Net wor k Wor ki ng Group S. Crocker

Request for Comments: 33 UCLA
S. Carr

Uni versity of Utah

V. Cerf

UCLA

12 February 1973

New HOST- HOST Pr ot ocol

Attached is a copy of the paper to be presented at the SICC on the
HOST- HOST Protocol. It indicates nany changes fromthe ol d protocol
in NWG RFC 11; these changes resulted fromthe network meeting on
Decenmber 8, 1969. The attached docunent does not contai n enough
information to wite a NCP, and | will send out another nenp or so
shortly. Responses to this nmeno are solicited, either as N\WEG RFC s
or personal notes to ne.

HOST- HOST Conmmuni cati on Pr ot ocol
in the ARPA Net wor k*

by C. Stephen Carr
University of Utah
Salt Lake City, Utah

and
by Stephen D. Crocker
University of California
Los Angeles, California
and
by Vinton G Cerf
University of California
Los Angeles, California
*This research was sponsored by the Advanced Research Projects
Agency, Department of Defense, under contracts AF30(602)-4277 and
DAHC15- 69- C- 0825.
| NTRODUCTI ON
The Advanced Research Projects Agency (ARPA) Conputer Network

(hereafter referred to as the "ARPA network") is one of the npst
anmbi ti ous conputer networks attenpted to date. [1] The types of

Crocker, et. al. [Page 1]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

machi nes and operating systens involved in the network vary w dely.
For exanple, the conputers at the first four sites are an XDS 940
(Stanford Research Institute), an IBM 360/75 (University of
California, Santa Barbara), an XDS SIGVA-7 (University of California
Los Angeles), and a DEC PDP-10 (University of Utah). The only
commonal ity anmong the network nenbership is the use of highly
interactive tinme-sharing systems; but, of course, these are al
different in external appearance and inplenentation. Furthernore, no
one node is in control of the network. This has insured reliability
but complicates the software.

O the networks which have reached the operational phase and been
reported in the literature, none have involved the variety of
conputers and operating systens found in the ARPA network. For
exanpl e, the Carnegie-Mllon, Princeton, |BMnetwork consists of
360/67's with identical software. [2] Load sharing anong identica
bat ch machi nes was conmonpl ace at North American Rockwel | Corporation
inthe early 1960's. Therefore, the inplenmenters of the present
networ k have been only slightly influenced by earlier network
attenpts.

However, early time-sharing studies at the University of California
at Berkeley, MT, Lincoln Laboratory, and System Devel opnent
Corporation (all ARPAA sponsored) have had considerable influence on

the design of the network. |In sone sense, the ARPA network of time-
shared conputers is a natural extension of earlier tine-sharing
concepts.

The network is seen as a set of data entry and exit points into which
i ndi vidual conputers insert nessages destined for another (or the
sanme) computer, and from which such nessages energe. The format of
such nessages and the operation of the network was specified by the
network contractor (BB&\) and it became the responsibility of
representatives of the various conputer sites to inmpose such
addi ti onal constraints and provide such protocol as necessary for
users at one site to use resources at foreign sites. This paper
details the decisions that have been nmade and the considerations
behi nd t hese deci si ons.

Several people deserve acknow edgement in this effort. J. Rulifson
and W Duvall of SRI participated in the early design effort of the
protocol and in the discussions of NNL. G Del oche of Thonpson- CSF
participated in the design effort while he was at UCLA and provi ded
consi derabl e docunentation. J. Curry of Utah and P. Rovner of

Li ncol n Laboratory reviewed the early design and NIL. W Crow her of
Bolt, Beranek and Newman, contributed the idea of a virtual net. The
BB&N st aff provided substantial assistance and gui dance while
delivering the network.

Crocker, et. al. [Page 2]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

We have found that, in the process of connecting nmachi nes and
operating systens together, a great deal of rapport has been

est abl i shed between personnel at the various network node sites. The
resulting m xture of ideas, discussions, disagreenents, and
resol uti ons has been highly refreshing and beneficial to al

i nvol ved, and we regard the human interaction as a val uabl e by-
product of the main effect.

