Net wor k Wor ki ng Group M Boesgaard

Request for Comments: 4503 M Vest er ager
Cat egory: I nfornmational E. Zenner
Cryptico A/S

May 2006

A Description of the Rabbit Stream C pher Al gorithm

Status of This Meno
This menmo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2006).

Abst r act
Thi s docunent describes the encryption algorithmRabbit. It is a
stream ci pher algorithmwi th a 128-bit key and 64-bit initialization
vector (IV). The method was published in 2003 and has been subj ect
to public security and perfornmance revision. |Its high performance
makes it particularly suited for the use with Internet protocols
where | arge anpbunts of data have to be processed.

Tabl e of Contents

1. IntroduCti On ... e 2
2. Algorithm Description e 2
2.0, NOotati ON ..o 2
2.2, Inner State 3
2.3. Key Setup SCheme e 3
2.4, 1V Setup SCheme 3
2.5, Counter SysStem 4
2.6. Next-State FUNCLiONn e 4
2.7. Extraction Scheme 5
2.8. Encrypt ion/Decryption Schenme 5
3. Security Considerati Ons e 6
3.1, Message Length 6
3.2. Initialization Vector 6
4. Informative References 7
Appendi X Al Test VeCt OIS 8
A l. Testing without IV Setup 8
A 2. Testing with [V Setup e 8
Appendi x B: Debugging Vectors 9

Boesgaard, et al. | nf or mati onal [Page 1]

RFC 4503 Rabbit Encryption May 2006

1

2.

2.

1

B.1. Testing Round Function and Key Setup 9
B.2. Testing the IV setup e 10

| nt roducti on

Rabbit is a streamcipher algorithmthat has been designed for high
performance in software inplenmentations. Both key setup and
encryption are very fast, making the algorithmparticularly suited
for all applications where |arge amounts of data or |arge nunmbers of
dat a packages have to be encrypted. Exanples include, but are not
l[imted to, server-side encryption, nultinmedia encryption, hard-disk
encryption, and encryption on |imted-resource devices.

The cipher is based on ideas derived fromthe behavior of certain
chaotic maps. These maps have been carefully discretized, resulting
in a conpact stream ci pher. Rabbit has been openly published in 2003
[1] and has not displayed any weaknesses as of the time of this
witing. To ensure ongoing security evaluation, it was al so
submitted to the ECRYPT eSTREAM project[2].

Technical |y, Rabbit consists of a pseudorandom bitstream generat or
that takes a 128-bit key and a 64-bit initialization vector (1V) as
i nput and generates a stream of 128-bit blocks. Encryption is
perfornmed by conbining this output with the nessage, using the
excl usi ve- OR operation. Decryption is performed in exactly the sane
way as encryption.

Further information about Rabbit, including reference inplenmentation
test vectors, performance figures, and security white papers, is
avail able fromhttp://ww.cryptico.com.
Al gorithm Description

Not at i on

Thi s docunent uses the follow ng el enmentary operators:

+ i nteger addition

* integer nultiplication

di v i nteger division.

nod i nt eger nodul us.

n bi tw se excl usi ve-OR operation
<<< | eft rotation operator.

| concat enati on operator.

VWhen | abeling bits of a variable, A the least significant bit is
denoted by A[0]. The notation Alh..g] represents bits h through g of
variable A, where h is nore significant than g. Simlar variables

Boesgaard, et al. I nf or mati onal [Page 2]

RFC 4503 Rabbit Encryption May 2006

are | abeled by A0,Al,... with the notation A(0),A(1),... being used
to denote those same variables if this inproves readability.

G ven a 64-bit word, the function MSWextracts the nost significant
32 bits, whereas the function LSWextracts the |east significant 32
bits.

Constants prefixed with Ox are in hexadecimal notation. In
particul ar, the constant WORDSI ZE i s defined to be 0x100000000.

2.2. Inner State
The internal state of the streamcipher consists of 513 bits. 512
bits are divided between eight 32-bit state variables, X0,...,X7 and
ei ght 32-bit counter variables, CO,...,Cr7. 1In addition, there is one
counter carry bit, b.

2.3. Key Setup Schene

The counter carry bit b is initialized to zero. The state and
counter words are derived fromthe key K[127..0].

