Net wor k Wor ki ng Group B. Wjnen
Request for Comments: 2089 | BM
Cat egory: I nfornmational D. Levi
SNVMP Research, Inc

January 1997

V2ToV1
Mappi ng SNVMPv2 onto SNWPv1
within a bi-lingual SNMP agent
Status of this Meno
This meno provides information for the Internet conmunity. This nmeno
does not specify an Internet standard of any kind. Distribution of
this nmeno is unlimnmted.
Abst r act
The goal of this nmempo is to docunent a common way of napping an
SNWPv2 response into an SNMPv1l response within a bi-Iingual SNWP
agent (one that supports both SNVMPv1l and SNWVPv2).

Tabl e of Contents

1.0 Introduction . . 2
2.0 Mappi ng SNWPv2 |nt0 SNNPvl .o 2
2.1 Mapping SNVPv2 error-status |nto SNNPvl error—status 3
2.2 Mapping SNVPv2 exceptions into SNWPv1 Coe 3
2.3 Mappi ng noSuchObj ect and noSuchl nst ance 4
2.4 Mapping endOFM bView . . Coe 5
2.5 Mapping SNWPv2 SM into SNNPvl 5
3.0 Processing SNMPv1 requests . . 6
3.1 Processing an SNMPv1l CGET request . 6
3.2 Processing an SNMPv1l GETNEXT request 7
3.3 Processing an outgoi ng SNWPv2 trap e -
4.0 Acknow edgenents . . . e K¢
5.0 References . . N K¢
6.0 Security CbnS|derat|ons e K¢
7.0 Authors’ Addresses . . O I
Appendi x A. Background Infornat|on e e e e e 12
A.1 Mapping of error-status Values . . Ce e e e e 12
A .2 SNWPv1 traps w thout Counter64 varB|nds. e 12

Wjnen & Levi | nf or mati onal [Page 1]

RFC 2089 V2t oV1 January 1997

1.0 Introduction

We now have the SNWPv1l protocol (RFC1157 [1]) as a full standard and
the SNMPv2 protocol (RFCL1905 [1]) as a DRAFT standard. It can be

expected that many agent inplenentations will support both SNWMPv1l and

SNWVPv2 requests com ng from SNVP nanagenent entities. |n many cases
the underlying instrunentation will be inplenmented using the new
SNVPv2 SM and SNWPv2 protocol. The SNMP engi ne then gets the task
to ensure that any SNWMPv2 response data com ng from such SNMPv2
conpliant instrumentation gets converted to a proper SNMPv1l response
if the original request cane in as an SNMPv1l request. The SNWP

engi ne should also deal with nmapping SNMPv2 traps which are generated

by an application or by the SNMPv2 conpliant instrunentation into
SNWPv1 traps if the agent has been configured to send traps to an
SNWPv1 manager

It seens beneficial if all such agents do this mapping in the same
way. This docunment describes such a mappi ng based on di scussi ons and
percei ved consensus on the various mailing lists. The authors of
this docunment have al so conpared their own inplenmentations of these
mappi ngs. They had a few minor differences and deci ded to nmake their
i mpl enent ati on behave the sane and docunent this mapping so others
can benefit fromit.
We recommend that all agents inplenent this same mappi ng.
Not e that the mapping described in this docunent shoul d al so be
foll owed by SNMP proxies that provide a mappi ng bet ween SNWPv1
managemnment applicati ons and SNVPv2 agents.
2.0 Mapping SNVPv2 into SNWPv1

These are the type of nappings that we need:

o] Mappi ng of the SNMPv2 error-status into SNVMPvl error-status

o] Mappi ng of the SNWMPv2 exceptions into SNMPv1l error-status

o] Ski ppi ng obj ect instances that have a non- SNMPv1l Synt ax
(specifically Counter64)

o] Mappi ng of SNMPv2 traps into SNVPv1l traps

Wjnen & Levi I nf or mati onal [Page 2]

RFC 2089 V2t oV1 January 1997

2.1 Mapping SNWPv2 error-status into SNMPvl error-status

Wth the new SNMPv2 protocol (RFC1905 [1]) we get a set of error-
status values that return the cause of an error in much nore detail
But an SNMPv1l manager does not understand such error-status val ues.

