Net wor k Wor ki ng Group W Sinpson, Editor
Request for Comments: 1662 Daydr eaner
STD: 51 July 1994
Obsol etes: 1549

Cat egory: Standards Track

PPP in HDLC-1li ke Fram ng

Status of this Menp

Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this nenmo is unlimted.

Abstract

The Point-to-Point Protocol (PPP) [1] provides a standard nethod for
transporting nulti-protocol datagrans over point-to-point |inks.

Thi s docunent describes the use of HDLC-like fram ng for PPP
encapsul at ed packets.

Tabl e of Contents

1. Introducti On 1
1.1 Specification of Requirements 2
1.2 Termnol 0gyo 2

2. Physi cal Layer Requirements 3

3. The Data Link Layer 4
3.1 Frame Format 5
3.2 Modi fication of the Basic Frame 7

4. Octet-stuffed framing 8
4.1 Flag Sequence 8
4.2 Transpar eNCYt e 8
4.3 Invalid Frames 9
4.4 Time Fill 9

4.4.1 Cctet-synchronous 9
4.4.2 ASYNChRroNOUSttt e 9
4.5 Transm ssion Considerations 10
4.5.1 COctet-synchronous 10
4.5.2 Asynchronous 10

Si npson [Page i]

RFC 1662 HDLC-1i ke Fram ng July 1994

5. Bit-stuffed framng 11
5.1 Flag Sequence 11
5.2 Transpar eNCY 11
5.3 Invalid Frames i, 11
5.4 Time Fill o 11
5.5 Transm ssion Considerations 12

6. Asynchronous to Synchronous Conversion 13

7. Addi tional LCP Configuration Options 14
7.1 Async- Control - Character-Map (ACCM) 14

APPENDI CES 17

A Recommended LCP Qptionst 17

B. Automatic Recognition of PPP Franes 17

C. Fast Frame Check Sequence (FCS) Inplenmentation 18
C1 FCS table generator 18
C2 16-bit FCS Conputation Method 19
C3 32-bit FCS Conputation Method 21

SECURI TY CONSI DERATI ONS e e e e e e e e e 24

REFERENCESo e e e e e 24

ACKNOWLEDGENMENT S . . ottt e e e e e e e e e e 25

CHAI R S ADDRESS it e e 25

EDI TOR' S ADDRESS ittt e e e e e 25

1. I nt roducti on

Thi s specification provides for fram ng over both bit-oriented and
octet-oriented synchronous |inks, and asynchronous links with 8 bhits
of data and no parity. These |inks MJST be full-duplex, but MAY be
ei ther dedicated or circuit-swtched.

An escape nechanismis specified to allow control data such as

XON XOFF to be transmitted transparently over the link, and to renove
spurious control data which may be injected into the link by

i nt erveni ng hardware and software.

Sone protocols expect error free transm ssion, and either provide
error detection only on a conditional basis, or do not provide it at
all. PPP uses the HDLC Franme Check Sequence for error detection
This is conmonly available in hardware inplenmentations, and a

sof tware inplenentation is provided.

Si npson [Page 1]

RFC 1662

HDLC-1i ke Fram ng July 1994

1.1. Specification of Requirenents

In this docunent, several words are used to signify the requirenents
of the specification. These words are often capitalized.

MUST

MUST NOT

SHOULD

MAY

This word, or the adjective "required", neans that the
definition is an absolute requirenent of the specification

This phrase neans that the definition is an absolute
prohi bition of the specification

This word, or the adjective "recommended”, neans that there
may exi st valid reasons in particular circunstances to
ignore this item but the full inplications nust be
under st ood and carefully wei ghed before choosing a

di fferent course.

This word, or the adjective "optional”, neans that this
itemis one of an allowed set of alternatives. An

i mpl enent ati on whi ch does not include this option MJST be
prepared to interoperate with another inplenmentation which
does include the option

1.2. Term nol ogy

Thi s docunent frequently uses the follow ng terms:

datagram The unit of transmi ssion in the network |layer (such as |IP).

frane

packet

peer

A dat agram may be encapsul ated in one or nore packets
passed to the data |ink |ayer.

The unit of transnmission at the data link layer. A frane
may include a header and/or a trailer, along with sone
nunber of units of data.

The basic unit of encapsul ation, which is passed across the
i nterface between the network |ayer and the data |ink

| ayer. A packet is usually mapped to a frane; the
exceptions are when data link |layer fragnmentation is being
performed, or when multiple packets are incorporated into a
single frame.

The other end of the point-to-point |ink.

silently discard

Si npson

The i npl enentati on di scards the packet w thout further
processing. The inplenmentati on SHOULD provi de the
capability of logging the error, including the contents of
the silently discarded packet, and SHOULD record the event
in a statistics counter.

[Page 2]

RFC 1662 HDLC-1i ke Fram ng July 1994

2.

Physi cal Layer Requirenents

PPP is capabl e of operating across nost DTE/ DCE interfaces (such as,
El A RS-232-E, EIA RS-422, and CCITT V.35). The only absolute

requi rement inposed by PPP is the provision of a full-duplex circuit,
either dedicated or circuit-swtched, which can operate in either an
asynchronous (start/stop), bit-synchronous, or octet-synchronous
node, transparent to PPP Data Link Layer franes.

I nt erface Format

PPP presents an octet interface to the physical layer. There is
no provision for sub-octets to be supplied or accepted.

