
RFC 8881
Network File System (NFS) Version 4 Minor Version 1
Protocol

Abstract
This document describes the Network File System (NFS) version 4 minor version 1, including
features retained from the base protocol (NFS version 4 minor version 0, which is specified in
RFC 7530) and protocol extensions made subsequently. The later minor version has no
dependencies on NFS version 4 minor version 0, and is considered a separate protocol.

This document obsoletes RFC 5661. It substantially revises the treatment of features relating to
multi-server namespace, superseding the description of those features appearing in RFC 5661.

Stream: Internet Engineering Task Force (IETF)
RFC: 8881
Obsoletes: 5661
Category: Standards Track
Published: August 2020
ISSN: 2070-1721
Authors: D. Noveck, Ed.

NetApp
C. Lever
ORACLE

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8881

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Noveck & Lever Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc5661
https://www.rfc-editor.org/info/rfc8881
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents
1. Introduction

1.1. Introduction to This Update

1.2. The NFS Version 4 Minor Version 1 Protocol

1.3. Requirements Language

1.4. Scope of This Document

1.5. NFSv4 Goals

1.6. NFSv4.1 Goals

1.7. General Definitions

1.8. Overview of NFSv4.1 Features

1.9. Differences from NFSv4.0

2. Core Infrastructure

2.1. Introduction

2.2. RPC and XDR

2.3. COMPOUND and CB_COMPOUND

2.4. Client Identifiers and Client Owners

2.5. Server Owners

2.6. Security Service Negotiation

2.7. Minor Versioning

2.8. Non-RPC-Based Security Services

2.9. Transport Layers

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 2

2.10. Session

3. Protocol Constants and Data Types

3.1. Basic Constants

3.2. Basic Data Types

3.3. Structured Data Types

4. Filehandles

4.1. Obtaining the First Filehandle

4.2. Filehandle Types

4.3. One Method of Constructing a Volatile Filehandle

4.4. Client Recovery from Filehandle Expiration

5. File Attributes

5.1. REQUIRED Attributes

5.2. RECOMMENDED Attributes

5.3. Named Attributes

5.4. Classification of Attributes

5.5. Set-Only and Get-Only Attributes

5.6. REQUIRED Attributes - List and Definition References

5.7. RECOMMENDED Attributes - List and Definition References

5.8. Attribute Definitions

5.9. Interpreting owner and owner_group

5.10. Character Case Attributes

5.11. Directory Notification Attributes

5.12. pNFS Attribute Definitions

5.13. Retention Attributes

6. Access Control Attributes

6.1. Goals

6.2. File Attributes Discussion

6.3. Common Methods

6.4. Requirements

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 3

7. Single-Server Namespace

7.1. Server Exports

7.2. Browsing Exports

7.3. Server Pseudo File System

7.4. Multiple Roots

7.5. Filehandle Volatility

7.6. Exported Root

7.7. Mount Point Crossing

7.8. Security Policy and Namespace Presentation

8. State Management

8.1. Client and Session ID

8.2. Stateid Definition

8.3. Lease Renewal

8.4. Crash Recovery

8.5. Server Revocation of Locks

8.6. Short and Long Leases

8.7. Clocks, Propagation Delay, and Calculating Lease Expiration

8.8. Obsolete Locking Infrastructure from NFSv4.0

9. File Locking and Share Reservations

9.1. Opens and Byte-Range Locks

9.2. Lock Ranges

9.3. Upgrading and Downgrading Locks

9.4. Stateid Seqid Values and Byte-Range Locks

9.5. Issues with Multiple Open-Owners

9.6. Blocking Locks

9.7. Share Reservations

9.8. OPEN/CLOSE Operations

9.9. Open Upgrade and Downgrade

9.10. Parallel OPENs

9.11. Reclaim of Open and Byte-Range Locks

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 4

10. Client-Side Caching

10.1. Performance Challenges for Client-Side Caching

10.2. Delegation and Callbacks

10.3. Data Caching

10.4. Open Delegation

10.5. Data Caching and Revocation

10.6. Attribute Caching

10.7. Data and Metadata Caching and Memory Mapped Files

10.8. Name and Directory Caching without Directory Delegations

10.9. Directory Delegations

11. Multi-Server Namespace

11.1. Terminology

11.2. File System Location Attributes

11.3. File System Presence or Absence

11.4. Getting Attributes for an Absent File System

11.5. Uses of File System Location Information

11.6. Trunking without File System Location Information

11.7. Users and Groups in a Multi-Server Namespace

11.8. Additional Client-Side Considerations

11.9. Overview of File Access Transitions

11.10. Effecting Network Endpoint Transitions

11.11. Effecting File System Transitions

11.12. Transferring State upon Migration

11.13. Client Responsibilities When Access Is Transitioned

11.14. Server Responsibilities Upon Migration

11.15. Effecting File System Referrals

11.16. The Attribute fs_locations

11.17. The Attribute fs_locations_info

11.18. The Attribute fs_status

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 5

12. Parallel NFS (pNFS)

12.1. Introduction

12.2. pNFS Definitions

12.3. pNFS Operations

12.4. pNFS Attributes

12.5. Layout Semantics

12.6. pNFS Mechanics

12.7. Recovery

12.8. Metadata and Storage Device Roles

12.9. Security Considerations for pNFS

13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type

13.1. Client ID and Session Considerations

13.2. File Layout Definitions

13.3. File Layout Data Types

13.4. Interpreting the File Layout

13.5. Data Server Multipathing

13.6. Operations Sent to NFSv4.1 Data Servers

13.7. COMMIT through Metadata Server

13.8. The Layout Iomode

13.9. Metadata and Data Server State Coordination

13.10. Data Server Component File Size

13.11. Layout Revocation and Fencing

13.12. Security Considerations for the File Layout Type

14. Internationalization

14.1. Stringprep Profile for the utf8str_cs Type

14.2. Stringprep Profile for the utf8str_cis Type

14.3. Stringprep Profile for the utf8str_mixed Type

14.4. UTF-8 Capabilities

14.5. UTF-8 Related Errors

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 6

15. Error Values

15.1. Error Definitions

15.2. Operations and Their Valid Errors

15.3. Callback Operations and Their Valid Errors

15.4. Errors and the Operations That Use Them

16. NFSv4.1 Procedures

16.1. Procedure 0: NULL - No Operation

16.2. Procedure 1: COMPOUND - Compound Operations

17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL

18. NFSv4.1 Operations

18.1. Operation 3: ACCESS - Check Access Rights

18.2. Operation 4: CLOSE - Close File

18.3. Operation 5: COMMIT - Commit Cached Data

18.4. Operation 6: CREATE - Create a Non-Regular File Object

18.5. Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery

18.6. Operation 8: DELEGRETURN - Return Delegation

18.7. Operation 9: GETATTR - Get Attributes

18.8. Operation 10: GETFH - Get Current Filehandle

18.9. Operation 11: LINK - Create Link to a File

18.10. Operation 12: LOCK - Create Lock

18.11. Operation 13: LOCKT - Test for Lock

18.12. Operation 14: LOCKU - Unlock File

18.13. Operation 15: LOOKUP - Lookup Filename

18.14. Operation 16: LOOKUPP - Lookup Parent Directory

18.15. Operation 17: NVERIFY - Verify Difference in Attributes

18.16. Operation 18: OPEN - Open a Regular File

18.17. Operation 19: OPENATTR - Open Named Attribute Directory

18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File Access

18.19. Operation 22: PUTFH - Set Current Filehandle

18.20. Operation 23: PUTPUBFH - Set Public Filehandle

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 7

18.21. Operation 24: PUTROOTFH - Set Root Filehandle

18.22. Operation 25: READ - Read from File

18.23. Operation 26: READDIR - Read Directory

18.24. Operation 27: READLINK - Read Symbolic Link

18.25. Operation 28: REMOVE - Remove File System Object

18.26. Operation 29: RENAME - Rename Directory Entry

18.27. Operation 31: RESTOREFH - Restore Saved Filehandle

18.28. Operation 32: SAVEFH - Save Current Filehandle

18.29. Operation 33: SECINFO - Obtain Available Security

18.30. Operation 34: SETATTR - Set Attributes

18.31. Operation 37: VERIFY - Verify Same Attributes

18.32. Operation 38: WRITE - Write to File

18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control

18.34. Operation 41: BIND_CONN_TO_SESSION - Associate Connection with Session

18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID

18.36. Operation 43: CREATE_SESSION - Create New Session and Confirm Client ID

18.37. Operation 44: DESTROY_SESSION - Destroy a Session

18.38. Operation 45: FREE_STATEID - Free Stateid with No Locks

18.39. Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation

18.40. Operation 47: GETDEVICEINFO - Get Device Information

18.41. Operation 48: GETDEVICELIST - Get All Device Mappings for a File System

18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout

18.43. Operation 50: LAYOUTGET - Get Layout Information

18.44. Operation 51: LAYOUTRETURN - Release Layout Information

18.45. Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object

18.46. Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and Control

18.47. Operation 54: SET_SSV - Update SSV for a Client ID

18.48. Operation 55: TEST_STATEID - Test Stateids for Validity

18.49. Operation 56: WANT_DELEGATION - Request Delegation

18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 8

18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished

18.52. Operation 10044: ILLEGAL - Illegal Operation

19. NFSv4.1 Callback Procedures

19.1. Procedure 0: CB_NULL - No Operation

19.2. Procedure 1: CB_COMPOUND - Compound Operations

20. NFSv4.1 Callback Operations

20.1. Operation 3: CB_GETATTR - Get Attributes

20.2. Operation 4: CB_RECALL - Recall a Delegation

20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client

20.4. Operation 6: CB_NOTIFY - Notify Client of Directory Changes

20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation to Client

20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects

20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for Recallable Objects

20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits

20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and Control

20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation Wants

20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock Availability

20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID Changes

20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation

21. Security Considerations

22. IANA Considerations

22.1. IANA Actions

22.2. Named Attribute Definitions

22.3. Device ID Notifications

22.4. Object Recall Types

22.5. Layout Types

22.6. Path Variable Definitions

23. References

23.1. Normative References

23.2. Informative References

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 9

Appendix A. The Need for This Update

Appendix B. Changes in This Update

B.1. Revisions Made to Section 11 of RFC 5661

B.2. Revisions Made to Operations in RFC 5661

B.3. Revisions Made to Error Definitions in RFC 5661

B.4. Other Revisions Made to RFC 5661

Appendix C. Security Issues That Need to Be Addressed

Acknowledgments

Authors' Addresses

1. Introduction

1.1. Introduction to This Update
Two important features previously defined in minor version 0 but never fully addressed in
minor version 1 are trunking, which is the simultaneous use of multiple connections between a
client and server, potentially to different network addresses, and Transparent State Migration,
which allows a file system to be transferred between servers in a way that provides to the client
the ability to maintain its existing locking state across the transfer.

The revised description of the NFS version 4 minor version 1 (NFSv4.1) protocol presented in this
update is necessary to enable full use of these features together with other multi-server
namespace features. This document is in the form of an updated description of the NFSv4.1
protocol previously defined in RFC 5661 . RFC 5661 is obsoleted by this document. However,
the update has a limited scope and is focused on enabling full use of trunking and Transparent
State Migration. The need for these changes is discussed in Appendix A. Appendix B describes the
specific changes made to arrive at the current text.

This limited-scope update replaces the current NFSv4.1 RFC with the intention of providing an
authoritative and complete specification, the motivation for which is discussed in ,
addressing the issues within the scope of the update. However, it will not address issues that are
known but outside of this limited scope as could be expected by a full update of the protocol.
Below are some areas that are known to need addressing in a future update of the protocol:

Work needs to be done with regard to RFC 8178 , which establishes NFSv4-wide
versioning rules. As RFC 5661 is currently inconsistent with that document, changes are
needed in order to arrive at a situation in which there would be no need for RFC 8178 to
update the NFSv4.1 specification.
Work needs to be done with regard to RFC 8434 , which establishes the requirements for
parallel NFS (pNFS) layout types, which are not clearly defined in RFC 5661. When that work

[66]

[36]

• [67]

• [70]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 10

is done and the resulting documents approved, the new NFSv4.1 specification document will
provide a clear set of requirements for layout types and a description of the file layout type
that conforms to those requirements. Other layout types will have their own specification
documents that conform to those requirements as well.
Work needs to be done to address many errata reports relevant to RFC 5661, other than
errata report 2006 , which is addressed in this document. Addressing that report was not
deferrable because of the interaction of the changes suggested there and the newly described
handling of state and session migration.

The errata reports that have been deferred and that will need to be addressed in a later
document include reports currently assigned a range of statuses in the errata reporting
system, including reports marked Accepted and those marked Hold For Document Update
because the change was too minor to address immediately.

In addition, there is a set of other reports, including at least one in state Rejected, that will
need to be addressed in a later document. This will involve making changes to consensus
decisions reflected in RFC 5661, in situations in which the working group has decided that
the treatment in RFC 5661 is incorrect and needs to be revised to reflect the working group's
new consensus and to ensure compatibility with existing implementations that do not follow
the handling described in RFC 5661.

Note that it is expected that all such errata reports will remain relevant to implementors and
the authors of an eventual rfc5661bis, despite the fact that this document obsoletes RFC 5661

.

There is a need for a new approach to the description of internationalization since the
current internationalization section (Section 14) has never been implemented and does not
meet the needs of the NFSv4 protocol. Possible solutions are to create a new
internationalization section modeled on that in or to create a new document describing
internationalization for all NFSv4 minor versions and reference that document in the RFCs
defining both NFSv4.0 and NFSv4.1.
There is a need for a revised treatment of security in NFSv4.1. The issues with the existing
treatment are discussed in Appendix C.

Until the above work is done, there will not be a consistent set of documents that provides a
description of the NFSv4.1 protocol, and any full description would involve documents updating
other documents within the specification. The updates applied by RFC 8434 and RFC 8178

 to RFC 5661 also apply to this specification, and will apply to any subsequent v4.1
specification until that work is done.

•
[64]

[66]

•

[68]

•

[70]
[67]

1.2. The NFS Version 4 Minor Version 1 Protocol
The NFS version 4 minor version 1 (NFSv4.1) protocol is the second minor version of the NFS
version 4 (NFSv4) protocol. The first minor version, NFSv4.0, is now described in RFC 7530 . It
generally follows the guidelines for minor versioning that are listed in Section 10 of RFC 3530

. However, it diverges from guidelines 11 ("a client and server that support minor version X
must support minor versions 0 through X-1") and 12 ("no new features may be introduced as

[68]

[37]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc3530#section-10

1.3. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", and " " in this document are to be interpreted as
described in RFC 2119 .

mandatory in a minor version"). These divergences are due to the introduction of the sessions
model for managing non-idempotent operations and the RECLAIM_COMPLETE operation. These
two new features are infrastructural in nature and simplify implementation of existing and
other new features. Making them anything but would add undue complexity to
protocol definition and implementation. NFSv4.1 accordingly updates the

.

As a minor version, NFSv4.1 is consistent with the overall goals for NFSv4, but extends the
protocol so as to better meet those goals, based on experiences with NFSv4.0. In addition,
NFSv4.1 has adopted some additional goals, which motivate some of the major extensions in
NFSv4.1.

REQUIRED
minor versioning

guidelines (Section 2.7)

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED MAY OPTIONAL

[1]

1.4. Scope of This Document
This document describes the NFSv4.1 protocol. With respect to NFSv4.0, this document does not:

describe the NFSv4.0 protocol, except where needed to contrast with NFSv4.1.
modify the specification of the NFSv4.0 protocol.
clarify the NFSv4.0 protocol.

•
•
•

1.5. NFSv4 Goals
The NFSv4 protocol is a further revision of the NFS protocol defined already by NFSv3 . It
retains the essential characteristics of previous versions: easy recovery; independence of
transport protocols, operating systems, and file systems; simplicity; and good performance.
NFSv4 has the following goals:

Improved access and good performance on the Internet

The protocol is designed to transit firewalls easily, perform well where latency is high and
bandwidth is low, and scale to very large numbers of clients per server.

Strong security with negotiation built into the protocol

The protocol builds on the work of the ONCRPC working group in supporting the
RPCSEC_GSS protocol. Additionally, the NFSv4.1 protocol provides a mechanism to allow
clients and servers the ability to negotiate security and require clients and servers to support
a minimal set of security schemes.

Good cross-platform interoperability

[38]

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 12

The protocol features a file system model that provides a useful, common set of features that
does not unduly favor one file system or operating system over another.

Designed for protocol extensions

The protocol is designed to accept standard extensions within a framework that enables and
encourages backward compatibility.

•

1.6. NFSv4.1 Goals
NFSv4.1 has the following goals, within the framework established by the overall NFSv4 goals.

To correct significant structural weaknesses and oversights discovered in the base protocol.
To add clarity and specificity to areas left unaddressed or not addressed in sufficient detail in
the base protocol. However, as stated in Section 1.4, it is not a goal to clarify the NFSv4.0
protocol in the NFSv4.1 specification.
To add specific features based on experience with the existing protocol and recent industry
developments.
To provide protocol support to take advantage of clustered server deployments including the
ability to provide scalable parallel access to files distributed among multiple servers.

•
•

•

•

Byte:

Client:

Client ID:

Client Owner:

1.7. General Definitions
The following definitions provide an appropriate context for the reader.

The client ID is a 64-bit quantity used as a unique, short-hand reference to a client-
supplied verifier and client owner. The server is responsible for supplying the client ID.

The client owner is a unique string, opaque to the server, that identifies a client.
Multiple network connections and source network addresses originating from those
connections may share a client owner. The server is expected to treat requests from
connections with the same client owner as coming from the same client.

In this document, a byte is an octet, i.e., a datum exactly 8 bits in length.

The client is the entity that accesses the NFS server's resources. The client may be an
application that contains the logic to access the NFS server directly. The client may also be
the traditional operating system client that provides remote file system services for a set of
applications.

A client is uniquely identified by a client owner.

With reference to byte-range locking, the client is also the entity that maintains a set of
locks on behalf of one or more applications. This client is responsible for crash or failure
recovery for those locks it manages.

Note that multiple clients may share the same transport and connection and multiple
clients may exist on the same network node.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 13

File System:

Lease:

Lock:

Secret State Verifier (SSV):

Server:

Server Owner:

Stable Storage:

The file system is the collection of objects on a server (as identified by the major
identifier of a server owner, which is defined later in this section) that share the same fsid
attribute (see Section 5.8.1.9).

A lease is an interval of time defined by the server for which the client is irrevocably
granted locks. At the end of a lease period, locks may be revoked if the lease has not been
extended. A lock must be revoked if a conflicting lock has been granted after the lease
interval.

A server grants a client a single lease for all state.

The term "lock" is used to refer to byte-range (in UNIX environments, also known as
record) locks, share reservations, delegations, or layouts unless specifically stated
otherwise.

The SSV is a unique secret key shared between a client and server.
The SSV serves as the secret key for an internal (that is, internal to NFSv4.1) Generic
Security Services (GSS) mechanism (the SSV GSS mechanism; see Section 2.10.9). The SSV
GSS mechanism uses the SSV to compute message integrity code (MIC) and Wrap tokens.
See Section 2.10.8.3 for more details on how NFSv4.1 uses the SSV and the SSV GSS
mechanism.

The Server is the entity responsible for coordinating client access to a set of file systems
and is identified by a server owner. A server can span multiple network addresses.

The server owner identifies the server to the client. The server owner consists of
a major identifier and a minor identifier. When the client has two connections each to a
peer with the same major identifier, the client assumes that both peers are the same server
(the server namespace is the same via each connection) and that lock state is shareable
across both connections. When each peer has both the same major and minor identifiers,
the client assumes that each connection might be associable with the same session.

Stable storage is storage from which data stored by an NFSv4.1 server can be
recovered without data loss from multiple power failures (including cascading power
failures, that is, several power failures in quick succession), operating system failures, and/
or hardware failure of components other than the storage medium itself (such as disk,
nonvolatile RAM, flash memory, etc.).

Some examples of stable storage that are allowable for an NFS server include:

Media commit of data; that is, the modified data has been successfully written to the
disk media, for example, the disk platter.
An immediate reply disk drive with battery-backed, on-drive intermediate storage or
uninterruptible power system (UPS).
Server commit of data with battery-backed intermediate storage and recovery
software.
Cache commit with uninterruptible power system (UPS) and recovery software.

1.

2.

3.

4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 14

Stateid:

Verifier:

A stateid is a 128-bit quantity returned by a server that uniquely defines the open and
locking states provided by the server for a specific open-owner or lock-owner/open-owner
pair for a specific file and type of lock.

A verifier is a 64-bit quantity generated by the client that the server can use to
determine if the client has restarted and lost all previous lock state.

1.8. Overview of NFSv4.1 Features
The major features of the NFSv4.1 protocol will be reviewed in brief. This will be done to provide
an appropriate context for both the reader who is familiar with the previous versions of the NFS
protocol and the reader who is new to the NFS protocols. For the reader new to the NFS
protocols, there is still a set of fundamental knowledge that is expected. The reader should be
familiar with the External Data Representation (XDR) and Remote Procedure Call (RPC) protocols
as described in and . A basic knowledge of file systems and distributed file systems is
expected as well.

In general, this specification of NFSv4.1 will not distinguish those features added in minor
version 1 from those present in the base protocol but will treat NFSv4.1 as a unified whole. See
Section 1.9 for a summary of the differences between NFSv4.0 and NFSv4.1.

[2] [3]

1.8.1. RPC and Security

As with previous versions of NFS, the External Data Representation (XDR) and Remote Procedure
Call (RPC) mechanisms used for the NFSv4.1 protocol are those defined in and . To meet
end-to-end security requirements, the RPCSEC_GSS framework is used to extend the basic RPC
security. With the use of RPCSEC_GSS, various mechanisms can be provided to offer
authentication, integrity, and privacy to the NFSv4 protocol. Kerberos V5 is used as described in

 to provide one security framework. With the use of RPCSEC_GSS, other mechanisms may also
be specified and used for NFSv4.1 security.

To enable in-band security negotiation, the NFSv4.1 protocol has operations that provide the
client a method of querying the server about its policies regarding which security mechanisms
must be used for access to the server's file system resources. With this, the client can securely
match the security mechanism that meets the policies specified at both the client and server.

NFSv4.1 introduces parallel access (see Section 1.8.2.2), which is called pNFS. The security
framework described in this section is significantly modified by the introduction of pNFS (see
Section 12.9), because data access is sometimes not over RPC. The level of significance varies with
the storage protocol (see Section 12.2.5) and can be as low as zero impact (see Section 13.12).

[2] [3]
[4]

[5]

1.8.2. Protocol Structure

1.8.2.1. Core Protocol
Unlike NFSv3, which used a series of ancillary protocols (e.g., NLM, NSM (Network Status
Monitor), MOUNT), within all minor versions of NFSv4 a single RPC protocol is used to make
requests to the server. Facilities that had been separate protocols, such as locking, are now
integrated within a single unified protocol.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 15

1.8.2.2. Parallel Access
Minor version 1 supports high-performance data access to a clustered server implementation by
enabling a separation of metadata access and data access, with the latter done to multiple
servers in parallel.

Such parallel data access is controlled by recallable objects known as "layouts", which are
integrated into the protocol locking model. Clients direct requests for data access to a set of data
servers specified by the layout via a data storage protocol which may be NFSv4.1 or may be
another protocol.

Because the protocols used for parallel data access are not necessarily RPC-based, the RPC-based
security model (Section 1.8.1) is obviously impacted (see Section 12.9). The degree of impact
varies with the storage protocol (see Section 12.2.5) used for data access, and can be as low as
zero (see Section 13.12).

1.8.3. File System Model

The general file system model used for the NFSv4.1 protocol is the same as previous versions. The
server file system is hierarchical with the regular files contained within being treated as opaque
byte streams. In a slight departure, file and directory names are encoded with UTF-8 to deal with
the basics of internationalization.

The NFSv4.1 protocol does not require a separate protocol to provide for the initial mapping
between path name and filehandle. All file systems exported by a server are presented as a tree
so that all file systems are reachable from a special per-server global root filehandle. This allows
LOOKUP operations to be used to perform functions previously provided by the MOUNT
protocol. The server provides any necessary pseudo file systems to bridge any gaps that arise due
to unexported gaps between exported file systems.

1.8.3.1. Filehandles
As in previous versions of the NFS protocol, opaque filehandles are used to identify individual
files and directories. Lookup-type and create operations translate file and directory names to
filehandles, which are then used to identify objects in subsequent operations.

The NFSv4.1 protocol provides support for persistent filehandles, guaranteed to be valid for the
lifetime of the file system object designated. In addition, it provides support to servers to provide
filehandles with more limited validity guarantees, called volatile filehandles.

1.8.3.2. File Attributes
The NFSv4.1 protocol has a rich and extensible file object attribute structure, which is divided
into , , and named attributes (see Section 5).

Several (but not all) of the attributes are derived from the attributes of NFSv3 (see the
definition of the fattr3 data type in). An example of a attribute is the file object's
type (Section 5.8.1.2) so that regular files can be distinguished from directories (also known as
folders in some operating environments) and other types of objects. attributes are
discussed in Section 5.1.

REQUIRED RECOMMENDED

REQUIRED
[38] REQUIRED

REQUIRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 16

An example of three attributes are acl, sacl, and dacl. These attributes define an
Access Control List (ACL) on a file object (Section 6). An ACL provides directory and file access
control beyond the model used in NFSv3. The ACL definition allows for specification of specific
sets of permissions for individual users and groups. In addition, ACL inheritance allows
propagation of access permissions and restrictions down a directory tree as file system objects
are created. attributes are discussed in Section 5.2.

A named attribute is an opaque byte stream that is associated with a directory or file and
referred to by a string name. Named attributes are meant to be used by client applications as a
method to associate application-specific data with a regular file or directory. NFSv4.1 modifies
named attributes relative to NFSv4.0 by tightening the allowed operations in order to prevent the
development of non-interoperable implementations. Named attributes are discussed in Section
5.3.

RECOMMENDED

RECOMMENDED

1.8.3.3. Multi-Server Namespace
NFSv4.1 contains a number of features to allow implementation of namespaces that cross server
boundaries and that allow and facilitate a nondisruptive transfer of support for individual file
systems between servers. They are all based upon attributes that allow one file system to specify
alternate, additional, and new location information that specifies how the client may access that
file system.

These attributes can be used to provide for individual active file systems:

Alternate network addresses to access the current file system instance.
The locations of alternate file system instances or replicas to be used in the event that the
current file system instance becomes unavailable.

These file system location attributes may be used together with the concept of absent file
systems, in which a position in the server namespace is associated with locations on other
servers without there being any corresponding file system instance on the current server. For
example,

These attributes may be used with absent file systems to implement referrals whereby one
server may direct the client to a file system provided by another server. This allows
extensive multi-server namespaces to be constructed.
These attributes may be provided when a previously present file system becomes absent.
This allows nondisruptive migration of file systems to alternate servers.

•
•

•

•

1.8.4. Locking Facilities

As mentioned previously, NFSv4.1 is a single protocol that includes locking facilities. These
locking facilities include support for many types of locks including a number of sorts of
recallable locks. Recallable locks such as delegations allow the client to be assured that certain
events will not occur so long as that lock is held. When circumstances change, the lock is recalled
via a callback request. The assurances provided by delegations allow more extensive caching to
be done safely when circumstances allow it.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 17

The types of locks are:

Share reservations as established by OPEN operations.
Byte-range locks.
File delegations, which are recallable locks that assure the holder that inconsistent opens
and file changes cannot occur so long as the delegation is held.
Directory delegations, which are recallable locks that assure the holder that inconsistent
directory modifications cannot occur so long as the delegation is held.
Layouts, which are recallable objects that assure the holder that direct access to the file data
may be performed directly by the client and that no change to the data's location that is
inconsistent with that access may be made so long as the layout is held.

All locks for a given client are tied together under a single client-wide lease. All requests made on
sessions associated with the client renew that lease. When the client's lease is not promptly
renewed, the client's locks are subject to revocation. In the event of server restart, clients have
the opportunity to safely reclaim their locks within a special grace period.

•
•
•

•

•

1.9. Differences from NFSv4.0
The following summarizes the major differences between minor version 1 and the base protocol:

Implementation of the sessions model (Section 2.10).
Parallel access to data (Section 12).
Addition of the RECLAIM_COMPLETE operation to better structure the lock reclamation
process (Section 18.51).
Enhanced delegation support as follows.

Delegations on directories and other file types in addition to regular files (Section 18.39,
Section 18.49).
Operations to optimize acquisition of recalled or denied delegations (Section 18.49, Section
20.5, Section 20.7).
Notifications of changes to files and directories (Section 18.39, Section 20.4).
A method to allow a server to indicate that it is recalling one or more delegations for
resource management reasons, and thus a method to allow the client to pick which
delegations to return (Section 20.6).

Attributes can be set atomically during exclusive file create via the OPEN operation (see the
new EXCLUSIVE4_1 creation method in Section 18.16).
Open files can be preserved if removed and the hard link count ("hard link" is defined in an

 standard) goes to zero, thus obviating the need for clients to rename deleted
files to partially hidden names -- colloquially called "silly rename" (see the new
OPEN4_RESULT_PRESERVE_UNLINKED reply flag in Section 18.16).
Improved compatibility with Microsoft Windows for Access Control Lists (Section 6.2.3,
Section 6.2.2, Section 6.4.3.2).
Data retention (Section 5.13).

•
•
•

•

◦

◦

◦

◦

•

•
Open Group [6]

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 18

Identification of the implementation of the NFS client and server (Section 18.35).
Support for notification of the availability of byte-range locks (see the new
OPEN4_RESULT_MAY_NOTIFY_LOCK reply flag in Section 18.16 and see Section 20.11).
In NFSv4.1, LIPKEY and SPKM-3 are not required security mechanisms .

•
•

• [39]

2. Core Infrastructure

2.1. Introduction
NFSv4.1 relies on core infrastructure common to nearly every operation. This core infrastructure
is described in the remainder of this section.

2.2. RPC and XDR
The NFSv4.1 protocol is a Remote Procedure Call (RPC) application that uses RPC version 2 and
the corresponding eXternal Data Representation (XDR) as defined in and .[3] [2]

2.2.1. RPC-Based Security

Previous NFS versions have been thought of as having a host-based authentication model, where
the NFS server authenticates the NFS client, and trusts the client to authenticate all users.
Actually, NFS has always depended on RPC for authentication. One of the first forms of RPC
authentication, AUTH_SYS, had no strong authentication and required a host-based
authentication approach. NFSv4.1 also depends on RPC for basic security services and mandates
RPC support for a user-based authentication model. The user-based authentication model has
user principals authenticated by a server, and in turn the server authenticated by user
principals. RPC provides some basic security services that are used by NFSv4.1.

2.2.1.1. RPC Security Flavors
As described in "Authentication", , RPC security is encapsulated in the RPC header,
via a security or authentication flavor, and information specific to the specified security flavor.
Every RPC header conveys information used to identify and authenticate a client and server. As
discussed in Section 2.2.1.1.1, some security flavors provide additional security services.

NFSv4.1 clients and servers implement RPCSEC_GSS. (This requirement to implement is not
a requirement to use.) Other flavors, such as AUTH_NONE and AUTH_SYS, be implemented
as well.

Section 7 of [3]

MUST
MAY

2.2.1.1.1. RPCSEC_GSS and Security Services
RPCSEC_GSS uses the functionality of GSS-API . This allows for the use of various security
mechanisms by the RPC layer without the additional implementation overhead of adding RPC
security flavors.

[4] [7]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc5531#section-7

2.2.1.1.1.1. Identification, Authentication, Integrity, Privacy
Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate users on clients to servers,
and servers to users. It can also perform integrity checking on the entire RPC message, including
the RPC header, and on the arguments or results. Finally, privacy, usually via encryption, is a
service available with RPCSEC_GSS. Privacy is performed on the arguments and results. Note that
if privacy is selected, integrity, authentication, and identification are enabled. If privacy is not
selected, but integrity is selected, authentication and identification are enabled. If integrity and
privacy are not selected, but authentication is enabled, identification is enabled. RPCSEC_GSS
does not provide identification as a separate service.

Although GSS-API has an authentication service distinct from its privacy and integrity services,
GSS-API's authentication service is not used for RPCSEC_GSS's authentication service. Instead,
each RPC request and response header is integrity protected with the GSS-API integrity service,
and this allows RPCSEC_GSS to offer per-RPC authentication and identity. See for more
information.

NFSv4.1 client and servers support RPCSEC_GSS's integrity and authentication service.
NFSv4.1 servers support RPCSEC_GSS's privacy service. NFSv4.1 clients support
RPCSEC_GSS's privacy service.

[4]

MUST
MUST SHOULD

2.2.1.1.1.2. Security Mechanisms for NFSv4.1
RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that provide security services.
Therefore, NFSv4.1 clients and servers support the Kerberos V5 security mechanism.

The use of RPCSEC_GSS requires selection of mechanism, quality of protection (QOP), and service
(authentication, integrity, privacy). For the mandated security mechanisms, NFSv4.1 specifies
that a QOP of zero is used, leaving it up to the mechanism or the mechanism's configuration to
map QOP zero to an appropriate level of protection. Each mandated mechanism specifies a
minimum set of cryptographic algorithms for implementing integrity and privacy. NFSv4.1
clients and servers be implemented on operating environments that comply with the

 cryptographic algorithms of each mechanism.

MUST

MUST
REQUIRED REQUIRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 20

2.2.1.1.1.2.1. Kerberos V5
The Kerberos V5 GSS-API mechanism as described in be implemented with the
RPCSEC_GSS services as specified in the following table:

Note that the number and name of the pseudo flavor are presented here as a mapping aid to the
implementor. Because the NFSv4.1 protocol includes a method to negotiate security and it
understands the GSS-API mechanism, the pseudo flavor is not needed. The pseudo flavor is
needed for the NFSv3 since the security negotiation is done via the MOUNT protocol as described
in .

At the time NFSv4.1 was specified, the Advanced Encryption Standard (AES) with HMAC-SHA1
was a algorithm set for Kerberos V5. In contrast, when NFSv4.0 was specified, weaker
algorithm sets were for Kerberos V5, and were in the NFSv4.0 specification,
because the Kerberos V5 specification at the time did not specify stronger algorithms. The
NFSv4.1 specification does not specify algorithms for Kerberos V5, and instead, the
implementor is expected to track the evolution of the Kerberos V5 standard if and when stronger
algorithms are specified.

[5] MUST

 column descriptions:
 1 == number of pseudo flavor
 2 == name of pseudo flavor
 3 == mechanism's OID
 4 == RPCSEC_GSS service
 5 == NFSv4.1 clients MUST support
 6 == NFSv4.1 servers MUST support

 1 2 3 4 5 6
 --
 390003 krb5 1.2.840.113554.1.2.2 rpc_gss_svc_none yes yes
 390004 krb5i 1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
 390005 krb5p 1.2.840.113554.1.2.2 rpc_gss_svc_privacy no yes

[40]

REQUIRED
REQUIRED REQUIRED

REQUIRED

2.2.1.1.1.2.1.1. Security Considerations for Cryptographic Algorithms in Kerberos V5
When deploying NFSv4.1, the strength of the security achieved depends on the existing Kerberos
V5 infrastructure. The algorithms of Kerberos V5 are not directly exposed to or selectable by the
client or server, so there is some due diligence required by the user of NFSv4.1 to ensure that
security is acceptable where needed.

2.2.1.1.1.3. GSS Server Principal
Regardless of what security mechanism under RPCSEC_GSS is being used, the NFS server
identify itself in GSS-API via a GSS_C_NT_HOSTBASED_SERVICE name type.
GSS_C_NT_HOSTBASED_SERVICE names are of the form:

MUST

 service@hostname

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 21

For NFS, the "service" element is

Implementations of security mechanisms will convert nfs@hostname to various different forms.
For Kerberos V5, the following form is :

 nfs

RECOMMENDED

 nfs/hostname

2.3. COMPOUND and CB_COMPOUND
A significant departure from the versions of the NFS protocol before NFSv4 is the introduction of
the COMPOUND procedure. For the NFSv4 protocol, in all minor versions, there are exactly two
RPC procedures, NULL and COMPOUND. The COMPOUND procedure is defined as a series of
individual operations and these operations perform the sorts of functions performed by
traditional NFS procedures.

The operations combined within a COMPOUND request are evaluated in order by the server,
without any atomicity guarantees. A limited set of facilities exist to pass results from one
operation to another. Once an operation returns a failing result, the evaluation ends and the
results of all evaluated operations are returned to the client.

With the use of the COMPOUND procedure, the client is able to build simple or complex requests.
These COMPOUND requests allow for a reduction in the number of RPCs needed for logical file
system operations. For example, multi-component look up requests can be constructed by
combining multiple LOOKUP operations. Those can be further combined with operations such as
GETATTR, READDIR, or OPEN plus READ to do more complicated sets of operation without
incurring additional latency.

NFSv4.1 also contains a considerable set of callback operations in which the server makes an RPC
directed at the client. Callback RPCs have a similar structure to that of the normal server
requests. In all minor versions of the NFSv4 protocol, there are two callback RPC procedures:
CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is defined in an analogous fashion
to that of COMPOUND with its own set of callback operations.

The addition of new server and callback operations within the COMPOUND and CB_COMPOUND
request framework provides a means of extending the protocol in subsequent minor versions.

Except for a small number of operations needed for session creation, server requests and
callback requests are performed within the context of a session. Sessions provide a client context
for every request and support robust replay protection for non-idempotent requests.

2.4. Client Identifiers and Client Owners
For each operation that obtains or depends on locking state, the specific client needs to be
identifiable by the server.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 22

Each distinct client instance is represented by a client ID. A client ID is a 64-bit identifier
representing a specific client at a given time. The client ID is changed whenever the client re-
initializes, and may change when the server re-initializes. Client IDs are used to support lock
identification and crash recovery.

During steady state operation, the client ID associated with each operation is derived from the
session (see Section 2.10) on which the operation is sent. A session is associated with a client ID
when the session is created.

Unlike NFSv4.0, the only NFSv4.1 operations possible before a client ID is established are those
needed to establish the client ID.

A sequence of an EXCHANGE_ID operation followed by a CREATE_SESSION operation using that
client ID (eir_clientid as returned from EXCHANGE_ID) is required to establish and confirm the
client ID on the server. Establishment of identification by a new incarnation of the client also has
the effect of immediately releasing any locking state that a previous incarnation of that same
client might have had on the server. Such released state would include all byte-range lock, share
reservation, layout state, and -- where the server supports neither the CLAIM_DELEGATE_PREV
nor CLAIM_DELEG_CUR_FH claim types -- all delegation state associated with the same client
with the same identity. For discussion of delegation state recovery, see Section 10.2.1. For
discussion of layout state recovery, see Section 12.7.1.

Releasing such state requires that the server be able to determine that one client instance is the
successor of another. Where this cannot be done, for any of a number of reasons, the locking
state will remain for a time subject to lease expiration (see Section 8.3) and the new client will
need to wait for such state to be removed, if it makes conflicting lock requests.

Client identification is encapsulated in the following client owner data type:

The first field, co_verifier, is a client incarnation verifier, allowing the server to distinguish
successive incarnations (e.g., reboots) of the same client. The server will start the process of
canceling the client's leased state if co_verifier is different than what the server has previously
recorded for the identified client (as specified in the co_ownerid field).

The second field, co_ownerid, is a variable length string that uniquely defines the client so that
subsequent instances of the same client bear the same co_ownerid with a different verifier.

There are several considerations for how the client generates the co_ownerid string:

The string should be unique so that multiple clients do not present the same string. The
consequences of two clients presenting the same string range from one client getting an
error to one client having its leased state abruptly and unexpectedly cancelled.

struct client_owner4 {
 verifier4 co_verifier;
 opaque co_ownerid<NFS4_OPAQUE_LIMIT>;
};

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 23

The string should be selected so that subsequent incarnations (e.g., restarts) of the same
client cause the client to present the same string. The implementor is cautioned from an
approach that requires the string to be recorded in a local file because this precludes the use
of the implementation in an environment where there is no local disk and all file access is
from an NFSv4.1 server.
The string should be the same for each server network address that the client accesses. This
way, if a server has multiple interfaces, the client can trunk traffic over multiple network
paths as described in Section 2.10.5. (Note: the precise opposite was advised in the NFSv4.0
specification .)
The algorithm for generating the string should not assume that the client's network address
will not change, unless the client implementation knows it is using statically assigned
network addresses. This includes changes between client incarnations and even changes
while the client is still running in its current incarnation. Thus, with dynamic address
assignment, if the client includes just the client's network address in the co_ownerid string,
there is a real risk that after the client gives up the network address, another client, using a
similar algorithm for generating the co_ownerid string, would generate a conflicting
co_ownerid string.

Given the above considerations, an example of a well-generated co_ownerid string is one that
includes:

If applicable, the client's statically assigned network address.
Additional information that tends to be unique, such as one or more of:

The client machine's serial number (for privacy reasons, it is best to perform some one-
way function on the serial number).
A Media Access Control (MAC) address (again, a one-way function should be performed).
The timestamp of when the NFSv4.1 software was first installed on the client (though this
is subject to the previously mentioned caution about using information that is stored in a
file, because the file might only be accessible over NFSv4.1).
A true random number. However, since this number ought to be the same between client
incarnations, this shares the same problem as that of using the timestamp of the software
installation.

For a user-level NFSv4.1 client, it should contain additional information to distinguish the
client from other user-level clients running on the same host, such as a process identifier or
other unique sequence.

The client ID is assigned by the server (the eir_clientid result from EXCHANGE_ID) and should be
chosen so that it will not conflict with a client ID previously assigned by the server. This applies
across server restarts.

In the event of a server restart, a client may find out that its current client ID is no longer valid
when it receives an NFS4ERR_STALE_CLIENTID error. The precise circumstances depend on the
characteristics of the sessions involved, specifically whether the session is persistent (see Section
2.10.6.5), but in each case the client will receive this error when it attempts to establish a new

•

•

[37]
•

•
•

◦

◦

◦

◦

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 24

session with the existing client ID and receives the error NFS4ERR_STALE_CLIENTID, indicating
that a new client ID needs to be obtained via EXCHANGE_ID and the new session established
with that client ID.

When a session is not persistent, the client will find out that it needs to create a new session as a
result of getting an NFS4ERR_BADSESSION, since the session in question was lost as part of a
server restart. When the existing client ID is presented to a server as part of creating a session
and that client ID is not recognized, as would happen after a server restart, the server will reject
the request with the error NFS4ERR_STALE_CLIENTID.

In the case of the session being persistent, the client will re-establish communication using the
existing session after the restart. This session will be associated with the existing client ID but
may only be used to retransmit operations that the client previously transmitted and did not see
replies to. Replies to operations that the server previously performed will come from the reply
cache; otherwise, NFS4ERR_DEADSESSION will be returned. Hence, such a session is referred to
as "dead". In this situation, in order to perform new operations, the client needs to establish a
new session. If an attempt is made to establish this new session with the existing client ID, the
server will reject the request with NFS4ERR_STALE_CLIENTID.

When NFS4ERR_STALE_CLIENTID is received in either of these situations, the client needs to
obtain a new client ID by use of the EXCHANGE_ID operation, then use that client ID as the basis
of a new session, and then proceed to any other necessary recovery for the server restart case
(see Section 8.4.2).

See the descriptions of EXCHANGE_ID (Section 18.35) and CREATE_SESSION (Section 18.36) for a
complete specification of these operations.

2.4.1. Upgrade from NFSv4.0 to NFSv4.1

To facilitate upgrade from NFSv4.0 to NFSv4.1, a server may compare a value of data type
client_owner4 in an EXCHANGE_ID with a value of data type nfs_client_id4 that was established
using the SETCLIENTID operation of NFSv4.0. A server that does so will allow an upgraded client
to avoid waiting until the lease (i.e., the lease established by the NFSv4.0 instance client) expires.
This requires that the value of data type client_owner4 be constructed the same way as the value
of data type nfs_client_id4. If the latter's contents included the server's network address (per the
recommendations of the NFSv4.0 specification), and the NFSv4.1 client does not wish to use a
client ID that prevents trunking, it should send two EXCHANGE_ID operations. The first
EXCHANGE_ID will have a client_owner4 equal to the nfs_client_id4. This will clear the state
created by the NFSv4.0 client. The second EXCHANGE_ID will not have the server's network
address. The state created for the second EXCHANGE_ID will not have to wait for lease
expiration, because there will be no state to expire.

2.4.2. Server Release of Client ID

NFSv4.1 introduces a new operation called DESTROY_CLIENTID (Section 18.50), which the client
 use to destroy a client ID it no longer needs. This permits graceful, bilateral release of a

client ID. The operation cannot be used if there are sessions associated with the client ID, or state
with an unexpired lease.

[37]

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 25

If the server determines that the client holds no associated state for its client ID (associated state
includes unrevoked sessions, opens, locks, delegations, layouts, and wants), the server
choose to unilaterally release the client ID in order to conserve resources. If the client contacts
the server after this release, the server ensure that the client receives the appropriate
error so that it will use the EXCHANGE_ID/CREATE_SESSION sequence to establish a new client
ID. The server ought to be very hesitant to release a client ID since the resulting work on the
client to recover from such an event will be the same burden as if the server had failed and
restarted. Typically, a server would not release a client ID unless there had been no activity from
that client for many minutes. As long as there are sessions, opens, locks, delegations, layouts, or
wants, the server release the client ID. See Section 2.10.13.1.4 for discussion on
releasing inactive sessions.

MAY

MUST

MUST NOT

2.4.3. Resolving Client Owner Conflicts

When the server gets an EXCHANGE_ID for a client owner that currently has no state, or that has
state but the lease has expired, the server allow the EXCHANGE_ID and confirm the new
client ID if followed by the appropriate CREATE_SESSION.

When the server gets an EXCHANGE_ID for a new incarnation of a client owner that currently
has an old incarnation with state and an unexpired lease, the server is allowed to dispose of the
state of the previous incarnation of the client owner if one of the following is true:

The principal that created the client ID for the client owner is the same as the principal that
is sending the EXCHANGE_ID operation. Note that if the client ID was created with
SP4_MACH_CRED state protection (Section 18.35), the principal be based on
RPCSEC_GSS authentication, the RPCSEC_GSS service used be integrity or privacy, and
the same GSS mechanism and principal be used as that used when the client ID was
created.
The client ID was established with SP4_SSV protection (Section 18.35, Section 2.10.8.3) and
the client sends the EXCHANGE_ID with the security flavor set to RPCSEC_GSS using the GSS
SSV mechanism (Section 2.10.9).
The client ID was established with SP4_SSV protection, and under the conditions described
herein, the EXCHANGE_ID was sent with SP4_MACH_CRED state protection. Because the SSV
might not persist across client and server restart, and because the first time a client sends
EXCHANGE_ID to a server it does not have an SSV, the client send the subsequent
EXCHANGE_ID without an SSV RPCSEC_GSS handle. Instead, as with SP4_MACH_CRED
protection, the principal be based on RPCSEC_GSS authentication, the RPCSEC_GSS
service used be integrity or privacy, and the same GSS mechanism and principal
be used as that used when the client ID was created.

If none of the above situations apply, the server return NFS4ERR_CLID_INUSE.

If the server accepts the principal and co_ownerid as matching that which created the client ID,
and the co_verifier in the EXCHANGE_ID differs from the co_verifier used when the client ID was
created, then after the server receives a CREATE_SESSION that confirms the client ID, the server

MUST

•

MUST
MUST

MUST

•

•

MAY

MUST
MUST MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 26

deletes state. If the co_verifier values are the same (e.g., the client either is updating properties of
the client ID (Section 18.35) or is attempting trunking (Section 2.10.5), the server delete
state.

MUST NOT

2.5. Server Owners
The server owner is similar to a client owner (Section 2.4), but unlike the client owner, there is
no shorthand server ID. The server owner is defined in the following data type:

The server owner is returned from EXCHANGE_ID. When the so_major_id fields are the same in
two EXCHANGE_ID results, the connections that each EXCHANGE_ID were sent over can be
assumed to address the same server (as defined in Section 1.7). If the so_minor_id fields are also
the same, then not only do both connections connect to the same server, but the session can be
shared across both connections. The reader is cautioned that multiple servers may deliberately
or accidentally claim to have the same so_major_id or so_major_id/so_minor_id; the reader
should examine Sections 2.10.5 and 18.35 in order to avoid acting on falsely matching server
owner values.

The considerations for generating an so_major_id are similar to that for generating a co_ownerid
string (see Section 2.4). The consequences of two servers generating conflicting so_major_id
values are less dire than they are for co_ownerid conflicts because the client can use RPCSEC_GSS
to compare the authenticity of each server (see Section 2.10.5).

struct server_owner4 {
 uint64_t so_minor_id;
 opaque so_major_id<NFS4_OPAQUE_LIMIT>;
};

2.6. Security Service Negotiation
With the NFSv4.1 server potentially offering multiple security mechanisms, the client needs a
method to determine or negotiate which mechanism is to be used for its communication with the
server. The NFS server may have multiple points within its file system namespace that are
available for use by NFS clients. These points can be considered security policy boundaries, and,
in some NFS implementations, are tied to NFS export points. In turn, the NFS server may be
configured such that each of these security policy boundaries may have different or multiple
security mechanisms in use.

The security negotiation between client and server be done with a secure channel to
eliminate the possibility of a third party intercepting the negotiation sequence and forcing the
client and server to choose a lower level of security than required or desired. See Section 21 for
further discussion.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 27

2.6.1. NFSv4.1 Security Tuples

An NFS server can assign one or more "security tuples" to each security policy boundary in its
namespace. Each security tuple consists of a security flavor (see Section 2.2.1.1) and, if the flavor
is RPCSEC_GSS, a GSS-API mechanism Object Identifier (OID), a GSS-API quality of protection, and
an RPCSEC_GSS service.

2.6.2. SECINFO and SECINFO_NO_NAME

The SECINFO and SECINFO_NO_NAME operations allow the client to determine, on a per-
filehandle basis, what security tuple is to be used for server access. In general, the client will not
have to use either operation except during initial communication with the server or when the
client crosses security policy boundaries at the server. However, the server's policies may also
change at any time and force the client to negotiate a new security tuple.

Where the use of different security tuples would affect the type of access that would be allowed if
a request was sent over the same connection used for the SECINFO or SECINFO_NO_NAME
operation (e.g., read-only vs. read-write) access, security tuples that allow greater access should
be presented first. Where the general level of access is the same and different security flavors
limit the range of principals whose privileges are recognized (e.g., allowing or disallowing root
access), flavors supporting the greatest range of principals should be listed first.

2.6.3. Security Error

Based on the assumption that each NFSv4.1 client and server support a minimum set of
security (i.e., Kerberos V5 under RPCSEC_GSS), the NFS client will initiate file access to the server
with one of the minimal security tuples. During communication with the server, the client may
receive an NFS error of NFS4ERR_WRONGSEC. This error allows the server to notify the client
that the security tuple currently being used contravenes the server's security policy. The client is
then responsible for determining (see Section 2.6.3.1) what security tuples are available at the
server and choosing one that is appropriate for the client.

MUST

2.6.3.1. Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME
This section explains the mechanics of NFSv4.1 security negotiation.

2.6.3.1.1. Put Filehandle Operations
The term "put filehandle operation" refers to PUTROOTFH, PUTPUBFH, PUTFH, and RESTOREFH.
Each of the subsections herein describes how the server handles a subseries of operations that
starts with a put filehandle operation.

2.6.3.1.1.1. Put Filehandle Operation + SAVEFH
The client is saving a filehandle for a future RESTOREFH, LINK, or RENAME. SAVEFH
return NFS4ERR_WRONGSEC. To determine whether or not the put filehandle operation returns
NFS4ERR_WRONGSEC, the server implementation pretends SAVEFH is not in the series of
operations and examines which of the situations described in the other subsections of Section
2.6.3.1.1 apply.

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 28

2.6.3.1.1.2. Two or More Put Filehandle Operations
For a series of N put filehandle operations, the server return NFS4ERR_WRONGSEC to
the first N-1 put filehandle operations. The Nth put filehandle operation is handled as if it is the
first in a subseries of operations. For example, if the server received a COMPOUND request with
this series of operations -- PUTFH, PUTROOTFH, LOOKUP -- then the PUTFH operation is ignored
for NFS4ERR_WRONGSEC purposes, and the PUTROOTFH, LOOKUP subseries is processed as
according to Section 2.6.3.1.1.3.

MUST NOT

(a)

(b)

(c)

2.6.3.1.1.3. Put Filehandle Operation + LOOKUP (or OPEN of an Existing Name)
This situation also applies to a put filehandle operation followed by a LOOKUP or an OPEN
operation that specifies an existing component name.

In this situation, the client is potentially crossing a security policy boundary, and the set of
security tuples the parent directory supports may differ from those of the child. The server
implementation may decide whether to impose any restrictions on security policy
administration. There are at least three approaches (sec_policy_child is the tuple set of the child
export, sec_policy_parent is that of the parent).

sec_policy_child <= sec_policy_parent (<= for subset). This means that the set of security
tuples specified on the security policy of a child directory is always a subset of its parent
directory.
sec_policy_child ^ sec_policy_parent != {} (^ for intersection, {} for the empty set). This
means that the set of security tuples specified on the security policy of a child directory
always has a non-empty intersection with that of the parent.
sec_policy_child ^ sec_policy_parent == {}. This means that the set of security tuples
specified on the security policy of a child directory may not intersect with that of the
parent. In other words, there are no restrictions on how the system administrator may set
up these tuples.

In order for a server to support approaches (b) (for the case when a client chooses a flavor that is
not a member of sec_policy_parent) and (c), the put filehandle operation cannot return
NFS4ERR_WRONGSEC when there is a security tuple mismatch. Instead, it should be returned
from the LOOKUP (or OPEN by existing component name) that follows.

Since the above guideline does not contradict approach (a), it should be followed in general. Even
if approach (a) is implemented, it is possible for the security tuple used to be acceptable for the
target of LOOKUP but not for the filehandles used in the put filehandle operation. The put
filehandle operation could be a PUTROOTFH or PUTPUBFH, where the client cannot know the
security tuples for the root or public filehandle. Or the security policy for the filehandle used by
the put filehandle operation could have changed since the time the filehandle was obtained.

Therefore, an NFSv4.1 server return NFS4ERR_WRONGSEC in response to the put
filehandle operation if the operation is immediately followed by a LOOKUP or an OPEN by
component name.

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 29

2.6.3.1.1.4. Put Filehandle Operation + LOOKUPP
Since SECINFO only works its way down, there is no way LOOKUPP can return
NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME solves this issue via
style SECINFO_STYLE4_PARENT, which works in the opposite direction as SECINFO. As with
Section 2.6.3.1.1.3, a put filehandle operation that is followed by a LOOKUPP return
NFS4ERR_WRONGSEC. If the server does not support SECINFO_NO_NAME, the client's only
recourse is to send the put filehandle operation, LOOKUPP, GETFH sequence of operations with
every security tuple it supports.

Regardless of whether SECINFO_NO_NAME is supported, an NFSv4.1 server return
NFS4ERR_WRONGSEC in response to a put filehandle operation if the operation is immediately
followed by a LOOKUPP.

MUST NOT

MUST NOT

2.6.3.1.1.5. Put Filehandle Operation + SECINFO/SECINFO_NO_NAME
A security-sensitive client is allowed to choose a strong security tuple when querying a server to
determine a file object's permitted security tuples. The security tuple chosen by the client does
not have to be included in the tuple list of the security policy of either the parent directory
indicated in the put filehandle operation or the child file object indicated in SECINFO (or any
parent directory indicated in SECINFO_NO_NAME). Of course, the server has to be configured for
whatever security tuple the client selects; otherwise, the request will fail at the RPC layer with an
appropriate authentication error.

In theory, there is no connection between the security flavor used by SECINFO or
SECINFO_NO_NAME and those supported by the security policy. But in practice, the client may
start looking for strong flavors from those supported by the security policy, followed by those in
the set.

The NFSv4.1 server return NFS4ERR_WRONGSEC to a put filehandle operation that is
immediately followed by SECINFO or SECINFO_NO_NAME. The NFSv4.1 server return
NFS4ERR_WRONGSEC from SECINFO or SECINFO_NO_NAME.

REQUIRED

MUST NOT
MUST NOT

2.6.3.1.1.6. Put Filehandle Operation + Nothing
The NFSv4.1 server return NFS4ERR_WRONGSEC.MUST NOT

2.6.3.1.1.7. Put Filehandle Operation + Anything Else
"Anything Else" includes OPEN by filehandle.

The security policy enforcement applies to the filehandle specified in the put filehandle
operation. Therefore, the put filehandle operation return NFS4ERR_WRONGSEC when
there is a security tuple mismatch. This avoids the complexity of adding NFS4ERR_WRONGSEC as
an allowable error to every other operation.

A COMPOUND containing the series put filehandle operation + SECINFO_NO_NAME (style
SECINFO_STYLE4_CURRENT_FH) is an efficient way for the client to recover from
NFS4ERR_WRONGSEC.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 30

The NFSv4.1 server return NFS4ERR_WRONGSEC to any operation other than a put
filehandle operation, LOOKUP, LOOKUPP, and OPEN (by component name).

MUST NOT

2.6.3.1.1.8. Operations after SECINFO and SECINFO_NO_NAME
Suppose a client sends a COMPOUND procedure containing the series SEQUENCE, PUTFH,
SECINFO_NONAME, READ, and suppose the security tuple used does not match that required for
the target file. By rule (see Section 2.6.3.1.1.5), neither PUTFH nor SECINFO_NO_NAME can return
NFS4ERR_WRONGSEC. By rule (see Section 2.6.3.1.1.7), READ cannot return
NFS4ERR_WRONGSEC. The issue is resolved by the fact that SECINFO and SECINFO_NO_NAME
consume the current filehandle (note that this is a change from NFSv4.0). This leaves no current
filehandle for READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

2.6.3.1.2. LINK and RENAME
The LINK and RENAME operations use both the current and saved filehandles. Technically, the
server return NFS4ERR_WRONGSEC from LINK or RENAME if the security policy of the
saved filehandle rejects the security flavor used in the COMPOUND request's credentials. If the
server does so, then if there is no intersection between the security policies of saved and current
filehandles, this means that it will be impossible for the client to perform the intended LINK or
RENAME operation.

For example, suppose the client sends this COMPOUND request: SEQUENCE, PUTFH bFH,
SAVEFH, PUTFH aFH, RENAME "c" "d", where filehandles bFH and aFH refer to different
directories. Suppose no common security tuple exists between the security policies of aFH and
bFH. If the client sends the request using credentials acceptable to bFH's security policy but not
aFH's policy, then the PUTFH aFH operation will fail with NFS4ERR_WRONGSEC. After a
SECINFO_NO_NAME request, the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH,
RENAME "c" "d", using credentials acceptable to aFH's security policy but not bFH's policy. The
server returns NFS4ERR_WRONGSEC on the RENAME operation.

To prevent a client from an endless sequence of a request containing LINK or RENAME, followed
by a request containing SECINFO_NO_NAME or SECINFO, the server detect when the
security policies of the current and saved filehandles have no mutually acceptable security tuple,
and return NFS4ERR_WRONGSEC from LINK or RENAME in that situation. Instead the
server do one of two things:

The server can return NFS4ERR_XDEV.
The server can allow the security policy of the current filehandle to override that of the
saved filehandle, and so return NFS4_OK.

MAY

MUST

MUST NOT
MUST

•
•

2.7. Minor Versioning
To address the requirement of an NFS protocol that can evolve as the need arises, the NFSv4.1
protocol contains the rules and framework to allow for future minor changes or versioning.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 31

The base assumption with respect to minor versioning is that any future accepted minor version
will be documented in one or more Standards Track RFCs. Minor version 0 of the NFSv4 protocol
is represented by , and minor version 1 is represented by this RFC. The COMPOUND and
CB_COMPOUND procedures support the encoding of the minor version being requested by the
client.

The following items represent the basic rules for the development of minor versions. Note that a
future minor version may modify or add to the following rules as part of the minor version
definition.

Procedures are not added or deleted.

To maintain the general RPC model, NFSv4 minor versions will not add to or delete
procedures from the NFS program.

Minor versions may add operations to the COMPOUND and CB_COMPOUND procedures.

The addition of operations to the COMPOUND and CB_COMPOUND procedures does not
affect the RPC model.

Minor versions may append attributes to the bitmap4 that represents sets of attributes and
to the fattr4 that represents sets of attribute values.

This allows for the expansion of the attribute model to allow for future growth or
adaptation.

Minor version X must append any new attributes after the last documented attribute.

Since attribute results are specified as an opaque array of per-attribute, XDR-encoded
results, the complexity of adding new attributes in the midst of the current definitions
would be too burdensome.

Minor versions must not modify the structure of an existing operation's arguments or
results.

Again, the complexity of handling multiple structure definitions for a single operation is too
burdensome. New operations should be added instead of modifying existing structures for a
minor version.

This rule does not preclude the following adaptations in a minor version:

adding bits to flag fields, such as new attributes to GETATTR's bitmap4 data type, and
providing corresponding variants of opaque arrays, such as a notify4 used together with
such bitmaps
adding bits to existing attributes like ACLs that have flag words
extending enumerated types (including NFS4ERR_*) with new values
adding cases to a switched union

Minor versions must not modify the structure of existing attributes.

[37]

1.

2.

◦

◦

3.

◦

◦

◦

◦

4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 32

Minor versions must not delete operations.

This prevents the potential reuse of a particular operation "slot" in a future minor version.

Minor versions must not delete attributes.
Minor versions must not delete flag bits or enumeration values.
Minor versions may declare an operation be implemented.

Specifying that an operation be implemented is equivalent to obsoleting an
operation. For the client, it means that the operation be sent to the server. For the
server, an NFS error can be returned as opposed to "dropping" the request as an XDR decode
error. This approach allows for the obsolescence of an operation while maintaining its
structure so that a future minor version can reintroduce the operation.

Minor versions may declare that an attribute be implemented.
Minor versions may declare that a flag bit or enumeration value be
implemented.

Minor versions may downgrade features from to , or
 to .

Minor versions may upgrade features from to , or
to .
A client and server that support minor version X support minor versions zero
through X-1 as well.
Except for infrastructural changes, a minor version must not introduce new
features.

This rule allows for the introduction of new functionality and forces the use of
implementation experience before designating a feature as . On the other hand,
some classes of features are infrastructural and have broad effects. Allowing infrastructural
features to be or complicates implementation of the minor
version.

A client attempt to use a stateid, filehandle, or similar returned object from the
COMPOUND procedure with minor version X for another COMPOUND procedure with minor
version Y, where X != Y.

5.

6.
7.
8. MUST NOT

MUST NOT
MUST NOT

1. MUST NOT
2. MUST NOT

9. REQUIRED RECOMMENDED
RECOMMENDED OPTIONAL

10. OPTIONAL RECOMMENDED RECOMMENDED
REQUIRED

11. SHOULD

12. REQUIRED

REQUIRED

RECOMMENDED OPTIONAL

13. MUST NOT

2.8. Non-RPC-Based Security Services
As described in Section 2.2.1.1.1.1, NFSv4.1 relies on RPC for identification, authentication,
integrity, and privacy. NFSv4.1 itself provides or enables additional security services as described
in the next several subsections.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 33

2.8.1. Authorization

Authorization to access a file object via an NFSv4.1 operation is ultimately determined by the
NFSv4.1 server. A client can predetermine its access to a file object via the OPEN (Section 18.16)
and the ACCESS (Section 18.1) operations.

Principals with appropriate access rights can modify the authorization on a file object via the
SETATTR (Section 18.30) operation. Attributes that affect access rights include mode, owner,
owner_group, acl, dacl, and sacl. See Section 5.

2.8.2. Auditing

NFSv4.1 provides auditing on a per-file object basis, via the acl and sacl attributes as described in
Section 6. It is outside the scope of this specification to specify audit log formats or management
policies.

2.8.3. Intrusion Detection

NFSv4.1 provides alarm control on a per-file object basis, via the acl and sacl attributes as
described in Section 6. Alarms may serve as the basis for intrusion detection. It is outside the
scope of this specification to specify heuristics for detecting intrusion via alarms.

2.9. Transport Layers
2.9.1. and Properties of Transports

NFSv4.1 works over Remote Direct Memory Access (RDMA) and non-RDMA-based transports
with the following attributes:

The transport supports reliable delivery of data, which NFSv4.1 requires but neither NFSv4.1
nor RPC has facilities for ensuring .
The transport delivers data in the order it was sent. Ordered delivery simplifies detection of
transmit errors, and simplifies the sending of arbitrary sized requests and responses via the
record marking protocol .

Where an NFSv4.1 implementation supports operation over the IP network protocol, any
transport used between NFS and IP be among the IETF-approved congestion control
transport protocols. At the time this document was written, the only two transports that had the
above attributes were TCP and the Stream Control Transmission Protocol (SCTP). To enhance the
possibilities for interoperability, an NFSv4.1 implementation support operation over the
TCP transport protocol.

Even if NFSv4.1 is used over a non-IP network protocol, it is that the transport
support congestion control.

It is permissible for a connectionless transport to be used under NFSv4.1; however, reliable and
in-order delivery of data combined with congestion control by the connectionless transport is

. As a consequence, UDP by itself be used as an NFSv4.1 transport. NFSv4.1

REQUIRED RECOMMENDED

•
[41]

•

[3]

MUST

MUST

RECOMMENDED

REQUIRED MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 34

assumes that a client transport address and server transport address used to send data over a
transport together constitute a connection, even if the underlying transport eschews the concept
of a connection.

2.9.2. Client and Server Transport Behavior

If a connection-oriented transport (e.g., TCP) is used, the client and server use long-lived
connections for at least three reasons:

This will prevent the weakening of the transport's congestion control mechanisms via short-
lived connections.
This will improve performance for the WAN environment by eliminating the need for
connection setup handshakes.
The NFSv4.1 callback model differs from NFSv4.0, and requires the client and server to
maintain a client-created backchannel (see Section 2.10.3.1) for the server to use.

In order to reduce congestion, if a connection-oriented transport is used, and the request is not
the NULL procedure:

A requester retry a request unless the connection the request was sent over was
lost before the reply was received.
A replier silently drop a request, even if the request is a retry. (The silent drop
behavior of RPCSEC_GSS does not apply because this behavior happens at the
RPCSEC_GSS layer, a lower layer in the request processing.) Instead, the replier
return an appropriate error (see Section 2.10.6.1), or it disconnect the connection.

When sending a reply, the replier send the reply to the same full network address (e.g., if
using an IP-based transport, the source port of the requester is part of the full network address)
from which the requester sent the request. If using a connection-oriented transport, replies
be sent on the same connection from which the request was received.

If a connection is dropped after the replier receives the request but before the replier sends the
reply, the replier might have a pending reply. If a connection is established with the same source
and destination full network address as the dropped connection, then the replier send
the reply until the requester retries the request. The reason for this prohibition is that the
requester retry a request over a different connection (provided that connection is
associated with the original request's session).

When using RDMA transports, there are other reasons for not tolerating retries over the same
connection:

RDMA transports use "credits" to enforce flow control, where a credit is a right to a peer to
transmit a message. If one peer were to retransmit a request (or reply), it would consume an
additional credit. If the replier retransmitted a reply, it would certainly result in an RDMA
connection loss, since the requester would typically only post a single receive buffer for each
request. If the requester retransmitted a request, the additional credit consumed on the
server might lead to RDMA connection failure unless the client accounted for it and
decreased its available credit, leading to wasted resources.

SHOULD

1.

2.

3.

• MUST NOT

• MUST NOT
[4]

SHOULD
MAY

MUST

MUST

MUST NOT

MAY

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 35

RDMA credits present a new issue to the reply cache in NFSv4.1. The reply cache may be
used when a connection within a session is lost, such as after the client reconnects. Credit
information is a dynamic property of the RDMA connection, and stale values must not be
replayed from the cache. This implies that the reply cache contents must not be blindly used
when replies are sent from it, and credit information appropriate to the channel must be
refreshed by the RPC layer.

In addition, as described in Section 2.10.6.2, while a session is active, the NFSv4.1 requester
 stop waiting for a reply.

•

MUST
NOT

2.9.3. Ports

Historically, NFSv3 servers have listened over TCP port 2049. The registered port 2049 for the
NFS protocol should be the default configuration. NFSv4.1 clients use the RPC
binding protocols as described in .

[42]
SHOULD NOT

[43]

2.10. Session
NFSv4.1 clients and servers support and use the session feature as described in this
section.

MUST MUST

2.10.1. Motivation and Overview

Previous versions and minor versions of NFS have suffered from the following:

Lack of support for Exactly Once Semantics (EOS). This includes lack of support for EOS
through server failure and recovery.
Limited callback support, including no support for sending callbacks through firewalls, and
races between replies to normal requests and callbacks.
Limited trunking over multiple network paths.
Requiring machine credentials for fully secure operation.

Through the introduction of a session, NFSv4.1 addresses the above shortfalls with practical
solutions:

EOS is enabled by a reply cache with a bounded size, making it feasible to keep the cache in
persistent storage and enable EOS through server failure and recovery. One reason that
previous revisions of NFS did not support EOS was because some EOS approaches often
limited parallelism. As will be explained in Section 2.10.6, NFSv4.1 supports both EOS and
unlimited parallelism.
The NFSv4.1 client (defined in Section 1.7) creates transport connections and provides them
to the server to use for sending callback requests, thus solving the firewall issue (Section
18.34). Races between responses from client requests and callbacks caused by the requests
are detected via the session's sequencing properties that are a consequence of EOS (Section
2.10.6.3).
The NFSv4.1 client can associate an arbitrary number of connections with the session, and
thus provide trunking (Section 2.10.5).

•

•

•
•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 36

The NFSv4.1 client and server produce a session key independent of client and server
machine credentials which can be used to compute a digest for protecting critical session
management operations (Section 2.10.8.3).
The NFSv4.1 client can also create secure RPCSEC_GSS contexts for use by the session's
backchannel that do not require the server to authenticate to a client machine principal
(Section 2.10.8.2).

A session is a dynamically created, long-lived server object created by a client and used over time
from one or more transport connections. Its function is to maintain the server's state relative to
the connection(s) belonging to a client instance. This state is entirely independent of the
connection itself, and indeed the state exists whether or not the connection exists. A client may
have one or more sessions associated with it so that client-associated state may be accessed using
any of the sessions associated with that client's client ID, when connections are associated with
those sessions. When no connections are associated with any of a client ID's sessions for an
extended time, such objects as locks, opens, delegations, layouts, etc. are subject to expiration.
The session serves as an object representing a means of access by a client to the associated client
state on the server, independent of the physical means of access to that state.

A single client may create multiple sessions. A single session serve multiple clients.

•

•

MUST NOT

2.10.2. NFSv4 Integration

Sessions are part of NFSv4.1 and not NFSv4.0. Normally, a major infrastructure change such as
sessions would require a new major version number to an Open Network Computing (ONC) RPC
program like NFS. However, because NFSv4 encapsulates its functionality in a single procedure,
COMPOUND, and because COMPOUND can support an arbitrary number of operations, sessions
have been added to NFSv4.1 with little difficulty. COMPOUND includes a minor version number
field, and for NFSv4.1 this minor version is set to 1. When the NFSv4 server processes a
COMPOUND with the minor version set to 1, it expects a different set of operations than it does
for NFSv4.0. NFSv4.1 defines the SEQUENCE operation, which is required for every COMPOUND
that operates over an established session, with the exception of some session administration
operations, such as DESTROY_SESSION (Section 18.37).

2.10.2.1. SEQUENCE and CB_SEQUENCE
In NFSv4.1, when the SEQUENCE operation is present, it be the first operation in the
COMPOUND procedure. The primary purpose of SEQUENCE is to carry the session identifier. The
session identifier associates all other operations in the COMPOUND procedure with a particular
session. SEQUENCE also contains required information for maintaining EOS (see Section 2.10.6).
Session-enabled NFSv4.1 COMPOUND requests thus have the form:

MUST

 +-----+--------------+-----------+------------+-----------+----
 | tag | minorversion | numops |SEQUENCE op | op + args | ...
 | | (== 1) | (limited) | + args | |
 +-----+--------------+-----------+------------+-----------+----

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 37

and the replies have the form:

A CB_COMPOUND procedure request and reply has a similar form to COMPOUND, but instead of
a SEQUENCE operation, there is a CB_SEQUENCE operation. CB_COMPOUND also has an
additional field called "callback_ident", which is superfluous in NFSv4.1 and be ignored by
the client. CB_SEQUENCE has the same information as SEQUENCE, and also includes other
information needed to resolve callback races (Section 2.10.6.3).

 +------------+-----+--------+-------------------------------+--//
 |last status | tag | numres |status + SEQUENCE op + results | //
 +------------+-----+--------+-------------------------------+--//
 //-----------------------+----
 // status + op + results | ...
 //-----------------------+----

MUST

2.10.2.2. Client ID and Session Association
Each client ID (Section 2.4) can have zero or more active sessions. A client ID and associated
session are required to perform file access in NFSv4.1. Each time a session is used (whether by a
client sending a request to the server or the client replying to a callback request from the server),
the state leased to its associated client ID is automatically renewed.

State (which can consist of share reservations, locks, delegations, and layouts (Section 1.8.4)) is
tied to the client ID. Client state is not tied to any individual session. Successive state changing
operations from a given state owner go over different sessions, provided the session is
associated with the same client ID. A callback arrive over a different session than that of the
request that originally acquired the state pertaining to the callback. For example, if session A is
used to acquire a delegation, a request to recall the delegation arrive over session B if both
sessions are associated with the same client ID. Sections 2.10.8.1 and 2.10.8.2 discuss the security
considerations around callbacks.

MAY
MAY

MAY

2.10.3. Channels

A channel is not a connection. A channel represents the direction ONC RPC requests are sent.

Each session has one or two channels: the fore channel and the backchannel. Because there are
at most two channels per session, and because each channel has a distinct purpose, channels are
not assigned identifiers.

The fore channel is used for ordinary requests from the client to the server, and carries
COMPOUND requests and responses. A session always has a fore channel.

The backchannel is used for callback requests from server to client, and carries CB_COMPOUND
requests and responses. Whether or not there is a backchannel is decided by the client; however,
many features of NFSv4.1 require a backchannel. NFSv4.1 servers support backchannels.

Each session has resources for each channel, including separate reply caches (see Section
2.10.6.1). Note that even the backchannel requires a reply cache (or, at least, a slot table in order
to detect retries) because some callback operations are non-idempotent.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 38

2.10.3.1. Association of Connections, Channels, and Sessions
Each channel is associated with zero or more transport connections (whether of the same
transport protocol or different transport protocols). A connection can be associated with one
channel or both channels of a session; the client and server negotiate whether a connection will
carry traffic for one channel or both channels via the CREATE_SESSION (Section 18.36) and the
BIND_CONN_TO_SESSION (Section 18.34) operations. When a session is created via
CREATE_SESSION, the connection that transported the CREATE_SESSION request is automatically
associated with the fore channel, and optionally the backchannel. If the client specifies no state
protection (Section 18.35) when the session is created, then when SEQUENCE is transmitted on a
different connection, the connection is automatically associated with the fore channel of the
session specified in the SEQUENCE operation.

A connection's association with a session is not exclusive. A connection associated with the
channel(s) of one session may be simultaneously associated with the channel(s) of other sessions
including sessions associated with other client IDs.

It is permissible for connections of multiple transport types to be associated with the same
channel. For example, both TCP and RDMA connections can be associated with the fore channel.
In the event an RDMA and non-RDMA connection are associated with the same channel, the
maximum number of slots be at least one more than the total number of RDMA credits
(Section 2.10.6.1). This way, if all RDMA credits are used, the non-RDMA connection can have at
least one outstanding request. If a server supports multiple transport types, it allow a client
to associate connections from each transport to a channel.

It is permissible for a connection of one type of transport to be associated with the fore channel,
and a connection of a different type to be associated with the backchannel.

SHOULD

MUST

2.10.4. Server Scope

Servers each specify a server scope value in the form of an opaque string eir_server_scope
returned as part of the results of an EXCHANGE_ID operation. The purpose of the server scope is
to allow a group of servers to indicate to clients that a set of servers sharing the same server
scope value has arranged to use distinct values of opaque identifiers so that the two servers
never assign the same value to two distinct objects. Thus, the identifiers generated by two servers
within that set can be assumed compatible so that, in certain important cases, identifiers
generated by one server in that set may be presented to another server of the same scope.

The use of such compatible values does not imply that a value generated by one server will
always be accepted by another. In most cases, it will not. However, a server will not
inadvertently accept a value generated by another server. When it does accept it, it will be
because it is recognized as valid and carrying the same meaning as on another server of the
same scope.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 39

When servers are of the same server scope, this compatibility of values applies to the following
identifiers:

Filehandle values. A filehandle value accepted by two servers of the same server scope
denotes the same object. A WRITE operation sent to one server is reflected immediately in a
READ sent to the other.
Server owner values. When the server scope values are the same, server owner value may
be validly compared. In cases where the server scope values are different, server owner
values are treated as different even if they contain identical strings of bytes.

The coordination among servers required to provide such compatibility can be quite minimal,
and limited to a simple partition of the ID space. The recognition of common values requires
additional implementation, but this can be tailored to the specific situations in which that
recognition is desired.

Clients will have occasion to compare the server scope values of multiple servers under a
number of circumstances, each of which will be discussed under the appropriate functional
section:

When server owner values received in response to EXCHANGE_ID operations sent to
multiple network addresses are compared for the purpose of determining the validity of
various forms of trunking, as described in Section 11.5.2.
When network or server reconfiguration causes the same network address to possibly be
directed to different servers, with the necessity for the client to determine when lock reclaim
should be attempted, as described in Section 8.4.2.1.

When two replies from EXCHANGE_ID, each from two different server network addresses, have
the same server scope, there are a number of ways a client can validate that the common server
scope is due to two servers cooperating in a group.

If both EXCHANGE_ID requests were sent with RPCSEC_GSS (, ,) authentication and
the server principal is the same for both targets, the equality of server scope is validated. It is

 that two servers intending to share the same server scope and server_owner
major_id also share the same principal name. In some cases, this simplifies the client's task
of validating server scope.
The client may accept the appearance of the second server in the fs_locations or
fs_locations_info attribute for a relevant file system. For example, if there is a migration
event for a particular file system or there are locks to be reclaimed on a particular file
system, the attributes for that particular file system may be used. The client sends the
GETATTR request to the first server for the fs_locations or fs_locations_info attribute with
RPCSEC_GSS authentication. It may need to do this in advance of the need to verify the
common server scope. If the client successfully authenticates the reply to GETATTR, and the
GETATTR request and reply containing the fs_locations or fs_locations_info attribute refers to
the second server, then the equality of server scope is supported. A client may choose to limit
the use of this form of support to information relevant to the specific file system involved
(e.g. a file system being migrated).

•

•

•

•

• [4] [9] [27]

RECOMMENDED

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 40

Session Trunking.

2.10.5. Trunking

Trunking is the use of multiple connections between a client and server in order to increase the
speed of data transfer. NFSv4.1 supports two types of trunking: session trunking and client ID
trunking.

In the context of a single server network address, it can be assumed that all connections are
accessing the same server, and NFSv4.1 servers support both forms of trunking. When
multiple connections use a set of network addresses to access the same server, the server
support both forms of trunking. NFSv4.1 servers in a clustered configuration allow network
addresses for different servers to use client ID trunking.

Clients may use either form of trunking as long as they do not, when trunking between different
server network addresses, violate the servers' mandates as to the kinds of trunking to be allowed
(see below). With regard to callback channels, the client allow the server to choose among
all callback channels valid for a given client ID and support trunking when the connections
supporting the backchannel allow session or client ID trunking to be used for callbacks.

Session trunking is essentially the association of multiple connections, each with potentially
different target and/or source network addresses, to the same session. When the target network
addresses (server addresses) of the two connections are the same, the server support such
session trunking. When the target network addresses are different, the server indicate such
support using the data returned by the EXCHANGE_ID operation (see below).

Client ID trunking is the association of multiple sessions to the same client ID. Servers
support client ID trunking for two target network addresses whenever they allow session
trunking for those same two network addresses. In addition, a server , by presenting the
same major server owner ID (Section 2.5) and server scope (Section 2.10.4), allow an additional
case of client ID trunking. When two servers return the same major server owner and server
scope, it means that the two servers are cooperating on locking state management, which is a
prerequisite for client ID trunking.

Distinguishing when the client is allowed to use session and client ID trunking requires
understanding how the results of the EXCHANGE_ID (Section 18.35) operation identify a server.
Suppose a client sends EXCHANGE_IDs over two different connections, each with a possibly
different target network address, but each EXCHANGE_ID operation has the same value in the
eia_clientowner field. If the same NFSv4.1 server is listening over each connection, then each
EXCHANGE_ID result return the same values of eir_clientid, eir_server_owner.so_major_id,
and eir_server_scope. The client can then treat each connection as referring to the same server
(subject to verification; see Section 2.10.5.1 below), and it can use each connection to trunk
requests and replies. The client's choice is whether session trunking or client ID trunking applies.

If the eia_clientowner argument is the same in two different EXCHANGE_ID
requests, and the eir_clientid, eir_server_owner.so_major_id,
eir_server_owner.so_minor_id, and eir_server_scope results match in both EXCHANGE_ID
results, then the client is permitted to perform session trunking. If the client has no session

MUST
MUST

MAY

MUST
MUST

MUST
MAY

MUST

MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 41

Client ID Trunking.

mapping to the tuple of eir_clientid, eir_server_owner.so_major_id, eir_server_scope, and
eir_server_owner.so_minor_id, then it creates the session via a CREATE_SESSION operation
over one of the connections, which associates the connection to the session. If there is a
session for the tuple, the client can send BIND_CONN_TO_SESSION to associate the
connection to the session.

Of course, if the client does not desire to use session trunking, it is not required to do so. It
can invoke CREATE_SESSION on the connection. This will result in client ID trunking as
described below. It can also decide to drop the connection if it does not choose to use
trunking.

If the eia_clientowner argument is the same in two different EXCHANGE_ID
requests, and the eir_clientid, eir_server_owner.so_major_id, and eir_server_scope results
match in both EXCHANGE_ID results, then the client is permitted to perform client ID
trunking (regardless of whether the eir_server_owner.so_minor_id results match). The
client can associate each connection with different sessions, where each session is
associated with the same server.

The client completes the act of client ID trunking by invoking CREATE_SESSION on each
connection, using the same client ID that was returned in eir_clientid. These invocations
create two sessions and also associate each connection with its respective session. The
client is free to decline to use client ID trunking by simply dropping the connection at this
point.

When doing client ID trunking, locking state is shared across sessions associated with that
same client ID. This requires the server to coordinate state across sessions and the client to
be able to associate the same locking state with multiple sessions.

It is always possible that, as a result of various sorts of reconfiguration events, eir_server_scope
and eir_server_owner values may be different on subsequent EXCHANGE_ID requests made to
the same network address.

In most cases, such reconfiguration events will be disruptive and indicate that an IP address
formerly connected to one server is now connected to an entirely different one.

Some guidelines on client handling of such situations follow:

When eir_server_scope changes, the client has no assurance that any IDs that it obtained
previously (e.g., filehandles) can be validly used on the new server, and, even if the new
server accepts them, there is no assurance that this is not due to accident. Thus, it is best to
treat all such state as lost or stale, although a client may assume that the probability of
inadvertent acceptance is low and treat this situation as within the next case.
When eir_server_scope remains the same and eir_server_owner.so_major_id changes, the
client can use the filehandles it has, consider its locking state lost, and attempt to reclaim or
otherwise re-obtain its locks. It might find that its filehandle is now stale. However, if
NFS4ERR_STALE is not returned, it can proceed to reclaim or otherwise re-obtain its open
locking state.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 42

When eir_server_scope and eir_server_owner.so_major_id remain the same, the client has to
use the now-current values of eir_server_owner.so_minor_id in deciding on appropriate
forms of trunking. This may result in connections being dropped or new sessions being
created.

•

2.10.5.1. Verifying Claims of Matching Server Identity
When the server responds using two different connections that claim matching or partially
matching eir_server_owner, eir_server_scope, and eir_clientid values, the client does not have to
trust the servers' claims. The client may verify these claims before trunking traffic in the
following ways:

For session trunking, clients reliably verify if connections between different
network paths are in fact associated with the same NFSv4.1 server and usable on the same
session, and servers allow clients to perform reliable verification. When a client ID is
created, the client specify that BIND_CONN_TO_SESSION is to be verified according
to the SP4_SSV or SP4_MACH_CRED (Section 18.35) state protection options. For SP4_SSV,
reliable verification depends on a shared secret (the SSV) that is established via the SET_SSV
(see Section 18.47) operation.

When a new connection is associated with the session (via the BIND_CONN_TO_SESSION
operation, see Section 18.34), if the client specified SP4_SSV state protection for the
BIND_CONN_TO_SESSION operation, the client send the BIND_CONN_TO_SESSION with
RPCSEC_GSS protection, using integrity or privacy, and an RPCSEC_GSS handle created with
the GSS SSV mechanism (see Section 2.10.9).

If the client mistakenly tries to associate a connection to a session of a wrong server, the
server will either reject the attempt because it is not aware of the session identifier of the
BIND_CONN_TO_SESSION arguments, or it will reject the attempt because the RPCSEC_GSS
authentication fails. Even if the server mistakenly or maliciously accepts the connection
association attempt, the RPCSEC_GSS verifier it computes in the response will not be verified
by the client, so the client will know it cannot use the connection for trunking the specified
session.

If the client specified SP4_MACH_CRED state protection, the BIND_CONN_TO_SESSION
operation will use RPCSEC_GSS integrity or privacy, using the same credential that was used
when the client ID was created. Mutual authentication via RPCSEC_GSS assures the client
that the connection is associated with the correct session of the correct server.

For client ID trunking, the client has at least two options for verifying that the same client ID
obtained from two different EXCHANGE_ID operations came from the same server. The first
option is to use RPCSEC_GSS authentication when sending each EXCHANGE_ID operation.
Each time an EXCHANGE_ID is sent with RPCSEC_GSS authentication, the client notes the
principal name of the GSS target. If the EXCHANGE_ID results indicate that client ID trunking
is possible, and the GSS targets' principal names are the same, the servers are the same and
client ID trunking is allowed.

• SHOULD

MUST
SHOULD

MUST

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 43

The second option for verification is to use SP4_SSV protection. When the client sends
EXCHANGE_ID, it specifies SP4_SSV protection. The first EXCHANGE_ID the client sends
always has to be confirmed by a CREATE_SESSION call. The client then sends SET_SSV. Later,
the client sends EXCHANGE_ID to a second destination network address different from the
one the first EXCHANGE_ID was sent to. The client checks that each EXCHANGE_ID reply has
the same eir_clientid, eir_server_owner.so_major_id, and eir_server_scope. If so, the client
verifies the claim by sending a CREATE_SESSION operation to the second destination
address, protected with RPCSEC_GSS integrity using an RPCSEC_GSS handle returned by the
second EXCHANGE_ID. If the server accepts the CREATE_SESSION request, and if the client
verifies the RPCSEC_GSS verifier and integrity codes, then the client has proof the second
server knows the SSV, and thus the two servers are cooperating for the purposes of
specifying server scope and client ID trunking.

2.10.6. Exactly Once Semantics

Via the session, NFSv4.1 offers exactly once semantics (EOS) for requests sent over a channel.
EOS is supported on both the fore channel and backchannel.

Each COMPOUND or CB_COMPOUND request that is sent with a leading SEQUENCE or
CB_SEQUENCE operation be executed by the receiver exactly once. This requirement holds
regardless of whether the request is sent with reply caching specified (see Section 2.10.6.1.3). The
requirement holds even if the requester is sending the request over a session created between a
pNFS data client and pNFS data server. To understand the rationale for this requirement, divide
the requests into three classifications:

Non-idempotent requests.
Idempotent modifying requests.
Idempotent non-modifying requests.

An example of a non-idempotent request is RENAME. Obviously, if a replier executes the same
RENAME request twice, and the first execution succeeds, the re-execution will fail. If the replier
returns the result from the re-execution, this result is incorrect. Therefore, EOS is required for
non-idempotent requests.

An example of an idempotent modifying request is a COMPOUND request containing a WRITE
operation. Repeated execution of the same WRITE has the same effect as execution of that WRITE
a single time. Nevertheless, enforcing EOS for WRITEs and other idempotent modifying requests
is necessary to avoid data corruption.

Suppose a client sends WRITE A to a noncompliant server that does not enforce EOS, and
receives no response, perhaps due to a network partition. The client reconnects to the server and
re-sends WRITE A. Now, the server has outstanding two instances of A. The server can be in a
situation in which it executes and replies to the retry of A, while the first A is still waiting in the
server's internal I/O system for some resource. Upon receiving the reply to the second attempt of
WRITE A, the client believes its WRITE is done so it is free to send WRITE B, which overlaps the

MUST

•
•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 44

byte-range of A. When the original A is dispatched from the server's I/O system and executed
(thus the second time A will have been written), then what has been written by B can be
overwritten and thus corrupted.

An example of an idempotent non-modifying request is a COMPOUND containing SEQUENCE,
PUTFH, READLINK, and nothing else. The re-execution of such a request will not cause data
corruption or produce an incorrect result. Nonetheless, to keep the implementation simple, the
replier enforce EOS for all requests, whether or not idempotent and non-modifying.

Note that true and complete EOS is not possible unless the server persists the reply cache in
stable storage, and unless the server is somehow implemented to never require a restart (indeed,
if such a server exists, the distinction between a reply cache kept in stable storage versus one
that is not is one without meaning). See Section 2.10.6.5 for a discussion of persistence in the
reply cache. Regardless, even if the server does not persist the reply cache, EOS improves
robustness and correctness over previous versions of NFS because the legacy duplicate request/
reply caches were based on the ONC RPC transaction identifier (XID). Section 2.10.6.1 explains the
shortcomings of the XID as a basis for a reply cache and describes how NFSv4.1 sessions improve
upon the XID.

MUST

2.10.6.1. Slot Identifiers and Reply Cache
The RPC layer provides a transaction ID (XID), which, while required to be unique, is not
convenient for tracking requests for two reasons. First, the XID is only meaningful to the
requester; it cannot be interpreted by the replier except to test for equality with previously sent
requests. When consulting an RPC-based duplicate request cache, the opaqueness of the XID
requires a computationally expensive look up (often via a hash that includes XID and source
address). NFSv4.1 requests use a non-opaque slot ID, which is an index into a slot table, which is
far more efficient. Second, because RPC requests can be executed by the replier in any order,
there is no bound on the number of requests that may be outstanding at any time. To achieve
perfect EOS, using ONC RPC would require storing all replies in the reply cache. XIDs are 32 bits;
storing over four billion (232) replies in the reply cache is not practical. In practice, previous
versions of NFS have chosen to store a fixed number of replies in the cache, and to use a least
recently used (LRU) approach to replacing cache entries with new entries when the cache is full.
In NFSv4.1, the number of outstanding requests is bounded by the size of the slot table, and a
sequence ID per slot is used to tell the replier when it is safe to delete a cached reply.

In the NFSv4.1 reply cache, when the requester sends a new request, it selects a slot ID in the
range 0..N, where N is the replier's current maximum slot ID granted to the requester on the
session over which the request is to be sent. The value of N starts out as equal to ca_maxrequests
- 1 (Section 18.36), but can be adjusted by the response to SEQUENCE or CB_SEQUENCE as
described later in this section. The slot ID must be unused by any of the requests that the
requester has already active on the session. "Unused" here means the requester has no
outstanding request for that slot ID.

A slot contains a sequence ID and the cached reply corresponding to the request sent with that
sequence ID. The sequence ID is a 32-bit unsigned value, and is therefore in the range
0..0xFFFFFFFF (232 - 1). The first time a slot is used, the requester specify a sequence ID ofMUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 45

one (Section 18.36). Each time a slot is reused, the request specify a sequence ID that is one
greater than that of the previous request on the slot. If the previous sequence ID was
0xFFFFFFFF, then the next request for the slot have the sequence ID set to zero (i.e., (232 -
1) + 1 mod 232).

The sequence ID accompanies the slot ID in each request. It is for the critical check at the replier:
it used to efficiently determine whether a request using a certain slot ID is a retransmit or a new,
never-before-seen request. It is not feasible for the requester to assert that it is retransmitting to
implement this, because for any given request the requester cannot know whether the replier
has seen it unless the replier actually replies. Of course, if the requester has seen the reply, the
requester would not retransmit.

The replier compares each received request's sequence ID with the last one previously received
for that slot ID, to see if the new request is:

A new request, in which the sequence ID is one greater than that previously seen in the slot
(accounting for sequence wraparound). The replier proceeds to execute the new request, and
the replier increase the slot's sequence ID by one.
A retransmitted request, in which the sequence ID is equal to that currently recorded in the
slot. If the original request has executed to completion, the replier returns the cached reply.
See Section 2.10.6.2 for direction on how the replier deals with retries of requests that are
still in progress.
A misordered retry, in which the sequence ID is less than (accounting for sequence
wraparound) that previously seen in the slot. The replier return
NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).
A misordered new request, in which the sequence ID is two or more than (accounting for
sequence wraparound) that previously seen in the slot. Note that because the sequence ID

 wrap around to zero once it reaches 0xFFFFFFFF, a misordered new request and a
misordered retry cannot be distinguished. Thus, the replier return
NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

Unlike the XID, the slot ID is always within a specific range; this has two implications. The first
implication is that for a given session, the replier need only cache the results of a limited number
of COMPOUND requests. The second implication derives from the first, which is that unlike XID-
indexed reply caches (also known as duplicate request caches - DRCs), the slot ID-based reply
cache cannot be overflowed. Through use of the sequence ID to identify retransmitted requests,
the replier does not need to actually cache the request itself, reducing the storage requirements
of the reply cache further. These facilities make it practical to maintain all the required entries
for an effective reply cache.

The slot ID, sequence ID, and session ID therefore take over the traditional role of the XID and
source network address in the replier's reply cache implementation. This approach is
considerably more portable and completely robust -- it is not subject to the reassignment of ports
as clients reconnect over IP networks. In addition, the RPC XID is not used in the reply cache,
enhancing robustness of the cache in the face of any rapid reuse of XIDs by the requester. While
the replier does not care about the XID for the purposes of reply cache management (but the

MUST

MUST

•

MUST
•

•
MUST

•

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 46

replier return the same XID that was in the request), nonetheless there are considerations
for the XID in NFSv4.1 that are the same as all other previous versions of NFS. The RPC XID
remains in each message and needs to be formulated in NFSv4.1 requests as in any other ONC
RPC request. The reasons include:

The RPC layer retains its existing semantics and implementation.
The requester and replier must be able to interoperate at the RPC layer, prior to the NFSv4.1
decoding of the SEQUENCE or CB_SEQUENCE operation.
If an operation is being used that does not start with SEQUENCE or CB_SEQUENCE (e.g.,
BIND_CONN_TO_SESSION), then the RPC XID is needed for correct operation to match the
reply to the request.
The SEQUENCE or CB_SEQUENCE operation may generate an error. If so, the embedded slot
ID, sequence ID, and session ID (if present) in the request will not be in the reply, and the
requester has only the XID to match the reply to the request.

Given that well-formulated XIDs continue to be required, this raises the question: why do
SEQUENCE and CB_SEQUENCE replies have a session ID, slot ID, and sequence ID? Having the
session ID in the reply means that the requester does not have to use the XID to look up the
session ID, which would be necessary if the connection were associated with multiple sessions.
Having the slot ID and sequence ID in the reply means that the requester does not have to use the
XID to look up the slot ID and sequence ID. Furthermore, since the XID is only 32 bits, it is too
small to guarantee the re-association of a reply with its request ; having session ID, slot ID,
and sequence ID in the reply allows the client to validate that the reply in fact belongs to the
matched request.

The SEQUENCE (and CB_SEQUENCE) operation also carries a "highest_slotid" value, which carries
additional requester slot usage information. The requester always indicate the slot ID
representing the outstanding request with the highest-numbered slot value. The requester
should in all cases provide the most conservative value possible, although it can be increased
somewhat above the actual instantaneous usage to maintain some minimum or optimal level.
This provides a way for the requester to yield unused request slots back to the replier, which in
turn can use the information to reallocate resources.

The replier responds with both a new target highest_slotid and an enforced highest_slotid,
described as follows:

The target highest_slotid is an indication to the requester of the highest_slotid the replier
wishes the requester to be using. This permits the replier to withdraw (or add) resources
from a requester that has been found to not be using them, in order to more fairly share
resources among a varying level of demand from other requesters. The requester must
always comply with the replier's value updates, since they indicate newly established hard
limits on the requester's access to session resources. However, because of request pipelining,
the requester may have active requests in flight reflecting prior values; therefore, the replier
must not immediately require the requester to comply.

MUST

•
•

•

•

[44]

MUST

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 47

The enforced highest_slotid indicates the highest slot ID the requester is permitted to use on
a subsequent SEQUENCE or CB_SEQUENCE operation. The replier's enforced highest_slotid

 be no less than the highest_slotid the requester indicated in the SEQUENCE or
CB_SEQUENCE arguments.

A requester can be intransigent with respect to lowering its highest_slotid argument to a
Sequence operation, i.e. the requester continues to ignore the target highest_slotid in the
response to a Sequence operation, and continues to set its highest_slotid argument to be
higher than the target highest_slotid. This can be considered particularly egregious behavior
when the replier knows there are no outstanding requests with slot IDs higher than its target
highest_slotid. When faced with such intransigence, the replier is free to take more forceful
action, and reply with a new enforced highest_slotid that is less than its previous
enforced highest_slotid. Thereafter, if the requester continues to send requests with a
highest_slotid that is greater than the replier's new enforced highest_slotid, the server
return NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in the request is greater than the new
enforced highest_slotid and the request is a retry.

The replier retain the slots it wants to retire until the requester sends a request with
a highest_slotid less than or equal to the replier's new enforced highest_slotid.

The requester can also be intransigent with respect to sending non-retry requests that have a
slot ID that exceeds the replier's highest_slotid. Once the replier has forcibly lowered the
enforced highest_slotid, the requester is only allowed to send retries on slots that exceed the
replier's highest_slotid. If a request is received with a slot ID that is higher than the new
enforced highest_slotid, and the sequence ID is one higher than what is in the slot's reply
cache, then the server can both retire the slot and return NFS4ERR_BADSLOT (however, the
server do one and not the other). The reason it is safe to retire the slot is because
by using the next sequence ID, the requester is indicating it has received the previous reply
for the slot.

The requester use the lowest available slot when sending a new request. This way,
the replier may be able to retire slot entries faster. However, where the replier is actively
adjusting its granted highest_slotid, it will not be able to use only the receipt of the slot ID
and highest_slotid in the request. Neither the slot ID nor the highest_slotid used in a request
may reflect the replier's current idea of the requester's session limit, because the request
may have been sent from the requester before the update was received. Therefore, in the
downward adjustment case, the replier may have to retain a number of reply cache entries
at least as large as the old value of maximum requests outstanding, until it can infer that the
requester has seen a reply containing the new granted highest_slotid. The replier can infer
that the requester has seen such a reply when it receives a new request with the same slot ID
as the request replied to and the next higher sequence ID.

•

SHOULD

MAY

MAY

SHOULD

MUST NOT

• SHOULD

2.10.6.1.1. Caching of SEQUENCE and CB_SEQUENCE Replies
When a SEQUENCE or CB_SEQUENCE operation is successfully executed, its reply always
be cached. Specifically, session ID, sequence ID, and slot ID be cached in the reply cache.
The reply from SEQUENCE also includes the highest slot ID, target highest slot ID, and status flags.

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 48

Instead of caching these values, the server re-compute the values from the current state of
the fore channel, session, and/or client ID as appropriate. Similarly, the reply from CB_SEQUENCE
includes a highest slot ID and target highest slot ID. The client re-compute the values from
the current state of the session as appropriate.

Regardless of whether or not a replier is re-computing highest slot ID, target slot ID, and status on
replies to retries, the requester assume that the values are being re-computed
whenever it receives a reply after a retry is sent, since it has no way of knowing whether the
reply it has received was sent by the replier in response to the retry or is a delayed response to
the original request. Therefore, it may be the case that highest slot ID, target slot ID, or status bits
may reflect the state of affairs when the request was first executed. Although acting based on
such delayed information is valid, it may cause the receiver of the reply to do unneeded work.
Requesters choose to send additional requests to get the current state of affairs or use the
state of affairs reported by subsequent requests, in preference to acting immediately on data that
might be out of date.

MAY

MAY

MUST NOT

MAY

2.10.6.1.2. Errors from SEQUENCE and CB_SEQUENCE
Any time SEQUENCE or CB_SEQUENCE returns an error, the sequence ID of the slot
change. The replier modify the reply cache entry for the slot whenever an error is
returned from SEQUENCE or CB_SEQUENCE.

MUST NOT
MUST NOT

2.10.6.1.3. Optional Reply Caching
On a per-request basis, the requester can choose to direct the replier to cache the reply to all
operations after the first operation (SEQUENCE or CB_SEQUENCE) via the sa_cachethis or
csa_cachethis fields of the arguments to SEQUENCE or CB_SEQUENCE. The reason it would not
direct the replier to cache the entire reply is that the request is composed of all idempotent
operations . Caching the reply may offer little benefit. If the reply is too large (see Section
2.10.6.4), it may not be cacheable anyway. Even if the reply to idempotent request is small
enough to cache, unnecessarily caching the reply slows down the server and increases RPC
latency.

Whether or not the requester requests the reply to be cached has no effect on the slot processing.
If the result of SEQUENCE or CB_SEQUENCE is NFS4_OK, then the slot's sequence ID be
incremented by one. If a requester does not direct the replier to cache the reply, the replier
do one of following:

The replier can cache the entire original reply. Even though sa_cachethis or csa_cachethis is
FALSE, the replier is always free to cache. It may choose this approach in order to simplify
implementation.
The replier enters into its reply cache a reply consisting of the original results to the
SEQUENCE or CB_SEQUENCE operation, and with the next operation in COMPOUND or
CB_COMPOUND having the error NFS4ERR_RETRY_UNCACHED_REP. Thus, if the requester

[41]

MUST
MUST

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 49

later retries the request, it will get NFS4ERR_RETRY_UNCACHED_REP. If a replier receives a
retried Sequence operation where the reply to the COMPOUND or CB_COMPOUND was not
cached, then the replier,

 return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the
Sequence operation is not the first operation (granted, a requester that does so is in
violation of the NFSv4.1 protocol).

 return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the
Sequence operation is the first operation.

If the second operation is an illegal operation, or an operation that was legal in a previous
minor version of NFSv4 and be supported in the current minor version (e.g.,
SETCLIENTID), the replier ever return NFS4ERR_RETRY_UNCACHED_REP. Instead
the replier return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP
as appropriate.
If the second operation can result in another error status, the replier return a status
other than NFS4ERR_RETRY_UNCACHED_REP, provided the operation is not executed in such
a way that the state of the replier is changed. Examples of such an error status include:
NFS4ERR_NOTSUPP returned for an operation that is legal but not in the current
minor versions, and thus not supported by the replier; NFS4ERR_SEQUENCE_POS; and
NFS4ERR_REQ_TOO_BIG.

The discussion above assumes that the retried request matches the original one. Section
2.10.6.1.3.1 discusses what the replier might do, and do when original and retried requests
do not match. Since the replier may only cache a small amount of the information that would be
required to determine whether this is a case of a false retry, the replier may send to the client
any of the following responses:

The cached reply to the original request (if the replier has cached it in its entirety and the
users of the original request and retry match).
A reply that consists only of the Sequence operation with the error
NFS4ERR_SEQ_FALSE_RETRY.
A reply consisting of the response to Sequence with the status NFS4_OK, together with the
second operation as it appeared in the retried request with an error of
NFS4ERR_RETRY_UNCACHED_REP or other error as described above.
A reply that consists of the response to Sequence with the status NFS4_OK, together with the
second operation as it appeared in the original request with an error of
NFS4ERR_RETRY_UNCACHED_REP or other error as described above.

◦ MAY

◦ MUST NOT

•
MUST NOT

MUST NOT
MUST

• MAY

REQUIRED

MUST

•

•

•

•

2.10.6.1.3.1. False Retry
If a requester sent a Sequence operation with a slot ID and sequence ID that are in the reply
cache but the replier detected that the retried request is not the same as the original request,
including a retry that has different operations or different arguments in the operations from the
original and a retry that uses a different principal in the RPC request's credential field that

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 50

translates to a different user, then this is a false retry. When the replier detects a false retry, it is
permitted (but not always obligated) to return NFS4ERR_SEQ_FALSE_RETRY in response to the
Sequence operation when it detects a false retry.

Translations of particularly privileged user values to other users due to the lack of appropriately
secure credentials, as configured on the replier, should be applied before determining whether
the users are the same or different. If the replier determines the users are different between the
original request and a retry, then the replier return NFS4ERR_SEQ_FALSE_RETRY.

If an operation of the retry is an illegal operation, or an operation that was legal in a previous
minor version of NFSv4 and be supported in the current minor version (e.g.,
SETCLIENTID), the replier return NFS4ERR_SEQ_FALSE_RETRY (and do so if the users
of the original request and retry differ). Otherwise, the replier return
NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP as appropriate. Note that the
handling is in contrast for how the replier deals with retries requests with no cached reply. The
difference is due to NFS4ERR_SEQ_FALSE_RETRY being a valid error for only Sequence
operations, whereas NFS4ERR_RETRY_UNCACHED_REP is a valid error for all operations except
illegal operations and operations that be supported in the current minor version of
NFSv4.

MUST

MUST NOT
MAY MUST

MAY

MUST NOT

2.10.6.2. Retry and Replay of Reply
A requester retry a request, unless the connection it used to send the request
disconnects. The requester can then reconnect and re-send the request, or it can re-send the
request over a different connection that is associated with the same session.

