Net wor k Wor ki ng Group D. MIls
Request for Comments: 1589 Uni versity of Del aware
Cat egory: I nfornmational March 1994

A Kernel Mdel for Precision Tinmekeeping
Status of this Meno

This meno provides information for the Internet community. This nmeno
does not specify an Internet standard of any kind. Distribution of
this nenmo is unlinted.

Overvi ew

Thi s menorandum descri bes an engi neering nodel which inplenents a
precision tinme-of-day function for a generic operating system The
nodel is based on the principles of disciplined oscillators and
phase-1ock | oops (PLL) often found in the engineering literature. It
has been inplemented in the Unix kernel for several workstations,

i ncludi ng those made by Sun M crosystens and Digital Equi pment. The
nodel changes the way the systemclock is adjusted in tine and
frequency, as well as provides nechanisns to discipline its frequency
to an external precision timng source. The nodel incorporates a
generic systemcall interface for use with the Network Time Protoco
(NTP) or simlar time synchronization protocol. The NTP Version 3
daenon xntpd operates with this nodel to provide synchronization
limted in principle only by the accuracy and stability of the
external timng source

Thi s menor andum does not obsol ete or update any RFC. It does not
propose a standard protocol, specification or algorithm It is

i ntended to provoke comment, refinenment and alternative

i npl enentations. While a working know edge of NTP is not required for
an understandi ng of the design principles or inplenentation of the
nodel, it may be hel pful in understanding how the nodel behaves in a
fully functional tinekeeping system The architecture and desi gn of
NTP is described in [1], while the current NTP Version 3 protoco
specification is given in RFC- 1305 [2] and a subset of the protocol
the Sinple Network Tine Protocol (SNTP), in RFC 1361 [4].

The nodel has been inplenmented in three Unix kernels for Sun

M crosystens and Digital Equi prent workstations. In addition, for the
Di gital machi nes the nodel provides inproved precision to one

m crosecond (us). Since these specific inplenentations involve

nodi fications to |licensed code, they cannot be provided directly.
Inquiries should be directed to the manufacturer’s representatives.
However, the engineering nodel for these inplenentations, including a

MIls [Page 1]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

simulator with code segnents al nost identical to the inplenentations,
but not involving licensed code, is available via anonynous FTP from
host |ouie.udel.edu in the directory pub/ntp and conpressed tar
archive kernel.tar.Z. The NTP Version 3 distribution can be obtained
via anonymous ftp fromthe sane host and directory in the conpressed
tar archive xntp3.3g.tar.Z, where the version nunber shown as 3. 3g
may be adjusted for new versions as they occur

1. Introduction

Thi s menorandum descri bes a nodel and programm ng interface for
generic operating systemsoftware that manages the system cl ock and
timer functions. The nodel provides inproved accuracy and stability
for nost workstations and servers using the Network Tinme Protoco
(NTP) or simlar tine synchronization protocol. This menorandum
descri bes the principles of design and inplementati on of the nodel.
Rel ated technical reports discuss the design approach, engineering
anal ysis and performance eval uation of the nodel as inplenmented in
Uni x kernels for Sun Mcrosystens and Digital Equiprment workstations.
The NTP Version 3 daenon xntpd operates with these inplenentations to
provi de inmproved accuracy and stability, together wth di m nished
overhead in the operating systemand network. In addition, the node
supports the use of external timng sources, such as precision

pul se-per-second (PPS) signals and the industry standard IRIG timng
signals. The NTP daenon automatically detects the presence of the new
features and utilizes them when avail abl e.

There are three prototype inplenmentations of the nodel presented in
this menorandum one each for the Sun M crosystens SPARCstation wth
the SunCS 4.1.x kernel, Digital Equi pnent DECstation 5000 with the
Utrix 4.x kernel and Digital Equi pnment 3000 AXP Al pha with the OSF/ 1
V1.x kernel. In addition, for the DECstation 5000/240 and 3000 AXP

Al pha machi nes, a special feature provides inproved precision to 1 us
(Sun 4.1.x kernels already do provide 1-us precision). O her than

i mprovi ng the system cl ock accuracy, stability and precision, these

i npl enent ati ons do not change the operation of existing Unix system
cal I s whi ch nanage the system cl ock, such as gettineofday(),
settinmeofday() and adjtinme(); however, if the new features are in
use, the operations of gettineofday() and adjtine() can be controlled
i nstead by new systemcalls ntp_gettinme() and ntp_adjtine() as

descri bed bel ow.

A detail ed description of the variables and algorithns is given in
the hope that sinmilar functionality can be incorporated in Unix
kernel s for other nmachines. The algorithnms involve only mnor changes
to the systemclock and interval timer routines and include
interfaces for application progranms to | earn the system cl ock status
and certain statistics of the time synchronization process. Detail ed

MIIs [Page 2]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

installation instructions are given in a specific README files
i ncluded in the kernel distributions.

In this nmenmorandum NTP Version 3 and the Uni x inplenentation xntp3
are used as an exanple application of the new systemcalls for use by
a synchroni zation daenon. In principle, the new systemcalls can be
used by other protocols and i nplenentations as well. Even in cases
where the local tine is naintained by periodi c exchanges of nessages
at relatively long intervals, such as using the N ST Aut omat ed
Conputer Time Service, the ability to precisely adjust the system

cl ock frequency sinmplifies the synchronizati on procedures and all ows
the tel ephone call frequency to be considerably reduced.

2. Design Approach

VWhile not strictly necessary for an understandi ng or inplenentation
of the nodel, it may be helpful to briefly describe how NTP operates
to control the systemclock in a client workstation. As described in
[1], the NTP protocol exchanges tinestanps with one or nore peers
sharing a synchronization subnet to calculate the time offsets

bet ween peer clocks and the |local clock. These offsets are processed
by several algorithms which refine and conbine the offsets to produce
an ensenbl e average, which is then used to adjust the |ocal clock
time and frequency. The nmanner in which the local clock is adjusted
represents the main topic of this nenorandum The goal in the
enterprise is the nost accurate and stable system clock possible with
the avail abl e kernel software and workstati on hardware.

In order to understand how t he new software works, it is useful to
revi ew how nost Unix kernels maintain the systemtinme. In the Unix
design a hardware counter interrupts the kernel at a fixed rate: 100
Hz in the SunCS kernel, 256 Hz in the Utrix kernel and 1024 Hz in
the OSF/ 1 kernel. Since the Utrix tinmer interval (reciprocal of the
rate) does not evenly divide one second in mcroseconds, the Utrix
kernel adds 64 m croseconds once each second, so the tinescale

consi sts of 255 advances of 3906 us plus one of 3970 us. Sinilarly,
the OSF/ 1 kernel adds 576 us once each second, so its tinmescale
consi sts of 1023 advances of 976 us plus one of 1552 us.

2.1. Mechanisms to Adjust Tine and Frequency

In nbst Unix kernels it is possible to slew the systemclock to a
new of fset relative to the current time by using the adjtinme()
systemcall. To do this the clock frequency is changed by adding
or subtracting a fixed anmount (tickadj) at each timer interrupt
(tick) for a cal cul ated number of ticks. Since this calculation

i nvol ves dividing the requested offset by tickadj, it is possible
to slewto a new offset with a precision only of tickadj, which is

MIIs [Page 3]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

MIls

usual ly in the nei ghborhood of 5 us, but sonetines much nore. This
results in a roundoff error which can accurmulate to an
unaccept abl e degree, so that special provisions nmust be nmade in
the cl ock adjustnent procedures of the synchronizati on daenon.

In order to inplenment a frequency-discipline function, it is
necessary to provide tine offset adjustnents to the kernel at
regul ar adjustnment intervals using the adjtine() systemcall. In
order to reduce the systemclock jitter to the regi ne considered
in this menorandum it is necessary that the adjustment interva
be relatively small, in the neighborhood of 1 s. However, the Unix
adjtime() inplenentation requires each offset adjustnment to
conpl ete before another one can be begun, which neans that |arge
adj ustments nust be anortized in possibly many adj ust nment
intervals. The requirenment to inplenment the adjustnment interva
and conpensate for roundoff error considerably conplicates the
synchroni zi ng daenon i npl enrent ati on

In the new nodel this schene is replaced by another that
represents the systemclock as a multiple-word, precision-tine
variable in order to provide very precise clock adjustments. At
each tiner interrupt a precisely calibrated quantity is added to
the kernel tine variable and overfl ows propagated as required. The
quantity is conmputed as in the NTP local clock nodel described in
[3], which operates as an adaptive-paraneter, first-order, type-|I
phase-1ock |l oop (PLL). In principle, this PLL design can provide
preci sion control of the systemclock oscillator within 1 us and
frequency to within parts in 10711. While precisions of this order
are surely well beyond the capabilities of the CPU cl ock
oscillator used in typical workstations, they are appropriate
using precision external oscillators as described bel ow.