Transm ssi on Rate

PPP does not inmpose any restrictions regarding transm ssion rate,
other than that of the particular DTE/ DCE interface.

Control Signals

PPP does not require the use of control signals, such as Request
To Send (RTS), Clear To Send (CTS), Data Carrier Detect (DCD), and
Data Term nal Ready (DTR).

When avail abl e, using such signals can allow greater functionality
and performance. In particular, such signals SHOULD be used to
signal the Up and Down events in the LCP Option Negotiation
Automaton [1]. Wen such signals are not avail able, the

i mpl enent ati on MUST signal the Up event to LCP upon
initialization, and SHOULD NOT signal the Down event.

Because signalling is not required, the physical |ayer MAY be
decoupl ed fromthe data link layer, hiding the transient details
of the physical transport. This has inplications for nobility in
cellul ar radi o networks, and other rapidly sw tching |inks.

When noving fromcell to cell within the same zone, an

i mpl ement ati on MAY choose to treat the entire zone as a single
i nk, even though transmission is switched anbng severa
frequencies. The link is considered to be with the centra
control unit for the zone, rather than the individual cel
transceivers. However, the |link SHOULD re-establish its
configurati on whenever the link is switched to a different

admi ni stration.

Due to the bursty nature of data traffic, sone inplenentations
have choosen to di sconnect the physical |ayer during periods of

Si npson [Page 3]

RFC 1662 HDLC-1i ke Fram ng July 1994

3.

inactivity, and reconnect when traffic resumes, w thout informng
the data link |ayer. Robust inplenentations should avoid using
this trick over-zealously, since the price for decreased setup

| atency is decreased security. |nplenentations SHOULD signal the
Down event whenever "significant time" has el apsed since the |ink
was di sconnected. The value for "significant time" is a matter of
consi derabl e debate, and is based on the tariffs, call setup
times, and security concerns of the installation

The Data Link Layer

PPP uses the principles described in | SO 3309-1979 HDLC frane
structure, nmost recently the fourth edition 3309:1991 [2], which
specifies nodifications to allow HDLC use in asynchronous

envi ronnent s.

The PPP control procedures use the Control field encodings described
in 1SO 4335-1979 HDLC el emrents of procedures, nost recently the
fourth edition 4335:1991 [4].

Thi s should not be construed to indicate that every feature of the
above recommendations are included in PPP. Each feature included
is explicitly described in the followi ng sections.

To remai n consistent with standard Internet practice, and avoid
confusion for people used to reading RFCs, all binary nunbers in the
foll owi ng descriptions are in Mdst Significant Bit to Least
Significant Bit order, reading fromleft to right, unless otherw se
indicated. Note that this is contrary to standard |SO and CCITT
practice which orders bits as transmitted (network bit order). Keep
this in mnd when conparing this docunent with the internationa

st andards docunents.

Si npson [Page 4]

RFC 1662 HDLC-1i ke Fram ng July 1994

3.1. Frame For mat

A summary of the PPP HDLC-1ike frame structure is shown below. This
figure does not include bits inserted for synchronization (such as
start and stop bits for asynchronous links), nor any bits or octets
inserted for transparency. The fields are transmitted fromleft to
right.

| Fl ag | Address | Control
| 01111110 | 11111111 | 00000011

| Protocol | Information | Paddi ng
| 8/ 16 bits]| * | *

FCS | Fl ag | Inter-frane Fil
| 16/ 32 bits| 01111110 | or next Address

The Protocol, Information and Padding fields are described in the
Poi nt -t o- Poi nt Protocol Encapsul ation [1].

Fl ag Sequence

Each frame begins and ends with a Flag Sequence, which is the

bi nary sequence 01111110 (hexadeci mal 0x7e). Al inplenmentations
continuously check for this flag, which is used for frame
synchroni zati on.

Only one Flag Sequence is required between two franmes. Two
consecutive Flag Sequences constitute an enpty frame, which is
silently discarded, and not counted as a FCS error

Address Field

The Address field is a single octet, which contains the binary
sequence 11111111 (hexadecimal Oxff), the All-Stations address.

I ndi vi dual station addresses are not assigned. The All-Stations
address MJST al ways be recogni zed and received.

The use of other address |engths and values may be defined at a

later time, or by prior agreenment. Franes with unrecognized
Addr esses SHOULD be silently discarded.

Si npson [Page 5]

RFC 1662 HDLC-1i ke Fram ng July 1994

Control Field

The Control field is a single octet, which contains the binary
sequence 00000011 (hexadeci mal 0x03), the Unnunbered Information
(Ul) conmand with the Poll/Final (P/F) bit set to zero.

The use of other Control field values may be defined at a | ater
time, or by prior agreement. Franmes with unrecognized Contro
field values SHOULD be silently discarded.

Frame Check Sequence (FCS) Field

The Frame Check Sequence field defaults to 16 bits (two octets).
The FCS is transmitted | east significant octet first, which
contains the coefficient of the highest term

A 32-bit (four octet) FCS is also defined. Its use may be
negoti ated as described in "PPP LCP Extensions" [5].

The use of other FCS lengths may be defined at a later tinme, or by
prior agreenent.

The FCS field is calculated over all bits of the Address, Control

Protocol, Information and Padding fields, not including any start

and stop bits (asynchronous) nor any bits (synchronous) or octets
(asynchronous or synchronous) inserted for transparency. This

al so does not include the Flag Sequences nor the FCS field itself.