THE NETWORK AS SEEN BY THE HOSTS

Bef ore going on to di scuss operating system comuni cation protocol
some definitions are needed.

A HOST is a conmputer systemwhich is a part of the network,

An | MP (Interface Message Processor) is a Honeywel| DDP-516
conputer which interfaces with up to four HOSTs at a particul ar
site, and all ows HOSTs access into the network. The configuration
of the initial four-HOST network is given in figure 1. The | MPs
froma store-and-forward conmuni cati ons network. A comnpani on
paper in these proceedings covers the IMPs in sonme detail. [3]

A nmessage is a bit streamless than 8096 bits |ong which is given to
an | MP by a HOST for transm ssion to another HOST. The first 32 bits
of the nessage are the | eader. The |eader contains the follow ng

i nfornmation:

(a) HOST

(b) Message Type
(c) Flags

(d) Link Number

When a nmessage is transmitted froma HOST to its I MP, the HOST field
of the | eader nanmes the receiving HOST. Wen the nessage arrives at
the receiving HOST, the HOST field nanes the sendi ng HOST.

Only two nessage types are of concern in this paper. Regular
nessages are generated by a HOST and sent to its IMP for transm ssion
to a foreign HOST. The other message type of interest is a RFNM
(Request - f or - Next - Message). RFNM s are explained in conjunction with
links.

The flag field of the | eader controls special cases not of concern
her e.

Crocker, et. al. [Page 3]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

The Iink nunber identifies over which of 256 |ogical paths (Iinks)
bet ween t he sendi ng HOST and the receiving HOST the nessage will be
sent. Each link is unidirectional and is controlled by the network
so that no nore than one nessage at a tine nmay be sent over it. This
control is inplemented using RFNM nmessages. After a sendi ng HOST has
sent a nmessage to a receiving HOST over a particular link, the
sendi ng HOST is prohibited from sendi ng anot her nessage over that
same link until the sending HOST receives a RFMN\. The RFNMis
generated by the I MP connected to the receiving HOST, and the RFNM i s
sent back to the sending HOST after the nessage has entered the
receiving HOST. It is inmportant to remenber that there are 356 |inks
in each direction and that no rel ati onship anbng these is inmposed by
t he network.

The purpose of the |ink and RFMN nmechanismis to prohibit individua
users fromoverloading an IMP or a HOST. Inplicit in this purpose is
the assunption that a user does not use multiple links to achieve a
wi de band, and to a large extent the HOST- HOST protocol cooperates
with this assunption. An even nore basic assunption, of course, is
that the network’s | oad cones from sone users transmitting sequences
of messages rather than many users transmitting single nmessages

coi nci dently.

In order to delimt the length of the nessage, and to nmake it easier
for HOSTs of differing word lengths to comunicate, the follow ng
formatting procedure is used. Wen a HOST prepares a nessage for
output, it creates a 32-bit leader. Following the |eader is a binary
string, called marking, consisting of an arbitrary nunber of zeros,
foll owed by one. Marking makes is possible for the sending HOST to
synchroni ze the beginning of the text nessage with its word
boundaries. Wen the last bit of a nessage has entered an | MP, the
hardware interface between the | MP and HOST appends a one foll owed by
enough zeros to nmake the nessage length a multiple of 16 bits. These
appended bits are called padding. Except for the marking and
padding, no limtations are placed on the text of a nessage. Figure
2 shows a typical message sent by a 24-bit nmachine.

DESI GN CONCEPTS

The conputers participating in the network are alike in two inportant
respects: each supports research i ndependent of the network, and each
is under the discipline of a tine-sharing system These facts
contributed to the follow ng design phil osophy.

First, because the conputers in the network have independent purposes
it is necessary to preserve decentralized adm nistrative control of
the various computers. Since all of the time-sharing supervisors
possess el aborate and definite accounting and resource allocation

Crocker, et. al. [Page 4]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

nechani sns, we arranged matters so that these mechani sms woul d
control the load due to the network in the same way that they contro
| ocal |y generated | oad.

Second, because the conputers are all operated under time-sharing
disciplines, it seenmed desirable to facilitate basic interactive
mechani sns.

