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Coupl ed Congestion Control for Multipath Transport Protocols
Abst r act

O'ten endpoints are connected by nultiple paths, but comunications
are usually restricted to a single path per connection. Resource
usage within the network would be nore efficient were it possible for
these nultiple paths to be used concurrently. Miltipath TCP is a
proposal to achieve nultipath transport in TCP

New congestion control algorithns are needed for nultipath transport
protocol s such as Miultipath TCP, as single path algorithms have a
series of issues in the nultipath context. One of the prom nent
problens is that running existing algorithns such as standard TCP

i ndependently on each path would give the multipath flow nore than
its fair share at a bottleneck link traversed by nore than one of its
subflows. Further, it is desirable that a source with nmultiple paths
available will transfer nore traffic using the | east congested of the
pat hs, achieving a property called "resource pooling" where a bundle
of links effectively behaves |i ke one shared link wth bigger
capacity. This would increase the overall efficiency of the network
and also its robustness to failure.

Thi s docunent presents a congestion control algorithmthat couples
the congestion control algorithms running on different subflows by
linking their increase functions, and dynamcally controls the
overal | aggressiveness of the nultipath flow The result is a
practical algorithmthat is fair to TCP at bottl enecks whil e noving
traffic away from congested |inks.
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Status of This Menp

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplementation, and
eval uati on.

Thi s docunent defines an Experinental Protocol for the Internet
comunity. This docunment is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
conmunity. It has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
al |l docunents approved by the I ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://ww.rfc-editor.org/info/rfc6356

Copyri ght Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.
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1

| ntroducti on

Mul tipath TCP (MPTCP, [ MPTCP-MJLTI ADDRESSED]) is a set of extensions
to regular TCP [ RFC0793] that allows one TCP connection to be spread
across nultiple paths. MPTCP distributes |oad through the creation
of separate "subflows" across potentially disjoint paths.

How shoul d congestion control be perforned for nultipath TCP? First,
each subfl ow nust have its own congestion control state (i.e., cwnd)
so that capacity on that path is matched by offered | oad. The
simplest way to achieve this goal is to sinply run standard TCP
congestion control on each subflow However, this solution is
unsatisfactory as it gives the nultipath flow an unfair share when
the paths taken by its different subflows share a comopn bottl eneck

Bottl eneck fairness is just one requirenent nultipath congestion
control should neet. The follow ng three goals capture the desirable
properties of a practical nultipath congestion control algorithm

o Goal 1 (Inprove Throughput) A nultipath flow should perform at
| east as well as a single path fl ow would on the best of the paths
available to it.

o Goal 2 (Do no harn) A nultipath flow should not take up nore
capacity fromany of the resources shared by its different paths
than if it were a single flow using only one of these paths. This
guarantees it will not unduly harm other flows.

o Goal 3 (Balance congestion) A nultipath flow should nove as nuch
traffic as possible off its nobst congested paths, subject to
neeting the first two goals.

Goals 1 and 2 together ensure fairness at the bottl eneck. Goal 3
captures the concept of resource pooling [WSCH K]: if each multipath
fl ow sends nore data through its | east congested path, the traffic in
the network will nove away from congested areas. This inproves
robust ness and overal |l throughput, anbng other things. The way to
achi eve resource pooling is to effectively "couple" the congestion
control |oops for the different subfl ows.

We propose an algorithmthat couples the additive increase function
of the subflows, and uses unnodified TCP behavior in case of a drop
The algorithmrelies on the traditional TCP nechani sns to detect
drops, to retransnt data, etc.
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Det ecting shared bottlenecks reliably is quite difficult, but is just
one part of a bigger question. This bigger question is how much
bandwi dth a multi path user should use in total, even if there is no
shared bottl eneck

The congestion controller ains to set the multipath flow s aggregate
bandwi dth to be the sane as that of a regular TCP flow woul d get on
the best path available to the multipath flow To estimte the
bandwi dth of a regular TCP flow, the multipath flow estinmtes |oss
rates and round-trip tines (RTTs) and computes the target rate.

Then, it adjusts the overall aggressiveness (parameter alpha) to
achieve the desired rate.

Wi | e the nmechani sm above applies always, its effect depends on
whet her the multipath TCP flow i nfluences or does not influence the

link loss rates (low versus high statistical multiplexing). |f MPTCP
does not influence link loss rates, MPTCP will get the sane
t hroughput as TCP on the best path. In cases with |ow statistica

mul tipl exing, where the multipath flow influences the |oss rates on
the path, the multipath throughput will be strictly higher than that
a single TCP would get on any of the paths. |In particular, if using
two idle paths, nmultipath throughput will be sum of the two paths’

t hr oughput .