When octets are received which are flagged in the Async-
Control - Character-Map, they are discarded before cal cul ating
t he FCS.

For nmore information on the specification of the FCS, see the
Appendi ces.

The end of the Informati on and Padding fields is found by |ocating

the closing Flag Sequence and renoving the Frame Check Sequence
field.

Si npson [Page 6]

RFC 1662 HDLC-1i ke Fram ng July 1994

3.2. Modification of the Basic Frane

The Link Control Protocol can negotiate nodifications to the standard
HDLC-li ke franme structure. However, nodified franes will always be
clearly distinguishable from standard franes.

Addr ess- and- Cont r ol - Fi el d- Conpr essi on

When using the standard HDLC-li ke franmi ng, the Address and Contro
fields contain the hexadeci mal val ues Oxff and 0x03 respectively.
When ot her Address or Control field values are in use, Address-
and- Cont r ol - Fi el d- Conpressi on MJST NOT be negoti at ed.

On transmi ssion, conpressed Address and Control fields are sinmply
omitted.

On reception, the Address and Control fields are deconpressed by
examning the first two octets. |If they contain the val ues Oxff
and 0x03, they are assuned to be the Address and Control fields.

If not, it is assuned that the fields were conpressed and were not
transmtted.

By definition, the first octet of a two octet Protocol field
will never be Oxff (since it is not even). The Protocol field
val ue 0x00ff is not allowed (reserved) to avoid anbiguity when
Pr ot ocol - Fi el d- Conpression is enabled and the first Information
field octet is 0x03.

Si npson [Page 7]

RFC 1662 HDLC-1i ke Fram ng July 1994

4. Cctet-stuffed fram ng

This chapter summarizes the use of HDLC-like framing with 8-bit
asynchronous and octet-synchronous |inks.

4.1. Flag Sequence

The Flag Sequence indicates the beginning or end of a frame. The
octet streamis exam ned on an octet-by-octet basis for the val ue
01111110 (hexadeci mal 0x7e).

4.2. Transparency

An octet stuffing procedure is used. The Control Escape octet is
defined as binary 01111101 (hexadeci mal 0x7d), nobst significant bit
first.

As a mnimum sending inplenentations MJST escape the Flag Sequence
and Control Escape octets.

After FCS conputation, the transmtter exanmines the entire frane
between the two Flag Sequences. Each Flag Sequence, Control Escape
octet, and any octet which is flagged in the sending Async-Control -
Character-Map (ACCM, is replaced by a two octet sequence consisting
of the Control Escape octet foll owed by the original octet
exclusive-or’d with hexadeci mal 0x20.

This is bit 5 conplenmented, where the bit positions are nunbered
76543210 (the 6th bit as used in | SO nunbered 87654321 -- BEWARE
when conparing docunents).

Recei ving i mpl enentati ons MJUST correctly process all Control Escape
sequences.

On reception, prior to FCS conputation, each octet with value |ess

t han hexadeci mal 0x20 is checked. |If it is flagged in the receiving
ACCM it is sinply renoved (it may have been inserted by intervening
dat a conmuni cati ons equi pnent). Each Control Escape octet is also
renoved, and the follow ng octet is exclusive-or’'d with hexadeci nal
0x20, unless it is the Flag Sequence (which aborts a frane).

A few exanples may nmake this nore clear. Escaped data is transnitted
on the link as foll ows:

Si npson [Page 8]

RFC 1662 HDLC-1i ke Fram ng July 1994

Ox7e is encoded as 0x7d, Oxb5e. (Fl ag Sequence)
0x7d is encoded as 0x7d, Ox5d. (Control Escape)
0x03 is encoded as 0x7d, 0x23. (ETX)

Sone nmodens with software flow control may intercept outgoing DCl and
DC3 ignoring the 8th (parity) bit. This data would be transmtted on
the link as follows:

0x11 is encoded as 0Ox7d, Ox31. (XON)

0x13 is encoded as 0x7d, 0x33. (XOFF)

0x91 is encoded as 0x7d, Oxbl. (XON with parity set)

0x93 is encoded as 0x7d, Oxb3. (XOFF with parity set)
4.3. Invalid Franes

Frames which are too short (less than 4 octets when using the 16-bit
FCS), or which end with a Control Escape octet foll owed i nedi ately
by a closing Flag Sequence, or in which octet-framng is violated (by
transmtting a "0" stop bit where a "1" bit is expected), are
silently discarded, and not counted as a FCS error

4.4. Time Fil
4.4.1. Cctet-synchronous
There is no provision for inter-octet tine fill.

The Flag Sequence MJST be transmitted during inter-frame tinme fill.

4.4.2. Asynchronous

Inter-octet time fill MJST be acconplished by transnmitting continuous
"1" bits (mark-hold state).

Inter-frame time fill can be viewed as extended inter-octet tine
fill. Doing so can save one octet for every franme, decreasing del ay
and increasing bandwidth. This is possible since a Flag Sequence may
serve as both a frame end and a frame begin. After having received
any frane, an idle receiver will always be in a frane begin state.

Si npson [Page 9]

RFC 1662 HDLC-1i ke Fram ng July 1994

Robust transmitters should avoid using this trick over-zeal ously,
since the price for decreased delay is decreased reliability. Noisy
links may cause the receiver to receive garbage characters and
interpret themas part of an incoming frame. |If the transnitter does
not send a new openi ng Fl ag Sequence before sending the next frane,
then that frane will be appended to the noise characters causing an
invalid frame (with high reliability).