Third, because this network is used by experienced programmers it was
i nperative to provide the wi dest latitude in using the network.
Restrictions concerning character sets, programm ng | anguages, etc.
woul d not be tolerated and we avoi ded such restrictions.

Fourth, again because the network is used by experienced programrers,
it was felt necessary to | eave the design open-ended. W expect that
conventions will arise fromtine to tine as experience i s gained, but
we felt constrained not to inpose themarbitrarily.

Fifth, in order to nmake network participation confortable, or in sone
cases, feasible, the software interface to the network should require
m ni mal surgery on the HOST operating system

Finally, we except the assunption stated above that network use
consi sts of prolonged conversations instead of one-shot requests.

These considerations led to the notions of connections, a Network
Control Program a control link, control commands, sockets, and
virtual nets.

A connection is an extension of a link. A connection connects two
processes so that output fromone process is input to the other
Connections are sinplex, so two connections are needed if two
processes are to converse in both directions.

Processes within a HOST conmuni cate with the network through a

Net wor k Control Program (NCP). In nost HOSTs, the NCP will be a part
of the executive, so that processes will use systemcalls to

conmuni cate with it. The primary function of the NCP is to establish
connections, break connections, switch connections, and control flow

In order to acconplish its tasks, a NCP in one HOST nust communicate
with a NCP in another HOST. To this end, a particular |ink between
each pair of HOSTs has been designated as the control |ink. Messages
recei ved over the control link are always interpreted by the NCP as a
sequence of one or nmore control conmmands. As an exanple, one of the
ki nds of control commands is used to assign a link and initiate a

Crocker, et. al. [Page 5]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

connection, while another kind carries notification that a connection
has been terminated. A partial sketch of the syntax and semantics of
control conmands is given in the next section

A major issue is howto refer to processes in a foreign HOST. Each
HOST has sone internal nam ng schene, but these various schenes often
are inconpatible. Since it is not practical to inpose a commopn

i nternal process naming schene, an internedi ate nane space was
created with a separate portion of the nane space given to each HOST.
It is left to each HOST to map internal process identifiers into its
name space

The el ements of the nane space are called sockets. A socket forns
one end of a connection, and a connection is fully specified by a
pair of sockets. A socket is specified by the concatenation of three
nunbers:

(a) a user nunber (24 bits)
(b) a HOST nunber (8 bits)
(c) AEN (8 bhits)

A typical socket is illustrated in Figure 3.

Each HOST is assigned all sockets in the name space which have field
(b) equal to the HOST's own identification

A socket is either a receive socket or a send socket, and is so
marked by the | ower-order bit of the AEN (0 = receive, 1 = send).
The ot her seven bits of the AEN sinply provide a sizable popul ation
of sockets for each used nunber at each HOST. (AEN stands for
"anot her eight-bit nunber")

Each user is assigned a 24-bit user nunmber which uniquely identifies
hi m t hr oughout the network. Generally this will be the 8-bit HOST
nunber of his home HOST, followed by 16 bits which uniquely identify
himat that HOST. Provision can also be made for a user to have a
user nunber not keyed to a particular HOST, an arrangenent desirable
for nmobile users who m ght have no hone HOST or nore than one hone
HOST. This 24-bit user nunber is then used in the follow ng manner.
VWhen a user signs onto a HOST, his user nunber is |ooked up
Thereafter, each process the user creates is tagged with his user
nunber. When the user signs onto a foreign HOST via the network, his
same user nunber is used to tag processes he creates in that HOST.
The foreign HOST obtains the user nunber either by consulting a table
at login time, as the home HOST does, or by noticing the
identification of the caller. The effect of propagating the user’s
nunber is that each user creates his own virtual net consisting of
processes he has created. This virtual net nay span an arbitrary

Crocker, et. al. [Page 6]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

nunber of HOSTs. It will thus be easy for a user to connect his
processes in arbitrary ways, while still permtting himto connect
his processes with those in other virtual nets.

The rel ati onshi p between sockets and processes is now descri babl e
(see Figure 4). For each user nunber at each HOST, there are 128
send sockets and 128 receive sockets. A process nmay request fromthe
| ocal NCP the use of any one of the sockets with the same user

nunber; the request is granted if the socket is not otherw se in use.
The key observation here is that a socket requested by a process
cannot already be in use unless it is by sone other process wthin
the same virtual net, and such a process is controlled by the sane
user.

