Network Working Group Request for Comments: 1250 Obsoletes: RFCs 1200, 1100, 1083, 1130, 1140 Internet Activities Board J. Postel, Editor August 1991 ### IAB OFFICIAL PROTOCOL STANDARDS ## Status of this Memo This memo describes the state of standardization of protocols used in the Internet as determined by the Internet Activities Board (IAB). Distribution of this memo is unlimited. # Table of Contents | Introduction | 2 | |---------------------------------------|----| | 1. The Standardization Process | 2 | | 2. The Request for Comments Documents | 5 | | 3. Other Reference Documents | | | 3.1. Assigned Numbers | | | 3.2. Annotated Internet Protocols | 6 | | 3.3. Gateway Requirements | 6 | | 3.4. Host Requirements | | | 3.5. The MIL-STD Documents | 6 | | 4. Explanation of Terms | | | 4.1. Definitions of Protocol State | | | 4.1.1. Standard Protocol | 8 | | 4.1.2. Draft Standard Protocol | | | 4.1.3. Proposed Standard Protocol | 9 | | 4.1.4. Experimental Protocol | | | 4.1.5. Informational Protocol | 9 | | 4.1.6. Historic Protocol | | | 4.2. Definitions of Protocol Status | 10 | | | 10 | | 4.2.2. Recommended Protocol | 10 | | | 10 | | 4.2.4. Limited Use Protocol | 10 | | 4.2.5. Not Recommended Protocol | 10 | | | 10 | | | 10 | | 5.2. The Standards Track Diagram | 12 | | 6. The Protocols | 14 | | 6.1. Recent Changes | 14 | | 6.1.1. New RFCs | 14 | | 6.1.2. Other Changes | 17 | | | | Internet Activities Board | 6.2. | Standard Protocols | 18 | |--------|--|----| | 6.3. | | 19 | | 6.4. | Draft Standard Protocols | 20 | | 6.5. | | 21 | | 6.6. | Telnet Options | 22 | | 6.7. | | 23 | | 6.8. | | 23 | | 6.9. | Historic Protocols | 24 | | 7. Co | ontacts | 24 | | 7.1. | IAB, IETF, and IRTF Contacts | 24 | | 7.1.1. | . Internet Activities Board (IAB) Contact | 24 | | 7.1.2 | . Internet Engineering Task Force (IETF) Contact | 25 | | 7.1.3 | . Internet Research Task Force (IRTF) Contact | 25 | | 7.2. | | 26 | | 7.3. | Request for Comments Editor Contact | 27 | | 7.4. | Network Information Center Contact | 27 | | | | 28 | | 8. Se | ecurity Considerations | 28 | | 9. Aı | ıthor's Address | 28 | #### Introduction Discussion of the standardization process and the RFC document series is presented first, followed by an explanation of the terms. Sections 6.2 - 6.9 contain the lists of protocols in each stage of standardization. Finally come pointers to references and contacts for further information. This memo is intended to be issued quarterly; please be sure the copy you are reading is current. Current copies may be obtained from the Network Information Center or from the Internet Assigned Numbers Authority (see the contact information at the end of this memo). Do not use this edition after 30-Nov-91. See Section 6.1 for a description of recent changes. In the official lists in sections 6.2 - 6.9, an asterisk (*) next to a protocol denotes that it is new to this document or has been moved from one protocol level to another. ## 1. The Standardization Process The Internet Activities Board maintains this list of documents that define standards for the Internet protocol suite (see RFC-1160 for an explanation of the role and organization of the IAB and its subsidiary groups, the Internet Engineering Task Force (IETF) and the Internet Research Task Force (IRTF)). The IAB provides these standards with the goal of co-ordinating the evolution of the Internet protocols; this co-ordination has become quite important as the Internet protocols are increasingly in general commercial use. The majority of Internet protocol development and standardization activity takes place in the working groups of the Internet Engineering Task Force. Protocols which are to become standards in the Internet go through a series of states (proposed standard, draft standard, and standard) involving increasing amounts of scrutiny and experimental testing. At each step, the Internet Engineering Steering Group (IESG) of the IETF must make a recommendation for advancement of the protocol and the IAB must ratify it. If a recommendation is not ratified, the protocol is remanded to the IETF for further work. To allow time for the Internet community to consider and react to standardization proposals, the IAB imposes a minimum delay of 4 months before a proposed standard can be advanced to a draft standard and 6 months before a draft standard can be promoted to standard. It is general IAB practice that no proposed standard can be promoted to draft standard without at least two independent implementations (and the recommendation of the IESG). Promotion from draft standard to standard generally requires operational experience and demonstrated interoperability of two or more implementations (and the recommendation of the IESG). In cases where there is uncertainty as to the proper decision concerning a protocol the IAB may convene a special review committee consisting of experts from the IETF, IRTF and the IAB with the purpose of recommending an explicit action to the IAB. Advancement of a protocol to proposed standard is an important step since it marks a protocol as a candidate for eventual standardization (it puts the protocol "on the standards track"). Advancement to draft standard is a major step which warns the community that, unless major objections are raised or flaws are discovered, the protocol is likely to be advanced to standard in six months. Some protocols have been superseded by better ones or are otherwise unused. Such protocols are still documented in this memorandum with the designation "historic". Because the IAB believes it is useful to document the results of early protocol research and development work, some of the RFCs document protocols which are still in an experimental condition. The protocols are designated "experimental" in this memorandum. They appear in this report as a convenience to the community and not as evidence of their standardization. Other protocols, such as those developed by other standards organizations, or by particular vendors, may be of interest or may be recommended