It is suggested that inplementations will achieve the best results by
al ways sendi ng an opening Flag Sequence if the new frane is not
back-to-back with the last. Transnmitters SHOULD send an open Fl ag
Sequence whenever "appreciable tine" has el apsed after the prior

cl osing Fl ag Sequence. The naxi mum value for "appreciable tinme" is
likely to be no greater than the typing rate of a slow typist, about
1 second.

4.5. Transm ssion Considerations

4.5.1. Cctet-synchronous
The definition of various encodings and scranbling is the
responsibility of the DTE/ DCE equi pnent in use, and is outside the
scope of this specification.

4.5.2. Asynchronous
Al octets are transmitted |east significant bit first, with one

start bit, eight bits of data, and one stop bit. There is no
provi sion for seven bit asynchronous |inks.

Si npson [Page 10]

RFC 1662 HDLC-1i ke Fram ng July 1994

5. Bit-stuffed framng

This chapter summarizes the use of HDLC-like framing with bit-
synchronous |inks.

5.1. Flag Sequence

The Fl ag Sequence indicates the beginning or end of a frame, and is
used for frame synchronization. The bit streamis exam ned on a
bit-by-bit basis for the binary sequence 01111110 (hexadeci mal O0x7e).

The "shared zero node" Flag Sequence "011111101111110" SHOULD NOT be
used. When not avoi dabl e, such an inplenmentation MJST ensure that
the first Flag Sequence detected (the end of the frame) is pronptly
conmuni cated to the link layer. Use of the shared zero node hinders
interoperability with bit-synchronous to asynchronous and bit-
synchronous to octet-synchronous converters.

5.2. Transparency
After FCS conputation, the transmtter exanmines the entire frane
between the two Flag Sequences. A "0" bit is inserted after al
sequences of five contiguous "1" bits (including the last 5 bits of
the FCS) to ensure that a Flag Sequence is not sinmulated.

On reception, prior to FCS computation, any "0" bit that directly
follows five contiguous "1" bits is discarded.

5.3. Invalid Franes
Frames which are too short (less than 4 octets when using the 16-bit

FCS), or which end with a sequence of nore than six "1" bits, are
silently discarded, and not counted as a FCS error

5.4. Time Fil
There is no provision for inter-octet tine fill.

The Flag Sequence SHOULD be transmitted during inter-frame tine fill.
However, certain types of circuit-switched links require the use of

Si npson [Page 11]

RFC 1662 HDLC-1i ke Fram ng July 1994

mark idle (continuous ones), particularly those that cal cul ate
accounting based on periods of bit activity. Wen nmark idle is used
on a bit-synchronous link, the inplementati on MJST ensure at |east 15
consecutive "1" bits between Flags during the idle period, and that
the Fl ag Sequence is always generated at the beginning of a frane
after an idle period.

This differs frompractice in |1SO 3309, which allows 7 to 14 bit
mark idle.

5.5. Transm ssion Considerations
Al octets are transnmitted | east significant bit first.

The definition of various encodings and scranbling is the
responsibility of the DTE/ DCE equi pnent in use, and is outside the
scope of this specification.

VWhile PPP will operate without regard to the underlying
representation of the bit stream I|ack of standards for transmni ssion
wi Il hinder interoperability as surely as |lack of data |ink
standards. At speeds of 56 Kbps through 2.0 Mops, NRZ is currently
nost wi dely available, and on that basis is recommended as a default.

When configuration of the encoding is allowed, NRZI is reconmended as
an alternative, because of its relative imunity to signal inversion
configuration errors, and instances when it MAY all ow connection

wi t hout an expensive DSU CSU. Unfortunately, NRZI encoding
exacerbates the missing x1 factor of the 16-bit FCS, so that one
error in 2**15 goes undetected (instead of one in 2**16), and triple
errors are not detected. Therefore, when NRZI is in use, it is
recommended that the 32-bit FCS be negotiated, which includes the x1
factor.

At hi gher speeds of up to 45 Mops, sone inplenentors have chosen the
ANSI Hi gh Speed Synchronous Interface [HSSI]. While this experience
is currently limted, inplenentors are encouraged to cooperate in
choosi ng transm ssi on encodi ng.

Si npson [Page 12]

RFC 1662 HDLC-1i ke Fram ng July 1994

6. Asynchronous to Synchronous Conversion

There may be sonme use of asynchronous-to-synchronous converters (sone
built into nodenms and cellular interfaces), resulting in an
asynchronous PPP inpl enentation on one end of a link and a
synchronous inplenentation on the other. It is the responsibility of
the converter to do all stuffing conversions during operation

To enable this functionality, synchronous PPP inpl enentati ons MJST
al ways respond to the Async-Control - Character-Myp Configuration
Option with the LCP Configure-Ack. However, acceptance of the
Configuration Option does not inply that the synchronous

i npl enentation will do any ACCM nmapping. Instead, all such octet
mapping will be perfornmed by the asynchronous-to-synchronous
converter.

Si npson [Page 13]

RFC 1662 HDLC-1i ke Fram ng July 1994

7.

7.

Addi tional LCP Configuration Options

The Configuration Option format and basic options are al ready defined

LCP [1].

Up-to-date values of the LCP Option Type field are specified in the
nost recent "Assigned Nunbers" RFC [10]. This docunment concerns the
fol | owi ng val ues:

2 Async- Control - Char act er - Map

Async- Cont rol - Char acter- Map (ACCM

Descri ption

This Configuration Option provides a nethod to negotiate the use
of control character transparency on asynchronous |inks.