An unusual aspect of the HOST-HOST protocol is that a process my
switch its end of a connection fromone socket to another. The new
socket may be in any virtual net and at any HOST, and the process nay
initiate a switch either at the tine the connection is being
established, or later. The nobst general fornms of swi tching entai
quite conplex inplenmentation, and are not germane to the rest of this
paper, so only a limted formw Il be explained. This Iimted form
of switching provides only that a process may substitute one socket
for another while establishing a connection. The new socket mnust
have the sanme user number and HOST nunber, and the connection is

still established to the sane process. This formof switching is
thus only a way of relabelling a socket, for no charge in the routing
of messages takes place. |In the next section we docunment the system

calls and control conmands; in the section after next, we consider
how | ogi n m ght be i npl enent ed.

SYSTEM CALLS AND CONTRCOL COVIVANDS

Here we sketch the nechani sns of establishing, sw tching and breaking
a connection. As noted above, the NCP interacts with user processes
via systemcalls and with other NCPs via control comrands. W
therefore begin with a partial description of systemcalls and
control commands.

Systemcalls will vary fromone operating systemto another, so the
followi ng description is only suggestive. W assune here that a
process has several input-output paths which we will call ports.
Each port nmay be connected to a sequential 1/0O device, and while
connected, transmits information in only one direction. W further
assune that the process is blocked (dismssed, slept) while
transm ssi on proceeds. The following is the Iist of systemcalls:

Crocker, et. al. [Page 7]

RFC 33

wher e

and

wher e

Cr ocker,

et.

New HOST- HOST Pr ot ocol 12 February 1970

Init <port>, <AEN 1>, <AEN 2>, <foreign socket>
<port> is part of the process issuing the Init

<AEN 1> |
+- are 8-bit AEN s (see Figure 2)
<AEN 2> |

The first AENis used to initiate the connection; the second
is used while the connection exists.

<foreign socket> is the 40-bit socket name of the distant
end of the connection

The | ower-order bits of <AEN 1> and <AEN 2> nust agree, and
these nust be the conpl enent of the | ower-order bit of
<f orei gn socket >.

The NCP concat enates <AEN 1> and <AEN 2> each with the user
nunber of the process and the HOST nunber to form 40-bit
sockets. It then sends a Request for Connection (RFC)
control command to the distant NCP. When the di stant NCP
responds positively, the connection is established and the
process is unblocked. |If the distant NCP responds
negatively, the I ocal NCP unbl ocks the requesting process,
but informs it that the systemcall has failed.

Li sten <port>, <AEN 1>

<port> and <AEN 1> are as above. The NCP retains the ports
and <AEN 1> and bl ocks the process. Wen an RFC contro
command arrives naming the |ocal socket, the process is
unbl ocked and notified that a foreign process is calling.
Accept <AEN 2>

After a Listen has been satisfied, the process may either
refuse the call or accept it and switch it to another

socket. To accept the call, the process issues the Accept
systemcall. The NCP then sends back an RFC contro
command.

Cl ose <port >
After establishing a connection, a process issues a Cose to

break the connection. The Close is also issued after a
Listen to refuse a call

al . [Page 8]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

Transmt <port>, <addr>

If <port> is attached to a send socket, <addr> points to a
nmessage to be sent. This nessage is preceded by its length
in bits.

If <port>is attached to a receive socket, a nessage is
stored at <addr>. The length of the nessage is stored
first.

Control Conmands
A vocabul ary of control commands has been defined for comrunication
bet ween Network Control Programs. Each control command consists of
an 8-bit operation code to indicate its function, followed by some
paranmeters. The nunmber and format of paranmeters is fixed for each
operation code. A sequence of control conmands destined for a
particul ar HOST can be packed into a single control nessage.
RFC <ny socket 1>, <ny socket 2>
<your socket>, (<link>)

This command is sent because a process has executed either an Init

systemcall or an Accept systemcall. A link is assigned by the
prospective receiver, so it is omtted if <ny socket 1> is a send
socket .