The PLL design is identical to the one originally inplenmented in
NTP and described in [3]. In this design the software daenon
simul ates the PLL using the adjtime() systemcall; however, the
daenon i npl enentation is considerably conplicated by the

consi derations descri bed above. The nodified kernel routines

i mpl enent the PLL in the kernel using precision tinme and frequency
representions, so that these conplications are avoided. A new
systemcall ntp_adjtime() is called only as each new time update
is determ ned, which in NTP occurs at intervals of from16 s to
1024 s. In addition, doing frequency conpensation in the kerne
neans that the systemtinme runs true even if the daenbn were to
cease operation or the network paths to the primary
synchroni zati on source fail

In the new nodel the new ntp_adjtine() operates in a way simlar
to the original adjtine() systemcall, but does so i ndependently

[Page 4]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

of adjtinme(), which continues to operate in its traditiona

fashi on. When used with NTP, it is the design intent that
settimeofday() or adjtinme() be used only for systemtinme
adjustments greater than +-128 ns, although the dynam c range of
the new nodel is much larger at +-512 ms. It has been the Internet
experience that the need to change the systemtine in increnents
greater than +-128 nms is extrenely rare and is usually associ ated
with a hardware or software mal function or system reboot.

The easiest way to set the time is with the settimeofday() system
call; however, this can under some conditions cause the clock to
junp backward. If this cannot be tolerated, adjtine() can be used
to slew the clock to the new val ue wi thout running backward or

af fecting the frequency discipline process. Once the system cl ock
has been set within +-128 ns, the ntp_adjtine() systemcall is
used to provide periodic updates including the tine offset,
maxi mum error, estimated error and PLL tine constant. Wth NTP the
update interval depends on the neasured dispersion and tine
constant; however, the schenme is quite forgiving and neither
noderate | oss of updates nor variations in the update interval are
seri ous.

2.2 Daenpn and Application Interface

MIls

Uni x application prograns can read the system clock using the
getti meof day() systemcall, which returns only the systemtine and
ti mezone data. For sone applications it is useful to know the
maxi mum error of the reported time due to all causes, including
clock reading errors, oscillator frequency errors and accumul at ed
| atencies on the path to a prinmary synchroni zati on source.

However, in the new nodel the PLL adjusts the systemclock to
conpensate for its intrinsic frequency error, so that the tine
errors expected in normal operation will usually be much | ess than
the maxi mum error. The progranm ng interface includes a new system
call ntp_gettime(), which returns the systemtime, as well as the
maxi mum error and estimated error. This interface is intended to
support applications that need such things, including distributed
file systems, multinmedia tel econferencing and other real-tine
applications. The programm ng interface also includes the new
systemcall ntp_adjtime() mentioned previously, which can be used
to read and wite kernel variables for time and frequency
adjustrment, PLL time constant, |eap-second warning and rel ated

dat a.

In addition, the kernel adjusts the maxi mumerror to grow by an
amount equal to the oscillator frequency tolerance tinmes the

el apsed time since the | ast update. The default engineering

par amet ers have been optim zed for update intervals in the order

[Page 5]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

of 64 s. For other intervals the PLL tinme constant can be adjusted
to optimze the dynamic response over intervals of 16-1024 s.
Normal ly, this is automatically done by NTP. In any case, if
updat es are suspended, the PLL coasts at the frequency | ast

det erm ned, which usually results in errors increasing only to a
few tens of mlliseconds over a day using roomtenperature quartz
oscillators of typical nodern workstations.

Whi | e any synchroni zati on daenon can in principle be nodified to
use the new systemcalls, the nost likely will be users of the NIP
Versi on 3 daenon xntpd. The xntpd code determ nes whet her the new
systemcalls are inplenented and automatically reconfigures as
requi red. Wen inpl enented, the daenon reads the frequency offset
froma file and provides it and the initial time constant via
ntp_adjtime(). In subsequent calls to ntp_adjtinme(), only the tine
of fset and time constant are affected. The daenon reads the
frequency fromthe kernel using ntp_adjtinme() at intervals of
about one hour and wites it to a systemfile. This information is
recovered when the daenon is restarted after reboot, for exanple,
so the sonetinmes extensive training period to | earn the frequency
separately for each system can be avoi ded.

2.3. Precision Cocks for DECstation 5000/240 and 3000 AXP Al pha

MIls

The stock microtine() routine in the Utrix kernel returns system
time to the precision of the timer interrupt interval, which is in
the 1-4 ns range. However, in the DECstation 5000/240 and possibly
ot her machines of that famly, there is an undocunented | OASI C
hardware regi ster that counts systembus cycles at a rate of 25
MHz. The new microtine() routine for the Utrix kernel uses this
register to interpolate systemtine between tinmer interrupts. This
results in a precision of 1 us for all tine values obtained via
the gettimeofday() and ntp_gettine() systemcalls. For the Digita
Equi pnrent 3000 AXP Al pha, the architecture provides a hardware
Process Cycle Counter and a machine instruction rpcc to read it.
This counter operates at the fundamental frequency of the CPU
clock or some subnultiple of it, 133.333 M1z for the 3000/400 for
exanpl e. The new microtinme() routine for the OSF/ 1 kernel uses
this counter in the same fashion as the Utrix routine.

In both the Utrix and OSF/ 1 kernels the gettimeofday() and
ntp_gettinme() systemcall use the new microtine() routine, which
returns the actual interpolated val ue, but does not change the
kernel time variable. Therefore, other routines that access the
kernel time variable directly and do not call either

getti meofday(), ntp_gettine() or microtime() will continue their
present behavior. The microtinme() feature is independent of other
features described here and is operative even if the kernel PLL or

[Page 6]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

new system cal l s have not been inpl enent ed.

The SunCS kernel already includes a systemclock with 1-us
resolution; so, in principle, no mcrotinme() routine is necessary.
An existing kernel routine uniqgtinme() inplements this function

but it is coded in the Clanguage and is rather slow at 42-85 us
per call. A replacenent microtine() routine coded in assenbl er

| anguage is available in the NTP Version 3 distribution and is
much faster at about 3 us per call

2.4. External Time and Frequency Discipline

MIls

The overall accuracy of a time synchronization subnet with respect
to Coordinated Universal Time (UTC) depends on the accuracy and
stability of the primary synchroni zati on source, usually a radio
or satellite receiver, and the systemclock oscillator of the
primary server. As discussed in [5], the traditional interface
using an RS232 protocol and serial port precludes the ful
accuracy of the radio clock. In addition, the poor stability of
typical CPU clock oscillators lints the accuracy, whether or not
precision time sources are available. There are, however, severa
ways in which the systemcl ock accuracy and stability can be
improved to the degree limted only by the accuracy and stability
of the synchroni zation source and the jitter of the operating
system

Many radi o cl ocks produce special signals that can be used by

ext ernal equi pment to precisely synchronize tine and frequency.
Most produce a pul se-per-second (PPS) signal that can be read via
a nodemcontrol |lead of a serial port and sone produce a specia

| RIG signal that can be read directly by a bus peripheral, such as
the KSI/COdetics TPRO IRIG SBus interface, or indirectly via the
audi o codec of sonme workstations, as described in [5]. In the NTP
Version 3 distribution, the PPS signal can be used to augnent the
| ess precise ASCII serial tinecode to inprove accuracy to the
order of mcroseconds. Support is also included in the
distribution for the TPROinterface as well as the audio codec;
however, the latter requires a nodified kernel audio driver
contained in the bsd_audio.tar.Z distribution in the sane host and
directory as the NTP Version 3 distribution nentioned previously.

2.4.1. PPS Signa

The NTP Version 3 distribution includes a special ppsclock
nodul e for the SunCS 4.1.x kernel that captures the PPS signa
presented via a nodemcontrol |ead of a serial port. Normally,
the ppscl ock nodul e produces a timestanp at each transition of
the PPS signal and provides it to the synchronizati on daenon

[Page 7]

RFC 1589

Kernel Mdel for Precision Timnmekeeping March 1994

for integration with the serial ASCII| tinecode, also produced
by the radio clock. Wth the conventional PLL inplenmentation in
ei ther the daenon or the kernel as described above, the
accuracy of this scheme is limted by the intrinsic stability
of the CPU clock oscillator to a mllisecond or twd, depending
on environmental tenperature variations.

The ppscl ock nmodul e has been nodified to in addition call a new
kernel routine hardpps() once each second. The kernel routine
conpares the tinestanp with a sanple of the CPU cl ock
oscillator to develop a frequency offset estimate. This offset
is used to discipline the oscillator frequency, nomnally to
within a few parts in 1078, which is about two orders of
magni t ude better than the undisciplined oscillator. The new
feature is conditionally conmpiled in the code described bel ow
only if the PPS_SYNC option is used in the kernel configuration
file.