Each end of the asynchronous |ink maintains two Async- Control -
Character-Maps. The receiving ACCMis 32 bits, but the sending
ACCM may be up to 256 bits. This results in four distinct ACCMs,
two in each direction of the link

For asynchronous links, the default receiving ACCMis Oxffffffff.
The default sending ACCMis Oxffffffff, plus the Control Escape
and Fl ag Sequence characters thensel ves, plus whatever other

out goi ng characters are flagged (by prior configuration) as likely
to be intercepted

For other types of links, the default value is 0, since there is
no need for napping.

The default inclusion of all octets |ess than hexadeci mal 0x20
allows all ASCII control characters [6] excluding DEL (Delete)
to be transparently communi cated through all known data
comuni cati ons equi prment .

The transmitter MAY al so send octets with values in the range 0x40
through Oxff (except Ox5e) in Control Escape format. Since these
octet values are not negotiable, this does not solve the problem
of receivers which cannot handle all non-control characters.

Al so, since the technique does not affect the 8th bit, this does
not solve problens for comunications |links that can send only 7-
bit characters.

Si npson [Page 14]

RFC 1662 HDLC-1i ke Fram ng July 1994

Note that this specification differs in detail fromlater
amendnments, such as 3309: 1991/ Amrendnent 2 [3]. However, such
"extended transparency"” is applied only by "prior agreenent".
Use of the transparency methods in this specification
constitute a prior agreement with respect to PPP

For conpatibility with 3309: 1991/ Anrendnent 2, the transmtter
MAY escape DEL and ACCM equival ents with the 8th (npst
significant) bit set. No change is required in the receiving
al gorithm

Fol | owi ng ACCM negotiation, the transmtter SHOULD cease
escapi ng DEL.

However, it is rarely necessary to map all control characters, and
often it is unnecessary to map any control characters. The
Configuration Option is used to informthe peer which contro
characters MJST remai n mapped when the peer sends them

The peer MAY still send any other octets in nmapped format, if it

i s necessary because of constraints known to the peer. The peer
SHOULD Configure-Nak with the |ogical union of the sets of mapped
octets, so that when such octets are spuriously introduced they
can be ignored on receipt.

A sunmmary of the Async-Control - Character-Map Configuration Option
format is shown below. The fields are transmitted fromleft to
ri ght.

0 1 2 3
01234567890123456789012345678901
s S S o T i i S S i (i

| Type | Lengt h | ACCM
R Rt i i i i e T I I S S S R i e S R e e i s o

ACCM (cont) |
B i S S S it s ol T S S

Type
2
Length
6

Si npson [Page 15]

RFC 1662 HDLC-1i ke Fram ng July 1994

ACCM

The ACCM field is four octets, and indicates the set of contro
characters to be mapped. The map is sent npst significant octet
first.

Each nunbered bit corresponds to the octet of the sane value. |If
the bit is cleared to zero, then that octet need not be nmapped.

If the bit is set to one, then that octet MJUST remai n mapped. For
exanple, if bit 19 is set to zero, then the ASCII contro

character 19 (DC3, Control-S) MAY be sent in the clear

Note: The least significant bit of the |east significant octet

(the final octet transmtted) is nunbered bit 0, and would nap
to the ASCII control character NUL

Si npson [Page 16]

RFC 1662 HDLC-1i ke Fram ng July 1994

A

B

Recomended LCP Opti ons
The foll owing Configurations Options are recomended:
Hi gh Speed |inks

Magi ¢ Nunber

Link Quality Mnitoring

No Address and Control Field Conpression
No Protocol Field Conpression

Low Speed or Asynchronous |inks

Async Control Character Mp

Magi ¢ Nunber

Address and Control Field Conpression
Prot ocol Field Conpression

Aut omati ¢ Recognition of PPP Franes

It is sonetimes desirable to detect PPP frames, for exanple during a
| ogi n sequence. The foll owi ng octet sequences all begin valid PPP
LCP franes:

7e ff 03 cO 21
7e ff 7d 23 c0 21
7e 7d df 7d 23 cO0 21

Note that the first two forms are not a valid usernane for Unix.
However, only the third formgenerates a correctly checksummed PPP
franme, whenever 03 and ff are taken as the control characters ETX and
DEL without regard to parity (they are correct for an even parity

i nk) and di scarded.

Many i npl enentations deal with this by putting the interface into
packet node when one of the above usernane patterns are detected
during login, without exam ning the initial PPP checksum The
initial incoming PPP frame is discarded, but a Configure-Request is
sent inmrediately.

Si npson [Page 17]

RFC 1662 HDLC-1i ke Fram ng July 1994

C

C 1.

Fast Frame Check Sequence (FCS) |nplenentation

The FCS was originally designed with hardware inplenentations in
mnd. A serial bit streamis transmitted on the wire, the FCS is
cal cul ated over the serial data as it goes out, and the conpl enent of
the resulting FCS is appended to the serial stream followed by the
Fl ag Sequence.

The receiver has no way of determining that it has finished

cal culating the received FCS until it detects the Flag Sequence.
Therefore, the FCS was designed so that a particular pattern results
when the FCS operation passes over the conplenented FCS. A good
frane is indicated by this "good FCS' val ue.

FCS tabl e generator

The foll owing code creates the | ookup table used to calculate the
FCs- 16.