The key is divided into subkeys KO = K[15..0], Kl = K[31..16], ... K7
= K[127..112]. The initial state is initialized as follows:

for j=0 to 7:

if j is even:

Xj = K(j+1 nod 8) || K|

g = K(j+4 nmod 8) || K(j+5 nod 8)
el se:

X K(j+5 mod 8) || K(j+4 nod 8)

g

The systemis then iterated four tines, each iteration consisting of
counter update (Section 2.5) and next-state function (Section 2.6).
After that, the counter variables are reinitialized to

Ki |] K(j+1 nod 8)

for j=0 to 7:
G =g " X(j+4 nod 8)

2.4. 1V Setup Schene

If an IV is used for encryption, the counter variables are nodified
after the key setup. Denoting the IV bits by IV[63..0], the setup
proceeds as foll ows:

Co
c2

0 A 1V[31..0] c1
C2 ~ 1V[63..32] c3

CL ™ (1V[63..48] || 1V[31..16])
C3 A (1V[47..32] || 1V[15..0])

Boesgaard, et al. I nf or mati onal [Page 3]

RFC 4503 Rabbit Encryption May 2006

2.

2.

4
C6

C4 A 1V[31..0] c5
6 A 1V 63..32] c7

C5 A (1V[63..48] || 1V[31..16])
C7 ~ (1V[47..32] || 1V[15..0])

The systemis then iterated another 4 tines, each iteration
consi sting of counter update (Section 2.5) and next-state function
(Section 2.6).

The rel ationship between key and |1V setup is as foll ows:

- After the key setup, the resulting inner state is saved as a master
state. Then the IV setup is run to obtain the first encryption
starting state.

- Whenever re-initialization under a new |V is necessary, the IV
setup is run on the master state again to derive the next
encryption starting state.

5. Counter System
Bef ore each execution of the next-state function (Section 2.6), the

counter system has to be updated. This system uses constants
Al,... A7, as follows:

A0 = 0x4D34D34D Al = 0xD34D34D3
A2 = 0x34D34D34 A3 = 0x4D34D34D
A4 = 0xD34D34D3 A5 = 0x34D34D34
A6 = 0x4D34D34D A7 = 0xD34D34D3

It al so uses the counter carry bit b to update the counter system as
fol | ows:

for j=0 to 7:

temp =G +A +b
b = tenp di v WORDSI ZE
g = tenp nod WORDSI ZE

Note that on exiting this |oop, the variable b has to be preserved
for the next iteration of the system

6. Next-State Function

The core of the Rabbit algorithmis the next-state function. It is
based on the function g, which transforns two 32-bit inputs into one
32-bit output, as follows:

g(u,v) = LSWsquare(u+v)) ~ MSWsquare(u+v))

where square(u+v) = ((u+v nod WORDSI ZE) * (u+v nod WORDSI ZE)) .

Boesgaard, et al. I nf or mati onal [Page 4]

RFC 4503 Rabbit Encryption May 2006

Using this function, the algorithmupdates the inner state as
foll ows:

for j=0 to 7:

G =9(X.9)
X0 = @ + (G7 <<< 16) + (&6 <<< 16) npd WORDSI ZE
X1 =Gl + (0 << 8) + &/ nmod WORDSI ZE
X2 = & + (Gl <<< 16) + (&0 <<< 16) nod WORDSI ZE
X3 =B+ (&R << 8) + a4 nmod WORDSI ZE
X4 = 4 + (B <<< 16) + (R <<< 16) nod WORDSI ZE
X5 =G + (A <<< 8 + G3 nod WORDSI ZE
X6 = &6 + (G <<< 16) + (A <<< 16) npd WORDSI ZE
X7 =Gl + (6 <<< 8) + b nmod WORDSI ZE

2.7. Extraction Schene

After the key and |V setup are concluded, the algorithmis iterated
in order to produce one 128-bit output block, S, per round. Each
round consists of executing steps 2.5 and 2.6 and then extracting an
out put S[127..0] as foll ows:

S[15. . 0] = X0[15..0] A X5[31..16]
S[31..16] = X0[31..16] ~ X3[15..0]
S[47..32] = X2[15..0] A X7[31..16]
S[63..48] = X2[31..16] ~ X5[15..0]
S[79..64] = X4[15..0] A X1[31..16]
S[95..80] = X4[31..16] ~ X7[15..0]
S[111..96] = X6[15..0] ~ X3[31..16]
S[127..112] = X6[31..16] ~ X1[15..0]

2.8. Encryption/Decryption Scheme

G ven a 128-bit nmessage block, M encryption E and decryption M are
conput ed vi a

E
M

M~ S and
E N S

If Sis the sane in both operations (as it should be if the same key
and IV are used), then M= M.