When using the PPS signal to adjust the tine, there is a
problemw th the SunOS i npl enentation which is very delicate to
fix. The Sun serial port interrupt routine operates at

interrupt priority level 12, while the tiner interrupt routine
operates at priority 10. Thus, it is possible that the PPS
signal interrupt can occur during the tiner interrupt routine,
with result that a tick increnent can be m ssed and the
returned tinme early by one tick. It nay happen that, if the CPU
clock oscillator is within a few ppm of the PPS oscillator,
this condition can persist for two or nmore successive PPS
interrupts. A useful workaround has been to use a nmedian filter
to process the PPS sanple offsets. In this filter the sanple

of fsets in a wi ndow of 20 sanples are sorted by offset and the
si x highest and six | owest outlyers discarded. The average of
the ei ght sanples remnai ning becones the output of the filter.

The problemis not nearly so serious when using the PPS signa
to discipline the frequency of the CPU clock oscillator. In
this case the quantity of interest is the contents of the

m croseconds counter only, which does not depend on the kerne
time variable.

2.4.2. External d ocks

MIls

It is possible to replace the systemclock function with an
external bus peripheral. The TPRO devi ce nmenti oned previously
can be used to provide IR G synchronized tine with a precision
of 1 us. Adriver for this device tprotime.c and header file
tpro.h are included in the kernel.tar.Z distribution mentioned
previously. Using this device the systemclock is read directly

[Page 8]

RFC 1589

Kernel Mdel for Precision Timnmekeeping March 1994

fromthe interface; however, the device does not record the
year, so special provisions have to be made to obtain the year
fromthe kernel time variable and initialize the driver
accordingly. This feature is conditionally conpiled in the code
descri bed below only if the EXT_CLOCK option is used in the
kernel configuration file.

Wil e the systemclock function is provided directly by the
mcrotime() routine in the driver, the kernel tine variable
nmust be disciplined as well, since not all systemtimng
functions use the mcrotime() routine. This is done by
neasuring the difference between the mcrotine() clock and
kernel time variable and using the difference to adjust the
kernel PLL as if the adjustnment were provided by an externa
peer and NTP.

A good deal of error checking is done in the TPRO driver, since
the systemclock is vulnerable to a m sbehaving radi o cl ock

| RI G signal source, interface cables and TPRO device itself.
Unfortunately, there is no easy way to utilize the extensive

di versity and redundancy capabilities available in the NTP
synchroni zati on daenon. In order to avoid disruptions that

m ght occur if the TPROtine is far different fromthe kerne
time variable, the latter is used instead of the forner if the
di fference between the two exceeds 1000 s; presumably in that
case operator intervention is required.

2.4.3. External Gscillators

MIls

Even if a source of PPS or IRIGsignals is not available, it is
still possible to inprove the stability of the system cl ock
through the use of a specialized bus peripheral. In order to
expl ore the benefits of such an approach, a special SBus

peri pheral cal ed H GHBALL has been constructed. The device

i ncludes a pair of 32-bit hardware counters in Unix tineva
format, together with a precision, oven-controlled quartz
oscillator with a stability of a few parts in 10%9. A driver
for this device hightime.c and header file high.h are included
in the kernel.tar.Z distribution nmentioned previously. This
feature is conditionally conmpiled in the code described bel ow
only if the EXT_CLOCK and H GHBALL options are used in the
kernel configuration file.

Unli ke the external clock case, where the system clock function
is provided directly by the microtinme() routine in the driver,
the H GHBALL counter offsets with respect to UTC nust be
provided first. This is done using the ordinary kernel PLL

but controlling the counter offsets directly, rather than the

[Page 9]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

kernel time variable. At first, this mght seemto defeat the
purpose of the design, since the jitter and wander of the
synchroni zation source will affect the counter offsets and thus
the accuracy of the time. However, the jitter is rmuch reduced
by the PLL and the wander is small, especially if using a radio
clock or another prinary server disciplined in the sane way.

In practice, the schene works to reduce the incidental wander
to a few parts in 1078, or about the sane as using the PPS

si gnal

As in the previous case, the kernel tinme variable nust be

di sciplined as well, since not all systemtimng functions use
the microtine() routine. However, the kernel PLL cannot be used
for this, since it is already in use providing offsets for the
H GHBALL counters. Therefore, a special correction is

calcul ated fromthe difference between the mcrotime() clock
and the kernel tine variable and used to adjust the kernel tine
variable at the next tinmer interrupt. This somewhat roundabout
approach is necessary in order that the adjustnent does not
cause the kernel tine variable to junp backwards and possibly

| ose or duplicate a timer event.

2.5 G her Features

It is a design feature of the NTP architecture that the system
clocks in a synchroni zati on subnet are to read the same or nearly
the sane val ues before during and after a | eap-second event, as
decl ared by national standards bodi es. The new nodel is designed
to inmplenent the | eap event upon comrand by an ntp_adjtinme()
argunent. The intricate and sonetines arcane details of the nodel
and i npl enentation are discussed in [3] and [5]. Further details
are given in the technical summary later in this nenorandum

3. Techni cal Sunmmary

In order to nore fully understand the workings of the nodel, a stand-
al one simul ator kern.c and header file tinmex.h are included in the
kernel .tar.Z distribution nentioned previously. In addition, a
conplete C program kern_ntptime.c which inplements the ntp_gettine()
and ntp_adjtime() functions is provided, but with the vendor-specific
ar gunent - passi ng code deleted. Since the distribution is sonewhat

| arge, due to copious comrents and ornanentation, it is inpractica
to include a listing of these programs in this nenmorandum |n any
case, inplenmentors may choose to snip portions of the simulator for
use in new kernel designs, but, due to formatting conventions, this
woul d be difficult if included in this menorandum

MIIs [Page 10]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

The kern.c programis an inplenentati on of an adaptive-paraneter,
first-order, type-1l phase-lock |oop. The systemclock is inplenented
using a set of variables and algorithnms defined in the sinulator and
driven by explicit offsets generated by a driver program al so
included in the program The algorithns include code fragnents al nost
identical to those in the nachine-specific kernel inplenentations and
operate in the sane way, but the operations can be understood
separately fromany |icensed source code into which these fragnments
may be integrated. The code fragments thensel ves are not derived from
any licensed code. The foll owi ng di scussion assumes that the

simul ator code is available for inspection

3.1. PLL Sinulation

The sinul ator operates in conformance with the anal ytical nodel
described in [3]. The main() programoperates as a driver for the
fragments hardupdate(), hardcl ock(), second_overflow), hardpps()
and mcrotinme(), although not all functions inplenented in these
fragnments are sinulated. The program sinul ates the PLL at each
timer interrupt and prints a sumary of critical programvariables
at each tinme update

There are three defined options in the kernel configuration file
specific to each inplenentati on. The PPS_SYNC option provides
support for a pul se-per-second (PPS) signal, which is used to

di sci pline the frequency of the CPU clock oscillator. The
EXT_CLOCK option provides support for an external kernel-readable
cl ock, such as the KSI/Odetics TPROIR G interface or H GHBALL
precision oscillator, both for the SBus. The TPRO opti on provides
support for the forner, while the H GHBALL option provi des support
for the latter. External clocks are inplenented as the mcrotinme()
clock driver, with the specific source code sel ected by the kerne
configuration file.

3.1.1. The hardupdate() Fragnent

The hardupdate() fragment is called by ntp_adjtine() as each
update is conmputed to adjust the system cl ock phase and
frequency. Note that the time constant is in units of powers of
two, so that nmultiplies can be done by sinple shifts. The phase
variable is computed as the offset divided by the tine
constant. Then, the tine since the |last update is conputed and
clanped to a maxi mum (for robustness) and to zero if
initializing. The offset is nultiplied (sorry about the ugly
mul tiply) by the result and divided by the square of the tine
constant and then added to the frequency variable. Note that
all shifts are assumed to be positive and that a shift of a
signed quantity to the right requires a little dance.

MIIs [Page 11]

RFC 1589

Kernel Mdel for Precision Timnmekeeping March 1994

Wth the defines given, the maxinumtinme offset is determ ned
by the size in bits of the long type (32 or 64) less the

SHI FT_UPDATE scal e factor (12) or at least 20 bits (signed).
The scale factor is chosen so that there is no | oss of
significance in later steps, which may involve a right shift up
to SH FT_UPDATE bits. This results in a tine adjustnment range
over +-512 ms. Since tine_constant nust be greater than or

equal to zero, the maxi mum frequency offset is determ ned by
the SHI FT_USEC scal e factor (16) or at |least 16 bits (signed).
This results in a frequency adjustnment range over +-31,500 ppm

In the addition step, the value of offset * ntenp is not
greater than MAXPHASE * MAXSEC = 31 bits (signed), which wll
not overflow a long add on a 32-bit nachine. There could be a

| oss of precision due to the right shift of up to 12 bits,
since tinme_constant is bounded at 6. This results in a net

wor st - case frequency resolution of about .063 ppm which is not
significant for nost quartz oscillators. The worst case could
be realized only if the NTP peer m sbehaves according to the
protocol specification

The tine_offset value is clanmped upon entry. The tine_phase
variable is an accunul ator, so is clanped to the tol erance on
every call. This helps to danp transients before the oscillator
frequency has been determ ned, as well as to satisfy the
correctness assertions if the time synchronization protocol or
i mpl ement ati on mi sbehaves.