If the requester is a server wanting to re-send a callback operation over the backchannel of a
session, the requester of course cannot reconnect because only the client can associate
connections with the backchannel. The server can re-send the request over another connection
that is bound to the same session's backchannel. If there is no such connection, the server
indicate that the session has no backchannel by setting the
SEQ4_STATUS_CB_PATH_DOWN_SESSION flag bit in the response to the next SEQUENCE
operation from the client. The client then associate a connection with the session (or
destroy the session).

Note that it is not fatal for a requester to retry without a disconnect between the request and
retry. However, the retry does consume resources, especially with RDMA, where each request,
retry or not, consumes a credit. Retries for no reason, especially retries sent shortly after the
previous attempt, are a poor use of network bandwidth and defeat the purpose of a transport's
inherent congestion control system.

A requester wait for a reply to a request before using the slot for another request. If it does
not wait for a reply, then the requester does not know what sequence ID to use for the slot on its
next request. For example, suppose a requester sends a request with sequence ID 1, and does not
wait for the response. The next time it uses the slot, it sends the new request with sequence ID 2.
If the replier has not seen the request with sequence ID 1, then the replier is not expecting
sequence ID 2, and rejects the requester's new request with NFS4ERR_SEQ_MISORDERED (as the
result from SEQUENCE or CB_SEQUENCE).

MUST NOT

MUST

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 51

RDMA fabrics do not guarantee that the memory handles (Steering Tags) within each RPC/RDMA
"chunk" are valid on a scope outside that of a single connection. Therefore, handles used by
the direct operations become invalid after connection loss. The server must ensure that any
RDMA operations that must be replayed from the reply cache use the newly provided handle(s)
from the most recent request.

A retry might be sent while the original request is still in progress on the replier. The replier
 deal with the issue by returning NFS4ERR_DELAY as the reply to SEQUENCE or

CB_SEQUENCE operation, but implementations return NFS4ERR_MISORDERED. Since errors
from SEQUENCE and CB_SEQUENCE are never recorded in the reply cache, this approach allows
the results of the execution of the original request to be properly recorded in the reply cache
(assuming that the requester specified the reply to be cached).

[32]

SHOULD
MAY

2.10.6.3. Resolving Server Callback Races
It is possible for server callbacks to arrive at the client before the reply from related fore channel
operations. For example, a client may have been granted a delegation to a file it has opened, but
the reply to the OPEN (informing the client of the granting of the delegation) may be delayed in
the network. If a conflicting operation arrives at the server, it will recall the delegation using the
backchannel, which may be on a different transport connection, perhaps even a different
network, or even a different session associated with the same client ID.

The presence of a session between the client and server alleviates this issue. When a session is in
place, each client request is uniquely identified by its { session ID, slot ID, sequence ID } triple. By
the rules under which slot entries (reply cache entries) are retired, the server has knowledge
whether the client has "seen" each of the server's replies. The server can therefore provide
sufficient information to the client to allow it to disambiguate between an erroneous or
conflicting callback race condition.

For each client operation that might result in some sort of server callback, the server
"remember" the { session ID, slot ID, sequence ID } triple of the client request until the slot ID
retirement rules allow the server to determine that the client has, in fact, seen the server's reply.
Until the time the { session ID, slot ID, sequence ID } request triple can be retired, any recalls of
the associated object carry an array of these referring identifiers (in the CB_SEQUENCE
operation's arguments), for the benefit of the client. After this time, it is not necessary for the
server to provide this information in related callbacks, since it is certain that a race condition
can no longer occur.

The CB_SEQUENCE operation that begins each server callback carries a list of "referring"
{ session ID, slot ID, sequence ID } triples. If the client finds the request corresponding to the
referring session ID, slot ID, and sequence ID to be currently outstanding (i.e., the server's reply
has not been seen by the client), it can determine that the callback has raced the reply, and act
accordingly. If the client does not find the request corresponding to the referring triple to be
outstanding (including the case of a session ID referring to a destroyed session), then there is no
race with respect to this triple. The server limit the referring triples to requests that
refer to just those that apply to the objects referred to in the CB_COMPOUND procedure.

SHOULD

MUST

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 52

The client must not simply wait forever for the expected server reply to arrive before responding
to the CB_COMPOUND that won the race, because it is possible that it will be delayed indefinitely.
The client should assume the likely case that the reply will arrive within the average round-trip
time for COMPOUND requests to the server, and wait that period of time. If that period of time
expires, it can respond to the CB_COMPOUND with NFS4ERR_DELAY. There are other scenarios
under which callbacks may race replies. Among them are pNFS layout recalls as described in
Section 12.5.5.2.

2.10.6.4. COMPOUND and CB_COMPOUND Construction Issues
Very large requests and replies may pose both buffer management issues (especially with RDMA)
and reply cache issues. When the session is created (Section 18.36), for each channel (fore and
back), the client and server negotiate the maximum-sized request they will send or process
(ca_maxrequestsize), the maximum-sized reply they will return or process (ca_maxresponsesize),
and the maximum-sized reply they will store in the reply cache (ca_maxresponsesize_cached).

If a request exceeds ca_maxrequestsize, the reply will have the status NFS4ERR_REQ_TOO_BIG. A
replier return NFS4ERR_REQ_TOO_BIG as the status for the first operation (SEQUENCE or
CB_SEQUENCE) in the request (which means that no operations in the request executed and that
the state of the slot in the reply cache is unchanged), or it opt to return it on a subsequent
operation in the same COMPOUND or CB_COMPOUND request (which means that at least one
operation did execute and that the state of the slot in the reply cache does change). The replier

 set NFS4ERR_REQ_TOO_BIG on the operation that exceeds ca_maxrequestsize.

If a reply exceeds ca_maxresponsesize, the reply will have the status NFS4ERR_REP_TOO_BIG. A
replier return NFS4ERR_REP_TOO_BIG as the status for the first operation (SEQUENCE or
CB_SEQUENCE) in the request, or it opt to return it on a subsequent operation (in the same
COMPOUND or CB_COMPOUND reply). A replier return NFS4ERR_REP_TOO_BIG in the reply
to SEQUENCE or CB_SEQUENCE, even if the response would still exceed ca_maxresponsesize.

If sa_cachethis or csa_cachethis is TRUE, then the replier cache a reply except if an error is
returned by the SEQUENCE or CB_SEQUENCE operation (see Section 2.10.6.1.2). If the reply
exceeds ca_maxresponsesize_cached (and sa_cachethis or csa_cachethis is TRUE), then the server

 return NFS4ERR_REP_TOO_BIG_TO_CACHE. Even if NFS4ERR_REP_TOO_BIG_TO_CACHE (or
any other error for that matter) is returned on an operation other than the first operation
(SEQUENCE or CB_SEQUENCE), then the reply be cached if sa_cachethis or csa_cachethis is
TRUE. For example, if a COMPOUND has eleven operations, including SEQUENCE, the fifth
operation is a RENAME, and the tenth operation is a READ for one million bytes, the server may
return NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth operation. Since the server executed
several operations, especially the non-idempotent RENAME, the client's request to cache the
reply needs to be honored in order for the correct operation of exactly once semantics. If the
client retries the request, the server will have cached a reply that contains results for ten of the
eleven requested operations, with the tenth operation having a status of
NFS4ERR_REP_TOO_BIG_TO_CACHE.

MAY

MAY

SHOULD

MAY
MAY

MAY

MUST

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 53

A client needs to take care that, when sending operations that change the current filehandle
(except for PUTFH, PUTPUBFH, PUTROOTFH, and RESTOREFH), it does not exceed the maximum
reply buffer before the GETFH operation. Otherwise, the client will have to retry the operation
that changed the current filehandle, in order to obtain the desired filehandle. For the OPEN
operation (see Section 18.16), retry is not always available as an option. The following guidelines
for the handling of filehandle-changing operations are advised:

Within the same COMPOUND procedure, a client send GETFH immediately after a
current filehandle-changing operation. A client send GETFH after a current filehandle-
changing operation that is also non-idempotent (e.g., the OPEN operation), unless the
operation is RESTOREFH. RESTOREFH is an exception, because even though it is non-
idempotent, the filehandle RESTOREFH produced originated from an operation that is either
idempotent (e.g., PUTFH, LOOKUP), or non-idempotent (e.g., OPEN, CREATE). If the origin is
non-idempotent, then because the client send GETFH after the origin operation, the
client can recover if RESTOREFH returns an error.
A server return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if
sa_cachethis is TRUE) on a filehandle-changing operation if the reply would be too large on
the next operation.
A server return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if
sa_cachethis is TRUE) on a filehandle-changing, non-idempotent operation if the reply would
be too large on the next operation, especially if the operation is OPEN.
A server return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent current filehandle-
changing operation, if it looks at the next operation (in the same COMPOUND procedure) and
finds it is not GETFH. The server do this if it is unable to determine in advance
whether the total response size would exceed ca_maxresponsesize_cached or
ca_maxresponsesize.

• SHOULD
MUST

MUST

• MAY

• SHOULD

• MAY

SHOULD

2.10.6.5. Persistence
Since the reply cache is bounded, it is practical for the reply cache to persist across server
restarts. The replier persist the following information if it agreed to persist the session
(when the session was created; see Section 18.36):

The session ID.
The slot table including the sequence ID and cached reply for each slot.

The above are sufficient for a replier to provide EOS semantics for any requests that were sent
and executed before the server restarted. If the replier is a client, then there is no need for it to
persist any more information, unless the client will be persisting all other state across client
restart, in which case, the server will never see any NFSv4.1-level protocol manifestation of a
client restart. If the replier is a server, with just the slot table and session ID persisting, any
requests the client retries after the server restart will return the results that are cached in the
reply cache, and any new requests (i.e., the sequence ID is one greater than the slot's sequence
ID) be rejected with NFS4ERR_DEADSESSION (returned by SEQUENCE). Such a session is

MUST

•
•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 54

considered dead. A server re-animate a session after a server restart so that the session will
accept new requests as well as retries. To re-animate a session, the server needs to persist
additional information through server restart:

The client ID. This is a prerequisite to let the client create more sessions associated with the
same client ID as the re-animated session.
The client ID's sequence ID that is used for creating sessions (see Sections 18.35 and 18.36).
This is a prerequisite to let the client create more sessions.
The principal that created the client ID. This allows the server to authenticate the client
when it sends EXCHANGE_ID.
The SSV, if SP4_SSV state protection was specified when the client ID was created (see Section
18.35). This lets the client create new sessions, and associate connections with the new and
existing sessions.
The properties of the client ID as defined in Section 18.35.

A persistent reply cache places certain demands on the server. The execution of the sequence of
operations (starting with SEQUENCE) and placement of its results in the persistent cache be
atomic. If a client retries a sequence of operations that was previously executed on the server,
the only acceptable outcomes are either the original cached reply or an indication that the client
ID or session has been lost (indicating a catastrophic loss of the reply cache or a session that has
been deleted because the client failed to use the session for an extended period of time).

A server could fail and restart in the middle of a COMPOUND procedure that contains one or
more non-idempotent or idempotent-but-modifying operations. This creates an even higher
challenge for atomic execution and placement of results in the reply cache. One way to view the
problem is as a single transaction consisting of each operation in the COMPOUND followed by
storing the result in persistent storage, then finally a transaction commit. If there is a failure
before the transaction is committed, then the server rolls back the transaction. If the server itself
fails, then when it restarts, its recovery logic could roll back the transaction before starting the
NFSv4.1 server.

While the description of the implementation for atomic execution of the request and caching of
the reply is beyond the scope of this document, an example implementation for NFSv2 is
described in .

MAY

•

•

•

•

•

MUST

[45]
[46]

2.10.7. RDMA Considerations

A complete discussion of the operation of RPC-based protocols over RDMA transports is in . A
discussion of the operation of NFSv4, including NFSv4.1, over RDMA is in . Where RDMA is
considered, this specification assumes the use of such a layering; it addresses only the upper-
layer issues relevant to making best use of RPC/RDMA.

[32]
[33]

2.10.7.1. RDMA Connection Resources
RDMA requires its consumers to register memory and post buffers of a specific size and number
for receive operations.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 55

Registration of memory can be a relatively high-overhead operation, since it requires pinning of
buffers, assignment of attributes (e.g., readable/writable), and initialization of hardware
translation. Preregistration is desirable to reduce overhead. These registrations are specific to
hardware interfaces and even to RDMA connection endpoints; therefore, negotiation of their
limits is desirable to manage resources effectively.

Following basic registration, these buffers must be posted by the RPC layer to handle receives.
These buffers remain in use by the RPC/NFSv4.1 implementation; the size and number of them
must be known to the remote peer in order to avoid RDMA errors that would cause a fatal error
on the RDMA connection.

NFSv4.1 manages slots as resources on a per-session basis (see Section 2.10), while RDMA
connections manage credits on a per-connection basis. This means that in order for a peer to
send data over RDMA to a remote buffer, it has to have both an NFSv4.1 slot and an RDMA credit.
If multiple RDMA connections are associated with a session, then if the total number of credits
across all RDMA connections associated with the session is X, and the number of slots in the
session is Y, then the maximum number of outstanding requests is the lesser of X and Y.

2.10.7.2. Flow Control
Previous versions of NFS do not provide flow control; instead, they rely on the windowing
provided by transports like TCP to throttle requests. This does not work with RDMA, which
provides no operation flow control and will terminate a connection in error when limits are
exceeded. Limits such as maximum number of requests outstanding are therefore negotiated
when a session is created (see the ca_maxrequests field in Section 18.36). These limits then
provide the maxima within which each connection associated with the session's channel(s) must
remain. RDMA connections are managed within these limits as described in ; if
there are multiple RDMA connections, then the maximum number of requests for a channel will
be divided among the RDMA connections. Put a different way, the onus is on the replier to ensure
that the total number of RDMA credits across all connections associated with the replier's
channel does exceed the channel's maximum number of outstanding requests.

The limits may also be modified dynamically at the replier's choosing by manipulating certain
parameters present in each NFSv4.1 reply. In addition, the CB_RECALL_SLOT callback operation
(see Section 20.8) can be sent by a server to a client to return RDMA credits to the server, thereby
lowering the maximum number of requests a client can have outstanding to the server.

Section 3.3 of [32]

2.10.7.3. Padding
Header padding is requested by each peer at session initiation (see the ca_headerpadsize
argument to CREATE_SESSION in Section 18.36), and subsequently used by the RPC RDMA layer,
as described in . Zero padding is permitted.

Padding leverages the useful property that RDMA preserve alignment of data, even when they
are placed into anonymous (untagged) buffers. If requested, client inline writes will insert
appropriate pad bytes within the request header to align the data payload on the specified
boundary. The client is encouraged to add sufficient padding (up to the negotiated size) so that
the "data" field of the WRITE operation is aligned. Most servers can make good use of such

[32]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 56

https://www.rfc-editor.org/rfc/rfc8166#section-3.3

padding, which allows them to chain receive buffers in such a way that any data carried by client
requests will be placed into appropriate buffers at the server, ready for file system processing.
The receiver's RPC layer encounters no overhead from skipping over pad bytes, and the RDMA
layer's high performance makes the insertion and transmission of padding on the sender a
significant optimization. In this way, the need for servers to perform RDMA Read to satisfy all but
the largest client writes is obviated. An added benefit is the reduction of message round trips on
the network -- a potentially good trade, where latency is present.

The value to choose for padding is subject to a number of criteria. A primary source of variable-
length data in the RPC header is the authentication information, the form of which is client-
determined, possibly in response to server specification. The contents of COMPOUNDs, sizes of
strings such as those passed to RENAME, etc. all go into the determination of a maximal NFSv4.1
request size and therefore minimal buffer size. The client must select its offered value carefully,
so as to avoid overburdening the server, and vice versa. The benefit of an appropriate padding
value is higher performance.

In the above case, the server may recycle unused buffers to the next posted receive if unused by
the actual received request, or may pass the now-complete buffers by reference for normal write
processing. For a server that can make use of it, this removes any need for data copies of
incoming data, without resorting to complicated end-to-end buffer advertisement and
management. This includes most kernel-based and integrated server designs, among many
others. The client may perform similar optimizations, if desired.

 Sender gather:
 |RPC Request|Pad bytes|Length| -> |User data...|
 \------+----------------------/ \
 \ \
 \ Receiver scatter: \-----------+- ...
 /-----+----------------\ \ \
 |RPC Request|Pad|Length| -> |FS buffer|->|FS buffer|->...

2.10.7.4. Dual RDMA and Non-RDMA Transports
Some RDMA transports (e.g., RFC 5040) permit a "streaming" (non-RDMA) phase, where
ordinary traffic might flow before "stepping up" to RDMA mode, commencing RDMA traffic. Some
RDMA transports start connections always in RDMA mode. NFSv4.1 allows, but does not assume,
a streaming phase before RDMA mode. When a connection is associated with a session, the client
and server negotiate whether the connection is used in RDMA or non-RDMA mode (see Sections
18.36 and 18.34).

[8]

2.10.8. Session Security

2.10.8.1. Session Callback Security
Via session/connection association, NFSv4.1 improves security over that provided by NFSv4.0 for
the backchannel. The connection is client-initiated (see Section 18.34) and subject to the same
firewall and routing checks as the fore channel. At the client's option (see Section 18.35),

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 57

connection association is fully authenticated before being activated (see Section 18.34). Traffic
from the server over the backchannel is authenticated exactly as the client specifies (see Section
2.10.8.2).

2.10.8.2. Backchannel RPC Security
When the NFSv4.1 client establishes the backchannel, it informs the server of the security flavors
and principals to use when sending requests. If the security flavor is RPCSEC_GSS, the client
expresses the principal in the form of an established RPCSEC_GSS context. The server is free to
use any of the flavor/principal combinations the client offers, but it use unoffered
combinations. This way, the client need not provide a target GSS principal for the backchannel as
it did with NFSv4.0, nor does the server have to implement an RPCSEC_GSS initiator as it did with
NFSv4.0 .

The CREATE_SESSION (Section 18.36) and BACKCHANNEL_CTL (Section 18.33) operations allow
the client to specify flavor/principal combinations.

Also note that the SP4_SSV state protection mode (see Sections 18.35 and 2.10.8.3) has the side
benefit of providing SSV-derived RPCSEC_GSS contexts (Section 2.10.9).

MUST NOT

[37]

2.10.8.3. Protection from Unauthorized State Changes
As described to this point in the specification, the state model of NFSv4.1 is vulnerable to an
attacker that sends a SEQUENCE operation with a forged session ID and with a slot ID that it
expects the legitimate client to use next. When the legitimate client uses the slot ID with the same
sequence number, the server returns the attacker's result from the reply cache, which disrupts
the legitimate client and thus denies service to it. Similarly, an attacker could send a
CREATE_SESSION with a forged client ID to create a new session associated with the client ID.
The attacker could send requests using the new session that change locking state, such as LOCKU
operations to release locks the legitimate client has acquired. Setting a security policy on the file
that requires RPCSEC_GSS credentials when manipulating the file's state is one potential work
around, but has the disadvantage of preventing a legitimate client from releasing state when
RPCSEC_GSS is required to do so, but a GSS context cannot be obtained (possibly because the user
has logged off the client).

NFSv4.1 provides three options to a client for state protection, which are specified when a client
creates a client ID via EXCHANGE_ID (Section 18.35).

The first (SP4_NONE) is to simply waive state protection.

The other two options (SP4_MACH_CRED and SP4_SSV) share several traits:

An RPCSEC_GSS-based credential is used to authenticate client ID and session maintenance
operations, including creating and destroying a session, associating a connection with the
session, and destroying the client ID.
Because RPCSEC_GSS is used to authenticate client ID and session maintenance, the attacker
cannot associate a rogue connection with a legitimate session, or associate a rogue session

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 58

with a legitimate client ID in order to maliciously alter the client ID's lock state via CLOSE,
LOCKU, DELEGRETURN, LAYOUTRETURN, etc.
In cases where the server's security policies on a portion of its namespace require
RPCSEC_GSS authentication, a client may have to use an RPCSEC_GSS credential to remove
per-file state (e.g., LOCKU, CLOSE, etc.). The server may require that the principal that
removes the state match certain criteria (e.g., the principal might have to be the same as the
one that acquired the state). However, the client might not have an RPCSEC_GSS context for
such a principal, and might not be able to create such a context (perhaps because the user
has logged off). When the client establishes SP4_MACH_CRED or SP4_SSV protection, it can
specify a list of operations that the server allow using the machine credential (if
SP4_MACH_CRED is used) or the SSV credential (if SP4_SSV is used).

The SP4_MACH_CRED state protection option uses a machine credential where the principal that
creates the client ID also be the principal that performs client ID and session maintenance
operations. The security of the machine credential state protection approach depends entirely on
safeguarding the per-machine credential. Assuming a proper safeguard using the per-machine
credential for operations like CREATE_SESSION, BIND_CONN_TO_SESSION, DESTROY_SESSION,
and DESTROY_CLIENTID will prevent an attacker from associating a rogue connection with a
session, or associating a rogue session with a client ID.

There are at least three scenarios for the SP4_MACH_CRED option:

The system administrator configures a unique, permanent per-machine credential for one of
the mandated GSS mechanisms (e.g., if Kerberos V5 is used, a "keytab" containing a principal
derived from a client host name could be used).
The client is used by a single user, and so the client ID and its sessions are used by just that
user. If the user's credential expires, then session and client ID maintenance cannot occur,
but since the client has a single user, only that user is inconvenienced.
The physical client has multiple users, but the client implementation has a unique client ID
for each user. This is effectively the same as the second scenario, but a disadvantage is that
each user needs to be allocated at least one session each, so the approach suffers from lack of
economy.

The SP4_SSV protection option uses the SSV (Section 1.7), via RPCSEC_GSS and the SSV GSS
mechanism (Section 2.10.9), to protect state from attack. The SP4_SSV protection option is
intended for the situation comprised of a client that has multiple active users and a system
administrator who wants to avoid the burden of installing a permanent machine credential on
each client. The SSV is established and updated on the server via SET_SSV (see Section 18.47). To
prevent eavesdropping, a client send SET_SSV via RPCSEC_GSS with the privacy service.
Several aspects of the SSV make it intractable for an attacker to guess the SSV, and thus associate
rogue connections with a session, and rogue sessions with a client ID:

The arguments to and results of SET_SSV include digests of the old and new SSV, respectively.
Because the initial value of the SSV is zero, therefore known, the client that opts for SP4_SSV
protection and opts to apply SP4_SSV protection to BIND_CONN_TO_SESSION and
CREATE_SESSION send at least one SET_SSV operation before the first

•

MUST

MUST

1.

2.

3.

SHOULD

•
•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 59

BIND_CONN_TO_SESSION operation or before the second CREATE_SESSION operation on a
client ID. If it does not, the SSV mechanism will not generate tokens (Section 2.10.9). A client

 send SET_SSV as soon as a session is created.
A SET_SSV request does not replace the SSV with the argument to SET_SSV. Instead, the
current SSV on the server is logically exclusive ORed (XORed) with the argument to SET_SSV.
Each time a new principal uses a client ID for the first time, the client send a
SET_SSV with that principal's RPCSEC_GSS credentials, with RPCSEC_GSS service set to
RPC_GSS_SVC_PRIVACY.

Here are the types of attacks that can be attempted by an attacker named Eve on a victim named
Bob, and how SP4_SSV protection foils each attack:

Suppose Eve is the first user to log into a legitimate client. Eve's use of an NFSv4.1 file system
will cause the legitimate client to create a client ID with SP4_SSV protection, specifying that
the BIND_CONN_TO_SESSION operation use the SSV credential. Eve's use of the file
system also causes an SSV to be created. The SET_SSV operation that creates the SSV will be
protected by the RPCSEC_GSS context created by the legitimate client, which uses Eve's GSS
principal and credentials. Eve can eavesdrop on the network while her RPCSEC_GSS context
is created and the SET_SSV using her context is sent. Even if the legitimate client sends the
SET_SSV with RPC_GSS_SVC_PRIVACY, because Eve knows her own credentials, she can
decrypt the SSV. Eve can compute an RPCSEC_GSS credential that BIND_CONN_TO_SESSION
will accept, and so associate a new connection with the legitimate session. Eve can change
the slot ID and sequence state of a legitimate session, and/or the SSV state, in such a way that
when Bob accesses the server via the same legitimate client, the legitimate client will be
unable to use the session.

The client's only recourse is to create a new client ID for Bob to use, and establish a new SSV
for the client ID. The client will be unable to delete the old client ID, and will let the lease on
the old client ID expire.

Once the legitimate client establishes an SSV over the new session using Bob's RPCSEC_GSS
context, Eve can use the new session via the legitimate client, but she cannot disrupt Bob.
Moreover, because the client have modified the SSV due to Eve using the new
session, Bob cannot get revenge on Eve by associating a rogue connection with the session.

The question is how did the legitimate client detect that Eve has hijacked the old session?
When the client detects that a new principal, Bob, wants to use the session, it have
sent a SET_SSV, which leads to the following sub-scenarios:

Let us suppose that from the rogue connection, Eve sent a SET_SSV with the same slot ID
and sequence ID that the legitimate client later uses. The server will assume the SET_SSV
sent with Bob's credentials is a retry, and return to the legitimate client the reply it sent
Eve. However, unless Eve can correctly guess the SSV the legitimate client will use, the
digest verification checks in the SET_SSV response will fail. That is an indication to the
client that the session has apparently been hijacked.

SHOULD
•

SHOULD

•

MUST

SHOULD

SHOULD

◦

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 60

Alternatively, Eve sent a SET_SSV with a different slot ID than the legitimate client uses for
its SET_SSV. Then the digest verification of the SET_SSV sent with Bob's credentials fails on
the server, and the error returned to the client makes it apparent that the session has been
hijacked.

Alternatively, Eve sent an operation other than SET_SSV, but with the same slot ID and
sequence that the legitimate client uses for its SET_SSV. The server returns to the legitimate
client the response it sent Eve. The client sees that the response is not at all what it expects.
The client assumes either session hijacking or a server bug, and either way destroys the
old session.

Eve associates a rogue connection with the session as above, and then destroys the session.
Again, Bob goes to use the server from the legitimate client, which sends a SET_SSV using
Bob's credentials. The client receives an error that indicates that the session does not exist.
When the client tries to create a new session, this will fail because the SSV it has does not
match that which the server has, and now the client knows the session was hijacked. The
legitimate client establishes a new client ID.

If Eve creates a connection before the legitimate client establishes an SSV, because the initial
value of the SSV is zero and therefore known, Eve can send a SET_SSV that will pass the
digest verification check. However, because the new connection has not been associated with
the session, the SET_SSV is rejected for that reason.

In summary, an attacker's disruption of state when SP4_SSV protection is in use is limited to the
formative period of a client ID, its first session, and the establishment of the SSV. Once a non-
malicious user uses the client ID, the client quickly detects any hijack and rectifies the situation.
Once a non-malicious user successfully modifies the SSV, the attacker cannot use NFSv4.1
operations to disrupt the non-malicious user.

Note that neither the SP4_MACH_CRED nor SP4_SSV protection approaches prevent hijacking of a
transport connection that has previously been associated with a session. If the goal of a counter-
threat strategy is to prevent connection hijacking, the use of IPsec is .

If a connection hijack occurs, the hijacker could in theory change locking state and negatively
impact the service to legitimate clients. However, if the server is configured to require the use of
RPCSEC_GSS with integrity or privacy on the affected file objects, and if
EXCHGID4_FLAG_BIND_PRINC_STATEID capability (Section 18.35) is in force, this will thwart
unauthorized attempts to change locking state.

◦

◦

•

•

RECOMMENDED

2.10.9. The Secret State Verifier (SSV) GSS Mechanism

The SSV provides the secret key for a GSS mechanism internal to NFSv4.1 that NFSv4.1 uses for
state protection. Contexts for this mechanism are not established via the RPCSEC_GSS protocol.
Instead, the contexts are automatically created when EXCHANGE_ID specifies SP4_SSV
protection. The only tokens defined are the PerMsgToken (emitted by GSS_GetMIC) and the
SealedMessage token (emitted by GSS_Wrap).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 61

The mechanism OID for the SSV mechanism is iso.org.dod.internet.private.enterprise.Michael
Eisler.nfs.ssv_mech (1.3.6.1.4.1.28882.1.1). While the SSV mechanism does not define any initial
context tokens, the OID can be used to let servers indicate that the SSV mechanism is acceptable
whenever the client sends a SECINFO or SECINFO_NO_NAME operation (see Section 2.6).

The SSV mechanism defines four subkeys derived from the SSV value. Each time SET_SSV is
invoked, the subkeys are recalculated by the client and server. The calculation of each of the four
subkeys depends on each of the four respective ssv_subkey4 enumerated values. The calculation
uses the HMAC algorithm, using the current SSV as the key, the one-way hash algorithm as
negotiated by EXCHANGE_ID, and the input text as represented by the XDR encoded enumeration
value for that subkey of data type ssv_subkey4. If the length of the output of the HMAC algorithm
exceeds the length of key of the encryption algorithm (which is also negotiated by
EXCHANGE_ID), then the subkey be truncated from the HMAC output, i.e., if the subkey is
of N bytes long, then the first N bytes of the HMAC output be used for the subkey. The
specification of EXCHANGE_ID states that the length of the output of the HMAC algorithm

 be less than the length of subkey needed for the encryption algorithm (see Section 18.35).

The subkey derived from SSV4_SUBKEY_MIC_I2T is used for calculating message integrity codes
(MICs) that originate from the NFSv4.1 client, whether as part of a request over the fore channel
or a response over the backchannel. The subkey derived from SSV4_SUBKEY_MIC_T2I is used for
MICs originating from the NFSv4.1 server. The subkey derived from SSV4_SUBKEY_SEAL_I2T is
used for encryption text originating from the NFSv4.1 client, and the subkey derived from
SSV4_SUBKEY_SEAL_T2I is used for encryption text originating from the NFSv4.1 server.

The PerMsgToken description is based on an XDR definition:

[52]

MUST
MUST

MUST
NOT

/* Input for computing subkeys */
enum ssv_subkey4 {
 SSV4_SUBKEY_MIC_I2T = 1,
 SSV4_SUBKEY_MIC_T2I = 2,
 SSV4_SUBKEY_SEAL_I2T = 3,
 SSV4_SUBKEY_SEAL_T2I = 4
};

/* Input for computing smt_hmac */
struct ssv_mic_plain_tkn4 {
 uint32_t smpt_ssv_seq;
 opaque smpt_orig_plain<>;
};

/* SSV GSS PerMsgToken token */
struct ssv_mic_tkn4 {
 uint32_t smt_ssv_seq;
 opaque smt_hmac<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 62

The field smt_hmac is an HMAC calculated by using the subkey derived from
SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I as the key, the one-way hash algorithm as
negotiated by EXCHANGE_ID, and the input text as represented by data of type
ssv_mic_plain_tkn4. The field smpt_ssv_seq is the same as smt_ssv_seq. The field smpt_orig_plain
is the "message" input passed to GSS_GetMIC() (see). The caller of GSS_GetMIC
() provides a pointer to a buffer containing the plain text. The SSV mechanism's entry point for
GSS_GetMIC() encodes this into an opaque array, and the encoding will include an initial four-
byte length, plus any necessary padding. Prepended to this will be the XDR encoded value of
smpt_ssv_seq, thus making up an XDR encoding of a value of data type ssv_mic_plain_tkn4,
which in turn is the input into the HMAC.

The token emitted by GSS_GetMIC() is XDR encoded and of XDR data type ssv_mic_tkn4. The field
smt_ssv_seq comes from the SSV sequence number, which is equal to one after SET_SSV (Section
18.47) is called the first time on a client ID. Thereafter, the SSV sequence number is incremented
on each SET_SSV. Thus, smt_ssv_seq represents the version of the SSV at the time GSS_GetMIC()
was called. As noted in Section 18.35, the client and server can maintain multiple concurrent
versions of the SSV. This allows the SSV to be changed without serializing all RPC calls that use
the SSV mechanism with SET_SSV operations. Once the HMAC is calculated, it is XDR encoded
into smt_hmac, which will include an initial four-byte length, and any necessary padding.
Prepended to this will be the XDR encoded value of smt_ssv_seq.

The SealedMessage description is based on an XDR definition:

The token emitted by GSS_Wrap() is XDR encoded and of XDR data type ssv_seal_cipher_tkn4.

The ssct_ssv_seq field has the same meaning as smt_ssv_seq.

The ssct_encr_data field is the result of encrypting a value of the XDR encoded data type
ssv_seal_plain_tkn4. The encryption key is the subkey derived from SSV4_SUBKEY_SEAL_I2T or
SSV4_SUBKEY_SEAL_T2I, and the encryption algorithm is that negotiated by EXCHANGE_ID.

Section 2.3.1 of [7]

/* Input for computing ssct_encr_data and ssct_hmac */
struct ssv_seal_plain_tkn4 {
 opaque sspt_confounder<>;
 uint32_t sspt_ssv_seq;
 opaque sspt_orig_plain<>;
 opaque sspt_pad<>;
};

/* SSV GSS SealedMessage token */
struct ssv_seal_cipher_tkn4 {
 uint32_t ssct_ssv_seq;
 opaque ssct_iv<>;
 opaque ssct_encr_data<>;
 opaque ssct_hmac<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 63

https://www.rfc-editor.org/rfc/rfc2743#section-2.3.1

The ssct_iv field is the initialization vector (IV) for the encryption algorithm (if applicable) and is
sent in clear text. The content and size of the IV comply with the specification of the
encryption algorithm. For example, the id-aes256-CBC algorithm use a 16-byte initialization
vector (IV), which be unpredictable for each instance of a value of data type
ssv_seal_plain_tkn4 that is encrypted with a particular SSV key.

The ssct_hmac field is the result of computing an HMAC using the value of the XDR encoded data
type ssv_seal_plain_tkn4 as the input text. The key is the subkey derived from
SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that
negotiated by EXCHANGE_ID.

The sspt_confounder field is a random value.

The sspt_ssv_seq field is the same as ssvt_ssv_seq.

The field sspt_orig_plain field is the original plaintext and is the "input_message" input passed to
GSS_Wrap() (see). As with the handling of the plaintext by the SSV
mechanism's GSS_GetMIC() entry point, the entry point for GSS_Wrap() expects a pointer to the
plaintext, and will XDR encode an opaque array into sspt_orig_plain representing the plain text,
along with the other fields of an instance of data type ssv_seal_plain_tkn4.

The sspt_pad field is present to support encryption algorithms that require inputs to be in fixed-
sized blocks. The content of sspt_pad is zero filled except for the length. Beware that the XDR
encoding of ssv_seal_plain_tkn4 contains three variable-length arrays, and so each array
consumes four bytes for an array length, and each array that follows the length is always padded
to a multiple of four bytes per the XDR standard.

For example, suppose the encryption algorithm uses 16-byte blocks, and the sspt_confounder is
three bytes long, and the sspt_orig_plain field is 15 bytes long. The XDR encoding of
sspt_confounder uses eight bytes (4 + 3 + 1-byte pad), the XDR encoding of sspt_ssv_seq uses four
bytes, the XDR encoding of sspt_orig_plain uses 20 bytes (4 + 15 + 1-byte pad), and the smallest
XDR encoding of the sspt_pad field is four bytes. This totals 36 bytes. The next multiple of 16 is 48;
thus, the length field of sspt_pad needs to be set to 12 bytes, or a total encoding of 16 bytes. The
total number of XDR encoded bytes is thus 8 + 4 + 20 + 16 = 48.

GSS_Wrap() emits a token that is an XDR encoding of a value of data type ssv_seal_cipher_tkn4.
Note that regardless of whether or not the caller of GSS_Wrap() requests confidentiality, the
token always has confidentiality. This is because the SSV mechanism is for RPCSEC_GSS, and
RPCSEC_GSS never produces GSS_wrap() tokens without confidentiality.

There is one SSV per client ID. There is a single GSS context for a client ID / SSV pair. All SSV
mechanism RPCSEC_GSS handles of a client ID / SSV pair share the same GSS context. SSV GSS
contexts do not expire except when the SSV is destroyed (causes would include the client ID
being destroyed or a server restart). Since one purpose of context expiration is to replace keys
that have been in use for "too long", hence vulnerable to compromise by brute force or accident,
the client can replace the SSV key by sending periodic SET_SSV operations, which is done by
cycling through different users' RPCSEC_GSS credentials. This way, the SSV is replaced without
destroying the SSV's GSS contexts.

MUST
MUST

MUST

Section 2.3.3 of [7]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 64

https://www.rfc-editor.org/rfc/rfc2743#section-2.3.3

SSV RPCSEC_GSS handles can be expired or deleted by the server at any time, and the
EXCHANGE_ID operation can be used to create more SSV RPCSEC_GSS handles. Expiration of SSV
RPCSEC_GSS handles does not imply that the SSV or its GSS context has expired.

The client establish an SSV via SET_SSV before the SSV GSS context can be used to emit
tokens from GSS_Wrap() and GSS_GetMIC(). If SET_SSV has not been successfully called, attempts
to emit tokens fail.

The SSV mechanism does not support replay detection and sequencing in its tokens because
RPCSEC_GSS does not use those features (see "Context Creation Requests",).
However, Section 2.10.10 discusses special considerations for the SSV mechanism when used
with RPCSEC_GSS.

MUST

MUST

Section 5.2.2 of [4]

2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV Mechanism

When a client ID is created with SP4_SSV state protection (see Section 18.35), the client is
permitted to associate multiple RPCSEC_GSS handles with the single SSV GSS context (see Section
2.10.9). Because of the way RPCSEC_GSS (both version 1 and version 2, see and) calculate
the verifier of the reply, special care must be taken by the implementation of the NFSv4.1 client
to prevent attacks by a man-in-the-middle. The verifier of an RPCSEC_GSS reply is the output of
GSS_GetMIC() applied to the input value of the seq_num field of the RPCSEC_GSS credential (data
type rpc_gss_cred_ver_1_t) (see). If multiple RPCSEC_GSS handles share the
same GSS context, then if one handle is used to send a request with the same seq_num value as
another handle, an attacker could block the reply, and replace it with the verifier used for the
other handle.

There are multiple ways to prevent the attack on the SSV RPCSEC_GSS verifier in the reply. The
simplest is believed to be as follows.

Each time one or more new SSV RPCSEC_GSS handles are created via EXCHANGE_ID, the
client send a SET_SSV operation to modify the SSV. By changing the SSV, the new
handles will not result in the re-use of an SSV RPCSEC_GSS verifier in a reply.
When a requester decides to use N SSV RPCSEC_GSS handles, it assign a unique and
non-overlapping range of seq_nums to each SSV RPCSEC_GSS handle. The size of each range

 be equal to MAXSEQ / N (see for the definition of MAXSEQ). When an
SSV RPCSEC_GSS handle reaches its maximum, it force the replier to destroy the
handle by sending a NULL RPC request with seq_num set to MAXSEQ + 1 (see

).
When the requester wants to increase or decrease N, it force the replier to destroy
all N handles by sending a NULL RPC request on each handle with seq_num set to MAXSEQ +
1. If the requester is the client, it send a SET_SSV operation before using new
handles. If the requester is the server, then the client send a SET_SSV operation
when it detects that the server has forced it to destroy a backchannel's SSV RPCSEC_GSS
handle. By sending a SET_SSV operation, the SSV will change, and so the attacker will be
unavailable to successfully replay a previous verifier in a reply to the requester.

[4] [9]

Section 5.3.3.2 of [4]

•
SHOULD

• SHOULD

SHOULD Section 5 of [4]
SHOULD

Section 5.3.3.3
of [4]

• SHOULD

SHOULD
SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 65

https://www.rfc-editor.org/rfc/rfc2203#section-5.2.2
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.3.2
https://www.rfc-editor.org/rfc/rfc2203#section-5
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.3.3

Note that if the replier carefully creates the SSV RPCSEC_GSS handles, the related risk of a man-
in-the-middle splicing a forged SSV RPCSEC_GSS credential with a verifier for another handle
does not exist. This is because the verifier in an RPCSEC_GSS request is computed from input that
includes both the RPCSEC_GSS handle and seq_num (see). Provided the replier
takes care to avoid re-using the value of an RPCSEC_GSS handle that it creates, such as by
including a generation number in the handle, the man-in-the-middle will not be able to
successfully replay a previous verifier in the request to a replier.

Section 5.3.1 of [4]

2.10.11. Session Mechanics - Steady State

2.10.11.1. Obligations of the Server
The server has the primary obligation to monitor the state of backchannel resources that the
client has created for the server (RPCSEC_GSS contexts and backchannel connections). If these
resources vanish, the server takes action as specified in Section 2.10.13.2.

2.10.11.2. Obligations of the Client
The client honor the following obligations in order to utilize the session:

Keep a necessary session from going idle on the server. A client that requires a session but
nonetheless is not sending operations risks having the session be destroyed by the server.
This is because sessions consume resources, and resource limitations may force the server to
cull an inactive session. A server consider a session to be inactive if the client has not
used the session before the session inactivity timer (Section 2.10.12) has expired.
Destroy the session when not needed. If a client has multiple sessions, one of which has no
requests waiting for replies, and has been idle for some period of time, it destroy
the session.
Maintain GSS contexts and RPCSEC_GSS handles for the backchannel. If the client requires
the server to use the RPCSEC_GSS security flavor for callbacks, then it needs to be sure the
RPCSEC_GSS handles and/or their GSS contexts that are handed to the server via
BACKCHANNEL_CTL or CREATE_SESSION are unexpired.
Preserve a connection for a backchannel. The server requires a backchannel in order to
gracefully recall recallable state or notify the client of certain events. Note that if the
connection is not being used for the fore channel, there is no way for the client to tell if the
connection is still alive (e.g., the server restarted without sending a disconnect). The onus is
on the server, not the client, to determine if the backchannel's connection is alive, and to
indicate in the response to a SEQUENCE operation when the last connection associated with
a session's backchannel has disconnected.

SHOULD

•

MAY

•
SHOULD

•

•

2.10.11.3. Steps the Client Takes to Establish a Session
If the client does not have a client ID, the client sends EXCHANGE_ID to establish a client ID. If it
opts for SP4_MACH_CRED or SP4_SSV protection, in the spo_must_enforce list of operations, it

 at minimum specify CREATE_SESSION, DESTROY_SESSION, BIND_CONN_TO_SESSION,
BACKCHANNEL_CTL, and DESTROY_CLIENTID. If it opts for SP4_SSV protection, the client needs
to ask for SSV-based RPCSEC_GSS handles.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 66

https://www.rfc-editor.org/rfc/rfc2203#section-5.3.1

The client uses the client ID to send a CREATE_SESSION on a connection to the server. The results
of CREATE_SESSION indicate whether or not the server will persist the session reply cache
through a server that has restarted, and the client notes this for future reference.

If the client specified SP4_SSV state protection when the client ID was created, then it
send SET_SSV in the first COMPOUND after the session is created. Each time a new principal goes
to use the client ID, it send a SET_SSV again.

If the client wants to use delegations, layouts, directory notifications, or any other state that
requires a backchannel, then it needs to add a connection to the backchannel if CREATE_SESSION
did not already do so. The client creates a connection, and calls BIND_CONN_TO_SESSION to
associate the connection with the session and the session's backchannel. If CREATE_SESSION did
not already do so, the client tell the server what security is required in order for the client
to accept callbacks. The client does this via BACKCHANNEL_CTL. If the client selected
SP4_MACH_CRED or SP4_SSV protection when it called EXCHANGE_ID, then the client
specify that the backchannel use RPCSEC_GSS contexts for security.

If the client wants to use additional connections for the backchannel, then it needs to call
BIND_CONN_TO_SESSION on each connection it wants to use with the session. If the client wants
to use additional connections for the fore channel, then it needs to call BIND_CONN_TO_SESSION
if it specified SP4_SSV or SP4_MACH_CRED state protection when the client ID was created.

At this point, the session has reached steady state.

SHOULD

SHOULD

MUST

SHOULD

2.10.12. Session Inactivity Timer

The server maintain a session inactivity timer for each session. If the session inactivity
timer expires, then the server destroy the session. To avoid losing a session due to inactivity,
the client renew the session inactivity timer. The length of session inactivity timer

 be less than the lease_time attribute (Section 5.8.1.11). As with lease renewal (Section 8.3),
when the server receives a SEQUENCE operation, it resets the session inactivity timer, and

 allow the timer to expire while the rest of the operations in the COMPOUND procedure's
request are still executing. Once the last operation has finished, the server set the session
inactivity timer to expire no sooner than the sum of the current time and the value of the
lease_time attribute.

MAY
MAY

MUST MUST
NOT

MUST
NOT

MUST

2.10.13. Session Mechanics - Recovery

2.10.13.1. Events Requiring Client Action
The following events require client action to recover.

2.10.13.1.1. RPCSEC_GSS Context Loss by Callback Path
If all RPCSEC_GSS handles granted by the client to the server for callback use have expired, the
client establish a new handle via BACKCHANNEL_CTL. The sr_status_flags field of the
SEQUENCE results indicates when callback handles are nearly expired, or fully expired (see
Section 18.46.3).

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 67

2.10.13.1.2. Connection Loss
If the client loses the last connection of the session and wants to retain the session, then it needs
to create a new connection, and if, when the client ID was created, BIND_CONN_TO_SESSION was
specified in the spo_must_enforce list, the client use BIND_CONN_TO_SESSION to associate
the connection with the session.

If there was a request outstanding at the time of connection loss, then if the client wants to
continue to use the session, it retry the request, as described in Section 2.10.6.2. Note that it
is not necessary to retry requests over a connection with the same source network address or the
same destination network address as the lost connection. As long as the session ID, slot ID, and
sequence ID in the retry match that of the original request, the server will recognize the request
as a retry if it executed the request prior to disconnect.

If the connection that was lost was the last one associated with the backchannel, and the client
wants to retain the backchannel and/or prevent revocation of recallable state, the client needs to
reconnect, and if it does, it associate the connection to the session and backchannel via
BIND_CONN_TO_SESSION. The server indicate when it has no callback connection via
the sr_status_flags result from SEQUENCE.

2.10.13.1.3. Backchannel GSS Context Loss
Via the sr_status_flags result of the SEQUENCE operation or other means, the client will learn if
some or all of the RPCSEC_GSS contexts it assigned to the backchannel have been lost. If the client
wants to retain the backchannel and/or not put recallable state subject to revocation, the client
needs to use BACKCHANNEL_CTL to assign new contexts.

MUST

MUST

MUST
SHOULD

2.10.13.1.4. Loss of Session
The replier might lose a record of the session. Causes include:

Replier failure and restart.
A catastrophe that causes the reply cache to be corrupted or lost on the media on which it
was stored. This applies even if the replier indicated in the CREATE_SESSION results that it
would persist the cache.
The server purges the session of a client that has been inactive for a very extended period of
time.
As a result of configuration changes among a set of clustered servers, a network address
previously connected to one server becomes connected to a different server that has no
knowledge of the session in question. Such a configuration change will generally only
happen when the original server ceases to function for a time.

Loss of reply cache is equivalent to loss of session. The replier indicates loss of session to the
requester by returning NFS4ERR_BADSESSION on the next operation that uses the session ID that
refers to the lost session.

•
•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 68

After an event like a server restart, the client may have lost its connections. The client assumes
for the moment that the session has not been lost. It reconnects, and if it specified connection
association enforcement when the session was created, it invokes BIND_CONN_TO_SESSION
using the session ID. Otherwise, it invokes SEQUENCE. If BIND_CONN_TO_SESSION or SEQUENCE
returns NFS4ERR_BADSESSION, the client knows the session is not available to it when
communicating with that network address. If the connection survives session loss, then the next
SEQUENCE operation the client sends over the connection will get back NFS4ERR_BADSESSION.
The client again knows the session was lost.

Here is one suggested algorithm for the client when it gets NFS4ERR_BADSESSION. It is not
obligatory in that, if a client does not want to take advantage of such features as trunking, it may
omit parts of it. However, it is a useful example that draws attention to various possible recovery
issues:

If the client has other connections to other server network addresses associated with the
same session, attempt a COMPOUND with a single operation, SEQUENCE, on each of the other
connections.
If the attempts succeed, the session is still alive, and this is a strong indicator that the server's
network address has moved. The client might send an EXCHANGE_ID on the connection that
returned NFS4ERR_BADSESSION to see if there are opportunities for client ID trunking (i.e.,
the same client ID and so_major_id value are returned). The client might use DNS to see if the
moved network address was replaced with another, so that the performance and availability
benefits of session trunking can continue.
If the SEQUENCE requests fail with NFS4ERR_BADSESSION, then the session no longer exists
on any of the server network addresses for which the client has connections associated with
that session ID. It is possible the session is still alive and available on other network
addresses. The client sends an EXCHANGE_ID on all the connections to see if the server
owner is still listening on those network addresses. If the same server owner is returned but
a new client ID is returned, this is a strong indicator of a server restart. If both the same
server owner and same client ID are returned, then this is a strong indication that the server
did delete the session, and the client will need to send a CREATE_SESSION if it has no other
sessions for that client ID. If a different server owner is returned, the client can use DNS to
find other network addresses. If it does not, or if DNS does not find any other addresses for
the server, then the client will be unable to provide NFSv4.1 service, and fatal errors should
be returned to processes that were using the server. If the client is using a "mount"
paradigm, unmounting the server is advised.
If the client knows of no other connections associated with the session ID and server
network addresses that are, or have been, associated with the session ID, then the client can
use DNS to find other network addresses. If it does not, or if DNS does not find any other
addresses for the server, then the client will be unable to provide NFSv4.1 service, and fatal
errors should be returned to processes that were using the server. If the client is using a
"mount" paradigm, unmounting the server is advised.

If there is a reconfiguration event that results in the same network address being assigned to
servers where the eir_server_scope value is different, it cannot be guaranteed that a session ID
generated by the first will be recognized as invalid by the first. Therefore, in managing server

1.

2.

3.

4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 69

reconfigurations among servers with different server scope values, it is necessary to make sure
that all clients have disconnected from the first server before effecting the reconfiguration.
Nonetheless, clients should not assume that servers will always adhere to this requirement;
clients be prepared to deal with unexpected effects of server reconfigurations. Even where
a session ID is inappropriately recognized as valid, it is likely either that the connection will not
be recognized as valid or that a sequence value for a slot will not be correct. Therefore, when a
client receives results indicating such unexpected errors, the use of EXCHANGE_ID to determine
the current server configuration is .

A variation on the above is that after a server's network address moves, there is no NFSv4.1
server listening, e.g., no listener on port 2049. In this example, one of the following occur: the
NFSv4 server returns NFS4ERR_MINOR_VERS_MISMATCH, the NFS server returns a
PROG_MISMATCH error, the RPC listener on 2049 returns PROG_UNVAIL, or attempts to
reconnect to the network address timeout. These be treated as equivalent to SEQUENCE
returning NFS4ERR_BADSESSION for these purposes.

When the client detects session loss, it needs to call CREATE_SESSION to recover. Any non-
idempotent operations that were in progress might have been performed on the server at the
time of session loss. The client has no general way to recover from this.

Note that loss of session does not imply loss of byte-range lock, open, delegation, or layout state
because locks, opens, delegations, and layouts are tied to the client ID and depend on the client
ID, not the session. Nor does loss of byte-range lock, open, delegation, or layout state imply loss of
session state, because the session depends on the client ID; loss of client ID however does imply
loss of session, byte-range lock, open, delegation, and layout state. See Section 8.4.2. A session can
survive a server restart, but lock recovery may still be needed.

It is possible that CREATE_SESSION will fail with NFS4ERR_STALE_CLIENTID (e.g., the server
restarts and does not preserve client ID state). If so, the client needs to call EXCHANGE_ID,
followed by CREATE_SESSION.

MUST

RECOMMENDED

SHOULD

2.10.13.2. Events Requiring Server Action
The following events require server action to recover.

2.10.13.2.1. Client Crash and Restart
As described in Section 18.35, a restarted client sends EXCHANGE_ID in such a way that it causes
the server to delete any sessions it had.

2.10.13.2.2. Client Crash with No Restart
If a client crashes and never comes back, it will never send EXCHANGE_ID with its old client
owner. Thus, the server has session state that will never be used again. After an extended period
of time, and if the server has resource constraints, it destroy the old session as well as
locking state.

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 70

3. Protocol Constants and Data Types
The syntax and semantics to describe the data types of the NFSv4.1 protocol are defined in the
XDR () and RPC () documents. The next sections build upon the XDR data
types to define constants, types, and structures specific to this protocol. The full list of XDR data
types is in .

2.10.13.2.3. Extended Network Partition
To the server, the extended network partition may be no different from a client crash with no
restart (see Section 2.10.13.2.2). Unless the server can discern that there is a network partition, it
is free to treat the situation as if the client has crashed permanently.

2.10.13.2.4. Backchannel Connection Loss
If there were callback requests outstanding at the time of a connection loss, then the server
retry the requests, as described in Section 2.10.6.2. Note that it is not necessary to retry requests
over a connection with the same source network address or the same destination network
address as the lost connection. As long as the session ID, slot ID, and sequence ID in the retry
match that of the original request, the callback target will recognize the request as a retry even if
it did see the request prior to disconnect.

If the connection lost is the last one associated with the backchannel, then the server
indicate that in the sr_status_flags field of every SEQUENCE reply until the backchannel is re-
established. There are two situations, each of which uses different status flags: no connectivity
for the session's backchannel and no connectivity for any session backchannel of the client. See
Section 18.46 for a description of the appropriate flags in sr_status_flags.

2.10.13.2.5. GSS Context Loss
The server monitor when the number of RPCSEC_GSS handles assigned to the
backchannel reaches one, and when that one handle is near expiry (i.e., between one and two
periods of lease time), and indicate so in the sr_status_flags field of all SEQUENCE replies. The
server indicate when all of the backchannel's assigned RPCSEC_GSS handles have expired
via the sr_status_flags field of all SEQUENCE replies.

MUST

MUST

SHOULD

MUST

2.10.14. Parallel NFS and Sessions

A client and server can potentially be a non-pNFS implementation, a metadata server
implementation, a data server implementation, or two or three types of implementations. The
EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and
EXCHGID4_FLAG_USE_PNFS_DS flags (not mutually exclusive) are passed in the EXCHANGE_ID
arguments and results to allow the client to indicate how it wants to use sessions created under
the client ID, and to allow the server to indicate how it will allow the sessions to be used. See
Section 13.1 for pNFS sessions considerations.

RFC 4506 [2] RFC 5531 [3]

[10]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 71

3.1. Basic Constants

Except where noted, all these constants are defined in bytes.

NFS4_FHSIZE is the maximum size of a filehandle.
NFS4_VERIFIER_SIZE is the fixed size of a verifier.
NFS4_OPAQUE_LIMIT is the maximum size of certain opaque information.
NFS4_SESSIONID_SIZE is the fixed size of a session identifier.
NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.
NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit integer.
NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.
NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit integer.
NFS4_MAXFILELEN is the maximum length of a regular file.
NFS4_MAXFILEOFF is the maximum offset into a regular file.

3.2. Basic Data Types
These are the base NFSv4.1 data types.

const NFS4_FHSIZE = 128;
const NFS4_VERIFIER_SIZE = 8;
const NFS4_OPAQUE_LIMIT = 1024;
const NFS4_SESSIONID_SIZE = 16;

const NFS4_INT64_MAX = 0x7fffffffffffffff;
const NFS4_UINT64_MAX = 0xffffffffffffffff;
const NFS4_INT32_MAX = 0x7fffffff;
const NFS4_UINT32_MAX = 0xffffffff;

const NFS4_MAXFILELEN = 0xffffffffffffffff;
const NFS4_MAXFILEOFF = 0xfffffffffffffffe;

•
•
•
•
•
•
•
•
•
•

Data Type Definition

int32_t typedef int int32_t;

uint32_t typedef unsigned int uint32_t;

int64_t typedef hyper int64_t;

uint64_t typedef unsigned hyper uint64_t;

attrlist4 typedef opaque attrlist4<>;
Used for file/directory attributes.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 72

Data Type Definition

bitmap4 typedef uint32_t bitmap4<>;
Used in attribute array encoding.

changeid4 typedef uint64_t changeid4;
Used in the definition of change_info4.

clientid4 typedef uint64_t clientid4;
Shorthand reference to client identification.

count4 typedef uint32_t count4;
Various count parameters (READ, WRITE, COMMIT).

length4 typedef uint64_t length4;
The length of a byte-range within a file.

mode4 typedef uint32_t mode4;
Mode attribute data type.

nfs_cookie4 typedef uint64_t nfs_cookie4;
Opaque cookie value for READDIR.

nfs_fh4 typedef opaque nfs_fh4<NFS4_FHSIZE>;
Filehandle definition.

nfs_ftype4 enum nfs_ftype4;
Various defined file types.

nfsstat4 enum nfsstat4;
Return value for operations.

offset4 typedef uint64_t offset4;
Various offset designations (READ, WRITE, LOCK, COMMIT).

qop4 typedef uint32_t qop4;
Quality of protection designation in SECINFO.

sec_oid4 typedef opaque sec_oid4<>;
Security Object Identifier. The sec_oid4 data type is not really opaque.
Instead, it contains an ASN.1 OBJECT IDENTIFIER as used by GSS-API in the
mech_type argument to GSS_Init_sec_context. See for details.

sequenceid4 typedef uint32_t sequenceid4;
Sequence number used for various session operations (EXCHANGE_ID,
CREATE_SESSION, SEQUENCE, CB_SEQUENCE).

[7]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 73

End of Base Data Types

Data Type Definition

seqid4 typedef uint32_t seqid4;
Sequence identifier used for locking.

sessionid4 typedef opaque sessionid4[NFS4_SESSIONID_SIZE];
Session identifier.

slotid4 typedef uint32_t slotid4;
Sequencing artifact for various session operations (SEQUENCE,
CB_SEQUENCE).

utf8string typedef opaque utf8string<>;
UTF-8 encoding for strings.

utf8str_cis typedef utf8string utf8str_cis;
Case-insensitive UTF-8 string.

utf8str_cs typedef utf8string utf8str_cs;
Case-sensitive UTF-8 string.

utf8str_mixed typedef utf8string utf8str_mixed;
UTF-8 strings with a case-sensitive prefix and a case-insensitive suffix.

component4 typedef utf8str_cs component4;
Represents pathname components.

linktext4 typedef utf8str_cs linktext4;
Symbolic link contents ("symbolic link" is defined in an
standard).

pathname4 typedef component4 pathname4<>;
Represents pathname for fs_locations.

verifier4 typedef opaque verifier4[NFS4_VERIFIER_SIZE];
Verifier used for various operations (COMMIT, CREATE, EXCHANGE_ID,
OPEN, READDIR, WRITE) NFS4_VERIFIER_SIZE is defined as 8.

Table 1

Open Group [11]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 74

3.3. Structured Data Types
3.3.1. nfstime4

The nfstime4 data type gives the number of seconds and nanoseconds since midnight or zero
hour January 1, 1970 Coordinated Universal Time (UTC). Values greater than zero for the seconds
field denote dates after the zero hour January 1, 1970. Values less than zero for the seconds field
denote dates before the zero hour January 1, 1970. In both cases, the nseconds field is to be
added to the seconds field for the final time representation. For example, if the time to be
represented is one-half second before zero hour January 1, 1970, the seconds field would have a
value of negative one (-1) and the nseconds field would have a value of one-half second
(500000000). Values greater than 999,999,999 for nseconds are invalid.

This data type is used to pass time and date information. A server converts to and from its local
representation of time when processing time values, preserving as much accuracy as possible. If
the precision of timestamps stored for a file system object is less than defined, loss of precision
can occur. An adjunct time maintenance protocol is to reduce client and server
time skew.

struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
};

RECOMMENDED

3.3.2. time_how4

enum time_how4 {
 SET_TO_SERVER_TIME4 = 0,
 SET_TO_CLIENT_TIME4 = 1
};

3.3.3. settime4

The time_how4 and settime4 data types are used for setting timestamps in file object attributes. If
set_it is SET_TO_SERVER_TIME4, then the server uses its local representation of time for the time
value.

union settime4 switch (time_how4 set_it) {
 case SET_TO_CLIENT_TIME4:
 nfstime4 time;
 default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 75

3.3.4. specdata4

This data type represents the device numbers for the device file types NF4CHR and NF4BLK.

struct specdata4 {
 uint32_t specdata1; /* major device number */
 uint32_t specdata2; /* minor device number */
};

3.3.5. fsid4

struct fsid4 {
 uint64_t major;
 uint64_t minor;
};

3.3.6. change_policy4

The change_policy4 data type is used for the change_policy attribute. It provides
change sequencing indication analogous to the change attribute. To enable the server to present
a value valid across server re-initialization without requiring persistent storage, two 64-bit
quantities are used, allowing one to be a server instance ID and the second to be incremented
non-persistently, within a given server instance.

struct change_policy4 {
 uint64_t cp_major;
 uint64_t cp_minor;
};

RECOMMENDED

3.3.7. fattr4

The fattr4 data type is used to represent file and directory attributes.

The bitmap is a counted array of 32-bit integers used to contain bit values. The position of the
integer in the array that contains bit n can be computed from the expression (n / 32), and its bit
within that integer is (n mod 32).

struct fattr4 {
 bitmap4 attrmask;
 attrlist4 attr_vals;
};

 0 1
+-----------+-----------+-----------+--
| count | 31 .. 0 | 63 .. 32 |
+-----------+-----------+-----------+--

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 76

3.3.8. change_info4

This data type is used with the CREATE, LINK, OPEN, REMOVE, and RENAME operations to let the
client know the value of the change attribute for the directory in which the target file system
object resides.

struct change_info4 {
 bool atomic;
 changeid4 before;
 changeid4 after;
};

3.3.9. netaddr4

The netaddr4 data type is used to identify network transport endpoints. The na_r_netid and
na_r_addr fields respectively contain a netid and uaddr. The netid and uaddr concepts are
defined in . The netid and uaddr formats for TCP over IPv4 and TCP over IPv6 are defined in

, specifically Tables 2 and 3 and in Sections 5.2.3.3 and 5.2.3.4.

struct netaddr4 {
 /* see struct rpcb in RFC 1833 */
 string na_r_netid<>; /* network id */
 string na_r_addr<>; /* universal address */
};

[12]
[12]

3.3.10. state_owner4

The state_owner4 data type is the base type for the open_owner4 (Section 3.3.10.1) and
lock_owner4 (Section 3.3.10.2).

struct state_owner4 {
 clientid4 clientid;
 opaque owner<NFS4_OPAQUE_LIMIT>;
};

typedef state_owner4 open_owner4;
typedef state_owner4 lock_owner4;

3.3.10.1. open_owner4
This data type is used to identify the owner of OPEN state.

3.3.10.2. lock_owner4
This structure is used to identify the owner of byte-range locking state.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 77

https://www.rfc-editor.org/rfc/rfc5665#section-5.2.3.3
https://www.rfc-editor.org/rfc/rfc5665#section-5.2.3.4

3.3.11. open_to_lock_owner4

This data type is used for the first LOCK operation done for an open_owner4. It provides both the
open_stateid and lock_owner, such that the transition is made from a valid open_stateid
sequence to that of the new lock_stateid sequence. Using this mechanism avoids the confirmation
of the lock_owner/lock_seqid pair since it is tied to established state in the form of the
open_stateid/open_seqid.

struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
};

3.3.12. stateid4

This data type is used for the various state sharing mechanisms between the client and server.
The client never modifies a value of data type stateid. The starting value of the "seqid" field is
undefined. The server is required to increment the "seqid" field by one at each transition of the
stateid. This is important since the client will inspect the seqid in OPEN stateids to determine the
order of OPEN processing done by the server.

struct stateid4 {
 uint32_t seqid;
 opaque other[12];
};

3.3.13. layouttype4

This data type indicates what type of layout is being used. The file server advertises the layout
types it supports through the fs_layout_type file system attribute (Section 5.12.1). A client asks for
layouts of a particular type in LAYOUTGET, and processes those layouts in its layout-type-specific
logic.

The layouttype4 data type is 32 bits in length. The range represented by the layout type is split
into three parts. Type 0x0 is reserved. Types within the range 0x00000001-0x7FFFFFFF are
globally unique and are assigned according to the description in Section 22.5; they are
maintained by IANA. Types within the range 0x80000000-0xFFFFFFFF are site specific and for
private use only.

enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 0x1,
 LAYOUT4_OSD2_OBJECTS = 0x2,
 LAYOUT4_BLOCK_VOLUME = 0x3
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 78

The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1 file layout type, as defined
in Section 13, is to be used. The LAYOUT4_OSD2_OBJECTS enumeration specifies that the object
layout, as defined in , is to be used. Similarly, the LAYOUT4_BLOCK_VOLUME enumeration
specifies that the block/volume layout, as defined in , is to be used.

[47]
[48]

3.3.14. deviceid4

Layout information includes device IDs that specify a storage device through a compact handle.
Addressing and type information is obtained with the GETDEVICEINFO operation. Device IDs are
not guaranteed to be valid across metadata server restarts. A device ID is unique per client ID
and layout type. See Section 12.2.10 for more details.

const NFS4_DEVICEID4_SIZE = 16;

typedef opaque deviceid4[NFS4_DEVICEID4_SIZE];

3.3.15. device_addr4

The device address is used to set up a communication channel with the storage device. Different
layout types will require different data types to define how they communicate with storage
devices. The opaque da_addr_body field is interpreted based on the specified da_layout_type
field.

This document defines the device address for the NFSv4.1 file layout (see Section 13.3), which
identifies a storage device by network IP address and port number. This is sufficient for the
clients to communicate with the NFSv4.1 storage devices, and may be sufficient for other layout
types as well. Device types for object-based storage devices and block storage devices (e.g., Small
Computer System Interface (SCSI) volume labels) are defined by their respective layout
specifications.

struct device_addr4 {
 layouttype4 da_layout_type;
 opaque da_addr_body<>;
};

3.3.16. layout_content4

The loc_body field is interpreted based on the layout type (loc_type). This document defines the
loc_body for the NFSv4.1 file layout type; see Section 13.3 for its definition.

struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 79

3.3.17. layout4

The layout4 data type defines a layout for a file. The layout type specific data is opaque within
lo_content. Since layouts are sub-dividable, the offset and length together with the file's
filehandle, the client ID, iomode, and layout type identify the layout.

struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
};

3.3.18. layoutupdate4

The layoutupdate4 data type is used by the client to return updated layout information to the
metadata server via the LAYOUTCOMMIT (Section 18.42) operation. This data type provides a
channel to pass layout type specific information (in field lou_body) back to the metadata server.
For example, for the block/volume layout type, this could include the list of reserved blocks that
were written. The contents of the opaque lou_body argument are determined by the layout type.
The NFSv4.1 file-based layout does not use this data type; if lou_type is LAYOUT4_NFSV4_1_FILES,
the lou_body field have a zero length.

struct layoutupdate4 {
 layouttype4 lou_type;
 opaque lou_body<>;
};

MUST

3.3.19. layouthint4

The layouthint4 data type is used by the client to pass in a hint about the type of layout it would
like created for a particular file. It is the data type specified by the layout_hint attribute described
in Section 5.12.4. The metadata server may ignore the hint or may selectively ignore fields within
the hint. This hint should be provided at create time as part of the initial attributes within OPEN.
The loh_body field is specific to the type of layout (loh_type). The NFSv4.1 file-based layout uses
the nfsv4_1_file_layouthint4 data type as defined in Section 13.3.

struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 80

3.3.20. layoutiomode4

The iomode specifies whether the client intends to just read or both read and write the data
represented by the layout. While the LAYOUTIOMODE4_ANY iomode be used in the
arguments to the LAYOUTGET operation, it be used in the arguments to the LAYOUTRETURN
and CB_LAYOUTRECALL operations. The LAYOUTIOMODE4_ANY iomode specifies that layouts
pertaining to both LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW iomodes are being
returned or recalled, respectively. The metadata server's use of the iomode may depend on the
layout type being used. The storage devices validate I/O accesses against the iomode and
reject invalid accesses.

enum layoutiomode4 {
 LAYOUTIOMODE4_READ = 1,
 LAYOUTIOMODE4_RW = 2,
 LAYOUTIOMODE4_ANY = 3
};

MUST NOT
MAY

MAY

3.3.21. nfs_impl_id4

This data type is used to identify client and server implementation details. The nii_domain field
is the DNS domain name with which the implementor is associated. The nii_name field is the
product name of the implementation and is completely free form. It is that the
nii_name be used to distinguish machine architecture, machine platforms, revisions, versions,
and patch levels. The nii_date field is the timestamp of when the software instance was
published or built.

struct nfs_impl_id4 {
 utf8str_cis nii_domain;
 utf8str_cs nii_name;
 nfstime4 nii_date;
};

RECOMMENDED

3.3.22. threshold_item4

This data type contains a list of hints specific to a layout type for helping the client determine
when it should send I/O directly through the metadata server versus the storage devices. The
data type consists of the layout type (thi_layout_type), a bitmap (thi_hintset) describing the set of
hints supported by the server (they may differ based on the layout type), and a list of hints
(thi_hintlist) whose content is determined by the hintset bitmap. See the mdsthreshold attribute
for more details.

struct threshold_item4 {
 layouttype4 thi_layout_type;
 bitmap4 thi_hintset;
 opaque thi_hintlist<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 81

The thi_hintset field is a bitmap of the following values:

name # Data
Type

Description

threshold4_read_size 0 length4 If a file's length is less than the value of
threshold4_read_size, then it is
that the client read from the file via the MDS and
not a storage device.

threshold4_write_size 1 length4 If a file's length is less than the value of
threshold4_write_size, then it is
that the client write to the file via the MDS and not
a storage device.

threshold4_read_iosize 2 length4 For read I/O sizes below this threshold, it is
 to read data through the MDS.

threshold4_write_iosize 3 length4 For write I/O sizes below this threshold, it is
 to write data through the MDS.

Table 2

RECOMMENDED

RECOMMENDED

RECOMMENDED

RECOMMENDED

3.3.23. mdsthreshold4

This data type holds an array of elements of data type threshold_item4, each of which is valid for
a particular layout type. An array is necessary because a server can support multiple layout types
for a single file.

struct mdsthreshold4 {
 threshold_item4 mth_hints<>;
};

4. Filehandles
The filehandle in the NFS protocol is a per-server unique identifier for a file system object. The
contents of the filehandle are opaque to the client. Therefore, the server is responsible for
translating the filehandle to an internal representation of the file system object.

4.1. Obtaining the First Filehandle
The operations of the NFS protocol are defined in terms of one or more filehandles. Therefore,
the client needs a filehandle to initiate communication with the server. With the NFSv3 protocol
(), there exists an ancillary protocol to obtain this first filehandle. The MOUNT
protocol, RPC program number 100005, provides the mechanism of translating a string-based file
system pathname to a filehandle, which can then be used by the NFS protocols.

RFC 1813 [38]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 82

The MOUNT protocol has deficiencies in the area of security and use via firewalls. This is one
reason that the use of the public filehandle was introduced in and .
With the use of the public filehandle in combination with the LOOKUP operation in the NFSv3
protocol, it has been demonstrated that the MOUNT protocol is unnecessary for viable
interaction between NFS client and server.

Therefore, the NFSv4.1 protocol will not use an ancillary protocol for translation from string-
based pathnames to a filehandle. Two special filehandles will be used as starting points for the
NFS client.

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The ROOT filehandle is the "conceptual"
root of the file system namespace at the NFS server. The client uses or starts with the ROOT
filehandle by employing the PUTROOTFH operation. The PUTROOTFH operation instructs the
server to set the "current" filehandle to the ROOT of the server's file tree. Once this PUTROOTFH
operation is used, the client can then traverse the entirety of the server's file tree with the
LOOKUP operation. A complete discussion of the server namespace is in Section 7.

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC filehandle. Unlike the ROOT filehandle, the PUBLIC
filehandle may be bound or represent an arbitrary file system object at the server. The server is
responsible for this binding. It may be that the PUBLIC filehandle and the ROOT filehandle refer
to the same file system object. However, it is up to the administrative software at the server and
the policies of the server administrator to define the binding of the PUBLIC filehandle and server
file system object. The client may not make any assumptions about this binding. The client uses
the PUBLIC filehandle via the PUTPUBFH operation.

4.2. Filehandle Types
In the NFSv3 protocol, there was one type of filehandle with a single set of semantics. This type of
filehandle is termed "persistent" in NFSv4.1. The semantics of a persistent filehandle remain the
same as before. A new type of filehandle introduced in NFSv4.1 is the "volatile" filehandle, which
attempts to accommodate certain server environments.

The volatile filehandle type was introduced to address server functionality or implementation
issues that make correct implementation of a persistent filehandle infeasible. Some server
environments do not provide a file-system-level invariant that can be used to construct a
persistent filehandle. The underlying server file system may not provide the invariant or the
server's file system programming interfaces may not provide access to the needed invariant.
Volatile filehandles may ease the implementation of server functionality such as hierarchical
storage management or file system reorganization or migration. However, the volatile filehandle
increases the implementation burden for the client.

Since the client will need to handle persistent and volatile filehandles differently, a file attribute
is defined that may be used by the client to determine the filehandle types being returned by the
server.

RFC 2054 [49] RFC 2055 [50]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 83

4.2.1. General Properties of a Filehandle

The filehandle contains all the information the server needs to distinguish an individual file. To
the client, the filehandle is opaque. The client stores filehandles for use in a later request and can
compare two filehandles from the same server for equality by doing a byte-by-byte comparison.
However, the client otherwise interpret the contents of filehandles. If two filehandles
from the same server are equal, they refer to the same file. Servers try to maintain
a one-to-one correspondence between filehandles and files, but this is not required. Clients
use filehandle comparisons only to improve performance, not for correct behavior. All clients
need to be prepared for situations in which it cannot be determined whether two filehandles
denote the same object and in such cases, avoid making invalid assumptions that might cause
incorrect behavior. Further discussion of filehandle and attribute comparison in the context of
data caching is presented in Section 10.3.4.

As an example, in the case that two different pathnames when traversed at the server terminate
at the same file system object, the server return the same filehandle for each path. This
can occur if a hard link (see) is used to create two file names that refer to the same underlying
file object and associated data. For example, if paths /a/b/c and /a/d/c refer to the same file, the
server return the same filehandle for both pathnames' traversals.

4.2.2. Persistent Filehandle

A persistent filehandle is defined as having a fixed value for the lifetime of the file system object
to which it refers. Once the server creates the filehandle for a file system object, the server
accept the same filehandle for the object for the lifetime of the object. If the server restarts, the
NFS server honor the same filehandle value as it did in the server's previous instantiation.
Similarly, if the file system is migrated, the new NFS server honor the same filehandle as
the old NFS server.

The persistent filehandle will be become stale or invalid when the file system object is removed.
When the server is presented with a persistent filehandle that refers to a deleted object, it
return an error of NFS4ERR_STALE. A filehandle may become stale when the file system
containing the object is no longer available. The file system may become unavailable if it exists
on removable media and the media is no longer available at the server or the file system in
whole has been destroyed or the file system has simply been removed from the server's
namespace (i.e., unmounted in a UNIX environment).

4.2.3. Volatile Filehandle

A volatile filehandle does not share the same longevity characteristics of a persistent filehandle.
The server may determine that a volatile filehandle is no longer valid at many different points in
time. If the server can definitively determine that a volatile filehandle refers to an object that has
been removed, the server should return NFS4ERR_STALE to the client (as is the case for
persistent filehandles). In all other cases where the server determines that a volatile filehandle
can no longer be used, it should return an error of NFS4ERR_FHEXPIRED.

MUST NOT
MUST SHOULD

MUST

SHOULD
[6]

SHOULD

MUST

MUST
MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 84

FH4_PERSISTENT

FH4_VOLATILE_ANY

FH4_NOEXPIRE_WITH_OPEN

FH4_VOL_MIGRATION

FH4_VOL_RENAME

The attribute "fh_expire_type" is used by the client to determine what type of
filehandle the server is providing for a particular file system. This attribute is a bitmask with the
following values:

The value of FH4_PERSISTENT is used to indicate a persistent filehandle,
which is valid until the object is removed from the file system. The server will not return
NFS4ERR_FHEXPIRED for this filehandle. FH4_PERSISTENT is defined as a value in which
none of the bits specified below are set.

The filehandle may expire at any time, except as specifically excluded (i.e.,
FH4_NO_EXPIRE_WITH_OPEN).

May only be set when FH4_VOLATILE_ANY is set. If this bit is set,
then the meaning of FH4_VOLATILE_ANY is qualified to exclude any expiration of the
filehandle when it is open.

The filehandle will expire as a result of a file system transition
(migration or replication), in those cases in which the continuity of filehandle use is not
specified by handle class information within the fs_locations_info attribute. When this bit
is set, clients without access to fs_locations_info information should assume that
filehandles will expire on file system transitions.

The filehandle will expire during rename. This includes a rename by the
requesting client or a rename by any other client. If FH4_VOL_ANY is set,
FH4_VOL_RENAME is redundant.

Servers that provide volatile filehandles that can expire while open require special care as
regards handling of RENAMEs and REMOVEs. This situation can arise if FH4_VOL_MIGRATION or
FH4_VOL_RENAME is set, if FH4_VOLATILE_ANY is set and FH4_NOEXPIRE_WITH_OPEN is not
set, or if a non-read-only file system has a transition target in a different handle class. In these
cases, the server should deny a RENAME or REMOVE that would affect an OPEN file of any of the
components leading to the OPEN file. In addition, the server should deny all RENAME or
REMOVE requests during the grace period, in order to make sure that reclaims of files where
filehandles may have expired do not do a reclaim for the wrong file.

Volatile filehandles are especially suitable for implementation of the pseudo file systems used to
bridge exports. See Section 7.5 for a discussion of this.

4.3. One Method of Constructing a Volatile Filehandle
A volatile filehandle, while opaque to the client, could contain:

slot is an index in the server volatile filehandle table
generation number is the generation number for the table entry/slot

REQUIRED

[volatile bit = 1 | server boot time | slot | generation number]

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 85

When the client presents a volatile filehandle, the server makes the following checks, which
assume that the check for the volatile bit has passed. If the server boot time is less than the
current server boot time, return NFS4ERR_FHEXPIRED. If slot is out of range, return
NFS4ERR_BADHANDLE. If the generation number does not match, return NFS4ERR_FHEXPIRED.

When the server restarts, the table is gone (it is volatile).

If the volatile bit is 0, then it is a persistent filehandle with a different structure following it.

4.4. Client Recovery from Filehandle Expiration
If possible, the client recover from the receipt of an NFS4ERR_FHEXPIRED error. The
client must take on additional responsibility so that it may prepare itself to recover from the
expiration of a volatile filehandle. If the server returns persistent filehandles, the client does not
need these additional steps.

For volatile filehandles, most commonly the client will need to store the component names
leading up to and including the file system object in question. With these names, the client
should be able to recover by finding a filehandle in the namespace that is still available or by
starting at the root of the server's file system namespace.

If the expired filehandle refers to an object that has been removed from the file system,
obviously the client will not be able to recover from the expired filehandle.

It is also possible that the expired filehandle refers to a file that has been renamed. If the file was
renamed by another client, again it is possible that the original client will not be able to recover.
However, in the case that the client itself is renaming the file and the file is open, it is possible
that the client may be able to recover. The client can determine the new pathname based on the
processing of the rename request. The client can then regenerate the new filehandle based on
the new pathname. The client could also use the COMPOUND procedure to construct a series of
operations like:

Note that the COMPOUND procedure does not provide atomicity. This example only reduces the
overhead of recovering from an expired filehandle.

SHOULD

 RENAME A B
 LOOKUP B
 GETFH

5. File Attributes
To meet the requirements of extensibility and increased interoperability with non-UNIX
platforms, attributes need to be handled in a flexible manner. The NFSv3 fattr3 structure
contains a fixed list of attributes that not all clients and servers are able to support or care about.
The fattr3 structure cannot be extended as new needs arise and it provides no way to indicate
non-support. With the NFSv4.1 protocol, the client is able to query what attributes the server
supports and construct requests with only those supported attributes (or a subset thereof).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 86

To this end, attributes are divided into three groups: , , and named.
Both and attributes are supported in the NFSv4.1 protocol by a
specific and well-defined encoding and are identified by number. They are requested by setting a
bit in the bit vector sent in the GETATTR request; the server response includes a bit vector to list
what attributes were returned in the response. New or attributes may
be added to the NFSv4 protocol as part of a new minor version by publishing a Standards Track
RFC that allocates a new attribute number value and defines the encoding for the attribute. See
Section 2.7 for further discussion.

Named attributes are accessed by the new OPENATTR operation, which accesses a hidden
directory of attributes associated with a file system object. OPENATTR takes a filehandle for the
object and returns the filehandle for the attribute hierarchy. The filehandle for the named
attributes is a directory object accessible by LOOKUP or READDIR and contains files whose
names represent the named attributes and whose data bytes are the value of the attribute. For
example:

Named attributes are intended for data needed by applications rather than by an NFS client
implementation. NFS implementors are strongly encouraged to define their new attributes as

 attributes by bringing them to the IETF Standards Track process.

The set of attributes that are classified as is deliberately small since servers need to do
whatever it takes to support them. A server should support as many of the
attributes as possible but, by their definition, the server is not required to support all of them.
Attributes are deemed if the data is both needed by a large number of clients and is
not otherwise reasonably computable by the client when support is not provided on the server.

Note that the hidden directory returned by OPENATTR is a convenience for protocol processing.
The client should not make any assumptions about the server's implementation of named
attributes and whether or not the underlying file system at the server has a named attribute
directory. Therefore, operations such as SETATTR and GETATTR on the named attribute directory
are undefined.

REQUIRED RECOMMENDED
REQUIRED RECOMMENDED

REQUIRED RECOMMENDED

LOOKUP "foo" ; look up file

GETATTR attrbits

OPENATTR ; access foo's named attributes

LOOKUP "x11icon" ; look up specific attribute

READ 0,4096 ; read stream of bytes

Table 3

RECOMMENDED

REQUIRED
RECOMMENDED

REQUIRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 87

5.1. Attributes
These be supported by every NFSv4.1 client and server in order to ensure a minimum level
of interoperability. The server store and return these attributes, and the client be
able to function with an attribute set limited to these attributes. With just the
attributes some client functionality may be impaired or limited in some ways. A client may ask
for any of these attributes to be returned by setting a bit in the GETATTR request, and the server

 return their value.

REQUIRED

MUST
MUST MUST

REQUIRED

MUST

5.2. Attributes
These attributes are understood well enough to warrant support in the NFSv4.1 protocol.
However, they may not be supported on all clients and servers. A client may ask for any of these
attributes to be returned by setting a bit in the GETATTR request but must handle the case where
the server does not return them. A client ask for the set of attributes the server supports and

 request attributes the server does not support. A server should be tolerant of
requests for unsupported attributes and simply not return them rather than considering the
request an error. It is expected that servers will support all attributes they comfortably can and
only fail to support attributes that are difficult to support in their operating environments. A
server should provide attributes whenever they don't have to "tell lies" to the client. For example,
a file modification time should be either an accurate time or should not be supported by the
server. At times this will be difficult for clients, but a client is better positioned to decide whether
and how to fabricate or construct an attribute or whether to do without the attribute.

RECOMMENDED

MAY
SHOULD NOT

5.3. Named Attributes
These attributes are not supported by direct encoding in the NFSv4 protocol but are accessed by
string names rather than numbers and correspond to an uninterpreted stream of bytes that are
stored with the file system object. The namespace for these attributes may be accessed by using
the OPENATTR operation. The OPENATTR operation returns a filehandle for a virtual "named
attribute directory", and further perusal and modification of the namespace may be done using
operations that work on more typical directories. In particular, READDIR may be used to get a list
of such named attributes, and LOOKUP and OPEN may select a particular attribute. Creation of a
new named attribute may be the result of an OPEN specifying file creation.

Once an OPEN is done, named attributes may be examined and changed by normal READ and
WRITE operations using the filehandles and stateids returned by OPEN.

Named attributes and the named attribute directory may have their own (non-named) attributes.
Each of these objects have all of the attributes and may have additional

 attributes. However, the set of attributes for named attributes and the named
attribute directory need not be, and typically will not be, as large as that for other objects in that
file system.

MUST REQUIRED
RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 88

5.4. Classification of Attributes
Each of the and attributes can be classified in one of three categories:
per server (i.e., the value of the attribute will be the same for all file objects that share the same
server owner; see Section 2.5 for a definition of server owner), per file system (i.e., the value of
the attribute will be the same for some or all file objects that share the same

 and server owner), or per file system object. Note that it is possible that some per
file system attributes may vary within the file system, depending on the value of the

 attribute. Note that the attributes time_access_set and
time_modify_set are not listed in this section because they are write-only attributes
corresponding to time_access and time_modify, and are used in a special instance of SETATTR.

The per-server attribute is:

lease_time

Named attributes and the named attribute directory might be the target of delegations (in the
case of the named attribute directory, these will be directory delegations). However, since
granting of delegations is at the server's discretion, a server need not support delegations on
named attributes or the named attribute directory.

It is that servers support arbitrary named attributes. A client should not depend
on the ability to store any named attributes in the server's file system. If a server does support
named attributes, a client that is also able to handle them should be able to copy a file's data and
metadata with complete transparency from one location to another; this would imply that names
allowed for regular directory entries are valid for named attribute names as well.

In NFSv4.1, the structure of named attribute directories is restricted in a number of ways, in
order to prevent the development of non-interoperable implementations in which some servers
support a fully general hierarchical directory structure for named attributes while others
support a limited but adequate structure for named attributes. In such an environment, clients
or applications might come to depend on non-portable extensions. The restrictions are:

CREATE is not allowed in a named attribute directory. Thus, such objects as symbolic links
and special files are not allowed to be named attributes. Further, directories may not be
created in a named attribute directory, so no hierarchical structure of named attributes for a
single object is allowed.
If OPENATTR is done on a named attribute directory or on a named attribute, the server

 return NFS4ERR_WRONG_TYPE.
Doing a RENAME of a named attribute to a different named attribute directory or to an
ordinary (i.e., non-named-attribute) directory is not allowed.
Creating hard links between named attribute directories or between named attribute
directories and ordinary directories is not allowed.

Names of attributes will not be controlled by this document or other IETF Standards Track
documents. See Section 22.2 for further discussion.

RECOMMENDED

•

•
MUST

•

•

REQUIRED RECOMMENDED

fsid attribute
(Section 5.8.1.9)

"homogeneous" (Section 5.8.2.16)

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 89

The per-file system attributes are:

supported_attrs, suppattr_exclcreat, fh_expire_type, link_support, symlink_support,
unique_handles, aclsupport, cansettime, case_insensitive, case_preserving,
chown_restricted, files_avail, files_free, files_total, fs_locations, homogeneous, maxfilesize,
maxname, maxread, maxwrite, no_trunc, space_avail, space_free, space_total, time_delta,
change_policy, fs_status, fs_layout_type, fs_locations_info, fs_charset_cap

The per-file system object attributes are:

type, change, size, named_attr, fsid, rdattr_error, filehandle, acl, archive, fileid, hidden,
maxlink, mimetype, mode, numlinks, owner, owner_group, rawdev, space_used, system,
time_access, time_backup, time_create, time_metadata, time_modify, mounted_on_fileid,
dir_notif_delay, dirent_notif_delay, dacl, sacl, layout_type, layout_hint, layout_blksize,
layout_alignment, mdsthreshold, retention_get, retention_set, retentevt_get, retentevt_set,
retention_hold, mode_set_masked

For quota_avail_hard, quota_avail_soft, and quota_used, see their definitions below for the
appropriate classification.

•

•

5.5. Set-Only and Get-Only Attributes
Some and attributes are set-only; i.e., they can be set via SETATTR but
not retrieved via GETATTR. Similarly, some and attributes are get-
only; i.e., they can be retrieved via GETATTR but not set via SETATTR. If a client attempts to set a
get-only attribute or get a set-only attributes, the server return NFS4ERR_INVAL.

REQUIRED RECOMMENDED
REQUIRED RECOMMENDED

MUST

Name:

Id:

Data Type:

Acc:

Defined in:

5.6. Attributes - List and Definition References
The list of attributes appears in Table 4. The meaning of the columns of the table are:

The name of the attribute.

The number assigned to the attribute. In the event of conflicts between the assigned
number and , the latter is likely authoritative, but should be resolved with Errata to
this document and/or . See for the Errata process.

The XDR data type of the attribute.

Access allowed to the attribute. R means read-only (GETATTR may retrieve, SETATTR may
not set). W means write-only (SETATTR may set, GETATTR may not retrieve). R W means
read/write (GETATTR may retrieve, SETATTR may set).

The section of this specification that describes the attribute.

REQUIRED

REQUIRED

[10]
[10] [51]

Name Id Data Type Acc Defined in:

supported_attrs 0 bitmap4 R Section 5.8.1.1

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 90

Name Id Data Type Acc Defined in:

type 1 nfs_ftype4 R Section 5.8.1.2

fh_expire_type 2 uint32_t R Section 5.8.1.3

change 3 uint64_t R Section 5.8.1.4

size 4 uint64_t R W Section 5.8.1.5

link_support 5 bool R Section 5.8.1.6

symlink_support 6 bool R Section 5.8.1.7

named_attr 7 bool R Section 5.8.1.8

fsid 8 fsid4 R Section 5.8.1.9

unique_handles 9 bool R Section 5.8.1.10

lease_time 10 nfs_lease4 R Section 5.8.1.11

rdattr_error 11 enum R Section 5.8.1.12

filehandle 19 nfs_fh4 R Section 5.8.1.13

suppattr_exclcreat 75 bitmap4 R Section 5.8.1.14

Table 4

5.7. Attributes - List and Definition References
The attributes are defined in Table 5. The meanings of the column headers are
the same as Table 4; see Section 5.6 for the meanings.

RECOMMENDED

RECOMMENDED

Name Id Data Type Acc Defined in:

acl 12 nfsace4<> R W Section 6.2.1

aclsupport 13 uint32_t R Section 6.2.1.2

archive 14 bool R W Section 5.8.2.1

cansettime 15 bool R Section 5.8.2.2

case_insensitive 16 bool R Section 5.8.2.3

case_preserving 17 bool R Section 5.8.2.4

change_policy 60 chg_policy4 R Section 5.8.2.5

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 91

Name Id Data Type Acc Defined in:

chown_restricted 18 bool R Section 5.8.2.6

dacl 58 nfsacl41 R W Section 6.2.2

dir_notif_delay 56 nfstime4 R Section 5.11.1

dirent_notif_delay 57 nfstime4 R Section 5.11.2

fileid 20 uint64_t R Section 5.8.2.7

files_avail 21 uint64_t R Section 5.8.2.8

files_free 22 uint64_t R Section 5.8.2.9

files_total 23 uint64_t R Section 5.8.2.10

fs_charset_cap 76 uint32_t R Section 5.8.2.11

fs_layout_type 62 layouttype4<> R Section 5.12.1

fs_locations 24 fs_locations R Section 5.8.2.12

fs_locations_info 67 fs_locations_info4 R Section 5.8.2.13

fs_status 61 fs4_status R Section 5.8.2.14

hidden 25 bool R W Section 5.8.2.15

homogeneous 26 bool R Section 5.8.2.16

layout_alignment 66 uint32_t R Section 5.12.2

layout_blksize 65 uint32_t R Section 5.12.3

layout_hint 63 layouthint4 W Section 5.12.4

layout_type 64 layouttype4<> R Section 5.12.5

maxfilesize 27 uint64_t R Section 5.8.2.17

maxlink 28 uint32_t R Section 5.8.2.18

maxname 29 uint32_t R Section 5.8.2.19

maxread 30 uint64_t R Section 5.8.2.20

maxwrite 31 uint64_t R Section 5.8.2.21

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 92

Name Id Data Type Acc Defined in:

mdsthreshold 68 mdsthreshold4 R Section 5.12.6

mimetype 32 utf8str_cs R W Section 5.8.2.22

mode 33 mode4 R W Section 6.2.4

mode_set_masked 74 mode_masked4 W Section 6.2.5

mounted_on_fileid 55 uint64_t R Section 5.8.2.23

no_trunc 34 bool R Section 5.8.2.24

numlinks 35 uint32_t R Section 5.8.2.25

owner 36 utf8str_mixed R W Section 5.8.2.26

owner_group 37 utf8str_mixed R W Section 5.8.2.27

quota_avail_hard 38 uint64_t R Section 5.8.2.28

quota_avail_soft 39 uint64_t R Section 5.8.2.29

quota_used 40 uint64_t R Section 5.8.2.30

rawdev 41 specdata4 R Section 5.8.2.31

retentevt_get 71 retention_get4 R Section 5.13.3

retentevt_set 72 retention_set4 W Section 5.13.4

retention_get 69 retention_get4 R Section 5.13.1

retention_hold 73 uint64_t R W Section 5.13.5

retention_set 70 retention_set4 W Section 5.13.2

sacl 59 nfsacl41 R W Section 6.2.3

space_avail 42 uint64_t R Section 5.8.2.32

space_free 43 uint64_t R Section 5.8.2.33

space_total 44 uint64_t R Section 5.8.2.34

space_used 45 uint64_t R Section 5.8.2.35

system 46 bool R W Section 5.8.2.36

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 93

Name Id Data Type Acc Defined in:

time_access 47 nfstime4 R Section 5.8.2.37

time_access_set 48 settime4 W Section 5.8.2.38

time_backup 49 nfstime4 R W Section 5.8.2.39

time_create 50 nfstime4 R W Section 5.8.2.40

time_delta 51 nfstime4 R Section 5.8.2.41

time_metadata 52 nfstime4 R Section 5.8.2.42

time_modify 53 nfstime4 R Section 5.8.2.43

time_modify_set 54 settime4 W Section 5.8.2.44

Table 5

5.8. Attribute Definitions
5.8.1. Definitions of Attributes REQUIRED

5.8.1.1. Attribute 0: supported_attrs
The bit vector that would retrieve all and attributes that are
supported for this object. The scope of this attribute applies to all objects with a matching fsid.

REQUIRED RECOMMENDED

5.8.1.2. Attribute 1: type
Designates the type of an object in terms of one of a number of special constants:

NF4REG designates a regular file.
NF4DIR designates a directory.
NF4BLK designates a block device special file.
NF4CHR designates a character device special file.
NF4LNK designates a symbolic link.
NF4SOCK designates a named socket special file.
NF4FIFO designates a fifo special file.
NF4ATTRDIR designates a named attribute directory.
NF4NAMEDATTR designates a named attribute.

Within the explanatory text and operation descriptions, the following phrases will be used with
the meanings given below:

The phrase "is a directory" means that the object's type attribute is NF4DIR or NF4ATTRDIR.
The phrase "is a special file" means that the object's type attribute is NF4BLK, NF4CHR,
NF4SOCK, or NF4FIFO.

•
•
•
•
•
•
•
•
•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 94

The phrases "is an ordinary file" and "is a regular file" mean that the object's type attribute is
NF4REG or NF4NAMEDATTR.

•

5.8.1.3. Attribute 2: fh_expire_type
Server uses this to specify filehandle expiration behavior to the client. See Section 4 for
additional description.

5.8.1.4. Attribute 3: change
A value created by the server that the client can use to determine if file data, directory contents,
or attributes of the object have been modified. The server may return the object's time_metadata
attribute for this attribute's value, but only if the file system object cannot be updated more
frequently than the resolution of time_metadata.

5.8.1.5. Attribute 4: size
The size of the object in bytes.

5.8.1.6. Attribute 5: link_support
TRUE, if the object's file system supports hard links.

5.8.1.7. Attribute 6: symlink_support
TRUE, if the object's file system supports symbolic links.

5.8.1.8. Attribute 7: named_attr
TRUE, if this object has named attributes. In other words, object has a non-empty named
attribute directory.

5.8.1.9. Attribute 8: fsid
Unique file system identifier for the file system holding this object. The fsid attribute has major
and minor components, each of which are of data type uint64_t.

5.8.1.10. Attribute 9: unique_handles
TRUE, if two distinct filehandles are guaranteed to refer to two different file system objects.

5.8.1.11. Attribute 10: lease_time
Duration of the lease at server in seconds.

5.8.1.12. Attribute 11: rdattr_error
Error returned from an attempt to retrieve attributes during a READDIR operation.

5.8.1.13. Attribute 19: filehandle
The filehandle of this object (primarily for READDIR requests).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 95

5.8.1.14. Attribute 75: suppattr_exclcreat
The bit vector that would set all and attributes that are supported by
the EXCLUSIVE4_1 method of file creation via the OPEN operation. The scope of this attribute
applies to all objects with a matching fsid.

REQUIRED RECOMMENDED

5.8.2. Definitions of Uncategorized Attributes

The definitions of most of the attributes follow. Collections that share a common
category are defined in other sections.

RECOMMENDED

RECOMMENDED

5.8.2.1. Attribute 14: archive
TRUE, if this file has been archived since the time of last modification (deprecated in favor of
time_backup).

5.8.2.2. Attribute 15: cansettime
TRUE, if the server is able to change the times for a file system object as specified in a SETATTR
operation.

5.8.2.3. Attribute 16: case_insensitive
TRUE, if file name comparisons on this file system are case insensitive.

5.8.2.4. Attribute 17: case_preserving
TRUE, if file name case on this file system is preserved.

5.8.2.5. Attribute 60: change_policy
A value created by the server that the client can use to determine if some server policy related to
the current file system has been subject to change. If the value remains the same, then the client
can be sure that the values of the attributes related to fs location and the fss_type field of the
fs_status attribute have not changed. On the other hand, a change in this value does necessarily
imply a change in policy. It is up to the client to interrogate the server to determine if some policy
relevant to it has changed. See Section 3.3.6 for details.

This attribute change when the value returned by the fs_locations or fs_locations_info
attribute changes, when a file system goes from read-only to writable or vice versa, or when the
allowable set of security flavors for the file system or any part thereof is changed.

MUST

5.8.2.6. Attribute 18: chown_restricted
If TRUE, the server will reject any request to change either the owner or the group associated
with a file if the caller is not a privileged user (for example, "root" in UNIX operating
environments or, in Windows 2000, the "Take Ownership" privilege).

5.8.2.7. Attribute 20: fileid
A number uniquely identifying the file within the file system.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 96

5.8.2.8. Attribute 21: files_avail
File slots available to this user on the file system containing this object -- this should be the
smallest relevant limit.

5.8.2.9. Attribute 22: files_free
Free file slots on the file system containing this object -- this should be the smallest relevant limit.

5.8.2.10. Attribute 23: files_total
Total file slots on the file system containing this object.

5.8.2.11. Attribute 76: fs_charset_cap
Character set capabilities for this file system. See Section 14.4.

5.8.2.12. Attribute 24: fs_locations
Locations where this file system may be found. If the server returns NFS4ERR_MOVED as an
error, this attribute be supported. See Section 11.16 for more details.MUST

5.8.2.13. Attribute 67: fs_locations_info
Full function file system location. See Section 11.17.2 for more details.

5.8.2.14. Attribute 61: fs_status
Generic file system type information. See Section 11.18 for more details.

5.8.2.15. Attribute 25: hidden
TRUE, if the file is considered hidden with respect to the Windows API.

5.8.2.16. Attribute 26: homogeneous
TRUE, if this object's file system is homogeneous; i.e., all objects in the file system (all objects on
the server with the same fsid) have common values for all per-file-system attributes.

5.8.2.17. Attribute 27: maxfilesize
Maximum supported file size for the file system of this object.

5.8.2.18. Attribute 28: maxlink
Maximum number of links for this object.

5.8.2.19. Attribute 29: maxname
Maximum file name size supported for this object.

5.8.2.20. Attribute 30: maxread
Maximum amount of data the READ operation will return for this object.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 97

5.8.2.21. Attribute 31: maxwrite
Maximum amount of data the WRITE operation will accept for this object. This attribute
be supported if the file is writable. Lack of this attribute can lead to the client either wasting
bandwidth or not receiving the best performance.

SHOULD

5.8.2.22. Attribute 32: mimetype
MIME body type/subtype of this object.

5.8.2.23. Attribute 55: mounted_on_fileid
Like fileid, but if the target filehandle is the root of a file system, this attribute represents the
fileid of the underlying directory.

UNIX-based operating environments connect a file system into the namespace by connecting
(mounting) the file system onto the existing file object (the mount point, usually a directory) of an
existing file system. When the mount point's parent directory is read via an API like readdir(), the
return results are directory entries, each with a component name and a fileid. The fileid of the
mount point's directory entry will be different from the fileid that the stat() system call returns.
The stat() system call is returning the fileid of the root of the mounted file system, whereas
readdir() is returning the fileid that stat() would have returned before any file systems were
mounted on the mount point.

Unlike NFSv3, NFSv4.1 allows a client's LOOKUP request to cross other file systems. The client
detects the file system crossing whenever the filehandle argument of LOOKUP has an fsid
attribute different from that of the filehandle returned by LOOKUP. A UNIX-based client will
consider this a "mount point crossing". UNIX has a legacy scheme for allowing a process to
determine its current working directory. This relies on readdir() of a mount point's parent and
stat() of the mount point returning fileids as previously described. The mounted_on_fileid
attribute corresponds to the fileid that readdir() would have returned as described previously.

While the NFSv4.1 client could simply fabricate a fileid corresponding to what mounted_on_fileid
provides (and if the server does not support mounted_on_fileid, the client has no choice), there is
a risk that the client will generate a fileid that conflicts with one that is already assigned to
another object in the file system. Instead, if the server can provide the mounted_on_fileid, the
potential for client operational problems in this area is eliminated.

If the server detects that there is no mounted point at the target file object, then the value for
mounted_on_fileid that it returns is the same as that of the fileid attribute.

The mounted_on_fileid attribute is , so the server provide it if possible,
and for a UNIX-based server, this is straightforward. Usually, mounted_on_fileid will be
requested during a READDIR operation, in which case it is trivial (at least for UNIX-based
servers) to return mounted_on_fileid since it is equal to the fileid of a directory entry returned by
readdir(). If mounted_on_fileid is requested in a GETATTR operation, the server should obey an
invariant that has it returning a value that is equal to the file object's entry in the object's parent
directory, i.e., what readdir() would have returned. Some operating environments allow a series

RECOMMENDED SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 98

of two or more file systems to be mounted onto a single mount point. In this case, for the server
to obey the aforementioned invariant, it will need to find the base mount point, and not the
intermediate mount points.

5.8.2.24. Attribute 34: no_trunc
If this attribute is TRUE, then if the client uses a file name longer than name_max, an error will
be returned instead of the name being truncated.

5.8.2.25. Attribute 35: numlinks
Number of hard links to this object.

5.8.2.26. Attribute 36: owner
The string name of the owner of this object.

5.8.2.27. Attribute 37: owner_group
The string name of the group ownership of this object.

5.8.2.28. Attribute 38: quota_avail_hard
The value in bytes that represents the amount of additional disk space beyond the current
allocation that can be allocated to this file or directory before further allocations will be refused.
It is understood that this space may be consumed by allocations to other files or directories.

5.8.2.29. Attribute 39: quota_avail_soft
The value in bytes that represents the amount of additional disk space that can be allocated to
this file or directory before the user may reasonably be warned. It is understood that this space
may be consumed by allocations to other files or directories though there is a rule as to which
other files or directories.

5.8.2.30. Attribute 40: quota_used

Note that there may be a number of distinct but overlapping sets of files or directories for which
a quota_used value is maintained, e.g., "all files with a given owner", "all files with a given group
owner", etc. The server is at liberty to choose any of those sets when providing the content of the
quota_used attribute, but should do so in a repeatable way. The rule may be configured per file
system or may be "choose the set with the smallest quota".

The value in bytes that represents the amount of disk space used by this file or directory and
possibly a number of other similar files or directories, where the set of "similar" meets at least
the criterion that allocating space to any file or directory in the set will reduce the
"quota_avail_hard" of every other file or directory in the set.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 99

5.8.2.31. Attribute 41: rawdev
Raw device number of file of type NF4BLK or NF4CHR. The device number is split into major and
minor numbers. If the file's type attribute is not NF4BLK or NF4CHR, the value returned

 be considered useful.
SHOULD

NOT

5.8.2.32. Attribute 42: space_avail
Disk space in bytes available to this user on the file system containing this object -- this should be
the smallest relevant limit.

5.8.2.33. Attribute 43: space_free
Free disk space in bytes on the file system containing this object -- this should be the smallest
relevant limit.

5.8.2.34. Attribute 44: space_total
Total disk space in bytes on the file system containing this object.

5.8.2.35. Attribute 45: space_used
Number of file system bytes allocated to this object.

5.8.2.36. Attribute 46: system
This attribute is TRUE if this file is a "system" file with respect to the Windows operating
environment.

5.8.2.37. Attribute 47: time_access
The time_access attribute represents the time of last access to the object by a READ operation
sent to the server. The notion of what is an "access" depends on the server's operating
environment and/or the server's file system semantics. For example, for servers obeying Portable
Operating System Interface (POSIX) semantics, time_access would be updated only by the READ
and READDIR operations and not any of the operations that modify the content of the object ,

, . Of course, setting the corresponding time_access_set attribute is another way to modify
the time_access attribute.

Whenever the file object resides on a writable file system, the server should make its best efforts
to record time_access into stable storage. However, to mitigate the performance effects of doing
so, and most especially whenever the server is satisfying the read of the object's content from its
cache, the server cache access time updates and lazily write them to stable storage. It is also
acceptable to give administrators of the server the option to disable time_access updates.

[13]
[14] [15]

MAY

5.8.2.38. Attribute 48: time_access_set
Sets the time of last access to the object. SETATTR use only.

5.8.2.39. Attribute 49: time_backup
The time of last backup of the object.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 100

5.8.2.40. Attribute 50: time_create
The time of creation of the object. This attribute does not have any relation to the traditional
UNIX file attribute "ctime" or "change time".