The encryption/decryption schene is repeated until all blocks in the
nessage have been encrypted/ decrypted. |f the nessage size is not a
multiple of 128 bits, only the needed anpbunt of |east significant
bits fromthe |last output block Sis used for the | ast nessage bl ock
M

Boesgaard, et al. I nf or mati onal [Page 5]

RFC 4503 Rabbit Encryption May 2006

If the application requires the encryption of snaller blocks (or even
i ndi vidual bits), a 128-bit buffer is used. The buffer is
initialized by generating a new value, S, and copying it into the
buffer. After that, all data blocks are encrypted using the |east
significant bits in this buffer. Wenever the buffer is enpty, a new
value S is generated and copied into the buffer.

3. Security Considerations

For an encryption algorithm the security provided is, of course, the
nost important issue. No security weaknesses have been found to
date, neither by the designers nor by independent cryptographers
scrutinizing the algorithns after its publication in [1]. Note that
a full discussion of Rabbit’s security agai nst known cryptanal ytic
techniques is provided in [3].

In the follow ng, we restrict ourselves to sone rules on how to use
the Rabbit al gorithm properly.

3.1. Message Length

Rabbit was designed to encrypt up to 2 to the power of 64 128-bit
nmessage bl ocks under the same the key. Should this amount of data
ever be exceeded, the key has to be replaced. It is recommended to
follow this rule even when the IV is changed on a regul ar basis.

3. 2. Initialization Vector

It is possible to run Rabbit without the IV setup. However, in this
case, the generator nust never be reset under the same key, since
this would destroy its security (for a recent exanple, see [4]).
However, in order to guarantee synchronization between sender and
recei ver, ciphers are frequently reset in practice. This nmeans that
both sender and receiver set the inner state of the cipher back to a
known val ue and then derive the new encryption state using an IV. |If
this is done, it is inportant to nmake sure that no IV is ever reused
under the sane key.

Boesgaard, et al. I nf or mati onal [Page 6]

RFC 4503 Rabbit Encryption May 2006

4. Informative References

[1] M Boesgaard, M Vesterager, T. Pedersen, J. Christiansen, O
Scaveni us. "Rabbit: A New Hi gh-Performance Stream C pher”.
Proc. Fast Software Encryption 2003, Lecture Notes in Computer
Sci ence 2887, p. 307-329. Springer, 2003.

[2] ECRYPT eSTREAM project, available from
http://ww. ecrypt.eu. org/stream

[3] M Boesgaard, T. Pedersen, M Vesterager, E. Zenner. "The
Rabbit Stream C pher - Design and Security Analysis". Proc.
SASC Wor kshop 2004, available from
http://ww.isg.rhul.ac.uk/research/
proj ects/ecrypt/stvl/sasc. htm.

[4] H Wi. "The Msuse of RC4 in Mcrosoft Wrd and Excel". | ACR
eprint archive 2005/ 007, available from
http://eprint.iacr.org/2005/007. pdf.

[5] Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards

(PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC
3447, February 2003.

Boesgaard, et al. I nf or mati onal [Page 7]

RFC 4503

Appendi x A Test Vectors

Rabbit Encryption

This is a set of test vectors for confornmance testing,

form

For

A 1. Testing wthout

key
S[0]
S[1]
S[2]

key
S[0]
S[1]
S[2]

key
S[0]
S[1]
S[2]

A 2. Testing w

nkey
iv

S[0]
S[1]
S[2]

i v

S[0]
S[1]
S[2]

iv
S[0]

S 1]
Sl 2]

Boesgaard,

[00
[B1
[88
[F4

[91
[3D
[F5
[E5

[83
[0C
[95
[96

00
57
E8
16

28
2D
76
54

95
B1
FC
49

th

00
00
A7
29
DE

73
CD
5F
c1

EB
5A
C8
CB

et al.