/*
* CGenerate a FCS-16 table.
*
* Drew D. Perkins at Carnegie Mellon University.
*
* Code liberally borrowed from Mohsen Banan and D. Hugh Redel nei er
*/
/*

* The FCS-16 generator polynomal: x**0 + x**5 + x**12 + x**16.
*/
#define P 0x8408

mai n()

regi ster unsigned int b, v;
register int i;

printf("typedef unsigned short ul6;\n");
printf("static ul6é fcstab[256] = {");
for (b =0, ;) {

if (b %8 == 0)

printf("\n");
vV = b;
for (i =8; i--;)

Si npson [Page 18]

RFC 1662 HDLC-1i ke Fram ng July 1994

v=v&l?(v>1 ~P: v>>l1

printf("\t0Ox%04x", v & OXFFFF);
if (++b == 256)

br eak;
printf(",");

printf("\n};\n");

C. 2. 16-bit FCS Computation Method

The foll owi ng code provides a table | ookup conputation for
cal cul ati ng the Frame Check Sequence as data arrives at the
interface. This inplenmentation is based on [7], [8], and [9].

/*
* ul6 represents an unsigned 16-bit nunber. Adjust the typedef for
* your hardware.
*/

typedef unsigned short ul6;

/*
* FCS | ookup table as cal culated by the tabl e generator.
*/
static ulé fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, O0x74Dbf,
0x8c48, 0x9dcl, Oxaf5a, Oxbed3, Oxca6c, Oxdbe5, 0xe97e, Oxf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, Oxbfdb, Oxaeb2, Oxdaed, Oxch64, Oxfoff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, Ox76af, 0x4434, 0x55bd,
Oxad4a, Oxbcc3, 0x8e58, 0x9fdl, Oxeb6e, Oxfae7, 0xc87c, O0xdof5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
Oxbdcb, Oxac42, 0x9ed9, 0x8f50, Oxfbef, Oxea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb
Oxcedc, Oxdfch5, Oxed5e, Oxfcd7, 0x8868, 0x99el, Oxab7a, Oxbaf 3,
0x5285, 0x430c, 0x7197, 0x601e, O0x14al, 0x0528, 0x37b3, 0x263a,
Oxdecd, Oxcf44, Oxfddf, Oxecb56, 0x98e9, 0x8960, Oxbbfb, 0Oxaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
Oxef 4e, Oxfec7, Oxcc5c, Oxddd5, Oxa96a, O0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411lc, 0x35a3, 0x242a, 0x16bl, 0x0738,
Oxffcf, Oxeed46, Oxdcdd, Oxcd54, Oxb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, Oxa7la, 0xb693, 0xc22c, 0xd3ab5, 0xel3e, O0xfO0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, O0x5fed, 0x6d76, Ox7cff,
0x9489, 0x8500, O0xb79b, O0xa612, Oxd2ad, 0xc324, Oxf1lbf, 0xe036,
0x18cl, 0x0948, 0x3bd3, 0x2aba, O0x5ee5, 0x4f6c, 0x7df7, 0x6c¢7e,

Si npson [Page 19]

RFC 1662 HDLC-1i ke Fram ng July 1994

Oxab0a, 0xb483, 0x8618, 0x9791, 0xe32e, Oxf2a7, 0xc03c, O0xdlb5,
0x2942, 0x38ch, 0x0a50, 0x1bd9, Ox6f66, Ox7eef, 0x4c74, O0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, Oxf3af, 0xe226, 0xdObd, O0xcl134,
0x39c3, 0x284a, Oxladl, 0x0b58, O0x7fe7, 0Ox6e6e, 0x5c¢cf5, 0x4d7c,
0xc60c, 0xd785, Oxeb5le, Oxf497, 0x8028, 0x9l1lal, Oxa33a, 0xb2b3,
0Ox4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, O0x1lde9, 0x2f72, 0x3efb,
0xd68d, 0xc704, Oxf59f, 0xed416, 0x90a9, 0x8120, O0xb3bb, 0xa232,
Ox5ach, O0x4b4c, 0x79d7, 0x685e, Oxlcel, 0x0d68, 0x3ff3, 0x2e7a,
Oxe70e, Oxf687, 0Oxc4lc, 0xd595, Oxal2a, Oxb0Oa3, 0x8238, 0x93bl
0x6b46, Ox7acf, 0x4854, 0x59dd, 0x2d62, O0x3ceb, 0x0e70, Ox1ff9,
Oxf 78f, Oxe606, 0xd49d, Oxc514, Oxblab, 0xa022, 0x92b9, 0x8330,
0x7bc7, Ox6ade, 0x58d5, 0x495c, 0x3de3, 0x2c6a, Oxlefl, O0xO0f 78

b

#defi ne PPPI Nl TFCS16 Oxffff /* Initial FCS value */
#def i ne PPPGOODFCS16 0xf0b8 /* Good final FCS val ue */

/*
* Calculate a new fcs given the current fcs and the new data.
*
/
ulé pppfcsl6(fcs, cp, |en)
regi ster ul6 fcs;
regi ster unsigned char *cp;
register int len

{
ASSERT(si zeof (ul6) == 2);
ASSERT(((ul6) -1) > 0);
while (len--)
fcs = (fcs >> 8) ~ festab[(fcs *cp++) & Oxff];
return (fcs);
}
/*
* How to use the fcs
*/

tryfcsl6(cp, |en)
regi ster unsigned char *cp
register int len

ul6 trialfcs;

/* add on output */

trialfcs = pppfcsl6(PPPI NI TFCS16, cp, len);

trialfcs = Oxffff; /* conpl ement */

cp[len] = (trialfcs & Ox00ff); [* least significant byte first */
cp[len+l] = ((trialfcs >> 8) & Ox00ff);

Si npson [Page 20]

RFC 1662 HDLC-1i ke Fram ng July 1994

/* check on input */
trialfcs = pppfcsl6(PPPI NI TFCS16, cp, len + 2);
if (trialfcs == PPPGOODFCS16)

printf("Good FCS\n");

C.3. 32-bit FCS Computation Method

The foll owi ng code provides a table | ookup conputation for
calcul ating the 32-bit Frame Check Sequence as data arrives at the
interface.