5.8.2.41. Attribute 51: time_delta
Smallest useful server time granularity.

5.8.2.42. Attribute 52: time_metadata
The time of last metadata modification of the object.

5.8.2.43. Attribute 53: time_modify
The time of last modification to the object.

5.8.2.44. Attribute 54: time_modify_set
Sets the time of last modification to the object. SETATTR use only.

5.9. Interpreting owner and owner_group
The attributes "owner" and "owner_group" (and also users and groups within the
"acl" attribute) are represented in terms of a UTF-8 string. To avoid a representation that is tied
to a particular underlying implementation at the client or server, the use of the UTF-8 string has
been chosen. Note that Section 6.1 of RFC 2624 provides additional rationale. It is expected
that the client and server will have their own local representation of owner and owner_group
that is used for local storage or presentation to the end user. Therefore, it is expected that when
these attributes are transferred between the client and server, the local representation is
translated to a syntax of the form "user@dns_domain". This will allow for a client and server that
do not use the same local representation the ability to translate to a common syntax that can be
interpreted by both.

Similarly, security principals may be represented in different ways by different security
mechanisms. Servers normally translate these representations into a common format, generally
that used by local storage, to serve as a means of identifying the users corresponding to these
security principals. When these local identifiers are translated to the form of the owner attribute,
associated with files created by such principals, they identify, in a common format, the users
associated with each corresponding set of security principals.

The translation used to interpret owner and group strings is not specified as part of the protocol.
This allows various solutions to be employed. For example, a local translation table may be
consulted that maps a numeric identifier to the user@dns_domain syntax. A name service may
also be used to accomplish the translation. A server may provide a more general service, not
limited by any particular translation (which would only translate a limited set of possible strings)
by storing the owner and owner_group attributes in local storage without any translation or it
may augment a translation method by storing the entire string for attributes for which no
translation is available while using the local representation for those cases in which a translation
is available.

RECOMMENDED

[53]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 101

https://www.rfc-editor.org/rfc/rfc2624#section-6.1

Servers that do not provide support for all possible values of the owner and owner_group
attributes return an error (NFS4ERR_BADOWNER) when a string is presented that has
no translation, as the value to be set for a SETATTR of the owner, owner_group, or acl attributes.
When a server does accept an owner or owner_group value as valid on a SETATTR (and similarly
for the owner and group strings in an acl), it is promising to return that same string when a
corresponding GETATTR is done. Configuration changes (including changes from the mapping of
the string to the local representation) and ill-constructed name translations (those that contain
aliasing) may make that promise impossible to honor. Servers should make appropriate efforts to
avoid a situation in which these attributes have their values changed when no real change to
ownership has occurred.

The "dns_domain" portion of the owner string is meant to be a DNS domain name, for example,
user@example.org. Servers should accept as valid a set of users for at least one domain. A server
may treat other domains as having no valid translations. A more general service is provided
when a server is capable of accepting users for multiple domains, or for all domains, subject to
security constraints.

In the case where there is no translation available to the client or server, the attribute value will
be constructed without the "@". Therefore, the absence of the @ from the owner or owner_group
attribute signifies that no translation was available at the sender and that the receiver of the
attribute should not use that string as a basis for translation into its own internal format. Even
though the attribute value cannot be translated, it may still be useful. In the case of a client, the
attribute string may be used for local display of ownership.

To provide a greater degree of compatibility with NFSv3, which identified users and groups by
32-bit unsigned user identifiers and group identifiers, owner and group strings that consist of
decimal numeric values with no leading zeros can be given a special interpretation by clients
and servers that choose to provide such support. The receiver may treat such a user or group
string as representing the same user as would be represented by an NFSv3 uid or gid having the
corresponding numeric value. A server is not obligated to accept such a string, but may return an
NFS4ERR_BADOWNER instead. To avoid this mechanism being used to subvert user and group
translation, so that a client might pass all of the owners and groups in numeric form, a server

 return an NFS4ERR_BADOWNER error when there is a valid translation for the user or
owner designated in this way. In that case, the client must use the appropriate name@domain
string and not the special form for compatibility.

The owner string "nobody" may be used to designate an anonymous user, which will be
associated with a file created by a security principal that cannot be mapped through normal
means to the owner attribute. Users and implementations of NFSv4.1 use "nobody"
to designate a real user whose access is not anonymous.

SHOULD

SHOULD

SHOULD NOT

5.10. Character Case Attributes
With respect to the case_insensitive and case_preserving attributes, each UCS-4 character (which
UTF-8 encodes) can be mapped according to Appendix B.2 of RFC 3454 . For general character
handling and internationalization issues, see Section 14.

[16]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 102

https://www.rfc-editor.org/rfc/rfc3454#appendix-B.2

5.11. Directory Notification Attributes
As described in Section 18.39, the client can request a minimum delay for notifications of
changes to attributes, but the server is free to ignore what the client requests. The client can
determine in advance what notification delays the server will accept by sending a GETATTR
operation for either or both of two directory notification attributes. When the client calls the
GET_DIR_DELEGATION operation and asks for attribute change notifications, it should request
notification delays that are no less than the values in the server-provided attributes.

5.11.1. Attribute 56: dir_notif_delay

The dir_notif_delay attribute is the minimum number of seconds the server will delay before
notifying the client of a change to the directory's attributes.

5.11.2. Attribute 57: dirent_notif_delay

The dirent_notif_delay attribute is the minimum number of seconds the server will delay before
notifying the client of a change to a file object that has an entry in the directory.

5.12. pNFS Attribute Definitions
5.12.1. Attribute 62: fs_layout_type

The fs_layout_type attribute (see Section 3.3.13) applies to a file system and indicates what layout
types are supported by the file system. When the client encounters a new fsid, the client
obtain the value for the fs_layout_type attribute associated with the new file system. This
attribute is used by the client to determine if the layout types supported by the server match any
of the client's supported layout types.

SHOULD

5.12.2. Attribute 66: layout_alignment

When a client holds layouts on files of a file system, the layout_alignment attribute indicates the
preferred alignment for I/O to files on that file system. Where possible, the client should send
READ and WRITE operations with offsets that are whole multiples of the layout_alignment
attribute.

5.12.3. Attribute 65: layout_blksize

When a client holds layouts on files of a file system, the layout_blksize attribute indicates the
preferred block size for I/O to files on that file system. Where possible, the client should send
READ operations with a count argument that is a whole multiple of layout_blksize, and WRITE
operations with a data argument of size that is a whole multiple of layout_blksize.

5.12.4. Attribute 63: layout_hint

The layout_hint attribute (see Section 3.3.19) may be set on newly created files to influence the
metadata server's choice for the file's layout. If possible, this attribute is one of those set in the
initial attributes within the OPEN operation. The metadata server may choose to ignore this
attribute. The layout_hint attribute is a subset of the layout structure returned by LAYOUTGET.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 103

For example, instead of specifying particular devices, this would be used to suggest the stripe
width of a file. The server implementation determines which fields within the layout will be
used.

5.12.5. Attribute 64: layout_type

This attribute lists the layout type(s) available for a file. The value returned by the server is for
informational purposes only. The client will use the LAYOUTGET operation to obtain the
information needed in order to perform I/O, for example, the specific device information for the
file and its layout.

5.12.6. Attribute 68: mdsthreshold

This attribute is a server-provided hint used to communicate to the client when it is more
efficient to send READ and WRITE operations to the metadata server or the data server. The two
types of thresholds described are file size thresholds and I/O size thresholds. If a file's size is
smaller than the file size threshold, data accesses be sent to the metadata server. If an I/
O request has a length that is below the I/O size threshold, the I/O be sent to the
metadata server. Each threshold type is specified separately for read and write.

The server provide both types of thresholds for a file. If both file size and I/O size are
provided, the client reach or exceed both thresholds before sending its read or write
requests to the data server. Alternatively, if only one of the specified thresholds is reached or
exceeded, the I/O requests are sent to the metadata server.

For each threshold type, a value of zero indicates no READ or WRITE should be sent to the
metadata server, while a value of all ones indicates that all READs or WRITEs should be sent to
the metadata server.

The attribute is available on a per-filehandle basis. If the current filehandle refers to a non-pNFS
file or directory, the metadata server should return an attribute that is representative of the
filehandle's file system. It is suggested that this attribute is queried as part of the OPEN operation.
Due to dynamic system changes, the client should not assume that the attribute will remain
constant for any specific time period; thus, it should be periodically refreshed.

SHOULD
SHOULD

MAY
SHOULD

5.13. Retention Attributes
Retention is a concept whereby a file object can be placed in an immutable, undeletable,
unrenamable state for a fixed or infinite duration of time. Once in this "retained" state, the file
cannot be moved out of the state until the duration of retention has been reached.

When retention is enabled, retention extend to the data of the file, and the name of file.
The server extend retention to any other property of the file, including any subset of

, , and named attributes, with the exceptions noted in this section.

Servers support or not support retention on any file object type.

The five retention attributes are explained in the next subsections.

MUST
MAY

REQUIRED RECOMMENDED

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 104

5.13.1. Attribute 69: retention_get

If retention is enabled for the associated file, this attribute's value represents the retention begin
time of the file object. This attribute's value is only readable with the GETATTR operation and

 be modified by the SETATTR operation (Section 5.5). The value of the attribute consists
of:

The field rg_duration is the duration in seconds indicating how long the file will be retained once
retention is enabled. The field rg_begin_time is an array of up to one absolute time value. If the
array is zero length, no beginning retention time has been established, and retention is not
enabled. If rg_duration is equal to RET4_DURATION_INFINITE, the file, once retention is enabled,
will be retained for an infinite duration.

If (as soon as) rg_duration is zero, then rg_begin_time will be of zero length, and again, retention
is not (no longer) enabled.

MUST NOT

const RET4_DURATION_INFINITE = 0xffffffffffffffff;
struct retention_get4 {
 uint64_t rg_duration;
 nfstime4 rg_begin_time<1>;
};

5.13.2. Attribute 70: retention_set

This attribute is used to set the retention duration and optionally enable retention for the
associated file object. This attribute is only modifiable via the SETATTR operation and
be retrieved by the GETATTR operation (Section 5.5). This attribute corresponds to retention_get.
The value of the attribute consists of:

If the client sets rs_enable to TRUE, then it is enabling retention on the file object with the begin
time of retention starting from the server's current time and date. The duration of the retention
can also be provided if the rs_duration array is of length one. The duration is the time in seconds
from the begin time of retention, and if set to RET4_DURATION_INFINITE, the file is to be
retained forever. If retention is enabled, with no duration specified in either this SETATTR or a
previous SETATTR, the duration defaults to zero seconds. The server restrict the enabling of
retention or the duration of retention on the basis of the ACE4_WRITE_RETENTION ACL
permission. The enabling of retention prevent the enabling of event-based retention
or the modification of the retention_hold attribute.

The following rules apply to both the retention_set and retentevt_set attributes.

As long as retention is not enabled, the client is permitted to decrease the duration.

MUST NOT

struct retention_set4 {
 bool rs_enable;
 uint64_t rs_duration<1>;
};

MAY

MUST NOT

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 105

The duration can always be set to an equal or higher value, even if retention is enabled. Note
that once retention is enabled, the actual duration (as returned by the retention_get or
retentevt_get attributes; see Section 5.13.1 or Section 5.13.3) is constantly counting down to
zero (one unit per second), unless the duration was set to RET4_DURATION_INFINITE. Thus,
it will not be possible for the client to precisely extend the duration on a file that has
retention enabled.
While retention is enabled, attempts to disable retention or decrease the retention's duration

 fail with the error NFS4ERR_INVAL.
If the principal attempting to change retention_set or retentevt_set does not have
ACE4_WRITE_RETENTION permissions, the attempt fail with NFS4ERR_ACCESS.

•

•
MUST

•
MUST

5.13.3. Attribute 71: retentevt_get

Gets the event-based retention duration, and if enabled, the event-based retention begin time of
the file object. This attribute is like retention_get, but refers to event-based retention. The event
that triggers event-based retention is not defined by the NFSv4.1 specification.

5.13.4. Attribute 72: retentevt_set

Sets the event-based retention duration, and optionally enables event-based retention on the file
object. This attribute corresponds to retentevt_get and is like retention_set, but refers to event-
based retention. When event-based retention is set, the file be retained even if non-event-
based retention has been set, and the duration of non-event-based retention has been reached.
Conversely, when non-event-based retention has been set, the file be retained even if
event-based retention has been set, and the duration of event-based retention has been reached.
The server restrict the enabling of event-based retention or the duration of event-based
retention on the basis of the ACE4_WRITE_RETENTION ACL permission. The enabling of event-
based retention prevent the enabling of non-event-based retention or the modification
of the retention_hold attribute.

MUST

MUST

MAY

MUST NOT

5.13.5. Attribute 73: retention_hold

Gets or sets administrative retention holds, one hold per bit position.

This attribute allows one to 64 administrative holds, one hold per bit on the attribute. If
retention_hold is not zero, then the file be deleted, renamed, or modified, even if the
duration on enabled event or non-event-based retention has been reached. The server
restrict the modification of retention_hold on the basis of the ACE4_WRITE_RETENTION_HOLD
ACL permission. The enabling of administration retention holds does not prevent the enabling of
event-based or non-event-based retention.

If the principal attempting to change retention_hold does not have
ACE4_WRITE_RETENTION_HOLD permissions, the attempt fail with NFS4ERR_ACCESS.

MUST NOT
MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 106

6. Access Control Attributes
Access Control Lists (ACLs) are file attributes that specify fine-grained access control. This section
covers the "acl", "dacl", "sacl", "aclsupport", "mode", and "mode_set_masked" file attributes and
their interactions. Note that file attributes may apply to any file system object.

6.1. Goals
ACLs and modes represent two well-established models for specifying permissions. This section
specifies requirements that attempt to meet the following goals:

If a server supports the mode attribute, it should provide reasonable semantics to clients that
only set and retrieve the mode attribute.
If a server supports ACL attributes, it should provide reasonable semantics to clients that
only set and retrieve those attributes.
On servers that support the mode attribute, if ACL attributes have never been set on an
object, via inheritance or explicitly, the behavior should be traditional UNIX-like behavior.
On servers that support the mode attribute, if the ACL attributes have been previously set on
an object, either explicitly or via inheritance:

Setting only the mode attribute should effectively control the traditional UNIX-like
permissions of read, write, and execute on owner, owner_group, and other.
Setting only the mode attribute should provide reasonable security. For example, setting a
mode of 000 should be enough to ensure that future OPEN operations for
OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any principal fail,
regardless of a previously existing or inherited ACL.

NFSv4.1 may introduce different semantics relating to the mode and ACL attributes, but it
does not render invalid any previously existing implementations. Additionally, this section
provides clarifications based on previous implementations and discussions around them.
On servers that support both the mode and the acl or dacl attributes, the server must keep
the two consistent with each other. The value of the mode attribute (with the exception of
the three high-order bits described in Section 6.2.4) must be determined entirely by the value
of the ACL, so that use of the mode is never required for anything other than setting the
three high-order bits. See Section 6.4.1 for exact requirements.
When a mode attribute is set on an object, the ACL attributes may need to be modified in
order to not conflict with the new mode. In such cases, it is desirable that the ACL keep as
much information as possible. This includes information about inheritance, AUDIT and
ALARM ACEs, and permissions granted and denied that do not conflict with the new mode.

•

•

•

•

◦

◦

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 107

6.2. File Attributes Discussion
6.2.1. Attribute 12: acl

The NFSv4.1 ACL attribute contains an array of Access Control Entries (ACEs) that are associated
with the file system object. Although the client can set and get the acl attribute, the server is
responsible for using the ACL to perform access control. The client can use the OPEN or ACCESS
operations to check access without modifying or reading data or metadata.

The NFS ACE structure is defined as follows:

To determine if a request succeeds, the server processes each nfsace4 entry in order. Only ACEs
that have a "who" that matches the requester are considered. Each ACE is processed until all of
the bits of the requester's access have been ALLOWED. Once a bit (see below) has been
ALLOWED by an ACCESS_ALLOWED_ACE, it is no longer considered in the processing of later
ACEs. If an ACCESS_DENIED_ACE is encountered where the requester's access still has
unALLOWED bits in common with the "access_mask" of the ACE, the request is denied. When the
ACL is fully processed, if there are bits in the requester's mask that have not been ALLOWED or
DENIED, access is denied.

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types do not affect a
requester's access, and instead are for triggering events as a result of a requester's access
attempt. Therefore, AUDIT and ALARM ACEs are processed only after processing ALLOW and
DENY ACEs.

The NFSv4.1 ACL model is quite rich. Some server platforms may provide access-control
functionality that goes beyond the UNIX-style mode attribute, but that is not as rich as the NFS
ACL model. So that users can take advantage of this more limited functionality, the server may
support the acl attributes by mapping between its ACL model and the NFSv4.1 ACL model.
Servers must ensure that the ACL they actually store or enforce is at least as strict as the NFSv4
ACL that was set. It is tempting to accomplish this by rejecting any ACL that falls outside the
small set that can be represented accurately. However, such an approach can render ACLs
unusable without special client-side knowledge of the server's mapping, which defeats the
purpose of having a common NFSv4 ACL protocol. Therefore, servers should accept every ACL
that they can without compromising security. To help accomplish this, servers may make a

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;

struct nfsace4 {
 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8str_mixed who;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 108

special exception, in the case of unsupported permission bits, to the rule that bits not ALLOWED
or DENIED by an ACL must be denied. For example, a UNIX-style server might choose to silently
allow read attribute permissions even though an ACL does not explicitly allow those permissions.
(An ACL that explicitly denies permission to read attributes should still be rejected.)

The situation is complicated by the fact that a server may have multiple modules that enforce
ACLs. For example, the enforcement for NFSv4.1 access may be different from, but not weaker
than, the enforcement for local access, and both may be different from the enforcement for
access through other protocols such as SMB (Server Message Block). So it may be useful for a
server to accept an ACL even if not all of its modules are able to support it.

The guiding principle with regard to NFSv4 access is that the server must not accept ACLs that
appear to make access to the file more restrictive than it really is.

6.2.1.1. ACE Type
The constants used for the type field (acetype4) are as follows:

Only the ALLOWED and DENIED bits may be used in the dacl attribute, and only the AUDIT and
ALARM bits may be used in the sacl attribute. All four are permitted in the acl attribute.

Value Abbreviation Description

ACE4_ACCESS_ALLOWED_ACE_TYPE ALLOW Explicitly grants the access defined
in acemask4 to the file or directory.

ACE4_ACCESS_DENIED_ACE_TYPE DENY Explicitly denies the access defined
in acemask4 to the file or directory.

ACE4_SYSTEM_AUDIT_ACE_TYPE AUDIT Log (in a system-dependent way)
any access attempt to a file or
directory that uses any of the access
methods specified in acemask4.

ACE4_SYSTEM_ALARM_ACE_TYPE ALARM Generate an alarm (in a system-
dependent way) when any access
attempt is made to a file or directory
for the access methods specified in
acemask4.

Table 6

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;
const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;
const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 109

The "Abbreviation" column denotes how the types will be referred to throughout the rest of this
section.

6.2.1.2. Attribute 13: aclsupport
A server need not support all of the above ACE types. This attribute indicates which ACE types
are supported for the current file system. The bitmask constants used to represent the above
definitions within the aclsupport attribute are as follows:

Servers that support either the ALLOW or DENY ACE type support both ALLOW and
DENY ACE types.

Clients should not attempt to set an ACE unless the server claims support for that ACE type. If the
server receives a request to set an ACE that it cannot store, it reject the request with
NFS4ERR_ATTRNOTSUPP. If the server receives a request to set an ACE that it can store but
cannot enforce, the server reject the request with NFS4ERR_ATTRNOTSUPP.

Support for any of the ACL attributes is optional (albeit). However, a server that
supports either of the new ACL attributes (dacl or sacl) allow use of the new ACL attributes
to access all of the ACE types that it supports. In other words, if such a server supports ALLOW or
DENY ACEs, then it support the dacl attribute, and if it supports AUDIT or ALARM ACEs,
then it support the sacl attribute.

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

SHOULD

MUST

SHOULD

RECOMMENDED
MUST

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 110

6.2.1.3. ACE Access Mask
The bitmask constants used for the access mask field are as follows:

Note that some masks have coincident values, for example, ACE4_READ_DATA and
ACE4_LIST_DIRECTORY. The mask entries ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and
ACE4_ADD_SUBDIRECTORY are intended to be used with directory objects, while
ACE4_READ_DATA, ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with
non-directory objects.

6.2.1.3.1. Discussion of Mask Attributes
ACE4_READ_DATA

Operation(s) affected:
READ

OPEN

Discussion:
Permission to read the data of the file.

Servers allow a user the ability to read the data of the file when only the
ACE4_EXECUTE access mask bit is allowed.

ACE4_LIST_DIRECTORY

Operation(s) affected:
READDIR

const ACE4_READ_DATA = 0x00000001;
const ACE4_LIST_DIRECTORY = 0x00000001;
const ACE4_WRITE_DATA = 0x00000002;
const ACE4_ADD_FILE = 0x00000002;
const ACE4_APPEND_DATA = 0x00000004;
const ACE4_ADD_SUBDIRECTORY = 0x00000004;
const ACE4_READ_NAMED_ATTRS = 0x00000008;
const ACE4_WRITE_NAMED_ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE_CHILD = 0x00000040;
const ACE4_READ_ATTRIBUTES = 0x00000080;
const ACE4_WRITE_ATTRIBUTES = 0x00000100;
const ACE4_WRITE_RETENTION = 0x00000200;
const ACE4_WRITE_RETENTION_HOLD = 0x00000400;

const ACE4_DELETE = 0x00010000;
const ACE4_READ_ACL = 0x00020000;
const ACE4_WRITE_ACL = 0x00040000;
const ACE4_WRITE_OWNER = 0x00080000;
const ACE4_SYNCHRONIZE = 0x00100000;

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 111

Discussion:
Permission to list the contents of a directory.

ACE4_WRITE_DATA

Operation(s) affected:
WRITE

OPEN

SETATTR of size

Discussion:
Permission to modify a file's data.

ACE4_ADD_FILE

Operation(s) affected:
CREATE

LINK

OPEN

RENAME

Discussion:
Permission to add a new file in a directory. The CREATE operation is affected when
nfs_ftype4 is NF4LNK, NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not listed
because it is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when used to
create a regular file. LINK and RENAME are always affected.

ACE4_APPEND_DATA

Operation(s) affected:
WRITE

OPEN

SETATTR of size

Discussion:
The ability to modify a file's data, but only starting at EOF. This allows for the notion of
append-only files, by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA
to the same user or group. If a file has an ACL such as the one described above and a
WRITE request is made for somewhere other than EOF, the server return
NFS4ERR_ACCESS.

ACE4_ADD_SUBDIRECTORY

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 112

Operation(s) affected:
CREATE

RENAME

Discussion:
Permission to create a subdirectory in a directory. The CREATE operation is affected
when nfs_ftype4 is NF4DIR. The RENAME operation is always affected.

ACE4_READ_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to read the named attributes of a file or to look up the named attribute
directory. OPENATTR is affected when it is not used to create a named attribute
directory. This is when 1) createdir is TRUE, but a named attribute directory already
exists, or 2) createdir is FALSE.

ACE4_WRITE_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to write the named attributes of a file or to create a named attribute
directory. OPENATTR is affected when it is used to create a named attribute directory.
This is when createdir is TRUE and no named attribute directory exists. The ability to
check whether or not a named attribute directory exists depends on the ability to look
it up; therefore, users also need the ACE4_READ_NAMED_ATTRS permission in order
to create a named attribute directory.

ACE4_EXECUTE

Operation(s) affected:
READ

OPEN

REMOVE

RENAME

LINK

CREATE

Discussion:
Permission to execute a file.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 113

Servers allow a user the ability to read the data of the file when only the
ACE4_EXECUTE access mask bit is allowed. This is because there is no way to execute a
file without reading the contents. Though a server may treat ACE4_EXECUTE and
ACE4_READ_DATA bits identically when deciding to permit a READ operation, it

 still allow the two bits to be set independently in ACLs, and distinguish
between them when replying to ACCESS operations. In particular, servers

 silently turn on one of the two bits when the other is set, as that would make it
impossible for the client to correctly enforce the distinction between read and execute
permissions.

As an example, following a SETATTR of the following ACL:

nfsuser:ACE4_EXECUTE:ALLOW

A subsequent GETATTR of ACL for that file return:

nfsuser:ACE4_EXECUTE:ALLOW

Rather than:

nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW

ACE4_EXECUTE

Operation(s) affected:
LOOKUP

Discussion:
Permission to traverse/search a directory.

ACE4_DELETE_CHILD

Operation(s) affected:
REMOVE

RENAME

Discussion:
Permission to delete a file or directory within a directory. See Section 6.2.1.3.2 for
information on ACE4_DELETE and ACE4_DELETE_CHILD interact.

ACE4_READ_ATTRIBUTES

Operation(s) affected:
GETATTR of file system object attributes

VERIFY

NVERIFY

SHOULD

SHOULD MUST
SHOULD

NOT

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 114

READDIR

Discussion:
The ability to read basic attributes (non-ACLs) of a file. On a UNIX system, basic
attributes can be thought of as the stat-level attributes. Allowing this access mask bit
would mean that the entity can execute "ls -l" and stat. If a READDIR operation
requests attributes, this mask must be allowed for the READDIR to succeed.

ACE4_WRITE_ATTRIBUTES

Operation(s) affected:
SETATTR of time_access_set, time_backup,

time_create, time_modify_set, mimetype, hidden, system

Discussion:
Permission to change the times associated with a file or directory to an arbitrary
value. Also permission to change the mimetype, hidden, and system attributes. A user
having ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to set the
times associated with a file to the current server time.

ACE4_WRITE_RETENTION

Operation(s) affected:
SETATTR of retention_set, retentevt_set.

Discussion:
Permission to modify the durations of event and non-event-based retention. Also
permission to enable event and non-event-based retention. A server behave such
that setting ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

ACE4_WRITE_RETENTION_HOLD

Operation(s) affected:
SETATTR of retention_hold.

Discussion:
Permission to modify the administration retention holds. A server map
ACE4_WRITE_ATTRIBUTES to ACE_WRITE_RETENTION_HOLD.

ACE4_DELETE

Operation(s) affected:
REMOVE

Discussion:
Permission to delete the file or directory. See Section 6.2.1.3.2 for information on
ACE4_DELETE and ACE4_DELETE_CHILD interact.

MAY

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 115

ACE4_READ_ACL

Operation(s) affected:
GETATTR of acl, dacl, or sacl

NVERIFY

VERIFY

Discussion:
Permission to read the ACL.

ACE4_WRITE_ACL

Operation(s) affected:
SETATTR of acl and mode

Discussion:
Permission to write the acl and mode attributes.

ACE4_WRITE_OWNER

Operation(s) affected:
SETATTR of owner and owner_group

Discussion:
Permission to write the owner and owner_group attributes. On UNIX systems, this is
the ability to execute chown() and chgrp().

ACE4_SYNCHRONIZE

Operation(s) affected:
NONE

Discussion:
Permission to use the file object as a synchronization primitive for interprocess
communication. This permission is not enforced or interpreted by the NFSv4.1 server
on behalf of the client.

Typically, the ACE4_SYNCHRONIZE permission is only meaningful on local file systems,
i.e., file systems not accessed via NFSv4.1. The reason that the permission bit exists is
that some operating environments, such as Windows, use ACE4_SYNCHRONIZE.

For example, if a client copies a file that has ACE4_SYNCHRONIZE set from a local file
system to an NFSv4.1 server, and then later copies the file from the NFSv4.1 server to a
local file system, it is likely that if ACE4_SYNCHRONIZE was set in the original file, the
client will want it set in the second copy. The first copy will not have the permission set
unless the NFSv4.1 server has the means to set the ACE4_SYNCHRONIZE bit. The
second copy will not have the permission set unless the NFSv4.1 server has the means
to retrieve the ACE4_SYNCHRONIZE bit.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 116

Server implementations need not provide the granularity of control that is implied by this list of
masks. For example, POSIX-based systems might not distinguish ACE4_APPEND_DATA (the ability
to append to a file) from ACE4_WRITE_DATA (the ability to modify existing contents); both masks
would be tied to a single "write" permission . When such a server returns attributes to the
client, it would show both ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the write
permission is enabled.

If a server receives a SETATTR request that it cannot accurately implement, it should err in the
direction of more restricted access, except in the previously discussed cases of execute and read.
For example, suppose a server cannot distinguish overwriting data from appending new data, as
described in the previous paragraph. If a client submits an ALLOW ACE where
ACE4_APPEND_DATA is set but ACE4_WRITE_DATA is not (or vice versa), the server should either
turn off ACE4_APPEND_DATA or reject the request with NFS4ERR_ATTRNOTSUPP.

[17]

6.2.1.3.2. ACE4_DELETE vs. ACE4_DELETE_CHILD
Two access mask bits govern the ability to delete a directory entry: ACE4_DELETE on the object
itself (the "target") and ACE4_DELETE_CHILD on the containing directory (the "parent").

Many systems also take the "sticky bit" (MODE4_SVTX) on a directory to allow unlink only to a
user that owns either the target or the parent; on some such systems the decision also depends
on whether the target is writable.

Servers allow unlink if either ACE4_DELETE is permitted on the target, or
ACE4_DELETE_CHILD is permitted on the parent. (Note that this is true even if the parent or
target explicitly denies one of these permissions.)

If the ACLs in question neither explicitly ALLOW nor DENY either of the above, and if
MODE4_SVTX is not set on the parent, then the server allow the removal if and only if
ACE4_ADD_FILE is permitted. In the case where MODE4_SVTX is set, the server may also require
the remover to own either the parent or the target, or may require the target to be writable.

This allows servers to support something close to traditional UNIX-like semantics, with
ACE4_ADD_FILE taking the place of the write bit.

SHOULD

SHOULD

6.2.1.4. ACE flag
The bitmask constants used for the flag field are as follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;
const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;
const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;
const ACE4_INHERIT_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;
const ACE4_IDENTIFIER_GROUP = 0x00000040;
const ACE4_INHERITED_ACE = 0x00000080;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 117

A server need not support any of these flags. If the server supports flags that are similar to, but
not exactly the same as, these flags, the implementation may define a mapping between the
protocol-defined flags and the implementation-defined flags.

For example, suppose a client tries to set an ACE with ACE4_FILE_INHERIT_ACE set but not
ACE4_DIRECTORY_INHERIT_ACE. If the server does not support any form of ACL inheritance, the
server should reject the request with NFS4ERR_ATTRNOTSUPP. If the server supports a single
"inherit ACE" flag that applies to both files and directories, the server may reject the request (i.e.,
requiring the client to set both the file and directory inheritance flags). The server may also
accept the request and silently turn on the ACE4_DIRECTORY_INHERIT_ACE flag.

6.2.1.4.1. Discussion of Flag Bits

ACE4_FILE_INHERIT_ACE
Any non-directory file in any sub-directory will get this ACE inherited.

ACE4_DIRECTORY_INHERIT_ACE
Can be placed on a directory and indicates that this ACE should be added to each new
directory created.

If this flag is set in an ACE in an ACL attribute to be set on a non-directory file system
object, the operation attempting to set the ACL fail with NFS4ERR_ATTRNOTSUPP.

ACE4_NO_PROPAGATE_INHERIT_ACE
Can be placed on a directory. This flag tells the server that inheritance of this ACE should
stop at newly created child directories.

ACE4_INHERIT_ONLY_ACE
Can be placed on a directory but does not apply to the directory; ALLOW and DENY ACEs
with this bit set do not affect access to the directory, and AUDIT and ALARM ACEs with this
bit set do not trigger log or alarm events. Such ACEs only take effect once they are applied
(with this bit cleared) to newly created files and directories as specified by the
ACE4_FILE_INHERIT_ACE and ACE4_DIRECTORY_INHERIT_ACE flags.

If this flag is present on an ACE, but neither ACE4_DIRECTORY_INHERIT_ACE nor
ACE4_FILE_INHERIT_ACE is present, then an operation attempting to set such an attribute

 fail with NFS4ERR_ATTRNOTSUPP.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on
ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE (ALARM)
ACE types. If during the processing of the file's ACL, the server encounters an AUDIT or
ALARM ACE that matches the principal attempting the OPEN, the server notes that fact,
and the presence, if any, of the SUCCESS and FAILED flags encountered in the AUDIT or
ALARM ACE. Once the server completes the ACL processing, it then notes if the operation
succeeded or failed. If the operation succeeded, and if the SUCCESS flag was set for a
matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM event occurs. If

SHOULD

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 118

the operation failed, and if the FAILED flag was set for the matching AUDIT or ALARM ACE,
then the appropriate AUDIT or ALARM event occurs. Either or both of the SUCCESS or
FAILED can be set, but if neither is set, the AUDIT or ALARM ACE is not useful.

The previously described processing applies to ACCESS operations even when they return
NFS4_OK. For the purposes of AUDIT and ALARM, we consider an ACCESS operation to be a
"failure" if it fails to return a bit that was requested and supported.

ACE4_IDENTIFIER_GROUP
Indicates that the "who" refers to a GROUP as defined under UNIX or a GROUP ACCOUNT
as defined under Windows. Clients and servers ignore the ACE4_IDENTIFIER_GROUP
flag on ACEs with a who value equal to one of the special identifiers outlined in Section
6.2.1.5.

ACE4_INHERITED_ACE
Indicates that this ACE is inherited from a parent directory. A server that supports
automatic inheritance will place this flag on any ACEs inherited from the parent directory
when creating a new object. Client applications will use this to perform automatic
inheritance. Clients and servers clear this bit in the acl attribute; it may only be used
in the dacl and sacl attributes.

MUST

MUST

6.2.1.5. ACE Who
The "who" field of an ACE is an identifier that specifies the principal or principals to whom the
ACE applies. It may refer to a user or a group, with the flag bit ACE4_IDENTIFIER_GROUP
specifying which.

There are several special identifiers that need to be understood universally, rather than in the
context of a particular DNS domain. Some of these identifiers cannot be understood when an NFS
client accesses the server, but have meaning when a local process accesses the file. The ability to
display and modify these permissions is permitted over NFS, even if none of the access methods
on the server understands the identifiers.

Who Description

OWNER The owner of the file.

GROUP The group associated with the file.

EVERYONE The world, including the owner and owning group.

INTERACTIVE Accessed from an interactive terminal.

NETWORK Accessed via the network.

DIALUP Accessed as a dialup user to the server.

BATCH Accessed from a batch job.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 119

To avoid conflict, these special identifiers are distinguished by an appended "@" and should
appear in the form "xxxx@" (with no domain name after the "@"), for example, ANONYMOUS@.

The ACE4_IDENTIFIER_GROUP flag be ignored on entries with these special identifiers.
When encoding entries with these special identifiers, the ACE4_IDENTIFIER_GROUP flag
be set to zero.

6.2.1.5.1. Discussion of EVERYONE@
It is important to note that "EVERYONE@" is not equivalent to the UNIX "other" entity. This is
because, by definition, UNIX "other" does not include the owner or owning group of a file.
"EVERYONE@" means literally everyone, including the owner or owning group.

Who Description

ANONYMOUS Accessed without any authentication.

AUTHENTICATED Any authenticated user (opposite of ANONYMOUS).

SERVICE Access from a system service.

Table 7

MUST
SHOULD

6.2.2. Attribute 58: dacl

The dacl attribute is like the acl attribute, but dacl allows just ALLOW and DENY ACEs. The dacl
attribute supports automatic inheritance (see Section 6.4.3.2).

6.2.3. Attribute 59: sacl

The sacl attribute is like the acl attribute, but sacl allows just AUDIT and ALARM ACEs. The sacl
attribute supports automatic inheritance (see Section 6.4.3.2).

6.2.4. Attribute 33: mode

The NFSv4.1 mode attribute is based on the UNIX mode bits. The following bits are defined:

const MODE4_SUID = 0x800; /* set user id on execution */
const MODE4_SGID = 0x400; /* set group id on execution */
const MODE4_SVTX = 0x200; /* save text even after use */
const MODE4_RUSR = 0x100; /* read permission: owner */
const MODE4_WUSR = 0x080; /* write permission: owner */
const MODE4_XUSR = 0x040; /* execute permission: owner */
const MODE4_RGRP = 0x020; /* read permission: group */
const MODE4_WGRP = 0x010; /* write permission: group */
const MODE4_XGRP = 0x008; /* execute permission: group */
const MODE4_ROTH = 0x004; /* read permission: other */
const MODE4_WOTH = 0x002; /* write permission: other */
const MODE4_XOTH = 0x001; /* execute permission: other */

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 120

6.3. Common Methods
The requirements in this section will be referred to in future sections, especially Section 6.4.

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal identified in the
owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP apply to principals
identified in the owner_group attribute but who are not identified in the owner attribute. Bits
MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any principal that does not match
that in the owner attribute and does not have a group matching that of the owner_group
attribute.

Bits within a mode other than those specified above are not defined by this protocol. A server
 return bits other than those defined above in a GETATTR or READDIR operation, and it

 return NFS4ERR_INVAL if bits other than those defined above are set in a SETATTR,
CREATE, OPEN, VERIFY, or NVERIFY operation.

MUST NOT
MUST

6.2.5. Attribute 74: mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows individual bits in the mode
attribute to be set or reset, without changing others. It allows, for example, the bits MODE4_SUID,
MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified any of the nine low-
order mode bits devoted to permissions.

In such instances that the nine low-order bits are left unmodified, then neither the acl nor the
dacl attribute should be automatically modified as discussed in Section 6.4.1.

The mode_set_masked attribute consists of two words, each in the form of a mode4. The first
consists of the value to be applied to the current mode value and the second is a mask. Only bits
set to one in the mask word are changed (set or reset) in the file's mode. All other bits in the
mode remain unchanged. Bits in the first word that correspond to bits that are zero in the mask
are ignored, except that undefined bits are checked for validity and can result in
NFS4ERR_INVAL as described below.

The mode_set_masked attribute is only valid in a SETATTR operation. If it is used in a CREATE or
OPEN operation, the server return NFS4ERR_INVAL.

Bits not defined as valid in the mode attribute are not valid in either word of the
mode_set_masked attribute. The server return NFS4ERR_INVAL if any such bits are set to
one in a SETATTR. If the mode and mode_set_masked attributes are both specified in the same
SETATTR, the server also return NFS4ERR_INVAL.

MUST

MUST

MUST

6.3.1. Interpreting an ACL

6.3.1.1. Server Considerations
The server uses the algorithm described in Section 6.2.1 to determine whether an ACL allows
access to an object. However, the ACL might not be the sole determiner of access. For example:

In the case of a file system exported as read-only, the server may deny write access even
though an object's ACL grants it.

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 121

Server implementations grant ACE4_WRITE_ACL and ACE4_READ_ACL permissions to
prevent a situation from arising in which there is no valid way to ever modify the ACL.
All servers will allow a user the ability to read the data of the file when only the execute
permission is granted (i.e., if the ACL denies the user the ACE4_READ_DATA access and
allows the user ACE4_EXECUTE, the server will allow the user to read the data of the file).
Many servers have the notion of owner-override in which the owner of the object is allowed
to override accesses that are denied by the ACL. This may be helpful, for example, to allow
users continued access to open files on which the permissions have changed.
Many servers have the notion of a "superuser" that has privileges beyond an ordinary user.
The superuser may be able to read or write data or metadata in ways that would not be
permitted by the ACL.
A retention attribute might also block access otherwise allowed by ACLs (see Section 5.13).

• MAY

•

•

•

•

6.3.1.2. Client Considerations
Clients do their own access checks based on their interpretation of the ACL, but
rather use the OPEN and ACCESS operations to do access checks. This allows the client to act on
the results of having the server determine whether or not access should be granted based on its
interpretation of the ACL.

Clients must be aware of situations in which an object's ACL will define a certain access even
though the server will not enforce it. In general, but especially in these situations, the client
needs to do its part in the enforcement of access as defined by the ACL. To do this, the client
send the appropriate ACCESS operation prior to servicing the request of the user or application
in order to determine whether the user or application should be granted the access requested.
For examples in which the ACL may define accesses that the server doesn't enforce, see Section
6.3.1.1.

SHOULD NOT

MAY

6.3.2. Computing a Mode Attribute from an ACL

The following method can be used to calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of
a mode attribute, based upon an ACL.

First, for each of the special identifiers OWNER@, GROUP@, and EVERYONE@, evaluate the ACL
in order, considering only ALLOW and DENY ACEs for the identifier EVERYONE@ and for the
identifier under consideration. The result of the evaluation will be an NFSv4 ACL mask showing
exactly which bits are permitted to that identifier.

Then translate the calculated mask for OWNER@, GROUP@, and EVERYONE@ into mode bits for,
respectively, the user, group, and other, as follows:

Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and only if
ACE4_READ_DATA is set in the corresponding mask.
Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and only if
ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the corresponding mask.
Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if and only if
ACE4_EXECUTE is set in the corresponding mask.

1.

2.

3.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 122

6.3.2.1. Discussion
Some server implementations also add bits permitted to named users and groups to the group
bits (MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP).

Implementations are discouraged from doing this, because it has been found to cause confusion
for users who see members of a file's group denied access that the mode bits appear to allow.
(The presence of DENY ACEs may also lead to such behavior, but DENY ACEs are expected to be
more rarely used.)

The same user confusion seen when fetching the mode also results if setting the mode does not
effectively control permissions for the owner, group, and other users; this motivates some of the
requirements that follow.

6.4. Requirements
The server that supports both mode and ACL must take care to synchronize the MODE4_*USR,
MODE4_*GRP, and MODE4_*OTH bits with the ACEs that have respective who fields of
"OWNER@", "GROUP@", and "EVERYONE@". This way, the client can see if semantically
equivalent access permissions exist whether the client asks for the owner, owner_group, and
mode attributes or for just the ACL.

In this section, much is made of the methods in Section 6.3.2. Many requirements refer to this
section. But note that the methods have behaviors specified with " ". This is intentional, to
avoid invalidating existing implementations that compute the mode according to the withdrawn
POSIX ACL draft (1003.1e draft 17), rather than by actual permissions on owner, group, and
other.

SHOULD

6.4.1. Setting the Mode and/or ACL Attributes

In the case where a server supports the sacl or dacl attribute, in addition to the acl attribute, the
server fail a request to set the acl attribute simultaneously with a dacl or sacl attribute. The
error to be given is NFS4ERR_ATTRNOTSUPP.

MUST

6.4.1.1. Setting Mode and not ACL
When any of the nine low-order mode bits are subject to change, either because the mode
attribute was set or because the mode_set_masked attribute was set and the mask included one
or more bits from the nine low-order mode bits, and no ACL attribute is explicitly set, the acl and
dacl attributes must be modified in accordance with the updated value of those bits. This must
happen even if the value of the low-order bits is the same after the mode is set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl attribute) are unaffected by
changes to the mode.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 123

6.4.2. Retrieving the Mode and/or ACL Attributes

This section applies only to servers that support both the mode and ACL attributes.

Some server implementations may have a concept of "objects without ACLs", meaning that all
permissions are granted and denied according to the mode attribute and that no ACL attribute is
stored for that object. If an ACL attribute is requested of such a server, the server return

In cases in which the permissions bits are subject to change, the acl and dacl attributes be
modified such that the mode computed via the method in Section 6.3.2 yields the low-order nine
bits (MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as modified by the attribute
change. The ACL attributes also be modified such that:

If MODE4_RGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ be granted ACE4_READ_DATA.
If MODE4_WGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ be granted ACE4_WRITE_DATA or ACE4_APPEND_DATA.
If MODE4_XGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ be granted ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW ACEs, also be disabled.

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect the permissions of the
ACL itself, nor do ACEs of the type AUDIT and ALARM. As such, it is desirable to leave these ACEs
unmodified when modifying the ACL attributes.

Also note that the requirement may be met by discarding the acl and dacl, in favor of an ACL that
represents the mode and only the mode. This is permitted, but it is preferable for a server to
preserve as much of the ACL as possible without violating the above requirements. Discarding
the ACL makes it effectively impossible for a file created with a mode attribute to inherit an ACL
(see Section 6.4.3).

MUST

SHOULD

1.
SHOULD NOT

2.
SHOULD NOT

3.
SHOULD NOT

MAY

6.4.1.2. Setting ACL and Not Mode
When setting the acl or dacl and not setting the mode or mode_set_masked attributes, the
permission bits of the mode need to be derived from the ACL. In this case, the ACL attribute

 be set as given. The nine low-order bits of the mode attribute (MODE4_R*, MODE4_W*,
MODE4_X*) be modified to match the result of the method in Section 6.3.2. The three high-
order bits of the mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX) remain unchanged.

SHOULD
MUST

SHOULD

6.4.1.3. Setting Both ACL and Mode
When setting both the mode (includes use of either the mode attribute or the mode_set_masked
attribute) and the acl or dacl attributes in the same operation, the attributes be applied in
this order: mode (or mode_set_masked), then ACL. The mode-related attribute is set as given,
then the ACL attribute is set as given, possibly changing the final mode, as described above in
Section 6.4.1.2.

MUST

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 124

an ACL that does not conflict with the mode; that is to say, the ACL returned represent
the nine low-order bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) as described
in Section 6.3.2.

For other server implementations, the ACL attribute is always present for every object. Such
servers store at least the three high-order bits of the mode attribute (MODE4_SUID,
MODE4_SGID, MODE4_SVTX). The server return a mode attribute if one is requested,
and the low-order nine bits of the mode (MODE4_R*, MODE4_W*, MODE4_X*) match the
result of applying the method in Section 6.3.2 to the ACL attribute.

SHOULD

SHOULD
SHOULD

MUST

6.4.3. Creating New Objects

If a server supports any ACL attributes, it may use the ACL attributes on the parent directory to
compute an initial ACL attribute for a newly created object. This will be referred to as the
inherited ACL within this section. The act of adding one or more ACEs to the inherited ACL that
are based upon ACEs in the parent directory's ACL will be referred to as inheriting an ACE within
this section.

Implementors should standardize what the behavior of CREATE and OPEN must be depending on
the presence or absence of the mode and ACL attributes.

If just the mode is given in the call:

In this case, inheritance take place, but the mode be applied to the inherited
ACL as described in Section 6.4.1.1, thereby modifying the ACL.

If just the ACL is given in the call:

In this case, inheritance take place, and the ACL as defined in the CREATE or
OPEN will be set without modification, and the mode modified as in Section 6.4.1.2.

If both mode and ACL are given in the call:

In this case, inheritance take place, and both attributes will be set as described
in Section 6.4.1.3.

If neither mode nor ACL is given in the call:

In the case where an object is being created without any initial attributes at all, e.g., an OPEN
operation with an opentype4 of OPEN4_CREATE and a createmode4 of EXCLUSIVE4,
inheritance take place (note that EXCLUSIVE4_1 is a better choice of
createmode4, since it does permit initial attributes). Instead, the server set
permissions to deny all access to the newly created object. It is expected that the appropriate
client will set the desired attributes in a subsequent SETATTR operation, and the server

 allow that operation to succeed, regardless of what permissions the object is created
with. For example, an empty ACL denies all permissions, but the server should allow the
owner's SETATTR to succeed even though WRITE_ACL is implicitly denied.

1.

SHOULD MUST

2.

SHOULD NOT

3.

SHOULD NOT

4.

SHOULD NOT
SHOULD

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 125

In other cases, inheritance take place, and no modifications to the ACL will happen.
The mode attribute, if supported, be as computed in Section 6.3.2, with the
MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no inheritable ACEs exist on the
parent directory, the rules for creating acl, dacl, or sacl attributes are implementation
defined. If either the dacl or sacl attribute is supported, then the ACL4_DEFAULTED flag

 be set on the newly created attributes.

SHOULD
MUST

SHOULD

6.4.3.1. The Inherited ACL
If the object being created is not a directory, the inherited ACL inherit ACEs from
the parent directory ACL unless the ACE4_FILE_INHERIT_FLAG is set.

If the object being created is a directory, the inherited ACL should inherit all inheritable ACEs
from the parent directory, that is, those that have the ACE4_FILE_INHERIT_ACE or
ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has ACE4_FILE_INHERIT_ACE set
but ACE4_DIRECTORY_INHERIT_ACE is clear, the inherited ACE on the newly created directory

 have the ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being affected by
ACEs meant for non-directories.

When a new directory is created, the server split any inherited ACE that is both inheritable
and effective (in other words, that has neither ACE4_INHERIT_ONLY_ACE nor
ACE4_NO_PROPAGATE_INHERIT_ACE set), into two ACEs, one with no inheritance flags and one
with ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute, both of those ACEs

 also have the ACE4_INHERITED_ACE flag set.) This makes it simpler to modify the
effective permissions on the directory without modifying the ACE that is to be inherited to the
new directory's children.

SHOULD NOT

MUST

MAY

SHOULD

6.4.3.2. Automatic Inheritance
The acl attribute consists only of an array of ACEs, but the and

 attributes also include an additional flag field.

The flag field applies to the entire sacl or dacl; three flag values are defined:

and all other bits must be cleared. The ACE4_INHERITED_ACE flag may be set in the ACEs of the
sacl or dacl (whereas it must always be cleared in the acl).

sacl (Section 6.2.3) dacl (Section
6.2.2)

struct nfsacl41 {
 aclflag4 na41_flag;
 nfsace4 na41_aces<>;
};

const ACL4_AUTO_INHERIT = 0x00000001;
const ACL4_PROTECTED = 0x00000002;
const ACL4_DEFAULTED = 0x00000004;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 126

Together these features allow a server to support automatic inheritance, which we now explain
in more detail.

Inheritable ACEs are normally inherited by child objects only at the time that the child objects
are created; later modifications to inheritable ACEs do not result in modifications to inherited
ACEs on descendants.

However, the dacl and sacl provide an mechanism that allows a client application to
propagate changes to inheritable ACEs to an entire directory hierarchy.

A server that supports this performs inheritance at object creation time in the normal way, and
 set the ACE4_INHERITED_ACE flag on any inherited ACEs as they are added to the new

object.

A client application such as an ACL editor may then propagate changes to inheritable ACEs on a
directory by recursively traversing that directory's descendants and modifying each ACL
encountered to remove any ACEs with the ACE4_INHERITED_ACE flag and to replace them by the
new inheritable ACEs (also with the ACE4_INHERITED_ACE flag set). It uses the existing ACE
inheritance flags in the obvious way to decide which ACEs to propagate. (Note that it may
encounter further inheritable ACEs when descending the directory hierarchy and that those will
also need to be taken into account when propagating inheritable ACEs to further descendants.)

The reach of this propagation may be limited in two ways: first, automatic inheritance is not
performed from any directory ACL that has the ACL4_AUTO_INHERIT flag cleared; and second,
automatic inheritance stops wherever an ACL with the ACL4_PROTECTED flag is set, preventing
modification of that ACL and also (if the ACL is set on a directory) of the ACL on any of the
object's descendants.

This propagation is performed independently for the sacl and the dacl attributes; thus, the
ACL4_AUTO_INHERIT and ACL4_PROTECTED flags may be independently set for the sacl and the
dacl, and propagation of one type of acl may continue down a hierarchy even where propagation
of the other acl has stopped.

New objects should be created with a dacl and a sacl that both have the ACL4_PROTECTED flag
cleared and the ACL4_AUTO_INHERIT flag set to the same value as that on, respectively, the sacl
or dacl of the parent object.

Both the dacl and sacl attributes are , and a server may support one without
supporting the other.

A server that supports both the old acl attribute and one or both of the new dacl or sacl attributes
must do so in such a way as to keep all three attributes consistent with each other. Thus, the ACEs
reported in the acl attribute should be the union of the ACEs reported in the dacl and sacl
attributes, except that the ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl.
And of course a client that queries only the acl will be unable to determine the values of the sacl
or dacl flag fields.

OPTIONAL

SHOULD

RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 127

When a client performs a SETATTR for the acl attribute, the server set the
ACL4_PROTECTED flag to true on both the sacl and the dacl. By using the acl attribute, as opposed
to the dacl or sacl attributes, the client signals that it may not understand automatic inheritance,
and thus cannot be trusted to set an ACL for which automatic inheritance would make sense.

When a client application queries an ACL, modifies it, and sets it again, it should leave any ACEs
marked with ACE4_INHERITED_ACE unchanged, in their original order, at the end of the ACL. If
the application is unable to do this, it should set the ACL4_PROTECTED flag. This behavior is not
enforced by servers, but violations of this rule may lead to unexpected results when applications
perform automatic inheritance.

If a server also supports the mode attribute, it set the mode in such a way that leaves
inherited ACEs unchanged, in their original order, at the end of the ACL. If it is unable to do so, it

 set the ACL4_PROTECTED flag on the file's dacl.

Finally, in the case where the request that creates a new file or directory does not also set
permissions for that file or directory, and there are also no ACEs to inherit from the parent's
directory, then the server's choice of ACL for the new object is implementation-dependent. In this
case, the server set the ACL4_DEFAULTED flag on the ACL it chooses for the new object.
An application performing automatic inheritance takes the ACL4_DEFAULTED flag as a sign that
the ACL should be completely replaced by one generated using the automatic inheritance rules.

SHOULD

SHOULD

SHOULD

SHOULD

7. Single-Server Namespace
This section describes the NFSv4 single-server namespace. Single-server namespaces may be
presented directly to clients, or they may be used as a basis to form larger multi-server
namespaces (e.g., site-wide or organization-wide) to be presented to clients, as described in
Section 11.

7.1. Server Exports
On a UNIX server, the namespace describes all the files reachable by pathnames under the root
directory or "/". On a Windows server, the namespace constitutes all the files on disks named by
mapped disk letters. NFS server administrators rarely make the entire server's file system
namespace available to NFS clients. More often, portions of the namespace are made available
via an "export" feature. In previous versions of the NFS protocol, the root filehandle for each
export is obtained through the MOUNT protocol; the client sent a string that identified the export
name within the namespace and the server returned the root filehandle for that export. The
MOUNT protocol also provided an EXPORTS procedure that enumerated the server's exports.

7.2. Browsing Exports
The NFSv4.1 protocol provides a root filehandle that clients can use to obtain filehandles for the
exports of a particular server, via a series of LOOKUP operations within a COMPOUND, to
traverse a path. A common user experience is to use a graphical user interface (perhaps a file

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 128

7.4. Multiple Roots
Certain operating environments are sometimes described as having "multiple roots". In such
environments, individual file systems are commonly represented by disk or volume names.
NFSv4 servers for these platforms can construct a pseudo file system above these root names so
that disk letters or volume names are simply directory names in the pseudo root.

"Open" dialog window) to find a file via progressive browsing through a directory tree. The client
must be able to move from one export to another export via single-component, progressive
LOOKUP operations.

This style of browsing is not well supported by the NFSv3 protocol. In NFSv3, the client expects
all LOOKUP operations to remain within a single server file system. For example, the device
attribute will not change. This prevents a client from taking namespace paths that span exports.

In the case of NFSv3, an automounter on the client can obtain a snapshot of the server's
namespace using the EXPORTS procedure of the MOUNT protocol. If it understands the server's
pathname syntax, it can create an image of the server's namespace on the client. The parts of the
namespace that are not exported by the server are filled in with directories that might be
constructed similarly to an NFSv4.1 "pseudo file system" (see Section 7.3) that allows the user to
browse from one mounted file system to another. There is a drawback to this representation of
the server's namespace on the client: it is static. If the server administrator adds a new export,
the client will be unaware of it.

7.3. Server Pseudo File System
NFSv4.1 servers avoid this namespace inconsistency by presenting all the exports for a given
server within the framework of a single namespace for that server. An NFSv4.1 client uses
LOOKUP and READDIR operations to browse seamlessly from one export to another.

Where there are portions of the server namespace that are not exported, clients require some
way of traversing those portions to reach actual exported file systems. A technique that servers
may use to provide for this is to bridge the unexported portion of the namespace via a "pseudo
file system" that provides a view of exported directories only. A pseudo file system has a unique
fsid and behaves like a normal, read-only file system.

Based on the construction of the server's namespace, it is possible that multiple pseudo file
systems may exist. For example,

Each of the pseudo file systems is considered a separate entity and therefore have its own
fsid, unique among all the fsids for that server.

 /a pseudo file system
 /a/b real file system
 /a/b/c pseudo file system
 /a/b/c/d real file system

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 129

7.6. Exported Root
If the server's root file system is exported, one might conclude that a pseudo file system is
unneeded. This is not necessarily so. Assume the following file systems on a server:

Because fs2 is not exported, fs3 cannot be reached with simple LOOKUPs. The server must bridge
the gap with a pseudo file system.

7.7. Mount Point Crossing
The server file system environment may be constructed in such a way that one file system
contains a directory that is 'covered' or mounted upon by a second file system. For example:

The pseudo file system for this server may be constructed to look like:

It is the server's responsibility to present the pseudo file system that is complete to the client. If
the client sends a LOOKUP request for the path /a/b/c/d, the server's response is the filehandle of
the root of the file system /a/b/c/d. In previous versions of the NFS protocol, the server would
respond with the filehandle of directory /a/b/c/d within the file system /a/b.

7.5. Filehandle Volatility
The nature of the server's pseudo file system is that it is a logical representation of file system(s)
available from the server. Therefore, the pseudo file system is most likely constructed
dynamically when the server is first instantiated. It is expected that the pseudo file system may
not have an on-disk counterpart from which persistent filehandles could be constructed. Even
though it is preferable that the server provide persistent filehandles for the pseudo file system,
the NFS client should expect that pseudo file system filehandles are volatile. This can be
confirmed by checking the associated "fh_expire_type" attribute for those filehandles in question.
If the filehandles are volatile, the NFS client must be prepared to recover a filehandle value (e.g.,
with a series of LOOKUP operations) when receiving an error of NFS4ERR_FHEXPIRED.

Because it is quite likely that servers will implement pseudo file systems using volatile
filehandles, clients need to be prepared for them, rather than assuming that all filehandles will
be persistent.

 / fs1 (exported)
 /a fs2 (not exported)
 /a/b fs3 (exported)

 /a/b (file system 1)
 /a/b/c/d (file system 2)

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/c/d (file system 2)

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 130

8. State Management
Integrating locking into the NFS protocol necessarily causes it to be stateful. With the inclusion of
such features as share reservations, file and directory delegations, recallable layouts, and
support for mandatory byte-range locking, the protocol becomes substantially more dependent
on proper management of state than the traditional combination of NFS and NLM (Network Lock

The NFS client will be able to determine if it crosses a server mount point by a change in the
value of the "fsid" attribute.

7.8. Security Policy and Namespace Presentation
Because NFSv4 clients possess the ability to change the security mechanisms used, after
determining what is allowed, by using SECINFO and SECINFO_NONAME, the server
present a different view of the namespace based on the security mechanism being used by a
client. Instead, it should present a consistent view and return NFS4ERR_WRONGSEC if an attempt
is made to access data with an inappropriate security mechanism.

If security considerations make it necessary to hide the existence of a particular file system, as
opposed to all of the data within it, the server can apply the security policy of a shared resource
in the server's namespace to components of the resource's ancestors. For example:

The /a/b/MySecretProject directory is a real file system and is the shared resource. Suppose the
security policy for /a/b/MySecretProject is Kerberos with integrity and it is desired to limit
knowledge of the existence of this file system. In this case, the server should apply the same
security policy to /a/b. This allows for knowledge of the existence of a file system to be secured
when desirable.

For the case of the use of multiple, disjoint security mechanisms in the server's resources,
applying that sort of policy would result in the higher-level file system not being accessible using
any security flavor. Therefore, that sort of configuration is not compatible with hiding the
existence (as opposed to the contents) from clients using multiple disjoint sets of security flavors.

In other circumstances, a desirable policy is for the security of a particular object in the server's
namespace to include the union of all security mechanisms of all direct descendants. A common
and convenient practice, unless strong security requirements dictate otherwise, is to make the
entire the pseudo file system accessible by all of the valid security mechanisms.

Where there is concern about the security of data on the network, clients should use strong
security mechanisms to access the pseudo file system in order to prevent man-in-the-middle
attacks.

SHOULD NOT

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/MySecretProject (file system 2)

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 131

Manager) . These features include expanded locking facilities, which provide some measure
of inter-client exclusion, but the state also offers features not readily providable using a stateless
model. There are three components to making this state manageable:

clear division between client and server
ability to reliably detect inconsistency in state between client and server
simple and robust recovery mechanisms

In this model, the server owns the state information. The client requests changes in locks and the
server responds with the changes made. Non-client-initiated changes in locking state are
infrequent. The client receives prompt notification of such changes and can adjust its view of the
locking state to reflect the server's changes.

Individual pieces of state created by the server and passed to the client at its request are
represented by 128-bit stateids. These stateids may represent a particular open file, a set of byte-
range locks held by a particular owner, or a recallable delegation of privileges to access a file in
particular ways or at a particular location.

In all cases, there is a transition from the most general information that represents a client as a
whole to the eventual lightweight stateid used for most client and server locking interactions.
The details of this transition will vary with the type of object but it always starts with a client ID.

[54]

•
•
•

8.1. Client and Session ID
A client must establish a client ID (see Section 2.4) and then one or more sessionids (see Section
2.10) before performing any operations to open, byte-range lock, delegate, or obtain a layout for a
file object. Each session ID is associated with a specific client ID, and thus serves as a shorthand
reference to an NFSv4.1 client.

For some types of locking interactions, the client will represent some number of internal locking
entities called "owners", which normally correspond to processes internal to the client. For other
types of locking-related objects, such as delegations and layouts, no such intermediate entities
are provided for, and the locking-related objects are considered to be transferred directly
between the server and a unitary client.

8.2. Stateid Definition
When the server grants a lock of any type (including opens, byte-range locks, delegations, and
layouts), it responds with a unique stateid that represents a set of locks (often a single lock) for
the same file, of the same type, and sharing the same ownership characteristics. Thus, opens of
the same file by different open-owners each have an identifying stateid. Similarly, each set of
byte-range locks on a file owned by a specific lock-owner has its own identifying stateid.
Delegations and layouts also have associated stateids by which they may be referenced. The
stateid is used as a shorthand reference to a lock or set of locks, and given a stateid, the server
can determine the associated state-owner or state-owners (in the case of an open-owner/lock-
owner pair) and the associated filehandle. When stateids are used, the current filehandle must
be the one associated with that stateid.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 132

All stateids associated with a given client ID are associated with a common lease that represents
the claim of those stateids and the objects they represent to be maintained by the server. See
Section 8.3 for a discussion of the lease.

The server may assign stateids independently for different clients. A stateid with the same bit
pattern for one client may designate an entirely different set of locks for a different client. The
stateid is always interpreted with respect to the client ID associated with the current session.
Stateids apply to all sessions associated with the given client ID, and the client may use a stateid
obtained from one session on another session associated with the same client ID.

8.2.1. Stateid Types

With the exception of special stateids (see Section 8.2.3), each stateid represents locking objects of
one of a set of types defined by the NFSv4.1 protocol. Note that in all these cases, where we speak
of guarantee, it is understood there are situations such as a client restart, or lock revocation, that
allow the guarantee to be voided.

Stateids may represent opens of files.

Each stateid in this case represents the OPEN state for a given client ID/open-owner/
filehandle triple. Such stateids are subject to change (with consequent incrementing of the
stateid's seqid) in response to OPENs that result in upgrade and OPEN_DOWNGRADE
operations.

Stateids may represent sets of byte-range locks.

All locks held on a particular file by a particular owner and gotten under the aegis of a
particular open file are associated with a single stateid with the seqid being incremented
whenever LOCK and LOCKU operations affect that set of locks.

Stateids may represent file delegations, which are recallable guarantees by the server to the
client that other clients will not reference or modify a particular file, until the delegation is
returned. In NFSv4.1, file delegations may be obtained on both regular and non-regular files.

A stateid represents a single delegation held by a client for a particular filehandle.

Stateids may represent directory delegations, which are recallable guarantees by the server
to the client that other clients will not modify the directory, until the delegation is returned.

A stateid represents a single delegation held by a client for a particular directory filehandle.

Stateids may represent layouts, which are recallable guarantees by the server to the client
that particular files may be accessed via an alternate data access protocol at specific
locations. Such access is limited to particular sets of byte-ranges and may proceed until those
byte-ranges are reduced or the layout is returned.

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 133

A stateid represents the set of all layouts held by a particular client for a particular
filehandle with a given layout type. The seqid is updated as the layouts of that set of byte-
ranges change, via layout stateid changing operations such as LAYOUTGET and
LAYOUTRETURN.

8.2.2. Stateid Structure

Stateids are divided into two fields, a 96-bit "other" field identifying the specific set of locks and a
32-bit "seqid" sequence value. Except in the case of special stateids (see Section 8.2.3), a particular
value of the "other" field denotes a set of locks of the same type (for example, byte-range locks,
opens, delegations, or layouts), for a specific file or directory, and sharing the same ownership
characteristics. The seqid designates a specific instance of such a set of locks, and is incremented
to indicate changes in such a set of locks, either by the addition or deletion of locks from the set,
a change in the byte-range they apply to, or an upgrade or downgrade in the type of one or more
locks.

When such a set of locks is first created, the server returns a stateid with seqid value of one. On
subsequent operations that modify the set of locks, the server is required to increment the
"seqid" field by one whenever it returns a stateid for the same state-owner/file/type combination
and there is some change in the set of locks actually designated. In this case, the server will
return a stateid with an "other" field the same as previously used for that state-owner/file/type
combination, with an incremented "seqid" field. This pattern continues until the seqid is
incremented past NFS4_UINT32_MAX, and one (not zero) is the next seqid value.

The purpose of the incrementing of the seqid is to allow the server to communicate to the client
the order in which operations that modified locking state associated with a stateid have been
processed and to make it possible for the client to send requests that are conditional on the set of
locks not having changed since the stateid in question was returned.

Except for layout stateids (Section 12.5.3), when a client sends a stateid to the server, it has two
choices with regard to the seqid sent. It may set the seqid to zero to indicate to the server that it
wishes the most up-to-date seqid for that stateid's "other" field to be used. This would be the
common choice in the case of a stateid sent with a READ or WRITE operation. It also may set a
non-zero value, in which case the server checks if that seqid is the correct one. In that case, the
server is required to return NFS4ERR_OLD_STATEID if the seqid is lower than the most current
value and NFS4ERR_BAD_STATEID if the seqid is greater than the most current value. This would
be the common choice in the case of stateids sent with a CLOSE or OPEN_DOWNGRADE. Because
OPENs may be sent in parallel for the same owner, a client might close a file without knowing
that an OPEN upgrade had been done by the server, changing the lock in question. If CLOSE were
sent with a zero seqid, the OPEN upgrade would be cancelled before the client even received an
indication that an upgrade had happened.

When a stateid is sent by the server to the client as part of a callback operation, it is not subject to
checking for a current seqid and returning NFS4ERR_OLD_STATEID. This is because the client is
not in a position to know the most up-to-date seqid and thus cannot verify it. Unless specially
noted, the seqid value for a stateid sent by the server to the client as part of a callback is required
to be zero with NFS4ERR_BAD_STATEID returned if it is not.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 134

In making comparisons between seqids, both by the client in determining the order of operations
and by the server in determining whether the NFS4ERR_OLD_STATEID is to be returned, the
possibility of the seqid being swapped around past the NFS4_UINT32_MAX value needs to be
taken into account. When two seqid values are being compared, the total count of slots for all
sessions associated with the current client is used to do this. When one seqid value is less than
this total slot count and another seqid value is greater than NFS4_UINT32_MAX minus the total
slot count, the former is to be treated as lower than the latter, despite the fact that it is
numerically greater.

8.2.3. Special Stateids

Stateid values whose "other" field is either all zeros or all ones are reserved. They may not be
assigned by the server but have special meanings defined by the protocol. The particular
meaning depends on whether the "other" field is all zeros or all ones and the specific value of the
"seqid" field.

The following combinations of "other" and "seqid" are defined in NFSv4.1:

When "other" and "seqid" are both zero, the stateid is treated as a special anonymous stateid,
which can be used in READ, WRITE, and SETATTR requests to indicate the absence of any
OPEN state associated with the request. When an anonymous stateid value is used and an
existing open denies the form of access requested, then access will be denied to the request.
This stateid be used on operations to data servers (Section 13.6).
When "other" and "seqid" are both all ones, the stateid is a special READ bypass stateid.
When this value is used in WRITE or SETATTR, it is treated like the anonymous value. When
used in READ, the server grant access, even if access would normally be denied to READ
operations. This stateid be used on operations to data servers.
When "other" is zero and "seqid" is one, the stateid represents the current stateid, which is
whatever value is the last stateid returned by an operation within the COMPOUND. In the
case of an OPEN, the stateid returned for the open file and not the delegation is used. The
stateid passed to the operation in place of the special value has its "seqid" value set to zero,
except when the current stateid is used by the operation CLOSE or OPEN_DOWNGRADE. If
there is no operation in the COMPOUND that has returned a stateid value, the server
return the error NFS4ERR_BAD_STATEID. As illustrated in Figure 6, if the value of a current
stateid is a special stateid and the stateid of an operation's arguments has "other" set to zero
and "seqid" set to one, then the server return the error NFS4ERR_BAD_STATEID.
When "other" is zero and "seqid" is NFS4_UINT32_MAX, the stateid represents a reserved
stateid value defined to be invalid. When this stateid is used, the server return the
error NFS4ERR_BAD_STATEID.

If a stateid value is used that has all zeros or all ones in the "other" field but does not match one
of the cases above, the server return the error NFS4ERR_BAD_STATEID.

Special stateids, unlike other stateids, are not associated with individual client IDs or filehandles
and can be used with all valid client IDs and filehandles. In the case of a special stateid
designating the current stateid, the current stateid value substituted for the special stateid is

•

MUST NOT
•

MAY
MUST NOT

•

MUST

MUST
•

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 135

associated with a particular client ID and filehandle, and so, if it is used where the current
filehandle does not match that associated with the current stateid, the operation to which the
stateid is passed will return NFS4ERR_BAD_STATEID.

8.2.4. Stateid Lifetime and Validation

Stateids must remain valid until either a client restart or a server restart or until the client
returns all of the locks associated with the stateid by means of an operation such as CLOSE or
DELEGRETURN. If the locks are lost due to revocation, as long as the client ID is valid, the stateid
remains a valid designation of that revoked state until the client frees it by using FREE_STATEID.
Stateids associated with byte-range locks are an exception. They remain valid even if a LOCKU
frees all remaining locks, so long as the open file with which they are associated remains open,
unless the client frees the stateids via the FREE_STATEID operation.

It should be noted that there are situations in which the client's locks become invalid, without
the client requesting they be returned. These include lease expiration and a number of forms of
lock revocation within the lease period. It is important to note that in these situations, the stateid
remains valid and the client can use it to determine the disposition of the associated lost locks.

An "other" value must never be reused for a different purpose (i.e., different filehandle, owner,
or type of locks) within the context of a single client ID. A server may retain the "other" value for
the same purpose beyond the point where it may otherwise be freed, but if it does so, it must
maintain "seqid" continuity with previous values.

One mechanism that may be used to satisfy the requirement that the server recognize invalid
and out-of-date stateids is for the server to divide the "other" field of the stateid into two fields.

an index into a table of locking-state structures.
a generation number that is incremented on each allocation of a table entry for a particular
use.

And then store in each table entry,

the client ID with which the stateid is associated.
the current generation number for the (at most one) valid stateid sharing this index value.
the filehandle of the file on which the locks are taken.
an indication of the type of stateid (open, byte-range lock, file delegation, directory
delegation, layout).
the last "seqid" value returned corresponding to the current "other" value.
an indication of the current status of the locks associated with this stateid, in particular,
whether these have been revoked and if so, for what reason.

With this information, an incoming stateid can be validated and the appropriate error returned
when necessary. Special and non-special stateids are handled separately. (See Section 8.2.3 for a
discussion of special stateids.)

•
•

•
•
•
•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 136

Note that stateids are implicitly qualified by the current client ID, as derived from the client ID
associated with the current session. Note, however, that the semantics of the session will prevent
stateids associated with a previous client or server instance from being analyzed by this
procedure.

If server restart has resulted in an invalid client ID or a session ID that is invalid, SEQUENCE will
return an error and the operation that takes a stateid as an argument will never be processed.

If there has been a server restart where there is a persistent session and all leased state has been
lost, then the session in question will, although valid, be marked as dead, and any operation not
satisfied by means of the reply cache will receive the error NFS4ERR_DEADSESSION, and thus
not be processed as indicated below.

When a stateid is being tested and the "other" field is all zeros or all ones, a check that the "other"
and "seqid" fields match a defined combination for a special stateid is done and the results
determined as follows:

If the "other" and "seqid" fields do not match a defined combination associated with a special
stateid, the error NFS4ERR_BAD_STATEID is returned.
If the special stateid is one designating the current stateid and there is a current stateid, then
the current stateid is substituted for the special stateid and the checks appropriate to non-
special stateids are performed.
If the combination is valid in general but is not appropriate to the context in which the
stateid is used (e.g., an all-zero stateid is used when an OPEN stateid is required in a LOCK
operation), the error NFS4ERR_BAD_STATEID is also returned.
Otherwise, the check is completed and the special stateid is accepted as valid.

When a stateid is being tested, and the "other" field is neither all zeros nor all ones, the following
procedure could be used to validate an incoming stateid and return an appropriate error, when
necessary, assuming that the "other" field would be divided into a table index and an entry
generation.

If the table index field is outside the range of the associated table, return
NFS4ERR_BAD_STATEID.
If the selected table entry is of a different generation than that specified in the incoming
stateid, return NFS4ERR_BAD_STATEID.
If the selected table entry does not match the current filehandle, return
NFS4ERR_BAD_STATEID.
If the client ID in the table entry does not match the client ID associated with the current
session, return NFS4ERR_BAD_STATEID.
If the stateid represents revoked state, then return NFS4ERR_EXPIRED,
NFS4ERR_ADMIN_REVOKED, or NFS4ERR_DELEG_REVOKED, as appropriate.
If the stateid type is not valid for the context in which the stateid appears, return
NFS4ERR_BAD_STATEID. Note that a stateid may be valid in general, as would be reported by
the TEST_STATEID operation, but be invalid for a particular operation, as, for example, when
a stateid that doesn't represent byte-range locks is passed to the non-from_open case of LOCK

•

•

•

•

•

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 137

or to LOCKU, or when a stateid that does not represent an open is passed to CLOSE or
OPEN_DOWNGRADE. In such cases, the server return NFS4ERR_BAD_STATEID.
If the "seqid" field is not zero and it is greater than the current sequence value
corresponding to the current "other" field, return NFS4ERR_BAD_STATEID.
If the "seqid" field is not zero and it is less than the current sequence value corresponding to
the current "other" field, return NFS4ERR_OLD_STATEID.
Otherwise, the stateid is valid and the table entry should contain any additional information
about the type of stateid and information associated with that particular type of stateid, such
as the associated set of locks, e.g., open-owner and lock-owner information, as well as
information on the specific locks, e.g., open modes and byte-ranges.

MUST
•

•

•

8.2.5. Stateid Use for I/O Operations

Clients performing I/O operations need to select an appropriate stateid based on the locks
(including opens and delegations) held by the client and the various types of state-owners
sending the I/O requests. SETATTR operations that change the file size are treated like I/O
operations in this regard.

The following rules, applied in order of decreasing priority, govern the selection of the
appropriate stateid. In following these rules, the client will only consider locks of which it has
actually received notification by an appropriate operation response or callback. Note that the
rules are slightly different in the case of I/O to data servers when file layouts are being used (see
Section 13.9.1).

If the client holds a delegation for the file in question, the delegation stateid be used.
Otherwise, if the entity corresponding to the lock-owner (e.g., a process) sending the I/O has a
byte-range lock stateid for the associated open file, then the byte-range lock stateid for that
lock-owner and open file be used.
If there is no byte-range lock stateid, then the OPEN stateid for the open file in question

 be used.
Finally, if none of the above apply, then a special stateid be used.

Ignoring these rules may result in situations in which the server does not have information
necessary to properly process the request. For example, when mandatory byte-range locks are in
effect, if the stateid does not indicate the proper lock-owner, via a lock stateid, a request might be
avoidably rejected.

The server however should not try to enforce these ordering rules and should use whatever
information is available to properly process I/O requests. In particular, when a client has a
delegation for a given file, it take note of this fact in processing a request, even if it is
sent with a special stateid.

• SHOULD
•

SHOULD
•

SHOULD
• SHOULD

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 138

8.2.6. Stateid Use for SETATTR Operations

Because each operation is associated with a session ID and from that the clientid can be
determined, operations do not need to include a stateid for the server to be able to determine
whether they should cause a delegation to be recalled or are to be treated as done within the
scope of the delegation.

In the case of SETATTR operations, a stateid is present. In cases other than those that set the file
size, the client may send either a special stateid or, when a delegation is held for the file in
question, a delegation stateid. While the server validate the stateid and may use the
stateid to optimize the determination as to whether a delegation is held, it note the
presence of a delegation even when a special stateid is sent, and accept a valid delegation
stateid when sent.

SHOULD
SHOULD

MUST

8.3. Lease Renewal
Each client/server pair, as represented by a client ID, has a single lease. The purpose of the lease
is to allow the client to indicate to the server, in a low-overhead way, that it is active, and thus
that the server is to retain the client's locks. This arrangement allows the server to remove stale
locking-related objects that are held by a client that has crashed or is otherwise unreachable,
once the relevant lease expires. This in turn allows other clients to obtain conflicting locks
without being delayed indefinitely by inactive or unreachable clients. It is not a mechanism for
cache consistency and lease renewals may not be denied if the lease interval has not expired.

Since each session is associated with a specific client (identified by the client's client ID), any
operation sent on that session is an indication that the associated client is reachable. When a
request is sent for a given session, successful execution of a SEQUENCE operation (or successful
retrieval of the result of SEQUENCE from the reply cache) on an unexpired lease will result in the
lease being implicitly renewed, for the standard renewal period (equal to the lease_time
attribute).

If the client ID's lease has not expired when the server receives a SEQUENCE operation, then the
server renew the lease. If the client ID's lease has expired when the server receives a
SEQUENCE operation, the server renew the lease; this depends on whether any state was
revoked as a result of the client's failure to renew the lease before expiration.

Absent other activity that would renew the lease, a COMPOUND consisting of a single SEQUENCE
operation will suffice. The client should also take communication-related delays into account and
take steps to ensure that the renewal messages actually reach the server in good time. For
example:

When trunking is in effect, the client should consider sending multiple requests on different
connections, in order to ensure that renewal occurs, even in the event of blockage in the
path used for one of those connections.
Transport retransmission delays might become so large as to approach or exceed the length
of the lease period. This may be particularly likely when the server is unresponsive due to a
restart; see Section 8.4.2.1. If the client implementation is not careful, transport

MUST
MAY

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 139

retransmission delays can result in the client failing to detect a server restart before the
grace period ends. The scenario is that the client is using a transport with exponential
backoff, such that the maximum retransmission timeout exceeds both the grace period and
the lease_time attribute. A network partition causes the client's connection's retransmission
interval to back off, and even after the partition heals, the next transport-level
retransmission is sent after the server has restarted and its grace period ends.

The client either recover from the ensuing NFS4ERR_NO_GRACE errors or it
ensure that, despite transport-level retransmission intervals that exceed the lease_time, a
SEQUENCE operation is sent that renews the lease before expiration. The client can achieve
this by associating a new connection with the session, and sending a SEQUENCE operation on
it. However, if the attempt to establish a new connection is delayed for some reason (e.g.,
exponential backoff of the connection establishment packets), the client will have to abort
the connection establishment attempt before the lease expires, and attempt to reconnect.

If the server renews the lease upon receiving a SEQUENCE operation, the server allow
the lease to expire while the rest of the operations in the COMPOUND procedure's request are
still executing. Once the last operation has finished, and the response to COMPOUND has been
sent, the server set the lease to expire no sooner than the sum of current time and the
value of the lease_time attribute.

A client ID's lease can expire when it has been at least the lease interval (lease_time) since the
last lease-renewing SEQUENCE operation was sent on any of the client ID's sessions and there are
no active COMPOUND operations on any such sessions.

Because the SEQUENCE operation is the basic mechanism to renew a lease, and because it must
be done at least once for each lease period, it is the natural mechanism whereby the server will
inform the client of changes in the lease status that the client needs to be informed of. The client
should inspect the status flags (sr_status_flags) returned by sequence and take the appropriate
action (see Section 18.46.3 for details).

The status bits SEQ4_STATUS_CB_PATH_DOWN and SEQ4_STATUS_CB_PATH_DOWN_SESSION
indicate problems with the backchannel that the client may need to address in order to
receive callback requests.
The status bits SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING and
SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED indicate problems with GSS contexts or
RPCSEC_GSS handles for the backchannel that the client might have to address in order to
allow callback requests to be sent.
The status bits SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, SEQ4_STATUS_ADMIN_STATE_REVOKED,
and SEQ4_STATUS_RECALLABLE_STATE_REVOKED notify the client of lock revocation events.
When these bits are set, the client should use TEST_STATEID to find what stateids have been
revoked and use FREE_STATEID to acknowledge loss of the associated state.
The status bit SEQ4_STATUS_LEASE_MOVE indicates that responsibility for lease renewal has
been transferred to one or more new servers.

MUST MUST

MUST NOT

MUST

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 140

The status bit SEQ4_STATUS_RESTART_RECLAIM_NEEDED indicates that due to server restart
the client must reclaim locking state.
The status bit SEQ4_STATUS_BACKCHANNEL_FAULT indicates that the server has
encountered an unrecoverable fault with the backchannel (e.g., it has lost track of a
sequence ID for a slot in the backchannel).

•

•

8.4. Crash Recovery
A critical requirement in crash recovery is that both the client and the server know when the
other has failed. Additionally, it is required that a client sees a consistent view of data across
server restarts. All READ and WRITE operations that may have been queued within the client or
network buffers must wait until the client has successfully recovered the locks protecting the
READ and WRITE operations. Any that reach the server before the server can safely determine
that the client has recovered enough locking state to be sure that such operations can be safely
processed must be rejected. This will happen because either:

The state presented is no longer valid since it is associated with a now invalid client ID. In
this case, the client will receive either an NFS4ERR_BADSESSION or NFS4ERR_DEADSESSION
error, and any attempt to attach a new session to that invalid client ID will result in an
NFS4ERR_STALE_CLIENTID error.
Subsequent recovery of locks may make execution of the operation inappropriate
(NFS4ERR_GRACE).

8.4.1. Client Failure and Recovery

In the event that a client fails, the server may release the client's locks when the associated lease
has expired. Conflicting locks from another client may only be granted after this lease expiration.
As discussed in Section 8.3, when a client has not failed and re-establishes its lease before
expiration occurs, requests for conflicting locks will not be granted.

To minimize client delay upon restart, lock requests are associated with an instance of the client
by a client-supplied verifier. This verifier is part of the client_owner4 sent in the initial
EXCHANGE_ID call made by the client. The server returns a client ID as a result of the
EXCHANGE_ID operation. The client then confirms the use of the client ID by establishing a
session associated with that client ID (see Section 18.36.3 for a description of how this is done).
All locks, including opens, byte-range locks, delegations, and layouts obtained by sessions using
that client ID, are associated with that client ID.

Since the verifier will be changed by the client upon each initialization, the server can compare a
new verifier to the verifier associated with currently held locks and determine that they do not
match. This signifies the client's new instantiation and subsequent loss (upon confirmation of the
new client ID) of locking state. As a result, the server is free to release all locks held that are
associated with the old client ID that was derived from the old verifier. At this point, conflicting
locks from other clients, kept waiting while the lease had not yet expired, can be granted. In
addition, all stateids associated with the old client ID can also be freed, as they are no longer
reference-able.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 141

Note that the verifier must have the same uniqueness properties as the verifier for the COMMIT
operation.

8.4.2. Server Failure and Recovery

If the server loses locking state (usually as a result of a restart), it must allow clients time to
discover this fact and re-establish the lost locking state. The client must be able to re-establish the
locking state without having the server deny valid requests because the server has granted
conflicting access to another client. Likewise, if there is a possibility that clients have not yet re-
established their locking state for a file and that such locking state might make it invalid to
perform READ or WRITE operations. For example, if mandatory locks are a possibility, the server
must disallow READ and WRITE operations for that file.

A client can determine that loss of locking state has occurred via several methods.

When a SEQUENCE (most common) or other operation returns NFS4ERR_BADSESSION, this
may mean that the session has been destroyed but the client ID is still valid. The client sends
a CREATE_SESSION request with the client ID to re-establish the session. If CREATE_SESSION
fails with NFS4ERR_STALE_CLIENTID, the client must establish a new client ID (see Section
8.1) and re-establish its lock state with the new client ID, after the CREATE_SESSION
operation succeeds (see Section 8.4.2.1).
When a SEQUENCE (most common) or other operation on a persistent session returns
NFS4ERR_DEADSESSION, this indicates that a session is no longer usable for new, i.e., not
satisfied from the reply cache, operations. Once all pending operations are determined to be
either performed before the retry or not performed, the client sends a CREATE_SESSION
request with the client ID to re-establish the session. If CREATE_SESSION fails with
NFS4ERR_STALE_CLIENTID, the client must establish a new client ID (see Section 8.1) and re-
establish its lock state after the CREATE_SESSION, with the new client ID, succeeds (Section
8.4.2.1).
When an operation, neither SEQUENCE nor preceded by SEQUENCE (for example,
CREATE_SESSION, DESTROY_SESSION), returns NFS4ERR_STALE_CLIENTID, the client
establish a new client ID (Section 8.1) and re-establish its lock state (Section 8.4.2.1).

1.

2.

3.
MUST

8.4.2.1. State Reclaim
When state information and the associated locks are lost as a result of a server restart, the
protocol must provide a way to cause that state to be re-established. The approach used is to
define, for most types of locking state (layouts are an exception), a request whose function is to
allow the client to re-establish on the server a lock first obtained from a previous instance.
Generally, these requests are variants of the requests normally used to create locks of that type
and are referred to as "reclaim-type" requests, and the process of re-establishing such locks is
referred to as "reclaiming" them.

Because each client must have an opportunity to reclaim all of the locks that it has without the
possibility that some other client will be granted a conflicting lock, a "grace period" is devoted to
the reclaim process. During this period, requests creating client IDs and sessions are handled
normally, but locking requests are subject to special restrictions. Only reclaim-type locking

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 142

Once a session is established using the new client ID, the client will use reclaim-type locking
requests (e.g., LOCK operations with reclaim set to TRUE and OPEN operations with a claim type
of CLAIM_PREVIOUS; see Section 9.11) to re-establish its locking state. Once this is done, or if
there is no such locking state to reclaim, the client sends a global RECLAIM_COMPLETE
operation, i.e., one with the rca_one_fs argument set to FALSE, to indicate that it has reclaimed all
of the locking state that it will reclaim. Once a client sends such a RECLAIM_COMPLETE
operation, it may attempt non-reclaim locking operations, although it might get an
NFS4ERR_GRACE status result from each such operation until the period of special handling is
over. See Section 11.11.9 for a discussion of the analogous handling lock reclamation in the case
of file systems transitioning from server to server.

During the grace period, the server must reject READ and WRITE operations and non-reclaim
locking requests (i.e., other LOCK and OPEN operations) with an error of NFS4ERR_GRACE, unless
it can guarantee that these may be done safely, as described below.

The grace period may last until all clients that are known to possibly have had locks have done a
global RECLAIM_COMPLETE operation, indicating that they have finished reclaiming the locks
they held before the server restart. This means that a client that has done a RECLAIM_COMPLETE
must be prepared to receive an NFS4ERR_GRACE when attempting to acquire new locks. In order
for the server to know that all clients with possible prior lock state have done a
RECLAIM_COMPLETE, the server must maintain in stable storage a list clients that may have
such locks. The server may also terminate the grace period before all clients have done a global
RECLAIM_COMPLETE. The server terminate the grace period before a time equal to
the lease period in order to give clients an opportunity to find out about the server restart, as a
result of sending requests on associated sessions with a frequency governed by the lease time.
Note that when a client does not send such requests (or they are sent by the client but not
received by the server), it is possible for the grace period to expire before the client finds out that
the server restart has occurred.

Some additional time in order to allow a client to establish a new client ID and session and to
effect lock reclaims may be added to the lease time. Note that analogous rules apply to file
system-specific grace periods discussed in Section 11.11.9.

If the server can reliably determine that granting a non-reclaim request will not conflict with
reclamation of locks by other clients, the NFS4ERR_GRACE error does not have to be returned
even within the grace period, although NFS4ERR_GRACE must always be returned to clients
attempting a non-reclaim lock request before doing their own global RECLAIM_COMPLETE. For
the server to be able to service READ and WRITE operations during the grace period, it must
again be able to guarantee that no possible conflict could arise between a potential reclaim
locking request and the READ or WRITE operation. If the server is unable to offer that guarantee,
the NFS4ERR_GRACE error must be returned to the client.

requests are allowed, unless the server can reliably determine (through state persistently
maintained across restart instances) that granting any such lock cannot possibly conflict with a
subsequent reclaim. When a request is made to obtain a new lock (i.e., not a reclaim-type
request) during the grace period and such a determination cannot be made, the server must
return the error NFS4ERR_GRACE.

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 143

For a server to provide simple, valid handling during the grace period, the easiest method is to
simply reject all non-reclaim locking requests and READ and WRITE operations by returning the
NFS4ERR_GRACE error. However, a server may keep information about granted locks in stable
storage. With this information, the server could determine if a locking, READ or WRITE operation
can be safely processed.

For example, if the server maintained on stable storage summary information on whether
mandatory locks exist, either mandatory byte-range locks, or share reservations specifying deny
modes, many requests could be allowed during the grace period. If it is known that no such share
reservations exist, OPEN request that do not specify deny modes may be safely granted. If, in
addition, it is known that no mandatory byte-range locks exist, either through information stored
on stable storage or simply because the server does not support such locks, READ and WRITE
operations may be safely processed during the grace period. Another important case is where it
is known that no mandatory byte-range locks exist, either because the server does not provide
support for them or because their absence is known from persistently recorded data. In this case,
READ and WRITE operations specifying stateids derived from reclaim-type operations may be
validly processed during the grace period because of the fact that the valid reclaim ensures that
no lock subsequently granted can prevent the I/O.

To reiterate, for a server that allows non-reclaim lock and I/O requests to be processed during the
grace period, it determine that no lock subsequently reclaimed will be rejected and that no
lock subsequently reclaimed would have prevented any I/O operation processed during the grace
period.

Clients should be prepared for the return of NFS4ERR_GRACE errors for non-reclaim lock and I/O
requests. In this case, the client should employ a retry mechanism for the request. A delay (on the
order of several seconds) between retries should be used to avoid overwhelming the server.
Further discussion of the general issue is included in . The client must account for the server
that can perform I/O and non-reclaim locking requests within the grace period as well as those
that cannot do so.

A reclaim-type locking request outside the server's grace period can only succeed if the server
can guarantee that no conflicting lock or I/O request has been granted since restart.

A server may, upon restart, establish a new value for the lease period. Therefore, clients should,
once a new client ID is established, refetch the lease_time attribute and use it as the basis for
lease renewal for the lease associated with that server. However, the server must establish, for
this restart event, a grace period at least as long as the lease period for the previous server
instantiation. This allows the client state obtained during the previous server instance to be
reliably re-established.

MUST

[55]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 144

The possibility exists that, because of server configuration events, the client will be
communicating with a server different than the one on which the locks were obtained, as shown
by the combination of eir_server_scope and eir_server_owner. This leads to the issue of if and
when the client should attempt to reclaim locks previously obtained on what is being reported as
a different server. The rules to resolve this question are as follows:

If the server scope is different, the client should not attempt to reclaim locks. In this
situation, no lock reclaim is possible. Any attempt to re-obtain the locks with non-reclaim
operations is problematic since there is no guarantee that the existing filehandles will be
recognized by the new server, or that if recognized, they denote the same objects. It is best to
treat the locks as having been revoked by the reconfiguration event.
If the server scope is the same, the client should attempt to reclaim locks, even if the
eir_server_owner value is different. In this situation, it is the responsibility of the server to
return NFS4ERR_NO_GRACE if it cannot provide correct support for lock reclaim operations,
including the prevention of edge conditions.

The eir_server_owner field is not used in making this determination. Its function is to specify
trunking possibilities for the client (see Section 2.10.5) and not to control lock reclaim.

•

•

8.4.2.1.1. Security Considerations for State Reclaim
During the grace period, a client can reclaim state that it believes or asserts it had before the
server restarted. Unless the server maintained a complete record of all the state the client had,
the server has little choice but to trust the client. (Of course, if the server maintained a complete
record, then it would not have to force the client to reclaim state after server restart.) While the
server has to trust the client to tell the truth, the negative consequences for security are limited
to enabling denial-of-service attacks in situations in which AUTH_SYS is supported. The
fundamental rule for the server when processing reclaim requests is that it grant the
reclaim if an equivalent non-reclaim request would not be granted during steady state due to
access control or access conflict issues. For example, an OPEN request during a reclaim will be
refused with NFS4ERR_ACCESS if the principal making the request does not have access to open
the file according to the discretionary ACL (Section 6.2.2) on the file.

Nonetheless, it is possible that a client operating in error or maliciously could, during reclaim,
prevent another client from reclaiming access to state. For example, an attacker could send an
OPEN reclaim operation with a deny mode that prevents another client from reclaiming the
OPEN state it had before the server restarted. The attacker could perform the same denial of
service during steady state prior to server restart, as long as the attacker had permissions. Given
that the attack vectors are equivalent, the grace period does not offer any additional opportunity
for denial of service, and any concerns about this attack vector, whether during grace or steady
state, are addressed the same way: use RPCSEC_GSS for authentication and limit access to the file
only to principals that the owner of the file trusts.

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 145

Note that if prior to restart the server had client IDs with the
EXCHGID4_FLAG_BIND_PRINC_STATEID (Section 18.35) capability set, then the server
record in stable storage the client owner and the principal that established the client ID via
EXCHANGE_ID. If the server does not, then there is a risk a client will be unable to reclaim state if
it does not have a credential for a principal that was originally authorized to establish the state.

SHOULD

8.4.3. Network Partitions and Recovery

If the duration of a network partition is greater than the lease period provided by the server, the
server will not have received a lease renewal from the client. If this occurs, the server may free
all locks held for the client or it may allow the lock state to remain for a considerable period,
subject to the constraint that if a request for a conflicting lock is made, locks associated with an
expired lease do not prevent such a conflicting lock from being granted but be revoked as
necessary so as to avoid interfering with such conflicting requests.

If the server chooses to delay freeing of lock state until there is a conflict, it may either free all of
the client's locks once there is a conflict or it may only revoke the minimum set of locks
necessary to allow conflicting requests. When it adopts the finer-grained approach, it must
revoke all locks associated with a given stateid, even if the conflict is with only a subset of locks.

When the server chooses to free all of a client's lock state, either immediately upon lease
expiration or as a result of the first attempt to obtain a conflicting a lock, the server may report
the loss of lock state in a number of ways.

The server may choose to invalidate the session and the associated client ID. In this case, once the
client can communicate with the server, it will receive an NFS4ERR_BADSESSION error. Upon
attempting to create a new session, it would get an NFS4ERR_STALE_CLIENTID. Upon creating the
new client ID and new session, the client will attempt to reclaim locks. Normally, the server will
not allow the client to reclaim locks, because the server will not be in its recovery grace period.

Another possibility is for the server to maintain the session and client ID but for all stateids held
by the client to become invalid or stale. Once the client can reach the server after such a network
partition, the status returned by the SEQUENCE operation will indicate a loss of locking state; i.e.,
the flag SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED will be set in sr_status_flags. In addition,
all I/O submitted by the client with the now invalid stateids will fail with the server returning the
error NFS4ERR_EXPIRED. Once the client learns of the loss of locking state, it will suitably notify
the applications that held the invalidated locks. The client should then take action to free
invalidated stateids, either by establishing a new client ID using a new verifier or by doing a
FREE_STATEID operation to release each of the invalidated stateids.

When the server adopts a finer-grained approach to revocation of locks when a client's lease has
expired, only a subset of stateids will normally become invalid during a network partition. When
the client can communicate with the server after such a network partition heals, the status
returned by the SEQUENCE operation will indicate a partial loss of locking state
(SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED). In addition, operations, including I/O
submitted by the client, with the now invalid stateids will fail with the server returning the error
NFS4ERR_EXPIRED. Once the client learns of the loss of locking state, it will use the
TEST_STATEID operation on all of its stateids to determine which locks have been lost and then

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 146

suitably notify the applications that held the invalidated locks. The client can then release the
invalidated locking state and acknowledge the revocation of the associated locks by doing a
FREE_STATEID operation on each of the invalidated stateids.

When a network partition is combined with a server restart, there are edge conditions that place
requirements on the server in order to avoid silent data corruption following the server restart.
Two of these edge conditions are known, and are discussed below.

The first edge condition arises as a result of the scenarios such as the following:

Client A acquires a lock.
Client A and server experience mutual network partition, such that client A is unable to
renew its lease.
Client A's lease expires, and the server releases the lock.
Client B acquires a lock that would have conflicted with that of client A.
Client B releases its lock.
Server restarts.
Network partition between client A and server heals.
Client A connects to a new server instance and finds out about server restart.
Client A reclaims its lock within the server's grace period.

Thus, at the final step, the server has erroneously granted client A's lock reclaim. If client B
modified the object the lock was protecting, client A will experience object corruption.

The second known edge condition arises in situations such as the following:

Client A acquires one or more locks.
Server restarts.
Client A and server experience mutual network partition, such that client A is unable to
reclaim all of its locks within the grace period.
Server's reclaim grace period ends. Client A has either no locks or an incomplete set of locks
known to the server.
Client B acquires a lock that would have conflicted with a lock of client A that was not
reclaimed.
Client B releases the lock.
Server restarts a second time.
Network partition between client A and server heals.
Client A connects to new server instance and finds out about server restart.
Client A reclaims its lock within the server's grace period.

As with the first edge condition, the final step of the scenario of the second edge condition has
the server erroneously granting client A's lock reclaim.

1.
2.

3.
4.
5.
6.
7.
8.
9.

1.
2.
3.

4.

5.

6.
7.
8.
9.

10.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 147

Solving the first and second edge conditions requires either that the server always assumes after
it restarts that some edge condition occurs, and thus returns NFS4ERR_NO_GRACE for all reclaim
attempts, or that the server record some information in stable storage. The amount of
information the server records in stable storage is in inverse proportion to how harsh the server
intends to be whenever edge conditions arise. The server that is completely tolerant of all edge
conditions will record in stable storage every lock that is acquired, removing the lock record
from stable storage only when the lock is released. For the two edge conditions discussed above,
the harshest a server can be, and still support a grace period for reclaims, requires that the
server record in stable storage some minimal information. For example, a server
implementation could, for each client, save in stable storage a record containing:

the co_ownerid field from the client_owner4 presented in the EXCHANGE_ID operation.
a boolean that indicates if the client's lease expired or if there was administrative
intervention (see Section 8.5) to revoke a byte-range lock, share reservation, or delegation
and there has been no acknowledgment, via FREE_STATEID, of such revocation.
a boolean that indicates whether the client may have locks that it believes to be reclaimable
in situations in which the grace period was terminated, making the server's view of lock
reclaimability suspect. The server will set this for any client record in stable storage where
the client has not done a suitable RECLAIM_COMPLETE (global or file system-specific
depending on the target of the lock request) before it grants any new (i.e., not reclaimed) lock
to any client.

Assuming the above record keeping, for the first edge condition, after the server restarts, the
record that client A's lease expired means that another client could have acquired a conflicting
byte-range lock, share reservation, or delegation. Hence, the server must reject a reclaim from
client A with the error NFS4ERR_NO_GRACE.

For the second edge condition, after the server restarts for a second time, the indication that the
client had not completed its reclaims at the time at which the grace period ended means that the
server must reject a reclaim from client A with the error NFS4ERR_NO_GRACE.

When either edge condition occurs, the client's attempt to reclaim locks will result in the error
NFS4ERR_NO_GRACE. When this is received, or after the client restarts with no lock state, the
client will send a global RECLAIM_COMPLETE. When the RECLAIM_COMPLETE is received, the
server and client are again in agreement regarding reclaimable locks and both booleans in
persistent storage can be reset, to be set again only when there is a subsequent event that causes
lock reclaim operations to be questionable.

Regardless of the level and approach to record keeping, the server implement one of the
following strategies (which apply to reclaims of share reservations, byte-range locks, and
delegations):

Reject all reclaims with NFS4ERR_NO_GRACE. This is extremely unforgiving, but necessary if
the server does not record lock state in stable storage.

•
•

•

MUST

1.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 148

Record sufficient state in stable storage such that all known edge conditions involving server
restart, including the two noted in this section, are detected. It is acceptable to erroneously
recognize an edge condition and not allow a reclaim, when, with sufficient knowledge, it
would be allowed. The error the server would return in this case is NFS4ERR_NO_GRACE.
Note that it is not known if there are other edge conditions.

In the event that, after a server restart, the server determines there is unrecoverable damage
or corruption to the information in stable storage, then for all clients and/or locks that may
be affected, the server return NFS4ERR_NO_GRACE.

A mandate for the client's handling of the NFS4ERR_NO_GRACE error is outside the scope of this
specification, since the strategies for such handling are very dependent on the client's operating
environment. However, one potential approach is described below.

When the client receives NFS4ERR_NO_GRACE, it could examine the change attribute of the
objects for which the client is trying to reclaim state, and use that to determine whether to re-
establish the state via normal OPEN or LOCK operations. This is acceptable provided that the
client's operating environment allows it. In other words, the client implementor is advised to
document for his users the behavior. The client could also inform the application that its byte-
range lock or share reservations (whether or not they were delegated) have been lost, such as via
a UNIX signal, a Graphical User Interface (GUI) pop-up window, etc. See Section 10.5 for a
discussion of what the client should do for dealing with unreclaimed delegations on client state.

For further discussion of revocation of locks, see Section 8.5.

2.

MUST

8.5. Server Revocation of Locks
At any point, the server can revoke locks held by a client, and the client must be prepared for this
event. When the client detects that its locks have been or may have been revoked, the client is
responsible for validating the state information between itself and the server. Validating locking
state for the client means that it must verify or reclaim state for each lock currently held.

The first occasion of lock revocation is upon server restart. Note that this includes situations in
which sessions are persistent and locking state is lost. In this class of instances, the client will
receive an error (NFS4ERR_STALE_CLIENTID) on an operation that takes client ID, usually as part
of recovery in response to a problem with the current session), and the client will proceed with
normal crash recovery as described in the Section 8.4.2.1.

The second occasion of lock revocation is the inability to renew the lease before expiration, as
discussed in Section 8.4.3. While this is considered a rare or unusual event, the client must be
prepared to recover. The server is responsible for determining the precise consequences of the
lease expiration, informing the client of the scope of the lock revocation decided upon. The client
then uses the status information provided by the server in the SEQUENCE results (field
sr_status_flags, see Section 18.46.3) to synchronize its locking state with that of the server, in
order to recover.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 149

8.6. Short and Long Leases
When determining the time period for the server lease, the usual lease trade-offs apply. A short
lease is good for fast server recovery at a cost of increased operations to effect lease renewal
(when there are no other operations during the period to effect lease renewal as a side effect). A
long lease is certainly kinder and gentler to servers trying to handle very large numbers of
clients. The number of extra requests to effect lock renewal drops in inverse proportion to the
lease time. The disadvantages of a long lease include the possibility of slower recovery after
certain failures. After server failure, a longer grace period may be required when some clients do
not promptly reclaim their locks and do a global RECLAIM_COMPLETE. In the event of client
failure, the longer period for a lease to expire will force conflicting requests to wait longer.

A long lease is practical if the server can store lease state in stable storage. Upon recovery, the
server can reconstruct the lease state from its stable storage and continue operation with its
clients.

The third occasion of lock revocation can occur as a result of revocation of locks within the lease
period, either because of administrative intervention or because a recallable lock (a delegation
or layout) was not returned within the lease period after having been recalled. While these are
considered rare events, they are possible, and the client must be prepared to deal with them.
When either of these events occurs, the client finds out about the situation through the status
returned by the SEQUENCE operation. Any use of stateids associated with locks revoked during
the lease period will receive the error NFS4ERR_ADMIN_REVOKED or
NFS4ERR_DELEG_REVOKED, as appropriate.

In all situations in which a subset of locking state may have been revoked, which include all
cases in which locking state is revoked within the lease period, it is up to the client to determine
which locks have been revoked and which have not. It does this by using the TEST_STATEID
operation on the appropriate set of stateids. Once the set of revoked locks has been determined,
the applications can be notified, and the invalidated stateids can be freed and lock revocation
acknowledged by using FREE_STATEID.

8.7. Clocks, Propagation Delay, and Calculating Lease Expiration
To avoid the need for synchronized clocks, lease times are granted by the server as a time delta.
However, there is a requirement that the client and server clocks do not drift excessively over
the duration of the lease. There is also the issue of propagation delay across the network, which
could easily be several hundred milliseconds, as well as the possibility that requests will be lost
and need to be retransmitted.

To take propagation delay into account, the client should subtract it from lease times (e.g., if the
client estimates the one-way propagation delay as 200 milliseconds, then it can assume that the
lease is already 200 milliseconds old when it gets it). In addition, it will take another 200
milliseconds to get a response back to the server. So the client must send a lease renewal or write
data back to the server at least 400 milliseconds before the lease would expire. If the propagation
delay varies over the life of the lease (e.g., the client is on a mobile host), the client will need to
continuously subtract the increase in propagation delay from the lease times.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 150

The server's lease period configuration should take into account the network distance of the
clients that will be accessing the server's resources. It is expected that the lease period will take
into account the network propagation delays and other network delay factors for the client
population. Since the protocol does not allow for an automatic method to determine an
appropriate lease period, the server's administrator may have to tune the lease period.

8.8. Obsolete Locking Infrastructure from NFSv4.0
There are a number of operations and fields within existing operations that no longer have a
function in NFSv4.1. In one way or another, these changes are all due to the implementation of
sessions that provide client context and exactly once semantics as a base feature of the protocol,
separate from locking itself.

The following NFSv4.0 operations be implemented in NFSv4.1. The server return
NFS4ERR_NOTSUPP if these operations are found in an NFSv4.1 COMPOUND.