for use in the Internet. The specifications of such protocols may be published as RFCs for the convenience of the Internet community. These protocols are labeled "informational" in this memorandum. In addition to the working groups of the IETF, protocol development and experimentation may take place as a result of the work of the research groups of the Internet Research Task Force, or the work of other individuals interested in Internet protocol development. The IAB encourages the documentation of such experimental work in the RFC series, but none of this work is considered to be on the track for standardization until the IESG has made a recommendation to advance the protocol to the proposed standard state, and the IAB has approved this step. A few protocols have achieved widespread implementation without the approval of the IESG and the IAB. For example, some vendor protocols have become very important to the Internet community even though they have not been recommended by the IESG or ratified by the IAB. However, the IAB strongly recommends that the IAB standards process be used in the evolution of the protocol suite to maximize interoperability (and to prevent incompatible protocol requirements from arising). The IAB reserves the use of the terms "standard", "draft standard", and "proposed standard" in any RFC or other publication of Internet protocols to only those protocols which the IAB has approved. In addition to a state (like "Proposed Standard"), a protocol is also assigned a status, or requirement level, in this document. The possible requirement levels ("Required", "Recommended", "Elective", "Limited Use", and "Not Recommended") are defined in Section 4.2. When a protocol is on the standards track, that is in the proposed standard, draft standard, or standard state (see Section 5), the status shown in Section 6 is the current status. For a proposed or draft standard, however, the IAB will also endeavor to indicate the eventual status this protocol will have after adoption as a standard. Few protocols are required to be implemented in all systems; this is because there is such a variety of possible systems, for example, gateways, terminal servers, workstations, and multi-user hosts. The requirement level shown in this document is only a one word label, which may not be sufficient to characterize the implementation requirements for a protocol in all situations. For some protocols, this document contains an additional status paragraph (an applicability statement). In addition, more detailed status information is contained in separate requirements documents (see Section 3). # 2. The Request for Comments Documents The documents called Request for Comments (or RFCs) are the working notes of the "Network Working Group", that is the Internet research and development community. A document in this series may be on essentially any topic related to computer communication, and may be anything from a meeting report to the specification of a standard. #### Notice: All standards are published as RFCs, but not all RFCs specify standards. Anyone can submit a document for publication as an RFC. Submissions must be made via electronic mail to the RFC Editor (see the contact information at the end of this memo). While RFCs are not refereed publications, they do receive technical review from the task forces, individual technical experts, or the RFC Editor, as appropriate. The RFC series comprises a wide range of documents, ranging from informational documents of general interests to specifications of standard Internet protocols. In cases where submission is intended to document a proposed standard, draft standard, or standard protocol, the RFC Editor will publish the document only with the approval of both the IESG and the IAB. For documents describing experimental work, the RFC Editor will notify the IESG before publication, allowing for the possibility of review by the relevant IETF working group or IRTF research group and provide those comments to the author. See Section 5.1 for more detail. Once a document is assigned an RFC number and published, that RFC is never revised or re-issued with the same number. There is never a question of having the most recent version of a particular RFC. However, a protocol (such as File Transfer Protocol (FTP)) may be improved and re-documented many times in several different RFCs. It is important to verify that you have the most recent RFC on a particular protocol. This "IAB Official Protocol Standards" memo is the reference for determining the correct RFC for the current specification of each protocol. The RFCs are available from the Network Information Center at SRI International, and a number of other sites. For more information about obtaining RFCs, see Sections 7.4 and 7.5. #### 3. Other Reference Documents There are four other reference documents of interest in checking the current status of protocol specifications and standardization. These are the Assigned Numbers, the Annotated Internet Protocols, the Gateway Requirements, and the Host Requirements. Note that these documents are revised and updated at different times; in case of differences between these documents, the most recent must prevail. Also, one should be aware of the MIL-STD publications on IP, TCP, Telnet, FTP, and SMTP. These are described in Section 3.5. #### 3.1. Assigned Numbers This document lists the assigned values of the parameters used in the various protocols. For example, IP protocol codes, TCP port numbers, Telnet Option Codes, ARP hardware types, and Terminal Type names. Assigned Numbers was most recently issued as RFC-1060. Another document, Internet Numbers, lists the assigned IP network numbers, and the autonomous system numbers. Internet Numbers was most recently issued as RFC-1166. ## 3.2. Annotated Internet Protocols This document lists the protocols and describes any known problems and ongoing experiments. This document was most recently issued as RFC-1011. # 3.3. Gateway Requirements This document reviews the specifications that