There is distinct advantage in using the same conmands both to
initiate a connection (Init) and to accept a call (Accept). If the
respondi ng conmand were different fromthe initiating comuand, then
two processes could call each other and becone bl ocked waiting for
each other to respond. Wth this schene, no deadl ock occurs and it
provi des a nmore conpact way to connect a set of processes.

CLSs <ny socket>, <your socket>
The specified connection is term nated
CEASE <l'i nk>

When the receiving process does not consune its input as fast as it
arrives, the buffer space in the receiving HOST is used to queue the
wai ting nessages. Since only linited space is generally avail abl e,
the receiving HOST may need to inhibit the sending HOST from sending
any nore nessages over the offending connection. When the sending
HOST receives this command, it may bl ock the process generating the
nmessages.

Crocker, et. al. [Page 9]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

RESUME <l i nk>

This command is also sent fromthe receiving HOST to the sendi ng HOST
and negates a previ ous CEASE

LOGE NG I N

We assune that within each HOST there is always a process in
execution which listens to login requests. W call this process the
| ogger, and it is part of a special virtual net whose user numnber is
zero. The logger is progranmed to listen to calls on socket number

0. Upon receiving a call, the logger switches it to a higher (even)
nunbered sockets, and returns a call to the socket nunbered one |ess
than the send socket originally calling. In this fashion, the |ogger

can initiate 127 conversations.
To illustrate, assune a user whose identification is X 010005 (user
nunber 5 at UCLA) signs into UCLA, starts up one of his prograns, and
this programwants to start a process at SRI. No process except the
logger is currently willing to listen to our user, so he executes

Init, <port> =1, <AEN 1> = 7, <AEN 2> = 7,

<foreign socket> = 0

H s process is blocked, and the NCP at UCLA sends

RFC <ny socket 1>

X 0100050107’
<nmy socket 2> = X 0100050107’
<your socket> = X 000000200’

The logger at SRl is notified when this nessage is received, because
it has previously executed

Li sten <port> = 9, <AEN 1> = 0.
The | ogger then executes

Accept <AEN 2> = 88.

Crocker, et. al. [Page 10]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

In response to the Accept, the SRI NCP sends

RFC <ny socket 1>

X' 0000000200’
<nmy socket 2> = X 0000000258

X 0100050107

<your socket>
<link> = 37

where the |ink has been chosen fromthe set of available |links. The
SRl | ogger than executes

I nit <port> = 10
<AEN 1> = 89, <AEN 2> = 89
<forei gn socket> = X 0100050106
whi ch causes the NCP to send

RFC <ny socket 1> X' 0000000259’

<nmy socket 2> x’ 0000000259
<your socket> = X 0100050106
The process at UCLA is unbl ocked and notified of the successful Init.
Because SRl | ogger always initiates a connection to the AEN one |ess
than it has just been connected to, the UCLA process then executes
Li sten <port> = 11
<AEN 1> = 6
and when unbl ocked
Accept <AEN 2> = 6

VWhen these transactions are conplete, the UCLA process is doubly

connected to the logger at SRI. The logger will then interrogate the
UCLA process, and if satisfied, create a new process at SRI. This
new process will be tagged with user nunber X 010005, and both
connections wil be switched to the new process. 1In this case,

swi tching the connections to the new process corresponds to "passing
the consol e down" in nmany time-sharing systens.

Crocker, et. al. [Page 11]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

USER LEVEL SOFTWARE

At the user level, subroutines which nanage data buffer and fornat

i nput designed for other HOSTs are provided. It is not mandatory
that the user use such subroutines, since the user has access to the
network systemcalls in his nonitor.

In addition to user programi ng access, it is desirable to have a
subsystem program at each HOST whi ch makes the network inmediately
accessible froma teletype-like device w thout special progranm ng.
Subsystens are conmonly used system conponents such as text editors,
conpilers and interpreters. An exanple of a network-rel ated
subsystemis TELNET, which will allow users at the University of Utah
to connect to Stanford Research Institute and appear as regul ar

term nal users. It is expected that nore sophisticated subsystens
will be developed in time, but this basic one will render the early
networ k i rmmedi ately useful .