SETCLIENTID since its function has been replaced by EXCHANGE_ID.
SETCLIENTID_CONFIRM since client ID confirmation now happens by means of
CREATE_SESSION.
OPEN_CONFIRM because state-owner-based seqids have been replaced by the sequence ID in
the SEQUENCE operation.
RELEASE_LOCKOWNER because lock-owners with no associated locks do not have any
sequence-related state and so can be deleted by the server at will.
RENEW because every SEQUENCE operation for a session causes lease renewal, making a
separate operation superfluous.

Also, there are a number of fields, present in existing operations, related to locking that have no
use in minor version 1. They were used in minor version 0 to perform functions now provided in
a different fashion.

Sequence ids used to sequence requests for a given state-owner and to provide retry
protection, now provided via sessions.
Client IDs used to identify the client associated with a given request. Client identification is
now available using the client ID associated with the current session, without needing an
explicit client ID field.

Such vestigial fields in existing operations have no function in NFSv4.1 and are ignored by the
server. Note that client IDs in operations new to NFSv4.1 (such as CREATE_SESSION and
DESTROY_CLIENTID) are not ignored.

MUST NOT MUST

•
•

•

•

•

•

•

9. File Locking and Share Reservations
To support Win32 share reservations, it is necessary to provide operations that atomically open
or create files. Having a separate share/unshare operation would not allow correct
implementation of the Win32 OpenFile API. In order to correctly implement share semantics, the

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 151

previous NFS protocol mechanisms used when a file is opened or created (LOOKUP, CREATE,
ACCESS) need to be replaced. The NFSv4.1 protocol defines an OPEN operation that is capable of
atomically looking up, creating, and locking a file on the server.

9.1. Opens and Byte-Range Locks
It is assumed that manipulating a byte-range lock is rare when compared to READ and WRITE
operations. It is also assumed that server restarts and network partitions are relatively rare.
Therefore, it is important that the READ and WRITE operations have a lightweight mechanism to
indicate if they possess a held lock. A LOCK operation contains the heavyweight information
required to establish a byte-range lock and uniquely define the owner of the lock.

9.1.2. Use of the Stateid and Locking

All READ, WRITE, and SETATTR operations contain a stateid. For the purposes of this section,
SETATTR operations that change the size attribute of a file are treated as if they are writing the
area between the old and new sizes (i.e., the byte-range truncated or added to the file by means
of the SETATTR), even where SETATTR is not explicitly mentioned in the text. The stateid passed
to one of these operations must be one that represents an open, a set of byte-range locks, or a
delegation, or it may be a special stateid representing anonymous access or the special bypass
stateid.

If the state-owner performs a READ or WRITE operation in a situation in which it has established
a byte-range lock or share reservation on the server (any OPEN constitutes a share reservation),
the stateid (previously returned by the server) must be used to indicate what locks, including
both byte-range locks and share reservations, are held by the state-owner. If no state is
established by the client, either a byte-range lock or a share reservation, a special stateid for
anonymous state (zero as the value for "other" and "seqid") is used. (See Section 8.2.3 for a
description of 'special' stateids in general.) Regardless of whether a stateid for anonymous state

9.1.1. State-Owner Definition

When opening a file or requesting a byte-range lock, the client must specify an identifier that
represents the owner of the requested lock. This identifier is in the form of a state-owner,
represented in the protocol by a state_owner4, a variable-length opaque array that, when
concatenated with the current client ID, uniquely defines the owner of a lock managed by the
client. This may be a thread ID, process ID, or other unique value.

Owners of opens and owners of byte-range locks are separate entities and remain separate even
if the same opaque arrays are used to designate owners of each. The protocol distinguishes
between open-owners (represented by open_owner4 structures) and lock-owners (represented
by lock_owner4 structures).

Each open is associated with a specific open-owner while each byte-range lock is associated with
a lock-owner and an open-owner, the latter being the open-owner associated with the open file
under which the LOCK operation was done. Delegations and layouts, on the other hand, are not
associated with a specific owner but are associated with the client as a whole (identified by a
client ID).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 152

or a stateid returned by the server is used, if there is a conflicting share reservation or
mandatory byte-range lock held on the file, the server refuse to service the READ or WRITE
operation.

Share reservations are established by OPEN operations and by their nature are mandatory in
that when the OPEN denies READ or WRITE operations, that denial results in such operations
being rejected with error NFS4ERR_LOCKED. Byte-range locks may be implemented by the server
as either mandatory or advisory, or the choice of mandatory or advisory behavior may be
determined by the server on the basis of the file being accessed (for example, some UNIX-based
servers support a "mandatory lock bit" on the mode attribute such that if set, byte-range locks
are required on the file before I/O is possible). When byte-range locks are advisory, they only
prevent the granting of conflicting lock requests and have no effect on READs or WRITEs.
Mandatory byte-range locks, however, prevent conflicting I/O operations. When they are
attempted, they are rejected with NFS4ERR_LOCKED. When the client gets NFS4ERR_LOCKED on
a file for which it knows it has the proper share reservation, it will need to send a LOCK
operation on the byte-range of the file that includes the byte-range the I/O was to be performed
on, with an appropriate locktype field of the LOCK operation's arguments (i.e., READ*_LT for a
READ operation, WRITE*_LT for a WRITE operation).

Note that for UNIX environments that support mandatory byte-range locking, the distinction
between advisory and mandatory locking is subtle. In fact, advisory and mandatory byte-range
locks are exactly the same as far as the APIs and requirements on implementation. If the
mandatory lock attribute is set on the file, the server checks to see if the lock-owner has an
appropriate shared (READ_LT) or exclusive (WRITE_LT) byte-range lock on the byte-range it
wishes to READ from or WRITE to. If there is no appropriate lock, the server checks if there is a
conflicting lock (which can be done by attempting to acquire the conflicting lock on behalf of the
lock-owner, and if successful, release the lock after the READ or WRITE operation is done), and if
there is, the server returns NFS4ERR_LOCKED.

For Windows environments, byte-range locks are always mandatory, so the server always checks
for byte-range locks during I/O requests.

Thus, the LOCK operation does not need to distinguish between advisory and mandatory byte-
range locks. It is the server's processing of the READ and WRITE operations that introduces the
distinction.

Every stateid that is validly passed to READ, WRITE, or SETATTR, with the exception of special
stateid values, defines an access mode for the file (i.e., OPEN4_SHARE_ACCESS_READ,
OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH).

For stateids associated with opens, this is the mode defined by the original OPEN that caused
the allocation of the OPEN stateid and as modified by subsequent OPENs and
OPEN_DOWNGRADEs for the same open-owner/file pair.
For stateids returned by byte-range LOCK operations, the appropriate mode is the access
mode for the OPEN stateid associated with the lock set represented by the stateid.
For delegation stateids, the access mode is based on the type of delegation.

MUST

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 153

When a READ, WRITE, or SETATTR (that specifies the size attribute) operation is done, the
operation is subject to checking against the access mode to verify that the operation is
appropriate given the stateid with which the operation is associated.

In the case of WRITE-type operations (i.e., WRITEs and SETATTRs that set size), the server
verify that the access mode allows writing and return an NFS4ERR_OPENMODE error if it
does not. In the case of READ, the server may perform the corresponding check on the access
mode, or it may choose to allow READ on OPENs for OPEN4_SHARE_ACCESS_WRITE, to
accommodate clients whose WRITE implementation may unavoidably do reads (e.g., due to
buffer cache constraints). However, even if READs are allowed in these circumstances, the server

 still check for locks that conflict with the READ (e.g., another OPEN specified
OPEN4_SHARE_DENY_READ or OPEN4_SHARE_DENY_BOTH). Note that a server that does
enforce the access mode check on READs need not explicitly check for conflicting share
reservations since the existence of OPEN for OPEN4_SHARE_ACCESS_READ guarantees that no
conflicting share reservation can exist.

The READ bypass special stateid (all bits of "other" and "seqid" set to one) indicates a desire to
bypass locking checks. The server allow READ operations to bypass locking checks at the
server, when this special stateid is used. However, WRITE operations with this special stateid
value bypass locking checks and are treated exactly the same as if a special stateid for
anonymous state were used.

A lock may not be granted while a READ or WRITE operation using one of the special stateids is
being performed and the scope of the lock to be granted would conflict with the READ or WRITE
operation. This can occur when:

A mandatory byte-range lock is requested with a byte-range that conflicts with the byte-
range of the READ or WRITE operation. For the purposes of this paragraph, a conflict occurs
when a shared lock is requested and a WRITE operation is being performed, or an exclusive
lock is requested and either a READ or a WRITE operation is being performed.
A share reservation is requested that denies reading and/or writing and the corresponding
operation is being performed.
A delegation is to be granted and the delegation type would prevent the I/O operation, i.e.,
READ and WRITE conflict with an OPEN_DELEGATE_WRITE delegation and WRITE conflicts
with an OPEN_DELEGATE_READ delegation.

When a client holds a delegation, it needs to ensure that the stateid sent conveys the association
of operation with the delegation, to avoid the delegation from being avoidably recalled. When
the delegation stateid, a stateid open associated with that delegation, or a stateid representing
byte-range locks derived from such an open is used, the server knows that the READ, WRITE, or
SETATTR does not conflict with the delegation but is sent under the aegis of the delegation. Even
though it is possible for the server to determine from the client ID (via the session ID) that the
client does in fact have a delegation, the server is not obliged to check this, so using a special
stateid can result in avoidable recall of the delegation.

MUST
MUST

MUST

MAY

MUST NOT

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 154

9.2. Lock Ranges
The protocol allows a lock-owner to request a lock with a byte-range and then either upgrade,
downgrade, or unlock a sub-range of the initial lock, or a byte-range that overlaps -- fully or
partially -- either with that initial lock or a combination of a set of existing locks for the same
lock-owner. It is expected that this will be an uncommon type of request. In any case, servers or
server file systems may not be able to support sub-range lock semantics. In the event that a
server receives a locking request that represents a sub-range of current locking state for the lock-
owner, the server is allowed to return the error NFS4ERR_LOCK_RANGE to signify that it does not
support sub-range lock operations. Therefore, the client should be prepared to receive this error
and, if appropriate, report the error to the requesting application.

The client is discouraged from combining multiple independent locking ranges that happen to be
adjacent into a single request since the server may not support sub-range requests for reasons
related to the recovery of byte-range locking state in the event of server failure. As discussed in
Section 8.4.2, the server may employ certain optimizations during recovery that work effectively
only when the client's behavior during lock recovery is similar to the client's locking behavior
prior to server failure.

9.3. Upgrading and Downgrading Locks
If a client has a WRITE_LT lock on a byte-range, it can request an atomic downgrade of the lock to
a READ_LT lock via the LOCK operation, by setting the type to READ_LT. If the server supports
atomic downgrade, the request will succeed. If not, it will return NFS4ERR_LOCK_NOTSUPP. The
client should be prepared to receive this error and, if appropriate, report the error to the
requesting application.

If a client has a READ_LT lock on a byte-range, it can request an atomic upgrade of the lock to a
WRITE_LT lock via the LOCK operation by setting the type to WRITE_LT or WRITEW_LT. If the
server does not support atomic upgrade, it will return NFS4ERR_LOCK_NOTSUPP. If the upgrade
can be achieved without an existing conflict, the request will succeed. Otherwise, the server will
return either NFS4ERR_DENIED or NFS4ERR_DEADLOCK. The error NFS4ERR_DEADLOCK is
returned if the client sent the LOCK operation with the type set to WRITEW_LT and the server
has detected a deadlock. The client should be prepared to receive such errors and, if appropriate,
report the error to the requesting application.

9.4. Stateid Seqid Values and Byte-Range Locks
When a LOCK or LOCKU operation is performed, the stateid returned has the same "other" value
as the argument's stateid, and a "seqid" value that is incremented (relative to the argument's
stateid) to reflect the occurrence of the LOCK or LOCKU operation. The server increment
the value of the "seqid" field whenever there is any change to the locking status of any byte offset
as described by any of the locks covered by the stateid. A change in locking status includes a
change from locked to unlocked or the reverse or a change from being locked for READ_LT to
being locked for WRITE_LT or the reverse.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 155

When there is no such change, as, for example, when a range already locked for WRITE_LT is
locked again for WRITE_LT, the server increment the "seqid" value.MAY

9.5. Issues with Multiple Open-Owners
When the same file is opened by multiple open-owners, a client will have multiple OPEN stateids
for that file, each associated with a different open-owner. In that case, there can be multiple
LOCK and LOCKU requests for the same lock-owner sent using the different OPEN stateids, and
so a situation may arise in which there are multiple stateids, each representing byte-range locks
on the same file and held by the same lock-owner but each associated with a different open-
owner.

In such a situation, the locking status of each byte (i.e., whether it is locked, the READ_LT or
WRITE_LT type of the lock, and the lock-owner holding the lock) reflect the last LOCK or
LOCKU operation done for the lock-owner in question, independent of the stateid through which
the request was sent.

When a byte is locked by the lock-owner in question, the open-owner to which that byte-range
lock is assigned be that of the open-owner associated with the stateid through which the
last LOCK of that byte was done. When there is a change in the open-owner associated with locks
for the stateid through which a LOCK or LOCKU was done, the "seqid" field of the stateid be
incremented, even if the locking, in terms of lock-owners has not changed. When there is a
change to the set of locked bytes associated with a different stateid for the same lock-owner, i.e.,
associated with a different open-owner, the "seqid" value for that stateid be
incremented.

MUST

SHOULD

MUST

MUST NOT

9.6. Blocking Locks
Some clients require the support of blocking locks. While NFSv4.1 provides a callback when a
previously unavailable lock becomes available, this is an feature and clients cannot
depend on its presence. Clients need to be prepared to continually poll for the lock. This presents
a fairness problem. Two of the lock types, READW_LT and WRITEW_LT, are used to indicate to
the server that the client is requesting a blocking lock. When the callback is not used, the server
should maintain an ordered list of pending blocking locks. When the conflicting lock is released,
the server may wait for the period of time equal to lease_time for the first waiting client to re-
request the lock. After the lease period expires, the next waiting client request is allowed the
lock. Clients are required to poll at an interval sufficiently small that it is likely to acquire the
lock in a timely manner. The server is not required to maintain a list of pending blocked locks as
it is used to increase fairness and not correct operation. Because of the unordered nature of
crash recovery, storing of lock state to stable storage would be required to guarantee ordered
granting of blocking locks.

Servers may also note the lock types and delay returning denial of the request to allow extra time
for a conflicting lock to be released, allowing a successful return. In this way, clients can avoid
the burden of needless frequent polling for blocking locks. The server should take care in the
length of delay in the event the client retransmits the request.

OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 156

If a server receives a blocking LOCK operation, denies it, and then later receives a nonblocking
request for the same lock, which is also denied, then it should remove the lock in question from
its list of pending blocking locks. Clients should use such a nonblocking request to indicate to the
server that this is the last time they intend to poll for the lock, as may happen when the process
requesting the lock is interrupted. This is a courtesy to the server, to prevent it from
unnecessarily waiting a lease period before granting other LOCK operations. However, clients
are not required to perform this courtesy, and servers must not depend on them doing so. Also,
clients must be prepared for the possibility that this final locking request will be accepted.

When a server indicates, via the flag OPEN4_RESULT_MAY_NOTIFY_LOCK, that CB_NOTIFY_LOCK
callbacks might be done for the current open file, the client should take notice of this, but, since
this is a hint, cannot rely on a CB_NOTIFY_LOCK always being done. A client may reasonably
reduce the frequency with which it polls for a denied lock, since the greater latency that might
occur is likely to be eliminated given a prompt callback, but it still needs to poll. When it receives
a CB_NOTIFY_LOCK, it should promptly try to obtain the lock, but it should be aware that other
clients may be polling and that the server is under no obligation to reserve the lock for that
particular client.

9.7. Share Reservations
A share reservation is a mechanism to control access to a file. It is a separate and independent
mechanism from byte-range locking. When a client opens a file, it sends an OPEN operation to
the server specifying the type of access required (READ, WRITE, or BOTH) and the type of access
to deny others (OPEN4_SHARE_DENY_NONE, OPEN4_SHARE_DENY_READ,
OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH). If the OPEN fails, the client will
fail the application's open request.

Pseudo-code definition of the semantics:

When doing this checking of share reservations on OPEN, the current file_state used in the
algorithm includes bits that reflect all current opens, including those for the open-owner making
the new OPEN request.

 if (request.access == 0) {
 return (NFS4ERR_INVAL)
 } else {
 if ((request.access & file_state.deny)) ||
 (request.deny & file_state.access)) {
 return (NFS4ERR_SHARE_DENIED)
 }
 return (NFS4ERR_OK);

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 157

9.8. OPEN/CLOSE Operations
To provide correct share semantics, a client use the OPEN operation to obtain the initial
filehandle and indicate the desired access and what access, if any, to deny. Even if the client
intends to use a special stateid for anonymous state or READ bypass, it must still obtain the
filehandle for the regular file with the OPEN operation so the appropriate share semantics can be
applied. Clients that do not have a deny mode built into their programming interfaces for
opening a file should request a deny mode of OPEN4_SHARE_DENY_NONE.

The OPEN operation with the CREATE flag also subsumes the CREATE operation for regular files
as used in previous versions of the NFS protocol. This allows a create with a share to be done
atomically.

The CLOSE operation removes all share reservations held by the open-owner on that file. If byte-
range locks are held, the client release all locks before sending a CLOSE operation. The
server free all outstanding locks on CLOSE, but some servers may not support the CLOSE of
a file that still has byte-range locks held. The server return failure, NFS4ERR_LOCKS_HELD,
if any locks would exist after the CLOSE.

The LOOKUP operation will return a filehandle without establishing any lock state on the server.
Without a valid stateid, the server will assume that the client has the least access. For example, if
one client opened a file with OPEN4_SHARE_DENY_BOTH and another client accesses the file via
a filehandle obtained through LOOKUP, the second client could only read the file using the
special read bypass stateid. The second client could not WRITE the file at all because it would not
have a valid stateid from OPEN and the special anonymous stateid would not be allowed access.

The constants used for the OPEN and OPEN_DOWNGRADE operations for the access and deny
fields are as follows:

const OPEN4_SHARE_ACCESS_READ = 0x00000001;
const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

const OPEN4_SHARE_DENY_NONE = 0x00000000;
const OPEN4_SHARE_DENY_READ = 0x00000001;
const OPEN4_SHARE_DENY_WRITE = 0x00000002;
const OPEN4_SHARE_DENY_BOTH = 0x00000003;

MUST

SHOULD
MAY

MUST

9.9. Open Upgrade and Downgrade
When an OPEN is done for a file and the open-owner for which the OPEN is being done already
has the file open, the result is to upgrade the open file status maintained on the server to include
the access and deny bits specified by the new OPEN as well as those for the existing OPEN. The
result is that there is one open file, as far as the protocol is concerned, and it includes the union
of the access and deny bits for all of the OPEN requests completed. The OPEN is represented by a
single stateid whose "other" value matches that of the original open, and whose "seqid" value is
incremented to reflect the occurrence of the upgrade. The increment is required in cases in

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 158

which the "upgrade" results in no change to the open mode (e.g., an OPEN is done for read when
the existing open file is opened for OPEN4_SHARE_ACCESS_BOTH). Only a single CLOSE will be
done to reset the effects of both OPENs. The client may use the stateid returned by the OPEN
effecting the upgrade or with a stateid sharing the same "other" field and a seqid of zero,
although care needs to be taken as far as upgrades that happen while the CLOSE is pending. Note
that the client, when sending the OPEN, may not know that the same file is in fact being opened.
The above only applies if both OPENs result in the OPENed object being designated by the same
filehandle.

When the server chooses to export multiple filehandles corresponding to the same file object and
returns different filehandles on two different OPENs of the same file object, the server
"OR" together the access and deny bits and coalesce the two open files. Instead, the server must
maintain separate OPENs with separate stateids and will require separate CLOSEs to free them.

When multiple open files on the client are merged into a single OPEN file object on the server,
the close of one of the open files (on the client) may necessitate change of the access and deny
status of the open file on the server. This is because the union of the access and deny bits for the
remaining opens may be smaller (i.e., a proper subset) than previously. The OPEN_DOWNGRADE
operation is used to make the necessary change and the client should use it to update the server
so that share reservation requests by other clients are handled properly. The stateid returned has
the same "other" field as that passed to the server. The "seqid" value in the returned stateid
be incremented, even in situations in which there is no change to the access and deny bits for the
file.

MUST NOT

MUST

9.10. Parallel OPENs
Unlike the case of NFSv4.0, in which OPEN operations for the same open-owner are inherently
serialized because of the owner-based seqid, multiple OPENs for the same open-owner may be
done in parallel. When clients do this, they may encounter situations in which, because of the
existence of hard links, two OPEN operations may turn out to open the same file, with a later
OPEN performed being an upgrade of the first, with this fact only visible to the client once the
operations complete.

In this situation, clients may determine the order in which the OPENs were performed by
examining the stateids returned by the OPENs. Stateids that share a common value of the "other"
field can be recognized as having opened the same file, with the order of the operations
determinable from the order of the "seqid" fields, mod any possible wraparound of the 32-bit
field.

When the possibility exists that the client will send multiple OPENs for the same open-owner in
parallel, it may be the case that an open upgrade may happen without the client knowing
beforehand that this could happen. Because of this possibility, CLOSEs and OPEN_DOWNGRADEs
should generally be sent with a non-zero seqid in the stateid, to avoid the possibility that the
status change associated with an open upgrade is not inadvertently lost.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 159

10. Client-Side Caching
Client-side caching of data, of file attributes, and of file names is essential to providing good
performance with the NFS protocol. Providing distributed cache coherence is a difficult problem,
and previous versions of the NFS protocol have not attempted it. Instead, several NFS client
implementation techniques have been used to reduce the problems that a lack of coherence
poses for users. These techniques have not been clearly defined by earlier protocol specifications,
and it is often unclear what is valid or invalid client behavior.

The NFSv4.1 protocol uses many techniques similar to those that have been used in previous
protocol versions. The NFSv4.1 protocol does not provide distributed cache coherence. However,
it defines a more limited set of caching guarantees to allow locks and share reservations to be
used without destructive interference from client-side caching.

In addition, the NFSv4.1 protocol introduces a delegation mechanism, which allows many
decisions normally made by the server to be made locally by clients. This mechanism provides
efficient support of the common cases where sharing is infrequent or where sharing is read-only.

10.1. Performance Challenges for Client-Side Caching
Caching techniques used in previous versions of the NFS protocol have been successful in
providing good performance. However, several scalability challenges can arise when those
techniques are used with very large numbers of clients. This is particularly true when clients are
geographically distributed, which classically increases the latency for cache revalidation
requests.

The previous versions of the NFS protocol repeat their file data cache validation requests at the
time the file is opened. This behavior can have serious performance drawbacks. A common case
is one in which a file is only accessed by a single client. Therefore, sharing is infrequent.

9.11. Reclaim of Open and Byte-Range Locks
Special forms of the LOCK and OPEN operations are provided when it is necessary to re-establish
byte-range locks or opens after a server failure.

To reclaim existing opens, an OPEN operation is performed using a CLAIM_PREVIOUS.
Because the client, in this type of situation, will have already opened the file and have the
filehandle of the target file, this operation requires that the current filehandle be the target
file, rather than a directory, and no file name is specified.
To reclaim byte-range locks, a LOCK operation with the reclaim parameter set to true is used.

Reclaims of opens associated with delegations are discussed in Section 10.2.1.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 160

In this case, repeated references to the server to find that no conflicts exist are expensive. A
better option with regards to performance is to allow a client that repeatedly opens a file to do so
without reference to the server. This is done until potentially conflicting operations from another
client actually occur.

A similar situation arises in connection with byte-range locking. Sending LOCK and LOCKU
operations as well as the READ and WRITE operations necessary to make data caching consistent
with the locking semantics (see Section 10.3.2) can severely limit performance. When locking is
used to provide protection against infrequent conflicts, a large penalty is incurred. This penalty
may discourage the use of byte-range locking by applications.

The NFSv4.1 protocol provides more aggressive caching strategies with the following design
goals:

Compatibility with a large range of server semantics.
Providing the same caching benefits as previous versions of the NFS protocol when unable to
support the more aggressive model.
Requirements for aggressive caching are organized so that a large portion of the benefit can
be obtained even when not all of the requirements can be met.

The appropriate requirements for the server are discussed in later sections in which specific
forms of caching are covered (see Section 10.4).

•
•

•

10.2. Delegation and Callbacks
Recallable delegation of server responsibilities for a file to a client improves performance by
avoiding repeated requests to the server in the absence of inter-client conflict. With the use of a
"callback" RPC from server to client, a server recalls delegated responsibilities when another
client engages in sharing of a delegated file.

A delegation is passed from the server to the client, specifying the object of the delegation and
the type of delegation. There are different types of delegations, but each type contains a stateid to
be used to represent the delegation when performing operations that depend on the delegation.
This stateid is similar to those associated with locks and share reservations but differs in that the
stateid for a delegation is associated with a client ID and may be used on behalf of all the open-
owners for the given client. A delegation is made to the client as a whole and not to any specific
process or thread of control within it.

The backchannel is established by CREATE_SESSION and BIND_CONN_TO_SESSION, and the
client is required to maintain it. Because the backchannel may be down, even temporarily,
correct protocol operation does not depend on them. Preliminary testing of backchannel
functionality by means of a CB_COMPOUND procedure with a single operation, CB_SEQUENCE,
can be used to check the continuity of the backchannel. A server avoids delegating
responsibilities until it has determined that the backchannel exists. Because the granting of a
delegation is always conditional upon the absence of conflicting access, clients assumeMUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 161

that a delegation will be granted and they always be prepared for OPENs,
WANT_DELEGATIONs, and GET_DIR_DELEGATIONs to be processed without any delegations
being granted.

Unlike locks, an operation by a second client to a delegated file will cause the server to recall a
delegation through a callback. For individual operations, we will describe, under
IMPLEMENTATION, when such operations are required to effect a recall. A number of points
should be noted, however.

The server is free to recall a delegation whenever it feels it is desirable and may do so even if
no operations requiring recall are being done.
Operations done outside the NFSv4.1 protocol, due to, for example, access by other protocols,
or by local access, also need to result in delegation recall when they make analogous changes
to file system data. What is crucial is if the change would invalidate the guarantees provided
by the delegation. When this is possible, the delegation needs to be recalled and be
returned or revoked before allowing the operation to proceed.
The semantics of the file system are crucial in defining when delegation recall is required. If
a particular change within a specific implementation causes change to a file attribute, then
delegation recall is required, whether that operation has been specifically listed as requiring
delegation recall. Again, what is critical is whether the guarantees provided by the
delegation are being invalidated.

Despite those caveats, the implementation sections for a number of operations describe
situations in which delegation recall would be required under some common circumstances:

For GETATTR, see Section 18.7.4.
For OPEN, see Section 18.16.4.
For READ, see Section 18.22.4.
For REMOVE, see Section 18.25.4.
For RENAME, see Section 18.26.4.
For SETATTR, see Section 18.30.4.
For WRITE, see Section 18.32.4.

On recall, the client holding the delegation needs to flush modified state (such as modified data)
to the server and return the delegation. The conflicting request will not be acted on until the
recall is complete. The recall is considered complete when the client returns the delegation or the
server times its wait for the delegation to be returned and revokes the delegation as a result of
the timeout. In the interim, the server will either delay responding to conflicting requests or
respond to them with NFS4ERR_DELAY. Following the resolution of the recall, the server has the
information necessary to grant or deny the second client's request.

At the time the client receives a delegation recall, it may have substantial state that needs to be
flushed to the server. Therefore, the server should allow sufficient time for the delegation to be
returned since it may involve numerous RPCs to the server. If the server is able to determine that

MUST

•

•

MUST

•

•
•
•
•
•
•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 162

the client is diligently flushing state to the server as a result of the recall, the server may extend
the usual time allowed for a recall. However, the time allowed for recall completion should not
be unbounded.

An example of this is when responsibility to mediate opens on a given file is delegated to a client
(see Section 10.4). The server will not know what opens are in effect on the client. Without this
knowledge, the server will be unable to determine if the access and deny states for the file allow
any particular open until the delegation for the file has been returned.

A client failure or a network partition can result in failure to respond to a recall callback. In this
case, the server will revoke the delegation, which in turn will render useless any modified state
still on the client.

10.2.1. Delegation Recovery

There are three situations that delegation recovery needs to deal with:

client restart
server restart
network partition (full or backchannel-only)

In the event the client restarts, the failure to renew the lease will result in the revocation of byte-
range locks and share reservations. Delegations, however, may be treated a bit differently.

There will be situations in which delegations will need to be re-established after a client restarts.
The reason for this is that the client may have file data stored locally and this data was associated
with the previously held delegations. The client will need to re-establish the appropriate file state
on the server.

To allow for this type of client recovery, the server extend the period for delegation
recovery beyond the typical lease expiration period. This implies that requests from other clients
that conflict with these delegations will need to wait. Because the normal recall process may
require significant time for the client to flush changed state to the server, other clients need be
prepared for delays that occur because of a conflicting delegation. This longer interval would
increase the window for clients to restart and consult stable storage so that the delegations can
be reclaimed. For OPEN delegations, such delegations are reclaimed using OPEN with a claim
type of CLAIM_DELEGATE_PREV or CLAIM_DELEG_PREV_FH (see Sections 10.5 and 18.16 for
discussion of OPEN delegation and the details of OPEN, respectively).

A server support claim types of CLAIM_DELEGATE_PREV and CLAIM_DELEG_PREV_FH, and
if it does, it remove delegations upon a CREATE_SESSION that confirm a client ID
created by EXCHANGE_ID. Instead, the server , for a period of time no less than that of the
value of the lease_time attribute, maintain the client's delegations to allow time for the client to
send CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH requests. The server that
supports CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH support the
DELEGPURGE operation.

•
•
•

MAY

MAY
MUST NOT

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 163

When the server restarts, delegations are reclaimed (using the OPEN operation with
CLAIM_PREVIOUS) in a similar fashion to byte-range locks and share reservations. However,
there is a slight semantic difference. In the normal case, if the server decides that a delegation
should not be granted, it performs the requested action (e.g., OPEN) without granting any
delegation. For reclaim, the server grants the delegation but a special designation is applied so
that the client treats the delegation as having been granted but recalled by the server. Because of
this, the client has the duty to write all modified state to the server and then return the
delegation. This process of handling delegation reclaim reconciles three principles of the NFSv4.1
protocol:

Upon reclaim, a client reporting resources assigned to it by an earlier server instance must
be granted those resources.
The server has unquestionable authority to determine whether delegations are to be granted
and, once granted, whether they are to be continued.
The use of callbacks should not be depended upon until the client has proven its ability to
receive them.

When a client needs to reclaim a delegation and there is no associated open, the client may use
the CLAIM_PREVIOUS variant of the WANT_DELEGATION operation. However, since the server is
not required to support this operation, an alternative is to reclaim via a dummy OPEN together
with the delegation using an OPEN of type CLAIM_PREVIOUS. The dummy open file can be
released using a CLOSE to re-establish the original state to be reclaimed, a delegation without an
associated open.

When a client has more than a single open associated with a delegation, state for those additional
opens can be established using OPEN operations of type CLAIM_DELEGATE_CUR. When these are
used to establish opens associated with reclaimed delegations, the server allow them when
made within the grace period.

When a network partition occurs, delegations are subject to freeing by the server when the lease
renewal period expires. This is similar to the behavior for locks and share reservations. For
delegations, however, the server may extend the period in which conflicting requests are held
off. Eventually, the occurrence of a conflicting request from another client will cause revocation
of the delegation. A loss of the backchannel (e.g., by later network configuration change) will
have the same effect. A recall request will fail and revocation of the delegation will result.

A client normally finds out about revocation of a delegation when it uses a stateid associated
with a delegation and receives one of the errors NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED,
or NFS4ERR_DELEG_REVOKED. It also may find out about delegation revocation after a client
restart when it attempts to reclaim a delegation and receives that same error. Note that in the
case of a revoked OPEN_DELEGATE_WRITE delegation, there are issues because data may have
been modified by the client whose delegation is revoked and separately by other clients. See
Section 10.5.1 for a discussion of such issues. Note also that when delegations are revoked,
information about the revoked delegation will be written by the server to stable storage (as

•

•

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 164

10.3. Data Caching
When applications share access to a set of files, they need to be implemented so as to take
account of the possibility of conflicting access by another application. This is true whether the
applications in question execute on different clients or reside on the same client.

Share reservations and byte-range locks are the facilities the NFSv4.1 protocol provides to allow
applications to coordinate access by using mutual exclusion facilities. The NFSv4.1 protocol's
data caching must be implemented such that it does not invalidate the assumptions on which
those using these facilities depend.

10.3.1. Data Caching and OPENs

In order to avoid invalidating the sharing assumptions on which applications rely, NFSv4.1
clients should not provide cached data to applications or modify it on behalf of an application
when it would not be valid to obtain or modify that same data via a READ or WRITE operation.

Furthermore, in the absence of an OPEN delegation (see Section 10.4), two additional rules apply.
Note that these rules are obeyed in practice by many NFSv3 clients.

First, cached data present on a client must be revalidated after doing an OPEN. Revalidating
means that the client fetches the change attribute from the server, compares it with the
cached change attribute, and if different, declares the cached data (as well as the cached
attributes) as invalid. This is to ensure that the data for the OPENed file is still correctly
reflected in the client's cache. This validation must be done at least when the client's OPEN
operation includes a deny of OPEN4_SHARE_DENY_WRITE or OPEN4_SHARE_DENY_BOTH,
thus terminating a period in which other clients may have had the opportunity to open the
file with OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH access. Clients may
choose to do the revalidation more often (i.e., at OPENs specifying a deny mode of
OPEN4_SHARE_DENY_NONE) to parallel the NFSv3 protocol's practice for the benefit of users
assuming this degree of cache revalidation.

Since the change attribute is updated for data and metadata modifications, some client
implementors may be tempted to use the time_modify attribute and not the change attribute
to validate cached data, so that metadata changes do not spuriously invalidate clean data.
The implementor is cautioned in this approach. The change attribute is guaranteed to change
for each update to the file, whereas time_modify is guaranteed to change only at the
granularity of the time_delta attribute. Use by the client's data cache validation logic of
time_modify and not change runs the risk of the client incorrectly marking stale data as
valid. Thus, any cache validation approach by the client include the use of the change
attribute.

Second, modified data must be flushed to the server before closing a file OPENed for
OPEN4_SHARE_ACCESS_WRITE. This is complementary to the first rule. If the data is not

described in Section 8.4.3). This is done to deal with the case in which a server restarts after
revoking a delegation but before the client holding the revoked delegation is notified about the
revocation.

•

MUST

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 165

flushed at CLOSE, the revalidation done after the client OPENs a file is unable to achieve its
purpose. The other aspect to flushing the data before close is that the data must be
committed to stable storage, at the server, before the CLOSE operation is requested by the
client. In the case of a server restart and a CLOSEd file, it may not be possible to retransmit
the data to be written to the file, hence, this requirement.

10.3.2. Data Caching and File Locking

For those applications that choose to use byte-range locking instead of share reservations to
exclude inconsistent file access, there is an analogous set of constraints that apply to client-side
data caching. These rules are effective only if the byte-range locking is used in a way that
matches in an equivalent way the actual READ and WRITE operations executed. This is as
opposed to byte-range locking that is based on pure convention. For example, it is possible to
manipulate a two-megabyte file by dividing the file into two one-megabyte ranges and protecting
access to the two byte-ranges by byte-range locks on bytes zero and one. A WRITE_LT lock on
byte zero of the file would represent the right to perform READ and WRITE operations on the
first byte-range. A WRITE_LT lock on byte one of the file would represent the right to perform
READ and WRITE operations on the second byte-range. As long as all applications manipulating
the file obey this convention, they will work on a local file system. However, they may not work
with the NFSv4.1 protocol unless clients refrain from data caching.

The rules for data caching in the byte-range locking environment are:

First, when a client obtains a byte-range lock for a particular byte-range, the data cache
corresponding to that byte-range (if any cache data exists) must be revalidated. If the change
attribute indicates that the file may have been updated since the cached data was obtained,
the client must flush or invalidate the cached data for the newly locked byte-range. A client
might choose to invalidate all of the non-modified cached data that it has for the file, but the
only requirement for correct operation is to invalidate all of the data in the newly locked
byte-range.
Second, before releasing a WRITE_LT lock for a byte-range, all modified data for that byte-
range must be flushed to the server. The modified data must also be written to stable storage.

Note that flushing data to the server and the invalidation of cached data must reflect the actual
byte-ranges locked or unlocked. Rounding these up or down to reflect client cache block
boundaries will cause problems if not carefully done. For example, writing a modified block
when only half of that block is within an area being unlocked may cause invalid modification to
the byte-range outside the unlocked area. This, in turn, may be part of a byte-range locked by
another client. Clients can avoid this situation by synchronously performing portions of WRITE
operations that overlap that portion (initial or final) that is not a full block. Similarly, invalidating
a locked area that is not an integral number of full buffer blocks would require the client to read
one or two partial blocks from the server if the revalidation procedure shows that the data that
the client possesses may not be valid.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 166

10.3.3. Data Caching and Mandatory File Locking

Client-side data caching needs to respect mandatory byte-range locking when it is in effect. The
presence of mandatory byte-range locking for a given file is indicated when the client gets back
NFS4ERR_LOCKED from a READ or WRITE operation on a file for which it has an appropriate
share reservation. When mandatory locking is in effect for a file, the client must check for an
appropriate byte-range lock for data being read or written. If a byte-range lock exists for the
range being read or written, the client may satisfy the request using the client's validated cache.
If an appropriate byte-range lock is not held for the range of the read or write, the read or write
request must not be satisfied by the client's cache and the request must be sent to the server for
processing. When a read or write request partially overlaps a locked byte-range, the request
should be subdivided into multiple pieces with each byte-range (locked or not) treated
appropriately.

The data that is written to the server as a prerequisite to the unlocking of a byte-range must be
written, at the server, to stable storage. The client may accomplish this either with synchronous
writes or by following asynchronous writes with a COMMIT operation. This is required because
retransmission of the modified data after a server restart might conflict with a lock held by
another client.

A client implementation may choose to accommodate applications that use byte-range locking in
non-standard ways (e.g., using a byte-range lock as a global semaphore) by flushing to the server
more data upon a LOCKU than is covered by the locked range. This may include modified data
within files other than the one for which the unlocks are being done. In such cases, the client
must not interfere with applications whose READs and WRITEs are being done only within the
bounds of byte-range locks that the application holds. For example, an application locks a single
byte of a file and proceeds to write that single byte. A client that chose to handle a LOCKU by
flushing all modified data to the server could validly write that single byte in response to an
unrelated LOCKU operation. However, it would not be valid to write the entire block in which
that single written byte was located since it includes an area that is not locked and might be
locked by another client. Client implementations can avoid this problem by dividing files with
modified data into those for which all modifications are done to areas covered by an appropriate
byte-range lock and those for which there are modifications not covered by a byte-range lock.
Any writes done for the former class of files must not include areas not locked and thus not
modified on the client.

10.3.4. Data Caching and File Identity

When clients cache data, the file data needs to be organized according to the file system object to
which the data belongs. For NFSv3 clients, the typical practice has been to assume for the
purpose of caching that distinct filehandles represent distinct file system objects. The client then
has the choice to organize and maintain the data cache on this basis.

In the NFSv4.1 protocol, there is now the possibility to have significant deviations from a "one
filehandle per object" model because a filehandle may be constructed on the basis of the object's
pathname. Therefore, clients need a reliable method to determine if two filehandles designate

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 167

the same file system object. If clients were simply to assume that all distinct filehandles denote
distinct objects and proceed to do data caching on this basis, caching inconsistencies would arise
between the distinct client-side objects that mapped to the same server-side object.

By providing a method to differentiate filehandles, the NFSv4.1 protocol alleviates a potential
functional regression in comparison with the NFSv3 protocol. Without this method, caching
inconsistencies within the same client could occur, and this has not been present in previous
versions of the NFS protocol. Note that it is possible to have such inconsistencies with
applications executing on multiple clients, but that is not the issue being addressed here.

For the purposes of data caching, the following steps allow an NFSv4.1 client to determine
whether two distinct filehandles denote the same server-side object:

If GETATTR directed to two filehandles returns different values of the fsid attribute, then the
filehandles represent distinct objects.
If GETATTR for any file with an fsid that matches the fsid of the two filehandles in question
returns a unique_handles attribute with a value of TRUE, then the two objects are distinct.
If GETATTR directed to the two filehandles does not return the fileid attribute for both of the
handles, then it cannot be determined whether the two objects are the same. Therefore,
operations that depend on that knowledge (e.g., client-side data caching) cannot be done
reliably. Note that if GETATTR does not return the fileid attribute for both filehandles, it will
return it for neither of the filehandles, since the fsid for both filehandles is the same.
If GETATTR directed to the two filehandles returns different values for the fileid attribute,
then they are distinct objects.
Otherwise, they are the same object.

•

•

•

•

•

10.4. Open Delegation
When a file is being OPENed, the server may delegate further handling of opens and closes for
that file to the opening client. Any such delegation is recallable since the circumstances that
allowed for the delegation are subject to change. In particular, if the server receives a conflicting
OPEN from another client, the server must recall the delegation before deciding whether the
OPEN from the other client may be granted. Making a delegation is up to the server, and clients
should not assume that any particular OPEN either will or will not result in an OPEN delegation.
The following is a typical set of conditions that servers might use in deciding whether an OPEN
should be delegated:

The client must be able to respond to the server's callback requests. If a backchannel has
been established, the server will send a CB_COMPOUND request, containing a single
operation, CB_SEQUENCE, for a test of backchannel availability.
The client must have responded properly to previous recalls.
There must be no current OPEN conflicting with the requested delegation.
There should be no current delegation that conflicts with the delegation being requested.
The probability of future conflicting open requests should be low based on the recent history
of the file.

•

•
•
•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 168

The existence of any server-specific semantics of OPEN/CLOSE that would make the required
handling incompatible with the prescribed handling that the delegated client would apply
(see below).

There are two types of OPEN delegations: OPEN_DELEGATE_READ and OPEN_DELEGATE_WRITE.
An OPEN_DELEGATE_READ delegation allows a client to handle, on its own, requests to open a
file for reading that do not deny OPEN4_SHARE_ACCESS_READ access to others. Multiple
OPEN_DELEGATE_READ delegations may be outstanding simultaneously and do not conflict. An
OPEN_DELEGATE_WRITE delegation allows the client to handle, on its own, all opens. Only one
OPEN_DELEGATE_WRITE delegation may exist for a given file at a given time, and it is
inconsistent with any OPEN_DELEGATE_READ delegations.

When a client has an OPEN_DELEGATE_READ delegation, it is assured that neither the contents,
the attributes (with the exception of time_access), nor the names of any links to the file will
change without its knowledge, so long as the delegation is held. When a client has an
OPEN_DELEGATE_WRITE delegation, it may modify the file data locally since no other client will
be accessing the file's data. The client holding an OPEN_DELEGATE_WRITE delegation may only
locally affect file attributes that are intimately connected with the file data: size, change,
time_access, time_metadata, and time_modify. All other attributes must be reflected on the
server.

When a client has an OPEN delegation, it does not need to send OPENs or CLOSEs to the server.
Instead, the client may update the appropriate status internally. For an OPEN_DELEGATE_READ
delegation, opens that cannot be handled locally (opens that are for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH or that deny
OPEN4_SHARE_ACCESS_READ access) must be sent to the server.

When an OPEN delegation is made, the reply to the OPEN contains an OPEN delegation structure
that specifies the following:

the type of delegation (OPEN_DELEGATE_READ or OPEN_DELEGATE_WRITE).
space limitation information to control flushing of data on close (OPEN_DELEGATE_WRITE
delegation only; see Section 10.4.1)
an nfsace4 specifying read and write permissions
a stateid to represent the delegation

The delegation stateid is separate and distinct from the stateid for the OPEN proper. The
standard stateid, unlike the delegation stateid, is associated with a particular lock-owner and will
continue to be valid after the delegation is recalled and the file remains open.

When a request internal to the client is made to open a file and an OPEN delegation is in effect, it
will be accepted or rejected solely on the basis of the following conditions. Any requirement for
other checks to be made by the delegate should result in the OPEN delegation being denied so
that the checks can be made by the server itself.

The access and deny bits for the request and the file as described in Section 9.7.
The read and write permissions as determined below.

•

•
•

•
•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 169

The nfsace4 passed with delegation can be used to avoid frequent ACCESS calls. The permission
check should be as follows:

If the nfsace4 indicates that the open may be done, then it should be granted without
reference to the server.
If the nfsace4 indicates that the open may not be done, then an ACCESS request must be sent
to the server to obtain the definitive answer.

The server may return an nfsace4 that is more restrictive than the actual ACL of the file. This
includes an nfsace4 that specifies denial of all access. Note that some common practices such as
mapping the traditional user "root" to the user "nobody" (see Section 5.9) may make it incorrect
to return the actual ACL of the file in the delegation response.

The use of a delegation together with various other forms of caching creates the possibility that
no server authentication and authorization will ever be performed for a given user since all of
the user's requests might be satisfied locally. Where the client is depending on the server for
authentication and authorization, the client should be sure authentication and authorization
occurs for each user by use of the ACCESS operation. This should be the case even if an ACCESS
operation would not be required otherwise. As mentioned before, the server may enforce
frequent authentication by returning an nfsace4 denying all access with every OPEN delegation.

•

•

10.4.1. Open Delegation and Data Caching

An OPEN delegation allows much of the message overhead associated with the opening and
closing files to be eliminated. An open when an OPEN delegation is in effect does not require that
a validation message be sent to the server. The continued endurance of the
"OPEN_DELEGATE_READ delegation" provides a guarantee that no OPEN for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, and thus no write, has occurred.
Similarly, when closing a file opened for OPEN4_SHARE_ACCESS_WRITE/
OPEN4_SHARE_ACCESS_BOTH and if an OPEN_DELEGATE_WRITE delegation is in effect, the data
written does not have to be written to the server until the OPEN delegation is recalled. The
continued endurance of the OPEN delegation provides a guarantee that no open, and thus no
READ or WRITE, has been done by another client.

For the purposes of OPEN delegation, READs and WRITEs done without an OPEN are treated as
the functional equivalents of a corresponding type of OPEN. Although a client use
special stateids when an open exists, delegation handling on the server can use the client ID
associated with the current session to determine if the operation has been done by the holder of
the delegation (in which case, no recall is necessary) or by another client (in which case, the
delegation must be recalled and I/O not proceed until the delegation is returned or revoked).

With delegations, a client is able to avoid writing data to the server when the CLOSE of a file is
serviced. The file close system call is the usual point at which the client is notified of a lack of
stable storage for the modified file data generated by the application. At the close, file data is
written to the server and, through normal accounting, the server is able to determine if the
available file system space for the data has been exceeded (i.e., the server returns

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 170

10.4.2. Open Delegation and File Locks

When a client holds an OPEN_DELEGATE_WRITE delegation, lock operations are performed
locally. This includes those required for mandatory byte-range locking. This can be done since
the delegation implies that there can be no conflicting locks. Similarly, all of the revalidations
that would normally be associated with obtaining locks and the flushing of data associated with
the releasing of locks need not be done.

When a client holds an OPEN_DELEGATE_READ delegation, lock operations are not performed
locally. All lock operations, including those requesting non-exclusive locks, are sent to the server
for resolution.

NFS4ERR_NOSPC or NFS4ERR_DQUOT). This accounting includes quotas. The introduction of
delegations requires that an alternative method be in place for the same type of communication
to occur between client and server.

In the delegation response, the server provides either the limit of the size of the file or the
number of modified blocks and associated block size. The server must ensure that the client will
be able to write modified data to the server of a size equal to that provided in the original
delegation. The server must make this assurance for all outstanding delegations. Therefore, the
server must be careful in its management of available space for new or modified data, taking
into account available file system space and any applicable quotas. The server can recall
delegations as a result of managing the available file system space. The client should abide by the
server's state space limits for delegations. If the client exceeds the stated limits for the delegation,
the server's behavior is undefined.

Based on server conditions, quotas, or available file system space, the server may grant
OPEN_DELEGATE_WRITE delegations with very restrictive space limitations. The limitations may
be defined in a way that will always force modified data to be flushed to the server on close.

With respect to authentication, flushing modified data to the server after a CLOSE has occurred
may be problematic. For example, the user of the application may have logged off the client, and
unexpired authentication credentials may not be present. In this case, the client may need to take
special care to ensure that local unexpired credentials will in fact be available. This may be
accomplished by tracking the expiration time of credentials and flushing data well in advance of
their expiration or by making private copies of credentials to assure their availability when
needed.

10.4.3. Handling of CB_GETATTR

The server needs to employ special handling for a GETATTR where the target is a file that has an
OPEN_DELEGATE_WRITE delegation in effect. The reason for this is that the client holding the
OPEN_DELEGATE_WRITE delegation may have modified the data, and the server needs to reflect
this change to the second client that submitted the GETATTR. Therefore, the client holding the
OPEN_DELEGATE_WRITE delegation needs to be interrogated. The server will use the
CB_GETATTR operation. The only attributes that the server can reliably query via CB_GETATTR
are size and change.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 171

Since CB_GETATTR is being used to satisfy another client's GETATTR request, the server only
needs to know if the client holding the delegation has a modified version of the file. If the client's
copy of the delegated file is not modified (data or size), the server can satisfy the second client's
GETATTR request from the attributes stored locally at the server. If the file is modified, the server
only needs to know about this modified state. If the server determines that the file is currently
modified, it will respond to the second client's GETATTR as if the file had been modified locally at
the server.

Since the form of the change attribute is determined by the server and is opaque to the client, the
client and server need to agree on a method of communicating the modified state of the file. For
the size attribute, the client will report its current view of the file size. For the change attribute,
the handling is more involved.

For the client, the following steps will be taken when receiving an OPEN_DELEGATE_WRITE
delegation:

The value of the change attribute will be obtained from the server and cached. Let this value
be represented by c.
The client will create a value greater than c that will be used for communicating that
modified data is held at the client. Let this value be represented by d.
When the client is queried via CB_GETATTR for the change attribute, it checks to see if it
holds modified data. If the file is modified, the value d is returned for the change attribute
value. If this file is not currently modified, the client returns the value c for the change
attribute.

For simplicity of implementation, the client for each CB_GETATTR return the same value d.
This is true even if, between successive CB_GETATTR operations, the client again modifies the
file's data or metadata in its cache. The client can return the same value because the only
requirement is that the client be able to indicate to the server that the client holds modified data.
Therefore, the value of d may always be c + 1.

While the change attribute is opaque to the client in the sense that it has no idea what units of
time, if any, the server is counting change with, it is not opaque in that the client has to treat it as
an unsigned integer, and the server has to be able to see the results of the client's changes to that
integer. Therefore, the server encode the change attribute in network order when sending
it to the client. The client decode it from network order to its native order when receiving
it, and the client encode it in network order when sending it to the server. For this reason,
change is defined as an unsigned integer rather than an opaque array of bytes.

For the server, the following steps will be taken when providing an OPEN_DELEGATE_WRITE
delegation:

Upon providing an OPEN_DELEGATE_WRITE delegation, the server will cache a copy of the
change attribute in the data structure it uses to record the delegation. Let this value be
represented by sc.
When a second client sends a GETATTR operation on the same file to the server, the server
obtains the change attribute from the first client. Let this value be cc.

•

•

•

MAY

MUST
MUST

MUST

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 172

If the value cc is equal to sc, the file is not modified and the server returns the current values
for change, time_metadata, and time_modify (for example) to the second client.
If the value cc is NOT equal to sc, the file is currently modified at the first client and most
likely will be modified at the server at a future time. The server then uses its current time to
construct attribute values for time_metadata and time_modify. A new value of sc, which we
will call nsc, is computed by the server, such that nsc >= sc + 1. The server then returns the
constructed time_metadata, time_modify, and nsc values to the requester. The server
replaces sc in the delegation record with nsc. To prevent the possibility of time_modify,
time_metadata, and change from appearing to go backward (which would happen if the
client holding the delegation fails to write its modified data to the server before the
delegation is revoked or returned), the server update the file's metadata record with
the constructed attribute values. For reasons of reasonable performance, committing the
constructed attribute values to stable storage is .

As discussed earlier in this section, the client return the same cc value on subsequent
CB_GETATTR calls, even if the file was modified in the client's cache yet again between successive
CB_GETATTR calls. Therefore, the server must assume that the file has been modified yet again,
and take care to ensure that the new nsc it constructs and returns is greater than the
previous nsc it returned. An example implementation's delegation record would satisfy this
mandate by including a boolean field (let us call it "modified") that is set to FALSE when the
delegation is granted, and an sc value set at the time of grant to the change attribute value. The
modified field would be set to TRUE the first time cc != sc, and would stay TRUE until the
delegation is returned or revoked. The processing for constructing nsc, time_modify, and
time_metadata would use this pseudo code:

This would return to the client (that sent GETATTR) the attributes it requested, but make sure size
comes from what CB_GETATTR returned. The server would not update the file's metadata with
the client's modified size.

In the case that the file attribute size is different than the server's current value, the server treats
this as a modification regardless of the value of the change attribute retrieved via CB_GETATTR
and responds to the second client as in the last step.

•

•

SHOULD

OPTIONAL

MAY

MUST

 if (!modified) {
 do CB_GETATTR for change and size;

 if (cc != sc)
 modified = TRUE;
 } else {
 do CB_GETATTR for size;
 }

 if (modified) {
 sc = sc + 1;
 time_modify = time_metadata = current_time;
 update sc, time_modify, time_metadata into file's metadata;
 }

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 173

10.4.4. Recall of Open Delegation

The following events necessitate recall of an OPEN delegation:

potentially conflicting OPEN request (or a READ or WRITE operation done with a special
stateid)
SETATTR sent by another client
REMOVE request for the file
RENAME request for the file as either the source or target of the RENAME

Whether a RENAME of a directory in the path leading to the file results in recall of an OPEN
delegation depends on the semantics of the server's file system. If that file system denies such
RENAMEs when a file is open, the recall must be performed to determine whether the file in
question is, in fact, open.

In addition to the situations above, the server may choose to recall OPEN delegations at any time
if resource constraints make it advisable to do so. Clients should always be prepared for the
possibility of recall.

When a client receives a recall for an OPEN delegation, it needs to update state on the server
before returning the delegation. These same updates must be done whenever a client chooses to
return a delegation voluntarily. The following items of state need to be dealt with:

If the file associated with the delegation is no longer open and no previous CLOSE operation
has been sent to the server, a CLOSE operation must be sent to the server.
If a file has other open references at the client, then OPEN operations must be sent to the
server. The appropriate stateids will be provided by the server for subsequent use by the
client since the delegation stateid will no longer be valid. These OPEN requests are done with
the claim type of CLAIM_DELEGATE_CUR. This will allow the presentation of the delegation
stateid so that the client can establish the appropriate rights to perform the OPEN. (See
Section 18.16, which describes the OPEN operation, for details.)
If there are granted byte-range locks, the corresponding LOCK operations need to be
performed. This applies to the OPEN_DELEGATE_WRITE delegation case only.
For an OPEN_DELEGATE_WRITE delegation, if at the time of recall the file is not open for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, all modified data for the file
must be flushed to the server. If the delegation had not existed, the client would have done
this data flush before the CLOSE operation.
For an OPEN_DELEGATE_WRITE delegation when a file is still open at the time of recall, any
modified data for the file needs to be flushed to the server.

This methodology resolves issues of clock differences between client and server and other
scenarios where the use of CB_GETATTR break down.

It should be noted that the server is under no obligation to use CB_GETATTR, and therefore the
server simply recall the delegation to avoid its use.MAY

•

•
•
•

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 174

With the OPEN_DELEGATE_WRITE delegation in place, it is possible that the file was
truncated during the duration of the delegation. For example, the truncation could have
occurred as a result of an OPEN UNCHECKED with a size attribute value of zero. Therefore, if
a truncation of the file has occurred and this operation has not been propagated to the
server, the truncation must occur before any modified data is written to the server.

In the case of OPEN_DELEGATE_WRITE delegation, byte-range locking imposes some additional
requirements. To precisely maintain the associated invariant, it is required to flush any modified
data in any byte-range for which a WRITE_LT lock was released while the
OPEN_DELEGATE_WRITE delegation was in effect. However, because the
OPEN_DELEGATE_WRITE delegation implies no other locking by other clients, a simpler
implementation is to flush all modified data for the file (as described just above) if any WRITE_LT
lock has been released while the OPEN_DELEGATE_WRITE delegation was in effect.

An implementation need not wait until delegation recall (or the decision to voluntarily return a
delegation) to perform any of the above actions, if implementation considerations (e.g., resource
availability constraints) make that desirable. Generally, however, the fact that the actual OPEN
state of the file may continue to change makes it not worthwhile to send information about
opens and closes to the server, except as part of delegation return. An exception is when the
client has no more internal opens of the file. In this case, sending a CLOSE is useful because it
reduces resource utilization on the client and server. Regardless of the client's choices on
scheduling these actions, all must be performed before the delegation is returned, including
(when applicable) the close that corresponds to the OPEN that resulted in the delegation. These
actions can be performed either in previous requests or in previous operations in the same
COMPOUND request.

10.4.5. Clients That Fail to Honor Delegation Recalls

A client may fail to respond to a recall for various reasons, such as a failure of the backchannel
from server to the client. The client may be unaware of a failure in the backchannel. This lack of
awareness could result in the client finding out long after the failure that its delegation has been
revoked, and another client has modified the data for which the client had a delegation. This is
especially a problem for the client that held an OPEN_DELEGATE_WRITE delegation.

Status bits returned by SEQUENCE operations help to provide an alternate way of informing the
client of issues regarding the status of the backchannel and of recalled delegations. When the
backchannel is not available, the server returns the status bit SEQ4_STATUS_CB_PATH_DOWN on
SEQUENCE operations. The client can react by attempting to re-establish the backchannel and by
returning recallable objects if a backchannel cannot be successfully re-established.

Whether the backchannel is functioning or not, it may be that the recalled delegation is not
returned. Note that the client's lease might still be renewed, even though the recalled delegation
is not returned. In this situation, servers revoke delegations that are not returned in a
period of time equal to the lease period. This period of time should allow the client time to note
the backchannel-down status and re-establish the backchannel.

•

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 175

When delegations are revoked, the server will return with the
SEQ4_STATUS_RECALLABLE_STATE_REVOKED status bit set on subsequent SEQUENCE
operations. The client should note this and then use TEST_STATEID to find which delegations
have been revoked.

10.4.6. Delegation Revocation

At the point a delegation is revoked, if there are associated opens on the client, these opens may
or may not be revoked. If no byte-range lock or open is granted that is inconsistent with the
existing open, the stateid for the open may remain valid and be disconnected from the revoked
delegation, just as would be the case if the delegation were returned.

For example, if an OPEN for OPEN4_SHARE_ACCESS_BOTH with a deny of
OPEN4_SHARE_DENY_NONE is associated with the delegation, granting of another such OPEN to
a different client will revoke the delegation but need not revoke the OPEN, since the two OPENs
are consistent with each other. On the other hand, if an OPEN denying write access is granted,
then the existing OPEN must be revoked.

When opens and/or locks are revoked, the applications holding these opens or locks need to be
notified. This notification usually occurs by returning errors for READ/WRITE operations or
when a close is attempted for the open file.

If no opens exist for the file at the point the delegation is revoked, then notification of the
revocation is unnecessary. However, if there is modified data present at the client for the file, the
user of the application should be notified. Unfortunately, it may not be possible to notify the user
since active applications may not be present at the client. See Section 10.5.1 for additional details.

10.4.7. Delegations via WANT_DELEGATION

In addition to providing delegations as part of the reply to OPEN operations, servers provide
delegations separate from open, via the WANT_DELEGATION operation. This allows
delegations to be obtained in advance of an OPEN that might benefit from them, for objects that
are not a valid target of OPEN, or to deal with cases in which a delegation has been recalled and
the client wants to make an attempt to re-establish it if the absence of use by other clients allows
that.

The WANT_DELEGATION operation may be performed on any type of file object other than a
directory.

When a delegation is obtained using WANT_DELEGATION, any open files for the same filehandle
held by that client are to be treated as subordinate to the delegation, just as if they had been
created using an OPEN of type CLAIM_DELEGATE_CUR. They are otherwise unchanged as to
seqid, access and deny modes, and the relationship with byte-range locks. Similarly, because
existing byte-range locks are subordinate to an open, those byte-range locks also become
indirectly subordinate to that new delegation.

The WANT_DELEGATION operation provides for delivery of delegations via callbacks, when the
delegations are not immediately available. When a requested delegation is available, it is
delivered to the client via a CB_PUSH_DELEG operation. When this happens, open files for the

MAY
OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 176

same filehandle become subordinate to the new delegation at the point at which the delegation is
delivered, just as if they had been created using an OPEN of type CLAIM_DELEGATE_CUR.
Similarly, this occurs for existing byte-range locks subordinate to an open.

10.5. Data Caching and Revocation
When locks and delegations are revoked, the assumptions upon which successful caching
depends are no longer guaranteed. For any locks or share reservations that have been revoked,
the corresponding state-owner needs to be notified. This notification includes applications with a
file open that has a corresponding delegation that has been revoked. Cached data associated with
the revocation must be removed from the client. In the case of modified data existing in the
client's cache, that data must be removed from the client without being written to the server. As
mentioned, the assumptions made by the client are no longer valid at the point when a lock or
delegation has been revoked. For example, another client may have been granted a conflicting
byte-range lock after the revocation of the byte-range lock at the first client. Therefore, the data
within the lock range may have been modified by the other client. Obviously, the first client is
unable to guarantee to the application what has occurred to the file in the case of revocation.

Notification to a state-owner will in many cases consist of simply returning an error on the next
and all subsequent READs/WRITEs to the open file or on the close. Where the methods available
to a client make such notification impossible because errors for certain operations may not be
returned, more drastic action such as signals or process termination may be appropriate. The
justification here is that an invariant on which an application depends may be violated.
Depending on how errors are typically treated for the client-operating environment, further
levels of notification including logging, console messages, and GUI pop-ups may be appropriate.

10.5.1. Revocation Recovery for Write Open Delegation

Revocation recovery for an OPEN_DELEGATE_WRITE delegation poses the special issue of
modified data in the client cache while the file is not open. In this situation, any client that does
not flush modified data to the server on each close must ensure that the user receives
appropriate notification of the failure as a result of the revocation. Since such situations may
require human action to correct problems, notification schemes in which the appropriate user or
administrator is notified may be necessary. Logging and console messages are typical examples.

If there is modified data on the client, it must not be flushed normally to the server. A client may
attempt to provide a copy of the file data as modified during the delegation under a different
name in the file system namespace to ease recovery. Note that when the client can determine
that the file has not been modified by any other client, or when the client has a complete cached
copy of the file in question, such a saved copy of the client's view of the file may be of particular
value for recovery. In another case, recovery using a copy of the file based partially on the
client's cached data and partially on the server's copy as modified by other clients will be
anything but straightforward, so clients may avoid saving file contents in these situations or
specially mark the results to warn users of possible problems.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 177

10.6. Attribute Caching
This section pertains to the caching of a file's attributes on a client when that client does not hold
a delegation on the file.

The attributes discussed in this section do not include named attributes. Individual named
attributes are analogous to files, and caching of the data for these needs to be handled just as
data caching is for ordinary files. Similarly, LOOKUP results from an OPENATTR directory (as
well as the directory's contents) are to be cached on the same basis as any other pathnames.

Clients may cache file attributes obtained from the server and use them to avoid subsequent
GETATTR requests. Such caching is write through in that modification to file attributes is always
done by means of requests to the server and should not be done locally and should not be
cached. The exception to this are modifications to attributes that are intimately connected with
data caching. Therefore, extending a file by writing data to the local data cache is reflected
immediately in the size as seen on the client without this change being immediately reflected on
the server. Normally, such changes are not propagated directly to the server, but when the
modified data is flushed to the server, analogous attribute changes are made on the server. When
OPEN delegation is in effect, the modified attributes may be returned to the server in reaction to
a CB_RECALL call.

The result of local caching of attributes is that the attribute caches maintained on individual
clients will not be coherent. Changes made in one order on the server may be seen in a different
order on one client and in a third order on another client.

The typical file system application programming interfaces do not provide means to atomically
modify or interrogate attributes for multiple files at the same time. The following rules provide
an environment where the potential incoherencies mentioned above can be reasonably
managed. These rules are derived from the practice of previous NFS protocols.

All attributes for a given file (per-fsid attributes excepted) are cached as a unit at the client so
that no non-serializability can arise within the context of a single file.
An upper time boundary is maintained on how long a client cache entry can be kept without
being refreshed from the server.
When operations are performed that change attributes at the server, the updated attribute
set is requested as part of the containing RPC. This includes directory operations that update
attributes indirectly. This is accomplished by following the modifying operation with a
GETATTR operation and then using the results of the GETATTR to update the client's cached
attributes.

Note that if the full set of attributes to be cached is requested by READDIR, the results can be
cached by the client on the same basis as attributes obtained via GETATTR.

Saving of such modified data in delegation revocation situations may be limited to files of a
certain size or might be used only when sufficient disk space is available within the target file
system. Such saving may also be restricted to situations when the client has sufficient buffering
resources to keep the cached copy available until it is properly stored to the target file system.

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 178

A client may validate its cached version of attributes for a file by fetching both the change and
time_access attributes and assuming that if the change attribute has the same value as it did
when the attributes were cached, then no attributes other than time_access have changed. The
reason why time_access is also fetched is because many servers operate in environments where
the operation that updates change does not update time_access. For example, POSIX file
semantics do not update access time when a file is modified by the write system call .
Therefore, the client that wants a current time_access value should fetch it with change during
the attribute cache validation processing and update its cached time_access.

The client may maintain a cache of modified attributes for those attributes intimately connected
with data of modified regular files (size, time_modify, and change). Other than those three
attributes, the client maintain a cache of modified attributes. Instead, attribute
changes are immediately sent to the server.

In some operating environments, the equivalent to time_access is expected to be implicitly
updated by each read of the content of the file object. If an NFS client is caching the content of a
file object, whether it is a regular file, directory, or symbolic link, the client update
the time_access attribute (via SETATTR or a small READ or READDIR request) on the server with
each read that is satisfied from cache. The reason is that this can defeat the performance benefits
of caching content, especially since an explicit SETATTR of time_access may alter the change
attribute on the server. If the change attribute changes, clients that are caching the content will
think the content has changed, and will re-read unmodified data from the server. Nor is the
client encouraged to maintain a modified version of time_access in its cache, since the client
either would eventually have to write the access time to the server with bad performance effects
or never update the server's time_access, thereby resulting in a situation where an application
that caches access time between a close and open of the same file observes the access time
oscillating between the past and present. The time_access attribute always means the time of last
access to a file by a read that was satisfied by the server. This way clients will tend to see only
time_access changes that go forward in time.

10.7. Data and Metadata Caching and Memory Mapped Files
Some operating environments include the capability for an application to map a file's content
into the application's address space. Each time the application accesses a memory location that
corresponds to a block that has not been loaded into the address space, a page fault occurs and
the file is read (or if the block does not exist in the file, the block is allocated and then
instantiated in the application's address space).

As long as each memory-mapped access to the file requires a page fault, the relevant attributes of
the file that are used to detect access and modification (time_access, time_metadata, time_modify,
and change) will be updated. However, in many operating environments, when page faults are
not required, these attributes will not be updated on reads or updates to the file via memory

[15]

MUST NOT

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 179

access (regardless of whether the file is local or is accessed remotely). A client or server fail
to update attributes of a file that is being accessed via memory-mapped I/O. This has several
implications:

If there is an application on the server that has memory mapped a file that a client is also
accessing, the client may not be able to get a consistent value of the change attribute to
determine whether or not its cache is stale. A server that knows that the file is memory-
mapped could always pessimistically return updated values for change so as to force the
application to always get the most up-to-date data and metadata for the file. However, due to
the negative performance implications of this, such behavior is .
If the memory-mapped file is not being modified on the server, and instead is just being read
by an application via the memory-mapped interface, the client will not see an updated
time_access attribute. However, in many operating environments, neither will any process
running on the server. Thus, NFS clients are at no disadvantage with respect to local
processes.
If there is another client that is memory mapping the file, and if that client is holding an
OPEN_DELEGATE_WRITE delegation, the same set of issues as discussed in the previous two
bullet points apply. So, when a server does a CB_GETATTR to a file that the client has
modified in its cache, the reply from CB_GETATTR will not necessarily be accurate. As
discussed earlier, the client's obligation is to report that the file has been modified since the
delegation was granted, not whether it has been modified again between successive
CB_GETATTR calls, and the server assume that any file the client has modified in cache
has been modified again between successive CB_GETATTR calls. Depending on the nature of
the client's memory management system, this weak obligation may not be possible. A client

 return stale information in CB_GETATTR whenever the file is memory-mapped.
The mixture of memory mapping and byte-range locking on the same file is problematic.
Consider the following scenario, where a page size on each client is 8192 bytes.

Client A memory maps the first page (8192 bytes) of file X.
Client B memory maps the first page (8192 bytes) of file X.
Client A WRITE_LT locks the first 4096 bytes.
Client B WRITE_LT locks the second 4096 bytes.
Client A, via a STORE instruction, modifies part of its locked byte-range.
Simultaneous to client A, client B executes a STORE on part of its locked byte-range.

Here the challenge is for each client to resynchronize to get a correct view of the first page. In
many operating environments, the virtual memory management systems on each client only
know a page is modified, not that a subset of the page corresponding to the respective lock byte-
ranges has been modified. So it is not possible for each client to do the right thing, which is to
write to the server only that portion of the page that is locked. For example, if client A simply
writes out the page, and then client B writes out the page, client A's data is lost.

MAY

•

OPTIONAL
•

•

MUST

MAY
•

◦

◦

◦

◦

◦

◦

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 180

Moreover, if mandatory locking is enabled on the file, then we have a different problem. When
clients A and B execute the STORE instructions, the resulting page faults require a byte-range
lock on the entire page. Each client then tries to extend their locked range to the entire page,
which results in a deadlock. Communicating the NFS4ERR_DEADLOCK error to a STORE
instruction is difficult at best.

If a client is locking the entire memory-mapped file, there is no problem with advisory or
mandatory byte-range locking, at least until the client unlocks a byte-range in the middle of the
file.

Given the above issues, the following are permitted:

Clients and servers deny memory mapping a file for which they know there are byte-
range locks.
Clients and servers deny a byte-range lock on a file they know is memory-mapped.
A client deny memory mapping a file that it knows requires mandatory locking for I/O.
If mandatory locking is enabled after the file is opened and mapped, the client deny the
application further access to its mapped file.

• MAY

• MAY
• MAY

MAY

10.8. Name and Directory Caching without Directory Delegations
The NFSv4.1 directory delegation facility (described in Section 10.9 below) is for
servers to implement. Even where it is implemented, it may not always be functional because of
resource availability issues or other constraints. Thus, it is important to understand how name
and directory caching are done in the absence of directory delegations. These topics are
discussed in the next two subsections.

OPTIONAL

10.8.1. Name Caching

The results of LOOKUP and READDIR operations may be cached to avoid the cost of subsequent
LOOKUP operations. Just as in the case of attribute caching, inconsistencies may arise among the
various client caches. To mitigate the effects of these inconsistencies and given the context of
typical file system APIs, an upper time boundary is maintained for how long a client name cache
entry can be kept without verifying that the entry has not been made invalid by a directory
change operation performed by another client.

When a client is not making changes to a directory for which there exist name cache entries, the
client needs to periodically fetch attributes for that directory to ensure that it is not being
modified. After determining that no modification has occurred, the expiration time for the
associated name cache entries may be updated to be the current time plus the name cache
staleness bound.

When a client is making changes to a given directory, it needs to determine whether there have
been changes made to the directory by other clients. It does this by using the change attribute as
reported before and after the directory operation in the associated change_info4 value returned
for the operation. The server is able to communicate to the client whether the change_info4 data

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 181

10.8.2. Directory Caching

The results of READDIR operations may be used to avoid subsequent READDIR operations. Just as
in the cases of attribute and name caching, inconsistencies may arise among the various client
caches. To mitigate the effects of these inconsistencies, and given the context of typical file
system APIs, the following rules should be followed:

Cached READDIR information for a directory that is not obtained in a single READDIR
operation must always be a consistent snapshot of directory contents. This is determined by

is provided atomically with respect to the directory operation. If the change values are provided
atomically, the client has a basis for determining, given proper care, whether other clients are
modifying the directory in question.

The simplest way to enable the client to make this determination is for the client to serialize all
changes made to a specific directory. When this is done, and the server provides before and after
values of the change attribute atomically, the client can simply compare the after value of the
change attribute from one operation on a directory with the before value on the subsequent
operation modifying that directory. When these are equal, the client is assured that no other
client is modifying the directory in question.

When such serialization is not used, and there may be multiple simultaneous outstanding
operations modifying a single directory sent from a single client, making this sort of
determination can be more complicated. If two such operations complete in a different order
than they were actually performed, that might give an appearance consistent with modification
being made by another client. Where this appears to happen, the client needs to await the
completion of all such modifications that were started previously, to see if the outstanding before
and after change numbers can be sorted into a chain such that the before value of one change
number matches the after value of a previous one, in a chain consistent with this client being the
only one modifying the directory.

In either of these cases, the client is able to determine whether the directory is being modified by
another client. If the comparison indicates that the directory was updated by another client, the
name cache associated with the modified directory is purged from the client. If the comparison
indicates no modification, the name cache can be updated on the client to reflect the directory
operation and the associated timeout can be extended. The post-operation change value needs to
be saved as the basis for future change_info4 comparisons.

As demonstrated by the scenario above, name caching requires that the client revalidate name
cache data by inspecting the change attribute of a directory at the point when the name cache
item was cached. This requires that the server update the change attribute for directories when
the contents of the corresponding directory is modified. For a client to use the change_info4
information appropriately and correctly, the server must report the pre- and post-operation
change attribute values atomically. When the server is unable to report the before and after
values atomically with respect to the directory operation, the server must indicate that fact in the
change_info4 return value. When the information is not atomically reported, the client should
not assume that other clients have not changed the directory.

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 182

using a GETATTR before the first READDIR and after the last READDIR that contributes to the
cache.
An upper time boundary is maintained to indicate the length of time a directory cache entry
is considered valid before the client must revalidate the cached information.

The revalidation technique parallels that discussed in the case of name caching. When the client
is not changing the directory in question, checking the change attribute of the directory with
GETATTR is adequate. The lifetime of the cache entry can be extended at these checkpoints.
When a client is modifying the directory, the client needs to use the change_info4 data to
determine whether there are other clients modifying the directory. If it is determined that no
other client modifications are occurring, the client may update its directory cache to reflect its
own changes.

As demonstrated previously, directory caching requires that the client revalidate directory cache
data by inspecting the change attribute of a directory at the point when the directory was
cached. This requires that the server update the change attribute for directories when the
contents of the corresponding directory is modified. For a client to use the change_info4
information appropriately and correctly, the server must report the pre- and post-operation
change attribute values atomically. When the server is unable to report the before and after
values atomically with respect to the directory operation, the server must indicate that fact in the
change_info4 return value. When the information is not atomically reported, the client should
not assume that other clients have not changed the directory.

•

10.9. Directory Delegations
10.9.1. Introduction to Directory Delegations

Directory caching for the NFSv4.1 protocol, as previously described, is similar to file caching in
previous versions. Clients typically cache directory information for a duration determined by the
client. At the end of a predefined timeout, the client will query the server to see if the directory
has been updated. By caching attributes, clients reduce the number of GETATTR calls made to the
server to validate attributes. Furthermore, frequently accessed files and directories, such as the
current working directory, have their attributes cached on the client so that some NFS operations
can be performed without having to make an RPC call. By caching name and inode information
about most recently looked up entries in a Directory Name Lookup Cache (DNLC), clients do not
need to send LOOKUP calls to the server every time these files are accessed.

This caching approach works reasonably well at reducing network traffic in many environments.
However, it does not address environments where there are numerous queries for files that do
not exist. In these cases of "misses", the client sends requests to the server in order to provide
reasonable application semantics and promptly detect the creation of new directory entries.
Examples of high miss activity are compilation in software development environments. The
current behavior of NFS limits its potential scalability and wide-area sharing effectiveness in
these types of environments. Other distributed stateful file system architectures such as AFS and
DFS have proven that adding state around directory contents can greatly reduce network traffic
in high-miss environments.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 183

Delegation of directory contents is an feature of NFSv4.1. Directory delegations
provide similar traffic reduction benefits as with file delegations. By allowing clients to cache
directory contents (in a read-only fashion) while being notified of changes, the client can avoid
making frequent requests to interrogate the contents of slowly-changing directories, reducing
network traffic and improving client performance. It can also simplify the task of determining
whether other clients are making changes to the directory when the client itself is making many
changes to the directory and changes are not serialized.

Directory delegations allow improved namespace cache consistency to be achieved through
delegations and synchronous recalls, in the absence of notifications. In addition, if time-based
consistency is sufficient, asynchronous notifications can provide performance benefits for the
client, and possibly the server, under some common operating conditions such as slowly-
changing and/or very large directories.

10.9.2. Directory Delegation Design

NFSv4.1 introduces the GET_DIR_DELEGATION (Section 18.39) operation to allow the client to ask
for a directory delegation. The delegation covers directory attributes and all entries in the
directory. If either of these change, the delegation will be recalled synchronously. The operation
causing the recall will have to wait before the recall is complete. Any changes to directory entry
attributes will not cause the delegation to be recalled.

In addition to asking for delegations, a client can also ask for notifications for certain events.
These events include changes to the directory's attributes and/or its contents. If a client asks for
notification for a certain event, the server will notify the client when that event occurs. This will
not result in the delegation being recalled for that client. The notifications are asynchronous and
provide a way of avoiding recalls in situations where a directory is changing enough that the
pure recall model may not be effective while trying to allow the client to get substantial benefit.
In the absence of notifications, once the delegation is recalled the client has to refresh its
directory cache; this might not be very efficient for very large directories.

The delegation is read-only and the client may not make changes to the directory other than by
performing NFSv4.1 operations that modify the directory or the associated file attributes so that
the server has knowledge of these changes. In order to keep the client's namespace synchronized
with that of the server, the server will notify the delegation-holding client (assuming it has
requested notifications) of the changes made as a result of that client's directory-modifying
operations. This is to avoid any need for that client to send subsequent GETATTR or READDIR
operations to the server. If a single client is holding the delegation and that client makes any
changes to the directory (i.e., the changes are made via operations sent on a session associated
with the client ID holding the delegation), the delegation will not be recalled. Multiple clients
may hold a delegation on the same directory, but if any such client modifies the directory, the
server recall the delegation from the other clients, unless those clients have made
provisions to be notified of that sort of modification.

OPTIONAL

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 184

Delegations can be recalled by the server at any time. Normally, the server will recall the
delegation when the directory changes in a way that is not covered by the notification, or when
the directory changes and notifications have not been requested. If another client removes the
directory for which a delegation has been granted, the server will recall the delegation.

10.9.3. Attributes in Support of Directory Notifications

See Section 5.11 for a description of the attributes associated with directory notifications.

10.9.4. Directory Delegation Recall

The server will recall the directory delegation by sending a callback to the client. It will use the
same callback procedure as used for recalling file delegations. The server will recall the
delegation when the directory changes in a way that is not covered by the notification. However,
the server need not recall the delegation if attributes of an entry within the directory change.

If the server notices that handing out a delegation for a directory is causing too many
notifications to be sent out, it may decide to not hand out delegations for that directory and/or
recall those already granted. If a client tries to remove the directory for which a delegation has
been granted, the server will recall all associated delegations.

The implementation sections for a number of operations describe situations in which
notification or delegation recall would be required under some common circumstances. In this
regard, a similar set of caveats to those listed in Section 10.2 apply.

For CREATE, see Section 18.4.4.
For LINK, see Section 18.9.4.
For OPEN, see Section 18.16.4.
For REMOVE, see Section 18.25.4.
For RENAME, see Section 18.26.4.
For SETATTR, see Section 18.30.4.

10.9.5. Directory Delegation Recovery

Recovery from client or server restart for state on regular files has two main goals: avoiding the
necessity of breaking application guarantees with respect to locked files and delivery of updates
cached at the client. Neither of these goals applies to directories protected by
OPEN_DELEGATE_READ delegations and notifications. Thus, no provision is made for reclaiming
directory delegations in the event of client or server restart. The client can simply establish a
directory delegation in the same fashion as was done initially.

•
•
•
•
•
•

11. Multi-Server Namespace
NFSv4.1 supports attributes that allow a namespace to extend beyond the boundaries of a single
server. It is desirable that clients and servers support construction of such multi-server
namespaces. Use of such multi-server namespaces is ; however, and for many
purposes, single-server namespaces are perfectly acceptable. The use of multi-server namespaces
can provide many advantages by separating a file system's logical position in a namespace from

OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 185

the (possibly changing) logistical and administrative considerations that cause a particular file
system to be located on a particular server via a single network access path that has to be known
in advance or determined using DNS.

11.1. Terminology
In this section as a whole (i.e., within all of Section 11), the phrase "client ID" always refers to the
64-bit shorthand identifier assigned by the server (a clientid4) and never to the structure that the
client uses to identify itself to the server (called an nfs_client_id4 or client_owner in NFSv4.0 and
NFSv4.1, respectively). The opaque identifier within those structures is referred to as a "client id
string".

11.1.1. Terminology Related to Trunking

It is particularly important to clarify the distinction between trunking detection and trunking
discovery. The definitions we present are applicable to all minor versions of NFSv4, but we will
focus on how these terms apply to NFS version 4.1.

Trunking detection refers to ways of deciding whether two specific network addresses are
connected to the same NFSv4 server. The means available to make this determination
depends on the protocol version, and, in some cases, on the client implementation.

In the case of NFS version 4.1 and later minor versions, the means of trunking detection are
as described in this document and are available to every client. Two network addresses
connected to the same server can always be used together to access a particular server but
cannot necessarily be used together to access a single session. See below for definitions of
the terms "server-trunkable" and "session-trunkable".

Trunking discovery is a process by which a client using one network address can obtain
other addresses that are connected to the same server. Typically, it builds on a trunking
detection facility by providing one or more methods by which candidate addresses are made
available to the client, who can then use trunking detection to appropriately filter them.

Despite the support for trunking detection, there was no description of trunking discovery
provided in RFC 5661 , making it necessary to provide those means in this document.

The combination of a server network address and a particular connection type to be used by a
connection is referred to as a "server endpoint". Although using different connection types may
result in different ports being used, the use of different ports by multiple connections to the same
network address in such cases is not the essence of the distinction between the two endpoints
used. This is in contrast to the case of port-specific endpoints, in which the explicit specification
of port numbers within network addresses is used to allow a single server node to support
multiple NFS servers.

Two network addresses connected to the same server are said to be server-trunkable. Two such
addresses support the use of client ID trunking, as described in Section 2.10.5.

•

•

[66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 186

Two network addresses connected to the same server such that those addresses can be used to
support a single common session are referred to as session-trunkable. Note that two addresses
may be server-trunkable without being session-trunkable, and that, when two connections of
different connection types are made to the same network address and are based on a single file
system location entry, they are always session-trunkable, independent of the connection type, as
specified by Section 2.10.5, since their derivation from the same file system location entry,
together with the identity of their network addresses, assures that both connections are to the
same server and will return server-owner information, allowing session trunking to be used.

11.1.2. Terminology Related to File System Location

Regarding the terminology that relates to the construction of multi-server namespaces out of a
set of local per-server namespaces:

Each server has a set of exported file systems that may be accessed by NFSv4 clients.
Typically, this is done by assigning each file system a name within the pseudo-fs associated
with the server, although the pseudo-fs may be dispensed with if there is only a single
exported file system. Each such file system is part of the server's local namespace, and can be
considered as a file system instance within a larger multi-server namespace.
The set of all exported file systems for a given server constitutes that server's local
namespace.
In some cases, a server will have a namespace more extensive than its local namespace by
using features associated with attributes that provide file system location information. These
features, which allow construction of a multi-server namespace, are all described in
individual sections below and include referrals (Section 11.5.6), migration (Section 11.5.5),
and replication (Section 11.5.4).
A file system present in a server's pseudo-fs may have multiple file system instances on
different servers associated with it. All such instances are considered replicas of one
another. Whether such replicas can be used simultaneously is discussed in Section 11.11.1,
while the level of coordination between them (important when switching between them) is
discussed in Sections 11.11.2 through 11.11.8 below.
When a file system is present in a server's pseudo-fs, but there is no corresponding local file
system, it is said to be "absent". In such cases, all associated instances will be accessed on
other servers.

Regarding the terminology that relates to attributes used in trunking discovery and other multi-
server namespace features:

File system location attributes include the fs_locations and fs_locations_info attributes.
File system location entries provide the individual file system locations within the file system
location attributes. Each such entry specifies a server, in the form of a hostname or an
address, and an fs name, which designates the location of the file system within the server's
local namespace. A file system location entry designates a set of server endpoints to which
the client may establish connections. There may be multiple endpoints because a hostname
may map to multiple network addresses and because multiple connection types may be used
to communicate with a single network address. However, except where explicit port

•

•

•

•

•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 187

numbers are used to designate a set of servers within a single server node, all such
endpoints designate a way of connecting to a single server. The exact form of the
location entry varies with the particular file system location attribute used, as described in
Section 11.2.

The network addresses used in file system location entries typically appear without port
number indications and are used to designate a server at one of the standard ports for NFS
access, e.g., 2049 for TCP or 20049 for use with RPC-over-RDMA. Port numbers may be used
in file system location entries to designate servers (typically user-level ones) accessed using
other port numbers. In the case where network addresses indicate trunking relationships,
the use of an explicit port number is inappropriate since trunking is a relationship between
network addresses. See Section 11.5.2 for details.

File system location elements are derived from location entries, and each describes a
particular network access path consisting of a network address and a location within the
server's local namespace. Such location elements need not appear within a file system
location attribute, but the existence of each location element derives from a corresponding
location entry. When a location entry specifies an IP address, there is only a single
corresponding location element. File system location entries that contain a hostname are
resolved using DNS, and may result in one or more location elements. All location elements
consist of a location address that includes the IP address of an interface to a server and an fs
name, which is the location of the file system within the server's local namespace. The fs
name can be empty if the server has no pseudo-fs and only a single exported file system at
the root filehandle.
Two file system location elements are said to be server-trunkable if they specify the same fs
name and the location addresses are such that the location addresses are server-trunkable.
When the corresponding network paths are used, the client will always be able to use client
ID trunking, but will only be able to use session trunking if the paths are also session-
trunkable.
Two file system location elements are said to be session-trunkable if they specify the same fs
name and the location addresses are such that the location addresses are session-trunkable.
When the corresponding network paths are used, the client will be able to able to use either
client ID trunking or session trunking.

Discussion of the term "replica" is complicated by the fact that the term was used in RFC 5661
 with a meaning different from that used in this document. In short, in each replica is

identified by a single network access path, while in the current document, a set of network
access paths that have server-trunkable network addresses and the same root-relative file system
pathname is considered to be a single replica with multiple network access paths.

Each set of server-trunkable location elements defines a set of available network access paths to
a particular file system. When there are multiple such file systems, each of which containing the
same data, these file systems are considered replicas of one another. Logically, such replication is
symmetric, since the fs currently in use and an alternate fs are replicas of each other. Often, in
other documents, the term "replica" is not applied to the fs currently in use, despite the fact that
the replication relation is inherently symmetric.

MUST

•

•

•

[66] [66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 188

11.2. File System Location Attributes
NFSv4.1 contains attributes that provide information about how a given file system may be
accessed (i.e., at what network address and namespace position). As a result, file systems in the
namespace of one server can be associated with one or more instances of that file system on
other servers. These attributes contain file system location entries specifying a server address
target (either as a DNS name representing one or more IP addresses or as a specific IP address)
together with the pathname of that file system within the associated single-server namespace.

The fs_locations_info attribute allows specification of one or more file system
instance locations where the data corresponding to a given file system may be found. In addition
to the specification of file system instance locations, this attribute provides helpful information
to do the following:

Guide choices among the various file system instances provided (e.g., priority for use,
writability, currency, etc.).
Help the client efficiently effect as seamless a transition as possible among multiple file
system instances, when and if that should be necessary.
Guide the selection of the appropriate connection type to be used when establishing a
connection.

Within the fs_locations_info attribute, each fs_locations_server4 entry corresponds to a file
system location entry: the fls_server field designates the server, and the fl_rootpath field of the
encompassing fs_locations_item4 gives the location pathname within the server's pseudo-fs.

The fs_locations attribute defined in NFSv4.0 is also a part of NFSv4.1. This attribute only allows
specification of the file system locations where the data corresponding to a given file system may
be found. Servers make this attribute available whenever fs_locations_info is supported,
but client use of fs_locations_info is preferable because it provides more information.

Within the fs_locations attribute, each fs_location4 contains a file system location entry with the
server field designating the server and the rootpath field giving the location pathname within the
server's pseudo-fs.

RECOMMENDED

•

•

•

SHOULD

11.3. File System Presence or Absence
A given location in an NFSv4.1 namespace (typically but not necessarily a multi-server
namespace) can have a number of file system instance locations associated with it (via the
fs_locations or fs_locations_info attribute). There may also be an actual current file system at that
location, accessible via normal namespace operations (e.g., LOOKUP). In this case, the file system
is said to be "present" at that position in the namespace, and clients will typically use it, reserving
use of additional locations specified via the location-related attributes to situations in which the
principal location is no longer available.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 189

When there is no actual file system at the namespace location in question, the file system is said
to be "absent". An absent file system contains no files or directories other than the root. Any
reference to it, except to access a small set of attributes useful in determining alternate locations,
will result in an error, NFS4ERR_MOVED. Note that if the server ever returns the error
NFS4ERR_MOVED, it support the fs_locations attribute and support the
fs_locations_info and fs_status attributes.

While the error name suggests that we have a case of a file system that once was present, and
has only become absent later, this is only one possibility. A position in the namespace may be
permanently absent with the set of file system(s) designated by the location attributes being the
only realization. The name NFS4ERR_MOVED reflects an earlier, more limited conception of its
function, but this error will be returned whenever the referenced file system is absent, whether
it has moved or not.

Except in the case of GETATTR-type operations (to be discussed later), when the current
filehandle at the start of an operation is within an absent file system, that operation is not
performed and the error NFS4ERR_MOVED is returned, to indicate that the file system is absent
on the current server.

Because a GETFH cannot succeed if the current filehandle is within an absent file system,
filehandles within an absent file system cannot be transferred to the client. When a client does
have filehandles within an absent file system, it is the result of obtaining them when the file
system was present, and having the file system become absent subsequently.

It should be noted that because the check for the current filehandle being within an absent file
system happens at the start of every operation, operations that change the current filehandle so
that it is within an absent file system will not result in an error. This allows such combinations as
PUTFH-GETATTR and LOOKUP-GETATTR to be used to get attribute information, particularly
location attribute information, as discussed below.

The file system attribute fs_status can be used to interrogate the present/absent
status of a given file system.

MUST SHOULD

RECOMMENDED

11.4. Getting Attributes for an Absent File System
When a file system is absent, most attributes are not available, but it is necessary to allow the
client access to the small set of attributes that are available, and most particularly those that give
information about the correct current locations for this file system: fs_locations and
fs_locations_info.

11.4.1. GETATTR within an Absent File System

As mentioned above, an exception is made for GETATTR in that attributes may be obtained for a
filehandle within an absent file system. This exception only applies if the attribute mask contains
at least one attribute bit that indicates the client is interested in a result regarding an absent file
system: fs_locations, fs_locations_info, or fs_status. If none of these attributes is requested,
GETATTR will result in an NFS4ERR_MOVED error.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 190

change_policy:

fsid:

mounted_on_fileid:

When a GETATTR is done on an absent file system, the set of supported attributes is very limited.
Many attributes, including those that are normally , will not be available on an absent
file system. In addition to the attributes mentioned above (fs_locations, fs_locations_info,
fs_status), the following attributes be available on absent file systems. In the case of

 attributes, they should be available at least to the same degree that they are
available on present file systems.

This attribute is useful for absent file systems and can be helpful in
summarizing to the client when any of the location-related attributes change.

This attribute should be provided so that the client can determine file system boundaries,
including, in particular, the boundary between present and absent file systems. This value
must be different from any other fsid on the current server and need have no particular
relationship to fsids on any particular destination to which the client might be directed.

For objects at the top of an absent file system, this attribute needs to be
available. Since the fileid is within the present parent file system, there should be no need
to reference the absent file system to provide this information.

Other attributes be made available for absent file systems, even when it is possible
to provide them. The server should not assume that more information is always better and
should avoid gratuitously providing additional information.

When a GETATTR operation includes a bit mask for one of the attributes fs_locations,
fs_locations_info, or fs_status, but where the bit mask includes attributes that are not supported,
GETATTR will not return an error, but will return the mask of the actual attributes supported
with the results.

Handling of VERIFY/NVERIFY is similar to GETATTR in that if the attribute mask does not include
fs_locations, fs_locations_info, or fs_status, the error NFS4ERR_MOVED will result. It differs in
that any appearance in the attribute mask of an attribute not supported for an absent file system
(and note that this will include some normally attributes) will also cause an
NFS4ERR_MOVED result.

REQUIRED

SHOULD
RECOMMENDED

SHOULD NOT

REQUIRED

11.4.2. READDIR and Absent File Systems

A READDIR performed when the current filehandle is within an absent file system will result in
an NFS4ERR_MOVED error, since, unlike the case of GETATTR, no such exception is made for
READDIR.

Attributes for an absent file system may be fetched via a READDIR for a directory in a present file
system, when that directory contains the root directories of one or more absent file systems. In
this case, the handling is as follows:

If the attribute set requested includes one of the attributes fs_locations, fs_locations_info, or
fs_status, then fetching of attributes proceeds normally and no NFS4ERR_MOVED indication
is returned, even when the rdattr_error attribute is requested.

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 191

If the attribute set requested does not include one of the attributes fs_locations,
fs_locations_info, or fs_status, then if the rdattr_error attribute is requested, each directory
entry for the root of an absent file system will report NFS4ERR_MOVED as the value of the
rdattr_error attribute.
If the attribute set requested does not include any of the attributes fs_locations,
fs_locations_info, fs_status, or rdattr_error, then the occurrence of the root of an absent file
system within the directory will result in the READDIR failing with an NFS4ERR_MOVED
error.
The unavailability of an attribute because of a file system's absence, even one that is
ordinarily , does not result in any error indication. The set of attributes returned
for the root directory of the absent file system in that case is simply restricted to those
actually available.

•

•

•
REQUIRED

11.5. Uses of File System Location Information
The file system location attributes (i.e., fs_locations and fs_locations_info), together with the
possibility of absent file systems, provide a number of important facilities for reliable,
manageable, and scalable data access.

When a file system is present, these attributes can provide the following:

The locations of alternative replicas to be used to access the same data in the event of server
failures, communications problems, or other difficulties that make continued access to the
current replica impossible or otherwise impractical. Provisioning and use of such alternate
replicas is referred to as "replication" and is discussed in Section 11.5.4 below.
The network address(es) to be used to access the current file system instance or replicas of it.
Client use of this information is discussed in Section 11.5.2 below.

Under some circumstances, multiple replicas may be used simultaneously to provide higher-
performance access to the file system in question, although the lack of state sharing between
servers may be an impediment to such use.

When a file system is present but becomes absent, clients can be given the opportunity to have
continued access to their data using a different replica. In this case, a continued attempt to use
the data in the now-absent file system will result in an NFS4ERR_MOVED error, and then the
successor replica or set of possible replica choices can be fetched and used to continue access.
Transfer of access to the new replica location is referred to as "migration" and is discussed in
Section 11.5.4 below.

When a file system is currently absent, specification of file system location provides a means by
which file systems located on one server can be associated with a namespace defined by another
server, thus allowing a general multi-server namespace facility. A designation of such a remote
instance, in place of a file system not previously present, is called a "pure referral" and is
discussed in Section 11.5.6 below.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 192

Because client support for attributes related to file system location is , a server may
choose to take action to hide migration and referral events from such clients, by acting as a
proxy, for example. The server can determine the presence of client support from the arguments
of the EXCHANGE_ID operation (see Section 18.35.3).

OPTIONAL

11.5.1. Combining Multiple Uses in a Single Attribute

A file system location attribute will sometimes contain information relating to the location of
multiple replicas, which may be used in different ways:

File system location entries that relate to the file system instance currently in use provide
trunking information, allowing the client to find additional network addresses by which the
instance may be accessed.
File system location entries that provide information about replicas to which access is to be
transferred.
Other file system location entries that relate to replicas that are available to use in the event
that access to the current replica becomes unsatisfactory.

In order to simplify client handling and to allow the best choice of replicas to access, the server
should adhere to the following guidelines:

All file system location entries that relate to a single file system instance should be adjacent.
File system location entries that relate to the instance currently in use should appear first.
File system location entries that relate to replica(s) to which migration is occurring should
appear before replicas that are available for later use if the current replica should become
inaccessible.

•

•

•

•
•
•

11.5.2. File System Location Attributes and Trunking

Trunking is the use of multiple connections between a client and server in order to increase the
speed of data transfer. A client may determine the set of network addresses to use to access a
given file system in a number of ways:

When the name of the server is known to the client, it may use DNS to obtain a set of
network addresses to use in accessing the server.
The client may fetch the file system location attribute for the file system. This will provide
either the name of the server (which can be turned into a set of network addresses using
DNS) or a set of server-trunkable location entries. Using the latter alternative, the server can
provide addresses it regards as desirable to use to access the file system in question.
Although these entries can contain port numbers, these port numbers are not used in
determining trunking relationships. Once the candidate addresses have been determined
and EXCHANGE_ID done to the proper server, only the value of the so_major_id field
returned by the servers in question determines whether a trunking relationship actually
exists.

When the client fetches a location attribute for a file system, it should be noted that the client
may encounter multiple entries for a number of reasons, such that when it determines trunking
information, it may need to bypass addresses not trunkable with one already known.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 193

The server can provide location entries that include either names or network addresses. It might
use the latter form because of DNS-related security concerns or because the set of addresses to be
used might require active management by the server.

Location entries used to discover candidate addresses for use in trunking are subject to change,
as discussed in Section 11.5.7 below. The client may respond to such changes by using additional
addresses once they are verified or by ceasing to use existing ones. The server can force the
client to cease using an address by returning NFS4ERR_MOVED when that address is used to
access a file system. This allows a transfer of client access that is similar to migration, although
the same file system instance is accessed throughout.

11.5.3. File System Location Attributes and Connection Type Selection

Because of the need to support multiple types of connections, clients face the issue of
determining the proper connection type to use when establishing a connection to a given server
network address. In some cases, this issue can be addressed through the use of the connection
"step-up" facility described in Section 18.36. However, because there are cases in which that
facility is not available, the client may have to choose a connection type with no possibility of
changing it within the scope of a single connection.

The two file system location attributes differ as to the information made available in this regard.
The fs_locations attribute provides no information to support connection type selection. As a
result, clients supporting multiple connection types would need to attempt to establish
connections using multiple connection types until the one preferred by the client is successfully
established.

The fs_locations_info attribute includes the FSLI4TF_RDMA flag, which is convenient for a client
wishing to use RDMA. When this flag is set, it indicates that RPC-over-RDMA support is available
using the specified location entry. A client can establish a TCP connection and then convert that
connection to use RDMA by using the step-up facility.

Irrespective of the particular attribute used, when there is no indication that a step-up operation
can be performed, a client supporting RDMA operation can establish a new RDMA connection,
and it can be bound to the session already established by the TCP connection, allowing the TCP
connection to be dropped and the session converted to further use in RDMA mode, if the server
supports that.

11.5.4. File System Replication

The fs_locations and fs_locations_info attributes provide alternative file system locations, to be
used to access data in place of or in addition to the current file system instance. On first access to
a file system, the client should obtain the set of alternate locations by interrogating the
fs_locations or fs_locations_info attribute, with the latter being preferred.

In the event that the occurrence of server failures, communications problems, or other
difficulties make continued access to the current file system impossible or otherwise impractical,
the client can use the alternate locations as a way to get continued access to its data.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 194

The alternate locations may be physical replicas of the (typically read-only) file system data
supplemented by possible asynchronous propagation of updates. Alternatively, they may provide
for the use of various forms of server clustering in which multiple servers provide alternate
ways of accessing the same physical file system. How the difference between replicas affects file
system transitions can be represented within the fs_locations and fs_locations_info attributes,
and how the client deals with file system transition issues will be discussed in detail in later
sections.

Although the location attributes provide some information about the nature of the inter-replica
transition, many aspects of the semantics of possible asynchronous updates are not currently
described by the protocol, which makes it necessary for clients using replication to switch among
replicas undergoing change to familiarize themselves with the semantics of the update approach
used. Due to this lack of specificity, many applications may find the use of migration more
appropriate because a server can propagate all updates made before an established point in time
to the new replica as part of the migration event.

11.5.4.1. File System Trunking Presented as Replication
In some situations, a file system location entry may indicate a file system access path to be used
as an alternate location, where trunking, rather than replication, is to be used. The situations in
which this is appropriate are limited to those in which both of the following are true:

The two file system locations (i.e., the one on which the location attribute is obtained and the
one specified in the file system location entry) designate the same locations within their
respective single-server namespaces.
The two server network addresses (i.e., the one being used to obtain the location attribute
and the one specified in the file system location entry) designate the same server (as
indicated by the same value of the so_major_id field of the eir_server_owner field returned
in response to EXCHANGE_ID).

When these conditions hold, operations using both access paths are generally trunked, although
trunking may be disallowed when the attribute fs_locations_info is used:

When the fs_locations_info attribute shows the two entries as not having the same
simultaneous-use class, trunking is inhibited, and the two access paths cannot be used
together.

In this case, the two paths can be used serially with no transition activity required on the
part of the client, and any transition between access paths is transparent. In transferring
access from one to the other, the client acts as if communication were interrupted,
establishing a new connection and possibly a new session to continue access to the same file
system.

Note that for two such location entries, any information within the fs_locations_info
attribute that indicates the need for special transition activity, i.e., the appearance of the two
file system location entries with different handle, fileid, write-verifier, change, and readdir
classes, indicates a serious problem. The client, if it allows transition to the file system
instance at all, must not treat any transition as a transparent one. The server

•

•

•

•

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 195

indicate that these two entries (for the same file system on the same server) belong to
different handle, fileid, write-verifier, change, and readdir classes, whether or not the two
entries are shown belonging to the same simultaneous-use class.

These situations were recognized by , even though that document made no explicit mention
of trunking:

It treated the situation that we describe as trunking as one of simultaneous use of two
distinct file system instances, even though, in the explanatory framework now used to
describe the situation, the case is one in which a single file system is accessed by two
different trunked addresses.
It treated the situation in which two paths are to be used serially as a special sort of
"transparent transition". However, in the descriptive framework now used to categorize
transition situations, this is considered a case of a "network endpoint transition" (see Section
11.9).

[66]

•

•

11.5.5. File System Migration

When a file system is present and becomes inaccessible using the current access path, the
NFSv4.1 protocol provides a means by which clients can be given the opportunity to have
continued access to their data. This may involve using a different access path to the existing
replica or providing a path to a different replica. The new access path or the location of the new
replica is specified by a file system location attribute. The ensuing migration of access includes
the ability to retain locks across the transition. Depending on circumstances, this can involve:

The continued use of the existing clientid when accessing the current replica using a new
access path.
Use of lock reclaim, taking advantage of a per-fs grace period.
Use of Transparent State Migration.

Typically, a client will be accessing the file system in question, get an NFS4ERR_MOVED error,
and then use a file system location attribute to determine the new access path for the data. When
fs_locations_info is used, additional information will be available that will define the nature of
the client's handling of the transition to a new server.

In most instances, servers will choose to migrate all clients using a particular file system to a
successor replica at the same time to avoid cases in which different clients are updating different
replicas. However, migration of an individual client can be helpful in providing load balancing,
as long as the replicas in question are such that they represent the same data as described in
Section 11.11.8.

In the case in which there is no transition between replicas (i.e., only a change in access
path), there are no special difficulties in using of this mechanism to effect load balancing.
In the case in which the two replicas are sufficiently coordinated as to allow a single client
coherent, simultaneous access to both, there is, in general, no obstacle to the use of migration
of particular clients to effect load balancing. Generally, such simultaneous use involves

•

•
•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 196

cooperation between servers to ensure that locks granted on two coordinated replicas
cannot conflict and can remain effective when transferred to a common replica.
In the case in which a large set of clients is accessing a file system in a read-only fashion, it
can be helpful to migrate all clients with writable access simultaneously, while using load
balancing on the set of read-only copies, as long as the rules in Section 11.11.8, which are
designed to prevent data reversion, are followed.

In other cases, the client might not have sufficient guarantees of data similarity or coherence to
function properly (e.g., the data in the two replicas is similar but not identical), and the
possibility that different clients are updating different replicas can exacerbate the difficulties,
making the use of load balancing in such situations a perilous enterprise.

The protocol does not specify how the file system will be moved between servers or how updates
to multiple replicas will be coordinated. It is anticipated that a number of different server-to-
server coordination mechanisms might be used, with the choice left to the server implementer.
The NFSv4.1 protocol specifies the method used to communicate the migration event between
client and server.

In the case of various forms of server clustering, the new location may be another server
providing access to the same physical file system. The client's responsibilities in dealing with this
transition will depend on whether a switch between replicas has occurred and the means the
server has chosen to provide continuity of locking state. These issues will be discussed in detail
below.

Although a single successor location is typical, multiple locations may be provided. When
multiple locations are provided, the client will typically use the first one provided. If that is
inaccessible for some reason, later ones can be used. In such cases, the client might consider the
transition to the new replica to be a migration event, even though some of the servers involved
might not be aware of the use of the server that was inaccessible. In such a case, a client might
lose access to locking state as a result of the access transfer.