3.1.2. The hardcl ock() Fragnent

MIls

The hardcl ock() fragnment is inserted in the hardware tinmer
interrupt routine at the point the systemclock is to be
increnented. Previous to this fragnent the time_update variable
has been initialized to the value conputed by the adjtine()
systemcall in the stock Unix kernel, normally plus/mnus the
tickadj value, which is usually in the order of 5 us. The

ti me_phase vari abl e, which represents the instantaneous phase
of the systemclock, is advanced by tine_adj, which is

calcul ated in the second_overflow() fragnment described bel ow
If the value of time_phase exceeds 1 us in scaled units,
time_update is increased by the (signed) excess and time_phase
retains the residue.

Except in the case of an external oscillator such as the

H GHBALL interface, the hardcl ock() fragment advances the
system cl ock by the value of tick plus time_update. However, in
the case of an external oscillator, the systemclock is
obtained directly fromthe interface and tinme_update used to

[Page 12]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

di scipline that interface i nstead. However, the system cl ock

must still be disciplined as expl ained previously, so the val ue
of clock _cpu conputed by the second_overflow() fragnent is used
i nst ead.

3.1.3. The second_overflow() Fragnent

The second overflow() fragnment is inserted at the point where
the microseconds field of the systemtinme variable is being
checked for overflow Upon overflow the maxi num error
time_maxerror is increased by tine_tolerance to reflect the
maxi mumtine offset due to oscillator frequency error. Then
the increment tine_adj to advance the kernel tine variable is
calcul ated fromthe (scaled) tinme_offset and tinme_freq

vari abl es updated at the last call to the hardcl ock() fragment.

The phase adjustnment is calculated as a (signed) fraction of
the time_offset remaining, where the fraction is added to
time_adj, then subtracted fromtinme_offset. This technique
provides a rapid convergence when offsets are high, together

wi th good resol ution when offsets are low. The frequency
adjustment is the sumof the (scaled) tinme_freq variable, an
adj ust ment necessary when the tick interval does not evenly
di vi de one second fixtick and PPS frequency adjustnment pps_ybar
(i f configured).

The schene of approxi mating exact nultiply/divide operations
with shifts produces good results, except when an exact
calculation is required, such as when the PPS signal is being
used to discipling the CPU clock oscillator frequency, as
descri bed below. As long as the actual oscillator frequency is
a power of two in seconds, no correction is required. However,
in the SunCS kernel the clock frequency is 100 Hz, which
results in an error factor of 0.78. In this case the code
increases tinme_adj by a factor of 1.25, which results in an
overall error less than three percent.

On rollover of the day, the | eap-second state nachi ne descri bed
bel ow determ nes whether a second is to be inserted or deleted
in the timescale. The microtinme() routine insures that the
reported time is always nmonotonically increasing.

3.1.4. The hardpps() Fragnent
The hardpps() fragnment is operative only if the PPS_SYNC option
is specified in the kernel configuration file. It is called

fromthe serial port driver or equivalent interface at the on-
time transition of the PPS signal. The fragnent operates as a

MIIs [Page 13]

RFC 1589

MIls

Kernel Mdel for Precision Timnmekeeping March 1994

first-order, type-I frequency-lock | oop (FLL) controlled by the
di fference between the frequency represented by the pps_ybar
vari abl e and the frequency of the hardware cl ock oscillator.

In order to avoid calling the mcrotine() routine nore than
once for each PPS transition, the interface requires the
calling programto capture the systemtinme and hardware counter
contents at the on-tinme transition of the PPS signal and
provide a pointer to the timestanmp (Unix timeval) and counter
contents as argunments to the hardpps() call. The hardware
counter contents can be determ ned by saving the nicroseconds
field of the systemtine, calling the mcrotime() routine, and
subtracting the saved value. If a counter overflow has occured
during the process, the resulting mcroseconds value will be
negative, in which case the caller adds 1000000 to normalize
the m croseconds field.

The frequency of the hardware oscillator can be determ ned from
the difference in hardware counter readi ngs at the begi nning
and end of the calibration interval divided by the duration of
the interval. However, the oscillator frequency tol erance, as
much as 100 ppm may cause the difference to exceed the tick
val ue, creating an anmbiguity. In order to avoid this ambiguity,
the hardware counter value at the beginning of the interval is
i ncreased by the current pps_ybar val ue once each second, but
conputed nodul o the tick value. At the end of the interval, the
di fference between this value and the val ue conputed fromthe
hardware counter is used as a control signal sanmple for the
FLL.

Control signal sanples which exceed the frequency tol erance are
di scarded, as well as sanples resulting fromexcessive interva
duration jitter. Surviving sanples are then processed by a
three-stage nmedian filter. The signal which drives the FLL is
derived fromthe nedian sample, while the average of

di fferences between the other two sanples is used as a neasure
of dispersion. If the dispersion is below the threshold

pps_di spmax, the nmedian is used to correct the pps_ybar val ue
with a wei ght expressed as a shift PPS AVG (2). In addition to
the averagi ng function, pps_disp is increased by the anount
pps_di spi nc once each second. The result is that, should the
di spersion be exceptionally high, or if the PPS signal fails
for sonme reason, the pps_disp will eventually exceed

pps_di spnmax and raise an alarm

Initially, an approxi mate value for pps_ybar is not known, so

the duration of the calibration interval nust be kept small to
avoid overflowing the tick. The tine difference at the end of

[Page 14]

RFC 1589

Kernel Mdel for Precision Timnmekeeping March 1994

the calibration interval is nmeasured. |If greater than a
fraction tick/4, the interval is reduced by half. If less than
this fraction for four successive calibration intervals, the
interval is doubled. This design automatically adapts to
nomnal jitter in the PPS signal, as well as the value of tick
The duration of the calibration interval is set by the
pps_shift variable as a shift in powers of two. The nini mum
val ue PPS_SHI FT (2) is chosen so that with the highest CPU
oscillator frequency 1024 Hz and frequency tol erance 100 ppm
the tick will not overflow The maxi mum val ue PPS_SH FTMAX (8)
i s chosen such that the maxi mum averaging tine is about 1000 s
as determ ned by neasurenents of Allan variance [5].

Shoul d the PPS signal fail, the current frequency estinate
pps_ybar continues to be used, so the nominal frequency remains
correct subject only to the instability of the undisciplined
oscillator. The procedure to save and restore the frequency
estimate works as foll ows. Wen setting the frequency froma
file, the tinme_freq value is set as the file value nminus the
pps_ybar val ue; when retrieving the frequency, the two val ues
are added before saving in the file. This schene provides a
seam ess interface should the PPS signal fail or the kerne
configuration change. Note that the frequency discipline is
active whether or not the synchronization daenon is active.
Since all Unix systens take sone tine after reboot to build a
runni ng system wusually by that time the discipline process has
already settled down and the initial transients due to
frequency discipline have danmped out.

3.1.4. External Cock Interface

MIls

The external clock driver interface is inplemented with two
routines, mcrotime(), which returns the current clock tine,
and cl ock_set (), which furnishes the apparent systemtime
derived fromthe kernel time variable. The latter routine is
called only when the clock is set using the settinmeofday()
systemcall, but can be called fromw thin the driver, such as
when the year rolls over, for exanple.

In the stock SunCS kernel and nmodified Utrix and OSF/ 1
kernels, the microtinme() routine returns the kernel tine

vari abl e plus an interpolation between tiner interrupts based
on the contents of a hardware counter. In the case of an
external clock, such as described above, the systemclock is
read directly fromthe hardware clock registers. Exanples of
external clock drivers are in the tprotime.c and hightine.c
routines included in the kernel.tar.Z distribution

[Page 15]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

The external clock routines return a status code which

i ndi cates whether the clock is operating correctly and the
nature of the problem if not. The return code is interpreted
by the ntp_gettinme() systemcall, which transitions the status
state machine to the TIME ERR state if an error code is
returned. This is the only error checking inmplenented for the
external clock in the present version of the code.