apply to gateways and supplies guidance and clarification for any ambiguities. Gateway Requirements is RFC-1009. A working group of the IETF is actively preparing a revision. ### 3.4. Host Requirements This pair of documents reviews and updates the specifications that apply to hosts, and it supplies guidance and clarification for any ambiguities. Host Requirements was issued as RFC-1122 and RFC-1123. ### 3.5. The MIL-STD Documents The Internet community specifications for IP (RFC-791) and TCP (RFC-793) and the DoD MIL-STD specifications are intended to describe exactly the same protocols. Any difference in the protocols specified by these sets of documents should be reported to DCA and to the IAB. The RFCs and the MIL-STDs for IP and TCP differ in style and level of detail. It is strongly advised that the two sets of documents be used together, along with RFC-1122 and RFC-1123. The IAB and the DoD MIL-STD specifications for the FTP, SMTP, and Telnet protocols are essentially the same documents (RFCs 765, 821, 854). The MIL-STD versions have been edited slightly. Note that the current Internet specification for FTP is RFC-959 (as modified by RFC-1123). Note that these MIL-STD are now somewhat out of date. The Gateway Requirements (RFC-1009) and Host Requirements (RFC-1122, RFC-1123) take precedence over both earlier RFCs and the MIL-STDs. | Internet Protocol (IP) | MIL-STD-1777 | |--------------------------------------|--------------| | Transmission Control Protocol (TCP) | MIL-STD-1778 | | File Transfer Protocol (FTP) | MIL-STD-1780 | | Simple Mail Transfer Protocol (SMTP) | MIL-STD-1781 | | Telnet Protocol and Options (TELNET) | MIL-STD-1782 | These documents are available from the Naval Publications and Forms Center. Requests can be initiated by telephone, telegraph, or mail; however, it is preferred that private industry use form DD1425, if possible. These five documents are included in the 1985 DDN Protocol Handbook (available from the Network Information Center, see Section 7.4). Naval Publications and Forms Center, Code 3015 5801 Tabor Ave Philadelphia, PA 19120 Phone: 1-215-697-3321 (order tape) 1-215-697-4834 (conversation) ## 4. Explanation of Terms There are two independent categorization of protocols. The first is the STATE of standardization, one of "standard", "draft standard", "proposed standard", "experimental", "informational" or "historic". The second is the STATUS (requirement level or applicability) of this protocol, one of "required", "recommended", "elective", "limited use", or "not recommended". The status or requirement level is difficult to portray in a one word label. These status labels should be considered only as an indication, and a further description, or applicability statement, should be consulted. When a protocol is advanced to proposed standard or draft standard, it is labeled with a current status and when possible, the IAB also notes the status that the protocol is expected to have when it reaches the standard state. At any given time a protocol occupies a cell of the following matrix. Protocols are likely to be in cells in about the following proportions (indicated by the relative number of Xs). A new protocol is most likely to start in the (proposed standard, elective) cell, or the (experimental, not recommended) cell. | Ξ. | |--------------| | + | | - | | | |
 + | | | | х
+ | | | What is a "system"? Some protocols are particular to hosts and some to gateways; a few protocols are used in both. The definitions of the terms below will refer to a "system" which is either a host or a gateway (or both). It should be clear from the context of the particular protocol which types of systems are intended. ## 4.1. Definitions of Protocol State Every protocol listed in this document is assigned to a STATE of standardization: "standard", "draft standard", "proposed standard", "experimental", or "historic". # 4.1.1. Standard Protocol The IAB has established this as an official standard protocol for the Internet. These are separated into two groups: (1) IP protocol and above, protocols that apply to the whole Internet; and (2) network-specific protocols, generally specifications of how to do IP on particular types of networks. #### 4.1.2. Draft Standard Protocol The IAB is actively considering this protocol as a possible Standard Protocol. Substantial and widespread testing and comment are desired. Comments and test results should be submitted to the IAB. There is a possibility that changes will be made in a Draft Standard Protocol before it becomes a Standard Protocol. # 4.1.3. Proposed Standard Protocol These are protocol proposals that may be considered by the IAB for standardization in the future. Implementation and testing by several groups is desirable. Revision of the protocol specification is likely. ## 4.1.4. Experimental Protocol A system should not implement an experimental protocol unless it is participating in the experiment and has coordinated its use of the protocol with the developer of the protocol. Typically, experimental protocols are those that are developed as part of an ongoing research project not related to an operational service offering. While they may be proposed as a service protocol at a later stage, and thus become proposed standard, draft standard, and then standard protocols, the designation of a protocol as experimental may sometimes be meant to suggest that the protocol, although perhaps mature, is not intended for operational use. ### 4.1.5. Informational Protocol Protocols developed by other standard organizations, or vendors, or that are for other reasons outside the purview of the IAB, may be published as RFCs for the convenience of the Internet community as informational protocols. Such protocols may in some cases also be recommended for use in the Internet by the IAB. # 4.1.6. Historic Protocol These are protocols that are unlikely to ever become standards in the Internet either because they have been superseded by later developments or due to lack of interest. ## 4.2. Definitions