00
54
D8
Al

13
F3
cb
74

74
0D
9F
E5

IV

00
00
27
A6
82

F5
4E
4E
12

56
D8
F2
FC

IV

00
FO
15
(O]

29
C8
61
73

15
CcD
CA
DE

use with Rabbit,

Set up

00
36
c5
70

2E
3E
F4
FB

87
A0
OF
8B

Set up

00
00
5E
AC
2B

75
B9
10
(O]

1A
C8
79
89

00
00
F8
04
29

c1
58
D1
93

D2
05
47
5F

00
A5
9C
0oC

3D
F6
40
DB

EO
41
17
FC

00
00

F5
26
00
21
E7

F4
85

A7

00

0oC

36
27
5B
43

cr

01
7F

00
00

EF
6C

7E
12
25
38

17
8D
2C
1C

00

39
51

FE
Al
88
50

33
AC
S5A
3F

00

00]

D3
D4
1E

59]

E2
01
39

27]

BF

00

7B
DA

3B
E9
96
8A

E9
32
7B
92

00

7C
7B
E5

EO
7B
23

70

5B AE

17

31

00

69
68

FC
7F
BF
E5

E9
EB
70
41

00

8F
2B

24
56

B6
AE
3D

| nf or mat i onal

00

6C
D1

62

53
3B

AB
5C

47

00

5D
29

99
BD

AF
67
FO

00

47
88

F1
84

20
01
FD

11
AD

00
37

32
8A

92
FF

23

34

00

89
16

87
85
20

02
4C
3A

00

67
70
47

22
ED
12

Al
AC
FO

00

73
51
E2
54
4D
9B

FF
94

00

05

BF

01

93

02

51

15

00

8A

51
FC
4C

00
60

74

00

B7
4A
8F

7D
6F
9B

10
5B
51

May 2006

given in octet
they have to be transforned into integers
by the conversion primtives OS2I P and |120SP, as described in [5].

00]
02]
A7]
96]

AC]
9(C]
19]
SE]

43]
98]
AD]
28]

00]

ED]
8D
66]

60

2E]
AT7]

4D
03]
CB]

[Page 8]

RFC 4503

Rabbit Encryption

Appendi x B: Debuggi ng Vectors

May 2006

The foll owi ng set of vectors describes the inner state of Rabbit

during key and iv setup.

It

Cctet strings are witten according to |120SP conventi ons.

= [91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 A(C]

rst key setup

expansi on:

0x13292E3D,
0x62F1DC51,
0xDC5162F1,
0x2E3D1329,

0x38EO6FA7,
0x4B239CBE,
OXAF9E97 (A4,
0x6310605E,

Testing Round Function and Key Setup

X2 = 0x3BFC62F1,
X6 = 0x91281329,
C2 = 0x13299128,
C6 = 0x62F13BFC,
iteration:

X2 = 0x9A0D72C0,
X6 = 0x0565DCCC,
C2 = 0x47FCDE5D,
C6 = 0xB0260F49,

Inner state after fourth key setup iteration

Inner state after generation of 48 bytes of output:

na

B. 1.
key
I nner state after key
b =0
X0 = OxDC51C3AC, X1 =
X4 = Ox2E3D36FE, X5 =
Q0 = Ox36FE2E3D, Cl =
C4 = OxC3ACDC51, G5 =
Inner state after fi
b =1
X0 = OxF2E8C8B1, X1 =
X4 = OxCACDCCC3, X5 =
C0 = 0x8433018A, C1 =
C4 = O0x96FA1124, C5 =
b =0
X0 = 0x1D059312, X1 =
X4 = 0x36709423, X5 =
Q0 = 0x6BD17B74, Cl =
C4 = Ox10E1AF9E, C5 =
I nner state after fi
b =0
X0 = 0x1D059312, X1 =
X4 = 0x36709423, X5 =
Q0 = Ox5DA1EF57, Cl1 =
C4 = OxODE43C8C, C5 =
b =1
X0 = 0xB5428566, X1 =
X4 = 0x145CE109, X5 =
QG0 = 0x45406940, C1 =
C4 = 0x87CBDB06, C5 =
Boesgaard, et al

OxBDDC3EA45,
0x0B6F0711,
0x2986363E,
0x018A47FD,

OxBDDC3EA45,
0x0B6FO0711,
O0x22E9312F,
0xBC5679B8,

0xA2593617,
0xC938758B0,
0x9CDOCFA9,
0x5AD06156,

| nf or mat i onal

key setup

X2
X6
c2
Co

XOor:

X2
X6
c2
C6

X2

X6
c2
C6

0xF440927D,
O0x3ADA3ATB,
OxXE676C5FC,
0x97C48931,

0xF440927D,
Ox3ADA3ATB,
OxDCACFF87,
0x63841B4C,

OxFF5578DE,
0xD34306EOQ,
0x7B26E725,
0x4B229534,

X3
X7
a3
074

X3
X7

074

X3
X7

074

X3
X7

cr

X3
X7

cr

is meant mainly for debuggi ng purposes.