So, when the instrunmentation code returns response data and uses an
SNVPv2 error-status to report on the success or failure of the
requested operation and if the original SNWP request is an SNMPv1
request, then we rmust map such an error-status into an SNVPv1l error-
status when conposing the SNMP response PDU

The SNMPv2 error status is napped to an SNWPv1l error-status using
this table:

SNVPv2 error-status SNVPv1 error-status

noEr r or noEr r or
tooBi g tooBi g
noSuchName noSuchName
badVal ue badVal ue
readOnly readOnly
genkrr genkrr

wr ongVal ue badVal ue
wr ongEncodi ng badVal ue
wrongType badVal ue
wr ongLengt h badVal ue

i nconsi st ent Val ue badVal ue
noAccess noSuchNane
not Witable noSuchName
noCreati on noSuchName
i nconsi st ent Namre noSuchName
resour ceUnavai | abl e genErr
conmi t Fai | ed genErr
undoFai | ed genErr

aut hori zati onError noSuchName

2.2 Mapping SNVWPv2 exceptions into SNWPv1

In SNMPv2 we have so call ed exception values. These will allow an
SNWPv2 response PDU to return as nuch managenent infornmation as
possi ble, even if one or nore of the requested variabl es do not

exi st. SNWPv1l does not support exception values, and thus does not
return the val ue of nmanagenent information when any error occurs.

VWhen multiple variables do not exist, an SNMPv1l agent can return only

a single error and index of a single variable. The agent determ nes
by its inplenmentation strategy which variable to identify as the

Wjnen & Levi I nf or mati onal [Page 3]

RFC 2089 V2t oV1 January 1997

cause of the error via the value of the error-index field. Thus, an
SNVPv1 nmanager nmay nmake no assunption on the validity of the other
variables in the request.

So, when an SNWPv1l request is received, we nust check the varBinds
returned from SNMPv2 conpliant instrunmentation for exception val ues,
and convert these exception values into SNMPvl error codes.

The type of exception we can get back and the action we nust take
depends on the SNWMP operation that is requested.

o] For SNMP CGET requests we can get back noSuchObj ect and
noSuchl nst ance.

o] For SNMP GETNEXT requests we can get back endO'M bVi ew.
o] For SNMP SET requests we cannot get back any exceptions.

o] For SNMP GETBULK requests we can get back endO'M bVi ew, but
such a request should only cone in as an SNMPv2 request, so we
do not have to worry about any nmapping onto SNMPv1. [If a
GETBULK cones in as an SNWMPvl request, it is treated as an
error and the packet is dropped.

2.3 Mappi ng noSuchCbj ect and noSuchl nst ance

A noSuchCbj ect or noSuchl nstance excepti on generated by SNWPv2
conpliant instrumentation indicates that the requested object

i nstance can not be returned. The SNMPvl1l error code for this
condition is noSuchNanme, and so the error-status field of the
response PDU should be set to noSuchNane. Also, the error-index
field is set to the index of the varBind for which an exception
occurred, and the varBind list fromthe original request is returned
with the response PDU

Not e that when the response contains nultiple exceptions, that the
agent may pick any one to be returned.

Wjnen & Levi I nf or mati onal [Page 4]

RFC 2089 V2t oV1 January 1997

2.4 Mappi ng endOf M bVi ew

When SNMPv2 conmpliant instrumentation returns a varBind containing an
endOf M bVi ew exception in response to a GETNEXT request, it indicates
that there are no object instances avail able which | exicographically
follow the object in the request. In an SNMPvl agent, this condition
normally results in a noSuchNanme error, and so the error-status field
of the response PDU should be set to noSuchNane. Also, the error-
index field is set to the index of the varBind for which an exception
occurred, and the varBind list fromthe original request is returned
with the response PDU

Not e that when the response contains nmultiple exceptions, that the
agent may pick any one to be returned.