When an alternate location is designated as the target for migration, it must designate the same
data (with metadata being the same to the degree indicated by the fs_locations_info attribute).
Where file systems are writable, a change made on the original file system must be visible on all
migration targets. Where a file system is not writable but represents a read-only copy (possibly
periodically updated) of a writable file system, similar requirements apply to the propagation of
updates. Any change visible in the original file system must already be effected on all migration
targets, to avoid any possibility that a client, in effecting a transition to the migration target, will
see any reversion in file system state.

•

11.5.6. Referrals

Referrals allow the server to associate a file system namespace entry located on one server with
a file system located on another server. When this includes the use of pure referrals, servers are
provided a way of placing a file system in a location within the namespace essentially without
respect to its physical location on a particular server. This allows a single server or a set of
servers to present a multi-server namespace that encompasses file systems located on a wider

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 197

range of servers. Some likely uses of this facility include establishment of site-wide or
organization-wide namespaces, with the eventual possibility of combining such together into a
truly global namespace, such as the one provided by AFS (the Andrew File System) .

Referrals occur when a client determines, upon first referencing a position in the current
namespace, that it is part of a new file system and that the file system is absent. When this
occurs, typically upon receiving the error NFS4ERR_MOVED, the actual location or locations of
the file system can be determined by fetching a locations attribute.

The file system location attribute may designate a single file system location or multiple file
system locations, to be selected based on the needs of the client. The server, in the
fs_locations_info attribute, may specify priorities to be associated with various file system
location choices. The server may assign different priorities to different locations as reported to
individual clients, in order to adapt to client physical location or to effect load balancing. When
both read-only and read-write file systems are present, some of the read-only locations might not
be absolutely up-to-date (as they would have to be in the case of replication and migration).
Servers may also specify file system locations that include client-substituted variables so that
different clients are referred to different file systems (with different data contents) based on
client attributes such as CPU architecture.

If the fs_locations_info attribute lists multiple possible targets, the relationships among them
may be important to the client in selecting which one to use. The same rules specified in Section
11.5.5 below regarding multiple migration targets apply to these multiple replicas as well. For
example, the client might prefer a writable target on a server that has additional writable
replicas to which it subsequently might switch. Note that, as distinguished from the case of
replication, there is no need to deal with the case of propagation of updates made by the current
client, since the current client has not accessed the file system in question.

Use of multi-server namespaces is enabled by NFSv4.1 but is not required. The use of multi-
server namespaces and their scope will depend on the applications used and system
administration preferences.

Multi-server namespaces can be established by a single server providing a large set of pure
referrals to all of the included file systems. Alternatively, a single multi-server namespace may be
administratively segmented with separate referral file systems (on separate servers) for each
separately administered portion of the namespace. The top-level referral file system or any
segment may use replicated referral file systems for higher availability.

Generally, multi-server namespaces are for the most part uniform, in that the same data made
available to one client at a given location in the namespace is made available to all clients at that
namespace location. However, there are facilities provided that allow different clients to be
directed to different sets of data, for reasons such as enabling adaptation to such client
characteristics as CPU architecture. These facilities are described in Section 11.17.3.

Note that it is possible, when providing a uniform namespace, to provide different location
entries to different clients in order to provide each client with a copy of the data physically
closest to it or otherwise optimize access (e.g., provide load balancing).

[65]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 198

11.5.7. Changes in a File System Location Attribute

Although clients will typically fetch a file system location attribute when first accessing a file
system and when NFS4ERR_MOVED is returned, a client can choose to fetch the attribute
periodically, in which case, the value fetched may change over time.

For clients not prepared to access multiple replicas simultaneously (see Section 11.11.1), the
handling of the various cases of location change are as follows:

Changes in the list of replicas or in the network addresses associated with replicas do not
require immediate action. The client will typically update its list of replicas to reflect the new
information.
Additions to the list of network addresses for the current file system instance need not be
acted on promptly. However, to prepare for a subsequent migration event, the client can
choose to take note of the new address and then use it whenever it needs to switch access to
a new replica.
Deletions from the list of network addresses for the current file system instance do not
require the client to immediately cease use of existing access paths, although new
connections are not to be established on addresses that have been deleted. However, clients
can choose to act on such deletions by preparing for an eventual shift in access, which
becomes unavoidable as soon as the server returns NFS4ERR_MOVED to indicate that a
particular network access path is not usable to access the current file system.

For clients that are prepared to access several replicas simultaneously, the following additional
cases need to be addressed. As in the cases discussed above, changes in the set of replicas need
not be acted upon promptly, although the client has the option of adjusting its access even in the
absence of difficulties that would lead to the selection of a new replica.

When a new replica is added, which may be accessed simultaneously with one currently in
use, the client is free to use the new replica immediately.
When a replica currently in use is deleted from the list, the client need not cease using it
immediately. However, since the server may subsequently force such use to cease (by
returning NFS4ERR_MOVED), clients might decide to limit the need for later state transfer.
For example, new opens might be done on other replicas, rather than on one not present in
the list.

•

•

•

•

•

11.6. Trunking without File System Location Information
In situations in which a file system is accessed using two server-trunkable addresses (as
indicated by the same value of the so_major_id field of the eir_server_owner field returned in
response to EXCHANGE_ID), trunked access is allowed even though there might not be any
location entries specifically indicating the use of trunking for that file system.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 199

This situation was recognized by , although that document made no explicit mention of
trunking and treated the situation as one of simultaneous use of two distinct file system
instances. In the explanatory framework now used to describe the situation, the case is one in
which a single file system is accessed by two different trunked addresses.

[66]

11.7. Users and Groups in a Multi-Server Namespace
As in the case of a single-server environment (see Section 5.9), when an owner or group name of
the form "id@domain" is assigned to a file, there is an implicit promise to return that same string
when the corresponding attribute is interrogated subsequently. In the case of a multi-server
namespace, that same promise applies even if server boundaries have been crossed. Similarly,
when the owner attribute of a file is derived from the security principal that created the file, that
attribute should have the same value even if the interrogation occurs on a different server from
the file creation.

Similarly, the set of security principals recognized by all the participating servers needs to be the
same, with each such principal having the same credentials, regardless of the particular server
being accessed.

In order to meet these requirements, those setting up multi-server namespaces will need to limit
the servers included so that:

In all cases in which more than a single domain is supported, the requirements stated in RFC
8000 are to be respected.
All servers support a common set of domains that includes all of the domains clients use and
expect to see returned as the domain portion of an owner or group in the form "id@domain".
Note that, although this set most often consists of a single domain, it is possible for multiple
domains to be supported.
All servers, for each domain that they support, accept the same set of user and group ids as
valid.
All servers recognize the same set of security principals. For each principal, the same
credential is required, independent of the server being accessed. In addition, the group
membership for each such principal is to be the same, independent of the server accessed.

Note that there is no requirement in general that the users corresponding to particular security
principals have the same local representation on each server, even though it is most often the
case that this is so.

When AUTH_SYS is used, the following additional requirements must be met:

Only a single NFSv4 domain can be supported through the use of AUTH_SYS.
The "local" representation of all owners and groups must be the same on all servers. The
word "local" is used here since that is the way that numeric user and group ids are described
in Section 5.9. However, when AUTH_SYS or stringified numeric owners or groups are used,
these identifiers are not truly local, since they are known to the clients as well as to the
server.

•
[31]

•

•

•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 200

Similarly, when stringified numeric user and group ids are used, the "local" representation of all
owners and groups must be the same on all servers, even when AUTH_SYS is not used.

11.8. Additional Client-Side Considerations
When clients make use of servers that implement referrals, replication, and migration, care
should be taken that a user who mounts a given file system that includes a referral or a relocated
file system continues to see a coherent picture of that user-side file system despite the fact that it
contains a number of server-side file systems that may be on different servers.

One important issue is upward navigation from the root of a server-side file system to its parent
(specified as ".." in UNIX), in the case in which it transitions to that file system as a result of
referral, migration, or a transition as a result of replication. When the client is at such a point,
and it needs to ascend to the parent, it must go back to the parent as seen within the multi-server
namespace rather than sending a LOOKUPP operation to the server, which would result in the
parent within that server's single-server namespace. In order to do this, the client needs to
remember the filehandles that represent such file system roots and use these instead of sending
a LOOKUPP operation to the current server. This will allow the client to present to applications a
consistent namespace, where upward navigation and downward navigation are consistent.

Another issue concerns refresh of referral locations. When referrals are used extensively, they
may change as server configurations change. It is expected that clients will cache information
related to traversing referrals so that future client-side requests are resolved locally without
server communication. This is usually rooted in client-side name look up caching. Clients should
periodically purge this data for referral points in order to detect changes in location information.
When the change_policy attribute changes for directories that hold referral entries or for the
referral entries themselves, clients should consider any associated cached referral information to
be out of date.

11.9. Overview of File Access Transitions
File access transitions are of two types:

Those that involve a transition from accessing the current replica to another one in
connection with either replication or migration. How these are dealt with is discussed in
Section 11.11.
Those in which access to the current file system instance is retained, while the network path
used to access that instance is changed. This case is discussed in Section 11.10.

•

•

11.10. Effecting Network Endpoint Transitions
The endpoints used to access a particular file system instance may change in a number of ways,
as listed below. In each of these cases, the same fsid, client IDs, filehandles, and stateids are used
to continue access, with a continuity of lock state. In many cases, the same sessions can also be
used.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 201

The appropriate action depends on the set of replacement addresses that are available for use
(i.e., server endpoints that are server-trunkable with one previously being used).

When use of a particular address is to cease, and there is also another address currently in
use that is server-trunkable with it, requests that would have been issued on the address
whose use is to be discontinued can be issued on the remaining address(es). When an
address is server-trunkable but not session-trunkable with the address whose use is to be
discontinued, the request might need to be modified to reflect the fact that a different session
will be used.
When use of a particular connection is to cease, as indicated by receiving NFS4ERR_MOVED
when using that connection, but that address is still indicated as accessible according to the
appropriate file system location entries, it is likely that requests can be issued on a new
connection of a different connection type once that connection is established. Since any two
non-port-specific server endpoints that share a network address are inherently session-
trunkable, the client can use BIND_CONN_TO_SESSION to access the existing session with the
new connection.
When there are no potential replacement addresses in use, but there are valid addresses
session-trunkable with the one whose use is to be discontinued, the client can use
BIND_CONN_TO_SESSION to access the existing session using the new address. Although the
target session will generally be accessible, there may be rare situations in which that session
is no longer accessible when an attempt is made to bind the new connection to it. In this
case, the client can create a new session to enable continued access to the existing instance
using the new connection, providing for the use of existing filehandles, stateids, and client
ids while supplying continuity of locking state.
When there is no potential replacement address in use, and there are no valid addresses
session-trunkable with the one whose use is to be discontinued, other server-trunkable
addresses may be used to provide continued access. Although the use of CREATE_SESSION is
available to provide continued access to the existing instance, servers have the option of
providing continued access to the existing session through the new network access path in a
fashion similar to that provided by session migration (see Section 11.12). To take advantage
of this possibility, clients can perform an initial BIND_CONN_TO_SESSION, as in the previous
case, and use CREATE_SESSION only if that fails.

•

•

•

•

11.11. Effecting File System Transitions
There are a range of situations in which there is a change to be effected in the set of replicas used
to access a particular file system. Some of these may involve an expansion or contraction of the
set of replicas used as discussed in Section 11.11.1 below.

For reasons explained in that section, most transitions will involve a transition from a single
replica to a corresponding replacement replica. When effecting replica transition, some types of
sharing between the replicas may affect handling of the transition as described in Sections
11.11.2 through 11.11.8 below. The attribute fs_locations_info provides helpful information to
allow the client to determine the degree of inter-replica sharing.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 202

With regard to some types of state, the degree of continuity across the transition depends on the
occasion prompting the transition, with transitions initiated by the servers (i.e., migration)
offering much more scope for a nondisruptive transition than cases in which the client on its
own shifts its access to another replica (i.e., replication). This issue potentially applies to locking
state and to session state, which are dealt with below as follows:

An introduction to the possible means of providing continuity in these areas appears in
Section 11.11.9 below.
Transparent State Migration is introduced in Section 11.12. The possible transfer of session
state is addressed there as well.
The client handling of transitions, including determining how to deal with the various means
that the server might take to supply effective continuity of locking state, is discussed in
Section 11.13.
The source and destination servers' responsibilities in effecting Transparent State Migration
of locking and session state are discussed in Section 11.14.

•

•

•

•

11.11.1. File System Transitions and Simultaneous Access

The fs_locations_info attribute (described in Section 11.17) may indicate that two replicas may be
used simultaneously, although some situations in which such simultaneous access is permitted
are more appropriately described as instances of trunking (see Section 11.5.4.1). Although
situations in which multiple replicas may be accessed simultaneously are somewhat similar to
those in which a single replica is accessed by multiple network addresses, there are important
differences since locking state is not shared among multiple replicas.

Because of this difference in state handling, many clients will not have the ability to take
advantage of the fact that such replicas represent the same data. Such clients will not be
prepared to use multiple replicas simultaneously but will access each file system using only a
single replica, although the replica selected might make multiple server-trunkable addresses
available.

Clients who are prepared to use multiple replicas simultaneously can divide opens among
replicas however they choose. Once that choice is made, any subsequent transitions will treat the
set of locking state associated with each replica as a single entity.

For example, if one of the replicas become unavailable, access will be transferred to a different
replica, which is also capable of simultaneous access with the one still in use.

When there is no such replica, the transition may be to the replica already in use. At this point,
the client has a choice between merging the locking state for the two replicas under the aegis of
the sole replica in use or treating these separately until another replica capable of simultaneous
access presents itself.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 203

11.11.2. Filehandles and File System Transitions

There are a number of ways in which filehandles can be handled across a file system transition.
These can be divided into two broad classes depending upon whether the two file systems across
which the transition happens share sufficient state to effect some sort of continuity of file system
handling.

When there is no such cooperation in filehandle assignment, the two file systems are reported as
being in different handle classes. In this case, all filehandles are assumed to expire as part of the
file system transition. Note that this behavior does not depend on the fh_expire_type attribute
and supersedes the specification of the FH4_VOL_MIGRATION bit, which only affects behavior
when fs_locations_info is not available.

When there is cooperation in filehandle assignment, the two file systems are reported as being in
the same handle classes. In this case, persistent filehandles remain valid after the file system
transition, while volatile filehandles (excluding those that are only volatile due to the
FH4_VOL_MIGRATION bit) are subject to expiration on the target server.

11.11.3. Fileids and File System Transitions

In NFSv4.0, the issue of continuity of fileids in the event of a file system transition was not
addressed. The general expectation had been that in situations in which the two file system
instances are created by a single vendor using some sort of file system image copy, fileids would
be consistent across the transition, while in the analogous multi-vendor transitions they would
not. This poses difficulties, especially for the client without special knowledge of the transition
mechanisms adopted by the server. Note that although fileid is not a attribute, many
servers support fileids and many clients provide APIs that depend on fileids.

It is important to note that while clients themselves may have no trouble with a fileid changing
as a result of a file system transition event, applications do typically have access to the fileid (e.g.,
via stat). The result is that an application may work perfectly well if there is no file system
instance transition or if any such transition is among instances created by a single vendor, yet be
unable to deal with the situation in which a multi-vendor transition occurs at the wrong time.

Providing the same fileids in a multi-vendor (multiple server vendors) environment has
generally been held to be quite difficult. While there is work to be done, it needs to be pointed
out that this difficulty is partly self-imposed. Servers have typically identified fileid with inode
number, i.e. with a quantity used to find the file in question. This identification poses special
difficulties for migration of a file system between vendors where assigning the same index to a
given file may not be possible. Note here that a fileid is not required to be useful to find the file in
question, only that it is unique within the given file system. Servers prepared to accept a fileid as
a single piece of metadata and store it apart from the value used to index the file information can
relatively easily maintain a fileid value across a migration event, allowing a truly transparent
migration event.

REQUIRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 204

In any case, where servers can provide continuity of fileids, they should, and the client should be
able to find out that such continuity is available and take appropriate action. Information about
the continuity (or lack thereof) of fileids across a file system transition is represented by
specifying whether the file systems in question are of the same fileid class.

Note that when consistent fileids do not exist across a transition (either because there is no
continuity of fileids or because fileid is not a supported attribute on one of instances involved),
and there are no reliable filehandles across a transition event (either because there is no
filehandle continuity or because the filehandles are volatile), the client is in a position where it
cannot verify that files it was accessing before the transition are the same objects. It is forced to
assume that no object has been renamed, and, unless there are guarantees that provide this (e.g.,
the file system is read-only), problems for applications may occur. Therefore, use of such
configurations should be limited to situations where the problems that this may cause can be
tolerated.

11.11.4. Fsids and File System Transitions

Since fsids are generally only unique on a per-server basis, it is likely that they will change
during a file system transition. Clients should not make the fsids received from the server visible
to applications since they may not be globally unique, and because they may change during a file
system transition event. Applications are best served if they are isolated from such transitions to
the extent possible.

Although normally a single source file system will transition to a single target file system, there is
a provision for splitting a single source file system into multiple target file systems, by specifying
the FSLI4F_MULTI_FS flag.

11.11.4.1. File System Splitting
When a file system transition is made and the fs_locations_info indicates that the file system in
question might be split into multiple file systems (via the FSLI4F_MULTI_FS flag), the client

 do GETATTRs to determine the fsid attribute on all known objects within the file system
undergoing transition to determine the new file system boundaries.

Clients might choose to maintain the fsids passed to existing applications by mapping all of the
fsids for the descendant file systems to the common fsid used for the original file system.

Splitting a file system can be done on a transition between file systems of the same fileid class,
since the fact that fileids are unique within the source file system ensure they will be unique in
each of the target file systems.

SHOULD

11.11.5. The Change Attribute and File System Transitions

Since the change attribute is defined as a server-specific one, change attributes fetched from one
server are normally presumed to be invalid on another server. Such a presumption is
troublesome since it would invalidate all cached change attributes, requiring refetching. Even
more disruptive, the absence of any assured continuity for the change attribute means that even
if the same value is retrieved on refetch, no conclusions can be drawn as to whether the object in

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 205

question has changed. The identical change attribute could be merely an artifact of a modified
file with a different change attribute construction algorithm, with that new algorithm just
happening to result in an identical change value.

When the two file systems have consistent change attribute formats, and this fact is
communicated to the client by reporting in the same change class, the client may assume a
continuity of change attribute construction and handle this situation just as it would be handled
without any file system transition.

11.11.6. Write Verifiers and File System Transitions

In a file system transition, the two file systems might be cooperating in the handling of unstably
written data. Clients can determine if this is the case by seeing if the two file systems belong to
the same write-verifier class. When this is the case, write verifiers returned from one system
may be compared to those returned by the other and superfluous writes can be avoided.

When two file systems belong to different write-verifier classes, any verifier generated by one
must not be compared to one provided by the other. Instead, the two verifiers should be treated
as not equal even when the values are identical.

11.11.7. READDIR Cookies and Verifiers and File System Transitions

In a file system transition, the two file systems might be consistent in their handling of READDIR
cookies and verifiers. Clients can determine if this is the case by seeing if the two file systems
belong to the same readdir class. When this is the case, readdir class, READDIR cookies, and
verifiers from one system will be recognized by the other, and READDIR operations started on
one server can be validly continued on the other simply by presenting the cookie and verifier
returned by a READDIR operation done on the first file system to the second.

When two file systems belong to different readdir classes, any READDIR cookie and verifier
generated by one is not valid on the second and must not be presented to that server by the
client. The client should act as if the verifier were rejected.

11.11.8. File System Data and File System Transitions

When multiple replicas exist and are used simultaneously or in succession by a client,
applications using them will normally expect that they contain either the same data or data that
is consistent with the normal sorts of changes that are made by other clients updating the data of
the file system (with metadata being the same to the degree indicated by the fs_locations_info
attribute). However, when multiple file systems are presented as replicas of one another, the
precise relationship between the data of one and the data of another is not, as a general matter,
specified by the NFSv4.1 protocol. It is quite possible to present as replicas file systems where the
data of those file systems is sufficiently different that some applications have problems dealing
with the transition between replicas. The namespace will typically be constructed so that
applications can choose an appropriate level of support, so that in one position in the

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 206

namespace, a varied set of replicas might be listed, while in another, only those that are up-to-
date would be considered replicas. The protocol does define three special cases of the
relationship among replicas to be specified by the server and relied upon by clients:

When multiple replicas exist and are used simultaneously by a client (see the
FSLIB4_CLSIMUL definition within fs_locations_info), they must designate the same data.
Where file systems are writable, a change made on one instance must be visible on all
instances at the same time, regardless of whether the interrogated instance is the one on
which the modification was done. This allows a client to use these replicas simultaneously
without any special adaptation to the fact that there are multiple replicas, beyond adapting
to the fact that locks obtained on one replica are maintained separately (i.e., under a
different client ID). In this case, locks (whether share reservations or byte-range locks) and
delegations obtained on one replica are immediately reflected on all replicas, in the sense
that access from all other servers is prevented regardless of the replica used. However,
because the servers are not required to treat two associated client IDs as representing the
same client, it is best to access each file using only a single client ID.
When one replica is designated as the successor instance to another existing instance after
the return of NFS4ERR_MOVED (i.e., the case of migration), the client may depend on the fact
that all changes written to stable storage on the original instance are written to stable
storage of the successor (uncommitted writes are dealt with in Section 11.11.6 above).
Where a file system is not writable but represents a read-only copy (possibly periodically
updated) of a writable file system, clients have similar requirements with regard to the
propagation of updates. They may need a guarantee that any change visible on the original
file system instance must be immediately visible on any replica before the client transitions
access to that replica, in order to avoid any possibility that a client, in effecting a transition to
a replica, will see any reversion in file system state. The specific means of this guarantee
varies based on the value of the fss_type field that is reported as part of the fs_status
attribute (see Section 11.18). Since these file systems are presumed to be unsuitable for
simultaneous use, there is no specification of how locking is handled; in general, locks
obtained on one file system will be separate from those on others. Since these are expected
to be read-only file systems, this is not likely to pose an issue for clients or applications.

When none of these special situations applies, there is no basis within the protocol for the client
to make assumptions about the contents of a replica file system or its relationship to previous file
system instances. Thus, switching between nominally identical read-write file systems would not
be possible because either the client does not use the fs_locations_info attribute, or the server
does not support it.

•

•

•

11.11.9. Lock State and File System Transitions

While accessing a file system, clients obtain locks enforced by the server, which may prevent
actions by other clients that are inconsistent with those locks.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 207

When access is transferred between replicas, clients need to be assured that the actions
disallowed by holding these locks cannot have occurred during the transition. This can be
ensured by the methods below. Unless at least one of these is implemented, clients will not be
assured of continuity of lock possession across a migration event:

Providing the client an opportunity to re-obtain his locks via a per-fs grace period on the
destination server, denying all clients using the destination file system the opportunity to
obtain new locks that conflict with those held by the transferred client as long as that client
has not completed its per-fs grace period. Because the lock reclaim mechanism was
originally defined to support server reboot, it implicitly assumes that filehandles will, upon
reclaim, be the same as those at open. In the case of migration, this requires that source and
destination servers use the same filehandles, as evidenced by using the same server scope
(see Section 2.10.4) or by showing this agreement using fs_locations_info (see Section 11.11.2
above).

Note that such a grace period can be implemented without interfering with the ability of
non-transferred clients to obtain new locks while it is going on. As long as the destination
server is aware of the transferred locks, it can distinguish requests to obtain new locks that
contrast with existing locks from those that do not, allowing it to treat such client requests
without reference to the ongoing grace period.

Locking state can be transferred as part of the transition by providing Transparent State
Migration as described in Section 11.12.

Of these, Transparent State Migration provides the smoother experience for clients in that there
is no need to go through a reclaim process before new locks can be obtained; however, it
requires a greater degree of inter-server coordination. In general, the servers taking part in
migration are free to provide either facility. However, when the filehandles can differ across the
migration event, Transparent State Migration is the only available means of providing the
needed functionality.

It should be noted that these two methods are not mutually exclusive and that a server might
well provide both. In particular, if there is some circumstance preventing a specific lock from
being transferred transparently, the destination server can allow it to be reclaimed by
implementing a per-fs grace period for the migrated file system.

•

•

11.11.9.1. Security Consideration Related to Reclaiming Lock State after File System
Transitions
Although it is possible for a client reclaiming state to misrepresent its state in the same fashion as
described in Section 8.4.2.1.1, most implementations providing for such reclamation in the case
of file system transitions will have the ability to detect such misrepresentations. This limits the
ability of unauthenticated clients to execute denial-of-service attacks in these circumstances.
Nevertheless, the rules stated in Section 8.4.2.1.1 regarding principal verification for reclaim
requests apply in this situation as well.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 208

Typically, implementations that support file system transitions will have extensive information
about the locks to be transferred. This is because of the following:

Since failure is not involved, there is no need to store locking information in persistent
storage.
There is no need, as there is in the failure case, to update multiple repositories containing
locking state to keep them in sync. Instead, there is a one-time communication of locking
state from the source to the destination server.
Providing this information avoids potential interference with existing clients using the
destination file system by denying them the ability to obtain new locks during the grace
period.

When such detailed locking information, not necessarily including the associated stateids, is
available:

It is possible to detect reclaim requests that attempt to reclaim locks that did not exist before
the transfer, rejecting them with NFS4ERR_RECLAIM_BAD (Section 15.1.9.4).
It is possible when dealing with non-reclaim requests, to determine whether they conflict
with existing locks, eliminating the need to return NFS4ERR_GRACE (Section 15.1.9.2) on non-
reclaim requests.

It is possible for implementations of grace periods in connection with file system transitions not
to have detailed locking information available at the destination server, in which case, the
security situation is exactly as described in Section 8.4.2.1.1.

•

•

•

•

•

11.11.9.2. Leases and File System Transitions
In the case of lease renewal, the client may not be submitting requests for a file system that has
been transferred to another server. This can occur because of the lease renewal mechanism. The
client renews the lease associated with all file systems when submitting a request on an
associated session, regardless of the specific file system being referenced.

In order for the client to schedule renewal of its lease where there is locking state that may have
been relocated to the new server, the client must find out about lease relocation before that lease
expire. To accomplish this, the SEQUENCE operation will return the status bit
SEQ4_STATUS_LEASE_MOVED if responsibility for any of the renewed locking state has been
transferred to a new server. This will continue until the client receives an NFS4ERR_MOVED
error for each of the file systems for which there has been locking state relocation.

When a client receives an SEQ4_STATUS_LEASE_MOVED indication from a server, for each file
system of the server for which the client has locking state, the client should perform an
operation. For simplicity, the client may choose to reference all file systems, but what is
important is that it must reference all file systems for which there was locking state where that
state has moved. Once the client receives an NFS4ERR_MOVED error for each such file system,
the server will clear the SEQ4_STATUS_LEASE_MOVED indication. The client can terminate the

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 209

process of checking file systems once this indication is cleared (but only if the client has received
a reply for all outstanding SEQUENCE requests on all sessions it has with the server), since there
are no others for which locking state has moved.

A client may use GETATTR of the fs_status (or fs_locations_info) attribute on all of the file systems
to get absence indications in a single (or a few) request(s), since absent file systems will not cause
an error in this context. However, it still must do an operation that receives NFS4ERR_MOVED on
each file system, in order to clear the SEQ4_STATUS_LEASE_MOVED indication.

Once the set of file systems with transferred locking state has been determined, the client can
follow the normal process to obtain the new server information (through the fs_locations and
fs_locations_info attributes) and perform renewal of that lease on the new server, unless
information in the fs_locations_info attribute shows that no state could have been transferred. If
the server has not had state transferred to it transparently, the client will receive
NFS4ERR_STALE_CLIENTID from the new server, as described above, and the client can then
reclaim locks as is done in the event of server failure.

11.11.9.3. Transitions and the Lease_time Attribute
In order that the client may appropriately manage its lease in the case of a file system transition,
the destination server must establish proper values for the lease_time attribute.

When state is transferred transparently, that state should include the correct value of the
lease_time attribute. The lease_time attribute on the destination server must never be less than
that on the source, since this would result in premature expiration of a lease granted by the
source server. Upon transitions in which state is transferred transparently, the client is under no
obligation to refetch the lease_time attribute and may continue to use the value previously
fetched (on the source server).

If state has not been transferred transparently, either because the associated servers are shown
as having different eir_server_scope strings or because the client ID is rejected when presented
to the new server, the client should fetch the value of lease_time on the new (i.e., destination)
server, and use it for subsequent locking requests. However, the server must respect a grace
period of at least as long as the lease_time on the source server, in order to ensure that clients
have ample time to reclaim their lock before potentially conflicting non-reclaimed locks are
granted.

11.12. Transferring State upon Migration
When the transition is a result of a server-initiated decision to transition access, and the source
and destination servers have implemented appropriate cooperation, it is possible to do the
following:

Transfer locking state from the source to the destination server in a fashion similar to that
provided by Transparent State Migration in NFSv4.0, as described in . Server
responsibilities are described in Section 11.14.2.
Transfer session state from the source to the destination server. Server responsibilities in
effecting such a transfer are described in Section 11.14.3.

•
[69]

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 210

The means by which the client determines which of these transfer events has occurred are
described in Section 11.13.

11.12.1. Transparent State Migration and pNFS

When pNFS is involved, the protocol is capable of supporting:

Migration of the Metadata Server (MDS), leaving the Data Servers (DSs) in place.
Migration of the file system as a whole, including the MDS and associated DSs.
Replacement of one DS by another.
Migration of a pNFS file system to one in which pNFS is not used.
Migration of a file system not using pNFS to one in which layouts are available.

Note that migration, per se, is only involved in the transfer of the MDS function. Although the
servicing of a layout may be transferred from one data server to another, this not done using the
file system location attributes. The MDS can effect such transfers by recalling or revoking
existing layouts and granting new ones on a different data server.

Migration of the MDS function is directly supported by Transparent State Migration. Layout state
will normally be transparently transferred, just as other state is. As a result, Transparent State
Migration provides a framework in which, given appropriate inter-MDS data transfer, one MDS
can be substituted for another.

Migration of the file system function as a whole can be accomplished by recalling all layouts as
part of the initial phase of the migration process. As a result, I/O will be done through the MDS
during the migration process, and new layouts can be granted once the client is interacting with
the new MDS. An MDS can also effect this sort of transition by revoking all layouts as part of
Transparent State Migration, as long as the client is notified about the loss of locking state.

In order to allow migration to a file system on which pNFS is not supported, clients need to be
prepared for a situation in which layouts are not available or supported on the destination file
system and so direct I/O requests to the destination server, rather than depending on layouts
being available.

Replacement of one DS by another is not addressed by migration as such but can be effected by
an MDS recalling layouts for the DS to be replaced and issuing new ones to be served by the
successor DS.

Migration may transfer a file system from a server that does not support pNFS to one that does.
In order to properly adapt to this situation, clients that support pNFS, but function adequately in
its absence, should check for pNFS support when a file system is migrated and be prepared to use
pNFS when support is available on the destination.

•
•
•
•
•

11.13. Client Responsibilities When Access Is Transitioned
For a client to respond to an access transition, it must become aware of it. The ways in which this
can happen are discussed in Section 11.13.1, which discusses indications that a specific file
system access path has transitioned as well as situations in which additional activity is necessary

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 211

to determine the set of file systems that have been migrated. Section 11.13.2 goes on to complete
the discussion of how the set of migrated file systems might be determined. Sections 11.13.3
through 11.13.5 discuss how the client should deal with each transition it becomes aware of,
either directly or as a result of migration discovery.

The following terms are used to describe client activities:

"Transition recovery" refers to the process of restoring access to a file system on which
NFS4ERR_MOVED was received.
"Migration recovery" refers to that subset of transition recovery that applies when the file
system has migrated to a different replica.
"Migration discovery" refers to the process of determining which file system(s) have been
migrated. It is necessary to avoid a situation in which leases could expire when a file system
is not accessed for a long period of time, since a client unaware of the migration might be
referencing an unmigrated file system and not renewing the lease associated with the
migrated file system.

•

•

•

11.13.1. Client Transition Notifications

When there is a change in the network access path that a client is to use to access a file system,
there are a number of related status indications with which clients need to deal:

If an attempt is made to use or return a filehandle within a file system that is no longer
accessible at the address previously used to access it, the error NFS4ERR_MOVED is returned.

Exceptions are made to allow such filehandles to be used when interrogating a file system
location attribute. This enables a client to determine a new replica's location or a new
network access path.

This condition continues on subsequent attempts to access the file system in question. The
only way the client can avoid the error is to cease accessing the file system in question at its
old server location and access it instead using a different address at which it is now
available.

Whenever a client sends a SEQUENCE operation to a server that generated state held on that
client and associated with a file system no longer accessible on that server, the response will
contain the status bit SEQ4_STATUS_LEASE_MOVED, indicating that there has been a lease
migration.

This condition continues until the client acknowledges the notification by fetching a file
system location attribute for the file system whose network access path is being changed.
When there are multiple such file systems, a location attribute for each such file system
needs to be fetched. The location attribute for all migrated file systems needs to be fetched in
order to clear the condition. Even after the condition is cleared, the client needs to respond
by using the location information to access the file system at its new location to ensure that
leases are not needlessly expired.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 212

Unlike NFSv4.0, in which the corresponding conditions are both errors and thus mutually
exclusive, in NFSv4.1 the client can, and often will, receive both indications on the same request.
As a result, implementations need to address the question of how to coordinate the necessary
recovery actions when both indications arrive in the response to the same request. It should be
noted that when processing an NFSv4 COMPOUND, the server will normally decide whether
SEQ4_STATUS_LEASE_MOVED is to be set before it determines which file system will be
referenced or whether NFS4ERR_MOVED is to be returned.

Since these indications are not mutually exclusive in NFSv4.1, the following combinations are
possible results when a COMPOUND is issued:

The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is asserted.

In this case, transition recovery is required. While it is possible that migration discovery is
needed in addition, it is likely that only the accessed file system has transitioned. In any case,
because addressing NFS4ERR_MOVED is necessary to allow the rejected requests to be
processed on the target, dealing with it will typically have priority over migration discovery.

The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is clear.

In this case, transition recovery is also required. It is clear that migration discovery is not
needed to find file systems that have been migrated other than the one returning
NFS4ERR_MOVED. Cases in which this result can arise include a referral or a migration for
which there is no associated locking state. This can also arise in cases in which an access
path transition other than migration occurs within the same server. In such a case, there is
no need to set SEQ4_STATUS_LEASE_MOVED, since the lease remains associated with the
current server even though the access path has changed.

The COMPOUND status is not NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is
asserted.

In this case, no transition recovery activity is required on the file system(s) accessed by the
request. However, to prevent avoidable lease expiration, migration discovery needs to be
done.

The COMPOUND status is not NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is clear.

In this case, neither transition-related activity nor migration discovery is required.

Note that the specified actions only need to be taken if they are not already going on. For
example, when NFS4ERR_MOVED is received while accessing a file system for which transition
recovery is already occurring, the client merely waits for that recovery to be completed, while
the receipt of the SEQ4_STATUS_LEASE_MOVED indication only needs to initiate migration
discovery for a server if such discovery is not already underway for that server.

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 213

The fact that a lease-migrated condition does not result in an error in NFSv4.1 has a number of
important consequences. In addition to the fact that the two indications are not mutually
exclusive, as discussed above, there are number of issues that are important in considering
implementation of migration discovery, as discussed in Section 11.13.2.

Because SEQ4_STATUS_LEASE_MOVED is not an error condition, it is possible for file systems
whose access paths have not changed to be successfully accessed on a given server even though
recovery is necessary for other file systems on the same server. As a result, access can take place
while:

The migration discovery process is happening for that server.
The transition recovery process is happening for other file systems connected to that server.

•
•

11.13.2. Performing Migration Discovery

Migration discovery can be performed in the same context as transition recovery, allowing
recovery for each migrated file system to be invoked as it is discovered. Alternatively, it may be
done in a separate migration discovery thread, allowing migration discovery to be done in
parallel with one or more instances of transition recovery.

In either case, because the lease-migrated indication does not result in an error, other access to
file systems on the server can proceed normally, with the possibility that further such indications
will be received, raising the issue of how such indications are to be dealt with. In general:

No action needs to be taken for such indications received by any threads performing
migration discovery, since continuation of that work will address the issue.
In other cases in which migration discovery is currently being performed, nothing further
needs to be done to respond to such lease migration indications, as long as one can be
certain that the migration discovery process would deal with those indications. See below for
details.
For such indications received in all other contexts, the appropriate response is to initiate or
otherwise provide for the execution of migration discovery for file systems associated with
the server IP address returning the indication.

This leaves a potential difficulty in situations in which the migration discovery process is near to
completion but is still operating. One should not ignore a SEQ4_STATUS_LEASE_MOVED
indication if the migration discovery process is not able to respond to the discovery of additional
migrating file systems without additional aid. A further complexity relevant in addressing such
situations is that a lease-migrated indication may reflect the server's state at the time the
SEQUENCE operation was processed, which may be different from that in effect at the time the
response is received. Because new migration events may occur at any time, and because a
SEQ4_STATUS_LEASE_MOVED indication may reflect the situation in effect a considerable time
before the indication is received, special care needs to be taken to ensure that
SEQ4_STATUS_LEASE_MOVED indications are not inappropriately ignored.

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 214

A useful approach to this issue involves the use of separate externally-visible migration
discovery states for each server. Separate values could represent the various possible states for
the migration discovery process for a server:

Non-operation, in which migration discovery is not being performed.
Normal operation, in which there is an ongoing scan for migrated file systems.
Completion/verification of migration discovery processing, in which the possible completion
of migration discovery processing needs to be verified.

Given that framework, migration discovery processing would proceed as follows:

While in the normal-operation state, the thread performing discovery would fetch, for
successive file systems known to the client on the server being worked on, a file system
location attribute plus the fs_status attribute.
If the fs_status attribute indicates that the file system is a migrated one (i.e., fss_absent is
true, and fss_type != STATUS4_REFERRAL), then a migrated file system has been found. In
this situation, it is likely that the fetch of the file system location attribute has cleared one of
the file systems contributing to the lease-migrated indication.
In cases in which that happened, the thread cannot know whether the lease-migrated
indication has been cleared, and so it enters the completion/verification state and proceeds
to issue a COMPOUND to see if the SEQ4_STATUS_LEASE_MOVED indication has been
cleared.
When the discovery process is in the completion/verification state, if other requests get a
lease-migrated indication, they note that it was received. Later, the existence of such
indications is used when the request completes, as described below.

When the request used in the completion/verification state completes:

If a lease-migrated indication is returned, the discovery continues normally. Note that this is
so even if all file systems have been traversed, since new migrations could have occurred
while the process was going on.
Otherwise, if there is any record that other requests saw a lease-migrated indication while
the request was occurring, that record is cleared, and the verification request is retried. The
discovery process remains in the completion/verification state.
If there have been no lease-migrated indications, the work of migration discovery is
considered completed, and it enters the non-operating state. Once it enters this state,
subsequent lease-migrated indications will trigger a new migration discovery process.

It should be noted that the process described above is not guaranteed to terminate, as a long
series of new migration events might continually delay the clearing of the
SEQ4_STATUS_LEASE_MOVED indication. To prevent unnecessary lease expiration, it is
appropriate for clients to use the discovery of migrations to effect lease renewal immediately,
rather than waiting for the clearing of the SEQ4_STATUS_LEASE_MOVED indication when the
complete set of migrations is available.

•
•
•

•

•

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 215

Lease discovery needs to be provided as described above. This ensures that the client discovers
file system migrations soon enough to renew its leases on each destination server before they
expire. Non-renewal of leases can lead to loss of locking state. While the consequences of such
loss can be ameliorated through implementations of courtesy locks, servers are under no
obligation to do so, and a conflicting lock request may mean that a lock is revoked unexpectedly.
Clients should be aware of this possibility.

11.13.3. Overview of Client Response to NFS4ERR_MOVED

This section outlines a way in which a client that receives NFS4ERR_MOVED can effect transition
recovery by using a new server or server endpoint if one is available. As part of that process, it
will determine:

Whether the NFS4ERR_MOVED indicates migration has occurred, or whether it indicates
another sort of file system access transition as discussed in Section 11.10 above.
In the case of migration, whether Transparent State Migration has occurred.
Whether any state has been lost during the process of Transparent State Migration.
Whether sessions have been transferred as part of Transparent State Migration.

During the first phase of this process, the client proceeds to examine file system location entries
to find the initial network address it will use to continue access to the file system or its
replacement. For each location entry that the client examines, the process consists of five steps:

Performing an EXCHANGE_ID directed at the location address. This operation is used to
register the client owner (in the form of a client_owner4) with the server, to obtain a client
ID to be used subsequently to communicate with it, to obtain that client ID's confirmation
status, and to determine server_owner4 and scope for the purpose of determining if the
entry is trunkable with the address previously being used to access the file system (i.e., that it
represents another network access path to the same file system and can share locking state
with it).
Making an initial determination of whether migration has occurred. The initial
determination will be based on whether the EXCHANGE_ID results indicate that the current
location element is server-trunkable with that used to access the file system when access was
terminated by receiving NFS4ERR_MOVED. If it is, then migration has not occurred. In that
case, the transition is dealt with, at least initially, as one involving continued access to the
same file system on the same server through a new network address.
Obtaining access to existing session state or creating new sessions. How this is done depends
on the initial determination of whether migration has occurred and can be done as
described in Section 11.13.4 below in the case of migration or as described in Section 11.13.5
below in the case of a network address transfer without migration.
Verifying the trunking relationship assumed in step 2 as discussed in Section 2.10.5.1.
Although this step will generally confirm the initial determination, it is possible for
verification to invalidate the initial determination of network address shift (without
migration) and instead determine that migration had occurred. There is no need to redo step
3 above, since it will be possible to continue use of the session established already.

•

•
•
•

1.

2.

3.

4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 216

A:

B:

C:

Obtaining access to existing locking state and/or re-obtaining it. How this is done depends on
the final determination of whether migration has occurred and can be done as described
below in Section 11.13.4 in the case of migration or as described in Section 11.13.5 in the case
of a network address transfer without migration.

Once the initial address has been determined, clients are free to apply an abbreviated process to
find additional addresses trunkable with it (clients may seek session-trunkable or server-
trunkable addresses depending on whether they support client ID trunking). During this later
phase of the process, further location entries are examined using the abbreviated procedure
specified below:

Before the EXCHANGE_ID, the fs name of the location entry is examined, and if it does not
match that currently being used, the entry is ignored. Otherwise, one proceeds as specified
by step 1 above.
In the case that the network address is session-trunkable with one used previously, a
BIND_CONN_TO_SESSION is used to access that session using the new network address.
Otherwise, or if the bind operation fails, a CREATE_SESSION is done.
The verification procedure referred to in step 4 above is used. However, if it fails, the entry
is ignored and the next available entry is used.

5.

11.13.4. Obtaining Access to Sessions and State after Migration

In the event that migration has occurred, migration recovery will involve determining whether
Transparent State Migration has occurred. This decision is made based on the client ID returned
by the EXCHANGE_ID and the reported confirmation status.

If the client ID is an unconfirmed client ID not previously known to the client, then
Transparent State Migration has not occurred.
If the client ID is a confirmed client ID previously known to the client, then any transferred
state would have been merged with an existing client ID representing the client to the
destination server. In this state merger case, Transparent State Migration might or might not
have occurred, and a determination as to whether it has occurred is deferred until sessions
are established and the client is ready to begin state recovery.
If the client ID is a confirmed client ID not previously known to the client, then the client can
conclude that the client ID was transferred as part of Transparent State Migration. In this
transferred client ID case, Transparent State Migration has occurred, although some state
might have been lost.

Once the client ID has been obtained, it is necessary to obtain access to sessions to continue
communication with the new server. In any of the cases in which Transparent State Migration
has occurred, it is possible that a session was transferred as well. To deal with that possibility,
clients can, after doing the EXCHANGE_ID, issue a BIND_CONN_TO_SESSION to connect the
transferred session to a connection to the new server. If that fails, it is an indication that the
session was not transferred and that a new session needs to be created to take its place.

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 217

In some situations, it is possible for a BIND_CONN_TO_SESSION to succeed without session
migration having occurred. If state merger has taken place, then the associated client ID may
have already had a set of existing sessions, with it being possible that the session ID of a given
session is the same as one that might have been migrated. In that event, a
BIND_CONN_TO_SESSION might succeed, even though there could have been no migration of the
session with that session ID. In such cases, the client will receive sequence errors when the slot
sequence values used are not appropriate on the new session. When this occurs, the client can
create a new a session and cease using the existing one.

Once the client has determined the initial migration status, and determined that there was a shift
to a new server, it needs to re-establish its locking state, if possible. To enable this to happen
without loss of the guarantees normally provided by locking, the destination server needs to
implement a per-fs grace period in all cases in which lock state was lost, including those in which
Transparent State Migration was not implemented. Each client for which there was a transfer of
locking state to the new server will have the duration of the grace period to reclaim its locks,
from the time its locks were transferred.

Clients need to deal with the following cases:

In the state merger case, it is possible that the server has not attempted Transparent State
Migration, in which case state may have been lost without it being reflected in the
SEQ4_STATUS bits. To determine whether this has happened, the client can use
TEST_STATEID to check whether the stateids created on the source server are still accessible
on the destination server. Once a single stateid is found to have been successfully
transferred, the client can conclude that Transparent State Migration was begun, and any
failure to transport all of the stateids will be reflected in the SEQ4_STATUS bits. Otherwise,
Transparent State Migration has not occurred.
In a case in which Transparent State Migration has not occurred, the client can use the per-fs
grace period provided by the destination server to reclaim locks that were held on the source
server.
In a case in which Transparent State Migration has occurred, and no lock state was lost (as
shown by SEQ4_STATUS flags), no lock reclaim is necessary.
In a case in which Transparent State Migration has occurred, and some lock state was lost (as
shown by SEQ4_STATUS flags), existing stateids need to be checked for validity using
TEST_STATEID, and reclaim used to re-establish any that were not transferred.

For all of the cases above, RECLAIM_COMPLETE with an rca_one_fs value of TRUE needs to be
done before normal use of the file system, including obtaining new locks for the file system. This
applies even if no locks were lost and there was no need for any to be reclaimed.

•

•

•

•

11.13.5. Obtaining Access to Sessions and State after Network Address Transfer

The case in which there is a transfer to a new network address without migration is similar to
that described in Section 11.13.4 above in that there is a need to obtain access to needed sessions
and locking state. However, the details are simpler and will vary depending on the type of
trunking between the address receiving NFS4ERR_MOVED and that to which the transfer is to be
made.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 218

To make a session available for use, a BIND_CONN_TO_SESSION should be used to obtain access
to the session previously in use. Only if this fails, should a CREATE_SESSION be done. While this
procedure mirrors that in Section 11.13.4 above, there is an important difference in that
preservation of the session is not purely optional but depends on the type of trunking.

Access to appropriate locking state will generally need no actions beyond access to the session.
However, the SEQ4_STATUS bits need to be checked for lost locking state, including the need to
reclaim locks after a server reboot, since there is always a possibility of locking state being lost.

11.14. Server Responsibilities Upon Migration
In the event of file system migration, when the client connects to the destination server, that
server needs to be able to provide the client continued access to the files it had open on the
source server. There are two ways to provide this:

By provision of an fs-specific grace period, allowing the client the ability to reclaim its locks,
in a fashion similar to what would have been done in the case of recovery from a server
restart. See Section 11.14.1 for a more complete discussion.
By implementing Transparent State Migration possibly in connection with session migration,
the server can provide the client immediate access to the state built up on the source server
on the destination server.

These features are discussed separately in Sections 11.14.2 and 11.14.3, which discuss
Transparent State Migration and session migration, respectively.

All the features described above can involve transfer of lock-related information between source
and destination servers. In some cases, this transfer is a necessary part of the implementation,
while in other cases, it is a helpful implementation aid, which servers might or might not use.
The subsections below discuss the information that would be transferred but do not define the
specifics of the transfer protocol. This is left as an implementation choice, although standards in
this area could be developed at a later time.

•

•

11.14.1. Server Responsibilities in Effecting State Reclaim after Migration

In this case, the destination server needs no knowledge of the locks held on the source server. It
relies on the clients to accurately report (via reclaim operations) the locks previously held, and
does not allow new locks to be granted on migrated file systems until the grace period expires.
Disallowing of new locks applies to all clients accessing these file systems, while grace period
expiration occurs for each migrated client independently.

During this grace period, clients have the opportunity to use reclaim operations to obtain locks
for file system objects within the migrated file system, in the same way that they do when
recovering from server restart, and the servers typically rely on clients to accurately report their
locks, although they have the option of subjecting these requests to verification. If the clients
only reclaim locks held on the source server, no conflict can arise. Once the client has reclaimed
its locks, it indicates the completion of lock reclamation by performing a RECLAIM_COMPLETE
specifying rca_one_fs as TRUE.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 219

While it is not necessary for source and destination servers to cooperate to transfer information
about locks, implementations are well advised to consider transferring the following useful
information:

If information about the set of clients that have locking state for the transferred file system is
made available, the destination server will be able to terminate the grace period once all
such clients have reclaimed their locks, allowing normal locking activity to resume earlier
than it would have otherwise.
Locking summary information for individual clients (at various possible levels of detail) can
detect some instances in which clients do not accurately represent the locks held on the
source server.

•

•

11.14.2. Server Responsibilities in Effecting Transparent State Migration

The basic responsibility of the source server in effecting Transparent State Migration is to make
available to the destination server a description of each piece of locking state associated with the
file system being migrated. In addition to client id string and verifier, the source server needs to
provide for each stateid:

The stateid including the current sequence value.
The associated client ID.
The handle of the associated file.
The type of the lock, such as open, byte-range lock, delegation, or layout.
For locks such as opens and byte-range locks, there will be information about the owner(s) of
the lock.
For recallable/revocable lock types, the current recall status needs to be included.
For each lock type, there will be associated type-specific information. For opens, this will
include share and deny mode while for byte-range locks and layouts, there will be a type and
a byte-range.

Such information will most probably be organized by client id string on the destination server so
that it can be used to provide appropriate context to each client when it makes itself known to
the client. Issues connected with a client impersonating another by presenting another client's
client id string can be addressed using NFSv4.1 state protection features, as described in Section
21.

A further server responsibility concerns locks that are revoked or otherwise lost during the
process of file system migration. Because locks that appear to be lost during the process of
migration will be reclaimed by the client, the servers have to take steps to ensure that locks
revoked soon before or soon after migration are not inadvertently allowed to be reclaimed in
situations in which the continuity of lock possession cannot be assured.

For locks lost on the source but whose loss has not yet been acknowledged by the client (by
using FREE_STATEID), the destination must be aware of this loss so that it can deny a request
to reclaim them.

•
•
•
•
•

•
•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 220

For locks lost on the destination after the state transfer but before the client's
RECLAIM_COMPLETE is done, the destination server should note these and not allow them to
be reclaimed.

An additional responsibility of the cooperating servers concerns situations in which a stateid
cannot be transferred transparently because it conflicts with an existing stateid held by the client
and associated with a different file system. In this case, there are two valid choices:

Treat the transfer, as in NFSv4.0, as one without Transparent State Migration. In this case,
conflicting locks cannot be granted until the client does a RECLAIM_COMPLETE, after
reclaiming the locks it had, with the exception of reclaims denied because they were
attempts to reclaim locks that had been lost.
Implement Transparent State Migration, except for the lock with the conflicting stateid. In
this case, the client will be aware of a lost lock (through the SEQ4_STATUS flags) and be
allowed to reclaim it.

When transferring state between the source and destination, the issues discussed in
 must still be attended to. In this case, the use of NFS4ERR_DELAY may still be necessary in

NFSv4.1, as it was in NFSv4.0, to prevent locking state changing while it is being transferred. See
Section 15.1.1.3 for information about appropriate client retry approaches in the event that
NFS4ERR_DELAY is returned.

There are a number of important differences in the NFS4.1 context:

The absence of RELEASE_LOCKOWNER means that the one case in which an operation could
not be deferred by use of NFS4ERR_DELAY no longer exists.
Sequencing of operations is no longer done using owner-based operation sequences
numbers. Instead, sequencing is session- based.

As a result, when sessions are not transferred, the techniques discussed in are
adequate and will not be further discussed.

•

•

•

Section 7.2
of [69]

•

•

Section 7.2 of [69]

11.14.3. Server Responsibilities in Effecting Session Transfer

The basic responsibility of the source server in effecting session transfer is to make available to
the destination server a description of the current state of each slot with the session, including
the following:

The last sequence value received for that slot.
Whether there is cached reply data for the last request executed and, if so, the cached reply.

When sessions are transferred, there are a number of issues that pose challenges in terms of
making the transferred state unmodifiable during the period it is gathered up and transferred to
the destination server:

A single session may be used to access multiple file systems, not all of which are being
transferred.

•
•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 221

https://www.rfc-editor.org/rfc/rfc7931#section-7.2
https://www.rfc-editor.org/rfc/rfc7931#section-7.2

Requests made on a session may, even if rejected, affect the state of the session by advancing
the sequence number associated with the slot used.

As a result, when the file system state might otherwise be considered unmodifiable, the client
might have any number of in-flight requests, each of which is capable of changing session state,
which may be of a number of types:

Those requests that were processed on the migrating file system before migration began.
Those requests that received the error NFS4ERR_DELAY because the file system being
accessed was in the process of being migrated.
Those requests that received the error NFS4ERR_MOVED because the file system being
accessed had been migrated.
Those requests that accessed the migrating file system in order to obtain location or status
information.
Those requests that did not reference the migrating file system.

It should be noted that the history of any particular slot is likely to include a number of these
request classes. In the case in which a session that is migrated is used by file systems other than
the one migrated, requests of class 5 may be common and may be the last request processed for
many slots.

Since session state can change even after the locking state has been fixed as part of the migration
process, the session state known to the client could be different from that on the destination
server, which necessarily reflects the session state on the source server at an earlier time. In
deciding how to deal with this situation, it is helpful to distinguish between two sorts of
behavioral consequences of the choice of initial sequence ID values:

The error NFS4ERR_SEQ_MISORDERED is returned when the sequence ID in a request is
neither equal to the last one seen for the current slot nor the next greater one.

In view of the difficulty of arriving at a mutually acceptable value for the correct last
sequence value at the point of migration, it may be necessary for the server to show some
degree of forbearance when the sequence ID is one that would be considered unacceptable if
session migration were not involved.

Returning the cached reply for a previously executed request when the sequence ID in the
request matches the last value recorded for the slot.

In the cases in which an error is returned and there is no possibility of any non-idempotent
operation having been executed, it may not be necessary to adhere to this as strictly as might
be proper if session migration were not involved. For example, the fact that the error
NFS4ERR_DELAY was returned may not assist the client in any material way, while the fact
that NFS4ERR_MOVED was returned by the source server may not be relevant when the
request was reissued and directed to the destination server.

•

1.
2.

3.

4.

5.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 222

An important issue is that the specification needs to take note of all potential COMPOUNDs, even
if they might be unlikely in practice. For example, a COMPOUND is allowed to access multiple file
systems and might perform non-idempotent operations in some of them before accessing a file
system being migrated. Also, a COMPOUND may return considerable data in the response before
being rejected with NFS4ERR_DELAY or NFS4ERR_MOVED, and may in addition be marked as
sa_cachethis. However, note that if the client and server adhere to rules in Section 15.1.1.3, there
is no possibility of non-idempotent operations being spuriously reissued after receiving
NFS4ERR_DELAY response.

To address these issues, a destination server do any of the following when implementing
session transfer:

Avoid enforcing any sequencing semantics for a particular slot until the client has
established the starting sequence for that slot on the destination server.
For each slot, avoid returning a cached reply returning NFS4ERR_DELAY or
NFS4ERR_MOVED until the client has established the starting sequence for that slot on the
destination server.
Until the client has established the starting sequence for a particular slot on the destination
server, avoid reporting NFS4ERR_SEQ_MISORDERED or returning a cached reply that
contains either NFS4ERR_DELAY or NFS4ERR_MOVED and consists solely of a series of
operations where the response is NFS4_OK until the final error.

Because of the considerations mentioned above, including the rules for the handling of
NFS4ERR_DELAY included in Section 15.1.1.3, the destination server can respond appropriately
to SEQUENCE operations received from the client by adopting the three policies listed below:

Not responding with NFS4ERR_SEQ_MISORDERED for the initial request on a slot within a
transferred session because the destination server cannot be aware of requests made by the
client after the server handoff but before the client became aware of the shift. In cases in
which NFS4ERR_SEQ_MISORDERED would normally have been reported, the request is to be
processed normally as a new request.
Replying as it would for a retry whenever the sequence matches that transferred by the
source server, even though this would not provide retry handling for requests issued after
the server handoff, under the assumption that, when such requests are issued, they will
never be responded to in a state-changing fashion, making retry support for them
unnecessary.
Once a non-retry SEQUENCE is received for a given slot, using that as the basis for further
sequence checking, with no further reference to the sequence value transferred by the
source server.

MAY

•

•

•

•

•

•

11.15. Effecting File System Referrals
Referrals are effected when an absent file system is encountered and one or more alternate
locations are made available by the fs_locations or fs_locations_info attributes. The client will
typically get an NFS4ERR_MOVED error, fetch the appropriate location information, and proceed
to access the file system on a different server, even though it retains its logical position within the

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 223

original namespace. Referrals differ from migration events in that they happen only when the
client has not previously referenced the file system in question (so there is nothing to transition).
Referrals can only come into effect when an absent file system is encountered at its root.

The examples given in the sections below are somewhat artificial in that an actual client will not
typically do a multi-component look up, but will have cached information regarding the upper
levels of the name hierarchy. However, these examples are chosen to make the required
behavior clear and easy to put within the scope of a small number of requests, without getting
into a discussion of the details of how specific clients might choose to cache things.

11.15.1. Referral Example (LOOKUP)

Let us suppose that the following COMPOUND is sent in an environment in which /this/is/the/path
is absent from the target server. This may be for a number of reasons. It may be that the file
system has moved, or it may be that the target server is functioning mainly, or solely, to refer
clients to the servers on which various file systems are located.

PUTROOTFH
LOOKUP "this"
LOOKUP "is"
LOOKUP "the"
LOOKUP "path"
GETFH
GETATTR (fsid, fileid, size, time_modify)

Under the given circumstances, the following will be the result.

PUTROOTFH --> NFS_OK. The current fh is now the root of the pseudo-fs.
LOOKUP "this" --> NFS_OK. The current fh is for /this and is within the pseudo-fs.
LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is within the pseudo-fs.
LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and is within the pseudo-fs.
LOOKUP "path" --> NFS_OK. The current fh is for /this/is/the/path and is within a new, absent
file system, but ... the client will never see the value of that fh.
GETFH --> NFS4ERR_MOVED. Fails because current fh is in an absent file system at the start
of the operation, and the specification makes no exception for GETFH.
GETATTR (fsid, fileid, size, time_modify). Not executed because the failure of the GETFH stops
processing of the COMPOUND.

Given the failure of the GETFH, the client has the job of determining the root of the absent file
system and where to find that file system, i.e., the server and path relative to that server's root fh.
Note that in this example, the client did not obtain filehandles and attribute information (e.g.,
fsid) for the intermediate directories, so that it would not be sure where the absent file system
starts. It could be the case, for example, that /this/is/the is the root of the moved file system and
that the reason that the look up of "path" succeeded is that the file system was not absent on that

•
•
•
•
•
•
•

•
•
•
•
•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 224

OP01:

OP02:

OP03:

OP04:

OP05:

OP06:

OP07:

OP08:

OP09:

operation but was moved between the last LOOKUP and the GETFH (since COMPOUND is not
atomic). Even if we had the fsids for all of the intermediate directories, we could have no way of
knowing that /this/is/the/path was the root of a new file system, since we don't yet have its fsid.

In order to get the necessary information, let us re-send the chain of LOOKUPs with GETFHs and
GETATTRs to at least get the fsids so we can be sure where the appropriate file system
boundaries are. The client could choose to get fs_locations_info at the same time but in most
cases the client will have a good guess as to where file system boundaries are (because of where
NFS4ERR_MOVED was, and was not, received) making fetching of fs_locations_info unnecessary.

PUTROOTFH --> NFS_OK

Current fh is root of pseudo-fs.

GETATTR(fsid) --> NFS_OK

Just for completeness. Normally, clients will know the fsid of the pseudo-fs as soon as
they establish communication with a server.

LOOKUP "this" --> NFS_OK

GETATTR(fsid) --> NFS_OK

Get current fsid to see where file system boundaries are. The fsid will be that for the
pseudo-fs in this example, so no boundary.

GETFH --> NFS_OK

Current fh is for /this and is within pseudo-fs.

LOOKUP "is" --> NFS_OK

Current fh is for /this/is and is within pseudo-fs.

GETATTR(fsid) --> NFS_OK

Get current fsid to see where file system boundaries are. The fsid will be that for the
pseudo-fs in this example, so no boundary.

GETFH --> NFS_OK

Current fh is for /this/is and is within pseudo-fs.

LOOKUP "the" --> NFS_OK

Current fh is for /this/is/the and is within pseudo-fs.

•

•

•

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 225

OP10:

OP11:

OP12:

OP13:

OP14:

GETATTR(fsid) --> NFS_OK

Get current fsid to see where file system boundaries are. The fsid will be that for the
pseudo-fs in this example, so no boundary.

GETFH --> NFS_OK

Current fh is for /this/is/the and is within pseudo-fs.

LOOKUP "path" --> NFS_OK

Current fh is for /this/is/the/path and is within a new, absent file system, but ...
The client will never see the value of that fh.

GETATTR(fsid, fs_locations_info) --> NFS_OK

We are getting the fsid to know where the file system boundaries are. In this
operation, the fsid will be different than that of the parent directory (which in turn
was retrieved in OP10). Note that the fsid we are given will not necessarily be
preserved at the new location. That fsid might be different, and in fact the fsid we
have for this file system might be a valid fsid of a different file system on that new
server.
In this particular case, we are pretty sure anyway that what has moved is /this/is/the/
path rather than /this/is/the since we have the fsid of the latter and it is that of the
pseudo-fs, which presumably cannot move. However, in other examples, we might not
have this kind of information to rely on (e.g., /this/is/the might be a non-pseudo file
system separate from /this/is/the/path), so we need to have other reliable source
information on the boundary of the file system that is moved. If, for example, the file
system /this/is had moved, we would have a case of migration rather than referral, and
once the boundaries of the migrated file system was clear we could fetch
fs_locations_info.
We are fetching fs_locations_info because the fact that we got an NFS4ERR_MOVED at
this point means that it is most likely that this is a referral and we need the
destination. Even if it is the case that /this/is/the is a file system that has migrated, we
will still need the location information for that file system.

GETFH --> NFS4ERR_MOVED

Fails because current fh is in an absent file system at the start of the operation, and the
specification makes no exception for GETFH. Note that this means the server will
never send the client a filehandle from within an absent file system.

Given the above, the client knows where the root of the absent file system is (/this/is/the/path) by
noting where the change of fsid occurred (between "the" and "path"). The fs_locations_info
attribute also gives the client the actual location of the absent file system, so that the referral can
proceed. The server gives the client the bare minimum of information about the absent file
system so that there will be very little scope for problems of conflict between information sent by

•

•

•
•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 226

the referring server and information of the file system's home. No filehandles and very few
attributes are present on the referring server, and the client can treat those it receives as
transient information with the function of enabling the referral.

11.15.2. Referral Example (READDIR)

Another context in which a client may encounter referrals is when it does a READDIR on a
directory in which some of the sub-directories are the roots of absent file systems.

Suppose such a directory is read as follows:

PUTROOTFH
LOOKUP "this"
LOOKUP "is"
LOOKUP "the"
READDIR (fsid, size, time_modify, mounted_on_fileid)

In this case, because rdattr_error is not requested, fs_locations_info is not requested, and some of
the attributes cannot be provided, the result will be an NFS4ERR_MOVED error on the READDIR,
with the detailed results as follows:

PUTROOTFH --> NFS_OK. The current fh is at the root of the pseudo-fs.
LOOKUP "this" --> NFS_OK. The current fh is for /this and is within the pseudo-fs.
LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is within the pseudo-fs.
LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and is within the pseudo-fs.
READDIR (fsid, size, time_modify, mounted_on_fileid) --> NFS4ERR_MOVED. Note that the
same error would have been returned if /this/is/the had migrated, but it is returned because
the directory contains the root of an absent file system.

So now suppose that we re-send with rdattr_error:

PUTROOTFH
LOOKUP "this"
LOOKUP "is"
LOOKUP "the"
READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

The results will be:

PUTROOTFH --> NFS_OK. The current fh is at the root of the pseudo-fs.
LOOKUP "this" --> NFS_OK. The current fh is for /this and is within the pseudo-fs.
LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is within the pseudo-fs.
LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and is within the pseudo-fs.

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 227

READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid) --> NFS_OK. The attributes
for directory entry with the component named "path" will only contain rdattr_error with the
value NFS4ERR_MOVED, together with an fsid value and a value for mounted_on_fileid.

Suppose we do another READDIR to get fs_locations_info (although we could have used a
GETATTR directly, as in Section 11.15.1).

PUTROOTFH
LOOKUP "this"
LOOKUP "is"
LOOKUP "the"
READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid, size, time_modify)

The results would be:

PUTROOTFH --> NFS_OK. The current fh is at the root of the pseudo-fs.
LOOKUP "this" --> NFS_OK. The current fh is for /this and is within the pseudo-fs.
LOOKUP "is" --> NFS_OK. The current fh is for /this/is and is within the pseudo-fs.
LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and is within the pseudo-fs.
READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid, size, time_modify) -->
NFS_OK. The attributes will be as shown below.

The attributes for the directory entry with the component named "path" will only contain:

rdattr_error (value: NFS_OK)
fs_locations_info
mounted_on_fileid (value: unique fileid within referring file system)
fsid (value: unique value within referring server)

The attributes for entry "path" will not contain size or time_modify because these attributes are
not available within an absent file system.

•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

11.16. The Attribute fs_locations
The fs_locations attribute is structured in the following way:

struct fs_location4 {
 utf8str_cis server<>;
 pathname4 rootpath;
};

struct fs_locations4 {
 pathname4 fs_root;
 fs_location4 locations<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 228

The fs_location4 data type is used to represent the location of a file system by providing a server
name and the path to the root of the file system within that server's namespace. When a set of
servers have corresponding file systems at the same path within their namespaces, an array of
server names may be provided. An entry in the server array is a UTF-8 string and represents one
of a traditional DNS host name, IPv4 address, IPv6 address, or a zero-length string. An IPv4 or
IPv6 address is represented as a universal address (see Section 3.3.9 and), minus the netid,
and either with or without the trailing ".p1.p2" suffix that represents the port number. If the
suffix is omitted, then the default port, 2049, be assumed. A zero-length string
be used to indicate the current address being used for the RPC call. It is not a requirement that all
servers that share the same rootpath be listed in one fs_location4 instance. The array of server
names is provided for convenience. Servers that share the same rootpath may also be listed in
separate fs_location4 entries in the fs_locations attribute.

The fs_locations4 data type and the fs_locations attribute each contain an array of such locations.
Since the namespace of each server may be constructed differently, the "fs_root" field is
provided. The path represented by fs_root represents the location of the file system in the
current server's namespace, i.e., that of the server from which the fs_locations attribute was
obtained. The fs_root path is meant to aid the client by clearly referencing the root of the file
system whose locations are being reported, no matter what object within the current file system
the current filehandle designates. The fs_root is simply the pathname the client used to reach the
object on the current server (i.e., the object to which the fs_locations attribute applies).

When the fs_locations attribute is interrogated and there are no alternate file system locations,
the server return a zero-length array of fs_location4 structures, together with a valid
fs_root.

As an example, suppose there is a replicated file system located at two servers (servA and servB).
At servA, the file system is located at path /a/b/c. At, servB the file system is located at path /x/y/z.
If the client were to obtain the fs_locations value for the directory at /a/b/c/d, it might not
necessarily know that the file system's root is located in servA's namespace at /a/b/c. When the
client switches to servB, it will need to determine that the directory it first referenced at servA is
now represented by the path /x/y/z/d on servB. To facilitate this, the fs_locations attribute
provided by servA would have an fs_root value of /a/b/c and two entries in fs_locations. One
entry in fs_locations will be for itself (servA) and the other will be for servB with a path of /x/y/z.
With this information, the client is able to substitute /x/y/z for the /a/b/c at the beginning of its
access path and construct /x/y/z/d to use for the new server.

Note that there is no requirement that the number of components in each rootpath be the same;
there is no relation between the number of components in rootpath or fs_root, and none of the
components in a rootpath and fs_root have to be the same. In the above example, we could have
had a third element in the locations array, with server equal to "servC" and rootpath equal to "/I/
II", and a fourth element in locations with server equal to "servD" and rootpath equal to "/aleph/
beth/gimel/daleth/he".

The relationship between fs_root to a rootpath is that the client replaces the pathname indicated
in fs_root for the current server for the substitute indicated in rootpath for the new server.

[12]

SHOULD SHOULD

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 229

For an example of a referred or migrated file system, suppose there is a file system located at
serv1. At serv1, the file system is located at /az/buky/vedi/glagoli. The client finds that object at
glagoli has migrated (or is a referral). The client gets the fs_locations attribute, which contains an
fs_root of /az/buky/vedi/glagoli, and one element in the locations array, with server equal to
serv2, and rootpath equal to /izhitsa/fita. The client replaces /az/buky/vedi/glagoli with /izhitsa/
fita, and uses the latter pathname on serv2.

Thus, the server return an fs_root that is equal to the path the client used to reach the
object to which the fs_locations attribute applies. Otherwise, the client cannot determine the new
path to use on the new server.

Since the fs_locations attribute lacks information defining various attributes of the various file
system choices presented, it only be interrogated and used when fs_locations_info is not
available. When fs_locations is used, information about the specific locations should be assumed
based on the following rules.

The following rules are general and apply irrespective of the context.

All listed file system instances should be considered as of the same handle class, if and only
if, the current fh_expire_type attribute does not include the FH4_VOL_MIGRATION bit. Note
that in the case of referral, filehandle issues do not apply since there can be no filehandles
known within the current file system, nor is there any access to the fh_expire_type attribute
on the referring (absent) file system.
All listed file system instances should be considered as of the same fileid class if and only if
the fh_expire_type attribute indicates persistent filehandles and does not include the
FH4_VOL_MIGRATION bit. Note that in the case of referral, fileid issues do not apply since
there can be no fileids known within the referring (absent) file system, nor is there any
access to the fh_expire_type attribute.
All file system instances servers should be considered as of different change classes.

For other class assignments, handling of file system transitions depends on the reasons for the
transition:

When the transition is due to migration, that is, the client was directed to a new file system
after receiving an NFS4ERR_MOVED error, the target should be treated as being of the same
write-verifier class as the source.
When the transition is due to failover to another replica, that is, the client selected another
replica without receiving an NFS4ERR_MOVED error, the target should be treated as being of
a different write-verifier class from the source.

The specific choices reflect typical implementation patterns for failover and controlled
migration, respectively. Since other choices are possible and useful, this information is better
obtained by using fs_locations_info. When a server implementation needs to communicate other
choices, it support the fs_locations_info attribute.

See Section 21 for a discussion on the recommendations for the security flavor to be used by any
GETATTR operation that requests the fs_locations attribute.

MUST

SHOULD

•

•

•

•

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 230

11.17. The Attribute fs_locations_info
The fs_locations_info attribute is intended as a more functional replacement for the fs_locations
attribute, which will continue to exist and be supported. Clients can use it to get a more complete
set of data about alternative file system locations, including additional network paths to access
replicas in use and additional replicas. When the server does not support fs_locations_info,
fs_locations can be used to get a subset of the data. A server that supports fs_locations_info
support fs_locations as well.

There is additional data present in fs_locations_info that is not available in fs_locations:

Attribute continuity information. This information will allow a client to select a replica that
meets the transparency requirements of the applications accessing the data and to leverage
optimizations due to the server guarantees of attribute continuity (e.g., if the change
attribute of a file of the file system is continuous between multiple replicas, the client does
not have to invalidate the file's cache when switching to a different replica).
File system identity information that indicates when multiple replicas, from the client's point
of view, correspond to the same target file system, allowing them to be used interchangeably,
without disruption, as distinct synchronized replicas of the same file data.

Note that having two replicas with common identity information is distinct from the case of
two (trunked) paths to the same replica.

Information that will bear on the suitability of various replicas, depending on the use that
the client intends. For example, many applications need an absolutely up-to-date copy (e.g.,
those that write), while others may only need access to the most up-to-date copy reasonably
available.
Server-derived preference information for replicas, which can be used to implement load-
balancing while giving the client the entire file system list to be used in case the primary
fails.

The fs_locations_info attribute is structured similarly to the fs_locations attribute. A top-level
structure (fs_locations_info4) contains the entire attribute including the root pathname of the file
system and an array of lower-level structures that define replicas that share a common rootpath
on their respective servers. The lower-level structure in turn (fs_locations_item4) contains a
specific pathname and information on one or more individual network access paths. For that
last, lowest level, fs_locations_info has an fs_locations_server4 structure that contains per-server-
replica information in addition to the file system location entry. This per-server-replica
information includes a nominally opaque array, fls_info, within which specific pieces of
information are located at the specific indices listed below.

Two fs_location_server4 entries that are within different fs_location_item4 structures are never
trunkable, while two entries within in the same fs_location_item4 structure might or might not
be trunkable. Two entries that are trunkable will have identical identity information, although,
as noted above, the converse is not the case.

MUST

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 231

The attribute will always contain at least a single fs_locations_server entry. Typically, there will
be an entry with the FS4LIGF_CUR_REQ flag set, although in the case of a referral there will be no
entry with that flag set.

It should be noted that fs_locations_info attributes returned by servers for various replicas may
differ for various reasons. One server may know about a set of replicas that are not known to
other servers. Further, compatibility attributes may differ. Filehandles might be of the same class
going from replica A to replica B but not going in the reverse direction. This might happen
because the filehandles are the same, but replica B's server implementation might not have
provision to note and report that equivalence.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 232

The fs_locations_info attribute consists of a root pathname (fli_fs_root, just like fs_root in the
fs_locations attribute), together with an array of fs_location_item4 structures. The
fs_location_item4 structures in turn consist of a root pathname (fli_rootpath) together with an
array (fli_entries) of elements of data type fs_locations_server4, all defined as follows.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 233

/*
 * Defines an individual server access path
 */
struct fs_locations_server4 {
 int32_t fls_currency;
 opaque fls_info<>;
 utf8str_cis fls_server;
};

/*
 * Byte indices of items within
 * fls_info: flag fields, class numbers,
 * bytes indicating ranks and orders.
 */
const FSLI4BX_GFLAGS = 0;
const FSLI4BX_TFLAGS = 1;

const FSLI4BX_CLSIMUL = 2;
const FSLI4BX_CLHANDLE = 3;
const FSLI4BX_CLFILEID = 4;
const FSLI4BX_CLWRITEVER = 5;
const FSLI4BX_CLCHANGE = 6;
const FSLI4BX_CLREADDIR = 7;

const FSLI4BX_READRANK = 8;
const FSLI4BX_WRITERANK = 9;
const FSLI4BX_READORDER = 10;
const FSLI4BX_WRITEORDER = 11;

/*
 * Bits defined within the general flag byte.
 */
const FSLI4GF_WRITABLE = 0x01;
const FSLI4GF_CUR_REQ = 0x02;
const FSLI4GF_ABSENT = 0x04;
const FSLI4GF_GOING = 0x08;
const FSLI4GF_SPLIT = 0x10;

/*
 * Bits defined within the transport flag byte.
 */
const FSLI4TF_RDMA = 0x01;

/*
 * Defines a set of replicas sharing
 * a common value of the rootpath
 * within the corresponding
 * single-server namespaces.
 */
struct fs_locations_item4 {
 fs_locations_server4 fli_entries<>;
 pathname4 fli_rootpath;
};

/*
 * Defines the overall structure of
 * the fs_locations_info attribute.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 234

As noted above, the fs_locations_info attribute, when supported, may be requested of absent file
systems without causing NFS4ERR_MOVED to be returned. It is generally expected that it will be
available for both present and absent file systems even if only a single fs_locations_server4 entry
is present, designating the current (present) file system, or two fs_locations_server4 entries
designating the previous location of an absent file system (the one just referenced) and its
successor location. Servers are strongly urged to support this attribute on all file systems if they
support it on any file system.

The data presented in the fs_locations_info attribute may be obtained by the server in any
number of ways, including specification by the administrator or by current protocols for
transferring data among replicas and protocols not yet developed. NFSv4.1 only defines how this
information is presented by the server to the client.

 */
struct fs_locations_info4 {
 uint32_t fli_flags;
 int32_t fli_valid_for;
 pathname4 fli_fs_root;
 fs_locations_item4 fli_items<>;
};

/*
 * Flag bits in fli_flags.
 */
const FSLI4IF_VAR_SUB = 0x00000001;

typedef fs_locations_info4 fattr4_fs_locations_info;

11.17.1. The fs_locations_server4 Structure

The fs_locations_server4 structure consists of the following items in addition to the fls_server
field, which specifies a network address or set of addresses to be used to access the specified file
system. Note that both of these items (i.e., fls_currency and fls_info) specify attributes of the file
system replica and should not be different when there are multiple fs_locations_server4
structures, each specifying a network path to the chosen replica, for the same replica.

When these values are different in two fs_locations_server4 structures, a client has no basis for
choosing one over the other and is best off simply ignoring both entries, whether these entries
apply to migration replication or referral. When there are more than two such entries, majority
voting can be used to exclude a single erroneous entry from consideration. In the case in which
trunking information is provided for a replica currently being accessed, the additional trunked
addresses can be ignored while access continues on the address currently being used, even if the
entry corresponding to that path might be considered invalid.

An indication of how up-to-date the file system is (fls_currency) in seconds. This value is
relative to the master copy. A negative value indicates that the server is unable to give any
reasonably useful value here. A value of zero indicates that the file system is the actual
writable data or a reliably coherent and fully up-to-date copy. Positive values indicate how
out-of-date this copy can normally be before it is considered for update. Such a value is not a
guarantee that such updates will always be performed on the required schedule but instead

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 235

serves as a hint about how far the copy of the data would be expected to be behind the most
up-to-date copy.
A counted array of one-byte values (fls_info) containing information about the particular file
system instance. This data includes general flags, transport capability flags, file system
equivalence class information, and selection priority information. The encoding will be
discussed below.
The server string (fls_server). For the case of the replica currently being accessed (via
GETATTR), a zero-length string be used to indicate the current address being used for
the RPC call. The fls_server field can also be an IPv4 or IPv6 address, formatted the same way
as an IPv4 or IPv6 address in the "server" field of the fs_location4 data type (see Section
11.16).

With the exception of the transport-flag field (at offset FSLI4BX_TFLAGS with the fls_info array),
all of this data defined in this specification applies to the replica specified by the entry, rather
than the specific network path used to access it. The classification of data in extensions to this
data is discussed below.

Data within the fls_info array is in the form of 8-bit data items with constants giving the offsets
within the array of various values describing this particular file system instance. This style of
definition was chosen, in preference to explicit XDR structure definitions for these values, for a
number of reasons.

The kinds of data in the fls_info array, representing flags, file system classes, and priorities
among sets of file systems representing the same data, are such that 8 bits provide a quite
acceptable range of values. Even where there might be more than 256 such file system
instances, having more than 256 distinct classes or priorities is unlikely.
Explicit definition of the various specific data items within XDR would limit expandability in
that any extension within would require yet another attribute, leading to specification and
implementation clumsiness. In the context of the NFSv4 extension model in effect at the time
fs_locations_info was designed (i.e., that which is described in RFC 5661), this would
necessitate a new minor version to effect any Standards Track extension to the data in
fls_info.

The set of fls_info data is subject to expansion in a future minor version or in a Standards Track
RFC within the context of a single minor version. The server send and the client

 use indices within the fls_info array or flag bits that are not defined in Standards
Track RFCs.

In light of the new extension model defined in RFC 8178 and the fact that the individual
items within fls_info are not explicitly referenced in the XDR, the following practices should be
followed when extending or otherwise changing the structure of the data returned in fls_info
within the scope of a single minor version:

All extensions need to be described by Standards Track documents. There is no need for such
documents to be marked as updating RFC 5661 or this document.

•

•
MAY

•

•

[66]

SHOULD NOT
MUST NOT

[67]

•
[66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 236

It needs to be made clear whether the information in any added data items applies to the
replica specified by the entry or to the specific network paths specified in the entry.
There needs to be a reliable way defined to determine whether the server is aware of the
extension. This may be based on the length field of the fls_info array, but it is more flexible to
provide fs-scope or server-scope attributes to indicate what extensions are provided.

This encoding scheme can be adapted to the specification of multi-byte numeric values, even
though none are currently defined. If extensions are made via Standards Track RFCs, multi-byte
quantities will be encoded as a range of bytes with a range of indices, with the byte interpreted
in big-endian byte order. Further, any such index assignments will be constrained by the need
for the relevant quantities not to cross XDR word boundaries.

The fls_info array currently contains:

Two 8-bit flag fields, one devoted to general file-system characteristics and a second reserved
for transport-related capabilities.
Six 8-bit class values that define various file system equivalence classes as explained below.
Four 8-bit priority values that govern file system selection as explained below.

The general file system characteristics flag (at byte index FSLI4BX_GFLAGS) has the following bits
defined within it:

FSLI4GF_WRITABLE indicates that this file system target is writable, allowing it to be
selected by clients that may need to write on this file system. When the current file system
instance is writable and is defined as of the same simultaneous use class (as specified by the
value at index FSLI4BX_CLSIMUL) to which the client was previously writing, then it must
incorporate within its data any committed write made on the source file system instance. See
Section 11.11.6, which discusses the write-verifier class. While there is no harm in not setting
this flag for a file system that turns out to be writable, turning the flag on for a read-only file
system can cause problems for clients that select a migration or replication target based on
the flag and then find themselves unable to write.
FSLI4GF_CUR_REQ indicates that this replica is the one on which the request is being made.
Only a single server entry may have this flag set and, in the case of a referral, no entry will
have it set. Note that this flag might be set even if the request was made on a network access
path different from any of those specified in the current entry.
FSLI4GF_ABSENT indicates that this entry corresponds to an absent file system replica. It can
only be set if FSLI4GF_CUR_REQ is set. When both such bits are set, it indicates that a file
system instance is not usable but that the information in the entry can be used to determine
the sorts of continuity available when switching from this replica to other possible replicas.
Since this bit can only be true if FSLI4GF_CUR_REQ is true, the value could be determined
using the fs_status attribute, but the information is also made available here for the
convenience of the client. An entry with this bit, since it represents a true file system (albeit
absent), does not appear in the event of a referral, but only when a file system has been
accessed at this location and has subsequently been migrated.

•

•

•

•
•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 237

FSLI4GF_GOING indicates that a replica, while still available, should not be used further. The
client, if using it, should make an orderly transfer to another file system instance as
expeditiously as possible. It is expected that file systems going out of service will be
announced as FSLI4GF_GOING some time before the actual loss of service. It is also expected
that the fli_valid_for value will be sufficiently small to allow clients to detect and act on
scheduled events, while large enough that the cost of the requests to fetch the
fs_locations_info values will not be excessive. Values on the order of ten minutes seem
reasonable.

When this flag is seen as part of a transition into a new file system, a client might choose to
transfer immediately to another replica, or it may reference the current file system and only
transition when a migration event occurs. Similarly, when this flag appears as a replica in
the referral, clients would likely avoid being referred to this instance whenever there is
another choice.

This flag, like the other items within fls_info, applies to the replica rather than to a particular
path to that replica. When it appears, a transition to a new replica, rather than to a different
path to the same replica, is indicated.

FSLI4GF_SPLIT indicates that when a transition occurs from the current file system instance
to this one, the replacement may consist of multiple file systems. In this case, the client has to
be prepared for the possibility that objects on the same file system before migration will be
on different ones after. Note that FSLI4GF_SPLIT is not incompatible with the file systems
belonging to the same fileid class since, if one has a set of fileids that are unique within a file
system, each subset assigned to a smaller file system after migration would not have any
conflicts internal to that file system.

A client, in the case of a split file system, will interrogate existing files with which it has
continuing connection (it is free to simply forget cached filehandles). If the client remembers
the directory filehandle associated with each open file, it may proceed upward using
LOOKUPP to find the new file system boundaries. Note that in the event of a referral, there
will not be any such files and so these actions will not be performed. Instead, a reference to a
portion of the original file system now split off into other file systems will encounter an fsid
change and possibly a further referral.

Once the client recognizes that one file system has been split into two, it can prevent the
disruption of running applications by presenting the two file systems as a single one until a
convenient point to recognize the transition, such as a restart. This would require a mapping
from the server's fsids to fsids as seen by the client, but this is already necessary for other
reasons. As noted above, existing fileids within the two descendant file systems will not
conflict. Providing non-conflicting fileids for newly created files on the split file systems is
the responsibility of the server (or servers working in concert). The server can encode
filehandles such that filehandles generated before the split event can be discerned from
those generated after the split, allowing the server to determine when the need for
emulating two file systems as one is over.

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 238

Although it is possible for this flag to be present in the event of referral, it would generally be
of little interest to the client, since the client is not expected to have information regarding
the current contents of the absent file system.

The transport-flag field (at byte index FSLI4BX_TFLAGS) contains the following bits related to the
transport capabilities of the specific network path(s) specified by the entry:

FSLI4TF_RDMA indicates that any specified network paths provide NFSv4.1 clients access
using an RDMA-capable transport.

Attribute continuity and file system identity information are expressed by defining equivalence
relations on the sets of file systems presented to the client. Each such relation is expressed as a
set of file system equivalence classes. For each relation, a file system has an 8-bit class number.
Two file systems belong to the same class if both have identical non-zero class numbers. Zero is
treated as non-matching. Most often, the relevant question for the client will be whether a given
replica is identical to / continuous with the current one in a given respect, but the information
should be available also as to whether two other replicas match in that respect as well.

The following fields specify the file system's class numbers for the equivalence relations used in
determining the nature of file system transitions. See Sections 11.9 through 11.14 and their
various subsections for details about how this information is to be used. Servers may assign
these values as they wish, so long as file system instances that share the same value have the
specified relationship to one another; conversely, file systems that have the specified relationship
to one another share a common class value. As each instance entry is added, the relationships of
this instance to previously entered instances can be consulted, and if one is found that bears the
specified relationship, that entry's class value can be copied to the new entry. When no such
previous entry exists, a new value for that byte index (not previously used) can be selected, most
likely by incrementing the value of the last class value assigned for that index.

The field with byte index FSLI4BX_CLSIMUL defines the simultaneous-use class for the file
system.
The field with byte index FSLI4BX_CLHANDLE defines the handle class for the file system.
The field with byte index FSLI4BX_CLFILEID defines the fileid class for the file system.
The field with byte index FSLI4BX_CLWRITEVER defines the write-verifier class for the file
system.
The field with byte index FSLI4BX_CLCHANGE defines the change class for the file system.
The field with byte index FSLI4BX_CLREADDIR defines the readdir class for the file system.

Server-specified preference information is also provided via 8-bit values within the fls_info
array. The values provide a rank and an order (see below) to be used with separate values
specifiable for the cases of read-only and writable file systems. These values are compared for
different file systems to establish the server-specified preference, with lower values indicating
"more preferred".

•

•

•
•
•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 239

Rank is used to express a strict server-imposed ordering on clients, with lower values indicating
"more preferred". Clients should attempt to use all replicas with a given rank before they use one
with a higher rank. Only if all of those file systems are unavailable should the client proceed to
those of a higher rank. Because specifying a rank will override client preferences, servers should
be conservative about using this mechanism, particularly when the environment is one in which
client communication characteristics are neither tightly controlled nor visible to the server.

Within a rank, the order value is used to specify the server's preference to guide the client's
selection when the client's own preferences are not controlling, with lower values of order
indicating "more preferred". If replicas are approximately equal in all respects, clients should
defer to the order specified by the server. When clients look at server latency as part of their
selection, they are free to use this criterion, but it is suggested that when latency differences are
not significant, the server-specified order should guide selection.

The field at byte index FSLI4BX_READRANK gives the rank value to be used for read-only
access.
The field at byte index FSLI4BX_READORDER gives the order value to be used for read-only
access.
The field at byte index FSLI4BX_WRITERANK gives the rank value to be used for writable
access.
The field at byte index FSLI4BX_WRITEORDER gives the order value to be used for writable
access.

Depending on the potential need for write access by a given client, one of the pairs of rank and
order values is used. The read rank and order should only be used if the client knows that only
reading will ever be done or if it is prepared to switch to a different replica in the event that any
write access capability is required in the future.

•

•

•

•

11.17.2. The fs_locations_info4 Structure

The fs_locations_info4 structure, encoding the fs_locations_info attribute, contains the following:

The fli_flags field, which contains general flags that affect the interpretation of this
fs_locations_info4 structure and all fs_locations_item4 structures within it. The only flag
currently defined is FSLI4IF_VAR_SUB. All bits in the fli_flags field that are not defined
should always be returned as zero.
The fli_fs_root field, which contains the pathname of the root of the current file system on
the current server, just as it does in the fs_locations4 structure.
An array called fli_items of fs_locations4_item structures, which contain information about
replicas of the current file system. Where the current file system is actually present, or has
been present, i.e., this is not a referral situation, one of the fs_locations_item4 structures will
contain an fs_locations_server4 for the current server. This structure will have
FSLI4GF_ABSENT set if the current file system is absent, i.e., normal access to it will return
NFS4ERR_MOVED.
The fli_valid_for field specifies a time in seconds for which it is reasonable for a client to use
the fs_locations_info attribute without refetch. The fli_valid_for value does not provide a

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 240

guarantee of validity since servers can unexpectedly go out of service or become inaccessible
for any number of reasons. Clients are well-advised to refetch this information for an
actively accessed file system at every fli_valid_for seconds. This is particularly important
when file system replicas may go out of service in a controlled way using the
FSLI4GF_GOING flag to communicate an ongoing change. The server should set fli_valid_for
to a value that allows well-behaved clients to notice the FSLI4GF_GOING flag and make an
orderly switch before the loss of service becomes effective. If this value is zero, then no
refetch interval is appropriate and the client need not refetch this data on any particular
schedule. In the event of a transition to a new file system instance, a new value of the
fs_locations_info attribute will be fetched at the destination. It is to be expected that this may
have a different fli_valid_for value, which the client should then use in the same fashion as
the previous value. Because a refetch of the attribute causes information from all component
entries to be refetched, the server will typically provide a low value for this field if any of the
replicas are likely to go out of service in a short time frame. Note that, because of the ability
of the server to return NFS4ERR_MOVED to trigger the use of different paths, when alternate
trunked paths are available, there is generally no need to use low values of fli_valid_for in
connection with the management of alternate paths to the same replica.

The FSLI4IF_VAR_SUB flag within fli_flags controls whether variable substitution is to be
enabled. See Section 11.17.3 for an explanation of variable substitution.

11.17.3. The fs_locations_item4 Structure

The fs_locations_item4 structure contains a pathname (in the field fli_rootpath) that encodes the
path of the target file system replicas on the set of servers designated by the included
fs_locations_server4 entries. The precise manner in which this target location is specified
depends on the value of the FSLI4IF_VAR_SUB flag within the associated fs_locations_info4
structure.

If this flag is not set, then fli_rootpath simply designates the location of the target file system
within each server's single-server namespace just as it does for the rootpath within the
fs_location4 structure. When this bit is set, however, component entries of a certain form are
subject to client-specific variable substitution so as to allow a degree of namespace non-
uniformity in order to accommodate the selection of client-specific file system targets to adapt to
different client architectures or other characteristics.

When such substitution is in effect, a variable beginning with the string "${" and ending with the
string "}" and containing a colon is to be replaced by the client-specific value associated with that
variable. The string "unknown" should be used by the client when it has no value for such a
variable. The pathname resulting from such substitutions is used to designate the target file
system, so that different clients may have different file systems, corresponding to that location in
the multi-server namespace.

As mentioned above, such substituted pathname variables contain a colon. The part before the
colon is to be a DNS domain name, and the part after is to be a case-insensitive alphanumeric
string.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 241

Where the domain is "ietf.org", only variable names defined in this document or subsequent
Standards Track RFCs are subject to such substitution. Organizations are free to use their domain
names to create their own sets of client-specific variables, to be subject to such substitution. In
cases where such variables are intended to be used more broadly than a single organization,
publication of an Informational RFC defining such variables is .

The variable ${ietf.org:CPU_ARCH} is used to denote that the CPU architecture object files are
compiled. This specification does not limit the acceptable values (except that they must be valid
UTF-8 strings), but such values as "x86", "x86_64", and "sparc" would be expected to be used in
line with industry practice.

The variable ${ietf.org:OS_TYPE} is used to denote the operating system, and thus the kernel and
library APIs, for which code might be compiled. This specification does not limit the acceptable
values (except that they must be valid UTF-8 strings), but such values as "linux" and "freebsd"
would be expected to be used in line with industry practice.

The variable ${ietf.org:OS_VERSION} is used to denote the operating system version, and thus the
specific details of versioned interfaces, for which code might be compiled. This specification does
not limit the acceptable values (except that they must be valid UTF-8 strings). However,
combinations of numbers and letters with interspersed dots would be expected to be used in line
with industry practice, with the details of the version format depending on the specific value of
the variable ${ietf.org:OS_TYPE} with which it is used.

Use of these variables could result in the direction of different clients to different file systems on
the same server, as appropriate to particular clients. In cases in which the target file systems are
located on different servers, a single server could serve as a referral point so that each valid
combination of variable values would designate a referral hosted on a single server, with the
targets of those referrals on a number of different servers.

Because namespace administration is affected by the values selected to substitute for various
variables, clients should provide convenient means of determining what variable substitutions a
client will implement, as well as, where appropriate, providing means to control the
substitutions to be used. The exact means by which this will be done is outside the scope of this
specification.

Although variable substitution is most suitable for use in the context of referrals, it may be used
in the context of replication and migration. If it is used in these contexts, the server must ensure
that no matter what values the client presents for the substituted variables, the result is always a
valid successor file system instance to that from which a transition is occurring, i.e., that the data
is identical or represents a later image of a writable file system.

Note that when fli_rootpath is a null pathname (that is, one with zero components), the file
system designated is at the root of the specified server, whether or not the FSLI4IF_VAR_SUB flag
within the associated fs_locations_info4 structure is set.

RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 242

11.18. The Attribute fs_status
In an environment in which multiple copies of the same basic set of data are available,
information regarding the particular source of such data and the relationships among different
copies can be very helpful in providing consistent data to applications.

The boolean fss_absent indicates whether the file system is currently absent. This value will be
set if the file system was previously present and becomes absent, or if the file system has never
been present and the type is STATUS4_REFERRAL. When this boolean is set and the type is not
STATUS4_REFERRAL, the remaining information in the fs4_status reflects that last valid when the
file system was present.

The fss_type field indicates the kind of file system image represented. This is of particular
importance when using the version values to determine appropriate succession of file system
images. When fss_absent is set, and the file system was previously present, the value of fss_type
reflected is that when the file was last present. Five values are distinguished:

STATUS4_FIXED, which indicates a read-only image in the sense that it will never change.
The possibility is allowed that, as a result of migration or switch to a different image,
changed data can be accessed, but within the confines of this instance, no change is allowed.
The client can use this fact to cache aggressively.
STATUS4_VERSIONED, which indicates that the image, like the STATUS4_UPDATED case, is
updated externally, but it provides a guarantee that the server will carefully update an
associated version value so that the client can protect itself from a situation in which it reads
data from one version of the file system and then later reads data from an earlier version of
the same file system. See below for a discussion of how this can be done.
STATUS4_UPDATED, which indicates an image that cannot be updated by the user writing to
it but that may be changed externally, typically because it is a periodically updated copy of
another writable file system somewhere else. In this case, version information is not
provided, and the client does not have the responsibility of making sure that this version

enum fs4_status_type {
 STATUS4_FIXED = 1,
 STATUS4_UPDATED = 2,
 STATUS4_VERSIONED = 3,
 STATUS4_WRITABLE = 4,
 STATUS4_REFERRAL = 5
};

struct fs4_status {
 bool fss_absent;
 fs4_status_type fss_type;
 utf8str_cs fss_source;
 utf8str_cs fss_current;
 int32_t fss_age;
 nfstime4 fss_version;
};

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 243

only advances upon a file system instance transition. In this case, it is the responsibility of
the server to make sure that the data presented after a file system instance transition is a
proper successor image and includes all changes seen by the client and any change made
before all such changes.
STATUS4_WRITABLE, which indicates that the file system is an actual writable one. The client
need not, of course, actually write to the file system, but once it does, it should not accept a
transition to anything other than a writable instance of that same file system.
STATUS4_REFERRAL, which indicates that the file system in question is absent and has never
been present on this server.

Note that in the STATUS4_UPDATED and STATUS4_VERSIONED cases, the server is responsible for
the appropriate handling of locks that are inconsistent with external changes to delegations. If a
server gives out delegations, they be recalled before an inconsistent change is made to
the data, and be revoked if this is not possible. Similarly, if an OPEN is inconsistent with
data that is changed (the OPEN has OPEN4_SHARE_DENY_WRITE/OPEN4_SHARE_DENY_BOTH
and the data is changed), that OPEN be considered administratively revoked.

The opaque strings fss_source and fss_current provide a way of presenting information about the
source of the file system image being present. It is not intended that the client do anything with
this information other than make it available to administrative tools. It is intended that this
information be helpful when researching possible problems with a file system image that might
arise when it is unclear if the correct image is being accessed and, if not, how that image came to
be made. This kind of diagnostic information will be helpful, if, as seems likely, copies of file
systems are made in many different ways (e.g., simple user-level copies, file-system-level point-
in-time copies, clones of the underlying storage), under a variety of administrative
arrangements. In such environments, determining how a given set of data was constructed can
be very helpful in resolving problems.

The opaque string fss_source is used to indicate the source of a given file system with the
expectation that tools capable of creating a file system image propagate this information, when
possible. It is understood that this may not always be possible since a user-level copy may be
thought of as creating a new data set and the tools used may have no mechanism to propagate
this data. When a file system is initially created, it is desirable to associate with it data regarding
how the file system was created, where it was created, who created it, etc. Making this
information available in this attribute in a human-readable string will be helpful for applications
and system administrators and will also serve to make it available when the original file system
is used to make subsequent copies.

The opaque string fss_current should provide whatever information is available about the
source of the current copy. Such information includes the tool creating it, any relevant
parameters to that tool, the time at which the copy was done, the user making the change, the
server on which the change was made, etc. All information should be in a human-readable
string.

•

•

SHOULD
MUST

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 244

The field fss_age provides an indication of how out-of-date the file system currently is with
respect to its ultimate data source (in case of cascading data updates). This complements the
fls_currency field of fs_locations_server4 (see Section 11.17) in the following way: the
information in fls_currency gives a bound for how out of date the data in a file system might
typically get, while the value in fss_age gives a bound on how out-of-date that data actually is.
Negative values imply that no information is available. A zero means that this data is known to
be current. A positive value means that this data is known to be no older than that number of
seconds with respect to the ultimate data source. Using this value, the client may be able to
decide that a data copy is too old, so that it may search for a newer version to use.

The fss_version field provides a version identification, in the form of a time value, such that
successive versions always have later time values. When the fs_type is anything other than
STATUS4_VERSIONED, the server may provide such a value, but there is no guarantee as to its
validity and clients will not use it except to provide additional information to add to fss_source
and fss_current.

When fss_type is STATUS4_VERSIONED, servers provide a value of fss_version that
progresses monotonically whenever any new version of the data is established. This allows the
client, if reliable image progression is important to it, to fetch this attribute as part of each
COMPOUND where data or metadata from the file system is used.

When it is important to the client to make sure that only valid successor images are accepted, it
must make sure that it does not read data or metadata from the file system without updating its
sense of the current state of the image. This is to avoid the possibility that the fs_status that the
client holds will be one for an earlier image, which would cause the client to accept a new file
system instance that is later than that but still earlier than the updated data read by the client.

In order to accept valid images reliably, the client must do a GETATTR of the fs_status attribute
that follows any interrogation of data or metadata within the file system in question. Often this is
most conveniently done by appending such a GETATTR after all other operations that reference a
given file system. When errors occur between reading file system data and performing such a
GETATTR, care must be exercised to make sure that the data in question is not used before
obtaining the proper fs_status value. In this connection, when an OPEN is done within such a
versioned file system and the associated GETATTR of fs_status is not successfully completed, the
open file in question must not be accessed until that fs_status is fetched.

The procedure above will ensure that before using any data from the file system the client has in
hand a newly-fetched current version of the file system image. Multiple values for multiple
requests in flight can be resolved by assembling them into the required partial order (and the
elements should form a total order within the partial order) and using the last. The client may
then, when switching among file system instances, decline to use an instance that does not have
an fss_type of STATUS4_VERSIONED or whose fss_version field is earlier than the last one
obtained from the predecessor file system instance.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 245

12. Parallel NFS (pNFS)

12.1. Introduction
pNFS is an feature within NFSv4.1; the pNFS feature set allows direct client access to
the storage devices containing file data. When file data for a single NFSv4 server is stored on
multiple and/or higher-throughput storage devices (by comparison to the server's throughput
capability), the result can be significantly better file access performance. The relationship among
multiple clients, a single server, and multiple storage devices for pNFS (server and clients have
access to all storage devices) is shown in Figure 1.

In this model, the clients, server, and storage devices are responsible for managing file access.
This is in contrast to NFSv4 without pNFS, where it is primarily the server's responsibility; some
of this responsibility may be delegated to the client under strictly specified conditions. See
Section 12.2.5 for a discussion of the Storage Protocol. See Section 12.2.6 for a discussion of the
Control Protocol.

pNFS takes the form of operations that manage protocol objects called 'layouts'
(Section 12.2.7) that contain a byte-range and storage location information. The layout is
managed in a similar fashion as NFSv4.1 data delegations. For example, the layout is leased,
recallable, and revocable. However, layouts are distinct abstractions and are manipulated with
new operations. When a client holds a layout, it is granted the ability to directly access the byte-
range at the storage location specified in the layout.

There are interactions between layouts and other NFSv4.1 abstractions such as data delegations
and byte-range locking. Delegation issues are discussed in Section 12.5.5. Byte-range locking
issues are discussed in Sections 12.2.9 and 12.5.1.

OPTIONAL

Figure 1

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol|
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 246

12.2. pNFS Definitions
NFSv4.1's pNFS feature provides parallel data access to a file system that stripes its content
across multiple storage servers. The first instantiation of pNFS, as part of NFSv4.1, separates the
file system protocol processing into two parts: metadata processing and data processing. Data
consist of the contents of regular files that are striped across storage servers. Data striping occurs
in at least two ways: on a file-by-file basis and, within sufficiently large files, on a block-by-block
basis. In contrast, striped access to metadata by pNFS clients is not provided in NFSv4.1, even
though the file system back end of a pNFS server might stripe metadata. Metadata consist of
everything else, including the contents of non-regular files (e.g., directories); see Section 12.2.1.
The metadata functionality is implemented by an NFSv4.1 server that supports pNFS and the
operations described in Section 18; such a server is called a metadata server (Section 12.2.2).

The data functionality is implemented by one or more storage devices, each of which are
accessed by the client via a storage protocol. A subset (defined in Section 13.6) of NFSv4.1 is one
such storage protocol. New terms are introduced to the NFSv4.1 nomenclature and existing terms
are clarified to allow for the description of the pNFS feature.

12.2.3. pNFS Client

An NFSv4.1 client that supports pNFS operations and supports at least one storage protocol for
performing I/O to storage devices.

12.2.4. Storage Device

A storage device stores a regular file's data, but leaves metadata management to the metadata
server. A storage device could be another NFSv4.1 server, an object-based storage device (OSD), a
block device accessed over a System Area Network (SAN, e.g., either FiberChannel or iSCSI SAN),
or some other entity.

12.2.1. Metadata

Information about a file system object, such as its name, location within the namespace, owner,
ACL, and other attributes. Metadata may also include storage location information, and this will
vary based on the underlying storage mechanism that is used.

12.2.2. Metadata Server

An NFSv4.1 server that supports the pNFS feature. A variety of architectural choices exist for the
metadata server and its use of file system information held at the server. Some servers may
contain metadata only for file objects residing at the metadata server, while the file data resides
on associated storage devices. Other metadata servers may hold both metadata and a varying
degree of file data.

12.2.5. Storage Protocol

As noted in Figure 1, the storage protocol is the method used by the client to store and retrieve
data directly from the storage devices.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 247

The NFSv4.1 pNFS feature has been structured to allow for a variety of storage protocols to be
defined and used. One example storage protocol is NFSv4.1 itself (as documented in Section 13).
Other options for the storage protocol are described elsewhere and include:

Block/volume protocols such as Internet SCSI (iSCSI) and FCP . The block/volume
protocol support can be independent of the addressing structure of the block/volume
protocol used, allowing more than one protocol to access the same file data and enabling
extensibility to other block/volume protocols. See for a layout specification that allows
pNFS to use block/volume storage protocols.
Object protocols such as OSD over iSCSI or Fibre Channel . See for a layout
specification that allows pNFS to use object storage protocols.

It is possible that various storage protocols are available to both client and server and it may be
possible that a client and server do not have a matching storage protocol available to them.
Because of this, the pNFS server support normal NFSv4.1 access to any file accessible by
the pNFS feature; this will allow for continued interoperability between an NFSv4.1 client and
server.