of Protocol Status This document lists a STATUS (requirement level or applicability) for each protocol. The status is one of "required", "recommended", "elective", "limited use", or "not recommended". #### 4.2.1. Required Protocol A system must implement the required protocols. #### 4.2.2. Recommended Protocol A system should implement the recommended protocols. ## 4.2.3. Elective Protocol A system may or may not implement an elective protocol. The general notion is that if you are going to do something like this, you must do exactly this. There may be several elective protocols in a general area, for example, there are several electronic mail protocols, and several routing protocols. #### 4.2.4. Limited Use Protocol These protocols are for use in limited circumstances. This may be because of their experimental state, specialized nature, limited functionality, or historic state. #### 4.2.5. Not Recommended Protocol These protocols are not recommended for general use. This may be because of their limited functionality, specialized nature, or experimental or historic state. ## 5. The Standards Track This section discusses in more detail the procedures used by the RFC Editor and the IAB in making decisions about the labeling and publishing of protocols as standards. # 5.1. The RFC Processing Decision Table Here is the current decision table for processing submissions by the RFC Editor. The processing depends on who submitted it, and the status they want it to have. | +===================================== | | | | | |---|----------------|--|------------------------------|---------------------------| | Desired | IAB | ====================================== | IRSG
 or RG | ======+
 Other | |
 Standard
 or
 Draft
 Standard | Publish
(1) |
 Vote
 (3) | Bogus
(2) | Bogus (2) | | Proposed
Standard | Publish
(1) |
 Vote
 (3) |
 Refer
 (4)
 | Refer
 (4) | | Experimental Protocol | Publish
(1) |
 Notify
 (5) |
 Notify
 (5) | Notify
 (5) | | Information or Opinion Paper | Publish
(1) | Discretion
(6) |
 Discretion
 (6)
 |
 Discretion
 (6) | - (1) Publish. - (2) Bogus. Inform the source of the rules. RFCs specifying Standard, or Draft Standard must come from the IAB, only. - (3) Vote by the IAB. If approved then do Publish (1), else do Refer (4). - (4) Refer to an Area Director for review by a WG. Expect to see the document again only after approval by the IESG and the ${\tt TAR}$ - (5) Notify both the IESG and IRSG. If no concerns are raised in two weeks then do Discretion (6), else RFC Editor to resolve the concerns or do Refer (4). - (6) RFC Editor's discretion. The RFC Editor decides if a review is needed and if so by whom. RFC Editor decides to publish or not. Of course, in all cases the RFC Editor can request or make minor changes for style, format, and presentation purposes. The IESG has designated the IESG Secretary as its agent for forwarding documents with IESG approval and for registering concerns in response to notifications (5) to the RFC Editor. Documents from Area Directors or Working Group Chairs may be considered in the same way as documents from "other". #### 5.2. The Standards Track Diagram There is a part of the STATUS and STATE categorization that is called the standards track. Actually, only the changes of state are significant to the progression along the standards track, though the status assignments may be changed as well. The states illustrated by single line boxes are temporary states, those illustrated by double line boxes are long term states. A protocol will normally be expected to remain in a temporary state for several months (minimum four months for proposed standard, minimum six months for draft standard). A protocol may be in a long term state for many years. A protocol may enter the standards track only on the recommendation of the IESG and by action of the IAB; and may move from one state to another along the track only on the recommendation of the IESG and by action of the IAB. That is, it takes both the IESG and the IAB to either start a protocol on the track or to move it along. Generally, as the protocol enters the standards track a decision is made as to the eventual STATUS, requirement level or applicability (elective, recommended, or required) the protocol will have, although a somewhat less stringent current status may be assigned, and it then is placed in the the proposed standard STATE with that status. So the initial placement of a protocol is into state 1. At any time the STATUS decision may be revisited. The transition from proposed standard (1) to draft standard (2) can only be by action of the IAB on the recommendation of the IESG and only after the protocol has been proposed standard (1) for at least four months. The transition from draft standard (2) to standard (3) can only be by action of the IAB on the recommendation of the IESG and only after the protocol has been draft standard (2) for at least six months. Occasionally, the decision may be that the protocol is not ready for standardization and will be assigned to the experimental state (4). This is off the standards track, and the protocol may be resubmitted to enter the standards track after further work. There are other paths into the experimental and historic states that do not involve IAB action. Sometimes one protocol is replaced by another and thus becomes historic, or it may happen that a protocol on the standards track is in a sense overtaken by another protocol (or other events) and becomes historic (state 5). ## 6. The Protocols Subsection 6.1 lists recent RFCs and other changes. Subsections 6.2 - 6.9 list the standards in groups by protocol state. ## 6.1. Recent Changes ## 6.1.1. New RFCs: 1252 - OSPF Version 2 MIB A Proposed Standard protocol. 1251 - Who's Who in the Internet This is an information document and does not specify any level of standard. 1250 - This memo. 1249 - DIXIE Protocol Specification This is an information document and does not specify any level of standard. 1248 - OSPF Version 2 MIB A Proposed Standard protocol. 