This al gorithm ensures bottleneck fairness and fairness in the
broader, network sense. W acknow edge that current TCP fairness
criteria are far fromideal, but a multipath TCP needs to be

depl oyable in the current Internet. |f needed, new fairness criteria
can be inplenented by the sane al gorithm we propose by appropriately
scaling the overall aggressiveness.

It is intended that the al gorithm presented here can be applied to
other multipath transport protocols, such as alternative multipath
extensions to TCP, or indeed any other congestion-aware transport
protocols. However, for the purposes of exanple, this docurment wll,
where appropriate, refer to the MPTCP

The desi gn decisions and eval uation of the congestion contro
algorithmare published in [NSD].

The al gorithm presented here only extends standard TCP congestion
control for nultipath operation. It is foreseeable that other
congestion controllers will be inmplemented for nultipath transport to
achi eve the bandw dt h-scaling properties of the newer congestion
control algorithms for regular TCP (such as Conpound TCP and Cubic).
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2.

Requi renent s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [ RFC2119]

Coupl ed Congestion Control Al gorithm

The al gorithmwe present only applies to the increase phase of the
congestion avoi dance state specifying how the wi ndow i nfl ates upon
receiving an ACK. The slow start, fast retransmt, and fast recovery
algorithns, as well as the multiplicative decrease of the congestion
avoi dance state are the sanme as in standard TCP [ RFC5681] .

Let cwnd_i be the congestion wi ndow on the subflowi. Let cwnd_tota
be the sum of the congestion wi ndows of all subflows in the
connection. Let p_i, rtt_i, and MSS_i be the loss rate, round-trip

time (i.e., snoothed round-trip tine estimte used by TCP), and
maxi mum segnent size on subflowi.

We assune throughout this document that the congestion w ndow is
mai nt ai ned in bytes, unless otherw se specified. W briefly describe
the al gorithm for packet-based inplenmentations of cwnd in section
Section 4. 2.

Qur proposed "Linked I ncreases" al gorithm MJST:

o For each ACK received on subflow i, increase cwnd_i by
al pha * bytes_acked * MSS i byt es_acked * MSS
MmN (-------mmmme e R R R ) (1)
cwnd_t ot al cwnd_i

The increase formula (1) takes the m ni mum between the conputed
increase for the multipath subflow (first argunment to mn), and the

i ncrease TCP woul d get in the sane scenario (the second argunent).

In this way, we ensure that any nultipath subflow cannot be nore
aggressive than a TCP flow in the sane circunstances, hence achieving
Goal 2 (do no harm.

"al pha" is a paraneter of the algorithmthat describes the
aggressiveness of the nultipath flow To neet Goal 1 (inprove
throughput), the value of al pha is chosen such that the aggregate
t hroughput of the nmultipath flowis equal to the throughput a TCP
flow would get if it ran on the best path.
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To get an idea of what the algorithmis trying to do, let's take the
case where all the subflows have the sane round-trip tine and Maxi mum
Segnment Size (MBS). In this case, the algorithmw |l growthe tota
wi ndow by approxi mately al pha*MSS per RTT. This increase is
distributed to the individual flows according to their instantaneous
wi ndow size. Subflowi wll increase by al pha*cwnd i/cwnd tota
segnents per RITT.

Note that, as in standard TCP, when cwnd_total is |large the increase
may be 0. In this case, the increase MIJST be set to 1. W discuss
how to inplenment this forrmula in practice in the next section

We assune inplenmentations use an approach simlar to appropriate byte
counting (ABC, [RFC3465]), where the bytes_acked variable records the
nunber of bytes newy acknow edged. |If this is not the case,

byt es_acked SHOULD be set to MSS.i.

To conmpute cwnd total, it is an easy mistake to sumup cwnd_i across
all subflows: when a flowis in fast retransmt, its cwnd is
typically inflated and no | onger represents the real congestion

wi ndow. The correct behavior is to use the ssthresh (slow start
threshold) value for flows in fast retransmt when conputing

cwnd_total. To cater to connections that are app limted, the
conput ati on shoul d consider the mninum between flight _size i and
cwnd_i, and flight _size i and ssthresh_i, where appropriate.

The total throughput of a multipath fl ow depends on the val ue of

al pha and the |l oss rates, maxi mum segnment sizes, and round-trip tinmes
of its paths. Since we require that the total throughput is no worse
than the throughput a single TCP would get on the best path, it is

i npossi ble to choose, a priori, a single value of alpha that achieves
the desired throughput in every occasion. Hence, al pha nust be
conput ed based on the observed properties of the paths.