A user at the University of Uah (UTAH) is sitting at a tel etype
dialed into the University's PDP-10/50 tine-sharing system He

wi shes to operate the Conversational Al gebraic Language (CAL)
subsystem on the XDS-940 at Stanford Research Institute (SRI) in
Menl o Park, California. A typical TELNET dialog is illustrated in
Figure 5. The neaning of each |ine of dialogue is discussed here.

(i) The user signs in at UTAH

(ii) The PDP-10 run conmand starts up the TELNET subsystem at
the user’s HOST.

(111) The user identifies a break character which causes any
nmessage following the break to be interpreted locally
rather than being sent on the foreign HOST.

(iv) The TELNET subsystemwi ||l make the appropriate system
calls to establish a pair of connections to the SR
| ogger. The connections will be established only if SR

accepts another foreign user.

The UTAH user is now in the pre-logged-in state at SRI. This is
anal ogous to the standard tel etype user’s state after dialing into a
conputer and nmaki ng a connection but before typing anything.

(v) The user signs in to SRl with a standard | ogi n conmand.
Characters typed on the user’'s teletype are transnitted
unal tered through the PDP-10 (user HOST) and on to the
940 (serving HOST). The PDP-10 TELNET wi |l have
automatically switched to full-dupl ex, character-by-

Crocker, et. al. [Page 12]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

character transnission, since this is required by SRI's
940. Full duplex operation is allowed for by the PDP-10,
t hough not used by nost Digital Equi pnent Corporations
subsyst emns.

(vi) and (vii) The 940 subsystem CAL, is started.

At this point, the user wishes to load a local CAL file into the 940
CAL subsystem fromthe file systemon his |ocal PDP-10.

(viii) CAL is instructed to establish a connection to UTAH in
order to receive this file. "NETWRK" is a predefined 940
name simlar in nature to "PAPER TYPE" or "TELETYPE".

(ix) Finally, the user types the break character (#) followed
by a command to his PDP-10 TELNET program which sends
the desired file to SRI from Utah on the connection just
established for this purpose. The user’s next statenent
is in CAL again.

The TELNET subsystem codi ng should be nminimal for it is essentially a
shel |l programbuilt over the network systemcalls. It effectively
established a shunt in the user HOST between the renote user and a

di stant serving HOST.

G ven the basic systemprimtives, the TELNET subsystem at the user
HOST and a manual for the serving HOST, the network can be profitably
enpl oyed by renote users today.

H GHER LEVEL PROTOCCL

The network poses special problens where a high degree of interaction
is required between the user and a particular subsystemin a foreign
HOST. These problens arise due to heterogeneous consol es, |oca
operating systens overhead, and network transm ssion delays. Unless
we use special strategies it nmay be difficult or even inpossible for
a distant user to nmake use of the nore sophisticated subsystens
offered. Wile these difficulties are especially severe in the area
of graphics, problenms may arise even for teletype interaction. For
exanpl e, suppose that a foreign subsystemis designed for tel etype
consol es connected by tel ephone, and then this subsystem becones
avail able to network users. This subsystem m ght have the follow ng
characteristics.

1. Except for echoing and correction of mistyping, no action is
taken until a carriage return is typed.

Crocker, et. al. [Page 13]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

2. Al characters except "~", and "<-" and carriage returns are
echoed as the character is typed.

3. <- causes deletion of the i medi ately precedi ng character, and
is echoed as that character.

4. ™ causes all previously typed characters to be ignored. A
carriage return and |ine feed are echoed.

5. A carriage return is echoed as a carriage return followed by a
l'ine feed.

| f each character typed is sent in its own nessage, then the
characters

HELLOX<- <- Pec.r.

cause nine nessages in each direction. Furthernore, each character
is handl ed by a user level programin the | ocal HOST before being
sent to the foreign HOST.

Now it is clear that if this particular exanple were inportant, we
woul d quickly inmplenment rules 1 to 5 in a |ocal HOST program and send
only conplete lines to the foreign HOST. |f the foreign HOST program
could not be nodified so as to not generate echoes, then the |oca
program coul d not only echo properly, it could also throw away the

| ater echoes fromthe foreign HOST. However, the problemis not any
particul ar interaction scheme; the problemis that we expect many of
these kinds of schenmes to occur. W have not found any genera
solutions to these problens, but sone observations and conjectures
may | ead the way.