The sinmul ator has been used to check the PLL operation over the
desi gn envel ope of +-512 ns in tine error and +-100 ppmin
frequency error. This confirms that no overflows occur and that
the loop initially converges in about 15 minutes for tiner
interrupt rates from50 Hz to 1024 Hz. The | oop has a nornal
overshoot of a few percent and a final convergence tinme of severa
hours, depending on the initial time and frequency error

3.2. Leap Seconds

MIls

It does not seemgenerally useful in the user application
interface to provide additional details private to the kernel and
synchroni zati on protocol, such as stratum reference identifier
reference timestanp and so forth. It would in principle be

possi ble for the application to i ndependently evaluate the quality
of time and project into the future howlong this tinme mght be
"valid." However, to do that properly would duplicate the
functionality of the synchronization protocol and require

know edge of many nundane details of the platformarchitecture,
such as the subnet configuration, reachability status and rel ated
variables. For the curious, the ntp_adjtime() systemcall can be
used to reveal sonme of these nysteries.

However, the user application may need to know whether a | eap
second i s schedul ed, since this mght affect interval cal cul ations
spanning the event. A |eap-warning condition is determ ned by the
synchroni zati on protocol (if renotely synchronized), by the

ti mecode receiver (if available), or by the operator (if awake).
This condition is set by the synchroni zati on daenon on the day the
| eap second is to occur (30 June or 31 Decenber, as announced) by
specifying in a ntp_adjtinme() systemcall a clock status of either
TIME DEL, if a second is to be deleted, or TIMEINS, if a second
is to be inserted. Note that, on all occasions since the inception
of the | eap-second schene, there has never been a del etion
occasion, nor is there likely to be one in future. If the value is
TI ME_DEL, the kernel adds one second to the systemtine

i mredi ately followi ng second 23:59: 58 and resets the clock status
to TIME OK If the value is TIME INS, the kernel subtracts one
second fromthe systemtine i mediately foll owi ng second 23:59: 59
and resets the clock status to TIME OOP, in effect causing system

[Page 16]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

time to repeat second 59. Immediately follow ng the repeated
second, the kernel resets the clock status to TIME_ OK

Dependi ng upon the systemcall inplenentation, the reported tine
during a | eap second may repeat (with the TIME_OOP return code set
to advertise that fact) or be nonotonically adjusted until system
time "catches up" to reported tine. Wth the latter schenme the
reported time will be correct before and shortly after the |leap
second (depending on the nunmber of microtine() calls during the

| eap second), but freeze or slowy advance during the | eap second

itself. However, Most prograns will probably use the ctinme()
library routine to convert fromtineval (seconds, nicroseconds)
format to tmfornmat (seconds, minutes,...). If this routine is

nodified to use the ntp_gettime() systemcall and inspect the
return code, it could sinply report the | eap second as second 60.

3.3. Cock Status State Machi ne

MIls

The various options possible with the system cl ock nbdel descri bed
in this nenorandumrequire a careful exanmination of the state
transitions, status indications and recovery procedures should a
crucial signal or interface fail. In this section is presented a
prototype state machi ne designed to support |eap second insertion
and deletion, as well as reveal various kinds of errors in the
synchroni zati on process. The states of this machine are decoded as
fol |l ows:

TIME K |If an external clock is present, it is working properly
and the systemclock is derived fromit. If no externa
clock is present, the synchronizati on daenon i s working
properly and the systemclock is synchronized to a radio
cl ock or one or nore peers.

TIME_INS An insertion of one second in the system cl ock has been
decl ared followi ng the | ast second of the current day,
but has not yet been executed.

TIME_DEL A deletion of the |last second of the current day has
been decl ared, but not yet executed.

TIME_OOP An insertion of one second in the system cl ock has been
declared following the | ast second of the current day.
The second is in progress, but not yet conpleted.
Li brary conversion routines should interpret this second
as 23:59:60.

[Page 17]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

MIls

TIME BAD Either (a) the synchroni zati on daenon has decl ared the
protocol is not working properly, (b) all sources of
out si de synchroni zati on have been |l ost or (c) an
external clock is present and it has just becone
operational follow ng a non-operational condition.

TIME ERR An external clock is present, but is in a non-
operational condition.

In all except the TIME_ERR state the systemclock is derived from
either an external clock, if present, or the kernel tine variable,
if not. Inthe TIME ERR state the external clock is present, but
not working properly, so the systemclock nay be derived fromthe
kernel time variable. The foll owi ng diagramindi cates the norma
transitions of the state nachine. Not all valid transitions are
shown.

O + O + O + O +
TIME_BAD	---->	TIME_OK	<----	TI ME_QOP	<----	TI ME_I NS
N + N + N + N +						
A A						
- + - +
TI ME_ERR		TI ME_DEL
O + O +

The state machine nmakes a transition once each second at an

i nstant where the m croseconds field of the kernel time variable
overfl ows and one second is added to the seconds field. However,
this condition is checked at each timer interrupt, which may not
exactly coincide with the actual instant of overflow. This nmay

|l ead to sone interesting anonalies, such as a status indication of
a |l eap second in progress (TIME OOP) when actually the | eap second
had al ready expired.

The following state transitions are executed automatically by the
kernel :

any state -> TIME ERR This transition occurs when an externa
clock is present and an attenpt is made to
read it when in a non-operationa
condi tion.

[Page 18]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

MIls

TIME_INS -> Tl ME_OOP This transition occurs imrediately
foll owi ng second 86,400 of the current day
when an insert-second event has been
decl ar ed.

TIME OOP -> TIME K This transition occurs imrediately
foll owi ng second 86,401 of the current
day; that is, one second after entry to
the TIME_OOP state

TIME DEL -> TI ME_ (K This transition occurs inmmrediately
foll owi ng second 86, 399 of the current day
when a del et e-second event has been
decl ar ed.

The following state transitions are executed by specific
ntp_adjtime() systemcalls:

TIME K -> TIME_INS This transition occurs as the result of a
ntp_adjtinme() systemcall to declare an
i nsert-second event.

TIME K -> TI ME_DEL This transition occurs as the result of a
ntp_adjtinme() systemcall to declare a
del et e- second event.

any state -> TIME_BAD This transition occurs as the result of a
ntp_adjtime() systemcall to declare |oss
of all sources of synchronization or in
ot her cases of error.

The followi ng table sunmarizes the actions just before, during and
just after a | eap-second event. Each line in the table shows the
UTC and NTP tinmes at the beginning of the second. The left colum
shows the behavi or when no | eap event is to occur. In the mddle
colum the state machine is in TIME INS at the end of UTC second
23:59:59 and the NTP tine has just reached 400. The NTP tine is
set back one second to 399 and the machine enters TIME_OOP. At the
end of the repeated second the machine enters TIME_OK and the UTC
and NTP tinmes are again in correspondence. In the right colum the
state machine is in TIME DEL at the end of UTC second 23:59:58 and
the NTP time has just reached 399. The NTP tine is increnented,
the nmachine enters TIME OK and both UTC and NTP tines are again in
correspondence.

[Page 19]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

No Leap Leap I nsert Leap Del ete
UTC NTP UTC NTP UTC NTP

23:59: 58] 398 23:59: 58] 398 23:59: 58] 398
23:59:59{399 23:59:59{399 OO:OO:OOI4OO
OO:OO:OOI4OO 23:59:60}399 OO:OO:OlI40l
00:00:01}401 00:00:00}400 00:00:02}402

| | |
00:00: 02| 402 00:00: 01| 401 00: 00: 03| 403
| | |

To determnine |ocal midnight without fuss, the kernel code sinply
finds the residue of the tine.tv_sec (or tinme.tv_sec + 1) val ue
nod 86,400, but this requires a messy divide. Probably a better
way to do this is to initialize an auxiliary counter in the
settinmeof day() routine using an ugly divide and increnent the
counter at the sane tine the tinme.tv_sec is increnented in the
timer interrupt routine. For future enbellishnent.

4. Progranm ng Moddel and Interfaces

Thi s section describes the programm ng nodel for the synchronization
daenon and user application prograns. The ideas are based on
suggestions from Jeff Mgul and Philip G adstone and a simnlar
interface designed by the latter. It is inportant to point out that
the functionality of the original Unix adjtinme() systemcall is
preserved, so that the nodified kernel will work as the unnodified
one, should the new features not be in use. In this case the
ntp_adjtinme() systemcall can still be used to read and wite kerne
vari abl es that mght be used by a synchronizati on daenon ot her than
NTP, for exanple.

4.1. The ntp_gettinme() System Cal

The syntax and senmantics of the ntp _gettinme() call are given in
the followi ng fragnment of the tinex.h header file. This file is

i dentical, except for the SH FT_HZ define, in the SunGS, Utrix
and OSF/ 1 kernel distributions. (The SH FT_HZ define represents
the logarithmto the base 2 of the clock oscillator frequency
specific to each systemtype.) Note that the tinmex.h file calls
the syscall.h system header file, which nust be nodified to define
the SYS ntp_gettime systemcall specific to each systemtype. The
kernel distributions include directions on howto do this.