The formula to conpute al pha is:
MAX (cwnd _i/rtt _i72)

alpha = cwnd_total * --------mmomimi o (2)
(SUM (cwnd_i/rtt_i))"2

Not e:

MAX (x_i) neans the maxi mum val ue for any possible value of i.

SUM (x_i) neans the summation for all possible values of i.
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The formula (2) is derived by equalizing the rate of the multipath
flowwith the rate of a TCP running on the best path, and solving for
al pha.

4. 1 npl enentati on Considerations

Equation (2) inplies that alpha is a floating point value. This
woul d require performng costly floating point operations whenever an
ACK is received. Further, in many kernels, floating point operations
are disabled. There is an easy way to approxi mate the above

cal cul ati ons using integer arithnetic.

4.1. Conputing "alpha" in Practice
Let al pha_scale be an integer. Wen conputing al pha, use al pha_scal e
* cwnd_total instead of cwnd_total and do all the operations in

i nteger arithnetic.

Then, scal e down the increase per ACK by al pha_scale. The resulting
algorithmis a sinple change from Equation (1):

o For each ACK received on subflow i, increase cwnd_i by:
al pha * bytes_acked * MSS i byt es_acked * MSS
U e e D I &
al pha_scale * cwnd_total cwnd_i

The al pha_scal e parameter denotes the precision we want for computing
al pha. (Qbserve that the errors in conputing the nunerator or the
denom nator in the fornmula for alpha are quite small, as the cwnd in
bytes is typically nmuch |arger than the RTT (neasured in ns).

Wth these changes, all the operations can be done using integer
arithmetic. W propose al pha_scale be a small power of two, to allow
using faster shift operations instead of multiplication and division
Qur experiments show that using al pha_scal e=512 works well in a w de
range of scenarios. Increasing al pha_scale increases precision, but
al so increases the risk of overflow when conputing al pha. Using 64-
bit operations would solve this issue. Another optionis to
dynam cal | y adj ust al pha_scal e when conputing al pha; in this way, we
avoi d overfl ow and obtai n maxi mum preci si on

It is possible to inplenment the algorithmby calculating cwnd_tota

on each ack; however, this would be costly especially when the nunber
of subflows is large. To avoid this overhead, the inplenmentati on MAY
choose to maintain a new per-connection state variable called
"cwnd_total". If it does so, the inplementation will update the
cwnd_total val ue whenever the individual subflow s wi ndows are
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updated. Updating only requires one nore addition or subtraction
operation conpared to the regular, per-subflow congestion contro
code, so its performance inpact should be m ninal

Conputing al pha per ACK is also costly. W propose al pha be a per-
connection variabl e, conputed whenever there is a drop and once per
RTT ot herwi se. More specifically, let cwnd_new be the new val ue of
the congestion window after it is inflated or after a drop. Update
alpha only if the quotient of cwnd_i/MSS_i differs fromthe quotient
of cwnd_new i/MSS i.

In certain cases with small RTTs, computing al pha can still be
expensive. W observe that if RTTs were constant, it is sufficient
to conpute al pha once per drop, as al pha does not change between
drops (the insight here is that cwnd_i/cwnd_j = constant as |ong as
both wi ndows increase). Experinental results show that even if
round-trip tinmes are not constant, using average round-trip tine per
sawm oot h i nstead of instantaneous round-trip time (i.e., TCP's

snoot hed RTT estinator) gives good precision for conputing al pha.
Hence, it is possible to conpute al pha only once per drop using a

nodi fi ed version of equation (2) where rtt_i is replaced with
rtt_avg_i.

I f using average round-trip tinme, rtt_avg i will be conmputed by
sanpling the rtt_i whenever the wi ndow can accommbdate one nore
packet, i.e., when cwnd / MSS < (cwnd+i ncrease)/ MSS. The sanples are
averaged once per sawtooth into rtt_avg i. This sanpling ensures

that there is no sanpling bias for |arger w ndows.

G ven cwnd_total and al pha, the congestion control algorithmis run
for each subflow i ndependently, with simlar conplexity to the
standard TCP increase code [ RFC5681].

4.2. I mplenentation Considerations when CW\D i s Expressed in Packets

When the congestion control algorithm nmaintains cwnd in packets
rather than bytes, the al gorithns above nust change to take into
account path MsS.