Wth respect to heterogeneous consoles, we note that although
consoles are rarely conpatible, many are equivalent. It is probably
reasonable to treat a nodel 37 teletype as the equival ent of an | BM
2741. Simlarly, npst storage scopes will forman equival ence cl ass,
and nost refresh display scopes will formanother. Furthernore, a

hi erarchy nmight emerge with nenbers of one class usable in place of
those in another, but not vice versa. W can inmagine that any scope
m ght be an adequate substitute for a teletype, but hardly the
reverse. This observation | eads us to wonder if a network-w de

| anguage for consol es mght be possible. Such a |anguage woul d
provide for distinct treatnent of different classes of consoles, with
semantics appropriate to each class. Each site could then wite
interface prograns for its consoles to nake them | ook |ike network

st andard devi ces.

Crocker, et. al. [Page 14]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

Anot her observation is that a user evaluates an interactive system by
conparing the speed of the systemis responses with his own
expectations. Sonetinmes a user feels that he has nade only a minor
request, so the response should be inmediate; at other tines he feels
he has made a substantial request, and is therefore willing to wait
for the response. Sone interactive subsystens are especially

pl easant to use because a great deal of work has gone into tailoring
the responses to the user’s expectations. |In the network, however, a
| ocal user |evel process intervenes between a |ocal console and a
forei gn subsystem and we may expect the response time for mnor
requests to degrade. Now it may happen that all of this tailoring of
the interaction is fairly independent of the portion of the subsystem
whi ch does the heavy conputing or I/O In such a case, it may be
possi ble to separate a subsysteminto two sections. One section
woul d be a "front end" which formats output to the user, accepts his
i nput, and controls conputationally sinmple responses such as echoes.
In the exanpl e above, the programto accunul ate a |ine and generate
echoes would be the front end of sone subsystem W now take notice
of the fact that the | ocal HOSTs have substantial conputationa

power, but our current designs nake use of the |ocal HOST only as a
data concentrator. This is sonewhat ironic, for the local HOST is
not only poorly utilized as a data concentrator, it al so degrades
performance because of the delays it introduces.

These argunents have led us to consider the possibility of a Network
Interface Language (N L) which woul d be a network-w de | anguage for
witing the front end of interactive subsystens. This |anguage woul d
have the feature that subprograns conmuni cate through network-1Iike
connections. The strategy is then to transport the source code for
the front end of a subsystemto the |local HOST, where it would be
conpi |l ed and execut ed.

During prelimnary discussions we have agreed that N L should have at
| east the followi ng semantic properties not generally found in other
| anguages.

1. Concurrency. Because messages arrive asynchronously on
di fferent connections, and because user input is not
synchroni zed with subsystem output, N L nust include semantics
to accurately nodel the possible concurrencies.

2. Program Concatenation. It is very useful to be able to insert
a programin between two other programs. To achieve this, the
i nterconnection of programs would be specified at run tinme and
woul d not be inmplicit in the source code.

Crocker, et. al. [Page 15]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

3. Device substitutability. It is usual to define | anguages so
that one device nay be substituted for another. The
requi rement here is that any device can be nodeled by a NI L
program For exanple, if a network standard di splay controller
mani pul ates tree-structures according to nessages sent to it
then these structures nust be easily inplenentable in N L.

NI L has not been fully specified, and reservati ons have been
expressed about its useful ness. These reservations hinge upon our
conjecture that it is possible to divide an interactive systeminto a
transportable front end which satisfies a user’s expectations at | ow
cost and a nore substantial stay-at-hone section. |If our conjecture
is false, then NIL will not be useful; otherwise it seems worth
pursuing. Testing of this conjecture and further devel opnent of N L
will take priority after low | evel HOST-HOST protocol has stabilized.

HOST/ | MP | NTERFACI NG

The hardware and software interfaces between HOST and IMP is an area
of particular concern for the HOST organi zati ons. Considering the
diversity of HOST computers to which a standard | MP nust connect, the
hardware interface was nade bit serial and full-duplex. Each HOST
organi zation inplements its half of this very sinple interface.