MIIs [Page 20]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

/*
* This header file defines the Network Time Protocol (NTP)
* interfaces for user and daenon application prograns. These are
* inplemented using private systemcalls and data structures and
* require specific kernel support.
*
* NAME
* ntp_gettime - NTP user application interface
*
* SYNOPSI S
* #i ncl ude <sys/tinmex. h>
*
* int systemcall (SYS ntp_gettinme, tptr)
*
* int SYS ntp_gettime defined in syscall.h header file
* struct ntptinmeval *tptr pointer to ntptineval structure
*
* NTP user interface - used to read kernel clock val ues
* Note: maxi mum error = NTP synch distance = dispersion + delay /
* 2
* estimated error = NTP di spersion
*/
struct ntptinmeval {
struct tineval tine; [* current tinme */
| ong naxerror; /* maxi mum error (us) */
| ong esterror; /* estimated error (us) */
H

The ntp_gettime() systemcall returns three values in the
ntptineval structure: the current tine in unix tinmeval format plus
the maxi mum and estimated errors in mcroseconds. Wile the 32-bit
long data type limts the error quantities to sonething nore than
an hour, in practice this is not significant, since the protoco
itself will declare an unsynchronized condition well bel ow t hat
l[imt. In the NTP Version 3 specification, if the protoco

conputes either of these values in excess of 16 seconds, they are
clanped to that value and the system cl ock decl ared
unsynchroni zed.

Following is a detailed description of the ntptimeval structure
menbers.

MIIs [Page 21]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

struct tinmeval tine; /* current time */

This menber returns the current systemtinme, expressed as a
Uni x tinmeval structure. The tineval structure consists of two
32-bit words; the first returns the nunber of seconds past 1

January 1970, while the second returns the nunber of
m cr oseconds.

| ong naxerror; /* maxi mum error (us) */
This menber returns the tinme_maxerror kernel variable in
m croseconds. See the entry for this variable in section
additional information.

| ong esterror; /* estimated error (us) */
This menber returns the tinme_esterror kernel variable in

m croseconds. See the entry for this variable in section
addi tional information.

5 for

5 for

MIIs [Page 22]

RFC 1589

Ker nel Mode

for

Preci si on Ti mekeepi ng March 1994

4.2. The ntp_adjtinme() System Cal

MIls

The syntax and semantics of the ntp_adjtine() call are given in
the followi ng fragment of the tinmex.h header file. Note that, as

in the ntp_gettinme() system call

the syscall.h system header file

nust be nodified to define the SYS ntp _adjtine system cal
specific to each systemtype.

/

L B R R R N . N R

*

*/

NAVE

ntp_adjtime - NTP daenon application interface

SYNCPSI S

#i ncl ude <sys/timex. h>

int systemcall (SYS ntp_adjtime, node, tptr)

int SYS ntp_adjtine
struct tinex *tptr

NTP daenpn interface -

oscil |l ator

struct tinex {

int node;

| ong of fset;

Il ong frequency;

| ong naxerror;

| ong esterror;

int status;

I ong tine_constant;
| ong preci sion;

| ong tol erance;

/*

defined in syscall.h header file
pointer to tinex structure

used to discipline kernel clock

/* nmode sel ector */

/* time offset (us) */

/* frequency offset (scaled ppm */

/* maxi mum error (us) */

/* estimated error (us) */

/* clock command/ status */

/* pll time constant */

/* clock precision (us) (read only)
*/

/* clock frequency tol erance (scal ed
* ppm) (read only) */

* The following read-only structure nmenbers are inpl enented
* only if the PPS signal discipline is configured in the

* kernel
*/
| ong ybar;
| ong di sp;

int shift;

| ong cal cnt;
long jitcnt;
| ong di scnt;

/* frequency estimate (scaled ppm */

/* dispersion estimte (scal ed ppm
*/

/[* interval duration (s) (shift) */

[* calibration intervals */

[* jitter limt exceeded */

/* dispersion |imt exceeded */

[Page 23]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

MIls

The ntp_adjtime() systemcall is used to read and wite certain
time-rel ated kernel variables sunmarized in this and subsequent
sections. Witing these variables can only be done in superuser
node. To wite a variable, the node structure nenber is set with
one or nore bits, one of which is assigned each of the follow ng
variables in turn. The current values for all variables are
returned in any case; therefore, a node argunent of zero neans to
return these val ues w thout changi ng anyt hi ng.

Following is a description of the tinmex structure nenbers.
int node; /* node selector */

This is a bit-coded variable selecting one or nore structure
menbers, with one bit assigned each nenber. If a bit is set,
the val ue of the associated nmenber variable is copied to the
correspondi ng kernel variable; if not, the nember is ignored.
The bits are assigned as given in the follow ng fragment of the
timex. h header file. Note that the precision and tol erance are
determ ned by the kernel and cannot be changed by
ntp_adjtime().

/*

* Mode codes (tinmex.node)

*/
#defi ne ADJ_OFFSET 0x0001 /[* time offset */
#def i ne ADJ_FREQUENCY 0x0002 * frequency offset */
#defi ne ADJ_MAXERROR 0x0004 * maximumtine error */
#defi ne ADJ_ESTERROR 0x0008 /* estimated tine error */
#def i ne ADJ_STATUS 0x0010 * clock status */

*

#def i ne ADJ_TI MECONST 0x0020 pll time constant */

| ong of fset; /[* time offset (us) */

If selected, this nenber replaces the value of the time_offset
kernel variable in mcroseconds. The absol ute val ue nust be

| ess than MAXPHASE mi croseconds defined in the tinmex.h header
file. See the entry for this variable in section 5 for

addi tional infornmation.

If within range and the PPS signal and/or external oscillator

are configured and operating properly, the clock status is
automatically set to TIME K

[Page 24]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

| ong tine_constant; /[* pll time constant */

If selected, this menber replaces the value of the
time_constant kernel variable. The val ue nmust be between zero
and MAXTC defined in the tinmex.h header file. See the entry for
this variable in section 5 for additional information.

| ong frequency; /* frequency offset (scaled ppm */

If selected, this menber replaces the value of the

ti me_frequency kernel variable. The value is in ppm wth the
integer part in the high order 16 bits and fraction in the | ow
order 16 bits. The absolute value nust be in the range |ess

t han MAXFREQ ppm defined in the timex.h header file. See the
entry for this variable in section 5 for additiona

i nf or mati on.

| ong naxerror; /* maxi mum error (us) */

If selected, this nmenber replaces the value of the
ti me_nmaxerror kernel variable in mcroseconds. See the entry
for this variable in section 5 for additional information.

| ong esterror; /* estimated error (us) */

If selected, this nmenber replaces the value of the
time_esterror kernel variable in mcroseconds. See the entry
for this variable in section 5 for additional information.

int status; /* clock command/ st atus */

If selected, this nenber replaces the value of the tinme_status
kernel variable. See the entry for this variable in section 5
for additional information.

In order to set this variable by ntp_adjtine(), either (a) the
current clock status nust be TIME OK or (b) the nmenber value is
TIME BAD; that is, the ntp_adjtine() call can always set the
clock to the unsynchronized state or, if the clock is running
correctly, can set it to any state. In any case, the
ntp_adjtime() call always returns the current state in this
nmenber, so the caller can determ ne whether or not the request
succeeded.

MIIs [Page 25]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

| ong tine_constant; /[* pll time constant */

If selected, this menber replaces the value of the
time_constant kernel variable. The val ue nmust be between zero
and MAXTC defined in the tinmex.h header file. See the entry for
this variable in section 5 for additional information.

| ong precision; /* clock precision (us) (read only) */

This menber returns the time_precision kernel variable in

m croseconds. The variable can be witten only by the kernel
See the entry for this variable in section 5 for additiona

i nformation.

| ong tol erance; /* clock frequency tol erance (scal ed ppnm
*/

This menber returns the tinme_tol erance kernel variable in

m croseconds. The variable can be witten only by the kernel
See the entry for this variable in section 5 for additiona

i nformati on.

| ong ybar; /* frequency estimate (scaled ppm */

Thi s menber returns the pps_ybar kernel variable in

m croseconds. The variable can be witten only by the kernel
See the entry for this variable in section 5 for additiona

i nf or mati on.

| ong di sp; /* dispersion estimate (scal ed ppm */

Thi s menber returns the pps_disp kernel variable in

m croseconds. The variable can be witten only by the kernel
See the entry for this variable in section 5 for additiona

i nf ormati on.

int shift; /* interval duration (s) (shift) */
Thi s menber returns the pps_shift kernel variable in
m croseconds. The variable can be witten only by the kernel

See the entry for this variable in section 5 for additiona
i nformation.