0xC3AC9128,
0x36FE3BFC,
0x3BFC36FE,
0x9128C3AC

OxF21F5334,
0xB1587C8D,
0x89310A4B,
0x6475F87F

0x50CBB553,
O0xEB9800CS8,
0x70CF8432,
OxDE5SDO6F9

0x50CBB553,
OxEB9800CS8,
Ox9B5784FA,
Ox8E9623AA

0x7293950F,
Ox43FEEF87,
0x82F5FEE2,
0x087DC224

[Page 9]

RFC 4503 Rabbit Encryption

The 48 out put bytes:

S[0] = [3D 2D F3 C8 3E F6 27 Al E9 7F C3 84 87 E2 51 9C
S[1] = [F5 76 CD 61 F4 40 5B 88 96 BF 53 AA 85 54 FC 19]
S[2] = [E5 54 74 73 FB DB 43 50 8A E5 3B 20 20 4D 4C 5E]

B.2. Testing the IV Setup

key
iv

[C3 73 F5 75 C1 26 7E 59]

I nner state during key setup:
as above

Inner state after |V expansion

b =0

X0 = 0x1D059312, X1 = OxBDDC3E45, X2 = 0xF440927D,
X4 = 0x36709423, X5 = 0x0B6F0711, X6 = Ox3ADA3ATB,
CO = 0x9C87910E, Cl = OxE19AF009, C2 = Ox1FDFOAF2,
C4 = 0xCCC242D5, C5 = Ox7F25B89E, C6 = OxAOF7EE39,

Inner state after first IV setup iteration

b =1

X0 = OxCAFF831A, X1 = OxXEF5CD094, X2 = 0x(C5933855,
X4 = Ox4A50522F, X5 = OxDF487BE4, X6 = OxA45FA013,
CO = OxE9BC645B, Cl1 = OxB4E824DC, C2 = 0x54B25827,
C4 = OxAOOF77A8, C5 = OxB3F905D3, Co = OxEE2CC186,

Inner state after fourth IV setup iteration

b =1

X0 = 0x6274E424, X1 = OxXE14CE120, X2 = OxDA8739D9,
X4 = 0xD1281D10, X5 = OxBD435BAA, X6 = Ox4E9E7A02,
CO = OxD15ADE44, Cl1 = Ox2ECFC356, C2 = OxF32C3FCe,
G4 = O0x19F71622, C5 = 0x5272ED72, C6 = OxD5CB3BG6E,

Boesgaard, et al. I nf or mati ona

X3
X7

cr

X3
X7

cr

X3

Q8 X

[91 28 13 29 2E ED 36 FE 3B FC 62 F1 DC 51 C3 A(C]

May 2006

0x50CBB553,
OxEB9800CS8,
Ox6E22FAAS,
0Ox7BE35DF3

O0xCO5A5C03,
0x05531179,
0xBB57CDFO,
0x4F3092C6

0x65E0402D,
0x9B467ABD,
O0xA2F647D7,
0xC9183140

[Page 10]

RFC 4503 Rabbit Encryption May 2006

Aut hors’ Addr esses

Martin Boesgaard
Cryptico AI'S
Fruebj ergvej 3
2100 Copenhagen
Denmar k

Phone: +45 39 17 96 06
EMai | : mab@rypti co. com
URL: http://ww. cryptico.com

Mette Vesterager
Cryptico AI'S
Fruebj ergvej 3
2100 Copenhagen
Denmar k

Phone: +45 39 17 96 06
EMai | : mvp@ryptico.com
URL: http://ww. cryptico.com

Eri k Zenner
Cryptico A/'S
Fruebj ergvej 3
2100 Copenhagen
Denmar k

Phone: +45 39 17 96 06

EMai | : ez@ryptico.com
URL: http://ww. cryptico.com

Boesgaard, et al. I nf or mati onal [Page 11]

RFC 4503 Rabbit Encryption May 2006

Ful | Copyright Statenent
Copyright (C The Internet Society (2006).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the |IETF
Admi ni strative Support Activity (1ASA).

Boesgaard, et al. I nf or mati onal [Page 12]

