better suited for the active role. As nore systens

i npl enent the reconnection option, the preferences of various
types of systens will becone known, and nore definitive rules my
ener ge.

2. To avoi d possi bl e deadl ock, the active (passive) process nust
si mul taneously send (listen for) RFCs for both send and receive
connections, which will formthe new Tel net connection. Since the
reconnection protocol does not specify an ordering for
establishing the connections, it is inportant that passive
processes listen in parallel on both the potential send and
recei ve sockets, and that active processes send RFCs in paralle
for both the potential send and receive sockets.

3. There are two |levels of error recovery involved in reconnection
One level is required to handl e the conditions where network and
system del ays cause the attenpt to establish the new connection to
get out of synchrony (e.g., the RFC arrives at the passive host
bef ore the passive process listens), or cause systemti neouts.
When these conditions occur the sockets/connections should be
returned to a state in which the faulting operati on can be
automatically retried. The second | evel of recovery involves the
failure of all such attenpts to establish comrunication with the
active (passive) process, the duration of these attenpts may be
i nfl uenced by such factors as the recovery procedures avail abl e,
and whet her or not a hunan user is awaiting the outcone. Recovery
at this point is difficult since the connections with the
initiating process have al ready been broken. Attenpts to connect
to sone reasonabl e alternative (perhaps |ocal, perhaps attenpting
to connect back to the original source of the reconnection) should
be initiated if second | evel error recovery is necessary,

i ndi cating conplete reconnection failure.

4. A useful addition to the reconnection nechani smwould be the
definition of a standard way to reestablish contact with the
reconnection initiator on task term nation (including can't
conpl ete reconnection).

Schant z [Page 6]

RFC 671 A Note on Reconnection Protocol Decenber 1974

[11. TENEX RELATED DETAILS

The context for our experinments was that of a TIP user using a

Tl PSER/ RSEXEC. The Tl PSER/ RSEXEC woul d first authenticate the TIP
user and then serve as a command interpreter. Anong the avail able
conmands was one cal |l ed TELCONN (TELnet CONNect) for connecting to
other sites for service. A TELCONN command woul d trigger an attenpt
by the TIPSER/ RSEXEC to reconnect the "TIP" directly to the host,
whi ch was the target of the TELCONN request (normally this would
usual ly be a | ogger process at the host). Wen the reconnection is
conpleted, the TIP is directly connected to the new job, and the

TI PSER/ RSEXEC i s conpletely elimnated fromthe comuni cati on path.
To avoid progranmming the TIP, a TENEX process was used to simulate
the TIP.

Certain features of TENEX caused problenms in creating the desired
i nteraction between the TENEX jobs involved in the reconnection
experiment. They are presented here because there may be simlar
probl ens in other systens.

1. Along with the features supplied by the TENEX Tel net interface via
the ATPTY systemcall (which transforns a pair of unused network
connections into a Tel net connection pair), cones a |oss of
certain control functions. A programloses the ability to contro
when data is sent (i.e., loss of the use of the MIOPR system cal
to force transm ssion of buffered data), and can no | onger
deternine the remote host/socket for the network connection (i.e.
GDSTS systemcall). In a highly interactive node, such as option
negoti ati on, short messages remaining in systembuffers can result
in a deadl ock. A process nmust be able to override the buffering
strategy at the conclusion of a |ogical nessage. Failure to have
access to such a nmechanism (e.g., MIOPR) requires that the
connection be opened in a non-buffered node, which is wastefu
nost of the time. Simlarly, the inability to obtain the renote
host/ socket names of the connection requires that this information
be renenbered by the program for the duration of the connection in
case it is needed. (This is the case despite the fact that the
operating systemnmaintains the infornmation in any event. The need
to access this information arises when we wi sh to reconnect the
Tel net connection which linked the "TIP' to the Tl PSER/ RSEXEC.)

2. There is no facility in TENEX for handling (initiating or
respondi ng to) Tel net options not recognized by the Tel net server.
An interface between a user program and the option negotiation
mechani sm woul d be useful for testing new options and for
i mpl enenting privates ones. Lack of this interface can be
circumvented by switching the connection to binary node
transm ssion and reception. This works only if option negotiation

Schant z [Page 7]

RFC 671 A Note on Reconnection Protocol Decenber 1974

is between two user processes (both aware of the binary

transm ssion), since if a user process tried to negotiate with a
system Tel net server obeying the binary transm ssion option, the
requi red doubling of 1ACs for binary output would cause the
request to be msinterpreted at the system Tel net.

3. The switch to binary transm ssion requires two option
negotiations. During this period data transfer is possible.
However, the actual data transferred is dependent on the state of
the negotiation at that point (e.g., depending upon the state, the
| AC character may or may not be doubl ed). There does not seemto
be a facility for alerting the process that the option has been
accepted (rejected) and that all further transmssions will be in
the new node (binary). Perhaps suspending the process for the
duration of the (timed out) option negotiation would elimnate
this period of uncertainty in the node switch. In TENEX, this
could be coupled with pseudo-interrupts to note option negotiation
failure for certain critical user initiated options.

4. During peak | oad conditions, RFCs sent by the operating system
(NCP) in response to program requests (OPENF systemcalls) were
frequently tined out by the system The passive process |listening
for the RFCs did not get reschedul ed quickly enough to reply to
the RFCs (acceptance or rejection) before they were timed out by
the system A confusing situation arose because of the difference
ininitiating the two connections (send and receive) that were to
formthe full-duplex path between the processes. One OPENF
specified i mediate return, while the other waited for conpletion
of the RFC. If both requests timed out, the states of the
correspondi ng connections were different, and therefore the retry
nmechani sm had to handl e each differently (i.e., the "imediate
return" connection had to he closed via CLOSF, whereas the other
did not). This seens to be an unnecessary conplication. Also, the
frequency of timeout during heavy |oad conditions nmay indicate
that the RFC timeout interval is too short.

5. In the TENEX user interface to the network there is no concept of
| ogi cal nessages when nore than one process (fork) shares a
networ k connection. Tel net option negotiati on sequences are
exanpl es of strings, which nmust be sent in proper order, w thout
i nterceding characters of any nature in order to have correct
nmeani ng. Even when a TENEX "string out" (SOUT) operation is
executed by a process, which is indicative of sone |ogica
rel ati onship between the characters of the string, the
transm ssion is not guaranteed to be free frominterference from
ot her processes sending data over the same connection. (Milti-
process organi zation for managi ng network connections is very
conmon. One process is typically used to handl e user output to the

Schant z [Page 8]

RFC 671 A Note on Reconnection Protocol Decenber 1974

networ k, while another process reads data fromthe network and
replies as required by protocol to certain network input). These
processes nust synchronize on every output (and input) to assure
the logical integrity of their messages. This synchronization
woul d seemto be nmore suitably handled by the systemroutines,

whi ch manage network connections and handle string I/0QO

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Alex MKenzie with]
[support fromBBN Corp. and its successors. 7/ 2000]

Schant z [Page 9]