MIIs [Page 26]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

| ong cal cnt; /* calibration intervals */

Thi s menber returns the pps_calcnt kernel variable in
m croseconds. The variable can be witten only by the kernel

See the entry for this variable in section 5 for additiona
i nformation.

long jitcnt; [* jitter limt exceeded */

This menber returns the pps_jittcnt kernel variable in
m croseconds. The variable can be witten only by the kernel

See the entry for this variable in section 5 for additiona
i nformation.

[ong discnt; [* dispersion limt exceeded */

This menber returns the pps_discnt kernel variable in
m croseconds. The variable can be witten only by the kernel

See the entry for this variable in section 5 for additiona
i nfornmation.

MIIs [Page 27]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

4.3. Command/ St at us Codes

The kernel routines use the system clock status variable
time_status, which records whether the clock is synchronized,
waiting for a | eap second, etc. The value of this variable is
returned as the result code by both the ntp gettinme() and
ntp_adjtime() systemcalls. In addition, it can be explicitly read
and witten using the ntp_adjtinme() systemcall, but can be
witten only in superuser nmode. Values presently defined in the
timex. h header file are as foll ows:

/*
* Clock command/ st atus codes (tinex.status)
*/

#defi ne TI ME_OK

#define TIME_INS

#define TI ME_DEL

#def i ne TI ME_OOP

#def i ne TI ME_BAD

#define TI ME_ERR

/* clock synchronized */
* insert |eap second */
del ete | eap second */
| eap second in progress */
/* kernel clock not synchronized */
* external oscillator not
synchroni zed */

aprwNEFLO

A detail ed description of these codes as used by the | eap-second
state machine is given later in this nenorandum |In case of a
negative result code, the kernel has intercepted an invalid
address or (in case of the ntp_adjtine() systemcall), a superuser
vi ol ati on.

5. Kernel Vari abl es

This section contains a |list of kernel variables and a detail ed
description of their function, initial value, scaling and linmts.

5.1. Interface Variabl es
The foll owing variables are read and set by the ntp_adjtinme()
systemcall. Additional automatic variables are used as
tenmporaries as described in the code fragnents.
int time_status = TI ME_BAD;
This variable controls the state nachine used to insert or

del ete | eap seconds and show the status of the tinekeeping
system PPS signal and external oscillator, if configured.

MIIs [Page 28]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

long tine_offset = 0;

This variable is used by the PLL to adjust the systemtine in
small increnents. It is scaled by (1 << SH FT_UPDATE) (12) in
m croseconds. The nmaxi mum val ue that can be represented is
about +-512 ns and the m ninmumvalue or precision is a few
parts in 10710 s.

long time_constant = O; [* pll tinme constant */

This variable determ nes the bandwi dth or "stiffness" of the
PLL. The value is used as a shift between zero and MAXTC (6),
with the effective PLL tinme constant equal to a nmultiple of (1
<< time_constant) in seconds. For roomtenperature quartz
oscillator the recomended default value is 2, which
corresponds to a PLL tinme constant of about 900 s and a maxi mum
update interval of about 64 s. The maxi num update interva
scales directly with the tine constant, so that at the maxi num
time constant of 6, the update interval can be as |arge as 1024
s.

Val ues of time_constant between zero and 2 can be used if quick
convergence i s necessary; values between 2 and 6 can be used to
reduce network | oad, but at a nodest cost in accuracy. Val ues
above 6 are appropriate only if an external oscillator is
present.

long tinme_tolerance = MAXFREQ /* frequency tol erance (ppm */

This variable represents the maxi nrum frequency error or
tolerance in ppmof the particular CPU clock oscillator and is
a property of the architecture; however, in principle it could
change as result of the presence of external discipline
signals, for instance. It is expressed as a positive number
greater than zero in parts-per-mllion (ppm.

The recomended val ue of MAXFREQ is 200 ppmis appropriate for
roomtenperature quartz oscillators used in typica

wor kst ati ons. However, it can change due to the operating
condition of the PPS signal and/or external oscillator. Wth
either the PPS signal or external oscillator, the reconmended
val ue for MAXFREQ is 100 ppm

MIIs [Page 29]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

long tinme_precision = 1000000 / Hz; /* clock precision (us) */

This variable represents the maxi mumerror in reading the
systemclock in mcroseconds. It is usually based on the numnber
of m croseconds between timer interrupts, 10000 us for the
SunCS kernel, 3906 us for the Utrix kernel, 976 us for the
OSF/ 1 kernel. However, in cases where the tinme can be

interpol ated between tiner interrupts with m crosecond

resol ution, such as in the unnodified SunOS kernel and nodified
Utrix and OSF/ 1 kernels, the precision is specified as 1 us.
In cases where a PPS signal or external oscillator is
avai | abl e, the precision can depend on the operating condition
of the signal or oscillator. This variable is determ ned by the
kernel for use by the synchronization daenon, but is otherw se
not used by the kernel

long tinme_nmaxerror = MAXPHASE; /* maxi mumerror */

This variabl e establishes the nmaxi numerror of the indicated
time relative to the prinmary synchronization source in

m croseconds. For NTP, the value is initialized by a
ntp_adjtime() call to the synchronization distance, which is
equal to the root dispersion plus one-half the root delay. It
is increased by a small amount (tine_tol erance) each second to
reflect the clock frequency tolerance. This variable is
conputed by the synchronization daenon and the kernel, but is
ot herwi se not used by the kernel

long tinme_esterror = MAXPHASE; /* estimated error */

This variabl e establishes the expected error of the indicated
time relative to the prinmary synchronization source in

m croseconds. For NTP, the value is determ ned as the root

di spersion, which represents the best estimate of the actua
error of the system cl ock based on its past behavior, together
wi th observations of nmultiple clocks within the peer group
This variable is conputed by the synchroni zati on daenon and
returned in systemcalls, but is otherwi se not used by the
kernel .

MIIs [Page 30]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

5.2. Phase-Lock Loop Vari abl es

The foll owing variabl es establish the state of the PLL and the
residual time and frequency offset of the system clock. Additiona
automatic vari ables are used as tenporaries as described in the
code fragnents.

long tinme_phase = 0; /* phase offset (scaled us) */

The tine_phase variable represents the phase of the kernel tine
variable at each tick of the clock. This variable is scal ed by
(1 << SHIFT_SCALE) (23) in mcroseconds, giving a nmaxi mum

adj ustment of about +-256 us/tick and a resolution |ess than
one part in 10712.

long tinme_offset = 0; /[* time offset (scaled us) */

The tine_offset variable represents the time offset of the CPU
clock oscillator. It is recalculated as each update to the
systemclock is received via the hardupdate() routine and at
each second in the seconds_overflow routine. This variable is
scaled by (1 << SH FT_UPDATE) (12) in mcroseconds, giving a
maxi mum adj ust mrent of about +-512 nms and a resolution of a few
parts in 10710 s.

long tine _freq = O; /* frequency offset (scaled ppm */

The tine_freq variable represents the frequency offset of the
CPU clock oscillator. It is recalculated as each update to the
systemclock is received via the hardupdate() routine. It can
al so be set via ntp_adjtine() froma value stored in a file
when the synchronization daenmon is first started. It can be
retrieved via ntp_adjtine() and witten to the file about once
per hour by the daemon. The time_freq variable is scaled by (1
<< SHI FT_KF) (16) ppm giving it a maxi mum value well in excess
of the limt of +-256 ppminposed by other constraints. The
precision of this representation (frequency resolution) is
parts in 10711, which is adequate for all but the best externa
oscillators.

time_adj = O; /* tick adjust (scaled 1/ Hz) */
The tine_adj variable is the adjustnent added to the val ue of
tick at each timer interrupt. It is conmputed once each second

fromthe tine_offset, tine_freq and, if the PPS signal is
present, the ps_ybar variable once each second.

MIIs [Page 31]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

long tine_reftine = O; /* time at |ast adjustment (s) */

This variable is the seconds portion of the systemtine on the
| ast update received by the hardupdate() routine. It is used to
conpute the time_freq variable as the tinme since the |ast
updat e increases.

int fixtick = 1000000 % HZ; /* anortization factor */

In the Utrix and OSF/ 1 kernels, the interval between timer
interrupts does not evenly divide the nunber of mcroseconds in
the second. In order that the clock runs at a precise rate, it
is necessary to introduce an anortization factor into the |oca
timescale. In the original Unix code, the value of fixtick is
anortized once each second, introducing an additional source of
jitter; in the new nodel the value is anortized at each tick of
the systemcl ock, reducing the jitter by the reciprocal of the
clock oscillator frequency. This is not a new kernel variable,
but a new use of an existing kernel variable.