• [56] [57]

[48]

• [58] [47]

MUST

12.2.6. Control Protocol

As noted in Figure 1, the control protocol is used by the exported file system between the
metadata server and storage devices. Specification of such protocols is outside the scope of the
NFSv4.1 protocol. Such control protocols would be used to control activities such as the allocation
and deallocation of storage, the management of state required by the storage devices to perform
client access control, and, depending on the storage protocol, the enforcement of authentication
and authorization so that restrictions that would be enforced by the metadata server are also
enforced by the storage device.

A particular control protocol is not by NFSv4.1 but requirements are placed on the
control protocol for maintaining attributes like modify time, the change attribute, and the end-of-
file (EOF) position. Note that if pNFS is layered over a clustered, parallel file system (e.g.,

), the mechanisms that enable clustering and parallelism in that file system can be
considered the control protocol.

REQUIRED

PVFS
[59]

12.2.7. Layout Types

A layout describes the mapping of a file's data to the storage devices that hold the data. A layout
is said to belong to a specific layout type (data type layouttype4, see Section 3.3.13). The layout
type allows for variants to handle different storage protocols, such as those associated with
block/volume , object , and file (Section 13) layout types. A metadata server, along with its
control protocol, support at least one layout type. A private sub-range of the layout type
namespace is also defined. Values from the private layout type range be used for internal
testing or experimentation (see Section 3.3.13).

As an example, the organization of the file layout type could be an array of tuples (e.g., device ID,
filehandle), along with a definition of how the data is stored across the devices (e.g., striping). A
block/volume layout might be an array of tuples that store <device ID, block number, block
count> along with information about block size and the associated file offset of the block

[48] [47]
MUST

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 248

number. An object layout might be an array of tuples <device ID, object ID> and an additional
structure (i.e., the aggregation map) that defines how the logical byte sequence of the file data is
serialized into the different objects. Note that the actual layouts are typically more complex than
these simple expository examples.

Requests for pNFS-related operations will often specify a layout type. Examples of such
operations are GETDEVICEINFO and LAYOUTGET. The response for these operations will include
structures such as a device_addr4 or a layout4, each of which includes a layout type within it.
The layout type sent by the server always be the same one requested by the client. When a
server sends a response that includes a different layout type, the client ignore the
response and behave as if the server had returned an error response.

MUST
SHOULD

12.2.8. Layout

A layout defines how a file's data is organized on one or more storage devices. There are many
potential layout types; each of the layout types are differentiated by the storage protocol used to
access data and by the aggregation scheme that lays out the file data on the underlying storage
devices. A layout is precisely identified by the tuple <client ID, filehandle, layout type, iomode,
range>, where filehandle refers to the filehandle of the file on the metadata server.

It is important to define when layouts overlap and/or conflict with each other. For two layouts
with overlapping byte-ranges to actually overlap each other, both layouts must be of the same
layout type, correspond to the same filehandle, and have the same iomode. Layouts conflict when
they overlap and differ in the content of the layout (i.e., the storage device/file mapping
parameters differ). Note that differing iomodes do not lead to conflicting layouts. It is permissible
for layouts with different iomodes, pertaining to the same byte-range, to be held by the same
client. An example of this would be copy-on-write functionality for a block/volume layout type.

12.2.9. Layout Iomode

The layout iomode (data type layoutiomode4, see Section 3.3.20) indicates to the metadata server
the client's intent to perform either just READ operations or a mixture containing READ and
WRITE operations. For certain layout types, it is useful for a client to specify this intent at the
time it sends LAYOUTGET (Section 18.43). For example, for block/volume-based protocols, block
allocation could occur when a LAYOUTIOMODE4_RW iomode is specified. A special
LAYOUTIOMODE4_ANY iomode is defined and can only be used for LAYOUTRETURN and
CB_LAYOUTRECALL, not for LAYOUTGET. It specifies that layouts pertaining to both
LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW iomodes are being returned or recalled,
respectively.

A storage device may validate I/O with regard to the iomode; this is dependent upon storage
device implementation and layout type. Thus, if the client's layout iomode is inconsistent with
the I/O being performed, the storage device may reject the client's I/O with an error indicating
that a new layout with the correct iomode should be obtained via LAYOUTGET. For example, if a
client gets a layout with a LAYOUTIOMODE4_READ iomode and performs a WRITE to a storage
device, the storage device is allowed to reject that WRITE.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 249

The use of the layout iomode does not conflict with OPEN share modes or byte-range LOCK
operations; open share mode and byte-range lock conflicts are enforced as they are without the
use of pNFS and are logically separate from the pNFS layout level. Open share modes and byte-
range locks are the preferred method for restricting user access to data files. For example, an
OPEN of OPEN4_SHARE_ACCESS_WRITE does not conflict with a LAYOUTGET containing an
iomode of LAYOUTIOMODE4_RW performed by another client. Applications that depend on
writing into the same file concurrently may use byte-range locking to serialize their accesses.

12.2.10. Device IDs

The device ID (data type deviceid4, see Section 3.3.14) identifies a group of storage devices. The
scope of a device ID is the pair <client ID, layout type>. In practice, a significant amount of
information may be required to fully address a storage device. Rather than embedding all such
information in a layout, layouts embed device IDs. The NFSv4.1 operation GETDEVICEINFO
(Section 18.40) is used to retrieve the complete address information (including all device
addresses for the device ID) regarding the storage device according to its layout type and device
ID. For example, the address of an NFSv4.1 data server or of an object-based storage device could
be an IP address and port. The address of a block storage device could be a volume label.

Clients cannot expect the mapping between a device ID and its storage device address(es) to
persist across metadata server restart. See Section 12.7.4 for a description of how recovery works
in that situation.

A device ID lives as long as there is a layout referring to the device ID. If there are no layouts
referring to the device ID, the server is free to delete the device ID any time. Once a device ID is
deleted by the server, the server reuse the device ID for the same layout type and
client ID again. This requirement is feasible because the device ID is 16 bytes long, leaving
sufficient room to store a generation number if the server's implementation requires most of the
rest of the device ID's content to be reused. This requirement is necessary because otherwise the
race conditions between asynchronous notification of device ID addition and deletion would be
too difficult to sort out.

Device ID to device address mappings are not leased, and can be changed at any time. (Note that
while device ID to device address mappings are likely to change after the metadata server
restarts, the server is not required to change the mappings.) A server has two choices for
changing mappings. It can recall all layouts referring to the device ID or it can use a notification
mechanism.

The NFSv4.1 protocol has no optimal way to recall all layouts that referred to a particular device
ID (unless the server associates a single device ID with a single fsid or a single client ID; in which
case, CB_LAYOUTRECALL has options for recalling all layouts associated with the fsid, client ID
pair, or just the client ID).

Via a notification mechanism (see Section 20.12), device ID to device address mappings can
change over the duration of server operation without recalling or revoking the layouts that refer
to device ID. The notification mechanism can also delete a device ID, but only if the client has no
layouts referring to the device ID. A notification of a change to a device ID to device address

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 250

mapping will immediately or eventually invalidate some or all of the device ID's mappings. The
server support notifications and the client must request them before they can be used. For
further information about the notification types, see Section 20.12.

MUST

GETDEVICEINFO

GETDEVICELIST

LAYOUTGET

LAYOUTCOMMIT

LAYOUTRETURN

CB_LAYOUTRECALL

CB_RECALL_ANY

CB_RECALLABLE_OBJ_AVAIL

CB_NOTIFY_DEVICEID

12.3. pNFS Operations
NFSv4.1 has several operations that are needed for pNFS servers, regardless of layout type or
storage protocol. These operations are all sent to a metadata server and summarized here. While
pNFS is an feature, if pNFS is implemented, some operations are in order to
comply with pNFS. See Section 17.

These are the fore channel pNFS operations:

(Section 18.40), as noted previously (Section 12.2.10), returns the mapping of
device ID to storage device address.

(Section 18.41) allows clients to fetch all device IDs for a specific file system.

(Section 18.43) is used by a client to get a layout for a file.

(Section 18.42) is used to inform the metadata server of the client's intent to
commit data that has been written to the storage device (the storage device as originally
indicated in the return value of LAYOUTGET).

(Section 18.44) is used to return layouts for a file, a file system ID (FSID), or a
client ID.

These are the backchannel pNFS operations:

(Section 20.3) recalls a layout, all layouts belonging to a file system, or all
layouts belonging to a client ID.

(Section 20.6) tells a client that it needs to return some number of recallable
objects, including layouts, to the metadata server.

(Section 20.7) tells a client that a recallable object that it was
denied (in case of pNFS, a layout denied by LAYOUTGET) due to resource exhaustion is
now available.

(Section 20.12) notifies the client of changes to device IDs.

OPTIONAL REQUIRED

12.4. pNFS Attributes
A number of attributes specific to pNFS are listed and described in Section 5.12.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 251

12.5. Layout Semantics
12.5.1. Guarantees Provided by Layouts

Layouts grant to the client the ability to access data located at a storage device with the
appropriate storage protocol. The client is guaranteed the layout will be recalled when one of
two things occur: either a conflicting layout is requested or the state encapsulated by the layout
becomes invalid (this can happen when an event directly or indirectly modifies the layout).
When a layout is recalled and returned by the client, the client continues with the ability to
access file data with normal NFSv4.1 operations through the metadata server. Only the ability to
access the storage devices is affected.

The requirement of NFSv4.1 that all user access rights be obtained through the appropriate
OPEN, LOCK, and ACCESS operations is not modified with the existence of layouts. Layouts are
provided to NFSv4.1 clients, and user access still follows the rules of the protocol as if they did
not exist. It is a requirement that for a client to access a storage device, a layout must be held by
the client. If a storage device receives an I/O request for a byte-range for which the client does
not hold a layout, the storage device reject that I/O request. Note that the act of
modifying a file for which a layout is held does not necessarily conflict with the holding of the
layout that describes the file being modified. Therefore, it is the requirement of the storage
protocol or layout type that determines the necessary behavior. For example, block/volume
layout types require that the layout's iomode agree with the type of I/O being performed.

Depending upon the layout type and storage protocol in use, storage device access permissions
may be granted by LAYOUTGET and may be encoded within the type-specific layout. For an
example of storage device access permissions, see an object-based protocol such as . If access
permissions are encoded within the layout, the metadata server recall the layout when
those permissions become invalid for any reason -- for example, when a file becomes unwritable
or inaccessible to a client. Note, clients are still required to perform the appropriate OPEN, LOCK,
and ACCESS operations as described above. The degree to which it is possible for the client to
circumvent these operations and the consequences of doing so must be clearly specified by the
individual layout type specifications. In addition, these specifications must be clear about the
requirements and non-requirements for the checking performed by the server.

In the presence of pNFS functionality, mandatory byte-range locks behave as they would
without pNFS. Therefore, if mandatory file locks and layouts are provided simultaneously, the
storage device be able to enforce the mandatory byte-range locks. For example, if one
client obtains a mandatory byte-range lock and a second client accesses the storage device, the
storage device appropriately restrict I/O for the range of the mandatory byte-range lock. If
the storage device is incapable of providing this check in the presence of mandatory byte-range
locks, then the metadata server grant layouts and mandatory byte-range locks
simultaneously.

MUST

SHOULD

[58]
SHOULD

MUST

MUST

MUST

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 252

12.5.2. Getting a Layout

A client obtains a layout with the LAYOUTGET operation. The metadata server will grant layouts
of a particular type (e.g., block/volume, object, or file). The client selects an appropriate layout
type that the server supports and the client is prepared to use. The layout returned to the client
might not exactly match the requested byte-range as described in Section 18.43.3. As needed a
client may send multiple LAYOUTGET operations; these might result in multiple overlapping,
non-conflicting layouts (see Section 12.2.8).

In order to get a layout, the client must first have opened the file via the OPEN operation. When a
client has no layout on a file, it present an open stateid, a delegation stateid, or a byte-range
lock stateid in the loga_stateid argument. A successful LAYOUTGET result includes a layout
stateid. The first successful LAYOUTGET processed by the server using a non-layout stateid as an
argument have the "seqid" field of the layout stateid in the response set to one. Thereafter,
the client use a layout stateid (see Section 12.5.3) on future invocations of LAYOUTGET on
the file, and the "seqid" be set to zero. Once the layout has been retrieved, it can be
held across multiple OPEN and CLOSE sequences. Therefore, a client may hold a layout for a file
that is not currently open by any user on the client. This allows for the caching of layouts beyond
CLOSE.

The storage protocol used by the client to access the data on the storage device is determined by
the layout's type. The client is responsible for matching the layout type with an available method
to interpret and use the layout. The method for this layout type selection is outside the scope of
the pNFS functionality.

Although the metadata server is in control of the layout for a file, the pNFS client can provide
hints to the server when a file is opened or created about the preferred layout type and
aggregation schemes. pNFS introduces a layout_hint attribute (Section 5.12.4) that the client can
set at file creation time to provide a hint to the server for new files. Setting this attribute
separately, after the file has been created might make it difficult, or impossible, for the server
implementation to comply.

Because the EXCLUSIVE4 createmode4 does not allow the setting of attributes at file creation
time, NFSv4.1 introduces the EXCLUSIVE4_1 createmode4, which does allow attributes to be set
at file creation time. In addition, if the session is created with persistent reply caches,
EXCLUSIVE4_1 is neither necessary nor allowed. Instead, GUARDED4 both works better and is
prescribed. Table 18 in Section 18.16.3 summarizes how a client is allowed to send an exclusive
create.

MUST

MUST
MUST

MUST NOT

12.5.3. Layout Stateid

As with all other stateids, the layout stateid consists of a "seqid" and "other" field. Once a layout
stateid is established, the "other" field will stay constant unless the stateid is revoked or the client
returns all layouts on the file and the server disposes of the stateid. The "seqid" field is initially
set to one, and is never zero on any NFSv4.1 operation that uses layout stateids, whether it is a

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 253

fore channel or backchannel operation. After the layout stateid is established, the server
increments by one the value of the "seqid" in each subsequent LAYOUTGET and LAYOUTRETURN
response, and in each CB_LAYOUTRECALL request.

Given the design goal of pNFS to provide parallelism, the layout stateid differs from other stateid
types in that the client is expected to send LAYOUTGET and LAYOUTRETURN operations in
parallel. The "seqid" value is used by the client to properly sort responses to LAYOUTGET and
LAYOUTRETURN. The "seqid" is also used to prevent race conditions between LAYOUTGET and
CB_LAYOUTRECALL. Given that the processing rules differ from layout stateids and other stateid
types, only the pNFS sections of this document should be considered to determine proper layout
stateid handling.

Once the client receives a layout stateid, it use the correct "seqid" for subsequent
LAYOUTGET or LAYOUTRETURN operations. The correct "seqid" is defined as the highest "seqid"
value from responses of fully processed LAYOUTGET or LAYOUTRETURN operations or
arguments of a fully processed CB_LAYOUTRECALL operation. Since the server is incrementing
the "seqid" value on each layout operation, the client may determine the order of operation
processing by inspecting the "seqid" value. In the case of overlapping layout ranges, the ordering
information will provide the client the knowledge of which layout ranges are held. Note that
overlapping layout ranges may occur because of the client's specific requests or because the
server is allowed to expand the range of a requested layout and notify the client in the
LAYOUTRETURN results. Additional layout stateid sequencing requirements are provided in
Section 12.5.5.2.

The client's receipt of a "seqid" is not sufficient for subsequent use. The client must fully process
the operations before the "seqid" can be used. For LAYOUTGET results, if the client is not using
the forgetful model (Section 12.5.5.1), it first update its record of what ranges of the file's
layout it has before using the seqid. For LAYOUTRETURN results, the client delete the range
from its record of what ranges of the file's layout it had before using the seqid. For
CB_LAYOUTRECALL arguments, the client send a response to the recall before using the
seqid. The fundamental requirement in client processing is that the "seqid" is used to provide the
order of processing. LAYOUTGET results may be processed in parallel. LAYOUTRETURN results
may be processed in parallel. LAYOUTGET and LAYOUTRETURN responses may be processed in
parallel as long as the ranges do not overlap. CB_LAYOUTRECALL request processing be
processed in "seqid" order at all times.

Once a client has no more layouts on a file, the layout stateid is no longer valid and be
used. Any attempt to use such a layout stateid will result in NFS4ERR_BAD_STATEID.

MUST

MUST
MUST

MUST

MUST

MUST NOT

12.5.4. Committing a Layout

Allowing for varying storage protocol capabilities, the pNFS protocol does not require the
metadata server and storage devices to have a consistent view of file attributes and data location
mappings. Data location mapping refers to aspects such as which offsets store data as opposed to
storing holes (see Section 13.4.4 for a discussion). Related issues arise for storage protocols where
a layout may hold provisionally allocated blocks where the allocation of those blocks does not
survive a complete restart of both the client and server. Because of this inconsistency, it is

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 254

necessary to resynchronize the client with the metadata server and its storage devices and make
any potential changes available to other clients. This is accomplished by use of the
LAYOUTCOMMIT operation.

The LAYOUTCOMMIT operation is responsible for committing a modified layout to the metadata
server. The data should be written and committed to the appropriate storage devices before the
LAYOUTCOMMIT occurs. The scope of the LAYOUTCOMMIT operation depends on the storage
protocol in use. It is important to note that the level of synchronization is from the point of view
of the client that sent the LAYOUTCOMMIT. The updated state on the metadata server need only
reflect the state as of the client's last operation previous to the LAYOUTCOMMIT. The metadata
server is not to maintain a global view that accounts for other clients' I/O that may
have occurred within the same time frame.

For block/volume-based layouts, LAYOUTCOMMIT may require updating the block list that
comprises the file and committing this layout to stable storage. For file-based layouts,
synchronization of attributes between the metadata and storage devices, primarily the size
attribute, is required.

The control protocol is free to synchronize the attributes before it receives a LAYOUTCOMMIT;
however, upon successful completion of a LAYOUTCOMMIT, state that exists on the metadata
server that describes the file be synchronized with the state that exists on the storage
devices that comprise that file as of the client's last sent operation. Thus, a client that queries the
size of a file between a WRITE to a storage device and the LAYOUTCOMMIT might observe a size
that does not reflect the actual data written.

The client have a layout in order to send a LAYOUTCOMMIT operation.

12.5.4.1. LAYOUTCOMMIT and change/time_modify
The change and time_modify attributes may be updated by the server when the LAYOUTCOMMIT
operation is processed. The reason for this is that some layout types do not support the update of
these attributes when the storage devices process I/O operations. If a client has a layout with the
LAYOUTIOMODE4_RW iomode on the file, the client provide a suggested value to the server
for time_modify within the arguments to LAYOUTCOMMIT. Based on the layout type, the
provided value may or may not be used. The server should sanity-check the client-provided
values before they are used. For example, the server should ensure that time does not flow
backwards. The client always has the option to set time_modify through an explicit SETATTR
operation.

For some layout protocols, the storage device is able to notify the metadata server of the
occurrence of an I/O; as a result, the change and time_modify attributes may be updated at the
metadata server. For a metadata server that is capable of monitoring updates to the change and
time_modify attributes, LAYOUTCOMMIT processing is not required to update the change
attribute. In this case, the metadata server must ensure that no further update to the data has
occurred since the last update of the attributes; file-based protocols may have enough
information to make this determination or may update the change attribute upon each file
modification. This also applies for the time_modify attribute. If the server implementation is able
to determine that the file has not been modified since the last time_modify update, the server

REQUIRED

MUST

MUST

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 255

need not update time_modify at LAYOUTCOMMIT. At LAYOUTCOMMIT completion, the updated
attributes should be visible if that file was modified since the latest previous LAYOUTCOMMIT or
LAYOUTGET.

12.5.4.2. LAYOUTCOMMIT and size
The size of a file may be updated when the LAYOUTCOMMIT operation is used by the client. One
of the fields in the argument to LAYOUTCOMMIT is loca_last_write_offset; this field indicates the
highest byte offset written but not yet committed with the LAYOUTCOMMIT operation. The data
type of loca_last_write_offset is newoffset4 and is switched on a boolean value, no_newoffset,
that indicates if a previous write occurred or not. If no_newoffset is FALSE, an offset is not given.
If the client has a layout with LAYOUTIOMODE4_RW iomode on the file, with a byte-range
(denoted by the values of lo_offset and lo_length) that overlaps loca_last_write_offset, then the
client set no_newoffset to TRUE and provide an offset that will update the file size. Keep in
mind that offset is not the same as length, though they are related. For example, a
loca_last_write_offset value of zero means that one byte was written at offset zero, and so the
length of the file is at least one byte.

The metadata server may do one of the following:

Update the file's size using the last write offset provided by the client as either the true file
size or as a hint of the file size. If the metadata server has a method available, any new value
for file size should be sanity-checked. For example, the file must not be truncated if the client
presents a last write offset less than the file's current size.
Ignore the client-provided last write offset; the metadata server must have sufficient
knowledge from other sources to determine the file's size. For example, the metadata server
queries the storage devices with the control protocol.

The method chosen to update the file's size will depend on the storage device's and/or the control
protocol's capabilities. For example, if the storage devices are block devices with no knowledge of
file size, the metadata server must rely on the client to set the last write offset appropriately.

The results of LAYOUTCOMMIT contain a new size value in the form of a newsize4 union data
type. If the file's size is set as a result of LAYOUTCOMMIT, the metadata server must reply with
the new size; otherwise, the new size is not provided. If the file size is updated, the metadata
server update the storage devices such that the new file size is reflected when
LAYOUTCOMMIT processing is complete. For example, the client should be able to read up to the
new file size.

The client can extend the length of a file or truncate a file by sending a SETATTR operation to the
metadata server with the size attribute specified. If the size specified is larger than the current
size of the file, the file is "zero extended", i.e., zeros are implicitly added between the file's
previous EOF and the new EOF. (In many implementations, the zero-extended byte-range of the
file consists of unallocated holes in the file.) When the client writes past EOF via WRITE, the
SETATTR operation does not need to be used.

MAY

1.

2.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 256

12.5.4.3. LAYOUTCOMMIT and layoutupdate
The LAYOUTCOMMIT argument contains a loca_layoutupdate field (Section 18.42.1) of data type
layoutupdate4 (Section 3.3.18). This argument is a layout-type-specific structure. The structure
can be used to pass arbitrary layout-type-specific information from the client to the metadata
server at LAYOUTCOMMIT time. For example, if using a block/volume layout, the client can
indicate to the metadata server which reserved or allocated blocks the client used or did not use.
The content of loca_layoutupdate (field lou_body) need not be the same layout-type-specific
content returned by LAYOUTGET (Section 18.43.2) in the loc_body field of the lo_content field of
the logr_layout field. The content of loca_layoutupdate is defined by the layout type specification
and is opaque to LAYOUTCOMMIT.

12.5.5. Recalling a Layout

Since a layout protects a client's access to a file via a direct client-storage-device path, a layout
need only be recalled when it is semantically unable to serve this function. Typically, this occurs
when the layout no longer encapsulates the true location of the file over the byte-range it
represents. Any operation or action, such as server-driven restriping or load balancing, that
changes the layout will result in a recall of the layout. A layout is recalled by the
CB_LAYOUTRECALL callback operation (see Section 20.3) and returned with LAYOUTRETURN (see
Section 18.44). The CB_LAYOUTRECALL operation may recall a layout identified by a byte-range,
all layouts associated with a file system ID (FSID), or all layouts associated with a client ID.
Section 12.5.5.2 discusses sequencing issues surrounding the getting, returning, and recalling of
layouts.

An iomode is also specified when recalling a layout. Generally, the iomode in the recall request
must match the layout being returned; for example, a recall with an iomode of
LAYOUTIOMODE4_RW should cause the client to only return LAYOUTIOMODE4_RW layouts and
not LAYOUTIOMODE4_READ layouts. However, a special LAYOUTIOMODE4_ANY enumeration is
defined to enable recalling a layout of any iomode; in other words, the client must return both
LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW layouts.

A REMOVE operation cause the metadata server to recall the layout to prevent the client
from accessing a non-existent file and to reclaim state stored on the client. Since a REMOVE may
be delayed until the last close of the file has occurred, the recall may also be delayed until this
time. After the last reference on the file has been released and the file has been removed, the
client should no longer be able to perform I/O using the layout. In the case of a file-based layout,
the data server return NFS4ERR_STALE in response to any operation on the removed
file.

Once a layout has been returned, the client send I/Os to the storage devices for the file,
byte-range, and iomode represented by the returned layout. If a client does send an I/O to a
storage device for which it does not hold a layout, the storage device reject the I/O.

SHOULD

SHOULD

MUST NOT

SHOULD

Although pNFS does not alter the file data caching capabilities of clients, or their semantics, it
recognizes that some clients may perform more aggressive write-behind caching to optimize the
benefits provided by pNFS. However, write-behind caching may negatively affect the latency in
returning a layout in response to a CB_LAYOUTRECALL; this is similar to file delegations and the

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 257

impact that file data caching has on DELEGRETURN. Client implementations limit the
amount of unwritten data they have outstanding at any one time in order to prevent excessively
long responses to CB_LAYOUTRECALL. Once a layout is recalled, a server wait one lease
period before taking further action. As soon as a lease period has passed, the server may choose
to fence the client's access to the storage devices if the server perceives the client has taken too
long to return a layout. However, just as in the case of data delegation and DELEGRETURN, the
server may choose to wait, given that the client is showing forward progress on its way to
returning the layout. This forward progress can take the form of successful interaction with the
storage devices or of sub-portions of the layout being returned by the client. The server can also
limit exposure to these problems by limiting the byte-ranges initially provided in the layouts and
thus the amount of outstanding modified data.

SHOULD

MUST

12.5.5.1. Layout Recall Callback Robustness
It has been assumed thus far that pNFS client state (layout ranges and iomode) for a file exactly
matches that of the pNFS server for that file. This assumption leads to the implication that any
callback results in a LAYOUTRETURN or set of LAYOUTRETURNs that exactly match the range in
the callback, since both client and server agree about the state being maintained. However, it can
be useful if this assumption does not always hold. For example:

If conflicts that require callbacks are very rare, and a server can use a multi-file callback to
recover per-client resources (e.g., via an FSID recall or a multi-file recall within a single
CB_COMPOUND), the result may be significantly less client-server pNFS traffic.
It may be useful for servers to maintain information about what ranges are held by a client
on a coarse-grained basis, leading to the server's layout ranges being beyond those actually
held by the client. In the extreme, a server could manage conflicts on a per-file basis, only
sending whole-file callbacks even though clients may request and be granted sub-file ranges.
It may be useful for clients to "forget" details about what layouts and ranges the client
actually has, leading to the server's layout ranges being beyond those that the client "thinks"
it has. As long as the client does not assume it has layouts that are beyond what the server
has granted, this is a safe practice. When a client forgets what ranges and layouts it has, and
it receives a CB_LAYOUTRECALL operation, the client follow up with a
LAYOUTRETURN for what the server recalled, or alternatively return the
NFS4ERR_NOMATCHING_LAYOUT error if it has no layout to return in the recalled range.
In order to avoid errors, it is vital that a client not assign itself layout permissions beyond
what the server has granted, and that the server not forget layout permissions that have
been granted. On the other hand, if a server believes that a client holds a layout that the
client does not know about, it is useful for the client to cleanly indicate completion of the
requested recall either by sending a LAYOUTRETURN operation for the entire requested
range or by returning an NFS4ERR_NOMATCHING_LAYOUT error to the CB_LAYOUTRECALL.

Thus, in light of the above, it is useful for a server to be able to send callbacks for layout ranges it
has not granted to a client, and for a client to return ranges it does not hold. A pNFS client
always return layouts that comprise the full range specified by the recall. Note, the full recalled

•

•

•

MUST

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 258

layout range need not be returned as part of a single operation, but may be returned in portions.
This allows the client to stage the flushing of dirty data and commits and returns of layouts. Also,
it indicates to the metadata server that the client is making progress.

When a layout is returned, the client have any outstanding I/O requests to the storage
devices involved in the layout. Rephrasing, the client return the layout while it has
outstanding I/O requests to the storage device.

Even with this requirement for the client, it is possible that I/O requests may be presented to a
storage device no longer allowed to perform them. Since the server has no strict control as to
when the client will return the layout, the server may later decide to unilaterally revoke the
client's access to the storage devices as provided by the layout. In choosing to revoke access, the
server must deal with the possibility of lingering I/O requests, i.e., I/O requests that are still in
flight to storage devices identified by the revoked layout. All layout type specifications
define whether unilateral layout revocation by the metadata server is supported; if it is, the
specification must also describe how lingering writes are processed. For example, storage devices
identified by the revoked layout could be fenced off from the client that held the layout.

In order to ensure client/server convergence with regard to layout state, the final
LAYOUTRETURN operation in a sequence of LAYOUTRETURN operations for a particular recall

 specify the entire range being recalled, echoing the recalled layout type, iomode, recall/
return type (FILE, FSID, or ALL), and byte-range, even if layouts pertaining to partial ranges were
previously returned. In addition, if the client holds no layouts that overlap the range being
recalled, the client should return the NFS4ERR_NOMATCHING_LAYOUT error code to
CB_LAYOUTRECALL. This allows the server to update its view of the client's layout state.

MUST NOT
MUST NOT

MUST

MUST

12.5.5.2. Sequencing of Layout Operations
As with other stateful operations, pNFS requires the correct sequencing of layout operations.
pNFS uses the "seqid" in the layout stateid to provide the correct sequencing between regular
operations and callbacks. It is the server's responsibility to avoid inconsistencies regarding the
layouts provided and the client's responsibility to properly serialize its layout requests and
layout returns.

12.5.5.2.1. Layout Recall and Return Sequencing
One critical issue with regard to layout operations sequencing concerns callbacks. The protocol
must defend against races between the reply to a LAYOUTGET or LAYOUTRETURN operation and
a subsequent CB_LAYOUTRECALL. A client process a CB_LAYOUTRECALL that implies
one or more outstanding LAYOUTGET or LAYOUTRETURN operations to which the client has not
yet received a reply. The client detects such a CB_LAYOUTRECALL by examining the "seqid" field
of the recall's layout stateid. If the "seqid" is not exactly one higher than what the client currently
has recorded, and the client has at least one LAYOUTGET and/or LAYOUTRETURN operation
outstanding, the client knows the server sent the CB_LAYOUTRECALL after sending a response to
an outstanding LAYOUTGET or LAYOUTRETURN. The client wait before processing such a
CB_LAYOUTRECALL until it processes all replies for outstanding LAYOUTGET and
LAYOUTRETURN operations for the corresponding file with seqid less than the seqid given by
CB_LAYOUTRECALL (lor_stateid; see Section 20.3.)

MUST NOT

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 259

In addition to the seqid-based mechanism, Section 2.10.6.3 describes the sessions mechanism for
allowing the client to detect callback race conditions and delay processing such a
CB_LAYOUTRECALL. The server reference conflicting operations in the CB_SEQUENCE that
precedes the CB_LAYOUTRECALL. Because the server has already sent replies for these
operations before sending the callback, the replies may race with the CB_LAYOUTRECALL. The
client wait for all the referenced calls to complete and update its view of the layout state
before processing the CB_LAYOUTRECALL.

12.5.5.2.1.1. Get/Return Sequencing
The protocol allows the client to send concurrent LAYOUTGET and LAYOUTRETURN operations to
the server. The protocol does not provide any means for the server to process the requests in the
same order in which they were created. However, through the use of the "seqid" field in the
layout stateid, the client can determine the order in which parallel outstanding operations were
processed by the server. Thus, when a layout retrieved by an outstanding LAYOUTGET operation
intersects with a layout returned by an outstanding LAYOUTRETURN on the same file, the order
in which the two conflicting operations are processed determines the final state of the
overlapping layout. The order is determined by the "seqid" returned in each operation: the
operation with the higher seqid was executed later.

It is permissible for the client to send multiple parallel LAYOUTGET operations for the same file
or multiple parallel LAYOUTRETURN operations for the same file or a mix of both.

It is permissible for the client to use the current stateid (see Section 16.2.3.1.2) for LAYOUTGET
operations, for example, when compounding LAYOUTGETs or compounding OPEN and
LAYOUTGETs. It is also permissible to use the current stateid when compounding
LAYOUTRETURNs.

It is permissible for the client to use the current stateid when combining LAYOUTRETURN and
LAYOUTGET operations for the same file in the same COMPOUND request since the server
process these in order. However, if a client does send such COMPOUND requests, it
have more than one outstanding for the same file at the same time, and it have other
LAYOUTGET or LAYOUTRETURN operations outstanding at the same time for that same file.

12.5.5.2.1.2. Client Considerations
Consider a pNFS client that has sent a LAYOUTGET, and before it receives the reply to
LAYOUTGET, it receives a CB_LAYOUTRECALL for the same file with an overlapping range. There
are two possibilities, which the client can distinguish via the layout stateid in the recall.

The server processed the LAYOUTGET before sending the recall, so the LAYOUTGET must be
waited for because it may be carrying layout information that will need to be returned to
deal with the CB_LAYOUTRECALL.
The server sent the callback before receiving the LAYOUTGET. The server will not respond to
the LAYOUTGET until the CB_LAYOUTRECALL is processed.

MAY

MUST

MUST
MUST NOT

MUST NOT

1.

2.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 260

If these possibilities cannot be distinguished, a deadlock could result, as the client must wait for
the LAYOUTGET response before processing the recall in the first case, but that response will not
arrive until after the recall is processed in the second case. Note that in the first case, the "seqid"
in the layout stateid of the recall is two greater than what the client has recorded; in the second
case, the "seqid" is one greater than what the client has recorded. This allows the client to
disambiguate between the two cases. The client thus knows precisely which possibility applies.

In case 1, the client knows it needs to wait for the LAYOUTGET response before processing the
recall (or the client can return NFS4ERR_DELAY).

In case 2, the client will not wait for the LAYOUTGET response before processing the recall
because waiting would cause deadlock. Therefore, the action at the client will only require
waiting in the case that the client has not yet seen the server's earlier responses to the
LAYOUTGET operation(s).

The recall process can be considered completed when the final LAYOUTRETURN operation for
the recalled range is completed. The LAYOUTRETURN uses the layout stateid (with seqid)
specified in CB_LAYOUTRECALL. If the client uses multiple LAYOUTRETURNs in processing the
recall, the first LAYOUTRETURN will use the layout stateid as specified in CB_LAYOUTRECALL.
Subsequent LAYOUTRETURNs will use the highest seqid as is the usual case.

12.5.5.2.1.4. Wraparound and Validation of Seqid
The rules for layout stateid processing differ from other stateids in the protocol because the
"seqid" value cannot be zero and the stateid's "seqid" value changes in a CB_LAYOUTRECALL
operation. The non-zero requirement combined with the inherent parallelism of layout
operations means that a set of LAYOUTGET and LAYOUTRETURN operations may contain the

12.5.5.2.1.3. Server Considerations
Consider a race from the metadata server's point of view. The metadata server has sent a
CB_LAYOUTRECALL and receives an overlapping LAYOUTGET for the same file before the
LAYOUTRETURN(s) that respond to the CB_LAYOUTRECALL. There are three cases:

The client sent the LAYOUTGET before processing the CB_LAYOUTRECALL. The "seqid" in the
layout stateid of the arguments of LAYOUTGET is one less than the "seqid" in
CB_LAYOUTRECALL. The server returns NFS4ERR_RECALLCONFLICT to the client, which
indicates to the client that there is a pending recall.
The client sent the LAYOUTGET after processing the CB_LAYOUTRECALL, but the LAYOUTGET
arrived before the LAYOUTRETURN and the response to CB_LAYOUTRECALL that completed
that processing. The "seqid" in the layout stateid of LAYOUTGET is equal to or greater than
that of the "seqid" in CB_LAYOUTRECALL. The server has not received a response to the
CB_LAYOUTRECALL, so it returns NFS4ERR_RECALLCONFLICT.
The client sent the LAYOUTGET after processing the CB_LAYOUTRECALL; the server received
the CB_LAYOUTRECALL response, but the LAYOUTGET arrived before the LAYOUTRETURN
that completed that processing. The "seqid" in the layout stateid of LAYOUTGET is equal to
that of the "seqid" in CB_LAYOUTRECALL. The server has received a response to the
CB_LAYOUTRECALL, so it returns NFS4ERR_RETURNCONFLICT.

1.

2.

3.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 261

same value for "seqid". The server uses a slightly modified version of the modulo arithmetic as
described in Section 2.10.6.1 when incrementing the layout stateid's "seqid". The difference is
that zero is not a valid value for "seqid"; when the value of a "seqid" is 0xFFFFFFFF, the next
valid value will be 0x00000001. The modulo arithmetic is also used for the comparisons of
"seqid" values in the processing of CB_LAYOUTRECALL events as described above in Section
12.5.5.2.1.3.

Just as the server validates the "seqid" in the event of CB_LAYOUTRECALL usage, as described in
Section 12.5.5.2.1.3, the server also validates the "seqid" value to ensure that it is within an
appropriate range. This range represents the degree of parallelism the server supports for layout
stateids. If the client is sending multiple layout operations to the server in parallel, by definition,
the "seqid" value in the supplied stateid will not be the current "seqid" as held by the server. The
range of parallelism spans from the highest or current "seqid" to a "seqid" value in the past. To
assist in the discussion, the server's current "seqid" value for a layout stateid is defined as
SERVER_CURRENT_SEQID. The lowest "seqid" value that is acceptable to the server is represented
by PAST_SEQID. And the value for the range of valid "seqid"s or range of parallelism is
VALID_SEQID_RANGE. Therefore, the following holds: VALID_SEQID_RANGE =
SERVER_CURRENT_SEQID - PAST_SEQID. In the following, all arithmetic is the modulo arithmetic
as described above.

The server support a minimum VALID_SEQID_RANGE. The minimum is defined as:
VALID_SEQID_RANGE = summation over 1..N of (ca_maxoperations(i) - 1), where N is the number
of session fore channels and ca_maxoperations(i) is the value of the ca_maxoperations returned
from CREATE_SESSION of the i'th session. The reason for "- 1" is to allow for the required
SEQUENCE operation. The server support a VALID_SEQID_RANGE value larger than the
minimum. The maximum VALID_SEQID_RANGE is (232 - 2) (accounting for zero not being a valid
"seqid" value).

If the server finds the "seqid" is zero, the NFS4ERR_BAD_STATEID error is returned to the client.
The server further validates the "seqid" to ensure it is within the range of parallelism,
VALID_SEQID_RANGE. If the "seqid" value is outside of that range, the error
NFS4ERR_OLD_STATEID is returned to the client. Upon receipt of NFS4ERR_OLD_STATEID, the
client updates the stateid in the layout request based on processing of other layout requests and
re-sends the operation to the server.

MUST

MAY

12.5.5.2.1.5. Bulk Recall and Return
pNFS supports recalling and returning all layouts that are for files belonging to a particular fsid
(LAYOUTRECALL4_FSID, LAYOUTRETURN4_FSID) or client ID (LAYOUTRECALL4_ALL,
LAYOUTRETURN4_ALL). There are no "bulk" stateids, so detection of races via the seqid is not
possible. The server initiate bulk recall while another recall is in progress, or the
corresponding LAYOUTRETURN is in progress or pending. In the event the server sends a bulk
recall while the client has a pending or in-progress LAYOUTRETURN, CB_LAYOUTRECALL, or
LAYOUTGET, the client returns NFS4ERR_DELAY. In the event the client sends a LAYOUTGET or
LAYOUTRETURN while a bulk recall is in progress, the server returns

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 262

NFS4ERR_RECALLCONFLICT. If the client sends a LAYOUTGET or LAYOUTRETURN after the
server receives NFS4ERR_DELAY from a bulk recall, then to ensure forward progress, the server

 return NFS4ERR_RECALLCONFLICT.

Once a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL is sent, the server allow the
client to use any layout stateid except for LAYOUTCOMMIT operations. Once the client receives a
CB_LAYOUTRECALL of LAYOUTRECALL4_ALL, it use any layout stateid except for
LAYOUTCOMMIT operations. Once a LAYOUTRETURN of LAYOUTRETURN4_ALL is sent, all layout
stateids granted to the client ID are freed. The client use the layout stateids again. It

 use LAYOUTGET to obtain new layout stateids.

Once a CB_LAYOUTRECALL of LAYOUTRECALL4_FSID is sent, the server allow the
client to use any layout stateid that refers to a file with the specified fsid except for
LAYOUTCOMMIT operations. Once the client receives a CB_LAYOUTRECALL of
LAYOUTRECALL4_ALL, it use any layout stateid that refers to a file with the specified
fsid except for LAYOUTCOMMIT operations. Once a LAYOUTRETURN of LAYOUTRETURN4_FSID is
sent, all layout stateids granted to the referenced fsid are freed. The client use those
freed layout stateids for files with the referenced fsid again. Subsequently, for any file with the
referenced fsid, to use a layout, the client first send a LAYOUTGET operation in order to
obtain a new layout stateid for that file.

If the server has sent a bulk CB_LAYOUTRECALL and receives a LAYOUTGET, or a
LAYOUTRETURN with a stateid, the server return NFS4ERR_RECALLCONFLICT. If the
server has sent a bulk CB_LAYOUTRECALL and receives a LAYOUTRETURN with an lr_returntype
that is not equal to the lor_recalltype of the CB_LAYOUTRECALL, the server return
NFS4ERR_RECALLCONFLICT.

MAY

MUST NOT

MUST NOT

MUST NOT
MUST

MUST NOT

MUST NOT

MUST NOT

MUST

MUST

MUST

12.5.6. Revoking Layouts

Parallel NFS permits servers to revoke layouts from clients that fail to respond to recalls and/or
fail to renew their lease in time. Depending on the layout type, the server might revoke the
layout and might take certain actions with respect to the client's I/O to data servers.

12.5.7. Metadata Server Write Propagation

Asynchronous writes written through the metadata server may be propagated lazily to the
storage devices. For data written asynchronously through the metadata server, a client
performing a read at the appropriate storage device is not guaranteed to see the newly written
data until a COMMIT occurs at the metadata server. While the write is pending, reads to the
storage device may give out either the old data, the new data, or a mixture of new and old. Upon
completion of a synchronous WRITE or COMMIT (for asynchronously written data), the metadata
server ensure that storage devices give out the new data and that the data has been written
to stable storage. If the server implements its storage in any way such that it cannot obey these
constraints, then it recall the layouts to prevent reads being done that cannot be handled
correctly. Note that the layouts be recalled prior to the server responding to the associated
WRITE operations.

MUST

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 263

12.6. pNFS Mechanics
This section describes the operations flow taken by a pNFS client to a metadata server and
storage device.

When a pNFS client encounters a new FSID, it sends a GETATTR to the NFSv4.1 server for the
fs_layout_type (Section 5.12.1) attribute. If the attribute returns at least one layout type, and the
layout types returned are among the set supported by the client, the client knows that pNFS is a
possibility for the file system. If, from the server that returned the new FSID, the client does not
have a client ID that came from an EXCHANGE_ID result that returned
EXCHGID4_FLAG_USE_PNFS_MDS, it send an EXCHANGE_ID to the server with the
EXCHGID4_FLAG_USE_PNFS_MDS bit set. If the server's response does not have
EXCHGID4_FLAG_USE_PNFS_MDS, then contrary to what the fs_layout_type attribute said, the
server does not support pNFS, and the client will not be able use pNFS to that server; in this case,
the server return NFS4ERR_NOTSUPP in response to any pNFS operation.

The client then creates a session, requesting a persistent session, so that exclusive creates can be
done with single round trip via the createmode4 of GUARDED4. If the session ends up not being
persistent, the client will use EXCLUSIVE4_1 for exclusive creates.

If a file is to be created on a pNFS-enabled file system, the client uses the OPEN operation. With
the normal set of attributes that may be provided upon OPEN used for creation, there is an

 layout_hint attribute. The client's use of layout_hint allows the client to express its
preference for a layout type and its associated layout details. The use of a createmode4 of
UNCHECKED4, GUARDED4, or EXCLUSIVE4_1 will allow the client to provide the layout_hint
attribute at create time. The client use EXCLUSIVE4 (see Table 18). The client is

 to combine a GETATTR operation after the OPEN within the same COMPOUND.
The GETATTR may then retrieve the layout_type attribute for the newly created file. The client
will then know what layout type the server has chosen for the file and therefore what storage
protocol the client must use.

If the client wants to open an existing file, then it also includes a GETATTR to determine what
layout type the file supports.

The GETATTR in either the file creation or plain file open case can also include the layout_blksize
and layout_alignment attributes so that the client can determine optimal offsets and lengths for I/
O on the file.

Assuming the client supports the layout type returned by GETATTR and it chooses to use pNFS for
data access, it then sends LAYOUTGET using the filehandle and stateid returned by OPEN,
specifying the range it wants to do I/O on. The response is a layout, which may be a subset of the
range for which the client asked. It also includes device IDs and a description of how data is
organized (or in the case of writing, how data is to be organized) across the devices. The device
IDs and data description are encoded in a format that is specific to the layout type, but the client
is expected to understand.

MUST

MUST

OPTIONAL

MUST NOT
RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 264

When the client wants to send an I/O, it determines to which device ID it needs to send the I/O
command by examining the data description in the layout. It then sends a GETDEVICEINFO to
find the device address(es) of the device ID. The client then sends the I/O request to one of device
ID's device addresses, using the storage protocol defined for the layout type. Note that if a client
has multiple I/Os to send, these I/O requests may be done in parallel.

If the I/O was a WRITE, then at some point the client may want to use LAYOUTCOMMIT to commit
the modification time and the new size of the file (if it believes it extended the file size) to the
metadata server and the modified data to the file system.

12.7. Recovery
Recovery is complicated by the distributed nature of the pNFS protocol. In general, crash
recovery for layouts is similar to crash recovery for delegations in the base NFSv4.1 protocol.
However, the client's ability to perform I/O without contacting the metadata server introduces
subtleties that must be handled correctly if the possibility of file system corruption is to be
avoided.

12.7.1. Recovery from Client Restart

Client recovery for layouts is similar to client recovery for other lock and delegation state. When
a pNFS client restarts, it will lose all information about the layouts that it previously owned.
There are two methods by which the server can reclaim these resources and allow otherwise
conflicting layouts to be provided to other clients.

The first is through the expiry of the client's lease. If the client recovery time is longer than the
lease period, the client's lease will expire and the server will know that state may be released.
For layouts, the server may release the state immediately upon lease expiry or it may allow the
layout to persist, awaiting possible lease revival, as long as no other layout conflicts.

The second is through the client restarting in less time than it takes for the lease period to expire.
In such a case, the client will contact the server through the standard EXCHANGE_ID protocol.
The server will find that the client's co_ownerid matches the co_ownerid of the previous client
invocation, but that the verifier is different. The server uses this as a signal to release all layout
state associated with the client's previous invocation. In this scenario, the data written by the
client but not covered by a successful LAYOUTCOMMIT is in an undefined state; it may have been
written or it may now be lost. This is acceptable behavior and it is the client's responsibility to
use LAYOUTCOMMIT to achieve the desired level of stability.

12.7.2. Dealing with Lease Expiration on the Client

If a client believes its lease has expired, it send I/O to the storage device until it has
validated its lease. The client can send a SEQUENCE operation to the metadata server. If the
SEQUENCE operation is successful, but sr_status_flag has
SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED, SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED,
or SEQ4_STATUS_ADMIN_STATE_REVOKED set, the client use currently held layouts.
The client has two choices to recover from the lease expiration. First, for all modified but
uncommitted data, the client writes it to the metadata server using the FILE_SYNC4 flag for the

MUST NOT

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 265

While clients send I/Os to storage devices that may extend past the lease expiration
time period, this is not always possible, for example, an extended network partition that starts
after the I/O is sent and does not heal until the I/O request is received by the storage device. Thus,
the metadata server and/or storage devices are responsible for protecting themselves from I/Os
that are both sent before the lease expires and arrive after the lease expires. See Section 12.7.3.

WRITEs, or WRITE and COMMIT. Second, the client re-establishes a client ID and session with the
server and obtains new layouts and device-ID-to-device-address mappings for the modified data
ranges and then writes the data to the storage devices with the newly obtained layouts.

If sr_status_flags from the metadata server has SEQ4_STATUS_RESTART_RECLAIM_NEEDED set
(or SEQUENCE returns NFS4ERR_BAD_SESSION and CREATE_SESSION returns
NFS4ERR_STALE_CLIENTID), then the metadata server has restarted, and the client
recover using the methods described in Section 12.7.4.

SHOULD

If sr_status_flags from the metadata server has SEQ4_STATUS_LEASE_MOVED set, then the client
recovers by following the procedure described in Section 11.11.9.2. After that, the client may get
an indication that the layout state was not moved with the file system. The client recovers as in
the other applicable situations discussed in the first two paragraphs of this section.

If sr_status_flags reports no loss of state, then the lease for the layouts that the client has are valid
and renewed, and the client can once again send I/O requests to the storage devices.

SHOULD NOT

12.7.3. Dealing with Loss of Layout State on the Metadata Server

This is a description of the case where all of the following are true:

the metadata server has not restarted
a pNFS client's layouts have been discarded (usually because the client's lease expired) and
are invalid
an I/O from the pNFS client arrives at the storage device

The metadata server and its storage devices solve this by fencing the client. In other words,
they solve this by preventing the execution of I/O operations from the client to the storage
devices after layout state loss. The details of how fencing is done are specific to the layout type.
The solution for NFSv4.1 file-based layouts is described in (Section 13.11), and solutions for other
layout types are in their respective external specification documents.

•
•

•

MUST
MUST

12.7.4. Recovery from Metadata Server Restart

The pNFS client will discover that the metadata server has restarted via the methods described in
Section 8.4.2 and discussed in a pNFS-specific context in Section 12.7.2, Paragraph 2. The client

 stop using layouts and delete the device ID to device address mappings it previously
received from the metadata server. Having done that, if the client wrote data to the storage
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 266

device without committing the layouts via LAYOUTCOMMIT, then the client has additional work
to do in order to have the client, metadata server, and storage device(s) all synchronized on the
state of the data.

If the client has data still modified and unwritten in the client's memory, the client has only
two choices.

The client can obtain a layout via LAYOUTGET after the server's grace period and write the
data to the storage devices.
The client can WRITE that data through the metadata server using the WRITE (Section
18.32) operation, and then obtain layouts as desired.

If the client asynchronously wrote data to the storage device, but still has a copy of the data
in its memory, then it has available to it the recovery options listed above in the previous
bullet point. If the metadata server is also in its grace period, the client has available to it the
options below in the next bullet point.
The client does not have a copy of the data in its memory and the metadata server is still in
its grace period. The client cannot use LAYOUTGET (within or outside the grace period) to
reclaim a layout because the contents of the response from LAYOUTGET may not match what
it had previously. The range might be different or the client might get the same range but the
content of the layout might be different. Even if the content of the layout appears to be the
same, the device IDs may map to different device addresses, and even if the device addresses
are the same, the device addresses could have been assigned to a different storage device.
The option of retrieving the data from the storage device and writing it to the metadata
server per the recovery scenario described above is not available because, again, the
mappings of range to device ID, device ID to device address, and device address to physical
device are stale, and new mappings via new LAYOUTGET do not solve the problem.

The only recovery option for this scenario is to send a LAYOUTCOMMIT in reclaim mode,
which the metadata server will accept as long as it is in its grace period. The use of
LAYOUTCOMMIT in reclaim mode informs the metadata server that the layout has changed.
It is critical that the metadata server receive this information before its grace period ends,
and thus before it starts allowing updates to the file system.

To send LAYOUTCOMMIT in reclaim mode, the client sets the loca_reclaim field of the
operation's arguments (Section 18.42.1) to TRUE. During the metadata server's recovery
grace period (and only during the recovery grace period) the metadata server is prepared to
accept LAYOUTCOMMIT requests with the loca_reclaim field set to TRUE.

When loca_reclaim is TRUE, the client is attempting to commit changes to the layout that
occurred prior to the restart of the metadata server. The metadata server applies some
consistency checks on the loca_layoutupdate field of the arguments to determine whether
the client can commit the data written to the storage device to the file system. The
loca_layoutupdate field is of data type layoutupdate4 and contains layout-type-specific
content (in the lou_body field of loca_layoutupdate). The layout-type-specific information
that loca_layoutupdate might have is discussed in Section 12.5.4.3. If the metadata server's
consistency checks on loca_layoutupdate succeed, then the metadata server commit

•

1.

2.

•

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 267

the data (as described by the loca_offset, loca_length, and loca_layoutupdate fields of the
arguments) that was written to the storage device. If the metadata server's consistency
checks on loca_layoutupdate fail, the metadata server rejects the LAYOUTCOMMIT operation
and makes no changes to the file system. However, any time LAYOUTCOMMIT with
loca_reclaim TRUE fails, the pNFS client has lost all the data in the range defined by
<loca_offset, loca_length>. A client can defend against this risk by caching all data, whether
written synchronously or asynchronously in its memory, and by not releasing the cached
data until a successful LAYOUTCOMMIT. This condition does not hold true for all layout
types; for example, file-based storage devices need not suffer from this limitation.

The client does not have a copy of the data in its memory and the metadata server is no
longer in its grace period; i.e., the metadata server returns NFS4ERR_NO_GRACE. As with the
scenario in the above bullet point, the failure of LAYOUTCOMMIT means the data in the
range <loca_offset, loca_length> lost. The defense against the risk is the same -- cache all
written data on the client until a successful LAYOUTCOMMIT.

•

12.7.5. Operations during Metadata Server Grace Period

Some of the recovery scenarios thus far noted that some operations (namely, WRITE and
LAYOUTGET) might be permitted during the metadata server's grace period. The metadata server
may allow these operations during its grace period. For LAYOUTGET, the metadata server must
reliably determine that servicing such a request will not conflict with an impending
LAYOUTCOMMIT reclaim request. For WRITE, the metadata server must reliably determine that
servicing the request will not conflict with an impending OPEN or with a LOCK where the file has
mandatory byte-range locking enabled.

As mentioned previously, for expediency, the metadata server might reject some operations
(namely, WRITE and LAYOUTGET) during its grace period, because the simplest correct approach
is to reject all non-reclaim pNFS requests and WRITE operations by returning the
NFS4ERR_GRACE error. However, depending on the storage protocol (which is specific to the
layout type) and metadata server implementation, the metadata server may be able to determine
that a particular request is safe. For example, a metadata server may save provisional allocation
mappings for each file to stable storage, as well as information about potentially conflicting
OPEN share modes and mandatory byte-range locks that might have been in effect at the time of
restart, and the metadata server may use this information during the recovery grace period to
determine that a WRITE request is safe.

12.7.6. Storage Device Recovery

Recovery from storage device restart is mostly dependent upon the layout type in use. However,
there are a few general techniques a client can use if it discovers a storage device has crashed
while holding modified, uncommitted data that was asynchronously written. First and foremost,
it is important to realize that the client is the only one that has the information necessary to
recover non-committed data since it holds the modified data and probably nothing else does.
Second, the best solution is for the client to err on the side of caution and attempt to rewrite the
modified data through another path.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 268

12.8. Metadata and Storage Device Roles
If the same physical hardware is used to implement both a metadata server and storage device,
then the same hardware entity is to be understood to be implementing two distinct roles and it is
important that it be clearly understood on behalf of which role the hardware is executing at any
given time.

Two sub-cases can be distinguished.

The storage device uses NFSv4.1 as the storage protocol, i.e., the same physical hardware is
used to implement both a metadata and data server. See Section 13.1 for a description of
how multiple roles are handled.
The storage device does not use NFSv4.1 as the storage protocol, and the same physical
hardware is used to implement both a metadata and storage device. Whether distinct
network addresses are used to access the metadata server and storage device is immaterial.
This is because it is always clear to the pNFS client and server, from the upper-layer protocol
being used (NFSv4.1 or non-NFSv4.1), to which role the request to the common server
network address is directed.

The client immediately WRITE the data to the metadata server, with the stable field in
the WRITE4args set to FILE_SYNC4. Once it does this, there is no need to wait for the original
storage device.

SHOULD

1.

2.

12.9. Security Considerations for pNFS
pNFS separates file system metadata and data and provides access to both. There are pNFS-
specific operations (listed in Section 12.3) that provide access to the metadata; all existing
NFSv4.1 conventional (non-pNFS) security mechanisms and features apply to accessing the
metadata. The combination of components in a pNFS system (see Figure 1) is required to
preserve the security properties of NFSv4.1 with respect to an entity that is accessing a storage
device from a client, including security countermeasures to defend against threats for which
NFSv4.1 provides defenses in environments where these threats are considered significant.

In some cases, the security countermeasures for connections to storage devices may take the
form of physical isolation or a recommendation to avoid the use of pNFS in an environment. For
example, it may be impractical to provide confidentiality protection for some storage protocols to
protect against eavesdropping. In environments where eavesdropping on such protocols is of
sufficient concern to require countermeasures, physical isolation of the communication channel
(e.g., via direct connection from client(s) to storage device(s)) and/or a decision to forgo use of
pNFS (e.g., and fall back to conventional NFSv4.1) may be appropriate courses of action.

Where communication with storage devices is subject to the same threats as client-to-metadata
server communication, the protocols used for that communication need to provide security
mechanisms as strong as or no weaker than those available via RPCSEC_GSS for NFSv4.1. Except
for the storage protocol used for the LAYOUT4_NFSV4_1_FILES layout (see Section 13), i.e., except
for NFSv4.1, it is beyond the scope of this document to specify the security mechanisms for
storage access protocols.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 269

pNFS implementations remove NFSv4.1's access controls. The combination of clients,
storage devices, and the metadata server are responsible for ensuring that all client-to-storage-
device file data access respects NFSv4.1's ACLs and file open modes. This entails performing both
of these checks on every access in the client, the storage device, or both (as applicable; when the
storage device is an NFSv4.1 server, the storage device is ultimately responsible for controlling
access as described in Section 13.9.2). If a pNFS configuration performs these checks only in the
client, the risk of a misbehaving client obtaining unauthorized access is an important
consideration in determining when it is appropriate to use such a pNFS configuration. Such
layout types be used when client-only access checks do not provide sufficient
assurance that NFSv4.1 access control is being applied correctly. (This is not a problem for the file
layout type described in Section 13 because the storage access protocol for
LAYOUT4_NFSV4_1_FILES is NFSv4.1, and thus the security model for storage device access via
LAYOUT4_NFSv4_1_FILES is the same as that of the metadata server.) For handling of access
control specific to a layout, the reader should examine the layout specification, such as the

 of this document, the , and
.

MUST NOT

SHOULD NOT

NFSv4.1/file-based layout (Section 13) blocks layout [48] objects layout
[47]

13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type
This section describes the semantics and format of NFSv4.1 file-based layouts for pNFS. NFSv4.1
file-based layouts use the LAYOUT4_NFSV4_1_FILES layout type. The LAYOUT4_NFSV4_1_FILES
type defines striping data across multiple NFSv4.1 data servers.

13.1. Client ID and Session Considerations
Sessions are a feature of NFSv4.1, and this extends to both the metadata server and
file-based (NFSv4.1-based) data servers.

The role a server plays in pNFS is determined by the result it returns from EXCHANGE_ID. The
roles are:

Metadata server (EXCHGID4_FLAG_USE_PNFS_MDS is set in the result eir_flags).
Data server (EXCHGID4_FLAG_USE_PNFS_DS).
Non-metadata server (EXCHGID4_FLAG_USE_NON_PNFS). This is an NFSv4.1 server that does
not support operations (e.g., LAYOUTGET) or attributes that pertain to pNFS.

The client request zero or more of EXCHGID4_FLAG_USE_NON_PNFS,
EXCHGID4_FLAG_USE_PNFS_DS, or EXCHGID4_FLAG_USE_PNFS_MDS, even though some
combinations (e.g., EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS) are
contradictory. However, the server only return the following acceptable combinations:

Acceptable Results from EXCHANGE_ID

EXCHGID4_FLAG_USE_PNFS_MDS

EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS

REQUIRED

•
•
•

MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 270

Acceptable Results from EXCHANGE_ID

EXCHGID4_FLAG_USE_PNFS_DS

EXCHGID4_FLAG_USE_NON_PNFS

EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_NON_PNFS

Table 8

As the above table implies, a server can have one or two roles. A server can be both a metadata
server and a data server, or it can be both a data server and non-metadata server. In addition to
returning two roles in the EXCHANGE_ID's results, and thus serving both roles via a common
client ID, a server can serve two roles by returning a unique client ID and server owner for each
role in each of two EXCHANGE_ID results, with each result indicating each role.

In the case of a server with concurrent pNFS roles that are served by a common client ID, if the
EXCHANGE_ID request from the client has zero or a combination of the bits set in eia_flags, the
server result should set bits that represent the higher of the acceptable combination of the server
roles, with a preference to match the roles requested by the client. Thus, if a client request has
(EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS |
EXCHGID4_FLAG_USE_PNFS_DS) flags set, and the server is both a metadata server and a data
server, serving both the roles by a common client ID, the server return with
(EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS) set.

In the case of a server that has multiple concurrent pNFS roles, each role served by a unique
client ID, if the client specifies zero or a combination of roles in the request, the server results

 return only one of the roles from the combination specified by the client request. If the
role specified by the server result does not match the intended use by the client, the client should
send the EXCHANGE_ID specifying just the interested pNFS role.

If a pNFS metadata client gets a layout that refers it to an NFSv4.1 data server, it needs a client ID
on that data server. If it does not yet have a client ID from the server that had the
EXCHGID4_FLAG_USE_PNFS_DS flag set in the EXCHANGE_ID results, then the client needs to
send an EXCHANGE_ID to the data server, using the same co_ownerid as it sent to the metadata
server, with the EXCHGID4_FLAG_USE_PNFS_DS flag set in the arguments. If the server's
EXCHANGE_ID results have EXCHGID4_FLAG_USE_PNFS_DS set, then the client may use the client
ID to create sessions that will exchange pNFS data operations. The client ID returned by the data
server has no relationship with the client ID returned by a metadata server unless the client IDs
are equal, and the server owners and server scopes of the data server and metadata server are
equal.

In NFSv4.1, the session ID in the SEQUENCE operation implies the client ID, which in turn might
be used by the server to map the stateid to the right client/server pair. However, when a data
server is presented with a READ or WRITE operation with a stateid, because the stateid is
associated with a client ID on a metadata server, and because the session ID in the preceding
SEQUENCE operation is tied to the client ID of the data server, the data server has no obvious

SHOULD

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 271

way to determine the metadata server from the COMPOUND procedure, and thus has no way to
validate the stateid. One approach is for pNFS servers to encode metadata server
routing and/or identity information in the data server filehandles as returned in the layout.

If metadata server routing and/or identity information is encoded in data server filehandles,
when the metadata server identity or location changes, the data server filehandles it gave out
will become invalid (stale), and so the metadata server first recall the layouts. Invalidating
a data server filehandle does not render the NFS client's data cache invalid. The client's cache
should map a data server filehandle to a metadata server filehandle, and a metadata server
filehandle to cached data.

If a server is both a metadata server and a data server, the server might need to distinguish
operations on files that are directed to the metadata server from those that are directed to the
data server. It is that the values of the filehandles returned by the LAYOUTGET
operation be different than the value of the filehandle returned by the OPEN of the same file.

Another scenario is for the metadata server and the storage device to be distinct from one client's
point of view, and the roles reversed from another client's point of view. For example, in the
cluster file system model, a metadata server to one client might be a data server to another
client. If NFSv4.1 is being used as the storage protocol, then pNFS servers need to encode the
values of filehandles according to their specific roles.

RECOMMENDED

MUST

RECOMMENDED

13.1.1. Sessions Considerations for Data Servers

Section 2.10.11.2 states that a client has to keep its lease renewed in order to prevent a session
from being deleted by the server. If the reply to EXCHANGE_ID has just the
EXCHGID4_FLAG_USE_PNFS_DS role set, then (as noted in Section 13.6) the client will not be able
to determine the data server's lease_time attribute because GETATTR will not be permitted.
Instead, the rule is that any time a client receives a layout referring it to a data server that
returns just the EXCHGID4_FLAG_USE_PNFS_DS role, the client assume that the lease_time
attribute from the metadata server that returned the layout applies to the data server. Thus, the
data server be aware of the values of all lease_time attributes of all metadata servers for
which it is providing I/O, and it use the maximum of all such lease_time values as the lease
interval for all client IDs and sessions established on it.

For example, if one metadata server has a lease_time attribute of 20 seconds, and a second
metadata server has a lease_time attribute of 10 seconds, then if both servers return layouts that
refer to an EXCHGID4_FLAG_USE_PNFS_DS-only data server, the data server renew a
client's lease if the interval between two SEQUENCE operations on different COMPOUND requests
is less than 20 seconds.

MAY

MUST
MUST

MUST

Unit.

13.2. File Layout Definitions
The following definitions apply to the LAYOUT4_NFSV4_1_FILES layout type and may be
applicable to other layout types.

A unit is a fixed-size quantity of data written to a data server.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 272

Pattern.

Stripe.

Stripe Count.

Stripe Width.

A pattern is a method of distributing one or more equal sized units across a set of data
servers. A pattern is iterated one or more times.

A stripe is a set of data distributed across a set of data servers in a pattern before that
pattern repeats.

A stripe count is the number of units in a pattern.

A stripe width is the size of a stripe in bytes. The stripe width = the stripe count *
the size of the stripe unit.

Hereafter, this document will refer to a unit that is a written in a pattern as a "stripe unit".

A pattern may have more stripe units than data servers. If so, some data servers will have more
than one stripe unit per stripe. A data server that has multiple stripe units per stripe store
each unit in a different data file (and depending on the implementation, will possibly assign a
unique data filehandle to each data file).

MAY

13.3. File Layout Data Types
The high level NFSv4.1 layout types are nfsv4_1_file_layouthint4, nfsv4_1_file_layout_ds_addr4,
and nfsv4_1_file_layout4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 273

The SETATTR operation supports a layout hint attribute (Section 5.12.4). When the client sets a
layout hint (data type layouthint4) with a layout type of LAYOUT4_NFSV4_1_FILES (the loh_type
field), the loh_body field contains a value of data type nfsv4_1_file_layouthint4.

The generic layout hint structure is described in Section 3.3.19. The client uses the layout hint in
the layout_hint (Section 5.12.4) attribute to indicate the preferred type of layout to be used for a
newly created file. The LAYOUT4_NFSV4_1_FILES layout-type-specific content for the layout hint
is composed of three fields. The first field, nflh_care, is a set of flags indicating which values of
the hint the client cares about. If the NFLH4_CARE_DENSE flag is set, then the client indicates in
the second field, nflh_util, a preference for how the data file is packed (Section 13.4.4), which is
controlled by the value of the expression nflh_util & NFL4_UFLG_DENSE ("&" represents the
bitwise AND operator). If the NFLH4_CARE_COMMIT_THRU_MDS flag is set, then the client
indicates a preference for whether the client should send COMMIT operations to the metadata
server or data server (Section 13.7), which is controlled by the value of nflh_util &
NFL4_UFLG_COMMIT_THRU_MDS. If the NFLH4_CARE_STRIPE_UNIT_SIZE flag is set, the client
indicates its preferred stripe unit size, which is indicated in nflh_util &
NFL4_UFLG_STRIPE_UNIT_SIZE_MASK (thus, the stripe unit size be a multiple of 64 bytes).
The minimum stripe unit size is 64 bytes. If the NFLH4_CARE_STRIPE_COUNT flag is set, the client
indicates in the third field, nflh_stripe_count, the stripe count. The stripe count multiplied by the
stripe unit size is the stripe width.

const NFL4_UFLG_MASK = 0x0000003F;
const NFL4_UFLG_DENSE = 0x00000001;
const NFL4_UFLG_COMMIT_THRU_MDS = 0x00000002;
const NFL4_UFLG_STRIPE_UNIT_SIZE_MASK
 = 0xFFFFFFC0;

typedef uint32_t nfl_util4;

enum filelayout_hint_care4 {
 NFLH4_CARE_DENSE = NFL4_UFLG_DENSE,

 NFLH4_CARE_COMMIT_THRU_MDS
 = NFL4_UFLG_COMMIT_THRU_MDS,

 NFLH4_CARE_STRIPE_UNIT_SIZE
 = 0x00000040,

 NFLH4_CARE_STRIPE_COUNT = 0x00000080
};

/* Encoded in the loh_body field of data type layouthint4: */

struct nfsv4_1_file_layouthint4 {
 uint32_t nflh_care;
 nfl_util4 nflh_util;
 count4 nflh_stripe_count;
};

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 274

When LAYOUTGET returns a LAYOUT4_NFSV4_1_FILES layout (indicated in the loc_type field of
the lo_content field), the loc_body field of the lo_content field contains a value of data type
nfsv4_1_file_layout4. Among other content, nfsv4_1_file_layout4 has a storage device ID (field
nfl_deviceid) of data type deviceid4. The GETDEVICEINFO operation maps a device ID to a
storage device address (type device_addr4). When GETDEVICEINFO returns a device address
with a layout type of LAYOUT4_NFSV4_1_FILES (the da_layout_type field), the da_addr_body field
contains a value of data type nfsv4_1_file_layout_ds_addr4.

The nfsv4_1_file_layout_ds_addr4 data type represents the device address. It is composed of two
fields:

nflda_multipath_ds_list: An array of lists of data servers, where each list can be one or more
elements, and each element represents a data server address that may serve equally as the
target of I/O operations (see Section 13.5). The length of this array might be different than the
stripe count.
nflda_stripe_indices: An array of indices used to index into nflda_multipath_ds_list. The
value of each element of nflda_stripe_indices be less than the number of elements in
nflda_multipath_ds_list. Each element of nflda_multipath_ds_list be referred to by
one or more elements of nflda_stripe_indices. The number of elements in
nflda_stripe_indices is always equal to the stripe count.

The nfsv4_1_file_layout4 data type represents the layout. It is composed of the following fields:

nfl_deviceid: The device ID that maps to a value of type nfsv4_1_file_layout_ds_addr4.

typedef netaddr4 multipath_list4<>;

/*
 * Encoded in the da_addr_body field of
 * data type device_addr4:
 */
struct nfsv4_1_file_layout_ds_addr4 {
 uint32_t nflda_stripe_indices<>;
 multipath_list4 nflda_multipath_ds_list<>;
};

1.

2.
MUST

SHOULD

/*
 * Encoded in the loc_body field of
 * data type layout_content4:
 */
struct nfsv4_1_file_layout4 {
 deviceid4 nfl_deviceid;
 nfl_util4 nfl_util;
 uint32_t nfl_first_stripe_index;
 offset4 nfl_pattern_offset;
 nfs_fh4 nfl_fh_list<>;
};

1.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 275

nfl_util: Like the nflh_util field of data type nfsv4_1_file_layouthint4, a compact
representation of how the data on a file on each data server is packed, whether the client
should send COMMIT operations to the metadata server or data server, and the stripe unit
size. If a server returns two or more overlapping layouts, each stripe unit size in each
overlapping layout be the same.
nfl_first_stripe_index: The index into the first element of the nflda_stripe_indices array to
use.
nfl_pattern_offset: This field is the logical offset into the file where the striping pattern starts.
It is required for converting the client's logical I/O offset (e.g., the current offset in a POSIX
file descriptor before the read() or write() system call is sent) into the stripe unit number (see
Section 13.4.1).

If dense packing is used, then nfl_pattern_offset is also needed to convert the client's logical I/
O offset to an offset on the file on the data server corresponding to the stripe unit number
(see Section 13.4.4).

Note that nfl_pattern_offset is not always the same as lo_offset. For example, via the
LAYOUTGET operation, a client might request a layout starting at offset 1000 of a file that has
its striping pattern start at offset zero.

nfl_fh_list: An array of data server filehandles for each list of data servers in each element of
the nflda_multipath_ds_list array. The number of elements in nfl_fh_list depends on whether
sparse or dense packing is being used.

If sparse packing is being used, the number of elements in nfl_fh_list be one of three
values:

Zero. This means that filehandles used for each data server are the same as the
filehandle returned by the OPEN operation from the metadata server.
One. This means that every data server uses the same filehandle: what is specified in
nfl_fh_list[0].
The same number of elements in nflda_multipath_ds_list. Thus, in this case, when
sending an I/O operation to any data server in nflda_multipath_ds_list[X], the filehandle
in nfl_fh_list[X] be used.

See the discussion on sparse packing in Section 13.4.4.

If dense packing is being used, the number of elements in nfl_fh_list be the same as
the number of elements in nflda_stripe_indices. Thus, when sending an I/O operation to
any data server in nflda_multipath_ds_list[nflda_stripe_indices[Y]], the filehandle in
nfl_fh_list[Y] be used. In addition, any time there exists i and j, (i != j), such that the
intersection of nflda_multipath_ds_list[nflda_stripe_indices[i]] and nflda_multipath_ds_list
[nflda_stripe_indices[j]] is not empty, then nfl_fh_list[i] equal nfl_fh_list[j]. In
other words, when dense packing is being used, if a data server appears in two or more
units of a striping pattern, each reference to the data server use a different
filehandle.

2.

MUST
3.

4.

5.

◦ MUST

▪

▪

▪

MUST

◦ MUST

MUST

MUST NOT

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 276

Indeed, if there are multiple striping patterns, as indicated by the presence of multiple
objects of data type layout4 (either returned in one or multiple LAYOUTGET operations),
and a data server is the target of a unit of one pattern and another unit of another pattern,
then each reference to each data server use a different filehandle.

See the discussion on dense packing in Section 13.4.4.

The details on the interpretation of the layout are in Section 13.4.

MUST

13.4. Interpreting the File Layout

13.4.2. Interpreting the File Layout Using Sparse Packing

When sparse packing is used, the algorithm for determining the filehandle and set of data-server
network addresses to write stripe unit i (SUi) to is:

13.4.1. Determining the Stripe Unit Number

To find the stripe unit number that corresponds to the client's logical file offset, the pattern offset
will also be used. The i'th stripe unit (SUi) is:

 relative_offset = file_offset - nfl_pattern_offset;
 SUi = floor(relative_offset / stripe_unit_size);

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {
 case ds_count:
 fh = nfl_fh_list[idx];
 break;

 case 1:
 fh = nfl_fh_list[0];
 break;

 case 0:
 fh = filehandle returned by OPEN;
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 277

The client would then select a data server from address_list, and send a READ or WRITE
operation using the filehandle specified in fh.

Consider the following example:

Suppose we have a device address consisting of seven data servers, arranged in three
equivalence (Section 13.5) classes:

{ A, B, C, D }, { E }, { F, G }

where A through G are network addresses.

Then

nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

i.e.,

nflda_multipath_ds_list[0] = { A, B, C, D }

nflda_multipath_ds_list[1] = { E }

nflda_multipath_ds_list[2] = { F, G }

Suppose the striping index array is:

nflda_stripe_indices<> = { 2, 0, 1, 0 }

Now suppose the client gets a layout that has a device ID that maps to the above device address.
The initial index contains

nfl_first_stripe_index = 2,

and the filehandle list is

nfl_fh_list = { 0x36, 0x87, 0x67 }.

If the client wants to write to SU0, the set of valid { network address, filehandle } combinations
for SUi are determined by:

nfl_first_stripe_index = 2

So

idx = nflda_stripe_indices[(0 + 2) % 4]

= nflda_stripe_indices[2]

= 1

So

nflda_multipath_ds_list[1] = { E }

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 278

and

nfl_fh_list[1] = { 0x87 }

The client can thus write SU0 to { 0x87, { E } }.

The destinations of the first 13 storage units are:

SUi filehandle data servers

0 87 E

1 36 A,B,C,D

2 67 F,G

3 36 A,B,C,D

4 87 E

5 36 A,B,C,D

6 67 F,G

7 36 A,B,C,D

8 87 E

9 36 A,B,C,D

10 67 F,G

11 36 A,B,C,D

12 87 E

Table 9

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 279

13.4.3. Interpreting the File Layout Using Dense Packing

When dense packing is used, the algorithm for determining the filehandle and set of data server
network addresses to write stripe unit i (SUi) to is:

The client would then select a data server from address_list, and send a READ or WRITE
operation using the filehandle specified in fh.

Consider the following example (which is the same as the sparse packing example, except for the
filehandle list):

Suppose we have a device address consisting of seven data servers, arranged in three
equivalence (Section 13.5) classes:

{ A, B, C, D }, { E }, { F, G }

where A through G are network addresses.

Then

nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

i.e.,

nflda_multipath_ds_list[0] = { A, B, C, D }

nflda_multipath_ds_list[1] = { E }

nflda_multipath_ds_list[2] = { F, G }

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {
 case stripe_count:
 fh = nfl_fh_list[j];
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 280

Suppose the striping index array is:

nflda_stripe_indices<> = { 2, 0, 1, 0 }

Now suppose the client gets a layout that has a device ID that maps to the above device address.
The initial index contains

nfl_first_stripe_index = 2,

and

nfl_fh_list = { 0x67, 0x37, 0x87, 0x36 }.

The interesting examples for dense packing are SU1 and SU3 because each stripe unit refers to
the same data server list, yet each stripe unit use a different filehandle. If the client wants
to write to SU1, the set of valid { network address, filehandle } combinations for SUi are
determined by:

nfl_first_stripe_index = 2

So

j = (1 + 2) % 4 = 3

idx = nflda_stripe_indices[j]

= nflda_stripe_indices[3]

= 0

So

nflda_multipath_ds_list[0] = { A, B, C, D }

and

nfl_fh_list[3] = { 0x36 }

The client can thus write SU1 to { 0x36, { A, B, C, D } }.

For SU3, j = (3 + 2) % 4 = 1, and nflda_stripe_indices[1] = 0. Then nflda_multipath_ds_list[0] = { A,
B, C, D }, and nfl_fh_list[1] = 0x37. The client can thus write SU3 to { 0x37, { A, B, C, D } }.

The destinations of the first 13 storage units are:

SUi filehandle data servers

0 87 E

1 36 A,B,C,D

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 281

SUi filehandle data servers

2 67 F,G

3 37 A,B,C,D

4 87 E

5 36 A,B,C,D

6 67 F,G

7 37 A,B,C,D

8 87 E

9 36 A,B,C,D

10 67 F,G

11 37 A,B,C,D

12 87 E

Table 10

13.4.4. Sparse and Dense Stripe Unit Packing

The flag NFL4_UFLG_DENSE of the nfl_util4 data type (field nflh_util of the data type
nfsv4_1_file_layouthint4 and field nfl_util of data type nfsv4_1_file_layout_ds_addr4) specifies
how the data is packed within the data file on a data server. It allows for two different data
packings: sparse and dense. The packing type determines the calculation that will be made to
map the client-visible file offset to the offset within the data file located on the data server.

If nfl_util & NFL4_UFLG_DENSE is zero, this means that sparse packing is being used. Hence, the
logical offsets of the file as viewed by a client sending READs and WRITEs directly to the
metadata server are the same offsets each data server uses when storing a stripe unit. The effect
then, for striping patterns consisting of at least two stripe units, is for each data server file to be
sparse or "holey". So for example, suppose there is a pattern with three stripe units, the stripe
unit size is 4096 bytes, and there are three data servers in the pattern. Then, the file in data
server 1 will have stripe units 0, 3, 6, 9, ... filled; data server 2's file will have stripe units 1, 4, 7,
10, ... filled; and data server 3's file will have stripe units 2, 5, 8, 11, ... filled. The unfilled stripe
units of each file will be holes; hence, the files in each data server are sparse.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 282

If sparse packing is being used and a client attempts I/O to one of the holes, then an error
be returned by the data server. Using the above example, if data server 3 received a READ or
WRITE operation for block 4, the data server would return NFS4ERR_PNFS_IO_HOLE. Thus, data
servers need to understand the striping pattern in order to support sparse packing.

If nfl_util & NFL4_UFLG_DENSE is one, this means that dense packing is being used, and the data
server files have no holes. Dense packing might be selected because the data server does not
(efficiently) support holey files or because the data server cannot recognize read-ahead unless
there are no holes. If dense packing is indicated in the layout, the data files will be packed. Using
the same striping pattern and stripe unit size that were used for the sparse packing example, the
corresponding dense packing example would have all stripe units of all data files filled as
follows:

Logical stripe units 0, 3, 6, ... of the file would live on stripe units 0, 1, 2, ... of the file of data
server 1.
Logical stripe units 1, 4, 7, ... of the file would live on stripe units 0, 1, 2, ... of the file of data
server 2.
Logical stripe units 2, 5, 8, ... of the file would live on stripe units 0, 1, 2, ... of the file of data
server 3.

Because dense packing does not leave holes on the data servers, the pNFS client is allowed to
write to any offset of any data file of any data server in the stripe. Thus, the data servers need not
know the file's striping pattern.

The calculation to determine the byte offset within the data file for dense data server layouts is:

If dense packing is being used, and a data server appears more than once in a striping pattern,
then to distinguish one stripe unit from another, the data server use a different filehandle.
Let's suppose there are two data servers. Logical stripe units 0, 3, 6 are served by data server 1;
logical stripe units 1, 4, 7 are served by data server 2; and logical stripe units 2, 5, 8 are also
served by data server 2. Unless data server 2 has two filehandles (each referring to a different
data file), then, for example, a write to logical stripe unit 1 overwrites the write to logical stripe
unit 2 because both logical stripe units are located in the same stripe unit (0) of data server 2.

MUST

•

•

•

 stripe_width = stripe_unit_size * N;
 where N = number of elements in nflda_stripe_indices.

 relative_offset = file_offset - nfl_pattern_offset;

 data_file_offset = floor(relative_offset / stripe_width)
 * stripe_unit_size
 + relative_offset % stripe_unit_size

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 283

13.5. Data Server Multipathing
The NFSv4.1 file layout supports multipathing to multiple data server addresses. Data-server-
level multipathing is used for bandwidth scaling via trunking (Section 2.10.5) and for higher
availability of use in the case of a data-server failure. Multipathing allows the client to switch to
another data server address which may be that of another data server that is exporting the same
data stripe unit, without having to contact the metadata server for a new layout.

To support data server multipathing, each element of the nflda_multipath_ds_list contains an
array of one more data server network addresses. This array (data type multipath_list4)
represents a list of data servers (each identified by a network address), with the possibility that
some data servers will appear in the list multiple times.

The client is free to use any of the network addresses as a destination to send data server
requests. If some network addresses are less optimal paths to the data than others, then the MDS

 include those network addresses in an element of nflda_multipath_ds_list. If less
optimal network addresses exist to provide failover, the method to offer the
addresses is to provide them in a replacement device-ID-to-device-address mapping, or a
replacement device ID. When a client finds that no data server in an element of
nflda_multipath_ds_list responds, it send a GETDEVICEINFO to attempt to replace the
existing device-ID-to-device-address mappings. If the MDS detects that all data servers
represented by an element of nflda_multipath_ds_list are unavailable, the MDS send a
CB_NOTIFY_DEVICEID (if the client has indicated it wants device ID notifications for changed
device IDs) to change the device-ID-to-device-address mappings to the available data servers. If
the device ID itself will be replaced, the MDS recall all layouts with the device ID, and
thus force the client to get new layouts and device ID mappings via LAYOUTGET and
GETDEVICEINFO.

Generally, if two network addresses appear in an element of nflda_multipath_ds_list, they will
designate the same data server, and the two data server addresses will support the
implementation of client ID or session trunking (the latter is) as defined in
Section 2.10.5. The two data server addresses will share the same server owner or major ID of the
server owner. It is not always necessary for the two data server addresses to designate the same
server with trunking being used. For example, the data could be read-only, and the data consist
of exact replicas.

SHOULD NOT
RECOMMENDED

SHOULD

SHOULD

SHOULD

RECOMMENDED

13.6. Operations Sent to NFSv4.1 Data Servers
Clients accessing data on an NFSv4.1 data server send only the NULL procedure and
COMPOUND procedures whose operations are taken only from two restricted subsets of the
operations defined as valid NFSv4.1 operations. Clients use the filehandle specified by the
layout when accessing data on NFSv4.1 data servers.

The first of these operation subsets consists of management operations. This subset consists of
the BACKCHANNEL_CTL, BIND_CONN_TO_SESSION, CREATE_SESSION, DESTROY_CLIENTID,
DESTROY_SESSION, EXCHANGE_ID, SECINFO_NO_NAME, SET_SSV, and SEQUENCE operations.

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 284

The client may use these operations in order to set up and maintain the appropriate client IDs,
sessions, and security contexts involved in communication with the data server. Henceforth,
these will be referred to as data-server housekeeping operations.

The second subset consists of COMMIT, READ, WRITE, and PUTFH. These operations be
used with a current filehandle specified by the layout. In the case of PUTFH, the new current
filehandle be one taken from the layout. Henceforth, these will be referred to as data-
server I/O operations. As described in Section 12.5.1, a client send an I/O to a data
server for which it does not hold a valid layout; the data server reject such an I/O.

Unless the server has a concurrent non-data-server personality -- i.e., EXCHANGE_ID results
returned (EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_PNFS_MDS) or
(EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_NON_PNFS) see Section 13.1 -- any
attempted use of operations against a data server other than those specified in the two subsets
above return NFS4ERR_NOTSUPP to the client.

When the server has concurrent data-server and non-data-server personalities, each COMPOUND
sent by the client be constructed so that it is appropriate to one of the two personalities,
and it contain operations directed to a mix of those personalities. The server
enforce this. To understand the constraints, operations within a COMPOUND are divided into the
following three classes:

An operation that is ambiguous regarding its personality assignment. This includes all of the
data-server housekeeping operations. Additionally, if the server has assigned filehandles so
that the ones defined by the layout are the same as those used by the metadata server, all
operations using such filehandles are within this class, with the following exception. The
exception is that if the operation uses a stateid that is incompatible with a data-server
personality (e.g., a special stateid or the stateid has a non-zero "seqid" field, see Section
13.9.1), the operation is in class 3, as described below. A COMPOUND containing multiple
class 1 operations (and operations of no other class) be sent to a server with multiple
concurrent data server and non-data-server personalities.
An operation that is unambiguously referable to the data-server personality. This includes
data-server I/O operations where the filehandle is one that can only be validly directed to the
data-server personality.
An operation that is unambiguously referable to the non-data-server personality. This
includes all COMPOUND operations that are neither data-server housekeeping nor data-
server I/O operations, plus data-server I/O operations where the current fh (or the one to be
made the current fh in the case of PUTFH) is only valid on the metadata server or where a
stateid is used that is incompatible with the data server, i.e., is a special stateid or has a non-
zero seqid value.

When a COMPOUND first executes an operation from class 3 above, it acts as a normal
COMPOUND on any other server, and the data-server personality ceases to be relevant. There are
no special restrictions on the operations in the COMPOUND to limit them to those for a data
server. When a PUTFH is done, filehandles derived from the layout are not valid. If their format

MUST

MUST
MUST NOT

MUST

MUST

MUST
MUST NOT MUST

1.

MAY

2.

3.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 285

is not normally acceptable, then NFS4ERR_BADHANDLE result. Similarly, current
filehandles for other operations do not accept filehandles derived from layouts and are not
normally usable on the metadata server. Using these will result in NFS4ERR_STALE.

When a COMPOUND first executes an operation from class 2, which would be PUTFH where the
filehandle is one from a layout, the COMPOUND henceforth is interpreted with respect to the
data-server personality. Operations outside the two classes discussed above result in
NFS4ERR_NOTSUPP. Filehandles are validated using the rules of the data server, resulting in
NFS4ERR_BADHANDLE and/or NFS4ERR_STALE even when they would not normally do so when
addressed to the non-data-server personality. Stateids must obey the rules of the data server in
that any use of special stateids or stateids with non-zero seqid values must result in
NFS4ERR_BAD_STATEID.

Until the server first executes an operation from class 2 or class 3, the client depend on
the operation being executed by either the data-server or the non-data-server personality. The
server pick one personality consistently for a given COMPOUND, with the only possible
transition being a single one when the first operation from class 2 or class 3 is executed.

Because of the complexity induced by assigning filehandles so they can be used on both a data
server and a metadata server, it is that where the same server can have both
personalities, the server assign separate unique filehandles to both personalities. This makes it
unambiguous for which server a given request is intended.

GETATTR and SETATTR be directed to the metadata server. In the case of a SETATTR of the
size attribute, the control protocol is responsible for propagating size updates/truncations to the
data servers. In the case of extending WRITEs to the data servers, the new size must be visible on
the metadata server once a LAYOUTCOMMIT has completed (see Section 12.5.4.2). Section 13.10
describes the mechanism by which the client is to handle data-server files that do not reflect the
metadata server's size.

MUST

MUST

MUST NOT

MUST

RECOMMENDED

MUST

13.7. COMMIT through Metadata Server
The file layout provides two alternate means of providing for the commit of data written through
data servers. The flag NFL4_UFLG_COMMIT_THRU_MDS in the field nfl_util of the file layout
(data type nfsv4_1_file_layout4) is an indication from the metadata server to the client of the

 way of performing COMMIT, either by sending the COMMIT to the data server or the
metadata server. These two methods of dealing with the issue correspond to broad styles of
implementation for a pNFS server supporting the file layout type.

When the flag is FALSE, COMMIT operations to be sent to the data server to which the
corresponding WRITE operations were sent. This approach is sometimes useful when file
striping is implemented within the pNFS server (instead of the file system), with the
individual data servers each implementing their own file systems.
When the flag is TRUE, COMMIT operations be sent to the metadata server, rather than
to the individual data servers. This approach is sometimes useful when file striping is
implemented within the clustered file system that is the backend to the pNFS server. In such
an implementation, each COMMIT to each data server might result in repeated writes of

REQUIRED

• MUST

• MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 286

13.8. The Layout Iomode
The layout iomode need not be used by the metadata server when servicing NFSv4.1 file-based
layouts, although in some circumstances it may be useful. For example, if the server
implementation supports reading from read-only replicas or mirrors, it would be useful for the
server to return a layout enabling the client to do so. As such, the client set the iomode
based on its intent to read or write the data. The client may default to an iomode of
LAYOUTIOMODE4_RW. The iomode need not be checked by the data servers when clients
perform I/O. However, the data servers still validate that the client holds a valid layout
and return an error if the client does not.

13.9. Metadata and Data Server State Coordination

metadata blocks to the detriment of write performance. Sending a single COMMIT to the
metadata server can be more efficient when there exists a clustered file system capable of
implementing such a coordinated COMMIT.

If nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is TRUE, then in order to maintain the current
NFSv4.1 commit and recovery model, the data servers return a common writeverf
verifier in all WRITE responses for a given file layout, and the metadata server's COMMIT
implementation must return the same writeverf. The value of the writeverf verifier be
changed at the metadata server or any data server that is referenced in the layout, whenever
there is a server event that can possibly lead to loss of uncommitted data. The scope of the
verifier can be for a file or for the entire pNFS server. It might be more difficult for the
server to maintain the verifier at the file level, but the benefit is that only events that impact
a given file will require recovery action.

Note that if the layout specified dense packing, then the offset used to a COMMIT to the MDS may
differ than that of an offset used to a COMMIT to the data server.

The single COMMIT to the metadata server will return a verifier, and the client should compare it
to all the verifiers from the WRITEs and fail the COMMIT if there are any mismatched verifiers. If
COMMIT to the metadata server fails, the client should re-send WRITEs for all the modified data
in the file. The client should treat modified data with a mismatched verifier as a WRITE failure
and try to recover by resending the WRITEs to the original data server or using another path to
that data if the layout has not been recalled. Alternatively, the client can obtain a new layout or it
could rewrite the data directly to the metadata server. If nfl_util &
NFL4_UFLG_COMMIT_THRU_MDS is FALSE, sending a COMMIT to the metadata server might
have no effect. If nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is FALSE, a COMMIT sent to the
metadata server should be used only to commit data that was written to the metadata server. See
Section 12.7.6 for recovery options.

MUST

MUST

SHOULD

SHOULD

13.9.1. Global Stateid Requirements

When the client sends I/O to a data server, the stateid used be a layout stateid as
returned by LAYOUTGET or sent by CB_LAYOUTRECALL. Permitted stateids are based on one of
the following: an OPEN stateid (the stateid field of data type OPEN4resok as returned by OPEN), a
delegation stateid (the stateid field of data types open_read_delegation4 and

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 287

open_write_delegation4 as returned by OPEN or WANT_DELEGATION, or as sent by
CB_PUSH_DELEG), or a stateid returned by the LOCK or LOCKU operations. The stateid sent to the
data server be sent with the seqid set to zero, indicating the most current version of that
stateid, rather than indicating a specific non-zero seqid value. In no case is the use of special
stateid values allowed.

The stateid used for I/O have the same effect and be subject to the same validation on a
data server as it would if the I/O was being performed on the metadata server itself in the
absence of pNFS. This has the implication that stateids are globally valid on both the metadata
and data servers. This requires the metadata server to propagate changes in LOCK and OPEN
state to the data servers, so that the data servers can validate I/O accesses. This is discussed
further in Section 13.9.2. Depending on when stateids are propagated, the existence of a valid
stateid on the data server may act as proof of a valid layout.

Clients performing I/O operations need to select an appropriate stateid based on the locks
(including opens and delegations) held by the client and the various types of state-owners
sending the I/O requests. The rules for doing so when referencing data servers are somewhat
different from those discussed in Section 8.2.5, which apply when accessing metadata servers.

The following rules, applied in order of decreasing priority, govern the selection of the
appropriate stateid:

If the client holds a delegation for the file in question, the delegation stateid should be used.
Otherwise, there must be an OPEN stateid for the current open-owner, and that OPEN stateid
for the open file in question is used, unless mandatory locking prevents that. See below.
If the data server had previously responded with NFS4ERR_LOCKED to use of the OPEN
stateid, then the client should use the byte-range lock stateid whenever one exists for that
open file with the current lock-owner.
Special stateids should never be used. If they are used, the data server reject the I/O
with an NFS4ERR_BAD_STATEID error.

MUST

MUST

•
•

•

• MUST

13.9.2. Data Server State Propagation

Since the metadata server, which handles byte-range lock and open-mode state changes as well
as ACLs, might not be co-located with the data servers where I/O accesses are validated, the
server implementation take care of propagating changes of this state to the data servers.
Once the propagation to the data servers is complete, the full effect of those changes be in
effect at the data servers. However, some state changes need not be propagated immediately,
although all changes be propagated promptly. These state propagations have an impact
on the design of the control protocol, even though the control protocol is outside of the scope of
this specification. Immediate propagation refers to the synchronous propagation of state from
the metadata server to the data server(s); the propagation must be complete before returning to
the client.

MUST
MUST

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 288

13.9.2.1. Lock State Propagation
If the pNFS server supports mandatory byte-range locking, any mandatory byte-range locks on a
file be made effective at the data servers before the request that establishes them returns
to the caller. The effect be the same as if the mandatory byte-range lock state were
synchronously propagated to the data servers, even though the details of the control protocol
may avoid actual transfer of the state under certain circumstances.

On the other hand, since advisory byte-range lock state is not used for checking I/O accesses at
the data servers, there is no semantic reason for propagating advisory byte-range lock state to
the data servers. Since updates to advisory locks neither confer nor remove privileges, these
changes need not be propagated immediately, and may not need to be propagated promptly. The
updates to advisory locks need only be propagated when the data server needs to resolve a
question about a stateid. In fact, if byte-range locking is not mandatory (i.e., is advisory) the
clients are advised to avoid using the byte-range lock-based stateids for I/O. The stateids returned
by OPEN are sufficient and eliminate overhead for this kind of state propagation.

If a client gets back an NFS4ERR_LOCKED error from a data server, this is an indication that
mandatory byte-range locking is in force. The client recovers from this by getting a byte-range
lock that covers the affected range and re-sends the I/O with the stateid of the byte-range lock.

13.9.2.2. Open and Deny Mode Validation
Open and deny mode validation be performed against the open and deny mode(s) held by
the data servers. When access is reduced or a deny mode made more restrictive (because of
CLOSE or OPEN_DOWNGRADE), the data server prevent any I/Os that would be denied if
performed on the metadata server. When access is expanded, the data server make sure
that no requests are subsequently rejected because of open or deny issues that no longer apply,
given the previous relaxation.

13.9.2.3. File Attributes
Since the SETATTR operation has the ability to modify state that is visible on both the metadata
and data servers (e.g., the size), care must be taken to ensure that the resultant state across the
set of data servers is consistent, especially when truncating or growing the file.

As described earlier, the LAYOUTCOMMIT operation is used to ensure that the metadata is
synchronized with changes made to the data servers. For the NFSv4.1-based data storage
protocol, it is necessary to re-synchronize state such as the size attribute, and the setting of
mtime/change/atime. See Section 12.5.4 for a full description of the semantics regarding
LAYOUTCOMMIT and attribute synchronization. It should be noted that by using an NFSv4.1-
based layout type, it is possible to synchronize this state before LAYOUTCOMMIT occurs. For
example, the control protocol can be used to query the attributes present on the data servers.

MUST
MUST

MUST

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 289

Any changes to file attributes that control authorization or access as reflected by ACCESS calls or
READs and WRITEs on the metadata server, be propagated to the data servers for
enforcement on READ and WRITE I/O calls. If the changes made on the metadata server result in
more restrictive access permissions for any user, those changes be propagated to the data
servers synchronously.

The OPEN operation (Section 18.16.4) does not impose any requirement that I/O operations on an
open file have the same credentials as the OPEN itself (unless
EXCHGID4_FLAG_BIND_PRINC_STATEID is set when EXCHANGE_ID creates the client ID), and so
it requires the server's READ and WRITE operations to perform appropriate access checking.
Changes to ACLs also require new access checking by READ and WRITE on the server. The
propagation of access-right changes due to changes in ACLs may be asynchronous only if the
server implementation is able to determine that the updated ACL is not more restrictive for any
user specified in the old ACL. Due to the relative infrequency of ACL updates, it is suggested that
all changes be propagated synchronously.

MUST

MUST

13.10. Data Server Component File Size
A potential problem exists when a component data file on a particular data server has grown
past EOF; the problem exists for both dense and sparse layouts. Imagine the following scenario: a
client creates a new file (size == 0) and writes to byte 131072; the client then seeks to the
beginning of the file and reads byte 100. The client should receive zeroes back as a result of the
READ. However, if the striping pattern directs the client to send the READ to a data server other
than the one that received the client's original WRITE, the data server servicing the READ may
believe that the file's size is still 0 bytes. In that event, the data server's READ response will
contain zero bytes and an indication of EOF. The data server can only return zeroes if it knows
that the file's size has been extended. This would require the immediate propagation of the file's
size to all data servers, which is potentially very costly. Therefore, the client that has initiated the
extension of the file's size be prepared to deal with these EOF conditions. When the offset
in the arguments to READ is less than the client's view of the file size, if the READ response
indicates EOF and/or contains fewer bytes than requested, the client will interpret such a
response as a hole in the file, and the NFS client will substitute zeroes for the data.

The NFSv4.1 protocol only provides close-to-open file data cache semantics; meaning that when
the file is closed, all modified data is written to the server. When a subsequent OPEN of the file is
done, the change attribute is inspected for a difference from a cached value for the change
attribute. For the case above, this means that a LAYOUTCOMMIT will be done at close (along with
the data WRITEs) and will update the file's size and change attribute. Access from another client
after that point will result in the appropriate size being returned.

MUST

13.11. Layout Revocation and Fencing
As described in Section 12.7, the layout-type-specific storage protocol is responsible for handling
the effects of I/Os that started before lease expiration and extend through lease expiration. The
LAYOUT4_NFSV4_1_FILES layout type can prevent all I/Os to data servers from being executed
after lease expiration (this prevention is called "fencing"), without relying on a precise client

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 290

lease timer and without requiring data servers to maintain lease timers. The
LAYOUT4_NFSV4_1_FILES pNFS server has the flexibility to revoke individual layouts, and thus
fence I/O on a per-file basis.

In addition to lease expiration, the reasons a layout can be revoked include: client fails to
respond to a CB_LAYOUTRECALL, the metadata server restarts, or administrative intervention.
Regardless of the reason, once a client's layout has been revoked, the pNFS server prevent
the client from sending I/O for the affected file from and to all data servers; in other words, it

 fence the client from the affected file on the data servers.

Fencing works as follows. As described in Section 13.1, in COMPOUND procedure requests to the
data server, the data filehandle provided by the PUTFH operation and the stateid in the READ or
WRITE operation are used to ensure that the client has a valid layout for the I/O being
performed; if it does not, the I/O is rejected with NFS4ERR_PNFS_NO_LAYOUT. The server can
simply check the stateid and, additionally, make the data filehandle stale if the layout specified a
data filehandle that is different from the metadata server's filehandle for the file (see the
nfl_fh_list description in Section 13.3).

Before the metadata server takes any action to revoke layout state given out by a previous
instance, it must make sure that all layout state from that previous instance are invalidated at
the data servers. This has the following implications.

The metadata server must not restripe a file until it has contacted all of the data servers to
invalidate the layouts from the previous instance.
The metadata server must not give out mandatory locks that conflict with layouts from the
previous instance without either doing a specific layout invalidation (as it would have to do
anyway) or doing a global data server invalidation.

MUST

MUST

•

•

13.12. Security Considerations for the File Layout Type
The NFSv4.1 file layout type adhere to the security considerations outlined in Section 12.9.
NFSv4.1 data servers make all of the required access checks on each READ or WRITE I/O as
determined by the NFSv4.1 protocol. If the metadata server would deny a READ or WRITE
operation on a file due to its ACL, mode attribute, open access mode, open deny mode,
mandatory byte-range lock state, or any other attributes and state, the data server also
deny the READ or WRITE operation. This impacts the control protocol and the propagation of
state from the metadata server to the data servers; see Section 13.9.2 for more details.

The methods for authentication, integrity, and privacy for data servers based on the
LAYOUT4_NFSV4_1_FILES layout type are the same as those used by metadata servers. Metadata
and data servers use ONC RPC security flavors to authenticate, and SECINFO and
SECINFO_NO_NAME to negotiate the security mechanism and services to be used. Thus, when
using the LAYOUT4_NFSV4_1_FILES layout type, the impact on the RPC-based security model due
to pNFS (as alluded to in Sections 1.8.1 and 1.8.2.2) is zero.

MUST
MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 291

For a given file object, a metadata server require different security parameters (secinfo4
value) than the data server. For a given file object with multiple data servers, the secinfo4 value

 be the same across all data servers. If the secinfo4 values across a metadata server and
its data servers differ for a specific file, the mapping of the principal to the server's internal user
identifier be the same in order for the access-control checks based on ACL, mode, open and
deny mode, and mandatory locking to be consistent across on the pNFS server.

If an NFSv4.1 implementation supports pNFS and supports NFSv4.1 file layouts, then the
implementation support the SECINFO_NO_NAME operation on both the metadata and data
servers.

MAY

SHOULD

MUST

MUST

14. Internationalization
The primary issue in which NFSv4.1 needs to deal with internationalization, or I18N, is with
respect to file names and other strings as used within the protocol. The choice of string
representation must allow reasonable name/string access to clients that use various languages.
The UTF-8 encoding of the UCS (Universal Multiple-Octet Coded Character Set) as defined by

 allows for this type of access and follows the policy described in "IETF Policy on
Character Sets and Languages", .

, otherwise known as "stringprep", documents a framework for using Unicode/
UTF-8 in networking protocols so as "to increase the likelihood that string input and string
comparison work in ways that make sense for typical users throughout the world". A protocol
must define a profile of stringprep "in order to fully specify the processing options". The
remainder of this section defines the NFSv4.1 stringprep profiles. Much of the terminology used
for the remainder of this section comes from stringprep.

There are three UTF-8 string types defined for NFSv4.1: utf8str_cs, utf8str_cis, and utf8str_mixed.
Separate profiles are defined for each. Each profile defines the following, as required by
stringprep:

The intended applicability of the profile.
The character repertoire that is the input and output to stringprep (which is Unicode 3.2 for
the referenced version of stringprep). However, NFSv4.1 implementations are not limited to
3.2.
The mapping tables from stringprep used (as described in Section 3 of stringprep).
Any additional mapping tables specific to the profile.
The Unicode normalization used, if any (as described in Section 4 of stringprep).
The tables from the stringprep listing of characters that are prohibited as output (as
described in Section 5 of stringprep).
The bidirectional string testing used, if any (as described in Section 6 of stringprep).
Any additional characters that are prohibited as output specific to the profile.

ISO10646 [18]
RFC 2277 [19]

RFC 3454 [16]

•
•

•
•
•
•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 292

https://www.rfc-editor.org/rfc/rfc3454#section-3
https://www.rfc-editor.org/rfc/rfc3454#section-4
https://www.rfc-editor.org/rfc/rfc3454#section-5
https://www.rfc-editor.org/rfc/rfc3454#section-6

Stringprep discusses Unicode characters, whereas NFSv4.1 renders UTF-8 characters. Since there
is a one-to-one mapping from UTF-8 to Unicode, when the remainder of this document refers to
Unicode, the reader should assume UTF-8.

Much of the text for the profiles comes from RFC 3491 .

14.1. Stringprep Profile for the utf8str_cs Type
Every use of the utf8str_cs type definition in the NFSv4 protocol specification follows the profile
named nfs4_cs_prep.

14.1.1. Intended Applicability of the nfs4_cs_prep Profile

The utf8str_cs type is a case-sensitive string of UTF-8 characters. Its primary use in NFSv4.1 is for
naming components and pathnames. Components and pathnames are stored on the server's file
system. Two valid distinct UTF-8 strings might be the same after processing via the utf8str_cs
profile. If the strings are two names inside a directory, the NFSv4.1 server will need to either:

disallow the creation of a second name if its post-processed form collides with that of an
existing name, or
allow the creation of the second name, but arrange so that after post-processing, the second
name is different than the post-processed form of the first name.

14.1.2. Character Repertoire of nfs4_cs_prep

The nfs4_cs_prep profile uses Unicode 3.2, as defined in stringprep's Appendix A.1. However,
NFSv4.1 implementations are not limited to 3.2.

14.1.3. Mapping Used by nfs4_cs_prep

The nfs4_cs_prep profile specifies mapping using the following tables from stringprep:

Table B.1

Table B.2 is normally not part of the nfs4_cs_prep profile as it is primarily for dealing with case-
insensitive comparisons. However, if the NFSv4.1 file server supports the case_insensitive file
system attribute, and if case_insensitive is TRUE, the NFSv4.1 server use Table B.2 (in
addition to Table B1) when processing utf8str_cs strings, and the NFSv4.1 client assume
Table B.2 (in addition to Table B.1) is being used.