/*
* The FCS-32 generator polynomial: x**0 + x**1 + x**2 + x**4 + x**5
* + X**T7 4+ xX**8 + x**10 + x**11 + Xx**12 + x**16
* + X**22 4+ X**23 + X**26 + x**32.
*/

/*
* u32 represents an unsigned 32-bit nunber. Adjust the typedef for
* your hardware
*/

t ypedef unsigned | ong u32;

static u32 fcstab_32[256] =

{

0x00000000, 0x77073096, Oxeele612c, 0x990951ba,
0x076dc419, 0Ox706af 48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e9le, 0x97d2d988,
0x09b64c2b, 0x7ebl7cbd, 0xe7b82d07, 0x90bf1d91
0x1db71064, 0x6ab020f2, Oxf3b97148, 0x84be4dlde,
Oxladad47d, Ox6dddedeb, Oxf4d4b551, 0x83d385c?7,
0x136c9856, 0x646ba8c0, Oxfd62f97a, 0x8ab65c9ec,
0x14015c4f, 0x63066cd9, OxfaOf 3d63, 0x8d080df 5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4dl, 0x4b04d447, 0xd20d85fd, Oxab0ab56b
0x35b5a8f a, 0x42b2986¢c, 0xdbbbc9d6, Oxachcf 940,
0x32d86ce3, 0x45df 5¢75, 0xdcd60dcf, Oxabdl13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, Oxbfd06116,
0x21b4f 4b5, 0x56b3c423, Oxcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f 058808, 0xc60cd9b2, 0xb1l0be924,
0Ox2f 6f 7¢87, 0x58684c1l1l, Oxcl6lldab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, Oxef d5102a,
0x71b18589, 0x06b6b51f, O0x9f bf e4a5, 0xe8b8d433,
0x7807c9a2, O0xOf 00f 934, 0x9609a88e, 0xel0e9818,
0x7f 6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,

Si npson [Page 21]

RFC 1662 HDLC-1i ke Fram ng July 1994

0x6b6b51f 4, 0x1lc6c6162, 0x856530d8, Oxf262004e,
0x6c0695ed, 0x1b0la57b, 0x8208f4cl, Oxf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, O0xfch9887c,
0x62dd1ddf, 0Ox15da2d49, 0x8cd37cf 3, Oxfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
Ox4adf a541, 0x3dd895d7, Oxaddlc46d, 0xd3d6f 4f b,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8dO,
0x44042d73, 0x33031de5, OxaaOadc5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, O0xbeOb1010, 0xc90c2086,
0x5768b525, 0x206f 85b3, 0xb966d409, Oxce61e49f,
Ox5edef 90e, 0x29d9c998, 0xb0d09822, 0Oxc7d7a8b4,
0x59b33d17, 0x2eb40d81, O0xb7bd5c3b, OxcOba6cad,
0xedbh88320, 0x9abf b3b6, 0x03b6e20c, 0x74b1d29a,
Oxead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0Ox7ababaa8,
Oxed0ecf 0b, 0x9309ff9d, 0x0a00ae27, 0x7d079ebil
Oxf 00f 9344, 0x8708a3d2, 0x1le01f 268, 0x6906c2f e,
Oxf 762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
Oxf ed41b76, 0x89d32be0, 0OxlOda7ab5a, 0x67dd4acc,
Oxf 9b9df 6f, Ox8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xaldl937e, 0x38d8c2c4, 0x4fdff 252,
Oxd1bb67f 1, Oxabbc5767, O0x3fb506dd, 0x48b2364b,
0xd80d2bda, Oxaf Oalb4c, 0x36034af6, 0x41047a60,
Oxdf 60ef c3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256f d2a0, 0x5268e236,
0xcc0c7795, O0xbb0b4703, 0x220216b9, 0x5505262f,
Oxc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5ch36a04,
Oxc2d7ffa7, O0xb5d0cf31, 0x2cd99e8b, 0Ox5bdeaeld,
0x9b64c2b0, Oxec63f 226, 0x756aa39c, 0x026d930a,
0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf 4a82, 0xe2b87al4, 0x7bbl2bae, 0x0ch61b38,
0x92d28e9b, 0xe5d5be0d, Ox7cdcefb?7, O0xObdbdf 21,
0x86d3d2d4, Oxfld4e242, 0x68ddb3f8, O0x1f da836e,
0x81bel6ecd, Oxf6b9265b, 0x6fb077el, 0x18b74777,
0x88085ae6, OxffOf6a70, 0x66063bca, 0x11010b5c,
0x8f 659ef f, Oxf862ae69, 0x616bffd3, 0xl1l66ccf 45,
Oxa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3eb6e77db
Oxaedl6ad4a, 0xd9d65adc, 0x40df 0b66, 0x37d83bf 0,
Oxa9bcae53, 0xdebb9ech5, 0x47b2cf7f, 0x30b5ffe9,
Oxbdbdf 21c, Oxcabac28a, 0x53b39330, 0x24b4a3ab,
Oxbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
Oxb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f 2b94,
0xb40bbe37, 0xc30c8eal, 0x5a05df1lb, 0x2d02ef 8d

b

#define PPPI NI TFCS32 Oxffffffff /* Initial FCS value */
#def i ne PPPGOODFCS32 0Oxdebb20e3 /* Good final FCS val ue */