1247 - OSPF Version 2 A Draft Standard protocol. 1246 - Experience with the OSPF Protocol This is an information document and does not specify any level of standard. 1245 - OSPF Protocol Analysis This is an information document and does not specify any level of standard. 1244 - Site Security Handbook This is an information document and does not specify any level of standard. - 1243 AppleTalk Management Information Base - A Proposed Standard protocol. - 1242 Benchmarking Terminology for Network Interconnection Devices - This is an information document and does not specify any level of standard. - 1241 A Scheme for an Internet Encapsulation Protocol: Version 1 This is a new Experimental protocol. - 1240 OSI Connectionless Transport Services on top of UDP Version: 1 - A Proposed Standard protocol. - 1239 Reassignment of Experimental MIBs to Standard MIBs A Proposed Standard protocol. - 1238 CLNS MIB for use with Connectionless Network Protocol (ISO 8473) and End System to Intermediate System (ISO 9542) - This is a new Experimental protocol. - 1237 Guidelines for OSI NSAP Allocation in the Internet A Proposed Standard protocol. - 1236 IP to X.121 Address Mapping for DDN This is an information document and does not specify any level of standard. - 1235 The Coherent File Distribution Protocol This is a new Experimental protocol. - 1234 Tunneling IPX Traffic through IP Networks A Proposed Standard protocol. - 1233 Definitions of Managed Objects for the DS3 Interface Type A Proposed Standard protocol. - 1232 Definitions of Managed Objects for the DS1 Interface Type A Proposed Standard protocol. - 1231 IEEE 802.5 Token Ring MIB A Proposed Standard protocol. - 1230 IEEE 802.4 Token Bus MIB A Proposed Standard protocol. - 1229 Extensions to the Generic-Interface MIB A Proposed Standard protocol. This is a new Experimental protocol. - 1228 SNMP-DPI Simple Network Management Protocol Distributed Program Interface - 1227 SNMP MUX Protocol and MIB This is a new Experimental protocol. - 1226 Internet Protocol Encapsulation of AX.25 Frames This is a new Experimental protocol. - 1225 Post Office Protocol Version 3 A Draft Standard protocol. - 1224 Techniques for Managing Asynchronously Generated Alerts This is a new Experimental protocol. - 1223 OSI CLNS and LLC1 Protocols on Network Systems HYPERchannel This is an information document and does not specify any level of standard. 1222 - Advancing the NSFNET Routing Architecture This is an information document and does not specify any level of standard. 1221 - Host Access Protocol (HAP) Specification - Version 2 This is an information document and does not specify any level of standard. 1220 - Point-to-Point Protocol Extensions for Bridging A Proposed Standard protocol. 1219 - On the Assignment of Subnet Numbers This is an information document and does not specify any level of standard. # 6.1.2. Other Changes: The following are changes to protocols listed in the previous edition. 1213 - Management Information Base for Network Management of TCP/IP-based internets: MIB-II Advanced to Standard protocol. 1212 - Concise MIB Definitions Advanced to Draft Standard protocol. Section 6.6 on Telnet Options has been added. # 6.2. Standard Protocols | Protocol | Name | Status | RFC | |----------|-------------------------------------|------------------|-------| | ====== | | ========= | ===== | | | Assigned Numbers | Required | 1060 | | | Gateway Requirements | Required | 1009 | | | Host Requirements - Communications | Required | 1122 | | | Host Requirements - Applications | Required | 1123 | | IP | Internet Protocol | Required | 791 | | | as amended by: | | | | | IP Subnet Extension | Required | 950 | | | IP Broadcast Datagrams | Required | 919 | | | IP Broadcast Datagrams with Subnets | Required | 922 | | ICMP | Internet Control Message Protocol | Required | 792 | | IGMP | Internet Group Multicast Protocol | Recommended | 1112 | | UDP | User Datagram Protocol | Recommended | 768 | | TCP | Transmission Control Protocol | Recommended | 793 | | SMI | Structure of Management Information | Recommended | 1155 | | MIB-I | Management Information Base | Recommended | 1156 | | MIB-II | Management Information Base-II | Recommended | 1213* | | SNMP | Simple Network Management Protocol | Recommended | 1157 | | DOMAIN | Domain Name System | Recommended 1034 | ,1035 | | TELNET | Telnet Protocol | Recommended | 854 | | FTP | File Transfer Protocol | Recommended | 959 | | SMTP | Simple Mail Transfer Protocol | Recommended | 821 | | MAIL | Format of Electronic Mail Messages | Recommended | 822 | | DNS-MX | Mail Routing and the Domain System | Recommended | 974 | | CONTENT | Content Type Header Field | Recommended | 1049 | | EGP | Exterior Gateway Protocol | Recommended | 904 | | ECHO | Echo Protocol | Recommended | 862 | | NTP | Network Time Protocol | Recommended | 1119 | | NETBIOS | NetBIOS Service Protocols | Elective 1001, | ,1002 | | DISCARD | Discard Protocol | Elective | 863 | | CHARGEN | Character Generator Protocol | Elective | 864 | | QUOTE | Quote of the Day Protocol | Elective | 865 | | USERS | Active Users Protocol | Elective | 866 | | DAYTIME | Daytime Protocol | Elective | 867 | | TIME | Time Server Protocol | Elective | 868 | | | | | | # Applicability Statements: IGMP -- The Internet Activities Board intends to move towards general adoption of IP multicasting, as a more efficient solution than broadcasting for many applications. The host interface has been standardized in RFC-1112; however, multicast-routing gateways are in the experimental stage and are not widely available. An Internet host should support all of RFC-1112, except for the IGMP protocol itself which is optional; see RFC-1122 for more details. Even without IGMP, implementation of RFC-1112 will provide an important advance: IP-layer access to local network multicast addressing. It is expected that IGMP will become recommended for all hosts and gateways at some future date. SMI, MIB-I, MIB-II SNMP -- The Internet Activities Board recommends that all IP and TCP implementations