If the case_preserving attribute is present and set to FALSE, then the NFSv4.1 server use
Table B.2 to map case when processing utf8str_cs strings. Whether the server maps from lower to
upper case or from upper to lower case is an implementation dependency.

14.1.4. Normalization used by nfs4_cs_prep

The nfs4_cs_prep profile does not specify a normalization form. A later revision of this
specification may specify a particular normalization form. Therefore, the server and client can
expect that they may receive unnormalized characters within protocol requests and responses. If

[20]

•

•

MUST
MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 293

the operating environment requires normalization, then the implementation must normalize
utf8str_cs strings within the protocol before presenting the information to an application (at the
client) or local file system (at the server).

14.1.5. Prohibited Output for nfs4_cs_prep

The nfs4_cs_prep profile RECOMMENDS prohibiting the use of the following tables from
stringprep:

Table C.5

Table C.6

14.1.6. Bidirectional Output for nfs4_cs_prep

The nfs4_cs_prep profile does not specify any checking of bidirectional strings.

14.2. Stringprep Profile for the utf8str_cis Type
Every use of the utf8str_cis type definition in the NFSv4.1 protocol specification follows the
profile named nfs4_cis_prep.

14.2.1. Intended Applicability of the nfs4_cis_prep Profile

The utf8str_cis type is a case-insensitive string of UTF-8 characters. Its primary use in NFSv4.1 is
for naming NFS servers.

14.2.2. Character Repertoire of nfs4_cis_prep

The nfs4_cis_prep profile uses Unicode 3.2, as defined in stringprep's Appendix A.1. However,
NFSv4.1 implementations are not limited to 3.2.

14.2.3. Mapping Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies mapping using the following tables from stringprep:

Table B.1

Table B.2

14.2.4. Normalization Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies using Unicode normalization form KC, as described in
stringprep.

14.2.5. Prohibited Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies prohibiting using the following tables from stringprep:

Table C.1.2

Table C.2.2

Table C.3

Table C.4

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 294

Table C.5

Table C.6

Table C.7

Table C.8

Table C.9

14.2.6. Bidirectional Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies checking bidirectional strings as described in stringprep's
Section 6.

14.3. Stringprep Profile for the utf8str_mixed Type
Every use of the utf8str_mixed type definition in the NFSv4.1 protocol specification follows the
profile named nfs4_mixed_prep.

14.3.1. Intended Applicability of the nfs4_mixed_prep Profile

The utf8str_mixed type is a string of UTF-8 characters, with a prefix that is case sensitive, a
separator equal to '@', and a suffix that is a fully qualified domain name. Its primary use in
NFSv4.1 is for naming principals identified in an Access Control Entry.

14.3.2. Character Repertoire of nfs4_mixed_prep

The nfs4_mixed_prep profile uses Unicode 3.2, as defined in stringprep's Appendix A.1. However,
NFSv4.1 implementations are not limited to 3.2.

14.3.3. Mapping Used by nfs4_cis_prep

For the prefix and the separator of a utf8str_mixed string, the nfs4_mixed_prep profile specifies
mapping using the following table from stringprep:

Table B.1

For the suffix of a utf8str_mixed string, the nfs4_mixed_prep profile specifies mapping using the
following tables from stringprep:

Table B.1

Table B.2

14.3.4. Normalization Used by nfs4_mixed_prep

The nfs4_mixed_prep profile specifies using Unicode normalization form KC, as described in
stringprep.

14.3.5. Prohibited Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies prohibiting using the following tables from stringprep:

Table C.1.2

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 295

https://www.rfc-editor.org/rfc/rfc3454#section-6

Table C.2.2

Table C.3

Table C.4

Table C.5

Table C.6

Table C.7

Table C.8

Table C.9

14.3.6. Bidirectional Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies checking bidirectional strings as described in stringprep's
Section 6.

14.4. UTF-8 Capabilities

Because some operating environments and file systems do not enforce character set encodings,
NFSv4.1 supports the fs_charset_cap attribute (Section 5.8.2.11) that indicates to the client a file
system's UTF-8 capabilities. The attribute is an integer containing a pair of flags. The first flag is
FSCHARSET_CAP4_CONTAINS_NON_UTF8, which, if set to one, tells the client that the file system
contains non-UTF-8 characters, and the server will not convert non-UTF characters to UTF-8 if
the client reads a symbolic link or directory, neither will operations with component names or
pathnames in the arguments convert the strings to UTF-8. The second flag is
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set to one, indicates that the server will accept
(and generate) only UTF-8 characters on the file system. If
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one, FSCHARSET_CAP4_CONTAINS_NON_UTF8

 be set to zero. FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 always be set to one.

const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;
const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

typedef uint32_t fs_charset_cap4;

MUST SHOULD

14.5. UTF-8 Related Errors
Where the client sends an invalid UTF-8 string, the server should return NFS4ERR_INVAL (see
Table 11). This includes cases in which inappropriate prefixes are detected and where the count
includes trailing bytes that do not constitute a full UCS character.

Where the client-supplied string is valid UTF-8 but contains characters that are not supported by
the server as a value for that string (e.g., names containing characters outside of Unicode plane 0
on file systems that fail to support such characters despite their presence in the Unicode
standard), the server should return NFS4ERR_BADCHAR.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 296

https://www.rfc-editor.org/rfc/rfc3454#section-6

15. Error Values
NFS error numbers are assigned to failed operations within a Compound (COMPOUND or
CB_COMPOUND) request. A Compound request contains a number of NFS operations that have
their results encoded in sequence in a Compound reply. The results of successful operations will
consist of an NFS4_OK status followed by the encoded results of the operation. If an NFS
operation fails, an error status will be entered in the reply and the Compound request will be
terminated.

15.1. Error Definitions

Where a UTF-8 string is used as a file name, and the file system (while supporting all of the
characters within the name) does not allow that particular name to be used, the server should
return the error . This includes situations in which the server file
system imposes a normalization constraint on name strings, but will also include such situations
as file system prohibitions of "." and ".." as file names for certain operations, and other such
constraints.

NFS4ERR_BADNAME (Table 11)

Error Number Description

NFS4_OK 0 Section 15.1.3.1

NFS4ERR_ACCESS 13 Section 15.1.6.1

NFS4ERR_ATTRNOTSUPP 10032 Section 15.1.15.1

NFS4ERR_ADMIN_REVOKED 10047 Section 15.1.5.1

NFS4ERR_BACK_CHAN_BUSY 10057 Section 15.1.12.1

NFS4ERR_BADCHAR 10040 Section 15.1.7.1

NFS4ERR_BADHANDLE 10001 Section 15.1.2.1

NFS4ERR_BADIOMODE 10049 Section 15.1.10.1

NFS4ERR_BADLAYOUT 10050 Section 15.1.10.2

NFS4ERR_BADNAME 10041 Section 15.1.7.2

NFS4ERR_BADOWNER 10039 Section 15.1.15.2

NFS4ERR_BADSESSION 10052 Section 15.1.11.1

NFS4ERR_BADSLOT 10053 Section 15.1.11.2

NFS4ERR_BADTYPE 10007 Section 15.1.4.1

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 297

Error Number Description

NFS4ERR_BADXDR 10036 Section 15.1.1.1

NFS4ERR_BAD_COOKIE 10003 Section 15.1.1.2

NFS4ERR_BAD_HIGH_SLOT 10077 Section 15.1.11.3

NFS4ERR_BAD_RANGE 10042 Section 15.1.8.1

NFS4ERR_BAD_SEQID 10026 Section 15.1.16.1

NFS4ERR_BAD_SESSION_DIGEST 10051 Section 15.1.12.2

NFS4ERR_BAD_STATEID 10025 Section 15.1.5.2

NFS4ERR_CB_PATH_DOWN 10048 Section 15.1.11.4

NFS4ERR_CLID_INUSE 10017 Section 15.1.13.2

NFS4ERR_CLIENTID_BUSY 10074 Section 15.1.13.1

NFS4ERR_COMPLETE_ALREADY 10054 Section 15.1.9.1

NFS4ERR_CONN_NOT_BOUND_TO_SESSION 10055 Section 15.1.11.6

NFS4ERR_DEADLOCK 10045 Section 15.1.8.2

NFS4ERR_DEADSESSION 10078 Section 15.1.11.5

NFS4ERR_DELAY 10008 Section 15.1.1.3

NFS4ERR_DELEG_ALREADY_WANTED 10056 Section 15.1.14.1

NFS4ERR_DELEG_REVOKED 10087 Section 15.1.5.3

NFS4ERR_DENIED 10010 Section 15.1.8.3

NFS4ERR_DIRDELEG_UNAVAIL 10084 Section 15.1.14.2

NFS4ERR_DQUOT 69 Section 15.1.4.2

NFS4ERR_ENCR_ALG_UNSUPP 10079 Section 15.1.13.3

NFS4ERR_EXIST 17 Section 15.1.4.3

NFS4ERR_EXPIRED 10011 Section 15.1.5.4

NFS4ERR_FBIG 27 Section 15.1.4.4

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 298

Error Number Description

NFS4ERR_FHEXPIRED 10014 Section 15.1.2.2

NFS4ERR_FILE_OPEN 10046 Section 15.1.4.5

NFS4ERR_GRACE 10013 Section 15.1.9.2

NFS4ERR_HASH_ALG_UNSUPP 10072 Section 15.1.13.4

NFS4ERR_INVAL 22 Section 15.1.1.4

NFS4ERR_IO 5 Section 15.1.4.6

NFS4ERR_ISDIR 21 Section 15.1.2.3

NFS4ERR_LAYOUTTRYLATER 10058 Section 15.1.10.3

NFS4ERR_LAYOUTUNAVAILABLE 10059 Section 15.1.10.4

NFS4ERR_LEASE_MOVED 10031 Section 15.1.16.2

NFS4ERR_LOCKED 10012 Section 15.1.8.4

NFS4ERR_LOCKS_HELD 10037 Section 15.1.8.5

NFS4ERR_LOCK_NOTSUPP 10043 Section 15.1.8.6

NFS4ERR_LOCK_RANGE 10028 Section 15.1.8.7

NFS4ERR_MINOR_VERS_MISMATCH 10021 Section 15.1.3.2

NFS4ERR_MLINK 31 Section 15.1.4.7

NFS4ERR_MOVED 10019 Section 15.1.2.4

NFS4ERR_NAMETOOLONG 63 Section 15.1.7.3

NFS4ERR_NOENT 2 Section 15.1.4.8

NFS4ERR_NOFILEHANDLE 10020 Section 15.1.2.5

NFS4ERR_NOMATCHING_LAYOUT 10060 Section 15.1.10.5

NFS4ERR_NOSPC 28 Section 15.1.4.9

NFS4ERR_NOTDIR 20 Section 15.1.2.6

NFS4ERR_NOTEMPTY 66 Section 15.1.4.10

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 299

Error Number Description

NFS4ERR_NOTSUPP 10004 Section 15.1.1.5

NFS4ERR_NOT_ONLY_OP 10081 Section 15.1.3.3

NFS4ERR_NOT_SAME 10027 Section 15.1.15.3

NFS4ERR_NO_GRACE 10033 Section 15.1.9.3

NFS4ERR_NXIO 6 Section 15.1.16.3

NFS4ERR_OLD_STATEID 10024 Section 15.1.5.5

NFS4ERR_OPENMODE 10038 Section 15.1.8.8

NFS4ERR_OP_ILLEGAL 10044 Section 15.1.3.4

NFS4ERR_OP_NOT_IN_SESSION 10071 Section 15.1.3.5

NFS4ERR_PERM 1 Section 15.1.6.2

NFS4ERR_PNFS_IO_HOLE 10075 Section 15.1.10.6

NFS4ERR_PNFS_NO_LAYOUT 10080 Section 15.1.10.7

NFS4ERR_RECALLCONFLICT 10061 Section 15.1.14.3

NFS4ERR_RECLAIM_BAD 10034 Section 15.1.9.4

NFS4ERR_RECLAIM_CONFLICT 10035 Section 15.1.9.5

NFS4ERR_REJECT_DELEG 10085 Section 15.1.14.4

NFS4ERR_REP_TOO_BIG 10066 Section 15.1.3.6

NFS4ERR_REP_TOO_BIG_TO_CACHE 10067 Section 15.1.3.7

NFS4ERR_REQ_TOO_BIG 10065 Section 15.1.3.8

NFS4ERR_RESTOREFH 10030 Section 15.1.16.4

NFS4ERR_RETRY_UNCACHED_REP 10068 Section 15.1.3.9

NFS4ERR_RETURNCONFLICT 10086 Section 15.1.10.8

NFS4ERR_ROFS 30 Section 15.1.4.11

NFS4ERR_SAME 10009 Section 15.1.15.4

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 300

Error Number Description

NFS4ERR_SHARE_DENIED 10015 Section 15.1.8.9

NFS4ERR_SEQUENCE_POS 10064 Section 15.1.3.10

NFS4ERR_SEQ_FALSE_RETRY 10076 Section 15.1.11.7

NFS4ERR_SEQ_MISORDERED 10063 Section 15.1.11.8

NFS4ERR_SERVERFAULT 10006 Section 15.1.1.6

NFS4ERR_STALE 70 Section 15.1.2.7

NFS4ERR_STALE_CLIENTID 10022 Section 15.1.13.5

NFS4ERR_STALE_STATEID 10023 Section 15.1.16.5

NFS4ERR_SYMLINK 10029 Section 15.1.2.8

NFS4ERR_TOOSMALL 10005 Section 15.1.1.7

NFS4ERR_TOO_MANY_OPS 10070 Section 15.1.3.11

NFS4ERR_UNKNOWN_LAYOUTTYPE 10062 Section 15.1.10.9

NFS4ERR_UNSAFE_COMPOUND 10069 Section 15.1.3.12

NFS4ERR_WRONGSEC 10016 Section 15.1.6.3

NFS4ERR_WRONG_CRED 10082 Section 15.1.6.4

NFS4ERR_WRONG_TYPE 10083 Section 15.1.2.9

NFS4ERR_XDEV 18 Section 15.1.4.12

Table 11: Protocol Error Definitions

15.1.1. General Errors

This section deals with errors that are applicable to a broad set of different purposes.

15.1.1.1. NFS4ERR_BADXDR (Error Code 10036)
The arguments for this operation do not match those specified in the XDR definition. This
includes situations in which the request ends before all the arguments have been seen. Note that
this error applies when fixed enumerations (these include booleans) have a value within the
input stream that is not valid for the enum. A replier may pre-parse all operations for a
Compound procedure before doing any operation execution and return RPC-level XDR errors in
that case.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 301

15.1.1.2. NFS4ERR_BAD_COOKIE (Error Code 10003)
Used for operations that provide a set of information indexed by some quantity provided by the
client or cookie sent by the server for an earlier invocation. Where the value cannot be used for
its intended purpose, this error results.

15.1.1.3. NFS4ERR_DELAY (Error Code 10008)
For any of a number of reasons, the replier could not process this operation in what was deemed
a reasonable time. The client should wait and then try the request with a new slot and sequence
value.

Some examples of scenarios that might lead to this situation:

A server that supports hierarchical storage receives a request to process a file that had been
migrated.
An operation requires a delegation recall to proceed, but the need to wait for this delegation
to be recalled and returned makes processing this request in a timely fashion impossible.
A request is being performed on a session being migrated from another server as described
in Section 11.14.3, and the lack of full information about the state of the session on the
source makes it impossible to process the request immediately.

In such cases, returning the error NFS4ERR_DELAY allows necessary preparatory operations to
proceed without holding up requester resources such as a session slot. After delaying for period
of time, the client can then re-send the operation in question, often as part of a nearly identical
request. Because of the need to avoid spurious reissues of non-idempotent operations and to
avoid acting in response to NFS4ERR_DELAY errors returned on responses returned from the
replier's reply cache, integration with the session-provided reply cache is necessary. There are a
number of cases to deal with, each of which requires different sorts of handling by the requester
and replier:

If NFS4ERR_DELAY is returned on a SEQUENCE operation, the request is retried in full with
the SEQUENCE operation containing the same slot and sequence values. In this case, the
replier avoid returning a response containing NFS4ERR_DELAY as the response to
SEQUENCE solely because an earlier instance of the same request returned that error and it
was stored in the reply cache. If the replier did this, the retries would not be effective as
there would be no opportunity for the replier to see whether the condition that generated
the NFS4ERR_DELAY had been rectified during the interim between the original request and
the retry.
If NFS4ERR_DELAY is returned on an operation other than SEQUENCE that validly appears as
the first operation of a request, the handling is similar. The request can be retried in full
without modification. In this case as well, the replier avoid returning a response
containing NFS4ERR_DELAY as the response to an initial operation of a request solely on the
basis of its presence in the reply cache. If the replier did this, the retries would not be
effective as there would be no opportunity for the replier to see whether the condition that
generated the NFS4ERR_DELAY had been rectified during the interim between the original
request and the retry.

•

•

•

•

MUST

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 302

If NFS4ERR_DELAY is returned on an operation other than the first in the request, the
request when retried contain a SEQUENCE operation that is different than the original
one, with either the slot ID or the sequence value different from that in the original request.
Because requesters do this, there is no need for the replier to take special care to avoid
returning an NFS4ERR_DELAY error obtained from the reply cache. When no non-
idempotent operations have been processed before the NFS4ERR_DELAY was returned, the
requester should retry the request in full, with the only difference from the original request
being the modification to the slot ID or sequence value in the reissued SEQUENCE operation.
When NFS4ERR_DELAY is returned on an operation other than the first within a request and
there has been a non-idempotent operation processed before the NFS4ERR_DELAY was
returned, reissuing the request as is normally done would incorrectly cause the re-execution
of the non-idempotent operation.

To avoid this situation, the client should reissue the request without the non-idempotent
operation. The request still must use a SEQUENCE operation with either a different slot ID or
sequence value from the SEQUENCE in the original request. Because this is done, there is no
way the replier could avoid spuriously re-executing the non-idempotent operation since the
different SEQUENCE parameters prevent the requester from recognizing that the non-
idempotent operation is being retried.

Note that without the ability to return NFS4ERR_DELAY and the requester's willingness to re-
send when receiving it, deadlock might result. For example, if a recall is done, and if the
delegation return or operations preparatory to delegation return are held up by other operations
that need the delegation to be returned, session slots might not be available. The result could be
deadlock.

•
MUST

•

15.1.1.4. NFS4ERR_INVAL (Error Code 22)
The arguments for this operation are not valid for some reason, even though they do match those
specified in the XDR definition for the request.

15.1.1.5. NFS4ERR_NOTSUPP (Error Code 10004)
Operation not supported, either because the operation is an one and is not supported
by this server or because the operation be implemented in the current minor version.

OPTIONAL
MUST NOT

15.1.1.6. NFS4ERR_SERVERFAULT (Error Code 10006)
An error occurred on the server that does not map to any of the specific legal NFSv4.1 protocol
error values. The client should translate this into an appropriate error. UNIX clients may choose
to translate this to EIO.

15.1.1.7. NFS4ERR_TOOSMALL (Error Code 10005)
Used where an operation returns a variable amount of data, with a limit specified by the client.
Where the data returned cannot be fit within the limit specified by the client, this error results.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 303

15.1.2. Filehandle Errors

These errors deal with the situation in which the current or saved filehandle, or the filehandle
passed to PUTFH intended to become the current filehandle, is invalid in some way. This includes
situations in which the filehandle is a valid filehandle in general but is not of the appropriate
object type for the current operation.

Where the error description indicates a problem with the current or saved filehandle, it is to be
understood that filehandles are only checked for the condition if they are implicit arguments of
the operation in question.

15.1.2.1. NFS4ERR_BADHANDLE (Error Code 10001)
Illegal NFS filehandle for the current server. The current filehandle failed internal consistency
checks. Once accepted as valid (by PUTFH), no subsequent status change can cause the filehandle
to generate this error.

15.1.2.2. NFS4ERR_FHEXPIRED (Error Code 10014)
A current or saved filehandle that is an argument to the current operation is volatile and has
expired at the server.

15.1.2.3. NFS4ERR_ISDIR (Error Code 21)
The current or saved filehandle designates a directory when the current operation does not
allow a directory to be accepted as the target of this operation.

15.1.2.4. NFS4ERR_MOVED (Error Code 10019)
The file system that contains the current filehandle object is not present at the server or is not
accessible with the network address used. It may have been made accessible on a different set of
network addresses, relocated or migrated to another server, or it may have never been present.
The client may obtain the new file system location by obtaining the fs_locations or
fs_locations_info attribute for the current filehandle. For further discussion, refer to Section 11.3.

As with the case of NFS4ERR_DELAY, it is possible that one or more non-idempotent operations
may have been successfully executed within a COMPOUND before NFS4ERR_MOVED is returned.
Because of this, once the new location is determined, the original request that received the
NFS4ERR_MOVED should not be re-executed in full. Instead, the client should send a new
COMPOUND with any successfully executed non-idempotent operations removed. When the
client uses the same session for the new COMPOUND, its SEQUENCE operation should use a
different slot ID or sequence.

15.1.2.5. NFS4ERR_NOFILEHANDLE (Error Code 10020)
The logical current or saved filehandle value is required by the current operation and is not set.
This may be a result of a malformed COMPOUND operation (i.e., no PUTFH or PUTROOTFH
before an operation that requires the current filehandle be set).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 304

15.1.2.6. NFS4ERR_NOTDIR (Error Code 20)
The current (or saved) filehandle designates an object that is not a directory for an operation in
which a directory is required.

15.1.2.7. NFS4ERR_STALE (Error Code 70)
The current or saved filehandle value designating an argument to the current operation is
invalid. The file referred to by that filehandle no longer exists or access to it has been revoked.

15.1.2.8. NFS4ERR_SYMLINK (Error Code 10029)
The current filehandle designates a symbolic link when the current operation does not allow a
symbolic link as the target.

15.1.2.9. NFS4ERR_WRONG_TYPE (Error Code 10083)
The current (or saved) filehandle designates an object that is of an invalid type for the current
operation, and there is no more specific error (such as NFS4ERR_ISDIR or NFS4ERR_SYMLINK)
that applies. Note that in NFSv4.0, such situations generally resulted in the less-specific error
NFS4ERR_INVAL.

15.1.3. Compound Structure Errors

This section deals with errors that relate to the overall structure of a Compound request (by
which we mean to include both COMPOUND and CB_COMPOUND), rather than to particular
operations.

There are a number of basic constraints on the operations that may appear in a Compound
request. Sessions add to these basic constraints by requiring a Sequence operation (either
SEQUENCE or CB_SEQUENCE) at the start of the Compound.

15.1.3.1. NFS_OK (Error code 0)
Indicates the operation completed successfully, in that all of the constituent operations
completed without error.

15.1.3.2. NFS4ERR_MINOR_VERS_MISMATCH (Error code 10021)
The minor version specified is not one that the current listener supports. This value is returned
in the overall status for the Compound but is not associated with a specific operation since the
results will specify a result count of zero.

15.1.3.3. NFS4ERR_NOT_ONLY_OP (Error Code 10081)
Certain operations, which are allowed to be executed outside of a session, be the only
operation within a Compound whenever the Compound does not start with a Sequence
operation. This error results when that constraint is not met.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 305

15.1.3.4. NFS4ERR_OP_ILLEGAL (Error Code 10044)
The operation code is not a valid one for the current Compound procedure. The opcode in the
result stream matched with this error is the ILLEGAL value, although the value that appears in
the request stream may be different. Where an illegal value appears and the replier pre-parses
all operations for a Compound procedure before doing any operation execution, an RPC-level
XDR error may be returned.

15.1.3.5. NFS4ERR_OP_NOT_IN_SESSION (Error Code 10071)
Most forward operations and all callback operations are only valid within the context of a
session, so that the Compound request in question begin with a Sequence operation. If an
attempt is made to execute these operations outside the context of session, this error results.

MUST

15.1.3.6. NFS4ERR_REP_TOO_BIG (Error Code 10066)
The reply to a Compound would exceed the channel's negotiated maximum response size.

15.1.3.7. NFS4ERR_REP_TOO_BIG_TO_CACHE (Error Code 10067)
The reply to a Compound would exceed the channel's negotiated maximum size for replies
cached in the reply cache when the Sequence for the current request specifies that this request is
to be cached.

15.1.3.8. NFS4ERR_REQ_TOO_BIG (Error Code 10065)
The Compound request exceeds the channel's negotiated maximum size for requests.

15.1.3.9. NFS4ERR_RETRY_UNCACHED_REP (Error Code 10068)
The requester has attempted a retry of a Compound that it previously requested not be placed in
the reply cache.

15.1.3.10. NFS4ERR_SEQUENCE_POS (Error Code 10064)
A Sequence operation appeared in a position other than the first operation of a Compound
request.

15.1.3.11. NFS4ERR_TOO_MANY_OPS (Error Code 10070)
The Compound request has too many operations, exceeding the count negotiated when the
session was created.

15.1.3.12. NFS4ERR_UNSAFE_COMPOUND (Error Code 10068)
The client has sent a COMPOUND request with an unsafe mix of operations -- specifically, with a
non-idempotent operation that changes the current filehandle and that is not followed by a
GETFH.

15.1.4. File System Errors

These errors describe situations that occurred in the underlying file system implementation
rather than in the protocol or any NFSv4.x feature.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 306

15.1.4.1. NFS4ERR_BADTYPE (Error Code 10007)
An attempt was made to create an object with an inappropriate type specified to CREATE. This
may be because the type is undefined, because the type is not supported by the server, or
because the type is not intended to be created by CREATE (such as a regular file or named
attribute, for which OPEN is used to do the file creation).

15.1.4.2. NFS4ERR_DQUOT (Error Code 69)
Resource (quota) hard limit exceeded. The user's resource limit on the server has been exceeded.

15.1.4.3. NFS4ERR_EXIST (Error Code 17)
A file of the specified target name (when creating, renaming, or linking) already exists.

15.1.4.4. NFS4ERR_FBIG (Error Code 27)
The file is too large. The operation would have caused the file to grow beyond the server's limit.

15.1.4.5. NFS4ERR_FILE_OPEN (Error Code 10046)
The operation is not allowed because a file involved in the operation is currently open. Servers
may, but are not required to, disallow linking-to, removing, or renaming open files.

15.1.4.6. NFS4ERR_IO (Error Code 5)
Indicates that an I/O error occurred for which the file system was unable to provide recovery.

15.1.4.7. NFS4ERR_MLINK (Error Code 31)
The request would have caused the server's limit for the number of hard links a file may have to
be exceeded.

15.1.4.8. NFS4ERR_NOENT (Error Code 2)
Indicates no such file or directory. The file or directory name specified does not exist.

15.1.4.9. NFS4ERR_NOSPC (Error Code 28)
Indicates there is no space left on the device. The operation would have caused the server's file
system to exceed its limit.

15.1.4.10. NFS4ERR_NOTEMPTY (Error Code 66)
An attempt was made to remove a directory that was not empty.

15.1.4.11. NFS4ERR_ROFS (Error Code 30)
Indicates a read-only file system. A modifying operation was attempted on a read-only file
system.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 307

15.1.4.12. NFS4ERR_XDEV (Error Code 18)
Indicates an attempt to do an operation, such as linking, that inappropriately crosses a boundary.
This may be due to such boundaries as:

that between file systems (where the fsids are different).
that between different named attribute directories or between a named attribute directory
and an ordinary directory.
that between byte-ranges of a file system that the file system implementation treats as
separate (for example, for space accounting purposes), and where cross-connection between
the byte-ranges are not allowed.

•
•

•

15.1.5. State Management Errors

These errors indicate problems with the stateid (or one of the stateids) passed to a given
operation. This includes situations in which the stateid is invalid as well as situations in which
the stateid is valid but designates locking state that has been revoked. Depending on the
operation, the stateid when valid may designate opens, byte-range locks, file or directory
delegations, layouts, or device maps.

15.1.5.1. NFS4ERR_ADMIN_REVOKED (Error Code 10047)
A stateid designates locking state of any type that has been revoked due to administrative
interaction, possibly while the lease is valid.

15.1.5.2. NFS4ERR_BAD_STATEID (Error Code 10026)
A stateid does not properly designate any valid state. See Sections 8.2.4 and 8.2.3 for a discussion
of how stateids are validated.

15.1.5.3. NFS4ERR_DELEG_REVOKED (Error Code 10087)
A stateid designates recallable locking state of any type (delegation or layout) that has been
revoked due to the failure of the client to return the lock when it was recalled.

15.1.5.4. NFS4ERR_EXPIRED (Error Code 10011)
A stateid designates locking state of any type that has been revoked due to expiration of the
client's lease, either immediately upon lease expiration, or following a later request for a
conflicting lock.

15.1.5.5. NFS4ERR_OLD_STATEID (Error Code 10024)
A stateid with a non-zero seqid value does match the current seqid for the state designated by the
user.

15.1.6. Security Errors

These are the various permission-related errors in NFSv4.1.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 308

15.1.6.1. NFS4ERR_ACCESS (Error Code 13)
Indicates permission denied. The caller does not have the correct permission to perform the
requested operation. Contrast this with NFS4ERR_PERM (Section 15.1.6.2), which restricts itself to
owner or privileged-user permission failures, and NFS4ERR_WRONG_CRED (Section 15.1.6.4),
which deals with appropriate permission to delete or modify transient objects based on the
credentials of the user that created them.

15.1.6.2. NFS4ERR_PERM (Error Code 1)
Indicates requester is not the owner. The operation was not allowed because the caller is neither
a privileged user (root) nor the owner of the target of the operation.

15.1.6.3. NFS4ERR_WRONGSEC (Error Code 10016)
Indicates that the security mechanism being used by the client for the operation does not match
the server's security policy. The client should change the security mechanism being used and re-
send the operation (but not with the same slot ID and sequence ID; one or both be different
on the re-send). SECINFO and SECINFO_NO_NAME can be used to determine the appropriate
mechanism.

MUST

15.1.6.4. NFS4ERR_WRONG_CRED (Error Code 10082)
An operation that manipulates state was attempted by a principal that was not allowed to modify
that piece of state.

15.1.7. Name Errors

Names in NFSv4 are UTF-8 strings. When the strings are not valid UTF-8 or are of length zero, the
error NFS4ERR_INVAL results. Besides this, there are a number of other errors to indicate
specific problems with names.

15.1.7.1. NFS4ERR_BADCHAR (Error Code 10040)
A UTF-8 string contains a character that is not supported by the server in the context in which it
being used.

15.1.7.2. NFS4ERR_BADNAME (Error Code 10041)
A name string in a request consisted of valid UTF-8 characters supported by the server, but the
name is not supported by the server as a valid name for the current operation. An example might
be creating a file or directory named ".." on a server whose file system uses that name for links to
parent directories.

15.1.7.3. NFS4ERR_NAMETOOLONG (Error Code 63)
Returned when the filename in an operation exceeds the server's implementation limit.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 309

15.1.8. Locking Errors

This section deals with errors related to locking, both as to share reservations and byte-range
locking. It does not deal with errors specific to the process of reclaiming locks. Those are dealt
with in Section 15.1.9.

15.1.8.1. NFS4ERR_BAD_RANGE (Error Code 10042)
The byte-range of a LOCK, LOCKT, or LOCKU operation is not allowed by the server. For example,
this error results when a server that only supports 32-bit ranges receives a range that cannot be
handled by that server. (See Section 18.10.3.)

15.1.8.2. NFS4ERR_DEADLOCK (Error Code 10045)
The server has been able to determine a byte-range locking deadlock condition for a READW_LT
or WRITEW_LT LOCK operation.

15.1.8.3. NFS4ERR_DENIED (Error Code 10010)
An attempt to lock a file is denied. Since this may be a temporary condition, the client is
encouraged to re-send the lock request (but not with the same slot ID and sequence ID; one or
both be different on the re-send) until the lock is accepted. See Section 9.6 for a discussion
of the re-send.

MUST

15.1.8.4. NFS4ERR_LOCKED (Error Code 10012)
A READ or WRITE operation was attempted on a file where there was a conflict between the I/O
and an existing lock:

There is a share reservation inconsistent with the I/O being done.
The range to be read or written intersects an existing mandatory byte-range lock.

•
•

15.1.8.5. NFS4ERR_LOCKS_HELD (Error Code 10037)
An operation was prevented by the unexpected presence of locks.

15.1.8.6. NFS4ERR_LOCK_NOTSUPP (Error Code 10043)
A LOCK operation was attempted that would require the upgrade or downgrade of a byte-range
lock range already held by the owner, and the server does not support atomic upgrade or
downgrade of locks.

15.1.8.7. NFS4ERR_LOCK_RANGE (Error Code 10028)
A LOCK operation is operating on a range that overlaps in part a currently held byte-range lock
for the current lock-owner and does not precisely match a single such byte-range lock where the
server does not support this type of request, and thus does not implement POSIX locking
semantics . See Sections 18.10.4, 18.11.4, and 18.12.4 for a discussion of how this applies to
LOCK, LOCKT, and LOCKU respectively.

[21]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 310

15.1.8.8. NFS4ERR_OPENMODE (Error Code 10038)
The client attempted a READ, WRITE, LOCK, or other operation not sanctioned by the stateid
passed (e.g., writing to a file opened for read-only access).

15.1.8.9. NFS4ERR_SHARE_DENIED (Error Code 10015)
An attempt to OPEN a file with a share reservation has failed because of a share conflict.

15.1.9. Reclaim Errors

These errors relate to the process of reclaiming locks after a server restart.

15.1.9.1. NFS4ERR_COMPLETE_ALREADY (Error Code 10054)
The client previously sent a successful RECLAIM_COMPLETE operation specifying the same
scope, whether that scope is global or for the same file system in the case of a per-fs
RECLAIM_COMPLETE. An additional RECLAIM_COMPLETE operation is not necessary and results
in this error.

15.1.9.2. NFS4ERR_GRACE (Error Code 10013)
This error is returned when the server is in its grace period with regard to the file system object
for which the lock was requested. In this situation, a non-reclaim locking request cannot be
granted. This can occur because either:

The server does not have sufficient information about locks that might be potentially
reclaimed to determine whether the lock could be granted.
The request is made by a client responsible for reclaiming its locks that has not yet done the
appropriate RECLAIM_COMPLETE operation, allowing it to proceed to obtain new locks.

In the case of a per-fs grace period, there may be clients (i.e., those currently using the
destination file system) who might be unaware of the circumstances resulting in the initiation of
the grace period. Such clients need to periodically retry the request until the grace period is over,
just as other clients do.

•

•

15.1.9.3. NFS4ERR_NO_GRACE (Error Code 10033)
A reclaim of client state was attempted in circumstances in which the server cannot guarantee
that conflicting state has not been provided to another client. This occurs in any of the following
situations:

There is no active grace period applying to the file system object for which the request was
made.
The client making the request has no current role in reclaiming locks.
Previous operations have created a situation in which the server is not able to determine
that a reclaim-interfering edge condition does not exist.

•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 311

15.1.9.4. NFS4ERR_RECLAIM_BAD (Error Code 10034)
The server has determined that a reclaim attempted by the client is not valid, i.e., the lock
specified as being reclaimed could not possibly have existed before the server restart or file
system migration event. A server is not obliged to make this determination and will typically rely
on the client to only reclaim locks that the client was granted prior to restart. However, when a
server does have reliable information to enable it to make this determination, this error
indicates that the reclaim has been rejected as invalid. This is as opposed to the error
NFS4ERR_RECLAIM_CONFLICT (see Section 15.1.9.5) where the server can only determine that
there has been an invalid reclaim, but cannot determine which request is invalid.

15.1.9.5. NFS4ERR_RECLAIM_CONFLICT (Error Code 10035)
The reclaim attempted by the client has encountered a conflict and cannot be satisfied. This
potentially indicates a misbehaving client, although not necessarily the one receiving the error.
The misbehavior might be on the part of the client that established the lock with which this client
conflicted. See also Section 15.1.9.4 for the related error, NFS4ERR_RECLAIM_BAD.

15.1.10. pNFS Errors

This section deals with pNFS-related errors including those that are associated with using
NFSv4.1 to communicate with a data server.

15.1.10.1. NFS4ERR_BADIOMODE (Error Code 10049)
An invalid or inappropriate layout iomode was specified. For example an inappropriate layout
iomode, suppose a client's LAYOUTGET operation specified an iomode of LAYOUTIOMODE4_RW,
and the server is neither able nor willing to let the client send write requests to data servers; the
server can reply with NFS4ERR_BADIOMODE. The client would then send another LAYOUTGET
with an iomode of LAYOUTIOMODE4_READ.

15.1.10.2. NFS4ERR_BADLAYOUT (Error Code 10050)
The layout specified is invalid in some way. For LAYOUTCOMMIT, this indicates that the specified
layout is not held by the client or is not of mode LAYOUTIOMODE4_RW. For LAYOUTGET, it
indicates that a layout matching the client's specification as to minimum length cannot be
granted.

15.1.10.3. NFS4ERR_LAYOUTTRYLATER (Error Code 10058)
Layouts are temporarily unavailable for the file. The client should re-send later (but not with the
same slot ID and sequence ID; one or both be different on the re-send).MUST

15.1.10.4. NFS4ERR_LAYOUTUNAVAILABLE (Error Code 10059)
Returned when layouts are not available for the current file system or the particular specified
file.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 312

15.1.10.5. NFS4ERR_NOMATCHING_LAYOUT (Error Code 10060)
Returned when layouts are recalled and the client has no layouts matching the specification of
the layouts being recalled.

15.1.10.6. NFS4ERR_PNFS_IO_HOLE (Error Code 10075)
The pNFS client has attempted to read from or write to an illegal hole of a file of a data server
that is using sparse packing. See Section 13.4.4.

15.1.10.7. NFS4ERR_PNFS_NO_LAYOUT (Error Code 10080)
The pNFS client has attempted to read from or write to a file (using a request to a data server)
without holding a valid layout. This includes the case where the client had a layout, but the
iomode does not allow a WRITE.

15.1.10.8. NFS4ERR_RETURNCONFLICT (Error Code 10086)
A layout is unavailable due to an attempt to perform the LAYOUTGET before a pending
LAYOUTRETURN on the file has been received. See Section 12.5.5.2.1.3.

15.1.10.9. NFS4ERR_UNKNOWN_LAYOUTTYPE (Error Code 10062)
The client has specified a layout type that is not supported by the server.

15.1.11. Session Use Errors

This section deals with errors encountered when using sessions, that is, errors encountered
when a request uses a Sequence (i.e., either SEQUENCE or CB_SEQUENCE) operation.

15.1.11.1. NFS4ERR_BADSESSION (Error Code 10052)
The specified session ID is unknown to the server to which the operation is addressed.

15.1.11.2. NFS4ERR_BADSLOT (Error Code 10053)
The requester sent a Sequence operation that attempted to use a slot the replier does not have in
its slot table. It is possible the slot may have been retired.

15.1.11.3. NFS4ERR_BAD_HIGH_SLOT (Error Code 10077)
The highest_slot argument in a Sequence operation exceeds the replier's enforced highest_slotid.

15.1.11.4. NFS4ERR_CB_PATH_DOWN (Error Code 10048)
There is a problem contacting the client via the callback path. The function of this error has been
mostly superseded by the use of status flags in the reply to the SEQUENCE operation (see Section
18.46).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 313

15.1.11.5. NFS4ERR_DEADSESSION (Error Code 10078)
The specified session is a persistent session that is dead and does not accept new requests or
perform new operations on existing requests (in the case in which a request was partially
executed before server restart).

15.1.11.6. NFS4ERR_CONN_NOT_BOUND_TO_SESSION (Error Code 10055)
A Sequence operation was sent on a connection that has not been associated with the specified
session, where the client specified that connection association was to be enforced with
SP4_MACH_CRED or SP4_SSV state protection.

15.1.11.7. NFS4ERR_SEQ_FALSE_RETRY (Error Code 10076)
The requester sent a Sequence operation with a slot ID and sequence ID that are in the reply
cache, but the replier has detected that the retried request is not the same as the original request.
See Section 2.10.6.1.3.1.

15.1.11.8. NFS4ERR_SEQ_MISORDERED (Error Code 10063)
The requester sent a Sequence operation with an invalid sequence ID.

15.1.12. Session Management Errors

This section deals with errors associated with requests used in session management.

15.1.12.1. NFS4ERR_BACK_CHAN_BUSY (Error Code 10057)
An attempt was made to destroy a session when the session cannot be destroyed because the
server has callback requests outstanding.

15.1.12.2. NFS4ERR_BAD_SESSION_DIGEST (Error Code 10051)
The digest used in a SET_SSV request is not valid.

15.1.13. Client Management Errors

This section deals with errors associated with requests used to create and manage client IDs.

15.1.13.1. NFS4ERR_CLIENTID_BUSY (Error Code 10074)
The DESTROY_CLIENTID operation has found there are sessions and/or unexpired state
associated with the client ID to be destroyed.

15.1.13.2. NFS4ERR_CLID_INUSE (Error Code 10017)
While processing an EXCHANGE_ID operation, the server was presented with a co_ownerid field
that matches an existing client with valid leased state, but the principal sending the
EXCHANGE_ID operation differs from the principal that established the existing client. This
indicates a collision (most likely due to chance) between clients. The client should recover by
changing the co_ownerid and re-sending EXCHANGE_ID (but not with the same slot ID and
sequence ID; one or both be different on the re-send).MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 314

15.1.13.3. NFS4ERR_ENCR_ALG_UNSUPP (Error Code 10079)
An EXCHANGE_ID was sent that specified state protection via SSV, and where the set of
encryption algorithms presented by the client did not include any supported by the server.

15.1.13.4. NFS4ERR_HASH_ALG_UNSUPP (Error Code 10072)
An EXCHANGE_ID was sent that specified state protection via SSV, and where the set of hashing
algorithms presented by the client did not include any supported by the server.

15.1.13.5. NFS4ERR_STALE_CLIENTID (Error Code 10022)
A client ID not recognized by the server was passed to an operation. Note that unlike the case of
NFSv4.0, client IDs are not passed explicitly to the server in ordinary locking operations and
cannot result in this error. Instead, when there is a server restart, it is first manifested through
an error on the associated session, and the staleness of the client ID is detected when trying to
associate a client ID with a new session.

15.1.14. Delegation Errors

This section deals with errors associated with requesting and returning delegations.

15.1.14.1. NFS4ERR_DELEG_ALREADY_WANTED (Error Code 10056)
The client has requested a delegation when it had already registered that it wants that same
delegation.

15.1.14.2. NFS4ERR_DIRDELEG_UNAVAIL (Error Code 10084)
This error is returned when the server is unable or unwilling to provide a requested directory
delegation.

15.1.14.3. NFS4ERR_RECALLCONFLICT (Error Code 10061)
A recallable object (i.e., a layout or delegation) is unavailable due to a conflicting recall operation
that is currently in progress for that object.

15.1.14.4. NFS4ERR_REJECT_DELEG (Error Code 10085)
The callback operation invoked to deal with a new delegation has rejected it.

15.1.15. Attribute Handling Errors

This section deals with errors specific to attribute handling within NFSv4.

15.1.15.1. NFS4ERR_ATTRNOTSUPP (Error Code 10032)
An attribute specified is not supported by the server. This error be returned by the
GETATTR operation.

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 315

15.1.15.2. NFS4ERR_BADOWNER (Error Code 10039)
This error is returned when an owner or owner_group attribute value or the who field of an ACE
within an ACL attribute value cannot be translated to a local representation.

15.1.15.3. NFS4ERR_NOT_SAME (Error Code 10027)
This error is returned by the VERIFY operation to signify that the attributes compared were not
the same as those provided in the client's request.

15.1.15.4. NFS4ERR_SAME (Error Code 10009)
This error is returned by the NVERIFY operation to signify that the attributes compared were the
same as those provided in the client's request.

15.1.16. Obsoleted Errors

These errors be generated by any NFSv4.1 operation. This can be for a number of
reasons.

The function provided by the error has been superseded by one of the status bits returned by
the SEQUENCE operation.
The new session structure and associated change in locking have made the error
unnecessary.
There has been a restructuring of some errors for NFSv4.1 that resulted in the elimination of
certain errors.

MUST NOT

•

•

•

15.1.16.1. NFS4ERR_BAD_SEQID (Error Code 10026)
The sequence number (seqid) in a locking request is neither the next expected number or the last
number processed. These seqids are ignored in NFSv4.1.

15.1.16.2. NFS4ERR_LEASE_MOVED (Error Code 10031)
A lease being renewed is associated with a file system that has been migrated to a new server.
The error has been superseded by the SEQ4_STATUS_LEASE_MOVED status bit (see Section 18.46).

15.1.16.3. NFS4ERR_NXIO (Error Code 5)
I/O error. No such device or address. This error is for errors involving block and character device
access, but because NFSv4.1 is not a device-access protocol, this error is not applicable.

15.1.16.4. NFS4ERR_RESTOREFH (Error Code 10030)
The RESTOREFH operation does not have a saved filehandle (identified by SAVEFH) to operate
upon. In NFSv4.1, this error has been superseded by NFS4ERR_NOFILEHANDLE.

15.1.16.5. NFS4ERR_STALE_STATEID (Error Code 10023)
A stateid generated by an earlier server instance was used. This error is moot in NFSv4.1 because
all operations that take a stateid be preceded by the SEQUENCE operation, and the earlier
server instance is detected by the session infrastructure that supports SEQUENCE.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 316

15.2. Operations and Their Valid Errors
This section contains a table that gives the valid error returns for each protocol operation. The
error code NFS4_OK (indicating no error) is not listed but should be understood to be returnable
by all operations with two important exceptions:

The operations that be implemented: OPEN_CONFIRM, RELEASE_LOCKOWNER,
RENEW, SETCLIENTID, and SETCLIENTID_CONFIRM.
The invalid operation: ILLEGAL.

• MUST NOT

•

Operation Errors

ACCESS NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS

BACKCHANNEL_CTL NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOENT,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_TOO_MANY_OPS

BIND_CONN_TO_SESSION NFS4ERR_BADSESSION, NFS4ERR_BADXDR,
NFS4ERR_BAD_SESSION_DIGEST, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_INVAL, NFS4ERR_NOT_ONLY_OP,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS

CLOSE NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_LOCKS_HELD, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 317

Operation Errors

COMMIT NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, NFS4ERR_IO,
NFS4ERR_ISDIR, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE

CREATE NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADOWNER, NFS4ERR_BADTYPE, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DQUOT,
NFS4ERR_EXIST, NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MLINK, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PERM,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNSAFE_COMPOUND

CREATE_SESSION NFS4ERR_BADXDR, NFS4ERR_CLID_INUSE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOENT, NFS4ERR_NOT_ONLY_OP, NFS4ERR_NOSPC,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SEQ_MISORDERED, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID, NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED

DELEGPURGE NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 318

Operation Errors

DELEGRETURN NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DESTROY_CLIENTID NFS4ERR_BADXDR, NFS4ERR_CLIENTID_BUSY,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_NOT_ONLY_OP, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DESTROY_SESSION NFS4ERR_BACK_CHAN_BUSY, NFS4ERR_BADSESSION,
NFS4ERR_BADXDR, NFS4ERR_CB_PATH_DOWN,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_NOT_ONLY_OP, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

EXCHANGE_ID NFS4ERR_BADCHAR, NFS4ERR_BADXDR, NFS4ERR_CLID_INUSE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_ENCR_ALG_UNSUPP, NFS4ERR_HASH_ALG_UNSUPP,
NFS4ERR_INVAL, NFS4ERR_NOENT, NFS4ERR_NOT_ONLY_OP,
NFS4ERR_NOT_SAME, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 319

Operation Errors

FREE_STATEID NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_LOCKS_HELD, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED

GET_DIR_DELEGATION NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DIRDELEG_UNAVAIL,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS

GETATTR NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE

GETDEVICEINFO NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOENT, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOOSMALL, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE

GETDEVICELIST NFS4ERR_BADXDR, NFS4ERR_BAD_COOKIE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_NOT_SAME, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 320

Operation Errors

GETFH NFS4ERR_FHEXPIRED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_STALE

ILLEGAL NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL

LAYOUTCOMMIT NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADIOMODE,
NFS4ERR_BADLAYOUT, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED, NFS4ERR_FBIG,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_ISDIR NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_NO_GRACE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECLAIM_BAD, NFS4ERR_RECLAIM_CONFLICT,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_CRED

LAYOUTGET NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADIOMODE, NFS4ERR_BADLAYOUT,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_LAYOUTTRYLATER,
NFS4ERR_LAYOUTUNAVAILABLE, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
NFS4ERR_OPENMODE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECALLCONFLICT, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 321

Operation Errors

LAYOUTRETURN NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_ISDIR, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR_WRONG_CRED,
NFS4ERR_WRONG_TYPE

LINK NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_EXIST, NFS4ERR_FHEXPIRED,
NFS4ERR_FILE_OPEN, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_IO, NFS4ERR_MLINK,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE, NFS4ERR_XDEV

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 322

Operation Errors

LOCK NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADLOCK,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DENIED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_ISDIR, NFS4ERR_LOCK_NOTSUPP,
NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NO_GRACE,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_RECLAIM_BAD,
NFS4ERR_RECLAIM_CONFLICT, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_ROFS,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED,
NFS4ERR_WRONG_TYPE

LOCKT NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DENIED,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED,
NFS4ERR_WRONG_TYPE

LOCKU NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 323

Operation Errors

LOOKUP NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC

LOOKUPP NFS4ERR_ACCESS, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC

NVERIFY NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SAME,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 324

Operation Errors

OPEN NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADOWNER, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DELEG_ALREADY_WANTED,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT, NFS4ERR_EXIST,
NFS4ERR_EXPIRED, NFS4ERR_FBIG, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_ISDIR,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTDIR, NFS4ERR_NO_GRACE,
NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PERM, NFS4ERR_RECLAIM_BAD,
NFS4ERR_RECLAIM_CONFLICT, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_ROFS,
NFS4ERR_SERVERFAULT, NFS4ERR_SHARE_DENIED,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNSAFE_COMPOUND,
NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE

OPEN_CONFIRM NFS4ERR_NOTSUPP

OPEN_DOWNGRADE NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED

OPENATTR NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DQUOT, NFS4ERR_FHEXPIRED,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNSAFE_COMPOUND,
NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 325

Operation Errors

PUTFH NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_MOVED,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC

PUTPUBFH NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC

PUTROOTFH NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC

READ NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_EXPIRED,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_IO, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PNFS_IO_HOLE,
NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 326

Operation Errors

READDIR NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_BAD_COOKIE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR, NFS4ERR_NOT_SAME,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS

READLINK NFS4ERR_ACCESS, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

RECLAIM_COMPLETE NFS4ERR_BADXDR, NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_CRED,
NFS4ERR_WRONG_TYPE

RELEASE_LOCKOWNER NFS4ERR_NOTSUPP

REMOVE NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR,
NFS4ERR_NOTEMPTY, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 327

Operation Errors

RENAME NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_EXIST, NFS4ERR_FHEXPIRED,
NFS4ERR_FILE_OPEN, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MLINK, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
NFS4ERR_NOTEMPTY, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC,
NFS4ERR_XDEV

RENEW NFS4ERR_NOTSUPP

RESTOREFH NFS4ERR_DEADSESSION, NFS4ERR_FHEXPIRED,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC

SAVEFH NFS4ERR_DEADSESSION, NFS4ERR_FHEXPIRED,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS

SECINFO NFS4ERR_ACCESS, NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 328

Operation Errors

SECINFO_NO_NAME NFS4ERR_ACCESS, NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_MOVED, NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS

SEQUENCE NFS4ERR_BADSESSION, NFS4ERR_BADSLOT, NFS4ERR_BADXDR,
NFS4ERR_BAD_HIGH_SLOT,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SEQUENCE_POS, NFS4ERR_SEQ_FALSE_RETRY,
NFS4ERR_SEQ_MISORDERED, NFS4ERR_TOO_MANY_OPS

SET_SSV NFS4ERR_BADXDR, NFS4ERR_BAD_SESSION_DIGEST,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_TOO_MANY_OPS

SETATTR NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR,
NFS4ERR_BADOWNER, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXPIRED, NFS4ERR_FBIG, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PERM,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

SETCLIENTID NFS4ERR_NOTSUPP

SETCLIENTID_CONFIRM NFS4ERR_NOTSUPP

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 329

Operation Errors

TEST_STATEID NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

VERIFY NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOT_SAME, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

WANT_DELEGATION NFS4ERR_BADXDR, NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_ALREADY_WANTED, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_RECALLCONFLICT,
NFS4ERR_RECLAIM_BAD, NFS4ERR_RECLAIM_CONFLICT,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 330

15.3. Callback Operations and Their Valid Errors
This section contains a table that gives the valid error returns for each callback operation. The
error code NFS4_OK (indicating no error) is not listed but should be understood to be returnable
by all callback operations with the exception of CB_ILLEGAL.

Operation Errors

WRITE NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXPIRED, NFS4ERR_FBIG, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_ISDIR, NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PNFS_IO_HOLE,
NFS4ERR_PNFS_NO_LAYOUT, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_ROFS,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE

Table 12: Valid Error Returns for Each Protocol Operation

Callback Operation Errors

CB_GETATTR NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS,

CB_ILLEGAL NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL

CB_LAYOUTRECALL NFS4ERR_BADHANDLE, NFS4ERR_BADIOMODE,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOMATCHING_LAYOUT, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR_WRONG_TYPE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 331

Callback Operation Errors

CB_NOTIFY NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS

CB_NOTIFY_DEVICEID NFS4ERR_BADXDR, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS

CB_NOTIFY_LOCK NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS

CB_PUSH_DELEG NFS4ERR_BADHANDLE, NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REJECT_DELEG,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

CB_RECALL NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

CB_RECALL_ANY NFS4ERR_BADXDR, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 332

15.4. Errors and the Operations That Use Them

Callback Operation Errors

CB_RECALLABLE_OBJ_AVAIL NFS4ERR_BADXDR, NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOTSUPP, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOO_MANY_OPS

CB_RECALL_SLOT NFS4ERR_BADXDR, NFS4ERR_BAD_HIGH_SLOT,
NFS4ERR_DELAY, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS

CB_SEQUENCE NFS4ERR_BADSESSION, NFS4ERR_BADSLOT,
NFS4ERR_BADXDR, NFS4ERR_BAD_HIGH_SLOT,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DELAY, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SEQUENCE_POS,
NFS4ERR_SEQ_FALSE_RETRY, NFS4ERR_SEQ_MISORDERED,
NFS4ERR_TOO_MANY_OPS

CB_WANTS_CANCELLED NFS4ERR_BADXDR, NFS4ERR_DELAY, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE, NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

Table 13: Valid Error Returns for Each Protocol Callback Operation

Error Operations

NFS4ERR_ACCESS ACCESS, COMMIT, CREATE, GETATTR,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, NVERIFY, OPEN,
OPENATTR, READ, READDIR, READLINK,
REMOVE, RENAME, SECINFO,
SECINFO_NO_NAME, SETATTR, VERIFY, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 333

Error Operations

NFS4ERR_ADMIN_REVOKED CLOSE, DELEGRETURN, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LOCK, LOCKU,
OPEN, OPEN_DOWNGRADE, READ, SETATTR,
WRITE

NFS4ERR_ATTRNOTSUPP CREATE, LAYOUTCOMMIT, NVERIFY, OPEN,
SETATTR, VERIFY

NFS4ERR_BACK_CHAN_BUSY DESTROY_SESSION

NFS4ERR_BADCHAR CREATE, EXCHANGE_ID, LINK, LOOKUP,
NVERIFY, OPEN, REMOVE, RENAME, SECINFO,
SETATTR, VERIFY

NFS4ERR_BADHANDLE CB_GETATTR, CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_LOCK, CB_PUSH_DELEG,
CB_RECALL, PUTFH

NFS4ERR_BADIOMODE CB_LAYOUTRECALL, LAYOUTCOMMIT,
LAYOUTGET

NFS4ERR_BADLAYOUT LAYOUTCOMMIT, LAYOUTGET

NFS4ERR_BADNAME CREATE, LINK, LOOKUP, OPEN, REMOVE,
RENAME, SECINFO

NFS4ERR_BADOWNER CREATE, OPEN, SETATTR

NFS4ERR_BADSESSION BIND_CONN_TO_SESSION, CB_SEQUENCE,
DESTROY_SESSION, SEQUENCE

NFS4ERR_BADSLOT CB_SEQUENCE, SEQUENCE

NFS4ERR_BADTYPE CREATE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 334

Error Operations

NFS4ERR_BADXDR ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_ILLEGAL, CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, ILLEGAL,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, NVERIFY, OPEN, OPENATTR,
OPEN_DOWNGRADE, PUTFH, READ, READDIR,
RECLAIM_COMPLETE, REMOVE, RENAME,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_BAD_COOKIE GETDEVICELIST, READDIR

NFS4ERR_BAD_HIGH_SLOT CB_RECALL_SLOT, CB_SEQUENCE, SEQUENCE

NFS4ERR_BAD_RANGE LOCK, LOCKT, LOCKU

NFS4ERR_BAD_SESSION_DIGEST BIND_CONN_TO_SESSION, SET_SSV

NFS4ERR_BAD_STATEID CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_LOCK, CB_RECALL, CLOSE,
DELEGRETURN, FREE_STATEID, LAYOUTGET,
LAYOUTRETURN, LOCK, LOCKU, OPEN,
OPEN_DOWNGRADE, READ, SETATTR, WRITE

NFS4ERR_CB_PATH_DOWN DESTROY_SESSION

NFS4ERR_CLID_INUSE CREATE_SESSION, EXCHANGE_ID

NFS4ERR_CLIENTID_BUSY DESTROY_CLIENTID

NFS4ERR_COMPLETE_ALREADY RECLAIM_COMPLETE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 335

Error Operations

NFS4ERR_CONN_NOT_BOUND_TO_SESSION CB_SEQUENCE, DESTROY_SESSION, SEQUENCE

NFS4ERR_DEADLOCK LOCK

NFS4ERR_DEADSESSION ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CLOSE, COMMIT,
CREATE, CREATE_SESSION, DELEGPURGE,
DELEGRETURN, DESTROY_CLIENTID,
DESTROY_SESSION, EXCHANGE_ID,
FREE_STATEID, GETATTR, GETDEVICEINFO,
GETDEVICELIST, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE, PUTFH,
PUTPUBFH, PUTROOTFH, READ, READDIR,
READLINK, RECLAIM_COMPLETE, REMOVE,
RENAME, RESTOREFH, SAVEFH, SECINFO,
SECINFO_NO_NAME, SEQUENCE, SETATTR,
SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 336

Error Operations

NFS4ERR_DELAY ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, SECINFO,
SECINFO_NO_NAME, SEQUENCE, SETATTR,
SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_DELEG_ALREADY_WANTED OPEN, WANT_DELEGATION

NFS4ERR_DELEG_REVOKED DELEGRETURN, LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, OPEN, READ, SETATTR,
WRITE

NFS4ERR_DENIED LOCK, LOCKT

NFS4ERR_DIRDELEG_UNAVAIL GET_DIR_DELEGATION

NFS4ERR_DQUOT CREATE, LAYOUTGET, LINK, OPEN, OPENATTR,
RENAME, SETATTR, WRITE

NFS4ERR_ENCR_ALG_UNSUPP EXCHANGE_ID

NFS4ERR_EXIST CREATE, LINK, OPEN, RENAME

NFS4ERR_EXPIRED CLOSE, DELEGRETURN, LAYOUTCOMMIT,
LAYOUTRETURN, LOCK, LOCKU, OPEN,
OPEN_DOWNGRADE, READ, SETATTR, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 337

Error Operations

NFS4ERR_FBIG LAYOUTCOMMIT, OPEN, SETATTR, WRITE

NFS4ERR_FHEXPIRED ACCESS, CLOSE, COMMIT, CREATE,
DELEGRETURN, GETATTR, GETDEVICELIST,
GETFH, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SETATTR,
VERIFY, WANT_DELEGATION, WRITE

NFS4ERR_FILE_OPEN LINK, REMOVE, RENAME

NFS4ERR_GRACE GETATTR, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT,
NVERIFY, OPEN, READ, REMOVE, RENAME,
SETATTR, VERIFY, WANT_DELEGATION,
WRITE

NFS4ERR_HASH_ALG_UNSUPP EXCHANGE_ID

NFS4ERR_INVAL ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_PUSH_DELEG,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CREATE, CREATE_SESSION,
DELEGRETURN, EXCHANGE_ID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, NVERIFY, OPEN,
OPEN_DOWNGRADE, READ, READDIR,
READLINK, RECLAIM_COMPLETE, REMOVE,
RENAME, SECINFO, SECINFO_NO_NAME,
SETATTR, SET_SSV, VERIFY,
WANT_DELEGATION, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 338

Error Operations

NFS4ERR_IO ACCESS, COMMIT, CREATE, GETATTR,
GETDEVICELIST, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET, LINK, LOOKUP,
LOOKUPP, NVERIFY, OPEN, OPENATTR, READ,
READDIR, READLINK, REMOVE, RENAME,
SETATTR, VERIFY, WANT_DELEGATION,
WRITE

NFS4ERR_ISDIR COMMIT, LAYOUTCOMMIT, LAYOUTRETURN,
LINK, LOCK, LOCKT, OPEN, READ, WRITE

NFS4ERR_LAYOUTTRYLATER LAYOUTGET

NFS4ERR_LAYOUTUNAVAILABLE LAYOUTGET

NFS4ERR_LOCKED LAYOUTGET, READ, SETATTR, WRITE

NFS4ERR_LOCKS_HELD CLOSE, FREE_STATEID

NFS4ERR_LOCK_NOTSUPP LOCK

NFS4ERR_LOCK_RANGE LOCK, LOCKT, LOCKU

NFS4ERR_MLINK CREATE, LINK, RENAME

NFS4ERR_MOVED ACCESS, CLOSE, COMMIT, CREATE,
DELEGRETURN, GETATTR, GETFH,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, READ, READDIR, READLINK,
RECLAIM_COMPLETE, REMOVE, RENAME,
RESTOREFH, SAVEFH, SECINFO,
SECINFO_NO_NAME, SETATTR, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_NAMETOOLONG CREATE, LINK, LOOKUP, OPEN, REMOVE,
RENAME, SECINFO

NFS4ERR_NOENT BACKCHANNEL_CTL, CREATE_SESSION,
EXCHANGE_ID, GETDEVICEINFO, LOOKUP,
LOOKUPP, OPEN, OPENATTR, REMOVE,
RENAME, SECINFO, SECINFO_NO_NAME

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 339

Error Operations

NFS4ERR_NOFILEHANDLE ACCESS, CLOSE, COMMIT, CREATE,
DELEGRETURN, GETATTR, GETDEVICELIST,
GETFH, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SETATTR,
VERIFY, WANT_DELEGATION, WRITE

NFS4ERR_NOMATCHING_LAYOUT CB_LAYOUTRECALL

NFS4ERR_NOSPC CREATE, CREATE_SESSION, LAYOUTGET, LINK,
OPEN, OPENATTR, RENAME, SETATTR, WRITE

NFS4ERR_NOTDIR CREATE, GET_DIR_DELEGATION, LINK,
LOOKUP, LOOKUPP, OPEN, READDIR, REMOVE,
RENAME, SECINFO, SECINFO_NO_NAME

NFS4ERR_NOTEMPTY REMOVE, RENAME

NFS4ERR_NOTSUPP CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG,
CB_RECALLABLE_OBJ_AVAIL,
CB_WANTS_CANCELLED, DELEGPURGE,
DELEGRETURN, GETDEVICEINFO,
GETDEVICELIST, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, OPENATTR,
OPEN_CONFIRM, RELEASE_LOCKOWNER,
RENEW, SECINFO_NO_NAME, SETCLIENTID,
SETCLIENTID_CONFIRM, WANT_DELEGATION

NFS4ERR_NOT_ONLY_OP BIND_CONN_TO_SESSION, CREATE_SESSION,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID

NFS4ERR_NOT_SAME EXCHANGE_ID, GETDEVICELIST, READDIR,
VERIFY

NFS4ERR_NO_GRACE LAYOUTCOMMIT, LAYOUTRETURN, LOCK,
OPEN, WANT_DELEGATION

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 340

Error Operations

NFS4ERR_OLD_STATEID CLOSE, DELEGRETURN, FREE_STATEID,
LAYOUTGET, LAYOUTRETURN, LOCK, LOCKU,
OPEN, OPEN_DOWNGRADE, READ, SETATTR,
WRITE

NFS4ERR_OPENMODE LAYOUTGET, LOCK, READ, SETATTR, WRITE

NFS4ERR_OP_ILLEGAL CB_ILLEGAL, ILLEGAL

NFS4ERR_OP_NOT_IN_SESSION ACCESS, BACKCHANNEL_CTL, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_WANTS_CANCELLED, CLOSE, COMMIT,
CREATE, DELEGPURGE, DELEGRETURN,
FREE_STATEID, GETATTR, GETDEVICEINFO,
GETDEVICELIST, GETFH,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SETATTR,
SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_PERM CREATE, OPEN, SETATTR

NFS4ERR_PNFS_IO_HOLE READ, WRITE

NFS4ERR_PNFS_NO_LAYOUT READ, WRITE

NFS4ERR_RECALLCONFLICT LAYOUTGET, WANT_DELEGATION

NFS4ERR_RECLAIM_BAD LAYOUTCOMMIT, LOCK, OPEN,
WANT_DELEGATION

NFS4ERR_RECLAIM_CONFLICT LAYOUTCOMMIT, LOCK, OPEN,
WANT_DELEGATION

NFS4ERR_REJECT_DELEG CB_PUSH_DELEG

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 341

Error Operations

NFS4ERR_REP_TOO_BIG ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 342

Error Operations

NFS4ERR_REP_TOO_BIG_TO_CACHE ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 343

Error Operations

NFS4ERR_REQ_TOO_BIG ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 344

Error Operations

NFS4ERR_RETRY_UNCACHED_REP ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_ROFS CREATE, LINK, LOCK, LOCKT, OPEN,
OPENATTR, OPEN_DOWNGRADE, REMOVE,
RENAME, SETATTR, WRITE

NFS4ERR_SAME NVERIFY

NFS4ERR_SEQUENCE_POS CB_SEQUENCE, SEQUENCE

NFS4ERR_SEQ_FALSE_RETRY CB_SEQUENCE, SEQUENCE

NFS4ERR_SEQ_MISORDERED CB_SEQUENCE, CREATE_SESSION, SEQUENCE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 345

Error Operations

NFS4ERR_SERVERFAULT ACCESS, BIND_CONN_TO_SESSION,
CB_GETATTR, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_WANTS_CANCELLED, CLOSE, COMMIT,
CREATE, CREATE_SESSION, DELEGPURGE,
DELEGRETURN, DESTROY_CLIENTID,
DESTROY_SESSION, EXCHANGE_ID,
FREE_STATEID, GETATTR, GETDEVICEINFO,
GETDEVICELIST, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKU,
LOOKUP, LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE, PUTFH,
PUTPUBFH, PUTROOTFH, READ, READDIR,
READLINK, RECLAIM_COMPLETE, REMOVE,
RENAME, RESTOREFH, SAVEFH, SECINFO,
SECINFO_NO_NAME, SETATTR, TEST_STATEID,
VERIFY, WANT_DELEGATION, WRITE

NFS4ERR_SHARE_DENIED OPEN

NFS4ERR_STALE ACCESS, CLOSE, COMMIT, CREATE,
DELEGRETURN, GETATTR, GETFH,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, READ, READDIR, READLINK,
RECLAIM_COMPLETE, REMOVE, RENAME,
RESTOREFH, SAVEFH, SECINFO,
SECINFO_NO_NAME, SETATTR, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_STALE_CLIENTID CREATE_SESSION, DESTROY_CLIENTID,
DESTROY_SESSION

NFS4ERR_SYMLINK COMMIT, LAYOUTCOMMIT, LINK, LOCK,
LOCKT, LOOKUP, LOOKUPP, OPEN, READ,
WRITE

NFS4ERR_TOOSMALL CREATE_SESSION, GETDEVICEINFO,
LAYOUTGET, READDIR

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 346

Error Operations

NFS4ERR_TOO_MANY_OPS ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CB_GETATTR,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY, CB_RECALL_SLOT,
CB_SEQUENCE, CB_WANTS_CANCELLED,
CLOSE, COMMIT, CREATE, CREATE_SESSION,
DELEGPURGE, DELEGRETURN,
DESTROY_CLIENTID, DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID, GETATTR,
GETDEVICEINFO, GETDEVICELIST,
GET_DIR_DELEGATION, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH, READ,
READDIR, READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV, TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_UNKNOWN_LAYOUTTYPE CB_LAYOUTRECALL, GETDEVICEINFO,
GETDEVICELIST, LAYOUTCOMMIT,
LAYOUTGET, LAYOUTRETURN, NVERIFY,
SETATTR, VERIFY

NFS4ERR_UNSAFE_COMPOUND CREATE, OPEN, OPENATTR

NFS4ERR_WRONGSEC LINK, LOOKUP, LOOKUPP, OPEN, PUTFH,
PUTPUBFH, PUTROOTFH, RENAME,
RESTOREFH

NFS4ERR_WRONG_CRED CLOSE, CREATE_SESSION, DELEGPURGE,
DELEGRETURN, DESTROY_CLIENTID,
DESTROY_SESSION, FREE_STATEID,
LAYOUTCOMMIT, LAYOUTRETURN, LOCK,
LOCKT, LOCKU, OPEN_DOWNGRADE,
RECLAIM_COMPLETE

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 347

Error Operations

NFS4ERR_WRONG_TYPE CB_LAYOUTRECALL, CB_PUSH_DELEG,
COMMIT, GETATTR, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK, LOCKT,
NVERIFY, OPEN, OPENATTR, READ, READLINK,
RECLAIM_COMPLETE, SETATTR, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_XDEV LINK, RENAME

Table 14: Errors and the Operations That Use Them

16. NFSv4.1 Procedures
Both procedures, NULL and COMPOUND, be implemented.MUST

16.1. Procedure 0: NULL - No Operation
16.1.1. ARGUMENTS

void;

16.1.2. RESULTS

void;

16.1.3. DESCRIPTION

This is the standard NULL procedure with the standard void argument and void response. This
procedure has no functionality associated with it. Because of this, it is sometimes used to
measure the overhead of processing a service request. Therefore, the server ensure that
no unnecessary work is done in servicing this procedure.

SHOULD

16.1.4. ERRORS

None.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 348

16.2. Procedure 1: COMPOUND - Compound Operations

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 349

16.2.1. ARGUMENTS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 350

enum nfs_opnum4 {
 OP_ACCESS = 3,
 OP_CLOSE = 4,
 OP_COMMIT = 5,
 OP_CREATE = 6,
 OP_DELEGPURGE = 7,
 OP_DELEGRETURN = 8,
 OP_GETATTR = 9,
 OP_GETFH = 10,
 OP_LINK = 11,
 OP_LOCK = 12,
 OP_LOCKT = 13,
 OP_LOCKU = 14,
 OP_LOOKUP = 15,
 OP_LOOKUPP = 16,
 OP_NVERIFY = 17,
 OP_OPEN = 18,
 OP_OPENATTR = 19,
 OP_OPEN_CONFIRM = 20, /* Mandatory not-to-implement */
 OP_OPEN_DOWNGRADE = 21,
 OP_PUTFH = 22,
 OP_PUTPUBFH = 23,
 OP_PUTROOTFH = 24,
 OP_READ = 25,
 OP_READDIR = 26,
 OP_READLINK = 27,
 OP_REMOVE = 28,
 OP_RENAME = 29,
 OP_RENEW = 30, /* Mandatory not-to-implement */
 OP_RESTOREFH = 31,
 OP_SAVEFH = 32,
 OP_SECINFO = 33,
 OP_SETATTR = 34,
 OP_SETCLIENTID = 35, /* Mandatory not-to-implement */
 OP_SETCLIENTID_CONFIRM = 36, /* Mandatory not-to-implement */
 OP_VERIFY = 37,
 OP_WRITE = 38,
 OP_RELEASE_LOCKOWNER = 39, /* Mandatory not-to-implement */

/* new operations for NFSv4.1 */

 OP_BACKCHANNEL_CTL = 40,
 OP_BIND_CONN_TO_SESSION = 41,
 OP_EXCHANGE_ID = 42,
 OP_CREATE_SESSION = 43,
 OP_DESTROY_SESSION = 44,
 OP_FREE_STATEID = 45,
 OP_GET_DIR_DELEGATION = 46,
 OP_GETDEVICEINFO = 47,
 OP_GETDEVICELIST = 48,
 OP_LAYOUTCOMMIT = 49,
 OP_LAYOUTGET = 50,
 OP_LAYOUTRETURN = 51,
 OP_SECINFO_NO_NAME = 52,
 OP_SEQUENCE = 53,
 OP_SET_SSV = 54,
 OP_TEST_STATEID = 55,

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 351

 OP_WANT_DELEGATION = 56,
 OP_DESTROY_CLIENTID = 57,
 OP_RECLAIM_COMPLETE = 58,
 OP_ILLEGAL = 10044
};

union nfs_argop4 switch (nfs_opnum4 argop) {
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_CREATE: CREATE4args opcreate;
 case OP_DELEGPURGE: DELEGPURGE4args opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4args opdelegreturn;
 case OP_GETATTR: GETATTR4args opgetattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCKT4args oplockt;
 case OP_LOCKU: LOCKU4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_OPENATTR: OPENATTR4args opopenattr;

 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4args opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4args opopen_downgrade;

 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTPUBFH: void;
 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;

 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4args oprenew;

 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4args
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;

 /* Not for NFSv4.1 */

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 352

 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4args
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */
 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4args opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4args
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4args opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4args opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4args opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4args opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4args
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4args opgetdeviceinfo;
 case OP_GETDEVICELIST: GETDEVICELIST4args opgetdevicelist;
 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4args oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4args oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4args oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4args opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4args opsequence;
 case OP_SET_SSV: SET_SSV4args opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4args optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4args opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4args
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4args
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: void;
};

struct COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 353

 nfs_argop4 argarray<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 354

16.2.2. RESULTS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 355

union nfs_resop4 switch (nfs_opnum4 resop) {
 case OP_ACCESS: ACCESS4res opaccess;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_CREATE: CREATE4res opcreate;
 case OP_DELEGPURGE: DELEGPURGE4res opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4res opdelegreturn;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;
 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_OPENATTR: OPENATTR4res opopenattr;
 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4res opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4res
 opopen_downgrade;

 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTPUBFH: PUTPUBFH4res opputpubfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM:
 SETCLIENTID_CONFIRM4res
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;

 /* Not for NFSv4.1 */
 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4res
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */
 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4res

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 356

 opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4res
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4res opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4res
 opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4res
 opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4res
 opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4res
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4res
 opgetdeviceinfo;

 case OP_GETDEVICELIST: GETDEVICELIST4res
 opgetdevicelist;

 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4res oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4res oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4res oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4res
 opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4res opsequence;
 case OP_SET_SSV: SET_SSV4res opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4res optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4res
 opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4res
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4res
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: ILLEGAL4res opillegal;
};

struct COMPOUND4res {

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 357

 nfsstat4 status;
 utf8str_cs tag;
 nfs_resop4 resarray<>;
};

16.2.3. DESCRIPTION

The COMPOUND procedure is used to combine one or more NFSv4 operations into a single RPC
request. The server interprets each of the operations in turn. If an operation is executed by the
server and the status of that operation is NFS4_OK, then the next operation in the COMPOUND
procedure is executed. The server continues this process until there are no more operations to be
executed or until one of the operations has a status value other than NFS4_OK.

In the processing of the COMPOUND procedure, the server may find that it does not have the
available resources to execute any or all of the operations within the COMPOUND sequence. See
Section 2.10.6.4 for a more detailed discussion.

The server will generally choose between two methods of decoding the client's request. The first
would be the traditional one-pass XDR decode. If there is an XDR decoding error in this case, the
RPC XDR decode error would be returned. The second method would be to make an initial pass
to decode the basic COMPOUND request and then to XDR decode the individual operations; the
most interesting is the decode of attributes. In this case, the server may encounter an XDR decode
error during the second pass. If it does, the server would return the error NFS4ERR_BADXDR to
signify the decode error.

The COMPOUND arguments contain a "minorversion" field. For NFSv4.1, the value for this field is
1. If the server receives a COMPOUND procedure with a minorversion field value that it does not
support, the server return an error of NFS4ERR_MINOR_VERS_MISMATCH and a zero-
length resultdata array.

Contained within the COMPOUND results is a "status" field. If the results array length is non-zero,
this status must be equivalent to the status of the last operation that was executed within the
COMPOUND procedure. Therefore, if an operation incurred an error then the "status" value will
be the same error value as is being returned for the operation that failed.

Note that operations zero and one are not defined for the COMPOUND procedure. Operation 2 is
not defined and is reserved for future definition and use with minor versioning. If the server
receives an operation array that contains operation 2 and the minorversion field has a value of
zero, an error of NFS4ERR_OP_ILLEGAL, as described in the next paragraph, is returned to the
client. If an operation array contains an operation 2 and the minorversion field is non-zero and
the server does not support the minor version, the server returns an error of
NFS4ERR_MINOR_VERS_MISMATCH. Therefore, the NFS4ERR_MINOR_VERS_MISMATCH error
takes precedence over all other errors.

It is possible that the server receives a request that contains an operation that is less than the
first legal operation (OP_ACCESS) or greater than the last legal operation
(OP_RELEASE_LOCKOWNER). In this case, the server's response will encode the opcode

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 358

OP_ILLEGAL rather than the illegal opcode of the request. The status field in the ILLEGAL return
results will be set to NFS4ERR_OP_ILLEGAL. The COMPOUND procedure's return results will also
be NFS4ERR_OP_ILLEGAL.

The definition of the "tag" in the request is left to the implementor. It may be used to summarize
the content of the Compound request for the benefit of packet-sniffers and engineers debugging
implementations. However, the value of "tag" in the response be the same value as
provided in the request. This applies to the tag field of the CB_COMPOUND procedure as well.

SHOULD

16.2.3.1. Current Filehandle and Stateid
The COMPOUND procedure offers a simple environment for the execution of the operations
specified by the client. The first two relate to the filehandle while the second two relate to the
current stateid.

16.2.3.1.1. Current Filehandle
The current and saved filehandles are used throughout the protocol. Most operations implicitly
use the current filehandle as an argument, and many set the current filehandle as part of the
results. The combination of client-specified sequences of operations and current and saved
filehandle arguments and results allows for greater protocol flexibility. The best or easiest
example of current filehandle usage is a sequence like the following:

In this example, the PUTFH (Section 18.19) operation explicitly sets the current filehandle value
while the result of each LOOKUP operation sets the current filehandle value to the resultant file
system object. Also, the client is able to insert GETATTR operations using the current filehandle as
an argument.

The PUTROOTFH (Section 18.21) and PUTPUBFH (Section 18.20) operations also set the current
filehandle. The above example would replace "PUTFH fh1" with PUTROOTFH or PUTPUBFH with
no filehandle argument in order to achieve the same effect (on the assumption that "compA" is
directly below the root of the namespace).

Along with the current filehandle, there is a saved filehandle. While the current filehandle is set
as the result of operations like LOOKUP, the saved filehandle must be set directly with the use of
the SAVEFH operation. The SAVEFH operation copies the current filehandle value to the saved
value. The saved filehandle value is used in combination with the current filehandle value for

Figure 2

 PUTFH fh1 {fh1}
 LOOKUP "compA" {fh2}
 GETATTR {fh2}
 LOOKUP "compB" {fh3}
 GETATTR {fh3}
 LOOKUP "compC" {fh4}
 GETATTR {fh4}
 GETFH

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 359

the LINK and RENAME operations. The RESTOREFH operation will copy the saved filehandle
value to the current filehandle value; as a result, the saved filehandle value may be used a sort of
"scratch" area for the client's series of operations.

16.2.3.1.2. Current Stateid
With NFSv4.1, additions of a current stateid and a saved stateid have been made to the
COMPOUND processing environment; this allows for the passing of stateids between operations.
There are no changes to the syntax of the protocol, only changes to the semantics of a few
operations.

A "current stateid" is the stateid that is associated with the current filehandle. The current stateid
may only be changed by an operation that modifies the current filehandle or returns a stateid. If
an operation returns a stateid, it set the current stateid to the returned value. If an
operation sets the current filehandle but does not return a stateid, the current stateid be
set to the all-zeros special stateid, i.e., (seqid, other) = (0, 0). If an operation uses a stateid as an
argument but does not return a stateid, the current stateid be changed. For example,
PUTFH, PUTROOTFH, and PUTPUBFH will change the current server state from {ocfh, (osid)} to
{cfh, (0, 0)}, while LOCK will change the current state from {cfh, (osid} to {cfh, (nsid)}. Operations
like LOOKUP that transform a current filehandle and component name into a new current
filehandle will also change the current state to {0, 0}. The SAVEFH and RESTOREFH operations
will save and restore both the current filehandle and the current stateid as a set.

The following example is the common case of a simple READ operation with a normal stateid
showing that the PUTFH initializes the current stateid to (0, 0). The subsequent READ with stateid
(sid1) leaves the current stateid unchanged.

This next example performs an OPEN with the root filehandle and, as a result, generates stateid
(sid1). The next operation specifies the READ with the argument stateid set such that (seqid,
other) are equal to (1, 0), but the current stateid set by the previous operation is actually used
when the operation is evaluated. This allows correct interaction with any existing, potentially
conflicting, locks.

MUST
MUST

MUST NOT

Figure 3

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (sid1), 0, 1024 {fh1, (0, 0)} -> {fh1, (0, 0)}

Figure 4

 PUTROOTFH - -> {fh1, (0, 0)}
 OPEN "compA" {fh1, (0, 0)} -> {fh2, (sid1)}
 READ (1, 0), 0, 1024 {fh2, (sid1)} -> {fh2, (sid1)}
 CLOSE (1, 0) {fh2, (sid1)} -> {fh2, (sid2)}

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 360

This next example is similar to the second in how it passes the stateid sid2 generated by the
LOCK operation to the next READ operation. This allows the client to explicitly surround a single
I/O operation with a lock and its appropriate stateid to guarantee correctness with other client
locks. The example also shows how SAVEFH and RESTOREFH can save and later reuse a
filehandle and stateid, passing them as the current filehandle and stateid to a READ operation.

The final example shows a disallowed use of the current stateid. The client is attempting to
implicitly pass an anonymous special stateid, (0,0), to the READ operation. The server
return NFS4ERR_BAD_STATEID in the reply to the READ operation.

Figure 5

 PUTFH fh1 - -> {fh1, (0, 0)}
 LOCK 0, 1024, (sid1) {fh1, (sid1)} -> {fh1, (sid2)}
 READ (1, 0), 0, 1024 {fh1, (sid2)} -> {fh1, (sid2)}
 LOCKU 0, 1024, (1, 0) {fh1, (sid2)} -> {fh1, (sid3)}
 SAVEFH {fh1, (sid3)} -> {fh1, (sid3)}

 PUTFH fh2 {fh1, (sid3)} -> {fh2, (0, 0)}
 WRITE (1, 0), 0, 1024 {fh2, (0, 0)} -> {fh2, (0, 0)}

 RESTOREFH {fh2, (0, 0)} -> {fh1, (sid3)}
 READ (1, 0), 1024, 1024 {fh1, (sid3)} -> {fh1, (sid3)}

MUST

Figure 6

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (1, 0), 0, 1024 {fh1, (0, 0)} -> NFS4ERR_BAD_STATEID

16.2.4. ERRORS

COMPOUND will of course return every error that each operation on the fore channel can return
(see Table 12). However, if COMPOUND returns zero operations, obviously the error returned by
COMPOUND has nothing to do with an error returned by an operation. The list of errors
COMPOUND will return if it processes zero operations include:

Error Notes

NFS4ERR_BADCHAR The tag argument has a character the replier does not
support.

NFS4ERR_BADXDR

NFS4ERR_DELAY

NFS4ERR_INVAL The tag argument is not in UTF-8 encoding.

NFS4ERR_MINOR_VERS_MISMATCH

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 361

Error Notes

NFS4ERR_SERVERFAULT

NFS4ERR_TOO_MANY_OPS

NFS4ERR_REP_TOO_BIG

NFS4ERR_REP_TOO_BIG_TO_CACHE

NFS4ERR_REQ_TOO_BIG

Table 15: COMPOUND Error Returns

REQ

REC

OPT

MNI

17. Operations: , , or
The following tables summarize the operations of the NFSv4.1 protocol and the corresponding
designation of , , and to implement or implement.
The designation of implement is reserved for those operations that were defined in
NFSv4.0 and be implemented in NFSv4.1.

For the most part, the , , or designation for operations sent
by the client is for the server implementation. The client is generally required to implement the
operations needed for the operating environment for which it serves. For example, a read-only
NFSv4.1 client would have no need to implement the WRITE operation and is not required to do
so.

The or designation for callback operations sent by the server is for both the
client and server. Generally, the client has the option of creating the backchannel and sending
the operations on the fore channel that will be a catalyst for the server sending callback
operations. A partial exception is CB_RECALL_SLOT; the only way the client can avoid supporting
this operation is by not creating a backchannel.

Since this is a summary of the operations and their designation, there are subtleties that are not
presented here. Therefore, if there is a question of the requirements of implementation, the
operation descriptions themselves must be consulted along with other relevant explanatory text
within this specification.

The abbreviations used in the second and third columns of the table are defined as follows.

 to implement

RECOMMEND to implement

 to implement

 implement

REQUIRED RECOMMENDED OPTIONAL

REQUIRED RECOMMENDED OPTIONAL MUST NOT
MUST NOT

MUST NOT

REQUIRED RECOMMENDED OPTIONAL

REQUIRED OPTIONAL

REQUIRED

OPTIONAL

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 362

pNFS

FDELG

DDELG

For the NFSv4.1 features that are , the operations that support those features are
, and the server would return NFS4ERR_NOTSUPP in response to the client's use of

those operations. If an feature is supported, it is possible that a set of operations
related to the feature become to implement. The third column of the table designates
the feature(s) and if the operation is or in the presence of support for the
feature.

The features identified and their abbreviations are as follows:

Parallel NFS

File Delegations

Directory Delegations

Operation REQ, REC, OPT,
or MNI

Feature (REQ, REC,
or OPT)

Definition

ACCESS REQ Section 18.1

BACKCHANNEL_CTL REQ Section 18.33

BIND_CONN_TO_SESSION REQ Section 18.34

CLOSE REQ Section 18.2

COMMIT REQ Section 18.3

CREATE REQ Section 18.4

CREATE_SESSION REQ Section 18.36

DELEGPURGE OPT FDELG (REQ) Section 18.5

DELEGRETURN OPT FDELG, DDELG,
pNFS (REQ)

Section 18.6

DESTROY_CLIENTID REQ Section 18.50

DESTROY_SESSION REQ Section 18.37

EXCHANGE_ID REQ Section 18.35

FREE_STATEID REQ Section 18.38

GETATTR REQ Section 18.7

GETDEVICEINFO OPT pNFS (REQ) Section 18.40

OPTIONAL
OPTIONAL

OPTIONAL
REQUIRED

REQUIRED OPTIONAL

OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 363

Operation REQ, REC, OPT,
or MNI

Feature (REQ, REC,
or OPT)

Definition

GETDEVICELIST OPT pNFS (OPT) Section 18.41

GETFH REQ Section 18.8

GET_DIR_DELEGATION OPT DDELG (REQ) Section 18.39

LAYOUTCOMMIT OPT pNFS (REQ) Section 18.42

LAYOUTGET OPT pNFS (REQ) Section 18.43

LAYOUTRETURN OPT pNFS (REQ) Section 18.44

LINK OPT Section 18.9

LOCK REQ Section 18.10

LOCKT REQ Section 18.11

LOCKU REQ Section 18.12

LOOKUP REQ Section 18.13

LOOKUPP REQ Section 18.14

NVERIFY REQ Section 18.15

OPEN REQ Section 18.16

OPENATTR OPT Section 18.17

OPEN_CONFIRM MNI N/A

OPEN_DOWNGRADE REQ Section 18.18

PUTFH REQ Section 18.19

PUTPUBFH REQ Section 18.20

PUTROOTFH REQ Section 18.21

READ REQ Section 18.22

READDIR REQ Section 18.23

READLINK OPT Section 18.24

RECLAIM_COMPLETE REQ Section 18.51

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 364

Operation REQ, REC, OPT,
or MNI

Feature (REQ, REC,
or OPT)

Definition

RELEASE_LOCKOWNER MNI N/A

REMOVE REQ Section 18.25

RENAME REQ Section 18.26

RENEW MNI N/A

RESTOREFH REQ Section 18.27

SAVEFH REQ Section 18.28

SECINFO REQ Section 18.29

SECINFO_NO_NAME REC pNFS file layout
(REQ)

Section 18.45, Section
13.12

SEQUENCE REQ Section 18.46

SETATTR REQ Section 18.30

SETCLIENTID MNI N/A

SETCLIENTID_CONFIRM MNI N/A

SET_SSV REQ Section 18.47

TEST_STATEID REQ Section 18.48

VERIFY REQ Section 18.31

WANT_DELEGATION OPT FDELG (OPT) Section 18.49

WRITE REQ Section 18.32

Table 16: Operations

Operation REQ, REC, OPT, or
MNI

Feature (REQ, REC, or
OPT)

Definition

CB_GETATTR OPT FDELG (REQ) Section 20.1

CB_LAYOUTRECALL OPT pNFS (REQ) Section 20.3

CB_NOTIFY OPT DDELG (REQ) Section 20.4

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 365

Operation REQ, REC, OPT, or
MNI

Feature (REQ, REC, or
OPT)

Definition

CB_NOTIFY_DEVICEID OPT pNFS (OPT) Section
20.12

CB_NOTIFY_LOCK OPT Section
20.11

CB_PUSH_DELEG OPT FDELG (OPT) Section 20.5

CB_RECALL OPT FDELG, DDELG, pNFS
(REQ)

Section 20.2

CB_RECALL_ANY OPT FDELG, DDELG, pNFS
(REQ)

Section 20.6

CB_RECALL_SLOT REQ Section 20.8

CB_RECALLABLE_OBJ_AVAIL OPT DDELG, pNFS (REQ) Section 20.7

CB_SEQUENCE OPT FDELG, DDELG, pNFS
(REQ)

Section 20.9

CB_WANTS_CANCELLED OPT FDELG, DDELG, pNFS
(REQ)

Section
20.10

Table 17: Callback Operations

18. NFSv4.1 Operations

18.1. Operation 3: ACCESS - Check Access Rights
18.1.1. ARGUMENTS

const ACCESS4_READ = 0x00000001;
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODIFY = 0x00000004;
const ACCESS4_EXTEND = 0x00000008;
const ACCESS4_DELETE = 0x00000010;
const ACCESS4_EXECUTE = 0x00000020;

struct ACCESS4args {
 /* CURRENT_FH: object */
 uint32_t access;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 366

18.1.2. RESULTS

struct ACCESS4resok {
 uint32_t supported;
 uint32_t access;
};

union ACCESS4res switch (nfsstat4 status) {
 case NFS4_OK:
 ACCESS4resok resok4;
 default:
 void;
};

ACCESS4_READ

ACCESS4_LOOKUP

ACCESS4_MODIFY

ACCESS4_EXTEND

ACCESS4_DELETE

ACCESS4_EXECUTE

18.1.3. DESCRIPTION

ACCESS determines the access rights that a user, as identified by the credentials in the RPC
request, has with respect to the file system object specified by the current filehandle. The client
encodes the set of access rights that are to be checked in the bit mask "access". The server checks
the permissions encoded in the bit mask. If a status of NFS4_OK is returned, two bit masks are
included in the response. The first, "supported", represents the access rights for which the server
can verify reliably. The second, "access", represents the access rights available to the user for the
filehandle provided. On success, the current filehandle retains its value.

Note that the reply's supported and access fields contain more values than originally
set in the request's access field. For example, if the client sends an ACCESS operation with just the
ACCESS4_READ value set and the server supports this value, the server set more than
ACCESS4_READ in the supported field even if it could have reliably checked other values.

The reply's access field contain more values than the supported field.

The results of this operation are necessarily advisory in nature. A return status of NFS4_OK and
the appropriate bit set in the bit mask do not imply that such access will be allowed to the file
system object in the future. This is because access rights can be revoked by the server at any
time.

The following access permissions may be requested:

Read data from file or read a directory.

Look up a name in a directory (no meaning for non-directory objects).

Rewrite existing file data or modify existing directory entries.

Write new data or add directory entries.

Delete an existing directory entry.

Execute a regular file (no meaning for a directory).

MUST NOT

MUST NOT

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 367

On success, the current filehandle retains its value.

ACCESS4_EXECUTE is a challenging semantic to implement because NFS provides remote file
access, not remote execution. This leads to the following:

Whether or not a regular file is executable ought to be the responsibility of the NFS client
and not the server. And yet the ACCESS operation is specified to seemingly require a server
to own that responsibility.
When a client executes a regular file, it has to read the file from the server. Strictly speaking,
the server should not allow the client to read a file being executed unless the user has read
permissions on the file. Requiring explicit read permissions on executable files in order to
access them over NFS is not going to be acceptable to some users and storage administrators.
Historically, NFS servers have allowed a user to READ a file if the user has execute access to
the file.

As a practical example, the UNIX specification states that an implementation claiming
conformance to UNIX may indicate in the access() programming interface's result that a
privileged user has execute rights, even if no execute permission bits are set on the regular file's
attributes. It is possible to claim conformance to the UNIX specification and instead not indicate
execute rights in that situation, which is true for some operating environments. Suppose the
operating environments of the client and server are implementing the access() semantics for
privileged users differently, and the ACCESS operation implementations of the client and server
follow their respective access() semantics. This can cause undesired behavior:

Suppose the client's access() interface returns X_OK if the user is privileged and no execute
permission bits are set on the regular file's attribute, and the server's access() interface does
not return X_OK in that situation. Then the client will be unable to execute files stored on the
NFS server that could be executed if stored on a non-NFS file system.
Suppose the client's access() interface does not return X_OK if the user is privileged, and no
execute permission bits are set on the regular file's attribute, and the server's access()
interface does return X_OK in that situation. Then:

The client will be able to execute files stored on the NFS server that could be executed if
stored on a non-NFS file system, unless the client's execution subsystem also checks for
execute permission bits.
Even if the execution subsystem is checking for execute permission bits, there are more
potential issues. For example, suppose the client is invoking access() to build a "path search
table" of all executable files in the user's "search path", where the path is a list of
directories each containing executable files. Suppose there are two files each in separate
directories of the search path, such that files have the same component name. In the first
directory the file has no execute permission bits set, and in the second directory the file
has execute bits set. The path search table will indicate that the first directory has the
executable file, but the execute subsystem will fail to execute it. The command shell might
fail to try the second file in the second directory. And even if it did, this is a potential
performance issue. Clearly, the desired outcome for the client is for the path search table
to not contain the first file.

•

•

[60]

•

•

◦

◦

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 368

To deal with the problems described above, the "smart client, stupid server" principle is used.
The client owns overall responsibility for determining execute access and relies on the server to
parse the execution permissions within the file's mode, acl, and dacl attributes. The rules for the
client and server follow:

If the client is sending ACCESS in order to determine if the user can read the file, the client
 set ACCESS4_READ in the request's access field.

If the client's operating environment only grants execution to the user if the user has execute
access according to the execute permissions in the mode, acl, and dacl attributes, then if the
client wants to determine execute access, the client send an ACCESS request with
ACCESS4_EXECUTE bit set in the request's access field.
If the client's operating environment grants execution to the user even if the user does not
have execute access according to the execute permissions in the mode, acl, and dacl
attributes, then if the client wants to determine execute access, it send an ACCESS
request with both the ACCESS4_EXECUTE and ACCESS4_READ bits set in the request's access
field. This way, if any read or execute permission grants the user read or execute access (or if
the server interprets the user as privileged), as indicated by the presence of
ACCESS4_EXECUTE and/or ACCESS4_READ in the reply's access field, the client will be able to
grant the user execute access to the file.
If the server supports execute permission bits, or some other method for denoting
executability (e.g., the suffix of the name of the file might indicate execute), it check
only execute permissions, not read permissions, when determining whether or not the reply
will have ACCESS4_EXECUTE set in the access field. The server also examine read
permission bits when determining whether or not the reply will have ACCESS4_EXECUTE set
in the access field. Even if the server's operating environment would grant execute access to
the user (e.g., the user is privileged), the server reply with ACCESS4_EXECUTE set
in reply's access field unless there is at least one execute permission bit set in the mode, acl,
or dacl attributes. In the case of acl and dacl, the "one execute permission bit" be an
ACE4_EXECUTE bit set in an ALLOW ACE.
If the server does not support execute permission bits or some other method for denoting
executability, it set ACCESS4_EXECUTE in the reply's supported and access fields. If
the client set ACCESS4_EXECUTE in the ACCESS request's access field, and ACCESS4_EXECUTE
is not set in the reply's supported field, then the client will have to send an ACCESS request
with the ACCESS4_READ bit set in the request's access field.
If the server supports read permission bits, it only check for read permissions in the
mode, acl, and dacl attributes when it receives an ACCESS request with ACCESS4_READ set in
the access field. The server also examine execute permission bits when
determining whether the reply will have ACCESS4_READ set in the access field or not.

Note that if the ACCESS reply has ACCESS4_READ or ACCESS_EXECUTE set, then the user also has
permissions to OPEN (Section 18.16) or READ (Section 18.22) the file. In other words, if the client
sends an ACCESS request with the ACCESS4_READ and ACCESS_EXECUTE set in the access field
(or two separate requests, one with ACCESS4_READ set and the other with ACCESS4_EXECUTE
set), and the reply has just ACCESS4_EXECUTE set in the access field (or just one reply has
ACCESS4_EXECUTE set), then the user has authorization to OPEN or READ the file.

•
SHOULD

•

SHOULD

•

SHOULD

•
MUST

MUST NOT

MUST NOT

MUST

•
MUST NOT

• MUST

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 369

18.1.4. IMPLEMENTATION

In general, it is not sufficient for the client to attempt to deduce access permissions by inspecting
the uid, gid, and mode fields in the file attributes or by attempting to interpret the contents of the
ACL attribute. This is because the server may perform uid or gid mapping or enforce additional
access-control restrictions. It is also possible that the server may not be in the same ID space as
the client. In these cases (and perhaps others), the client cannot reliably perform an access check
with only current file attributes.

In the NFSv2 protocol, the only reliable way to determine whether an operation was allowed was
to try it and see if it succeeded or failed. Using the ACCESS operation in the NFSv4.1 protocol, the
client can ask the server to indicate whether or not one or more classes of operations are
permitted. The ACCESS operation is provided to allow clients to check before doing a series of
operations that will result in an access failure. The OPEN operation provides a point where the
server can verify access to the file object and a method to return that information to the client.
The ACCESS operation is still useful for directory operations or for use in the case that the UNIX
interface access() is used on the client.

The information returned by the server in response to an ACCESS call is not permanent. It was
correct at the exact time that the server performed the checks, but not necessarily afterwards.
The server can revoke access permission at any time.

The client should use the effective credentials of the user to build the authentication information
in the ACCESS request used to determine access rights. It is the effective user and group
credentials that are used in subsequent READ and WRITE operations.

Many implementations do not directly support the ACCESS4_DELETE permission. Operating
systems like UNIX will ignore the ACCESS4_DELETE bit if set on an access request on a non-
directory object. In these systems, delete permission on a file is determined by the access
permissions on the directory in which the file resides, instead of being determined by the
permissions of the file itself. Therefore, the mask returned enumerating which access rights can
be determined will have the ACCESS4_DELETE value set to 0. This indicates to the client that the
server was unable to check that particular access right. The ACCESS4_DELETE bit in the access
mask returned will then be ignored by the client.

18.2. Operation 4: CLOSE - Close File
18.2.1. ARGUMENTS

struct CLOSE4args {
 /* CURRENT_FH: object */
 seqid4 seqid;
 stateid4 open_stateid;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 370

18.2.2. RESULTS

union CLOSE4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 open_stateid;
 default:
 void;
};

18.2.3. DESCRIPTION

The CLOSE operation releases share reservations for the regular or named attribute file as
specified by the current filehandle. The share reservations and other state information released
at the server as a result of this CLOSE are only those associated with the supplied stateid. State
associated with other OPENs is not affected.

If byte-range locks are held, the client release all locks before sending a CLOSE. The
server free all outstanding locks on CLOSE, but some servers may not support the CLOSE of
a file that still has byte-range locks held. The server return failure if any locks would exist
after the CLOSE.

The argument seqid have any value, and the server ignore seqid.

On success, the current filehandle retains its value.

The server require that the combination of principal, security flavor, and, if applicable, GSS
mechanism that sent the OPEN request also be the one to CLOSE the file. This might not be
possible if credentials for the principal are no longer available. The server allow the
machine credential or SSV credential (see Section 18.35) to send CLOSE.

SHOULD
MAY

MUST

MAY MUST

MAY

MAY

18.2.4. IMPLEMENTATION

Even though CLOSE returns a stateid, this stateid is not useful to the client and should be treated
as deprecated. CLOSE "shuts down" the state associated with all OPENs for the file by a single
open-owner. As noted above, CLOSE will either release all file-locking state or return an error.
Therefore, the stateid returned by CLOSE is not useful for operations that follow. To help find any
uses of this stateid by clients, the server return the invalid special stateid (the "other"
value is zero and the "seqid" field is NFS4_UINT32_MAX, see Section 8.2.3).

A CLOSE operation may make delegations grantable where they were not previously. Servers
may choose to respond immediately if there are pending delegation want requests or may
respond to the situation at a later time.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 371

18.3. Operation 5: COMMIT - Commit Cached Data
18.3.1. ARGUMENTS

struct COMMIT4args {
 /* CURRENT_FH: file */
 offset4 offset;
 count4 count;
};

18.3.2. RESULTS

struct COMMIT4resok {
 verifier4 writeverf;
};

union COMMIT4res switch (nfsstat4 status) {
 case NFS4_OK:
 COMMIT4resok resok4;
 default:
 void;
};

18.3.3. DESCRIPTION

The COMMIT operation forces or flushes uncommitted, modified data to stable storage for the file
specified by the current filehandle. The flushed data is that which was previously written with
one or more WRITE operations that had the "committed" field of their results field set to
UNSTABLE4.

The offset specifies the position within the file where the flush is to begin. An offset value of zero
means to flush data starting at the beginning of the file. The count specifies the number of bytes
of data to flush. If the count is zero, a flush from the offset to the end of the file is done.

The server returns a write verifier upon successful completion of the COMMIT. The write verifier
is used by the client to determine if the server has restarted between the initial WRITE
operations and the COMMIT. The client does this by comparing the write verifier returned from
the initial WRITE operations and the verifier returned by the COMMIT operation. The server
must vary the value of the write verifier at each server event or instantiation that may lead to a
loss of uncommitted data. Most commonly this occurs when the server is restarted; however,
other events at the server may result in uncommitted data loss as well.

On success, the current filehandle retains its value.

18.3.4. IMPLEMENTATION

The COMMIT operation is similar in operation and semantics to the system
interface that synchronizes a file's state with the disk (file data and metadata is flushed to disk or
stable storage). COMMIT performs the same operation for a client, flushing any unsynchronized

POSIX fsync() [22]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 372

data and metadata on the server to the server's disk or stable storage for the specified file. Like
fsync(), it may be that there is some modified data or no modified data to synchronize. The data
may have been synchronized by the server's normal periodic buffer synchronization activity.
COMMIT should return NFS4_OK, unless there has been an unexpected error.

COMMIT differs from fsync() in that it is possible for the client to flush a range of the file (most
likely triggered by a buffer-reclamation scheme on the client before the file has been completely
written).

The server implementation of COMMIT is reasonably simple. If the server receives a full file
COMMIT request, that is, starting at offset zero and count zero, it should do the equivalent of
applying fsync() to the entire file. Otherwise, it should arrange to have the modified data in the
range specified by offset and count to be flushed to stable storage. In both cases, any metadata
associated with the file must be flushed to stable storage before returning. It is not an error for
there to be nothing to flush on the server. This means that the data and metadata that needed to
be flushed have already been flushed or lost during the last server failure.

The client implementation of COMMIT is a little more complex. There are two reasons for
wanting to commit a client buffer to stable storage. The first is that the client wants to reuse a
buffer. In this case, the offset and count of the buffer are sent to the server in the COMMIT
request. The server then flushes any modified data based on the offset and count, and flushes any
modified metadata associated with the file. It then returns the status of the flush and the write
verifier. The second reason for the client to generate a COMMIT is for a full file flush, such as
may be done at close. In this case, the client would gather all of the buffers for this file that
contain uncommitted data, do the COMMIT operation with an offset of zero and count of zero,
and then free all of those buffers. Any other dirty buffers would be sent to the server in the
normal fashion.

After a buffer is written (via the WRITE operation) by the client with the "committed" field in the
result of WRITE set to UNSTABLE4, the buffer must be considered as modified by the client until
the buffer has either been flushed via a COMMIT operation or written via a WRITE operation
with the "committed" field in the result set to FILE_SYNC4 or DATA_SYNC4. This is done to
prevent the buffer from being freed and reused before the data can be flushed to stable storage
on the server.

When a response is returned from either a WRITE or a COMMIT operation and it contains a write
verifier that differs from that previously returned by the server, the client will need to
retransmit all of the buffers containing uncommitted data to the server. How this is to be done is
up to the implementor. If there is only one buffer of interest, then it should be sent in a WRITE
request with the FILE_SYNC4 stable parameter. If there is more than one buffer, it might be
worthwhile retransmitting all of the buffers in WRITE operations with the stable parameter set
to UNSTABLE4 and then retransmitting the COMMIT operation to flush all of the data on the
server to stable storage. However, if the server repeatably returns from COMMIT a verifier that
differs from that returned by WRITE, the only way to ensure progress is to retransmit all of the
buffers with WRITE requests with the FILE_SYNC4 stable parameter.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 373

The above description applies to page-cache-based systems as well as buffer-cache-based
systems. In the former systems, the virtual memory system will need to be modified instead of
the buffer cache.