Si npson [Page 22]

RFC 1662 HDLC-1i ke Fram ng July 1994

/*
* Calculate a new FCS given the current FCS and the new data
*/
u32 pppfcs32(fcs, cp, len)
regi ster u32 fcs;
regi ster unsigned char *cp
register int len

{
ASSERT(si zeof (u32) == 4);
ASSERT(((u32) -1) > 0);
while (len--)
fecs = (((fcs) >> 8) ~ festab _32[((fcs) ™ (*cp++)) & Oxff]);

return (fcs);

}
/*
* How to use the fcs
*/

tryfcs32(cp, |en)
regi ster unsigned char *cp
register int len

{
u32 trialfcs;
/* add on output */
trialfcs = pppfcs32(PPPI NI TFCS32, cp, len);
trialfcs = Oxffffffff; [* conpl ement */
cp[len] = (trialfcs & Ox00ff); /* least significant byte first */
cp[len+l] = ((trialfcs >>= 8) & 0x00ff);
cp[len+2] = ((trialfcs >>= 8) & 0x00ff);
cp[len+3] = ((trialfcs >> 8) & 0x00ff);
/* check on input */
trialfcs = pppfcs32(PPPI NI TFCS32, cp, len + 4);
if (trialfcs == PPPGOODFCS32)
printf("Good FCS\n");
}

Si npson [Page 23]

RFC 1662 HDLC-1i ke Fram ng July 1994

Security Considerations

As noted in the Physical Layer Requirenments section, the link |ayer
m ght not be inforned when the connected state of the physical |ayer
has changed. This results in possible security |apses due to over-
reliance on the integrity and security of sw tching systens and

adm nistrations. An insertion attack m ght be undetected. An
attacker which is able to spoof the sane calling identity might be
able to avoid link authentication

Ref er ences

[1] Si npson, W, Editor, "The Point-to-Point Protocol (PPP)"
STD 50, RFC 1661, Daydreaner, July 1994.

[2] | SO'I EC 3309: 1991(E), "Information Technol ogy -
Tel ecommuni cations and i nformati on exchange between systens -
Hi gh-1evel data |ink control (HDLC) procedures - Frane
structure", International Organization For Standardization
Fourth edition 1991-06-01.

[3] | SO' I EC 3309: 1991/ And. 2: 1992(E), "Information Technol ogy -
Tel ecommuni cations and i nformati on exchange between systens -
Hi gh-level data |ink control (HDLC) procedures - Frane
structure - Anmendnent 2: Extended transparency options for
start/stop transm ssion", International Organization For
St andar di zati on, 1992-01- 15.

[4] | SO' | EC 4335: 1991(E), "Information Technol ogy -
Tel ecommuni cations and i nformati on exchange between systens -
Hi gh-level data |ink control (HDLC) procedures - El enents of
procedures"”, International Organization For Standardization
Fourth edition 1991-09- 15.

[5] Si npson, W, Editor, "PPP LCP Extensions", RFC 1570,
Daydr eaner, January 1994.

[6] ANSI X3.4-1977, "Anerican National Standard Code for
I nformati on | nterchange", Anmerican National Standards
Institute, 1977.

[7] Perez, "Byte-wi se CRC Cal cul ations", |EEE Mcro, June 1983.

[8] Morse, G, "Calculating CRC s by Bits and Bytes", Byte,
Sept ember 1986.

Si npson [Page 24]

RFC 1662 HDLC-1i ke Fram ng July 1994

[9] Levan, J., "A Fast CRC', Byte, Novenber 1987.

[10] Reynolds, J., and J. Postel, "Assigned Nunbers", STD 2, RFC
1340, USC/ I nformation Sciences Institute, July 1992.

Acknowl edgenent s

Thi s docunent is the product of the Point-to-Point Protocol Wrking
Group of the Internet Engineering Task Force (I ETF). Coments shoul d
be submitted to the ietf-ppp@erit.edu mailing list.

This specification is based on previous RFCs, where many
contributions have been acknow eged.

The 32-bit FCS exanpl e code was provided by Karl Fox (Morning Star
Technol ogi es) .

Speci al thanks to Morning Star Technol ogi es for providing conputing
resources and network access support for witing this specification

Chair’s Address
The worki ng group can be contacted via the current chair
Fred Baker
Advanced Conput er Communi cati ons
315 Bollay Drive
Santa Barbara, California 93117

f baker @cc. com

Editor’s Address
Questions about this neno can al so be directed to:

WIlliam Al en Sinpson

Daydr eaner

Conput er Systenms Consulting Services
1384 Font ai ne

Madi son Hei ghts, M chigan 48071

Bill.Si npson@m cc. um ch. edu
bsi npson@vbr ni ngSt ar. com

Si npson [Page 23]