2.5 Mapping SNVPv2 SM into SNWPv1
The SNMPv2 SM (RFC1902 [2]) defines basically one new syntax that is

problematic for SNMPvl nanagers. That is the syntax Counter64. Al
the others can be handl ed by SNMPv1l nmanagers.

The net inpact on bi-lingual agents is that they should nake sure
that they never return a varBind with a Counter64 value to an SNWPv1
manager .

The best accepted practice is to consider such object instances
implicitly excluded fromthe view So:

o] On an SNMPv1 CET request, we return an error-status of
noSuchName and the error-index is set to the varBind that
causes this error.

o] On an SNMPv1 GETNEXT request, we skip the object instance and
fetch the next object instance that follows the one with a
syntax of Counter 64.

o] Any SET request that has a varBind with a Counter64 val ue nust
have conme froma SNMPv2 manager, and so it should not cause a
problem If we do receive a Counter64 value in an SNMPv1l SET
packet, it should result in an ASN. 1 parse error since
Counter64 is not valid in the SNMPvl protocol. Wen an ASN. 1
parse error occurs, the counter snnplnASNParseErrs is
i ncrenented and no response is returned.

o] The GETBULK is an SNMPv2 operation, so it should never come
froman SNWPv1l manager. |f we do receive a GETBULK PDU fromin
an SNMPv1l packet, then we consider it an invalid PDU-type and
we drop the packet.

Wjnen & Levi I nf or mati onal [Page 5]

RFC 2089 V2t oV1 January 1997

3.0 Processing SNMPv1l requests

This sections contains a step by step description of how to handle
SNWPv1 requests in an agent where the underlying instrumentation code
is SNWPv2 conpli ant.

3.1 Processing an SNMPv1l GET request

First, the request is converted into a call to the underlying
instrumentation. This is inplenmentation specific.

When such instrunentation returns response data using SNVMPv2 synt ax
and error-status val ues, then:

1. If the error-status is anything other than noError,

a. The error status is translated to an SNVPv1l error-status
using the table from 2.1, "Mapping SNMPv2 error-status into
SNWPv1 error-status” on page 2

b. The error-index is set to the position (in the origina
request) of the varBind that caused the error-status.

c. The varBindList of the response PDU is made exactly the
sanme as the varBindList that was received in the origina
request.

2. If the error-status is noError, then find any varBind t hat
contai ns an SNWPv2 exception (noSuchObject or noSuchl nstance)
or an SNMPv2 syntax that is unknown to SNWMPv1l (Counter64).
(Note that if there are nore than one, the agent nay choose any
such varBind.) |f there are any such varBinds, then for the
one chosen:

a. Set the error-status to noSuchNane

b. Set the error-index to the position (in the varBindList of
the original request) of the varBind that returned such an
SNMPv2 exception or syntax.

c. Mke the varBindList of the response PDU exactly the sane

as the varBindList that was received in the origina
request.

Wjnen & Levi I nf or mati onal [Page 6]

RFC 2089 V2t oV1 January 1997

3. If there are no such varBinds, then
a. Set the error-status to noError
b. Set the error-index to zero

c. Compose the varBindList of the response, using the data as
it is returned by the instrunentation code.

3.2 Processing an SNMPv1l GETNEXT request

First, the request is converted into a call to the underlying
instrunmentation. This is inplenmentation specific. There may be
repetitive calls to (possibly different pieces of) instrunentation
code to try to find the first object which |exicographically foll ows
each of the objects in the request. Again, this is inplementation
specific.