be network manageable. At the current time, this implies implementation of the Internet MIB-I (RFC-1156), the extensions in MIB-II (RFC-1213), and at least the recommended management protocol SNMP (RFC-1157). ## 6.3. Network-Specific Standard Protocols | Protocol | Name | Status | RFC | |------------|-----------------------------------------|------------|---------| | ====== | ======================================= | ======== | == ==== | | ARP | Address Resolution Protocol | Elective | 826 | | RARP | A Reverse Address Resolution Protocol | Elective | 903 | | IP-ARPA | Internet Protocol on ARPANET | Elective B | BN 1822 | | IP-WB | Internet Protocol on Wideband Network | Elective | 907 | | IP-X25 | Internet Protocol on X.25 Networks | Elective | 877 | | IP-E | Internet Protocol on Ethernet Networks | Elective | 894 | | IP-EE | Internet Protocol on Exp. Ethernet Nets | Elective | 895 | | IP-IEEE | Internet Protocol on IEEE 802 | Elective | 1042 | | IP-DC | Internet Protocol on DC Networks | Elective | 891 | | IP-HC | Internet Protocol on Hyperchannel | Elective | 1044 | | IP-ARC | Internet Protocol on ARCNET | Elective | 1051 | | IP-SLIP | Transmission of IP over Serial Lines | Elective | 1055 | | IP-NETBIOS | Transmission of IP over NETBIOS | Elective | 1088 | | IP-FDDI | Transmission of IP over FDDI | Elective | 1188 | | IP-IPX | Transmission of 802.2 over IPX Networks | Elective | 1132 | ## Applicability Statements: It is expected that a system will support one or more physical networks and for each physical network supported the appropriate protocols from the above list must be supported. That is, it is elective to support any particular type of physical network, and for the physical networks actually supported it is required that they be supported exactly according to the protocols in the above list. See also the Host and Gateway Requirements RFCs for more specific information on network-specific ("link layer") protocols. #### 6.4. Draft Standard Protocols | Protocol | Name | Status | RFC | |------------|-----------------------------------------|-----------------|-------| | ======= | | ========= | ===== | | OSPF2 | Open Shortest Path First Routing V2 | Elective | 1247* | | POP3 | Post Office Protocol, Version 3 | Elective | 1225* | | Concise-MI | B Concise MIB Definitions | Elective | 1212* | | FINGER | Finger Protocol | Elective | 1196 | | IP-FDDI | Internet Protocol on FDDI Networks | Elective | 1188 | | TOPT-LINE | Telnet Linemode Option | Elective | 1184 | | PPP | Point to Point Protocol | Elective | 1171 | | | Mail Privacy: Procedures | Elective | 1113 | | | Mail Privacy: Key Management | Elective | 1114 | | | Mail Privacy: Algorithms | Elective | 1115 | | BOOTP | Bootstrap Protocol | Recommended 951 | ,1084 | | RIP | Routing Information Protocol | Elective | 1058 | | TP-TCP | ISO Transport Service on top of the TCP | Elective | 1006 | | NICNAME | WhoIs Protocol | Elective | 954 | | TFTP | Trivial File Transfer Protocol | Elective | 783 | ## Applicability Statements: RIP -- The Routing Information Protocol (RIP) is widely implemented and used in the Internet. However, both implementors and users should be aware that RIP has some serious technical limitations as a routing protocol. The IETF is currently developing several candidates for a new standard "open" routing protocol with better properties than RIP. The IAB urges the Internet community to track these developments, and to implement the new protocol when it is standardized; improved Internet service will result for many users. TP-TCP -- As OSI protocols become more widely implemented and used, there will be an increasing need to support interoperation with the TCP/IP protocols. The Internet Engineering Task Force is formulating strategies for interoperation. RFC-1006 provides one interoperation mode, in which TCP/IP is used to emulate TPO in order to support OSI applications. Hosts that wish to run OSI connection-oriented applications in this mode should use the procedure described in RFC-1006. In the future, the IAB expects that a major portion of the Internet will support both TCP/IP and OSI (inter-)network protocols in parallel, and it will then be possible to run OSI applications across the Internet using full OSI protocol "stacks". PPP -- Point to Point Protocol is a method of sending IP over serial lines, which are a type of physical network. It is anticipated that PPP will be advanced to the network-specific standard protocol state in the future. # 6.5. Proposed Standard Protocols | Protocol | Name | Status | RFC | |-------------|------------------------------------------|----------|------------| | ====== | ======================================= | ======= | ===== | | OSPF-MIB | OSPF Version 2 MIB | Elective | 1248,1252* | | AT-MIB | Appletalk MIB | Elective | 1243* | | OSI-UDP | OSI TS on UDP | Elective | 1240* | | STD-MIBs | Reassignment of Exp MIBs to Std MIBs | Elective | 1239* | | OSI-NSAP | Guidelines for OSI NSAP Allocation | Elective | 1237* | | IPX-IP | Tunneling IPX Traffic through IP Nets | Elective | 1234* | | DS3-MIB | DS3 Interface Objects | Elective | 1233* | | DS1-MIB | DS1 Interface Objects | Elective | 1232* | | 802.5-MIB | IEEE 802.5 Token Ring MIB | Elective | 1231* | | 802.4-MIP | IEEE 802.4 Token Bus MIB | Elective | 1230* | | GINT-MIB | Extensions to the Generic-Interface MIB | Elective | 1229* | | PPP-EXT | PPP Extensions for Bridging | Elective | 1220* | | OIM-MIB-II | OSI Internet Management: MIB-II | Elective | 1214 | | IP-SMDS | IP Datagrams over the SMDS Service | Elective | 1209 | | IP-ARCNET | Transmitting IP Traffic over ARCNET Nets | Elective | 1201 | | IS-IS | OSI IS-IS for TCP/IP Dual Environments | Elective | 1195 | | IP-MTU | Path MTU Discovery | Elective | 1191 | | CMOT | Common Management Information Services | Elective | 1189 | | | and Protocol over TCP/IP | | | | PPP-INIT | PPP Initial Configuration Options | Elective | 1172 | | BGP | Border Gateway Protocol | Elective | 1163,1164 | | IP-CMPRS | Compressing TCP/IP Headers | Elective | 1144 | | ISO-TS-ECHO | D Echo for ISO-8473 | Elective | 1139 | | SUN-NFS | Network File System Protocol | Elective | 1094 | | SUN-RPC | Remote Procedure Call Protocol | Elective | 1057 | | PCMAIL | Pcmail Transport Protocol | Elective | 1056 | | NFILE | A File Access Protocol | Elective | 1037 | | | Mapping between X.400(84) and RFC-822 | Elective | 987,1026 | | NNTP | Network News Transfer Protocol | Elective | 977 | | HOSTNAME | HOSTNAME Protocol | Elective | 953 | | SFTP | Simple File Transfer Protocol | Elective | 913 | | RLP | Resource Location Protocol | Elective | 887 | | SUPDUP | SUPDUP Protocol | Elective | 734 | | | | | | # Applicability Statements: IP-SMDS and IP-ARCNET -- These define methods of sending IP over particular network types. It is anticipated that these will be advanced to the network specific standard protocol state in the future. # 6.6. Telnet Options For convenience all the Telnet Options are collected here with both their state and status. | Protocol | Name Nu | umber | State | Status | RFC | |------------|------------------------------------|-------|--------|--------|-------| | ======= | | ==== | ====== | ====== | | | TOPT-BIN | Binary Transmission | 0 | Std | Rec | 856* | | TOPT-ECHO | Echo | 1 | Std | Rec | 857* | | TOPT-RECN | Reconnection | 2 | Prop | Ele | * | | TOPT-SUPP | Suppress Go Ahead | 3 | Std | Rec | 858* | | TOPT-APRX | Approx Message Size Negotiation | 4 | Prop | Ele | * | | TOPT-STAT | Status | 5 | Std | Rec | 859* | | TOPT-TIM | Timing Mark | 6 | Std | Rec | 860* | | TOPT-REM | Remote Controlled Trans and Echo | 7 | Prop | Ele | 726* | | TOPT-OLW | Output Line Width | 8 | Prop | Ele | * | | TOPT-OPS | Output Page Size | 9 | Prop | Ele | * | | TOPT-OCRD | Output Carriage-Return Disposition | on 10 | Prop | Ele | 652* | | TOPT-OHT | Output Horizontal Tabstops | 11 | Prop | Ele | 653* | | TOPT-OHTD | Output Horizontal Tab Disposition | n 12 | Prop | Ele | 654* | | TOPT-OFD | Output Formfeed Disposition | 13 | Prop | Ele | 655* | | TOPT-OVT | Output Vertical Tabstops | 14 | Prop | Ele | 656* | | TOPT-OVTD | Output Vertical Tab Disposition | 15 | Prop | Ele | 657* | | TOPT-OLD | Output Linefeed Disposition | 16 | Prop | Ele | 658* | | TOPT-EXT | Extended ASCII | 17 | Prop | Ele | 698* | | TOPT-LOGO | Logout | 18 | Prop | Ele | 727* | | TOPT-BYTE | Byte Macro | 19 | Prop | Ele | 735* | | TOPT-DATA | Data Entry Terminal | 20 | Prop | Ele | 1043* | | TOPT-SUP | SUPDUP | 21 | Prop | Ele | 734* | | TOPT-SUPO | SUPDUP Output | 22 | Prop | Ele | 749* | | TOPT-SNDL | Send Location | 23 | Prop | Ele | 779* | | TOPT-TERM | Terminal Type | 24 | Prop | Ele | 930* | | TOPT-EOR | End of Record | 25 | Prop | Ele | 885* | | TOPT-TACAC | S TACACS User Identification | 26 | Prop | Ele | 927* | | TOPT-OM | Output Marking | 27 | Prop | Ele | 933* | | TOPT-TLN | Terminal Location Number | 28 | Prop | Ele | 946* | | TOPT-3270 | Telnet 3270 Regime | 29 | Prop | Ele | 1041* | | TOPT-X.3 | X.3 PAD | 30 | Prop | Ele | 1053* | | TOPT-NAWS | Negotiate About Window Size | 31 | Prop | Ele | 1073* | | TOPT-TS | Terminal Speed | 32 | Prop | Ele | 1079* | | TOPT-RFC | Remote Flow Control | 33 | Prop | Ele | 1080* | | TOPT-LINE | Linemode | 34 | Draft | Ele | 1184* | | TOPT-XDL | X Display Location | 35 | Prop | Ele | 1096* | | TOPT-EXTOP | Extended-Options-List | 255 | Std | Rec | 861* | # 6.7. Experimental Protocols | Protocol | Name | Status | RFC | |------------|-----------------------------------------|------------------|-------| | ====== | | | | | IN-ENCAP | Internet Encapsulation Protocol | Limited Use | 1241* | | CLNS-MIB | CLNS-MIB | Limited Use | 1238* | | CFDP | Coherent File Distribution Protocol | Limited Use | 1235* | | SNMP-DPI | SNMP Distributed Program Interface | Limited Use | 1228* | | SNMP-MUX | SNMP MUX Protocol and MIB | Limited Use | 1227* | | IP-AX25 | IP Encapsulation of AX.25 Frames | Limited Use | 1226* | | ALERTS | Managing Asynchronously Generated Alert | s Limited Use | 1224* | | MPP | Message Posting Protocol | Limited Use | 1204 | | ST-II | Stream Protocol | Limited Use | 1190 | | SNMP-BULK | Bulk Table Retrieval with the SNMP | Limited Use | 1187 | | DNS-RR | New DNS RR Definitions | Limited Use | 1183 | | NTP-OSI | NTP over OSI Remote Operations | Limited Use | 1165 | | MSP | Message Send Protocol | Limited Use | 1159 | | EHF-MAIL | Encoding Header Field for Mail | Elective | 1154 | | DMF-MAIL | Digest Message Format for Mail | Elective | 1153 | | RDP | Reliable Data Protocol | Limited Use 908 | ,1151 | | | Mapping between X.400(88) and RFC-822 | Elective | 1148 | | TCP-ACO | TCP Alternate Checksum Option | Not Recommended | 1146 | | | Mapping full 822 to Restricted 822 | Elective | 1137 | | IP-DVMRP | IP Distance Vector Multicast Routing | Not Recommended | 1075 | | TCP-LDP | TCP Extensions for Long Delay Paths | Limited Use | 1072 | | IMAP2 | Interactive Mail Access Protocol | Limited Use 1176 | ,1064 | | IMAP3 | Interactive Mail Access Protocol | Limited Use | 1203 | | VMTP | Versatile Message Transaction Protocol | Elective | 1045 | | COOKIE-JAR | Authentication Scheme | Not Recommended | 1004 | | NETBLT | Bulk Data Transfer Protocol | Not Recommended | d 998 | | IRTP | Internet Reliable Transaction Protocol | Not Recommended | d 938 | | AUTH | Authentication Service | Not Recommended | d 931 | | LDP | Loader Debugger Protocol | Not Recommended | 909 | | NVP-II | Network Voice Protocol | Limited Use ISI- | -memo | | PVP | Packet Video Protocol | Limited Use ISI- | -memo | | | | | | # 6.8. Informational Protocols | Protocol | Name | Status | RFC | |------------|-----------------------------------------|-------------|-------| | ====== | ======================================= | ========== | ===== | | DIXIE | DIXIE Protocol Specification | Limited Use | 1249* | | IP-X.121 | IP to X.121 Address Mapping for DDN | Limited Use | 1236* | | OSI-HYPER | OSI and LLC1 on HYPERchannel | Limited Use | 1223* | | HAP2 | Host Access Protocol | Limited Use | 1221* | | SUBNETASGN | On the Assignment of Subnet Numbers | Limited Use | 1219* | | SNMP-TRAPS | Defining Traps for use with SNMP | Limited Use | 1215 | | DAS | Directory Assistance Service | Limited Use | 1202 | | MD4 | MD4 Message Digest Algorithm | Limited Use | 1186 | |------|------------------------------|-------------|------| | LPDP | Line Printer Daemon Protocol | Limited Use | 1179 | # 6.9. Historic Protocols | Protocol | Name | Status | RFC | |------------|--------------------------------------|-----------------------------------------|-------| | ====== | | ======================================= | ===== | | SGMP | Simple Gateway Monitoring Protocol | Not Recommended | 1028 | | HEMS | High Level Entity Management Protoco | ol Not Recommended | 1021 | | STATSRV | Statistics Server | Not Recommended | 996 | | POP2 | Post Office Protocol, Version 2 | Not Recommended | 937 | | RATP | Reliable Asynchronous Transfer Proto | ocol Not Recommended | 916 | | HFEP | Host - Front End Protocol | Not Recommended | 929* | | THINWIRE | Thinwire Protocol | Not Recommended | 914 | | HMP | Host Monitoring Protocol | Not Recommended | 869 | | GGP | Gateway Protocol | Not Recommended | 823 | | RTELNET | Remote Telnet Service | Not Recommended | 818 | | CLOCK | DCNET Time Server Protocol | Not Recommended | 778 | | MPM | Internet Message Protocol | Not Recommended | 759 | | NETRJS | Remote Job Service | Not Recommended | 740 | | NETED | Network Standard Text Editor | Not Recommended | 569 | | RJE | Remote Job Entry | Not Recommended | 407 | | XNET | Cross Net Debugger | Not Recommended IEN | -158 | | NAMESERVER | Host Name Server Protocol | Not Recommended IEN | -116 | | MUX | Multiplexing Protocol | Not Recommended IE | N-90 | | GRAPHICS | Graphics Protocol | Not Recommended NIC-2 | 4308 | # 7. Contacts # 7.1. IAB, IETF, and IRTF Contacts # 7.1.1. Internet Activities Board (IAB) Contact Please send your comments about this list of protocols and especially about the Draft Standard Protocols to the Internet Activities Board care of Bob Braden, IAB Executive Director. # Contacts: Bob Braden Executive Director of the IAB USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292-6695 1-213-822-1511 Braden@ISI.EDU Vinton G. Cerf Chair of the IAB Corporation for National Research Initiatives 1895 Preston White Drive, Suite 100 Reston, VA 22091 1-703-620-8990 VCerf@NRI.RESTON.VA.US 7.1.2. Internet Engineering Task Force (IETF) Contact #### Contacts: Phill Gross Chair of the IETF Advanced Network and Services 100 Clearbrook Road Elmsford, NY 10523 1-914-789-5300 PGross@NRI.RESTON.VA.US Greg Vaudreuil IESG Secretary Corporation for National Research Initiatives 1895 Preston White Drive, Suite 100 Reston, VA 22091 1-703-620-8990 gvaudre@NRI.RESTON.VA.US 7.1.3. Internet Research Task Force (IRTF) Contact #### Contact: David D. Clark Chair of the IRTF Massachusetts Institute of Technology Laboratory for Computer Science 545 Main Street Cambridge, MA 02139 1-617-253-6003 ddc@LCS.MIT.EDU Internet Activities Board ## 7.2. Internet Assigned Numbers Authority Contact ### Contact: Joyce K. Reynolds Internet Assigned Numbers Authority USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292-6695 1-213-822-1511 IANA@ISI.EDU The protocol standards are managed for the IAB by the Internet Assigned Numbers Authority. Please refer to the documents "Assigned Numbers" (RFC-1060) and "Official Internet Protocols" (RFC-1011) for further information about the status of protocol documents. There are two documents that summarize the requirements for host and gateways in the Internet, "Host Requirements" (RFC-1122 and RFC-1123) and "Gateway Requirements" (RFC-1009). How to obtain the most recent edition of this "IAB Official Protocol Standards" memo: The file "in-notes/iab-standards.txt" may be copied via FTP from the VENERA.ISI.EDU computer using the FTP username "anonymous" and FTP password "guest". ## 7.3. Request for Comments Editor Contact ### Contact: Jon Postel RFC Editor USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292-6695 1-213-822-1511 Postel@ISI.EDU Documents may be submitted via electronic mail to the RFC Editor for consideration for publication as RFC. If you are not familiar with the format or style requirements please request the "Instructions for RFC Authors". In general, the style of any recent RFC may be used as a guide. 7.4. The Network Information Center and Requests for Comments Distribution Contact #### Contact: DDN Network Information Center SRI International Room EJ291 333 Ravenswood Avenue Menlo Park, CA 94025 1-800-235-3155 1-415-859-3695 NIC@NIC.DDN.MIL The Network Information Center (NIC) provides many information services for the Internet community. Among them is maintaining the Requests for Comments (RFC) library. RFCs can be obtained via FTP from NISC.SRI.COM, with the pathname "rfc/rfcnnnn.txt" where "nnnn" refers to the number of the RFC. A list of all RFCs may be obtained by copying the file "rfc/rfc-index.txt". Log in with FTP username "anonymous" and password "guest". The NIC also provides an automatic mail service for those sites which cannot use FTP. Address the request to MAIL-SERVER@NISC.SRI.COM and Internet Activities Board in the body of the message indicate the file name, as in "send rfc:rfcnnn.txt". Some RFCs are now available in PostScript, these may be obtained from the NIC in a similar fashion by substituting ".ps" for ".txt". How to obtain the most recent edition of this "IAB Official Protocol Standards" memo: The file RFC:IAB-STANDARDS.TXT may be copied via FTP from the NIC.DDN.MIL computer following the same procedures used to obtain RFCs. # 7.5. Other Sources for Requests for Comments Information about other sources for RFCs and the procedures for copying RFCs form those sources may be found in the file "innotes/rfc-retrieval.txt" on the host VENERA.ISI.EDU. ## 8. Security Considerations Security issues are not addressed in this memo. ## 9. Author's Address Jon Postel USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292 Phone: 213-822-1511 Fax: 213-823-6714 Email: Postel@ISI.EDU