To conmpute the increase when an ACK is received, the inplenentation
for multipath congestion control is a sinple extension of the
standard TCP code. In standard, TCP cwnd _cnt is an additional state
vari abl e that tracks the nunber of segnents acked since the |ast cwnd
increnent; cwnd is incremented only when cwnd _cnt > cwnd; then
cwnd_cnt is set to O.
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In the multipath case, cwnd _cnt i is nmaintained for each subflow as
above, and cwnd_ i is increased by 1 when cwnd cnt i > nax(al pha_scal e
* cwnd_total / alpha, cwnd_i).

VWhen conputing al pha for packet-based stacks, the errors in conmputing
the terms in the denom nator are larger (this is because cwnd is nuch
snmaller and rtt may be conparatively large). Let nmax be the index of
the subflow used in the numerator. To reduce errors, it is easiest
to nove rtt_max (once cal cul ated) fromthe nunerator to the
denom nat or, changi ng equation (2) to obtain the equivalent formula
bel ow.

(4)

al pha = al pha_scale * cwnd_total * ----------mommm o
(SUM ((rtt_max * cwnd_i) / rtt_i))"2

Note that the cal cul ation of al pha does not take into account path
MBS and is the same for stacks that keep cwnd in bytes or packets.
Wth this fornula, the algorithmfor conputing al pha will match the
rate of TCP on the best path in B/s for byte-oriented stacks, and in
packets/s in packet-based stacks. |In practice, MSS rarely changes
bet ween paths so this shouldn’'t be a problem

However, it is sinple to derive formul ae all owi ng packet-based stacks
to achieve byte rate fairness (and vice versa) if needed. In
particul ar, for packet-based stacks wanting byte-rate fairness,
equation (4) above changes as follows: cwnd _max is replaced by
cwnd_max * MSS nax * MSS nmax, while cwnd i is replaced with cwnd_i *
MBS i .

5. Discussion

The al gorithm we’ ve presented fully achieves Goals 1 and 2, but does
not achieve full resource pooling (Goal 3). Resource pooling
requires that no traffic should be transferred on links wi th higher
|l oss rates. To achieve perfect resource pooling, one rmust couple
both increase and decrease of congestion wi ndows across subflows, as
in [ KELLY].

There are a few problens with such a fully coupled controller

First, it will insufficiently probe paths with high | oss rates and
will fail to detect free capacity when it beconmes available. Second,
such controllers tend to exhibit "flappiness": when the paths have
simlar levels of congestion, the congestion controller will tend to
allocate all the window to one random subflow and all ocate zero
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wi ndow to the other subflows. The controller will performrandom
flips between these stable points. This doesn't seemdesirable in
general, and is particularly bad when the achi eved rates depend on
the RTT (as in the current Internet): in such a case, the resulting
rate with fluctuate unpredictably depending on which state the
controller is in, hence violating Goal 1

By only coupling increases our proposal probes high | oss paths,
detecting free capacity quicker. Qur proposal does not suffer from
fl appi ness but al so achi eves | ess resource pooling. The algorithm
will allocate window to the subflows such that p_i * cwnd_i =

constant, for all i. Thus, when the loss rates of the subflows are
equal , each subflow will get an equal w ndow, renoving flappiness.
When the | oss rates differ, progressively nore wi ndows will be
allocated to the flowwith the lower loss rate. 1In contrast, perfect

resource pooling requires that all the wi ndow should be all ocated on
the path with the lowest |oss rate. Further details can be found in
[NSDI].

6. Security Considerations

One security concern relates to what we call the traffic-shifting
attack: on-path attackers can drop packets belonging to a multipath
subflow, which, in turn, nmakes the path seem congested and will force
the sender’s congestion controller to avoid that path and push nore
data over alternate subfl ows.

The attacker’s goal is to create congestion on the corresponding
alternative paths. This behavior is entirely feasible but will only
have m nor effects: by design, the coupled congestion controller is

| ess (or simlarly) aggressive on any of its paths than a single TCP
flow. Thus, the biggest effect this attack can have is to nmake a
mul ti path subfl ow be as aggressive as a single TCP fl ow.

Anot her effect of the traffic-shifting attack is that the new path
can nonitor all the traffic, whereas before it could only see a
subset of traffic. W believe that if privacy is needed, splitting
traffic across multiple paths with MPTCP is not the right solution in
the first place; end-to-end encryption should be used instead.

Besides the traffic-shifting attack nentioned above, the coupled
congestion control algorithmdefined in this docunent adds no ot her
security considerations to those found in [ MPTCP- MULTI ADDRESSED] and
[ RFC6181]. Detailed security analysis for the Multipath TCP protoco
itself is included in [ MPTCP- MULTI ADDRESSED] and [ RFC6181] .
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