5.3. Pul se-per-second (PPS) Frequency-Lock Loop Vari abl es

The foll owi ng variables are used only if a pul se-per-second (PPS)
signal is available and connected via a nodemcontrol |ead, such
as produced by the optional ppsclock feature incorporated in the
serial port driver. They establish the design paraneters of the
PPS frequency-1ock | oop used to discipline the CPU cl ock
oscillator to an external PPS signal. Additional automatic
variabl es are used as tenporaries as described in the code
fragnents.

| ong pps_usec; /* mcroseconds at |ast pps */

The pps_usec variable is latched froma high resolution counter
or external oscillator at each PPS interrupt. In determ ning
this value, only the hardware counter contents are used, not
the contents plus the kernel tinme variable, as returned by the
mcrotine() routine.

| ong pps_ybar = 0; /* pps frequency offset estimte */
The pps_ybar variable is the average CPU cl ock oscillator

frequency offset relative to the PPS disciplining signal. It is
scaled in the sanme units as the tine_freq variable.

MIIs [Page 32]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

pps_di sp = MAXFREQ /* dispersion estimate (scaled ppm */

The pps_disp variable represents the average sanpl e dispersion
nmeasured over the last three sanples. It is scaled in the sane
units as the tine_freq vari abl e.

pps_di spmax = MAXFREQ / 2; /* dispersion threshold */
The pps_dispmax variable is used as a dispersion threshold. If
pps_disp is less than this threshold, the nedian sanple is used

to update the pps_ybar estimate; if not, the sanple is
di scar ded.

pps_di spinc = MAXFREQ >> (PPS SHI FT + 4); /* pps dispersion
i ncrenent/sec */

The pps_dispinc variable is the increment to add to pps_disp
once each second. It is conputed such that, if no PPS sanples
have arrived for several calibration intervals, the value of
pps_disp will exceed the pps_di spmax threshold and rai se an
al arm

int pps_nf[] = {0, 0, O0}; /[* pps nmedian filter */

The pps-nf[] array is used as a nedian filter to detect and
discard jitter in the PPS signal

int pps_count = O; /* pps calibrate interval counter */
The pps_count variabl e neasures the length of the calibration
interval used to calculate the frequency. It nornmally counts
fromzero to the value 1 << pps_shift.

pps_shift = PPS_SHI FT; [* interval duration (s) (shift) */

The pps_shift variable determ nes the duration of the
calibration interval, 1 << pps_shift s.

pps_intcnt = 0O; /* intervals at current duration */
The pps_intcnt variable counts the nunber of calibration
intervals at the current interval duration. It is reset to zero
after four intervals and when the interval duration is changed.

[ong pps_calcnt = 0; [* calibration intervals */

The pps_cal cnt variable counts the nunber of calibration
interval s.

MIIs [Page 33]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

long pps_jitcnt = O; [* jitter limt exceeded */

The pps_jitcnt variable counts the nunber of resets due to
excessive jitter or frequency offset. These resets are

usual |y due to excessive noise in the PPS signal or
interface.

l ong pps_discnt = 0; /* dispersion limt exceeded */

The pps_discnt variable counts the nunber of calibration
interval s where the dispersion is above the pps_di spmax

limt. These resets are usually due to excessive frequency
wander in the PPS signal source.

MIIs [Page 34]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

5.4. External Gscillator Variables

The following variables are used only if an external oscillator
(H GHBALL or TPRO) is present. Additional automatic variables are
used as tenporaries as described in the code fragnents.

int clock count = O; /* CPU clock counter */

The cl ock_count variable counts the seconds between adjustnents
to the kernel tine variable to discipline it to the externa
cl ock.

struct tineval clock offset; /* H GHBALL cl ock of fset */

The cl ock_offset variable defines the offset between system
time and the H GHBALL counters.

| ong cl ock _cpu = O; /* CPU cl ock adjust */

The cl ock_cpu variable contains the of fset between the system
clock and the H GHBALL cl ock for use in disciplining the kerne
time variable.

6. Architecture Constants

Following is a list of the inportant architecture constants that
establish the response and stability of the PLL and provi de maxi num
bounds on behavior in order to satisfy correctness assertions made in
the protocol specification. Additional definitions are given in the
ti mex. h header file.

6.1. Phase-lock loop (PLL) definitions

The foll owi ng defines establish the performance envel ope of the
PLL. They establish the maxi mum phase error (MAXPHASE), maxi num
frequency error (MAXFREQ), mnimuminterval between updates

(M NSEC) and maxi mum i nterval between updates (MAXSEC). The intent
of these bounds is to force the PLL to operate within predefined
l[imts in order to satisfy correctness assertions of the
synchroni zati on protocol. An excursion which exceeds these bounds
is clamped to the bound and operation proceeds normally. In
practice, this can occur only if sonething has failed or is
operating out of tolerance, but otherwi se the PLL continues to
operate in a stable node.

MAXPHASE rmust be set greater than or equal to CLOCK. MAX (128 ms),

as defined in the NTP specification. CLOCK MAX establishes the
maxi mumtine offset allowed before the systemtine is reset,

MIIs [Page 35]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

rather than increnmentally adjusted. Here, the maxi numoffset is
cl anped to MAXPHASE only in order to prevent overflow errors due
to defective programm ng

MAXFREQ refl ects the manufacturing frequency tol erance of the CPU
oscillator plus the naximumslew rate allowed by the protocol. It
shoul d be set to at least the intrinsic frequency tol erance of the
oscillator plus 100 ppmfor vernier frequency adjustnments. If the
kernel frequency discipline code is installed (PPS_SYNC), the CPU
oscillator frequency is disciplined to an external source,
presumably with negligible frequency error

#def i ne MAXPHASE 512000 /* max phase error (us) */

#i f def PPS_SYNC

#def i ne MAXFREQ 100 /* max frequency error (ppm */

#el se

#def i ne MAXFREQ 200 /* max frequency error (ppm */

#endi f /* PPS_SYNC */

#defi ne M NSEC 16 /* min interval between updates (s)
*/

#def i ne MAXSEC 1200 /* max interval between updates (s)
*/

6. 2. Pul se-per-second (PPS) Frequency-lock Loop (FLL) Definitions

MIls

The foll owi ng defines and declarations are used only if a pul se-
per-second (PPS) signal is avail able and connected via a nodem
control |ead, such as produced by the optional ppsclock feature
incorporated in the serial port driver. They establish the design
paraneters of the frequency-lock |loop (FLL) used to discipline the
CPU cl ock oscillator to the PPS oscillator.

PPS AVG is the averagi ng constant used to update the FLL from
frequency sanpl es neasured for each calibration interval.

PPS SHI FT and PPS_SH FTMAX are the m ni mum and maxi mem
respectively, of the calibration interval represented as a power
of two. The PPS DISPINC is the initial increnent to pps_disp at
each second

#def i ne PPS_AVG 2 /* pps averagi ng constant (shift) */

#def i ne PPS_SHI FT 2 /[* mn interval duration (s) (shift)
*/

#def i ne PPS_SHI FTMAX 6 /* max interval duration (s) (shift)
*/

#def i ne PPS_DI SPI NC 0 /* di spersion increnent (us/s) */

[Page 36]

RFC 1589 Kernel Mdel for Precision Timnmekeeping March 1994

6.3. External Oscillator Definitions
The foll owing definitions and decl arations are used only if an
external oscillator (H GHBALL or TPRO) is configured on the
system
#def i ne CLOCK | NTERVAL 30 /* CPU clock update interval (s) */
7. References
[1] MIls, D., "Internet time synchronization: the Network Time

Protocol ", |IEEE Trans. Comuni cations COM 39, 10 (Cctober 1991),
1482- 1493. Also in: Yang, Z., and T.A Marsland (Eds.). d obal

States and Tinme in Distributed Systens, |EEE Press, Los Al amtos,

CA, 91-102.

[2] MIls, D, "Network Tine Protocol (Version 3) specification,
i npl enentati on and anal ysis", RFC 1305, University of Del aware,
March 1992, 113 pp.

[3] MIls, D., "Mdelling and anal ysis of conputer network clocks",
El ectrical Engi neering Departnment Report 92-5-2, University of
Del aware, May 1992, 29 pp.

[4] MIls, D, "Sinple Network Time Protocol (SNTP)", RFC 1361,
University of Del aware, August 1992, 10 pp.

[5] MIls, D., "Precision synchronizatin of computer network cl ocks",

El ectrical Engi neering Departnment Report 93-11-1, University of
Del awar e, Novenber 1993, 66 pp.

Security Considerations

Security issues are not discussed in this meno.
Aut hor’ s Address

David L. MlIIs

El ectrical Engi neeri ng Depart nent

Uni versity of Del aware

Newar k, DE 19716

Phone: (302) 831-8247
EMail: m | s@del.edu

MIIs [Page 37]