When the instrunmentation finally returns response data usi ng SNWPv2
syntax and error-status val ues, then

1. If the error-status is anything other than noError,
a. The error status is translated to an SNWPvl error-status
using the table from 2.1, "Mapping SNMPv2 error-status into
SNWMPv1 error-status” on page 2

b. The error-index is set to the position (in the origina
request) of the varBind that caused the error-status.

c. The varBindList of the response PDU is made exactly the
sane as the varBindList that was received in the origina

request.
2. If the error-status is noError, then
a. |If there are any varBinds containing an SNVMPv2 syntax of

Count er 64, then consider these varBinds to be not in view
and repeat the call to the instrunmentation code as often as
needed till a value other than Counter64 is returned.

b. Find any varBind that contains an SNMPv2 exception
endOf M bView. (Note that if there are nore than one, the
agent may choose any such varBind.) |f there are any such
var Bi nds, then for the one chosen

1) Set the error-status to noSuchNane

Wjnen & Levi I nf or mati onal [Page 7]

RFC 2089

V2t oV1 January 1997

2) Set the error-index to the position (in the varBi ndLi st
of the original request) of the varBind that returned
such an SNWMPv2 exception

3) Make the varBindList of the response PDU exactly the
sane as the varBindList that was received in the
original request.

c. |If there are no such varBinds, then:

1) Set the error-status to noError
2) Set the error-index to zero

3) Compose the varBindList of the response, using the data
as it is returned by the instrunentati on code.

3.3 Processing an outgoi ng SNVPv2 TRAP

I f SNMPv2 conpliant instrunentation presents an SNMPv2 trap to the
SNVP engi ne and such a trap passes all regular checking and then is
to be sent to an SNWPv1l destination, then the follow ng steps nust be
followed to convert such a trap to an SNMPvl trap. This is basically
the reverse of the SNMPvl to SNWPv2 mappi ng as descri bed in RFCL908

[3].
1.

If any of the varBinds in the varBindLi st has an SNMPv2 synt ax
of Counter64, then such varBinds are inplicitly considered to
be not in view, and so they are renoved fromthe varBindList to
be sent with the SNMPv1 trap

The 3 special varBinds in the varBindLi st of an SNWPv2 trap
(sysUpTime.0 (TinmeTicks), snnpTrapO D.0 (OBJECT | DENTI FI ER) and
optionally snmpTrapEnterprise.0 (OBJECT | DENTIFIER)) are
renoved fromthe varBindList to be sent with the SNWPvl trap
These 2 (or 3) varBinds are used to decide how to set other
fields in the SNMPvl trap PDU as foll ows:

a. The value of sysUpTime.0 is copied into the tinmestanp field
of the SNWPv1 trap.

Wjnen & Levi I nf or mati onal [Page 8]

RFC 2089 V2t oV1 January 1997

b. If the snnpTrapO D.0 value is one of the standard traps the
specific-trap field is set to zero and the generic trap
field is set according to this mapping:

val ue of snnpTrapO D. 0 generic-trap

1 (coldStart) 0
2 (warnttart) 1
3 (I'i nkDown) 2
4 (1inkUp) 3
5 (authenticationFail ure) 4
6 (egpNei ghbor Loss) 5

The enterprise field is set to the val ue of
snnpTrapEnterprise.0 if this varBind is present, otherw se
it is set to the value snnmpTraps as defined in RFC1907 [4].

c. If the snmpTrapO D.0 value is not one of the standard
traps, then the generic-trap field is set to 6 and the
specific-trap field is set to the last subid of the
snmpTrapO D. 0 val ue.

o] If the next to last subid of snnpTrapO D.0 is zero,
then the enterprise field is set to snnpTrapQ D. 0 val ue
and the last 2 subids are truncated fromthat val ue.

o] If the next to last subid of snmpTrapO D.0 is not zero,
then the enterprise field is set to snnmpTrapQO D.0 val ue
and the last 1 subid is truncated fromthat val ue.

In any event, the snnpTrapEnterprise.0 varBind (if present)
is ignored in this case.

3. The agent-addr field is set with the appropriate address of the
the sending SNMP entity, which is the I P address of the sending
entity of the trap goes out over UDP; otherw se the agent-addr
field is set to address 0.0.0.0.