The software interface is equally sinple and consists of nessages
passed back and forth between the | MP and HOST progranms. Specia
error and signal nessages are defined as well as nessages containing
normal data. Messages waiting in queues in either machine are sent
at the pleasure of the machine in which they reside with no concern
for the needs of the other conputer.

The effect of the present software interface is the needl ess
rebuffering of all messages in the HOST in addition to the buffering
inthe MP. The messages have no particul ar order other than arriva
times at the MP. The Network Control Program at one HOST (e.g.

UTAH) needs waiting RFNM s before all other nessages. At another
site (e.g., SRI), the NCP could benefit by receiving nessages for the
user who is next to be run

VWhat is needed is coding representing the specific needs of the HOST
on both sides of the interface to make intelligent decisions about
what to transmt next over the channel. Wth the present software
interface, the channel in one direction once conmitted to a
particul ar nmessage is then locked up for up to 80 milliseconds! This
approaches one tel etype character tine and needlessly limts full-
dupl ex, character by character, interactions over the net. At the
very | east, the | M/ HOST protocol should be expended to permt each
side to assist the other in scheduling nessages over the channels.

Crocker, et. al. [Page 16]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

CONCLUSI ONS

At this time (February 1970) the initial network of four sites is
just beginning to be utilized. The comunications system of four

| MPs and wi de band tel ephone |ines have been operational for two
nonths. Programrers at UCLA have signed in as users of the SR 940.
More significantly, one of the authors (S. Carr) living in Palo Alto
uses the Salt Lake PDP-10 on a daily basis by first connecting to
SRI. W thus have first hand experience that renote interaction is
possi ble and is highly effective.

Work on the ARPA network has generated new areas of interest. NL is
one exanple, and interprocess comunication is another. |Interprocess
conmuni cati on over the network is a subcase of general interprocess
conmuni cation in a multiprogramed environment. The mechani sm of
connections seens to be new, and we wonder whether this mechanismis
useful even when the processes are within the same conputer.

REFERENCES
1 L. ROBERTS
"The ARPA net wor k"
Invitational Wirkshop on Networks of Conputers Proceedi ngs
Nati onal Security Agency 1968 p 115 ff
2. R M RUTLEDGE et a
"An interactive network of tinme-sharing conputers”
Proceedi ngs of the 24th National Conference
Associ ation for Conmputing Machinery 1969 p 431 ff
3. F EHEART RE KAHN S M ORNSTEIN WR CROMHER
D C WALDEN
"The interface nessage processors for the ARPA network"
These Proceedi ngs
LI ST OF FI GURES
Figure 1 Initial network configuration
Figure 2 A typical nmessage froma 24-bit machi ne
Figure 3 A typical socket
Figure 4 The relationship between sockets and processes
Figure 5 A typical TELNET di al og.

Underlined characters are those types by the user

Crocker, et. al. [Page 17]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

SR
/ \
| XDS |
| 940 |
\ /
|
S +
| IMP
Fomm e e +
/ | \
/ | \
/ | \' -t
/ | L T / \
oot/ | \| M |--] DEC |
/ \ | 1 |/ | | P | | PDP-10|
IBM |---| M | | oo+ /
| 360/75 | | P |\ |
\ / oo+)\ | UTAH
\ |
UCSB \ |
Fomm e e +
| M
e +
|
B
/ \
| XDS |
| (sigma)-7|
\
UCLA

Figure 1 Initial network configuration

Crocker, et. al. [Page 18]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

| 16 bits of paddi ng added
by the interface

Figure 2 A typical nessage froma 24-bit machi ne

24 8 8
o e e e e Fom oo R +
| User Number |
o e e e e a o R S +
| | AEN
|
| __ HOST nunber

Figure 3 A typical socket

| <--- connection --->

R + R +
| | i nk |

| process |--(]-------------- |)--] process

| " ~o |
B R + | | B R +

| |
send socket recei ve socket

Figure 4 The rel ationship between sockets and processes

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Lorrie Shiota 08/00]

Crocker, et. al. [Page 19]