Wjnen & Levi I nf or mati onal [Page 9]

RFC 2089 V2t oV1 January 1997

4.0 Acknow edgenents

The authors wi sh to thank the contributions of the SNWPv2 WrKking
Group in general. Special thanks for their detailed review and
comments goes to these individuals:

M ke Dani el e (DEC)

Dave Harrington (Cabletron)

Brian O Keefe (Hew ett Packard)

Keith McC oghrie (C sco Systens)

Dave Perkins (independent)

Shawn Rout hi er (Epil ogue)

Juer gen Schoenwael der (University of Twente)

5.0 References

[1] Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall and Janes
R Davin, Sinmple Network Managenent Protocol (SNWP), SNWP
Research, Performance Systens International, MT Laboratory
for Computer Science, RFC 1157, My 1990.

[2] Jeffrey D. Case, Keith McCl oghrie, Marshall T. Rose and Steven
Wal dbusser, Structure of Managment Information for Version 2
of the Sinple Network Managerment Protocol (SNWMPv2), SNWP
Research Inc, Ci sco Systems Inc, Dover Beach Consulting Inc,
I nternational Network Services, RFCL902, January 1996.

[3] Jeffrey D. Case, Keith McCl oghrie, Marshall T. Rose and Steven
Wal dbusser, Coexi stence between Version 1 and Version 2 of the
Internet-standard Network Managenent Franmework, SNMP Research
Inc, Cisco Systens Inc, Dover Beach Consul ting I nc,
I nternational Network Services, RFCL908, January 1996.

[4] Jeffrey D. Case, Keith McCl oghrie, Marshall T. Rose and Steven
Wal dbusser, Managenent |Information Base for Version 2 of the
Si npl e Network Managenent Protocol (SNWPv2), SNWP Research
I nc, Ci sco Syst ens I nc, Dover Beach Consulting Inc,
I nternational Network Services, RFCL907, January 1996.
6.0 Security Considerations

Security considerations are not discussed in this nmeno.

Wjnen & Levi I nf or mati onal [Page 10]

RFC 2089 V2t oV1 January 1997

7.0 Authors’ Addresses

Bert Wj nen

| BM I nternational Operations
VWAt sonweg 2

1423 ND Uit hoorn

The Net her| ands

Phone: +31-079-322-8316
E-mail: wijnen@net.ibmcom

Davi d Levi

SNVP Research, |nc

3001 Kinberlin Heights Rd.
Knoxville, TN 37920-9716
USA

Phone: +1-615-573-1434
E-mail: |evi @nnp.com

Wjnen & Levi I nf or mati onal [Page 11]

RFC 2089 V2t oV1 January 1997

APPENDI X A. Background I nfornation
Here foll ows sone reasoning as to why some choi ces were made.
A.1 Mapping of error-status val ues

The mappi ng of SNWMPv2 error-status values to SNVMPvl error-status

val ues is based on the common interpretation of how an SNWPvl entity
shoul d create an error-status val ue based on the el ements of
procedure defined in RFCL157 [1].

There was a suggestion to map w ongEncoding into genErr, because it
could be caused by an ASN. 1 parsing error. Such maybe true, but in
nost cases when we detect the ASN. 1 parsing error, we do not yet know
about the PDU data yet. Mst people who responded to our queries
have i mpl enented the mapping to a badValue. So we "agreed" on the
mappi ng to badVal ue.

A. .2 SNWPv1l Traps wi thout Counter64 varBinds.

RFC1448 says that if one of the objects in the varBindList is not
included in the view, then the trap is NOT sent. Current SNWMPv2u and
SNWPv2* docunents make the sane statenent. However, the "rough
consensus” is that it is better to send partial information than no
information at all. Besides:

0] RFC1448 does not allow for a TRAP to be sent with the varBi nds
that are not included in the view renmoved, so it is an all or
not hi ng deci si on

o] We do NOT include the Counter64 varBinds... so the "not in
view' varBinds are not sent to the trap destination

o] The Counter64 objects are "inmplicit" not in view If any
objects are explicit not in view, then this is checked before
we do the conversion froman SNWPv2 trap to an SNWPv1l trap, and
so the trap is not sent at all

Wjnen & Levi I nf or mati onal [Page 12]