18.4. Operation 6: CREATE - Create a Non-Regular File Object
18.4.1. ARGUMENTS

union createtype4 switch (nfs_ftype4 type) {
 case NF4LNK:
 linktext4 linkdata;
 case NF4BLK:
 case NF4CHR:
 specdata4 devdata;
 case NF4SOCK:
 case NF4FIFO:
 case NF4DIR:
 void;
 default:
 void; /* server should return NFS4ERR_BADTYPE */
};

struct CREATE4args {
 /* CURRENT_FH: directory for creation */
 createtype4 objtype;
 component4 objname;
 fattr4 createattrs;
};

18.4.2. RESULTS

struct CREATE4resok {
 change_info4 cinfo;
 bitmap4 attrset; /* attributes set */
};

union CREATE4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* new CURRENTFH: created object */
 CREATE4resok resok4;
 default:
 void;
};

18.4.3. DESCRIPTION

The CREATE operation creates a file object other than an ordinary file in a directory with a given
name. The OPEN operation be used to create a regular file or a named attribute.

The current filehandle must be a directory: an object of type NF4DIR. If the current filehandle is
an attribute directory (type NF4ATTRDIR), the error NFS4ERR_WRONG_TYPE is returned. If the
current filehandle designates any other type of object, the error NFS4ERR_NOTDIR results.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 374

The objname specifies the name for the new object. The objtype determines the type of object to
be created: directory, symlink, etc. If the object type specified is that of an ordinary file, a named
attribute, or a named attribute directory, the error NFS4ERR_BADTYPE results.

If an object of the same name already exists in the directory, the server will return the error
NFS4ERR_EXIST.

For the directory where the new file object was created, the server returns change_info4
information in cinfo. With the atomic field of the change_info4 data type, the server will indicate
if the before and after change attributes were obtained atomically with respect to the file object
creation.

If the objname has a length of zero, or if objname does not obey the UTF-8 definition, the error
NFS4ERR_INVAL will be returned.

The current filehandle is replaced by that of the new object.

The createattrs specifies the initial set of attributes for the object. The set of attributes may
include any writable attribute valid for the object type. When the operation is successful, the
server will return to the client an attribute mask signifying which attributes were successfully
set for the object.

If createattrs includes neither the owner attribute nor an ACL with an ACE for the owner, and if
the server's file system both supports and requires an owner attribute (or an owner ACE), then
the server derive the owner (or the owner ACE). This would typically be from the principal
indicated in the RPC credentials of the call, but the server's operating environment or file system
semantics may dictate other methods of derivation. Similarly, if createattrs includes neither the
group attribute nor a group ACE, and if the server's file system both supports and requires the
notion of a group attribute (or group ACE), the server derive the group attribute (or the
corresponding owner ACE) for the file. This could be from the RPC call's credentials, such as the
group principal if the credentials include it (such as with AUTH_SYS), from the group identifier
associated with the principal in the credentials (e.g., POSIX systems have a
that has a group identifier for every user identifier), inherited from the directory in which the
object is created, or whatever else the server's operating environment or file system semantics
dictate. This applies to the OPEN operation too.

Conversely, it is possible that the client will specify in createattrs an owner attribute, group
attribute, or ACL that the principal indicated the RPC call's credentials does not have permissions
to create files for. The error to be returned in this instance is NFS4ERR_PERM. This applies to the
OPEN operation too.

If the current filehandle designates a directory for which another client holds a directory
delegation, then, unless the delegation is such that the situation can be resolved by sending a
notification, the delegation be recalled, and the CREATE operation proceed until
the delegation is returned or revoked. Except where this happens very quickly, one or more
NFS4ERR_DELAY errors will be returned to requests made while delegation remains outstanding.

MUST

MUST

user database [23]

MUST MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 375

When the current filehandle designates a directory for which one or more directory delegations
exist, then, when those delegations request such notifications, NOTIFY4_ADD_ENTRY will be
generated as a result of this operation.

If the capability FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set (Section 14.4), and a symbolic link
is being created, then the content of the symbolic link be in UTF-8 encoding.MUST

18.4.4. IMPLEMENTATION

If the client desires to set attribute values after the create, a SETATTR operation can be added to
the COMPOUND request so that the appropriate attributes will be set.

18.5. Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery
18.5.1. ARGUMENTS

struct DELEGPURGE4args {
 clientid4 clientid;
};

18.5.2. RESULTS

struct DELEGPURGE4res {
 nfsstat4 status;
};

18.5.3. DESCRIPTION

This operation purges all of the delegations awaiting recovery for a given client. This is useful for
clients that do not commit delegation information to stable storage to indicate that conflicting
requests need not be delayed by the server awaiting recovery of delegation information.

The client is NOT specified by the clientid field of the request. The client set the client
field to zero, and the server ignore the clientid field. Instead, the server derive the
client ID from the value of the session ID in the arguments of the SEQUENCE operation that
precedes DELEGPURGE in the COMPOUND request.

The DELEGPURGE operation should be used by clients that record delegation information on
stable storage on the client. In this case, after the client recovers all delegations it knows of, it
should immediately send a DELEGPURGE operation. Doing so will notify the server that no
additional delegations for the client will be recovered allowing it to free resources, and avoid
delaying other clients which make requests that conflict with the unrecovered delegations. The
set of delegations known to the server and the client might be different. The reason for this is
that after sending a request that resulted in a delegation, the client might experience a failure
before it both received the delegation and committed the delegation to the client's stable storage.

The server support DELEGPURGE, but if it does not, it support
CLAIM_DELEGATE_PREV and support CLAIM_DELEG_PREV_FH.

SHOULD
MUST MUST

MAY MUST NOT
MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 376

18.6. Operation 8: DELEGRETURN - Return Delegation
18.6.1. ARGUMENTS

struct DELEGRETURN4args {
 /* CURRENT_FH: delegated object */
 stateid4 deleg_stateid;
};

18.6.2. RESULTS

struct DELEGRETURN4res {
 nfsstat4 status;
};

18.6.3. DESCRIPTION

The DELEGRETURN operation returns the delegation represented by the current filehandle and
stateid.

Delegations may be returned voluntarily (i.e., before the server has recalled them) or when
recalled. In either case, the client must properly propagate state changed under the context of
the delegation to the server before returning the delegation.

The server require that the principal, security flavor, and if applicable, the GSS mechanism,
combination that acquired the delegation also be the one to send DELEGRETURN on the file. This
might not be possible if credentials for the principal are no longer available. The server
allow the machine credential or SSV credential (see Section 18.35) to send DELEGRETURN.

MAY

MAY

18.7. Operation 9: GETATTR - Get Attributes
18.7.1. ARGUMENTS

struct GETATTR4args {
 /* CURRENT_FH: object */
 bitmap4 attr_request;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 377

18.7.2. RESULTS

struct GETATTR4resok {
 fattr4 obj_attributes;
};

union GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETATTR4resok resok4;
 default:
 void;
};

18.7.3. DESCRIPTION

The GETATTR operation will obtain attributes for the file system object specified by the current
filehandle. The client sets a bit in the bitmap argument for each attribute value that it would like
the server to return. The server returns an attribute bitmap that indicates the attribute values
that it was able to return, which will include all attributes requested by the client that are
attributes supported by the server for the target file system. This bitmap is followed by the
attribute values ordered lowest attribute number first.

The server return a value for each attribute that the client requests if the attribute is
supported by the server for the target file system. If the server does not support a particular
attribute on the target file system, then it return the attribute value and set
the attribute bit in the result bitmap. The server return an error if it supports an attribute
on the target but cannot obtain its value. In that case, no attribute values will be returned.

File systems that are absent should be treated as having support for a very small set of attributes
as described in Section 11.4.1, even if previously, when the file system was present, more
attributes were supported.

All servers support the attributes as specified in Section 5.6, for all file systems,
with the exception of absent file systems.

On success, the current filehandle retains its value.

MUST

MUST NOT MUST NOT
MUST

MUST REQUIRED

18.7.4. IMPLEMENTATION

Suppose there is an OPEN_DELEGATE_WRITE delegation held by another client for the file in
question and size and/or change are among the set of attributes being interrogated. The server
has two choices. First, the server can obtain the actual current value of these attributes from the
client holding the delegation by using the CB_GETATTR callback. Second, the server, particularly
when the delegated client is unresponsive, can recall the delegation in question. The GETATTR

 proceed until one of the following occurs:

The requested attribute values are returned in the response to CB_GETATTR.
The OPEN_DELEGATE_WRITE delegation is returned.

MUST NOT

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 378

The OPEN_DELEGATE_WRITE delegation is revoked.

Unless one of the above happens very quickly, one or more NFS4ERR_DELAY errors will be
returned while a delegation is outstanding.

•

18.8. Operation 10: GETFH - Get Current Filehandle
18.8.1. ARGUMENTS

/* CURRENT_FH: */
void;

18.8.2. RESULTS

struct GETFH4resok {
 nfs_fh4 object;
};

union GETFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETFH4resok resok4;
 default:
 void;
};

18.8.3. DESCRIPTION

This operation returns the current filehandle value.

On success, the current filehandle retains its value.

As described in Section 2.10.6.4, GETFH is or to immediately follow
certain operations, and servers are free to reject such operations if the client fails to insert
GETFH in the request as or . Section 18.16.4.1 provides additional
justification for why GETFH follow OPEN.

REQUIRED RECOMMENDED

REQUIRED RECOMMENDED
MUST

18.8.4. IMPLEMENTATION

Operations that change the current filehandle like LOOKUP or CREATE do not automatically
return the new filehandle as a result. For instance, if a client needs to look up a directory entry
and obtain its filehandle, then the following request is needed.

PUTFH (directory filehandle)

LOOKUP (entry name)

GETFH

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 379

18.9. Operation 11: LINK - Create Link to a File
18.9.1. ARGUMENTS

struct LINK4args {
 /* SAVED_FH: source object */
 /* CURRENT_FH: target directory */
 component4 newname;
};

18.9.2. RESULTS

struct LINK4resok {
 change_info4 cinfo;
};

union LINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LINK4resok resok4;
 default:
 void;
};

18.9.3. DESCRIPTION

The LINK operation creates an additional newname for the file represented by the saved
filehandle, as set by the SAVEFH operation, in the directory represented by the current
filehandle. The existing file and the target directory must reside within the same file system on
the server. On success, the current filehandle will continue to be the target directory. If an object
exists in the target directory with the same name as newname, the server must return
NFS4ERR_EXIST.

For the target directory, the server returns change_info4 information in cinfo. With the atomic
field of the change_info4 data type, the server will indicate if the before and after change
attributes were obtained atomically with respect to the link creation.

If the newname has a length of zero, or if newname does not obey the UTF-8 definition, the error
NFS4ERR_INVAL will be returned.

18.9.4. IMPLEMENTATION

The server impose restrictions on the LINK operation such that LINK may not be done when
the file is open or when that open is done by particular protocols, or with particular options or
access modes. When LINK is rejected because of such restrictions, the error
NFS4ERR_FILE_OPEN is returned.

If a server does implement such restrictions and those restrictions include cases of NFSv4 opens
preventing successful execution of a link, the server needs to recall any delegations that could
hide the existence of opens relevant to that decision. The reason is that when a client holds a

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 380

delegation, the server might not have an accurate account of the opens for that client, since the
client may execute OPENs and CLOSEs locally. The LINK operation must be delayed only until a
definitive result can be obtained. For example, suppose there are multiple delegations and one of
them establishes an open whose presence would prevent the link. Given the server's semantics,
NFS4ERR_FILE_OPEN may be returned to the caller as soon as that delegation is returned
without waiting for other delegations to be returned. Similarly, if such opens are not associated
with delegations, NFS4ERR_FILE_OPEN can be returned immediately with no delegation recall
being done.

If the current filehandle designates a directory for which another client holds a directory
delegation, then, unless the delegation is such that the situation can be resolved by sending a
notification, the delegation be recalled, and the operation cannot be performed
successfully until the delegation is returned or revoked. Except where this happens very quickly,
one or more NFS4ERR_DELAY errors will be returned to requests made while delegation remains
outstanding.

When the current filehandle designates a directory for which one or more directory delegations
exist, then, when those delegations request such notifications, instead of a recall,
NOTIFY4_ADD_ENTRY will be generated as a result of the LINK operation.

If the current file system supports the numlinks attribute, and other clients have delegations to
the file being linked, then those delegations be recalled and the LINK operation
proceed until all delegations are returned or revoked. Except where this happens very quickly,
one or more NFS4ERR_DELAY errors will be returned to requests made while delegation remains
outstanding.

Changes to any property of the "hard" linked files are reflected in all of the linked files. When a
link is made to a file, the attributes for the file should have a value for numlinks that is one
greater than the value before the LINK operation.

The statement "file and the target directory must reside within the same file system on the
server" means that the fsid fields in the attributes for the objects are the same. If they reside on
different file systems, the error NFS4ERR_XDEV is returned. This error may be returned by some
servers when there is an internal partitioning of a file system that the LINK operation would
violate.

On some servers, "." and ".." are illegal values for newname and the error NFS4ERR_BADNAME
will be returned if they are specified.

When the current filehandle designates a named attribute directory and the object to be linked
(the saved filehandle) is not a named attribute for the same object, the error NFS4ERR_XDEV

 be returned. When the saved filehandle designates a named attribute and the current
filehandle is not the appropriate named attribute directory, the error NFS4ERR_XDEV also
be returned.

When the current filehandle designates a named attribute directory and the object to be linked
(the saved filehandle) is a named attribute within that directory, the server may return the error
NFS4ERR_NOTSUPP.

MUST

MUST MUST NOT

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 381

In the case that newname is already linked to the file represented by the saved filehandle, the
server will return NFS4ERR_EXIST.

Note that symbolic links are created with the CREATE operation.

18.10. Operation 12: LOCK - Create Lock
18.10.1. ARGUMENTS

/*
 * For LOCK, transition from open_stateid and lock_owner
 * to a lock stateid.
 */
struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
};

/*
 * For LOCK, existing lock stateid continues to request new
 * file lock for the same lock_owner and open_stateid.
 */
struct exist_lock_owner4 {
 stateid4 lock_stateid;
 seqid4 lock_seqid;
};

union locker4 switch (bool new_lock_owner) {
 case TRUE:
 open_to_lock_owner4 open_owner;
 case FALSE:
 exist_lock_owner4 lock_owner;
};

/*
 * LOCK/LOCKT/LOCKU: Record lock management
 */
struct LOCK4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 bool reclaim;
 offset4 offset;
 length4 length;
 locker4 locker;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 382

18.10.2. RESULTS

struct LOCK4denied {
 offset4 offset;
 length4 length;
 nfs_lock_type4 locktype;
 lock_owner4 owner;
};

struct LOCK4resok {
 stateid4 lock_stateid;
};

union LOCK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LOCK4resok resok4;
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 default:
 void;
};

18.10.3. DESCRIPTION

The LOCK operation requests a byte-range lock for the byte-range specified by the offset and
length parameters, and lock type specified in the locktype parameter. If this is a reclaim request,
the reclaim parameter will be TRUE.

Bytes in a file may be locked even if those bytes are not currently allocated to the file. To lock the
file from a specific offset through the end-of-file (no matter how long the file actually is) use a
length field equal to NFS4_UINT64_MAX. The server return NFS4ERR_INVAL under the
following combinations of length and offset:

Length is equal to zero.
Length is not equal to NFS4_UINT64_MAX, and the sum of length and offset exceeds
NFS4_UINT64_MAX.

32-bit servers are servers that support locking for byte offsets that fit within 32 bits (i.e., less than
or equal to NFS4_UINT32_MAX). If the client specifies a range that overlaps one or more bytes
beyond offset NFS4_UINT32_MAX but does not end at offset NFS4_UINT64_MAX, then such a 32-
bit server return the error NFS4ERR_BAD_RANGE.

If the server returns NFS4ERR_DENIED, the owner, offset, and length of a conflicting lock are
returned.

The locker argument specifies the lock-owner that is associated with the LOCK operation. The
locker4 structure is a switched union that indicates whether the client has already created byte-
range locking state associated with the current open file and lock-owner. In the case in which it
has, the argument is just a stateid representing the set of locks associated with that open file and
lock-owner, together with a lock_seqid value that be any value and be ignored by the

MUST

•
•

MUST

MAY MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 383

server. In the case where no byte-range locking state has been established, or the client does not
have the stateid available, the argument contains the stateid of the open file with which this lock
is to be associated, together with the lock-owner with which the lock is to be associated. The
open_to_lock_owner case covers the very first lock done by a lock-owner for a given open file
and offers a method to use the established state of the open_stateid to transition to the use of a
lock stateid.

The following fields of the locker parameter be set to any value by the client and be
ignored by the server:

The clientid field of the lock_owner field of the open_owner field
(locker.open_owner.lock_owner.clientid). The reason the server ignore the clientid
field is that the server derive the client ID from the session ID from the SEQUENCE
operation of the COMPOUND request.
The open_seqid and lock_seqid fields of the open_owner field
(locker.open_owner.open_seqid and locker.open_owner.lock_seqid).
The lock_seqid field of the lock_owner field (locker.lock_owner.lock_seqid).

Note that the client ID appearing in a LOCK4denied structure is the actual client associated with
the conflicting lock, whether this is the client ID associated with the current session or a different
one. Thus, if the server returns NFS4ERR_DENIED, it set the clientid field of the owner field
of the denied field.

If the current filehandle is not an ordinary file, an error will be returned to the client. In the case
that the current filehandle represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is returned. In all other
cases, NFS4ERR_WRONG_TYPE is returned.

On success, the current filehandle retains its value.

MAY MUST

•
MUST

MUST

•

•

MUST

18.10.4. IMPLEMENTATION

If the server is unable to determine the exact offset and length of the conflicting byte-range lock,
the same offset and length that were provided in the arguments should be returned in the denied
results.

LOCK operations are subject to permission checks and to checks against the access type of the
associated file. However, the specific right and modes required for various types of locks reflect
the semantics of the server-exported file system, and are not specified by the protocol. For
example, Windows 2000 allows a write lock of a file open for read access, while a POSIX-
compliant system does not.

When the client sends a LOCK operation that corresponds to a range that the lock-owner has
locked already (with the same or different lock type), or to a sub-range of such a range, or to a
byte-range that includes multiple locks already granted to that lock-owner, in whole or in part,
and the server does not support such locking operations (i.e., does not support POSIX locking
semantics), the server will return the error NFS4ERR_LOCK_RANGE. In that case, the client may
return an error, or it may emulate the required operations, using only LOCK for ranges that do

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 384

not include any bytes already locked by that lock-owner and LOCKU of locks held by that lock-
owner (specifying an exactly matching range and type). Similarly, when the client sends a LOCK
operation that amounts to upgrading (changing from a READ_LT lock to a WRITE_LT lock) or
downgrading (changing from WRITE_LT lock to a READ_LT lock) an existing byte-range lock, and
the server does not support such a lock, the server will return NFS4ERR_LOCK_NOTSUPP. Such
operations may not perfectly reflect the required semantics in the face of conflicting LOCK
operations from other clients.

When a client holds an OPEN_DELEGATE_WRITE delegation, the client holding that delegation is
assured that there are no opens by other clients. Thus, there can be no conflicting LOCK
operations from such clients. Therefore, the client may be handling locking requests locally,
without doing LOCK operations on the server. If it does that, it must be prepared to update the
lock status on the server, by sending appropriate LOCK and LOCKU operations before returning
the delegation.

When one or more clients hold OPEN_DELEGATE_READ delegations, any LOCK operation where
the server is implementing mandatory locking semantics result in the recall of all such
delegations. The LOCK operation may not be granted until all such delegations are returned or
revoked. Except where this happens very quickly, one or more NFS4ERR_DELAY errors will be
returned to requests made while the delegation remains outstanding.

MUST

18.11. Operation 13: LOCKT - Test for Lock
18.11.1. ARGUMENTS

struct LOCKT4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 offset4 offset;
 length4 length;
 lock_owner4 owner;
};

18.11.2. RESULTS

union LOCKT4res switch (nfsstat4 status) {
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 case NFS4_OK:
 void;
 default:
 void;
};

18.11.3. DESCRIPTION

The LOCKT operation tests the lock as specified in the arguments. If a conflicting lock exists, the
owner, offset, length, and type of the conflicting lock are returned. The owner field in the results
includes the client ID of the owner of the conflicting lock, whether this is the client ID associated

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 385

with the current session or a different client ID. If no lock is held, nothing other than NFS4_OK is
returned. Lock types READ_LT and READW_LT are processed in the same way in that a
conflicting lock test is done without regard to blocking or non-blocking. The same is true for
WRITE_LT and WRITEW_LT.

The ranges are specified as for LOCK. The NFS4ERR_INVAL and NFS4ERR_BAD_RANGE errors are
returned under the same circumstances as for LOCK.

The clientid field of the owner be set to any value by the client and be ignored by the
server. The reason the server ignore the clientid field is that the server derive the
client ID from the session ID from the SEQUENCE operation of the COMPOUND request.

If the current filehandle is not an ordinary file, an error will be returned to the client. In the case
that the current filehandle represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is returned. In all other
cases, NFS4ERR_WRONG_TYPE is returned.

On success, the current filehandle retains its value.

MAY MUST
MUST MUST

18.11.4. IMPLEMENTATION

If the server is unable to determine the exact offset and length of the conflicting lock, the same
offset and length that were provided in the arguments should be returned in the denied results.

LOCKT uses a lock_owner4 rather a stateid4, as is used in LOCK to identify the owner. This is
because the client does not have to open the file to test for the existence of a lock, so a stateid
might not be available.

As noted in Section 18.10.4, some servers may return NFS4ERR_LOCK_RANGE to certain
(otherwise non-conflicting) LOCK operations that overlap ranges already granted to the current
lock-owner.

The LOCKT operation's test for conflicting locks exclude locks for the current lock-
owner, and thus should return NFS4_OK in such cases. Note that this means that a server might
return NFS4_OK to a LOCKT request even though a LOCK operation for the same range and lock-
owner would fail with NFS4ERR_LOCK_RANGE.

When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose (see Section 18.10.4)
to handle LOCK requests locally. In such a case, LOCKT requests will similarly be handled locally.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 386

18.12. Operation 14: LOCKU - Unlock File
18.12.1. ARGUMENTS

struct LOCKU4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 seqid4 seqid;
 stateid4 lock_stateid;
 offset4 offset;
 length4 length;
};

18.12.2. RESULTS

union LOCKU4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 lock_stateid;
 default:
 void;
};

18.12.3. DESCRIPTION

The LOCKU operation unlocks the byte-range lock specified by the parameters. The client may set
the locktype field to any value that is legal for the nfs_lock_type4 enumerated type, and the
server accept any legal value for locktype. Any legal value for locktype has no effect on the
success or failure of the LOCKU operation.

The ranges are specified as for LOCK. The NFS4ERR_INVAL and NFS4ERR_BAD_RANGE errors are
returned under the same circumstances as for LOCK.

The seqid parameter be any value and the server ignore it.

If the current filehandle is not an ordinary file, an error will be returned to the client. In the case
that the current filehandle represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is returned. In all other
cases, NFS4ERR_WRONG_TYPE is returned.

On success, the current filehandle retains its value.

The server require that the principal, security flavor, and if applicable, the GSS mechanism,
combination that sent a LOCK operation also be the one to send LOCKU on the file. This might not
be possible if credentials for the principal are no longer available. The server allow the
machine credential or SSV credential (see Section 18.35) to send LOCKU.

MUST

MAY MUST

MAY

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 387

18.12.4. IMPLEMENTATION

If the area to be unlocked does not correspond exactly to a lock actually held by the lock-owner,
the server may return the error NFS4ERR_LOCK_RANGE. This includes the case in which the area
is not locked, where the area is a sub-range of the area locked, where it overlaps the area locked
without matching exactly, or the area specified includes multiple locks held by the lock-owner. In
all of these cases, allowed by semantics, a client receiving this error should, if
it desires support for such operations, simulate the operation using LOCKU on ranges
corresponding to locks it actually holds, possibly followed by LOCK operations for the sub-ranges
not being unlocked.

When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose (see Section 18.10.4)
to handle LOCK requests locally. In such a case, LOCKU operations will similarly be handled
locally.

POSIX locking [21]

18.13. Operation 15: LOOKUP - Lookup Filename
18.13.1. ARGUMENTS

struct LOOKUP4args {
 /* CURRENT_FH: directory */
 component4 objname;
};

18.13.2. RESULTS

struct LOOKUP4res {
 /* New CURRENT_FH: object */
 nfsstat4 status;
};

18.13.3. DESCRIPTION

The LOOKUP operation looks up or finds a file system object using the directory specified by the
current filehandle. LOOKUP evaluates the component and if the object exists, the current
filehandle is replaced with the component's filehandle.

If the component cannot be evaluated either because it does not exist or because the client does
not have permission to evaluate the component, then an error will be returned and the current
filehandle will be unchanged.

If the component is a zero-length string or if any component does not obey the UTF-8 definition,
the error NFS4ERR_INVAL will be returned.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 388

18.13.4. IMPLEMENTATION

If the client wants to achieve the effect of a multi-component look up, it may construct a
COMPOUND request such as (and obtain each filehandle):

Unlike NFSv3, NFSv4.1 allows LOOKUP requests to cross mountpoints on the server. The client
can detect a mountpoint crossing by comparing the fsid attribute of the directory with the fsid
attribute of the directory looked up. If the fsids are different, then the new directory is a server
mountpoint. UNIX clients that detect a mountpoint crossing will need to mount the server's file
system. This needs to be done to maintain the file object identity checking mechanisms common
to UNIX clients.

Servers that limit NFS access to "shared" or "exported" file systems should provide a pseudo file
system into which the exported file systems can be integrated, so that clients can browse the
server's namespace. The clients view of a pseudo file system will be limited to paths that lead to
exported file systems.

Note: previous versions of the protocol assigned special semantics to the names "." and "..".
NFSv4.1 assigns no special semantics to these names. The LOOKUPP operator must be used to
look up a parent directory.

Note that this operation does not follow symbolic links. The client is responsible for all parsing of
filenames including filenames that are modified by symbolic links encountered during the look
up process.

If the current filehandle supplied is not a directory but a symbolic link, the error
NFS4ERR_SYMLINK is returned as the error. For all other non-directory file types, the error
NFS4ERR_NOTDIR is returned.

 PUTFH (directory filehandle)
 LOOKUP "pub"
 GETFH
 LOOKUP "foo"
 GETFH
 LOOKUP "bar"
 GETFH

18.14. Operation 16: LOOKUPP - Lookup Parent Directory
18.14.1. ARGUMENTS

/* CURRENT_FH: object */
void;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 389

18.14.2. RESULTS

struct LOOKUPP4res {
 /* new CURRENT_FH: parent directory */
 nfsstat4 status;
};

18.14.3. DESCRIPTION

The current filehandle is assumed to refer to a regular directory or a named attribute directory.
LOOKUPP assigns the filehandle for its parent directory to be the current filehandle. If there is no
parent directory, an NFS4ERR_NOENT error must be returned. Therefore, NFS4ERR_NOENT will
be returned by the server when the current filehandle is at the root or top of the server's file tree.

As is the case with LOOKUP, LOOKUPP will also cross mountpoints.

If the current filehandle is not a directory or named attribute directory, the error
NFS4ERR_NOTDIR is returned.

If the requester's security flavor does not match that configured for the parent directory, then the
server return NFS4ERR_WRONGSEC (a future minor revision of NFSv4 may upgrade this
to) in the LOOKUPP response. However, if the server does so, it support the
SECINFO_NO_NAME operation (Section 18.45), so that the client can gracefully determine the
correct security flavor.

If the current filehandle is a named attribute directory that is associated with a file system object
via OPENATTR (i.e., not a sub-directory of a named attribute directory), LOOKUPP
return the filehandle of the associated file system object.

SHOULD
MUST MUST

SHOULD

18.14.4. IMPLEMENTATION

An issue to note is upward navigation from named attribute directories. The named attribute
directories are essentially detached from the namespace, and this property should be safely
represented in the client operating environment. LOOKUPP on a named attribute directory may
return the filehandle of the associated file, and conveying this to applications might be unsafe as
many applications expect the parent of an object to always be a directory. Therefore, the client
may want to hide the parent of named attribute directories (represented as ".." in UNIX) or
represent the named attribute directory as its own parent (as is typically done for the file system
root directory in UNIX).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 390

18.15. Operation 17: NVERIFY - Verify Difference in Attributes
18.15.1. ARGUMENTS

struct NVERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
};

18.15.2. RESULTS

struct NVERIFY4res {
 nfsstat4 status;
};

18.15.3. DESCRIPTION

This operation is used to prefix a sequence of operations to be performed if one or more
attributes have changed on some file system object. If all the attributes match, then the error
NFS4ERR_SAME be returned.

On success, the current filehandle retains its value.

MUST

18.15.4. IMPLEMENTATION

This operation is useful as a cache validation operator. If the object to which the attributes
belong has changed, then the following operations may obtain new data associated with that
object, for instance, to check if a file has been changed and obtain new data if it has:

Contrast this with NFSv3, which would first send a GETATTR in one request/reply round trip, and
then if attributes indicated that the client's cache was stale, then send a READ in another request/
reply round trip.

In the case that a attribute is specified in the NVERIFY operation and the server
does not support that attribute for the file system object, the error NFS4ERR_ATTRNOTSUPP is
returned to the client.

When the attribute rdattr_error or any set-only attribute (e.g., time_modify_set) is specified, the
error NFS4ERR_INVAL is returned to the client.

 SEQUENCE
 PUTFH fh
 NVERIFY attrbits attrs
 READ 0 32767

RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 391

18.16. Operation 18: OPEN - Open a Regular File

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 392

18.16.1. ARGUMENTS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 393

/*
 * Various definitions for OPEN
 */
enum createmode4 {
 UNCHECKED4 = 0,
 GUARDED4 = 1,
 /* Deprecated in NFSv4.1. */
 EXCLUSIVE4 = 2,
 /*
 * New to NFSv4.1. If session is persistent,
 * GUARDED4 MUST be used. Otherwise, use
 * EXCLUSIVE4_1 instead of EXCLUSIVE4.
 */
 EXCLUSIVE4_1 = 3
};

struct creatverfattr {
 verifier4 cva_verf;
 fattr4 cva_attrs;
};

union createhow4 switch (createmode4 mode) {
 case UNCHECKED4:
 case GUARDED4:
 fattr4 createattrs;
 case EXCLUSIVE4:
 verifier4 createverf;
 case EXCLUSIVE4_1:
 creatverfattr ch_createboth;
};

enum opentype4 {
 OPEN4_NOCREATE = 0,
 OPEN4_CREATE = 1
};

union openflag4 switch (opentype4 opentype) {
 case OPEN4_CREATE:
 createhow4 how;
 default:
 void;
};

/* Next definitions used for OPEN delegation */
enum limit_by4 {
 NFS_LIMIT_SIZE = 1,
 NFS_LIMIT_BLOCKS = 2
 /* others as needed */
};

struct nfs_modified_limit4 {
 uint32_t num_blocks;
 uint32_t bytes_per_block;
};

union nfs_space_limit4 switch (limit_by4 limitby) {
 /* limit specified as file size */

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 394

 case NFS_LIMIT_SIZE:
 uint64_t filesize;
 /* limit specified by number of blocks */
 case NFS_LIMIT_BLOCKS:
 nfs_modified_limit4 mod_blocks;
} ;

/*
 * Share Access and Deny constants for open argument
 */
const OPEN4_SHARE_ACCESS_READ = 0x00000001;
const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

const OPEN4_SHARE_DENY_NONE = 0x00000000;
const OPEN4_SHARE_DENY_READ = 0x00000001;
const OPEN4_SHARE_DENY_WRITE = 0x00000002;
const OPEN4_SHARE_DENY_BOTH = 0x00000003;

/* new flags for share_access field of OPEN4args */
const OPEN4_SHARE_ACCESS_WANT_DELEG_MASK = 0xFF00;
const OPEN4_SHARE_ACCESS_WANT_NO_PREFERENCE = 0x0000;
const OPEN4_SHARE_ACCESS_WANT_READ_DELEG = 0x0100;
const OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG = 0x0200;
const OPEN4_SHARE_ACCESS_WANT_ANY_DELEG = 0x0300;
const OPEN4_SHARE_ACCESS_WANT_NO_DELEG = 0x0400;
const OPEN4_SHARE_ACCESS_WANT_CANCEL = 0x0500;

const
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL
 = 0x10000;

const
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED
 = 0x20000;

enum open_delegation_type4 {
 OPEN_DELEGATE_NONE = 0,
 OPEN_DELEGATE_READ = 1,
 OPEN_DELEGATE_WRITE = 2,
 OPEN_DELEGATE_NONE_EXT = 3 /* new to v4.1 */
};

enum open_claim_type4 {
 /*
 * Not a reclaim.
 */
 CLAIM_NULL = 0,

 CLAIM_PREVIOUS = 1,
 CLAIM_DELEGATE_CUR = 2,
 CLAIM_DELEGATE_PREV = 3,

 /*
 * Not a reclaim.
 *
 * Like CLAIM_NULL, but object identified

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 395

 * by the current filehandle.
 */
 CLAIM_FH = 4, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_CUR, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_CUR_FH = 5, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_PREV, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_PREV_FH = 6 /* new to v4.1 */
};

struct open_claim_delegate_cur4 {
 stateid4 delegate_stateid;
 component4 file;
};

union open_claim4 switch (open_claim_type4 claim) {
 /*
 * No special rights to file.
 * Ordinary OPEN of the specified file.
 */
 case CLAIM_NULL:
 /* CURRENT_FH: directory */
 component4 file;
 /*
 * Right to the file established by an
 * open previous to server reboot. File
 * identified by filehandle obtained at
 * that time rather than by name.
 */
 case CLAIM_PREVIOUS:
 /* CURRENT_FH: file being reclaimed */
 open_delegation_type4 delegate_type;

 /*
 * Right to file based on a delegation
 * granted by the server. File is
 * specified by name.
 */
 case CLAIM_DELEGATE_CUR:
 /* CURRENT_FH: directory */
 open_claim_delegate_cur4 delegate_cur_info;

 /*
 * Right to file based on a delegation
 * granted to a previous boot instance
 * of the client. File is specified by name.
 */
 case CLAIM_DELEGATE_PREV:
 /* CURRENT_FH: directory */
 component4 file_delegate_prev;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 396

 /*
 * Like CLAIM_NULL. No special rights
 * to file. Ordinary OPEN of the
 * specified file by current filehandle.
 */
 case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: regular file to open */
 void;

 /*
 * Like CLAIM_DELEGATE_PREV. Right to file based on a
 * delegation granted to a previous boot
 * instance of the client. File is identified
 * by filehandle.
 */
 case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 void;

 /*
 * Like CLAIM_DELEGATE_CUR. Right to file based on
 * a delegation granted by the server.
 * File is identified by filehandle.
 */
 case CLAIM_DELEG_CUR_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 stateid4 oc_delegate_stateid;

};

/*
 * OPEN: Open a file, potentially receiving an OPEN delegation
 */
struct OPEN4args {
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
 open_owner4 owner;
 openflag4 openhow;
 open_claim4 claim;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 397

18.16.2. RESULTS

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 398

struct open_read_delegation4 {
 stateid4 stateid; /* Stateid for delegation*/
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim (CLAIM_PREVIOUS) */

 nfsace4 permissions; /* Defines users who don't
 need an ACCESS call to
 open for read */
};

struct open_write_delegation4 {
 stateid4 stateid; /* Stateid for delegation */
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim
 (CLAIM_PREVIOUS) */

 nfs_space_limit4
 space_limit; /* Defines condition that
 the client must check to
 determine whether the
 file needs to be flushed
 to the server on close. */

 nfsace4 permissions; /* Defines users who don't
 need an ACCESS call as
 part of a delegated
 open. */
};

enum why_no_delegation4 { /* new to v4.1 */
 WND4_NOT_WANTED = 0,
 WND4_CONTENTION = 1,
 WND4_RESOURCE = 2,
 WND4_NOT_SUPP_FTYPE = 3,
 WND4_WRITE_DELEG_NOT_SUPP_FTYPE = 4,
 WND4_NOT_SUPP_UPGRADE = 5,
 WND4_NOT_SUPP_DOWNGRADE = 6,
 WND4_CANCELLED = 7,
 WND4_IS_DIR = 8
};

union open_none_delegation4 /* new to v4.1 */
switch (why_no_delegation4 ond_why) {
 case WND4_CONTENTION:
 bool ond_server_will_push_deleg;
 case WND4_RESOURCE:
 bool ond_server_will_signal_avail;
 default:
 void;
};

union open_delegation4
switch (open_delegation_type4 delegation_type) {
 case OPEN_DELEGATE_NONE:

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 399

 void;
 case OPEN_DELEGATE_READ:
 open_read_delegation4 read;
 case OPEN_DELEGATE_WRITE:
 open_write_delegation4 write;
 case OPEN_DELEGATE_NONE_EXT: /* new to v4.1 */
 open_none_delegation4 od_whynone;
};

/*
 * Result flags
 */

/* Client must confirm open */
const OPEN4_RESULT_CONFIRM = 0x00000002;
/* Type of file locking behavior at the server */
const OPEN4_RESULT_LOCKTYPE_POSIX = 0x00000004;
/* Server will preserve file if removed while open */
const OPEN4_RESULT_PRESERVE_UNLINKED = 0x00000008;

/*
 * Server may use CB_NOTIFY_LOCK on locks
 * derived from this open
 */
const OPEN4_RESULT_MAY_NOTIFY_LOCK = 0x00000020;

struct OPEN4resok {
 stateid4 stateid; /* Stateid for open */
 change_info4 cinfo; /* Directory Change Info */
 uint32_t rflags; /* Result flags */
 bitmap4 attrset; /* attribute set for create*/
 open_delegation4 delegation; /* Info on any open
 delegation */
};

union OPEN4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* New CURRENT_FH: opened file */
 OPEN4resok resok4;
 default:
 void;
};

18.16.3. DESCRIPTION

The OPEN operation opens a regular file in a directory with the provided name or filehandle.
OPEN can also create a file if a name is provided, and the client specifies it wants to create a file.
Specification of whether or not a file is to be created, and the method of creation is via the
openhow parameter. The openhow parameter consists of a switched union (data type
opengflag4), which switches on the value of opentype (OPEN4_NOCREATE or OPEN4_CREATE). If
OPEN4_CREATE is specified, this leads to another switched union (data type createhow4) that
supports four cases of creation methods: UNCHECKED4, GUARDED4, EXCLUSIVE4, or
EXCLUSIVE4_1. If opentype is OPEN4_CREATE, then the claim field of the claim field be one
of CLAIM_NULL, CLAIM_DELEGATE_CUR, or CLAIM_DELEGATE_PREV, because these claim
methods include a component of a file name.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 400

Upon success (which might entail creation of a new file), the current filehandle is replaced by
that of the created or existing object.

If the current filehandle is a named attribute directory, OPEN will then create or open a named
attribute file. Note that exclusive create of a named attribute is not supported. If the createmode
is EXCLUSIVE4 or EXCLUSIVE4_1 and the current filehandle is a named attribute directory, the
server will return EINVAL.

UNCHECKED4 means that the file should be created if a file of that name does not exist and
encountering an existing regular file of that name is not an error. For this type of create,
createattrs specifies the initial set of attributes for the file. The set of attributes may include any
writable attribute valid for regular files. When an UNCHECKED4 create encounters an existing
file, the attributes specified by createattrs are not used, except that when createattrs specifies the
size attribute with a size of zero, the existing file is truncated.

If GUARDED4 is specified, the server checks for the presence of a duplicate object by name before
performing the create. If a duplicate exists, NFS4ERR_EXIST is returned. If the object does not
exist, the request is performed as described for UNCHECKED4.

For the UNCHECKED4 and GUARDED4 cases, where the operation is successful, the server will
return to the client an attribute mask signifying which attributes were successfully set for the
object.

EXCLUSIVE4_1 and EXCLUSIVE4 specify that the server is to follow exclusive creation semantics,
using the verifier to ensure exclusive creation of the target. The server should check for the
presence of a duplicate object by name. If the object does not exist, the server creates the object
and stores the verifier with the object. If the object does exist and the stored verifier matches the
client provided verifier, the server uses the existing object as the newly created object. If the
stored verifier does not match, then an error of NFS4ERR_EXIST is returned.

If using EXCLUSIVE4, and if the server uses attributes to store the exclusive create verifier, the
server will signify which attributes it used by setting the appropriate bits in the attribute mask
that is returned in the results. Unlike UNCHECKED4, GUARDED4, and EXCLUSIVE4_1,
EXCLUSIVE4 does not support the setting of attributes at file creation, and after a successful
OPEN via EXCLUSIVE4, the client send a SETATTR to set attributes to a known state.

In NFSv4.1, EXCLUSIVE4 has been deprecated in favor of EXCLUSIVE4_1. Unlike EXCLUSIVE4,
attributes may be provided in the EXCLUSIVE4_1 case, but because the server may use attributes
of the target object to store the verifier, the set of allowable attributes may be fewer than the set
of attributes SETATTR allows. The allowable attributes for EXCLUSIVE4_1 are indicated in the
suppattr_exclcreat (Section 5.8.1.14) attribute. If the client attempts to set in cva_attrs an
attribute that is not in suppattr_exclcreat, the server return NFS4ERR_INVAL. The response
field, attrset, indicates both which attributes the server set from cva_attrs and which attributes
the server used to store the verifier. As described in Section 18.16.4, the client can compare
cva_attrs.attrmask with attrset to determine which attributes were used to store the verifier.

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 401

With the addition of persistent sessions and pNFS, under some conditions EXCLUSIVE4
 be used by the client or supported by the server. The following table summarizes the

appropriate and mandated exclusive create methods for implementations of NFSv4.1:

If CREATE_SESSION4_FLAG_PERSIST is set in the results of CREATE_SESSION, the reply cache is
persistent (see Section 18.36). If the EXCHGID4_FLAG_USE_PNFS_MDS flag is set in the results
from EXCHANGE_ID, the server is a pNFS server (see Section 18.35). If the client attempts to use
EXCLUSIVE4 on a persistent session, or a session derived from an
EXCHGID4_FLAG_USE_PNFS_MDS client ID, the server return NFS4ERR_INVAL.

With persistent sessions, exclusive create semantics are fully achievable via GUARDED4, and so
EXCLUSIVE4 or EXCLUSIVE4_1 be used. When pNFS is being used, the layout_hint
attribute might not be supported after the file is created. Only the EXCLUSIVE4_1 and GUARDED
methods of exclusive file creation allow the atomic setting of attributes.

For the target directory, the server returns change_info4 information in cinfo. With the atomic
field of the change_info4 data type, the server will indicate if the before and after change
attributes were obtained atomically with respect to the link creation.

The OPEN operation provides for Windows share reservation capability with the use of the
share_access and share_deny fields of the OPEN arguments. The client specifies at OPEN the
required share_access and share_deny modes. For clients that do not directly support SHAREs
(i.e., UNIX), the expected deny value is OPEN4_SHARE_DENY_NONE. In the case that there is an
existing SHARE reservation that conflicts with the OPEN request, the server returns the error
NFS4ERR_SHARE_DENIED. For additional discussion of SHARE semantics, see Section 9.7.

For each OPEN, the client provides a value for the owner field of the OPEN argument. The owner
field is of data type open_owner4, and contains a field called clientid and a field called owner.
The client can set the clientid field to any value and the server ignore it. Instead, the server

 derive the client ID from the session ID of the SEQUENCE operation of the COMPOUND
request.

MUST
NOT

Persistent Reply
Cache Enabled

Server
Supports
pNFS

Server Client Allowed

no no EXCLUSIVE4_1 and
EXCLUSIVE4

EXCLUSIVE4_1 () or
EXCLUSIVE4 ()

no yes EXCLUSIVE4_1 EXCLUSIVE4_1

yes no GUARDED4 GUARDED4

yes yes GUARDED4 GUARDED4

Table 18: Required Methods for Exclusive Create

REQUIRED

SHOULD
SHOULD NOT

MUST

MUST NOT

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 402

The "seqid" field of the request is not used in NFSv4.1, but it be any value and the server
 ignore it.

In the case that the client is recovering state from a server failure, the claim field of the OPEN
argument is used to signify that the request is meant to reclaim state previously held.

The "claim" field of the OPEN argument is used to specify the file to be opened and the state
information that the client claims to possess. There are seven claim types as follows:

open type description

CLAIM_NULL, CLAIM_FH For the client, this is a new OPEN request and there is no
previous state associated with the file for the client. With
CLAIM_NULL, the file is identified by the current filehandle
and the specified component name. With CLAIM_FH (new to
NFSv4.1), the file is identified by just the current filehandle.

CLAIM_PREVIOUS The client is claiming basic OPEN state for a file that was held
previous to a server restart. Generally used when a server is
returning persistent filehandles; the client may not have the
file name to reclaim the OPEN.

CLAIM_DELEGATE_CUR,
CLAIM_DELEG_CUR_FH

The client is claiming a delegation for OPEN as granted by the
server. Generally, this is done as part of recalling a delegation.
With CLAIM_DELEGATE_CUR, the file is identified by the
current filehandle and the specified component name. With
CLAIM_DELEG_CUR_FH (new to NFSv4.1), the file is identified
by just the current filehandle.

CLAIM_DELEGATE_PREV,
CLAIM_DELEG_PREV_FH

The client is claiming a delegation granted to a previous client
instance; used after the client restarts. The server
support CLAIM_DELEGATE_PREV and/or
CLAIM_DELEG_PREV_FH (new to NFSv4.1). If it does support
either claim type, CREATE_SESSION remove the
client's delegation state, and the server support the
DELEGPURGE operation.

Table 19

For OPEN requests that reach the server during the grace period, the server returns an error of
NFS4ERR_GRACE. The following claim types are exceptions:

OPEN requests specifying the claim type CLAIM_PREVIOUS are devoted to reclaiming opens
after a server restart and are typically only valid during the grace period.
OPEN requests specifying the claim types CLAIM_DELEGATE_CUR and
CLAIM_DELEG_CUR_FH are valid both during and after the grace period. Since the granting
of the delegation that they are subordinate to assures that there is no conflict with locks to be

MAY
MUST

MAY

MUST NOT
MUST

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 403

reclaimed by other clients, the server need not return NFS4ERR_GRACE when these are
received during the grace period.

For any OPEN request, the server may return an OPEN delegation, which allows further opens
and closes to be handled locally on the client as described in Section 10.4. Note that delegation is
up to the server to decide. The client should never assume that delegation will or will not be
granted in a particular instance. It should always be prepared for either case. A partial exception
is the reclaim (CLAIM_PREVIOUS) case, in which a delegation type is claimed. In this case,
delegation will always be granted, although the server may specify an immediate recall in the
delegation structure.

The rflags returned by a successful OPEN allow the server to return information governing how
the open file is to be handled.

OPEN4_RESULT_CONFIRM is deprecated and be returned by an NFSv4.1 server.
OPEN4_RESULT_LOCKTYPE_POSIX indicates that the server's byte-range locking behavior
supports the complete set of POSIX locking techniques . From this, the client can choose
to manage byte-range locking state in a way to handle a mismatch of byte-range locking
management.
OPEN4_RESULT_PRESERVE_UNLINKED indicates that the server will preserve the open file if
the client (or any other client) removes the file as long as it is open. Furthermore, the server
promises to preserve the file through the grace period after server restart, thereby giving the
client the opportunity to reclaim its open.
OPEN4_RESULT_MAY_NOTIFY_LOCK indicates that the server may attempt CB_NOTIFY_LOCK
callbacks for locks on this file. This flag is a hint only, and may be safely ignored by the client.

If the component is of zero length, NFS4ERR_INVAL will be returned. The component is also
subject to the normal UTF-8, character support, and name checks. See Section 14.5 for further
discussion.

When an OPEN is done and the specified open-owner already has the resulting filehandle open,
the result is to "OR" together the new share and deny status together with the existing status. In
this case, only a single CLOSE need be done, even though multiple OPENs were completed. When
such an OPEN is done, checking of share reservations for the new OPEN proceeds normally, with
no exception for the existing OPEN held by the same open-owner. In this case, the stateid
returned as an "other" field that matches that of the previous open while the "seqid" field is
incremented to reflect the change status due to the new open.

If the underlying file system at the server is only accessible in a read-only mode and the OPEN
request has specified ACCESS_WRITE or ACCESS_BOTH, the server will return NFS4ERR_ROFS to
indicate a read-only file system.

As with the CREATE operation, the server derive the owner, owner ACE, group, or group
ACE if any of the four attributes are required and supported by the server's file system. For an
OPEN with the EXCLUSIVE4 createmode, the server has no choice, since such OPEN calls do not
include the createattrs field. Conversely, if createattrs (UNCHECKED4 or GUARDED4) or cva_attrs

• MUST NOT
•

[21]

•

•

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 404

(EXCLUSIVE4_1) is specified, and includes an owner, owner_group, or ACE that the principal in
the RPC call's credentials does not have authorization to create files for, then the server may
return NFS4ERR_PERM.

In the case of an OPEN that specifies a size of zero (e.g., truncation) and the file has named
attributes, the named attributes are left as is and are not removed.

NFSv4.1 gives more precise control to clients over acquisition of delegations via the following
new flags for the share_access field of OPEN4args:

OPEN4_SHARE_ACCESS_WANT_READ_DELEG

OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

OPEN4_SHARE_ACCESS_WANT_NO_DELEG

OPEN4_SHARE_ACCESS_WANT_CANCEL

OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL

OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

If (share_access & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) is not zero, then the client will
have specified one and only one of:

OPEN4_SHARE_ACCESS_WANT_READ_DELEG

OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

OPEN4_SHARE_ACCESS_WANT_NO_DELEG

OPEN4_SHARE_ACCESS_WANT_CANCEL

Otherwise, the client is neither indicating a desire nor a non-desire for a delegation, and the
server or not return a delegation in the OPEN response.

If the server supports the new _WANT_ flags and the client sends one or more of the new flags,
then in the event the server does not return a delegation, it return a delegation type of
OPEN_DELEGATE_NONE_EXT. The field ond_why in the reply indicates why no delegation was
returned and will be one of:

WND4_NOT_WANTED
The client specified OPEN4_SHARE_ACCESS_WANT_NO_DELEG.

WND4_CONTENTION
There is a conflicting delegation or open on the file.

MAY MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 405

WND4_RESOURCE
Resource limitations prevent the server from granting a delegation.

WND4_NOT_SUPP_FTYPE
The server does not support delegations on this file type.

WND4_WRITE_DELEG_NOT_SUPP_FTYPE
The server does not support OPEN_DELEGATE_WRITE delegations on this file type.

WND4_NOT_SUPP_UPGRADE
The server does not support atomic upgrade of an OPEN_DELEGATE_READ delegation to
an OPEN_DELEGATE_WRITE delegation.

WND4_NOT_SUPP_DOWNGRADE
The server does not support atomic downgrade of an OPEN_DELEGATE_WRITE delegation
to an OPEN_DELEGATE_READ delegation.

WND4_CANCELED
The client specified OPEN4_SHARE_ACCESS_WANT_CANCEL and now any "want" for this
file object is cancelled.

WND4_IS_DIR
The specified file object is a directory, and the operation is OPEN or WANT_DELEGATION,
which do not support delegations on directories.

OPEN4_SHARE_ACCESS_WANT_READ_DELEG, OPEN_SHARE_ACCESS_WANT_WRITE_DELEG, or
OPEN_SHARE_ACCESS_WANT_ANY_DELEG mean, respectively, the client wants an
OPEN_DELEGATE_READ, OPEN_DELEGATE_WRITE, or any delegation regardless which of
OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH
is set. If the client has an OPEN_DELEGATE_READ delegation on a file and requests an
OPEN_DELEGATE_WRITE delegation, then the client is requesting atomic upgrade of its
OPEN_DELEGATE_READ delegation to an OPEN_DELEGATE_WRITE delegation. If the client has
an OPEN_DELEGATE_WRITE delegation on a file and requests an OPEN_DELEGATE_READ
delegation, then the client is requesting atomic downgrade to an OPEN_DELEGATE_READ
delegation. A server support atomic upgrade or downgrade. If it does, then the returned
delegation_type of OPEN_DELEGATE_READ or OPEN_DELEGATE_WRITE that is different from the
delegation type the client currently has, indicates successful upgrade or downgrade. If the server
does not support atomic delegation upgrade or downgrade, then ond_why will be set to
WND4_NOT_SUPP_UPGRADE or WND4_NOT_SUPP_DOWNGRADE.

OPEN4_SHARE_ACCESS_WANT_NO_DELEG means that the client wants no delegation.

OPEN4_SHARE_ACCESS_WANT_CANCEL means that the client wants no delegation and wants to
cancel any previously registered "want" for a delegation.

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 406

The client may set one or both of
OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL and
OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED. However, they will have
no effect unless one of following is set:

OPEN4_SHARE_ACCESS_WANT_READ_DELEG
OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG
OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

If the client specifies OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL, then
it wishes to register a "want" for a delegation, in the event the OPEN results do not include a
delegation. If so and the server denies the delegation due to insufficient resources, the server

 later inform the client, via the CB_RECALLABLE_OBJ_AVAIL operation, that the resource
limitation condition has eased. The server will tell the client that it intends to send a future
CB_RECALLABLE_OBJ_AVAIL operation by setting delegation_type in the results to
OPEN_DELEGATE_NONE_EXT, ond_why to WND4_RESOURCE, and ond_server_will_signal_avail
set to TRUE. If ond_server_will_signal_avail is set to TRUE, the server later send a
CB_RECALLABLE_OBJ_AVAIL operation.

If the client specifies OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_UNCONTENDED,
then it wishes to register a "want" for a delegation, in the event the OPEN results do not include a
delegation. If so and the server denies the delegation due to contention, the server later
inform the client, via the CB_PUSH_DELEG operation, that the contention condition has eased.
The server will tell the client that it intends to send a future CB_PUSH_DELEG operation by
setting delegation_type in the results to OPEN_DELEGATE_NONE_EXT, ond_why to
WND4_CONTENTION, and ond_server_will_push_deleg to TRUE. If ond_server_will_push_deleg is
TRUE, the server later send a CB_PUSH_DELEG operation.

If the client has previously registered a want for a delegation on a file, and then sends a request
to register a want for a delegation on the same file, the server return a new error:
NFS4ERR_DELEG_ALREADY_WANTED. If the client wishes to register a different type of
delegation want for the same file, it cancel the existing delegation WANT.

•
•
•

MAY

MUST

MAY

MUST

MUST

MUST

18.16.4. IMPLEMENTATION

In absence of a persistent session, the client invokes exclusive create by setting the how
parameter to EXCLUSIVE4 or EXCLUSIVE4_1. In these cases, the client provides a verifier that can
reasonably be expected to be unique. A combination of a client identifier, perhaps the client
network address, and a unique number generated by the client, perhaps the RPC transaction
identifier, may be appropriate.

If the object does not exist, the server creates the object and stores the verifier in stable storage.
For file systems that do not provide a mechanism for the storage of arbitrary file attributes, the
server may use one or more elements of the object's metadata to store the verifier. The verifier

 be stored in stable storage to prevent erroneous failure on retransmission of the request. It
is assumed that an exclusive create is being performed because exclusive semantics are critical
to the application. Because of the expected usage, exclusive CREATE does not rely solely on the

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 407

server's reply cache for storage of the verifier. A nonpersistent reply cache does not survive a
crash and the session and reply cache may be deleted after a network partition that exceeds the
lease time, thus opening failure windows.

An NFSv4.1 server store the verifier in any of the file's or
attributes. If it does, the server use time_modify_set or time_access_set to store the
verifier. The server store the verifier in the following attributes:

acl (it is desirable for access control to be established at creation),

dacl (ditto),

mode (ditto),

owner (ditto),

owner_group (ditto),

retentevt_set (it may be desired to establish retention at creation)

retention_hold (ditto),

retention_set (ditto),

sacl (it is desirable for auditing control to be established at creation),

size (on some servers, size may have a limited range of values),

mode_set_masked (as with mode),

and

time_creation (a meaningful file creation should be set when the file is created).

Another alternative for the server is to use a named attribute to store the verifier.

Because the EXCLUSIVE4 create method does not specify initial attributes when processing an
EXCLUSIVE4 create, the server

 set the owner of the file to that corresponding to the credential of request's RPC
header.

 leave the file's access control to anyone but the owner of the file.

If the server cannot support exclusive create semantics, possibly because of the requirement to
commit the verifier to stable storage, it should fail the OPEN request with the error
NFS4ERR_NOTSUPP.

During an exclusive CREATE request, if the object already exists, the server reconstructs the
object's verifier and compares it with the verifier in the request. If they match, the server treats
the request as a success. The request is presumed to be a duplicate of an earlier, successful
request for which the reply was lost and that the server duplicate request cache mechanism did
not detect. If the verifiers do not match, the request is rejected with the status NFS4ERR_EXIST.

SHOULD NOT RECOMMENDED REQUIRED
SHOULD

SHOULD NOT

• SHOULD

• SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 408

After the client has performed a successful exclusive create, the attrset response indicates which
attributes were used to store the verifier. If EXCLUSIVE4 was used, the attributes set in attrset
were used for the verifier. If EXCLUSIVE4_1 was used, the client determines the attributes used
for the verifier by comparing attrset with cva_attrs.attrmask; any bits set in the former but not
the latter identify the attributes used to store the verifier. The client immediately send a
SETATTR to set attributes used to store the verifier. Until it does so, the attributes used to store
the verifier cannot be relied upon. The subsequent SETATTR occur in the same
COMPOUND request as the OPEN.

Unless a persistent session is used, use of the GUARDED4 attribute does not provide exactly once
semantics. In particular, if a reply is lost and the server does not detect the retransmission of the
request, the operation can fail with NFS4ERR_EXIST, even though the create was performed
successfully. The client would use this behavior in the case that the application has not requested
an exclusive create but has asked to have the file truncated when the file is opened. In the case of
the client timing out and retransmitting the create request, the client can use GUARDED4 to
prevent against a sequence like create, write, create (retransmitted) from occurring.

For SHARE reservations, the value of the expression (share_access &
~OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) be one of OPEN4_SHARE_ACCESS_READ,
OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH. If not, the server return
NFS4ERR_INVAL. The value of share_deny be one of OPEN4_SHARE_DENY_NONE,
OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH. If
not, the server return NFS4ERR_INVAL.

Based on the share_access value (OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE,
or OPEN4_SHARE_ACCESS_BOTH), the client should check that the requester has the proper
access rights to perform the specified operation. This would generally be the results of applying
the ACL access rules to the file for the current requester. However, just as with the ACCESS
operation, the client should not attempt to second-guess the server's decisions, as access rights
may change and may be subject to server administrative controls outside the ACL framework. If
the requester's READ or WRITE operation is not authorized (depending on the share_access
value), the server return NFS4ERR_ACCESS.

Note that if the client ID was not created with the EXCHGID4_FLAG_BIND_PRINC_STATEID
capability set in the reply to EXCHANGE_ID, then the server impose any requirement
that READs and WRITEs sent for an open file have the same credentials as the OPEN itself, and
the server is to perform access checking on the READs and WRITEs themselves.
Otherwise, if the reply to EXCHANGE_ID did have EXCHGID4_FLAG_BIND_PRINC_STATEID set,
then with one exception, the credentials used in the OPEN request match those used in the
READs and WRITEs, and the stateids in the READs and WRITEs match, or be derived from
the stateid from the reply to OPEN. The exception is if SP4_SSV or SP4_MACH_CRED state
protection is used, and the spo_must_allow result of EXCHANGE_ID includes the READ and/or
WRITE operations. In that case, the machine or SSV credential will be allowed to send READ and/
or WRITE. See Section 18.35.

MUST

MUST NOT

MUST
MUST

MUST

MUST

MUST

MUST NOT

REQUIRED

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 409

If the component provided to OPEN is a symbolic link, the error NFS4ERR_SYMLINK will be
returned to the client, while if it is a directory the error NFS4ERR_ISDIR will be returned. If the
component is neither of those but not an ordinary file, the error NFS4ERR_WRONG_TYPE is
returned. If the current filehandle is not a directory, the error NFS4ERR_NOTDIR will be
returned.

The use of the OPEN4_RESULT_PRESERVE_UNLINKED result flag allows a client to avoid the
common implementation practice of renaming an open file to ".nfs<unique value>" after it
removes the file. After the server returns OPEN4_RESULT_PRESERVE_UNLINKED, if a client sends
a REMOVE operation that would reduce the file's link count to zero, the server report a
value of zero for the numlinks attribute on the file.

If another client has a delegation of the file being opened that conflicts with open being done
(sometimes depending on the share_access or share_deny value specified), the delegation(s)

 be recalled, and the operation cannot proceed until each such delegation is returned or
revoked. Except where this happens very quickly, one or more NFS4ERR_DELAY errors will be
returned to requests made while delegation remains outstanding. In the case of an
OPEN_DELEGATE_WRITE delegation, any open by a different client will conflict, while for an
OPEN_DELEGATE_READ delegation, only opens with one of the following characteristics will be
considered conflicting:

The value of share_access includes the bit OPEN4_SHARE_ACCESS_WRITE.
The value of share_deny specifies OPEN4_SHARE_DENY_READ or
OPEN4_SHARE_DENY_BOTH.
OPEN4_CREATE is specified together with UNCHECKED4, the size attribute is specified as
zero (for truncation), and an existing file is truncated.

If OPEN4_CREATE is specified and the file does not exist and the current filehandle designates a
directory for which another client holds a directory delegation, then, unless the delegation is
such that the situation can be resolved by sending a notification, the delegation be recalled,
and the operation cannot proceed until the delegation is returned or revoked. Except where this
happens very quickly, one or more NFS4ERR_DELAY errors will be returned to requests made
while delegation remains outstanding.

If OPEN4_CREATE is specified and the file does not exist and the current filehandle designates a
directory for which one or more directory delegations exist, then, when those delegations
request such notifications, NOTIFY4_ADD_ENTRY will be generated as a result of this operation.

SHOULD

MUST

•
•

•

MUST

18.16.4.1. Warning to Client Implementors
OPEN resembles LOOKUP in that it generates a filehandle for the client to use. Unlike LOOKUP
though, OPEN creates server state on the filehandle. In normal circumstances, the client can only
release this state with a CLOSE operation. CLOSE uses the current filehandle to determine which
file to close. Therefore, the client follow every OPEN operation with a GETFH operation in
the same COMPOUND procedure. This will supply the client with the filehandle such that CLOSE
can be used appropriately.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 410

Simply waiting for the lease on the file to expire is insufficient because the server may maintain
the state indefinitely as long as another client does not attempt to make a conflicting access to the
same file.

See also Section 2.10.6.4.

18.17. Operation 19: OPENATTR - Open Named Attribute Directory
18.17.1. ARGUMENTS

struct OPENATTR4args {
 /* CURRENT_FH: object */
 bool createdir;
};

18.17.2. RESULTS

struct OPENATTR4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: named attribute
 * directory
 */
 nfsstat4 status;
};

18.17.3. DESCRIPTION

The OPENATTR operation is used to obtain the filehandle of the named attribute directory
associated with the current filehandle. The result of the OPENATTR will be a filehandle to an
object of type NF4ATTRDIR. From this filehandle, READDIR and LOOKUP operations can be used
to obtain filehandles for the various named attributes associated with the original file system
object. Filehandles returned within the named attribute directory will designate objects of type
of NF4NAMEDATTR.

The createdir argument allows the client to signify if a named attribute directory should be
created as a result of the OPENATTR operation. Some clients may use the OPENATTR operation
with a value of FALSE for createdir to determine if any named attributes exist for the object. If
none exist, then NFS4ERR_NOENT will be returned. If createdir has a value of TRUE and no
named attribute directory exists, one is created and its filehandle becomes the current
filehandle. On the other hand, if createdir has a value of TRUE and the named attribute directory
already exists, no error results and the filehandle of the existing directory becomes the current
filehandle. The creation of a named attribute directory assumes that the server has implemented
named attribute support in this fashion and is not required to do so by this definition.

If the current filehandle designates an object of type NF4NAMEDATTR (a named attribute) or
NF4ATTRDIR (a named attribute directory), an error of NFS4ERR_WRONG_TYPE is returned to
the client. Named attributes or a named attribute directory have their own named
attributes.

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 411

18.17.4. IMPLEMENTATION

If the server does not support named attributes for the current filehandle, an error of
NFS4ERR_NOTSUPP will be returned to the client.

18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File Access
18.18.1. ARGUMENTS

struct OPEN_DOWNGRADE4args {
 /* CURRENT_FH: opened file */
 stateid4 open_stateid;
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
};

18.18.2. RESULTS

struct OPEN_DOWNGRADE4resok {
 stateid4 open_stateid;
};

union OPEN_DOWNGRADE4res switch(nfsstat4 status) {
 case NFS4_OK:
 OPEN_DOWNGRADE4resok resok4;
 default:
 void;
};

18.18.3. DESCRIPTION

This operation is used to adjust the access and deny states for a given open. This is necessary
when a given open-owner opens the same file multiple times with different access and deny
values. In this situation, a close of one of the opens may change the appropriate share_access and
share_deny flags to remove bits associated with opens no longer in effect.

Valid values for the expression (share_access & ~OPEN4_SHARE_ACCESS_WANT_DELEG_MASK)
are OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
OPEN4_SHARE_ACCESS_BOTH. If the client specifies other values, the server reply with
NFS4ERR_INVAL.

Valid values for the share_deny field are OPEN4_SHARE_DENY_NONE,
OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH. If the
client specifies other values, the server reply with NFS4ERR_INVAL.

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 412

After checking for valid values of share_access and share_deny, the server replaces the current
access and deny modes on the file with share_access and share_deny subject to the following
constraints:

The bits in share_access equal the union of the share_access bits (not including
OPEN4_SHARE_WANT_* bits) specified for some subset of the OPENs in effect for the current
open-owner on the current file.
The bits in share_deny equal the union of the share_deny bits specified for some
subset of the OPENs in effect for the current open-owner on the current file.

If the above constraints are not respected, the server return the error NFS4ERR_INVAL.
Since share_access and share_deny bits should be subsets of those already granted, short of a
defect in the client or server implementation, it is not possible for the OPEN_DOWNGRADE
request to be denied because of conflicting share reservations.

The seqid argument is not used in NFSv4.1, be any value, and be ignored by the
server.

On success, the current filehandle retains its value.

• SHOULD

• SHOULD

SHOULD

MAY MUST

18.18.4. IMPLEMENTATION

An OPEN_DOWNGRADE operation may make OPEN_DELEGATE_READ delegations grantable
where they were not previously. Servers may choose to respond immediately if there are
pending delegation want requests or may respond to the situation at a later time.

18.19. Operation 22: PUTFH - Set Current Filehandle
18.19.1. ARGUMENTS

struct PUTFH4args {
 nfs_fh4 object;
};

18.19.2. RESULTS

struct PUTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: argument to PUTFH
 */
 nfsstat4 status;
};

18.19.3. DESCRIPTION

This operation replaces the current filehandle with the filehandle provided as an argument. It
clears the current stateid.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 413

If the security mechanism used by the requester does not meet the requirements of the
filehandle provided to this operation, the server return NFS4ERR_WRONGSEC.

See Section 16.2.3.1.1 for more details on the current filehandle.

See Section 16.2.3.1.2 for more details on the current stateid.

MUST

18.19.4. IMPLEMENTATION

This operation is used in an NFS request to set the context for file accessing operations that
follow in the same COMPOUND request.

18.20. Operation 23: PUTPUBFH - Set Public Filehandle
18.20.1. ARGUMENT

void;

18.20.2. RESULT

struct PUTPUBFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: public fh
 */
 nfsstat4 status;
};

18.20.3. DESCRIPTION

This operation replaces the current filehandle with the filehandle that represents the public
filehandle of the server's namespace. This filehandle may be different from the "root" filehandle
that may be associated with some other directory on the server.

PUTPUBFH also clears the current stateid.

The public filehandle represents the concepts embodied in , , and
. The intent for NFSv4.1 is that the public filehandle (represented by the PUTPUBFH

operation) be used as a method of providing WebNFS server compatibility with NFSv3.

The public filehandle and the root filehandle (represented by the PUTROOTFH operation)
 be equivalent. If the public and root filehandles are not equivalent, then the directory

corresponding to the public filehandle be a descendant of the directory corresponding to
the root filehandle.

See Section 16.2.3.1.1 for more details on the current filehandle.

See Section 16.2.3.1.2 for more details on the current stateid.

RFC 2054 [49] RFC 2055 [50] RFC
2224 [61]

SHOULD
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 414

18.20.4. IMPLEMENTATION

This operation is used in an NFS request to set the context for file accessing operations that
follow in the same COMPOUND request.

With the NFSv3 public filehandle, the client is able to specify whether the pathname provided in
the LOOKUP should be evaluated as either an absolute path relative to the server's root or
relative to the public filehandle. contains further discussion of the functionality.
With NFSv4.1, that type of specification is not directly available in the LOOKUP operation. The
reason for this is because the component separators needed to specify absolute vs. relative are
not allowed in NFSv4. Therefore, the client is responsible for constructing its request such that
the use of either PUTROOTFH or PUTPUBFH signifies absolute or relative evaluation of an NFS
URL, respectively.

Note that there are warnings mentioned in with respect to the use of absolute
evaluation and the restrictions the server may place on that evaluation with respect to how
much of its namespace has been made available. These same warnings apply to NFSv4.1. It is
likely, therefore, that because of server implementation details, an NFSv3 absolute public
filehandle look up may behave differently than an NFSv4.1 absolute resolution.

There is a form of security negotiation as described in that uses the public
filehandle and an overloading of the pathname. This method is not available with NFSv4.1 as
filehandles are not overloaded with special meaning and therefore do not provide the same
framework as NFSv3. Clients should therefore use the security negotiation mechanisms
described in Section 2.6.

RFC 2224 [61]

RFC 2224 [61]

RFC 2755 [62]

18.21. Operation 24: PUTROOTFH - Set Root Filehandle
18.21.1. ARGUMENTS

void;

18.21.2. RESULTS

struct PUTROOTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: root fh
 */
 nfsstat4 status;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 415

18.21.3. DESCRIPTION

This operation replaces the current filehandle with the filehandle that represents the root of the
server's namespace. From this filehandle, a LOOKUP operation can locate any other filehandle on
the server. This filehandle may be different from the "public" filehandle that may be associated
with some other directory on the server.

PUTROOTFH also clears the current stateid.

See Section 16.2.3.1.1 for more details on the current filehandle.

See Section 16.2.3.1.2 for more details on the current stateid.

18.21.4. IMPLEMENTATION

This operation is used in an NFS request to set the context for file accessing operations that
follow in the same COMPOUND request.

18.22. Operation 25: READ - Read from File
18.22.1. ARGUMENTS

struct READ4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 count4 count;
};

18.22.2. RESULTS

struct READ4resok {
 bool eof;
 opaque data<>;
};

union READ4res switch (nfsstat4 status) {
 case NFS4_OK:
 READ4resok resok4;
 default:
 void;
};

18.22.3. DESCRIPTION

The READ operation reads data from the regular file identified by the current filehandle.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 416

The client provides an offset of where the READ is to start and a count of how many bytes are to
be read. An offset of zero means to read data starting at the beginning of the file. If offset is
greater than or equal to the size of the file, the status NFS4_OK is returned with a data length set
to zero and eof is set to TRUE. The READ is subject to access permissions checking.

If the client specifies a count value of zero, the READ succeeds and returns zero bytes of data
again subject to access permissions checking. The server may choose to return fewer bytes than
specified by the client. The client needs to check for this condition and handle the condition
appropriately.

Except when special stateids are used, the stateid value for a READ request represents a value
returned from a previous byte-range lock or share reservation request or the stateid associated
with a delegation. The stateid identifies the associated owners if any and is used by the server to
verify that the associated locks are still valid (e.g., have not been revoked).

If the read ended at the end-of-file (formally, in a correctly formed READ operation, if offset +
count is equal to the size of the file), or the READ operation extends beyond the size of the file (if
offset + count is greater than the size of the file), eof is returned as TRUE; otherwise, it is FALSE. A
successful READ of an empty file will always return eof as TRUE.

If the current filehandle is not an ordinary file, an error will be returned to the client. In the case
that the current filehandle represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is returned. In all other
cases, NFS4ERR_WRONG_TYPE is returned.

For a READ with a stateid value of all bits equal to zero, the server allow the READ to be
serviced subject to mandatory byte-range locks or the current share deny modes for the file. For
a READ with a stateid value of all bits equal to one, the server allow READ operations to
bypass locking checks at the server.

On success, the current filehandle retains its value.

MAY

MAY

18.22.4. IMPLEMENTATION

If the server returns a "short read" (i.e., fewer data than requested and eof is set to FALSE), the
client should send another READ to get the remaining data. A server may return less data than
requested under several circumstances. The file may have been truncated by another client or
perhaps on the server itself, changing the file size from what the requesting client believes to be
the case. This would reduce the actual amount of data available to the client. It is possible that
the server reduce the transfer size and so return a short read result. Server resource exhaustion
may also occur in a short read.

If mandatory byte-range locking is in effect for the file, and if the byte-range corresponding to the
data to be read from the file is WRITE_LT locked by an owner not associated with the stateid, the
server will return the NFS4ERR_LOCKED error. The client should try to get the appropriate
READ_LT via the LOCK operation before re-attempting the READ. When the READ completes, the
client should release the byte-range lock via LOCKU.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 417

If another client has an OPEN_DELEGATE_WRITE delegation for the file being read, the
delegation must be recalled, and the operation cannot proceed until that delegation is returned
or revoked. Except where this happens very quickly, one or more NFS4ERR_DELAY errors will be
returned to requests made while the delegation remains outstanding. Normally, delegations will
not be recalled as a result of a READ operation since the recall will occur as a result of an earlier
OPEN. However, since it is possible for a READ to be done with a special stateid, the server needs
to check for this case even though the client should have done an OPEN previously.

18.23. Operation 26: READDIR - Read Directory
18.23.1. ARGUMENTS

struct READDIR4args {
 /* CURRENT_FH: directory */
 nfs_cookie4 cookie;
 verifier4 cookieverf;
 count4 dircount;
 count4 maxcount;
 bitmap4 attr_request;
};

18.23.2. RESULTS

struct entry4 {
 nfs_cookie4 cookie;
 component4 name;
 fattr4 attrs;
 entry4 *nextentry;
};

struct dirlist4 {
 entry4 *entries;
 bool eof;
};

struct READDIR4resok {
 verifier4 cookieverf;
 dirlist4 reply;
};

union READDIR4res switch (nfsstat4 status) {
 case NFS4_OK:
 READDIR4resok resok4;
 default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 418

18.23.3. DESCRIPTION

The READDIR operation retrieves a variable number of entries from a file system directory and
returns client-requested attributes for each entry along with information to allow the client to
request additional directory entries in a subsequent READDIR.

The arguments contain a cookie value that represents where the READDIR should start within
the directory. A value of zero for the cookie is used to start reading at the beginning of the
directory. For subsequent READDIR requests, the client specifies a cookie value that is provided
by the server on a previous READDIR request.

The request's cookieverf field should be set to 0 zero) when the request's cookie field is zero (first
read of the directory). On subsequent requests, the cookieverf field must match the cookieverf
returned by the READDIR in which the cookie was acquired. If the server determines that the
cookieverf is no longer valid for the directory, the error NFS4ERR_NOT_SAME must be returned.

The dircount field of the request is a hint of the maximum number of bytes of directory
information that should be returned. This value represents the total length of the names of the
directory entries and the cookie value for these entries. This length represents the XDR encoding
of the data (names and cookies) and not the length in the native format of the server.

The maxcount field of the request represents the maximum total size of all of the data being
returned within the READDIR4resok structure and includes the XDR overhead. The server
return less data. If the server is unable to return a single directory entry within the maxcount
limit, the error NFS4ERR_TOOSMALL be returned to the client.

Finally, the request's attr_request field represents the list of attributes to be returned for each
directory entry supplied by the server.

A successful reply consists of a list of directory entries. Each of these entries contains the name of
the directory entry, a cookie value for that entry, and the associated attributes as requested. The
"eof" flag has a value of TRUE if there are no more entries in the directory.

The cookie value is only meaningful to the server and is used as a cursor for the directory entry.
As mentioned, this cookie is used by the client for subsequent READDIR operations so that it may
continue reading a directory. The cookie is similar in concept to a READ offset but be
interpreted as such by the client. Ideally, the cookie value change if the directory is
modified since the client may be caching these values.

In some cases, the server may encounter an error while obtaining the attributes for a directory
entry. Instead of returning an error for the entire READDIR operation, the server can instead
return the attribute rdattr_error (Section 5.8.1.12). With this, the server is able to communicate
the failure to the client and not fail the entire operation in the instance of what might be a
transient failure. Obviously, the client must request the fattr4_rdattr_error attribute for this
method to work properly. If the client does not request the attribute, the server has no choice but
to return failure for the entire READDIR operation.

MAY

MUST

MUST NOT
SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 419

For some file system environments, the directory entries "." and ".." have special meaning, and in
other environments, they do not. If the server supports these special entries within a directory,
they be returned to the client as part of the READDIR response. To enable some
client environments, the cookie values of zero, 1, and 2 are to be considered reserved. Note that
the UNIX client will use these values when combining the server's response and local
representations to enable a fully formed UNIX directory presentation to the application.

For READDIR arguments, cookie values of one and two be used, and for READDIR
results, cookie values of zero, one, and two be returned.

On success, the current filehandle retains its value.

SHOULD NOT

SHOULD NOT
SHOULD NOT

18.23.4. IMPLEMENTATION

The server's file system directory representations can differ greatly. A client's programming
interfaces may also be bound to the local operating environment in a way that does not translate
well into the NFS protocol. Therefore, the use of the dircount and maxcount fields are provided
to enable the client to provide hints to the server. If the client is aggressive about attribute
collection during a READDIR, the server has an idea of how to limit the encoded response.

If dircount is zero, the server bounds the reply's size based on the request's maxcount field.

The cookieverf may be used by the server to help manage cookie values that may become stale. It
should be a rare occurrence that a server is unable to continue properly reading a directory with
the provided cookie/cookieverf pair. The server make every effort to avoid this
condition since the application at the client might be unable to properly handle this type of
failure.

The use of the cookieverf will also protect the client from using READDIR cookie values that
might be stale. For example, if the file system has been migrated, the server might or might not
be able to use the same cookie values to service READDIR as the previous server used. With the
client providing the cookieverf, the server is able to provide the appropriate response to the
client. This prevents the case where the server accepts a cookie value but the underlying
directory has changed and the response is invalid from the client's context of its previous
READDIR.

Since some servers will not be returning "." and ".." entries as has been done with previous
versions of the NFS protocol, the client that requires these entries be present in READDIR
responses must fabricate them.

SHOULD

18.24. Operation 27: READLINK - Read Symbolic Link
18.24.1. ARGUMENTS

/* CURRENT_FH: symlink */
void;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 420

18.24.2. RESULTS

struct READLINK4resok {
 linktext4 link;
};

union READLINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 READLINK4resok resok4;
 default:
 void;
};

18.24.3. DESCRIPTION

READLINK reads the data associated with a symbolic link. Depending on the value of the UTF-8
capability attribute (Section 14.4), the data is encoded in UTF-8. Whether created by an NFS client
or created locally on the server, the data in a symbolic link is not interpreted (except possibly to
check for proper UTF-8 encoding) when created, but is simply stored.

On success, the current filehandle retains its value.

18.24.4. IMPLEMENTATION

A symbolic link is nominally a pointer to another file. The data is not necessarily interpreted by
the server, just stored in the file. It is possible for a client implementation to store a pathname
that is not meaningful to the server operating system in a symbolic link. A READLINK operation
returns the data to the client for interpretation. If different implementations want to share
access to symbolic links, then they must agree on the interpretation of the data in the symbolic
link.

The READLINK operation is only allowed on objects of type NF4LNK. The server should return
the error NFS4ERR_WRONG_TYPE if the object is not of type NF4LNK.

18.25. Operation 28: REMOVE - Remove File System Object
18.25.1. ARGUMENTS

struct REMOVE4args {
 /* CURRENT_FH: directory */
 component4 target;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 421

18.25.2. RESULTS

struct REMOVE4resok {
 change_info4 cinfo;
};

union REMOVE4res switch (nfsstat4 status) {
 case NFS4_OK:
 REMOVE4resok resok4;
 default:
 void;
};

18.25.3. DESCRIPTION

The REMOVE operation removes (deletes) a directory entry named by filename from the
directory corresponding to the current filehandle. If the entry in the directory was the last
reference to the corresponding file system object, the object may be destroyed. The directory may
be either of type NF4DIR or NF4ATTRDIR.

For the directory where the filename was removed, the server returns change_info4 information
in cinfo. With the atomic field of the change_info4 data type, the server will indicate if the before
and after change attributes were obtained atomically with respect to the removal.

If the target has a length of zero, or if the target does not obey the UTF-8 definition (and the
server is enforcing UTF-8 encoding; see Section 14.4), the error NFS4ERR_INVAL will be returned.

On success, the current filehandle retains its value.

18.25.4. IMPLEMENTATION

NFSv3 required a different operator RMDIR for directory removal and REMOVE for non-
directory removal. This allowed clients to skip checking the file type when being passed a non-
directory delete system call (e.g., in POSIX) to remove a directory, as well as the
converse (e.g., a rmdir() on a non-directory) because they knew the server would check the file
type. NFSv4.1 REMOVE can be used to delete any directory entry independent of its file type. The
implementor of an NFSv4.1 client's entry points from the unlink() and rmdir() system calls
should first check the file type against the types the system call is allowed to remove before
sending a REMOVE operation. Alternatively, the implementor can produce a COMPOUND call
that includes a LOOKUP/VERIFY sequence of operations to verify the file type before a REMOVE
operation in the same COMPOUND call.

The concept of last reference is server specific. However, if the numlinks field in the previous
attributes of the object had the value 1, the client should not rely on referring to the object via a
filehandle. Likewise, the client should not rely on the resources (disk space, directory entry, and
so on) formerly associated with the object becoming immediately available. Thus, if a client
needs to be able to continue to access a file after using REMOVE to remove it, the client should
take steps to make sure that the file will still be accessible. While the traditional mechanism used

unlink() [24]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 422

is to RENAME the file from its old name to a new hidden name, the NFSv4.1 OPEN operation
return a result flag, OPEN4_RESULT_PRESERVE_UNLINKED, which indicates to the client that the
file will be preserved if the file has an outstanding open (see Section 18.16).

If the server finds that the file is still open when the REMOVE arrives:

The server delete the file's directory entry if the file was opened with
OPEN4_SHARE_DENY_WRITE or OPEN4_SHARE_DENY_BOTH.
If the file was not opened with OPEN4_SHARE_DENY_WRITE or OPEN4_SHARE_DENY_BOTH,
the server delete the file's directory entry. However, until last CLOSE of the file, the
server continue to allow access to the file via its filehandle.
The server delete the directory entry if the reply from OPEN had the flag
OPEN4_RESULT_PRESERVE_UNLINKED set.

The server implement its own restrictions on removal of a file while it is open. The server
might disallow such a REMOVE (or a removal that occurs as part of RENAME). The conditions
that influence the restrictions on removal of a file while it is still open include:

Whether certain access protocols (i.e., not just NFS) are holding the file open.
Whether particular options, access modes, or policies on the server are enabled.

If a file has an outstanding OPEN and this prevents the removal of the file's directory entry, the
error NFS4ERR_FILE_OPEN is returned.

Where the determination above cannot be made definitively because delegations are being held,
they be recalled to allow processing of the REMOVE to continue. When a delegation is held,
the server has no reliable knowledge of the status of OPENs for that client, so unless there are
files opened with the particular deny modes by clients without delegations, the determination
cannot be made until delegations are recalled, and the operation cannot proceed until each
sufficient delegation has been returned or revoked to allow the server to make a correct
determination.

In all cases in which delegations are recalled, the server is likely to return one or more
NFS4ERR_DELAY errors while delegations remain outstanding.

If the current filehandle designates a directory for which another client holds a directory
delegation, then, unless the situation can be resolved by sending a notification, the directory
delegation be recalled, and the operation proceed until the delegation is
returned or revoked. Except where this happens very quickly, one or more NFS4ERR_DELAY
errors will be returned to requests made while delegation remains outstanding.

When the current filehandle designates a directory for which one or more directory delegations
exist, then, when those delegations request such notifications, NOTIFY4_REMOVE_ENTRY will be
generated as a result of this operation.

MAY

• SHOULD NOT

•
SHOULD

MAY
• MUST NOT

MAY

•
•

MUST

MUST MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 423

Note that when a remove occurs as a result of a RENAME, NOTIFY4_REMOVE_ENTRY will only be
generated if the removal happens as a separate operation. In the case in which the removal is
integrated and atomic with RENAME, the notification of the removal is integrated with
notification for the RENAME. See the discussion of the NOTIFY4_RENAME_ENTRY notification in
Section 20.4.

18.26. Operation 29: RENAME - Rename Directory Entry
18.26.1. ARGUMENTS

struct RENAME4args {
 /* SAVED_FH: source directory */
 component4 oldname;
 /* CURRENT_FH: target directory */
 component4 newname;
};

18.26.2. RESULTS

struct RENAME4resok {
 change_info4 source_cinfo;
 change_info4 target_cinfo;
};

union RENAME4res switch (nfsstat4 status) {
 case NFS4_OK:
 RENAME4resok resok4;
 default:
 void;
};

18.26.3. DESCRIPTION

The RENAME operation renames the object identified by oldname in the source directory
corresponding to the saved filehandle, as set by the SAVEFH operation, to newname in the target
directory corresponding to the current filehandle. The operation is required to be atomic to the
client. Source and target directories reside on the same file system on the server. On
success, the current filehandle will continue to be the target directory.

If the target directory already contains an entry with the name newname, the source object
be compatible with the target: either both are non-directories or both are directories and the
target be empty. If compatible, the existing target is removed before the rename occurs or,
preferably, the target is removed atomically as part of the rename. See Section 18.25.4 for client
and server actions whenever a target is removed. Note however that when the removal is
performed atomically with the rename, certain parts of the removal described there are
integrated with the rename. For example, notification of the removal will not be via a
NOTIFY4_REMOVE_ENTRY but will be indicated as part of the NOTIFY4_ADD_ENTRY or
NOTIFY4_RENAME_ENTRY generated by the rename.

MUST

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 424

If the source object and the target are not compatible or if the target is a directory but not empty,
the server will return the error NFS4ERR_EXIST.

If oldname and newname both refer to the same file (e.g., they might be hard links of each other),
then unless the file is open (see Section 18.26.4), RENAME perform no action and return
NFS4_OK.

For both directories involved in the RENAME, the server returns change_info4 information. With
the atomic field of the change_info4 data type, the server will indicate if the before and after
change attributes were obtained atomically with respect to the rename.

If oldname refers to a named attribute and the saved and current filehandles refer to different
file system objects, the server will return NFS4ERR_XDEV just as if the saved and current
filehandles represented directories on different file systems.

If oldname or newname has a length of zero, or if oldname or newname does not obey the UTF-8
definition, the error NFS4ERR_INVAL will be returned.

MUST

18.26.4. IMPLEMENTATION

The server impose restrictions on the RENAME operation such that RENAME may not be
done when the file being renamed is open or when that open is done by particular protocols, or
with particular options or access modes. Similar restrictions may be applied when a file exists
with the target name and is open. When RENAME is rejected because of such restrictions, the
error NFS4ERR_FILE_OPEN is returned.

When oldname and rename refer to the same file and that file is open in a fashion such that
RENAME would normally be rejected with NFS4ERR_FILE_OPEN if oldname and newname were
different files, then RENAME be rejected with NFS4ERR_FILE_OPEN.

If a server does implement such restrictions and those restrictions include cases of NFSv4 opens
preventing successful execution of a rename, the server needs to recall any delegations that
could hide the existence of opens relevant to that decision. This is because when a client holds a
delegation, the server might not have an accurate account of the opens for that client, since the
client may execute OPENs and CLOSEs locally. The RENAME operation need only be delayed until
a definitive result can be obtained. For example, if there are multiple delegations and one of
them establishes an open whose presence would prevent the rename, given the server's
semantics, NFS4ERR_FILE_OPEN may be returned to the caller as soon as that delegation is
returned without waiting for other delegations to be returned. Similarly, if such opens are not
associated with delegations, NFS4ERR_FILE_OPEN can be returned immediately with no
delegation recall being done.

If the current filehandle or the saved filehandle designates a directory for which another client
holds a directory delegation, then, unless the situation can be resolved by sending a notification,
the delegation be recalled, and the operation cannot proceed until the delegation is
returned or revoked. Except where this happens very quickly, one or more NFS4ERR_DELAY
errors will be returned to requests made while delegation remains outstanding.

MAY

SHOULD

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 425

When the current and saved filehandles are the same and they designate a directory for which
one or more directory delegations exist, then, when those delegations request such notifications,
a notification of type NOTIFY4_RENAME_ENTRY will be generated as a result of this operation.
When oldname and rename refer to the same file, no notification is generated (because, as
Section 18.26.3 states, the server take no action). When a file is removed because it has the
same name as the target, if that removal is done atomically with the rename, a
NOTIFY4_REMOVE_ENTRY notification will not be generated. Instead, the deletion of the file will
be reported as part of the NOTIFY4_RENAME_ENTRY notification.

When the current and saved filehandles are not the same:

If the current filehandle designates a directory for which one or more directory delegations
exist, then, when those delegations request such notifications, NOTIFY4_ADD_ENTRY will be
generated as a result of this operation. When a file is removed because it has the same name
as the target, if that removal is done atomically with the rename, a
NOTIFY4_REMOVE_ENTRY notification will not be generated. Instead, the deletion of the file
will be reported as part of the NOTIFY4_ADD_ENTRY notification.
If the saved filehandle designates a directory for which one or more directory delegations
exist, then, when those delegations request such notifications, NOTIFY4_REMOVE_ENTRY
will be generated as a result of this operation.

If the object being renamed has file delegations held by clients other than the one doing the
RENAME, the delegations be recalled, and the operation cannot proceed until each such
delegation is returned or revoked. Note that in the case of multiply linked files, the delegation
recall requirement applies even if the delegation was obtained through a different name than
the one being renamed. In all cases in which delegations are recalled, the server is likely to
return one or more NFS4ERR_DELAY errors while the delegation(s) remains outstanding,
although it might not do that if the delegations are returned quickly.

The RENAME operation must be atomic to the client. The statement "source and target
directories reside on the same file system on the server" means that the fsid fields in the
attributes for the directories are the same. If they reside on different file systems, the error
NFS4ERR_XDEV is returned.

Based on the value of the fh_expire_type attribute for the object, the filehandle may or may not
expire on a RENAME. However, server implementors are strongly encouraged to attempt to keep
filehandles from expiring in this fashion.

On some servers, the file names "." and ".." are illegal as either oldname or newname, and will
result in the error NFS4ERR_BADNAME. In addition, on many servers the case of oldname or
newname being an alias for the source directory will be checked for. Such servers will return the
error NFS4ERR_INVAL in these cases.

If either of the source or target filehandles are not directories, the server will return
NFS4ERR_NOTDIR.

MUST

•

•

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 426

18.27. Operation 31: RESTOREFH - Restore Saved Filehandle
18.27.1. ARGUMENTS

/* SAVED_FH: */
void;

18.27.2. RESULTS

struct RESTOREFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: value of saved fh
 */
 nfsstat4 status;
};

18.27.3. DESCRIPTION

The RESTOREFH operation sets the current filehandle and stateid to the values in the saved
filehandle and stateid. If there is no saved filehandle, then the server will return the error
NFS4ERR_NOFILEHANDLE.

See Section 16.2.3.1.1 for more details on the current filehandle.

See Section 16.2.3.1.2 for more details on the current stateid.

18.27.4. IMPLEMENTATION

Operations like OPEN and LOOKUP use the current filehandle to represent a directory and
replace it with a new filehandle. Assuming that the previous filehandle was saved with a SAVEFH
operator, the previous filehandle can be restored as the current filehandle. This is commonly
used to obtain post-operation attributes for the directory, e.g.,

 PUTFH (directory filehandle)
 SAVEFH
 GETATTR attrbits (pre-op dir attrs)
 CREATE optbits "foo" attrs
 GETATTR attrbits (file attributes)
 RESTOREFH
 GETATTR attrbits (post-op dir attrs)

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 427

18.28. Operation 32: SAVEFH - Save Current Filehandle
18.28.1. ARGUMENTS

/* CURRENT_FH: */
void;

18.28.2. RESULTS

struct SAVEFH4res {
 /*
 * If status is NFS4_OK,
 * new SAVED_FH: value of current fh
 */
 nfsstat4 status;
};

18.28.3. DESCRIPTION

The SAVEFH operation saves the current filehandle and stateid. If a previous filehandle was
saved, then it is no longer accessible. The saved filehandle can be restored as the current
filehandle with the RESTOREFH operator.

On success, the current filehandle retains its value.

See Section 16.2.3.1.1 for more details on the current filehandle.

See Section 16.2.3.1.2 for more details on the current stateid.

18.28.4. IMPLEMENTATION

18.29. Operation 33: SECINFO - Obtain Available Security
18.29.1. ARGUMENTS

struct SECINFO4args {
 /* CURRENT_FH: directory */
 component4 name;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 428

18.29.2. RESULTS

/*
 * From RFC 2203
 */
enum rpc_gss_svc_t {
 RPC_GSS_SVC_NONE = 1,
 RPC_GSS_SVC_INTEGRITY = 2,
 RPC_GSS_SVC_PRIVACY = 3
};

struct rpcsec_gss_info {
 sec_oid4 oid;
 qop4 qop;
 rpc_gss_svc_t service;
};

/* RPCSEC_GSS has a value of '6' - See RFC 2203 */
union secinfo4 switch (uint32_t flavor) {
 case RPCSEC_GSS:
 rpcsec_gss_info flavor_info;
 default:
 void;
};

typedef secinfo4 SECINFO4resok<>;

union SECINFO4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENTFH: consumed */
 SECINFO4resok resok4;
 default:
 void;
};

18.29.3. DESCRIPTION

The SECINFO operation is used by the client to obtain a list of valid RPC authentication flavors for
a specific directory filehandle, file name pair. SECINFO should apply the same access
methodology used for LOOKUP when evaluating the name. Therefore, if the requester does not
have the appropriate access to LOOKUP the name, then SECINFO behave the same way and
return NFS4ERR_ACCESS.

The result will contain an array that represents the security mechanisms available, with an order
corresponding to the server's preferences, the most preferred being first in the array. The client
is free to pick whatever security mechanism it both desires and supports, or to pick in the
server's preference order the first one it supports. The array entries are represented by the
secinfo4 structure. The field 'flavor' will contain a value of AUTH_NONE, AUTH_SYS (as defined in

), or RPCSEC_GSS (as defined in). The field flavor can also be any other
security flavor registered with IANA.

MUST

RFC 5531 [3] RFC 2203 [4]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 429

For the flavors AUTH_NONE and AUTH_SYS, no additional security information is returned. The
same is true of many (if not most) other security flavors, including AUTH_DH. For a return value
of RPCSEC_GSS, a security triple is returned that contains the mechanism object identifier (OID,
as defined in), the quality of protection (as defined in), and the service
type (as defined in). It is possible for SECINFO to return multiple entries with flavor
equal to RPCSEC_GSS with different security triple values.

On success, the current filehandle is consumed (see Section 2.6.3.1.1.8), and if the next operation
after SECINFO tries to use the current filehandle, that operation will fail with the status
NFS4ERR_NOFILEHANDLE.

If the name has a length of zero, or if the name does not obey the UTF-8 definition (assuming
UTF-8 capabilities are enabled; see Section 14.4), the error NFS4ERR_INVAL will be returned.

See Section 2.6 for additional information on the use of SECINFO.

RFC 2743 [7] RFC 2743 [7]
RFC 2203 [4]

18.29.4. IMPLEMENTATION

The SECINFO operation is expected to be used by the NFS client when the error value of
NFS4ERR_WRONGSEC is returned from another NFS operation. This signifies to the client that the
server's security policy is different from what the client is currently using. At this point, the client
is expected to obtain a list of possible security flavors and choose what best suits its policies.

As mentioned, the server's security policies will determine when a client request receives
NFS4ERR_WRONGSEC. See Table 14 for a list of operations that can return NFS4ERR_WRONGSEC.
In addition, when READDIR returns attributes, the rdattr_error (Section 5.8.1.12) can contain
NFS4ERR_WRONGSEC. Note that CREATE and REMOVE return NFS4ERR_WRONGSEC.
The rationale for CREATE is that unless the target name exists, it cannot have a separate security
policy from the parent directory, and the security policy of the parent was checked when its
filehandle was injected into the COMPOUND request's operations stream (for similar reasons, an
OPEN operation that creates the target return NFS4ERR_WRONGSEC). If the target
name exists, while it might have a separate security policy, that is irrelevant because CREATE

 return NFS4ERR_EXIST. The rationale for REMOVE is that while that target might have a
separate security policy, the target is going to be removed, and so the security policy of the
parent trumps that of the object being removed. RENAME and LINK return
NFS4ERR_WRONGSEC, but the NFS4ERR_WRONGSEC error applies only to the saved filehandle
(see Section 2.6.3.1.2). Any NFS4ERR_WRONGSEC error on the current filehandle used by LINK
and RENAME be returned by the PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH
operation that injected the current filehandle.

With the exception of LINK and RENAME, the set of operations that can return
NFS4ERR_WRONGSEC represents the point at which the client can inject a filehandle into the
"current filehandle" at the server. The filehandle is either provided by the client (PUTFH,
PUTPUBFH, PUTROOTFH), generated as a result of a name-to-filehandle translation (LOOKUP and
OPEN), or generated from the saved filehandle via RESTOREFH. As Section 2.6.3.1.1.1 states, a put
filehandle operation followed by SAVEFH return NFS4ERR_WRONGSEC. Thus, the
RESTOREFH operation, under certain conditions (see Section 2.6.3.1.1), is permitted to return
NFS4ERR_WRONGSEC so that security policies can be honored.

MUST NOT

MUST NOT

MUST

MAY

MUST

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 430

The READDIR operation will not directly return the NFS4ERR_WRONGSEC error. However, if the
READDIR request included a request for attributes, it is possible that the READDIR request's
security triple did not match that of a directory entry. If this is the case and the client has
requested the rdattr_error attribute, the server will return the NFS4ERR_WRONGSEC error in
rdattr_error for the entry.

To resolve an error return of NFS4ERR_WRONGSEC, the client does the following:

For LOOKUP and OPEN, the client will use SECINFO with the same current filehandle and
name as provided in the original LOOKUP or OPEN to enumerate the available security
triples.
For the rdattr_error, the client will use SECINFO with the same current filehandle as
provided in the original READDIR. The name passed to SECINFO will be that of the directory
entry (as returned from READDIR) that had the NFS4ERR_WRONGSEC error in the
rdattr_error attribute.
For PUTFH, PUTROOTFH, PUTPUBFH, RESTOREFH, LINK, and RENAME, the client will use
SECINFO_NO_NAME { style = SECINFO_STYLE4_CURRENT_FH }. The client will prefix the
SECINFO_NO_NAME operation with the appropriate PUTFH, PUTPUBFH, or PUTROOTFH
operation that provides the filehandle originally provided by the PUTFH, PUTPUBFH,
PUTROOTFH, or RESTOREFH operation.

NOTE: In NFSv4.0, the client was required to use SECINFO, and had to reconstruct the parent
of the original filehandle and the component name of the original filehandle. The
introduction in NFSv4.1 of SECINFO_NO_NAME obviates the need for reconstruction.

For LOOKUPP, the client will use SECINFO_NO_NAME { style = SECINFO_STYLE4_PARENT }
and provide the filehandle that equals the filehandle originally provided to LOOKUPP.

See Section 21 for a discussion on the recommendations for the security flavor used by SECINFO
and SECINFO_NO_NAME.

•

•

•

•

18.30. Operation 34: SETATTR - Set Attributes
18.30.1. ARGUMENTS

struct SETATTR4args {
 /* CURRENT_FH: target object */
 stateid4 stateid;
 fattr4 obj_attributes;
};

18.30.2. RESULTS

struct SETATTR4res {
 nfsstat4 status;
 bitmap4 attrsset;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 431

18.30.3. DESCRIPTION

The SETATTR operation changes one or more of the attributes of a file system object. The new
attributes are specified with a bitmap and the attributes that follow the bitmap in bit order.

The stateid argument for SETATTR is used to provide byte-range locking context that is necessary
for SETATTR requests that set the size attribute. Since setting the size attribute modifies the file's
data, it has the same locking requirements as a corresponding WRITE. Any SETATTR that sets the
size attribute is incompatible with a share reservation that specifies
OPEN4_SHARE_DENY_WRITE. The area between the old end-of-file and the new end-of-file is
considered to be modified just as would have been the case had the area in question been
specified as the target of WRITE, for the purpose of checking conflicts with byte-range locks, for
those cases in which a server is implementing mandatory byte-range locking behavior. A valid
stateid always be specified. When the file size attribute is not set, the special stateid
consisting of all bits equal to zero be passed.

On either success or failure of the operation, the server will return the attrsset bitmask to
represent what (if any) attributes were successfully set. The attrsset in the response is a subset of
the attrmask field of the obj_attributes field in the argument.

On success, the current filehandle retains its value.

SHOULD
MAY

18.30.4. IMPLEMENTATION

If the request specifies the owner attribute to be set, the server allow the operation to
succeed if the current owner of the object matches the value specified in the request. Some
servers may be implemented in a way as to prohibit the setting of the owner attribute unless the
requester has privilege to do so. If the server is lenient in this one case of matching owner values,
the client implementation may be simplified in cases of creation of an object (e.g., an exclusive
create via OPEN) followed by a SETATTR.

The file size attribute is used to request changes to the size of a file. A value of zero causes the file
to be truncated, a value less than the current size of the file causes data from new size to the end
of the file to be discarded, and a size greater than the current size of the file causes logically
zeroed data bytes to be added to the end of the file. Servers are free to implement this using
unallocated bytes (holes) or allocated data bytes set to zero. Clients should not make any
assumptions regarding a server's implementation of this feature, beyond that the bytes in the
affected byte-range returned by READ will be zeroed. Servers support extending the file
size via SETATTR.

SETATTR is not guaranteed to be atomic. A failed SETATTR may partially change a file's attributes,
hence the reason why the reply always includes the status and the list of attributes that were set.

If the object whose attributes are being changed has a file delegation that is held by a client other
than the one doing the SETATTR, the delegation(s) must be recalled, and the operation cannot
proceed to actually change an attribute until each such delegation is returned or revoked. In all

SHOULD

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 432

cases in which delegations are recalled, the server is likely to return one or more
NFS4ERR_DELAY errors while the delegation(s) remains outstanding, although it might not do
that if the delegations are returned quickly.

If the object whose attributes are being set is a directory and another client holds a directory
delegation for that directory, then if enabled, asynchronous notifications will be generated when
the set of attributes changed has a non-null intersection with the set of attributes for which
notification is requested. Notifications of type NOTIFY4_CHANGE_DIR_ATTRS will be sent to the
appropriate client(s), but the SETATTR is not delayed by waiting for these notifications to be sent.

If the object whose attributes are being set is a member of the directory for which another client
holds a directory delegation, then asynchronous notifications will be generated when the set of
attributes changed has a non-null intersection with the set of attributes for which notification is
requested. Notifications of type NOTIFY4_CHANGE_CHILD_ATTRS will be sent to the appropriate
clients, but the SETATTR is not delayed by waiting for these notifications to be sent.

Changing the size of a file with SETATTR indirectly changes the time_modify and change
attributes. A client must account for this as size changes can result in data deletion.

The attributes time_access_set and time_modify_set are write-only attributes constructed as a
switched union so the client can direct the server in setting the time values. If the switched union
specifies SET_TO_CLIENT_TIME4, the client has provided an nfstime4 to be used for the
operation. If the switch union does not specify SET_TO_CLIENT_TIME4, the server is to use its
current time for the SETATTR operation.

If server and client times differ, programs that compare client time to file times can break. A time
synchronization protocol should be used to limit client/server time skew.

Use of a COMPOUND containing a VERIFY operation specifying only the change attribute,
immediately followed by a SETATTR, provides a means whereby a client may specify a request
that emulates the functionality of the SETATTR guard mechanism of NFSv3. Since the function of
the guard mechanism is to avoid changes to the file attributes based on stale information, delays
between checking of the guard condition and the setting of the attributes have the potential to
compromise this function, as would the corresponding delay in the NFSv4 emulation. Therefore,
NFSv4.1 servers take care to avoid such delays, to the degree possible, when executing
such a request.

If the server does not support an attribute as requested by the client, the server return
NFS4ERR_ATTRNOTSUPP.

A mask of the attributes actually set is returned by SETATTR in all cases. That mask
include attribute bits not requested to be set by the client. If the attribute masks in the request
and reply are equal, the status field in the reply be NFS4_OK.

SHOULD

SHOULD

MUST NOT

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 433

18.31. Operation 37: VERIFY - Verify Same Attributes
18.31.1. ARGUMENTS

struct VERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
};

18.31.2. RESULTS

struct VERIFY4res {
 nfsstat4 status;
};

18.31.3. DESCRIPTION

The VERIFY operation is used to verify that attributes have the value assumed by the client
before proceeding with the following operations in the COMPOUND request. If any of the
attributes do not match, then the error NFS4ERR_NOT_SAME must be returned. The current
filehandle retains its value after successful completion of the operation.

18.31.4. IMPLEMENTATION

One possible use of the VERIFY operation is the following series of operations. With this, the
client is attempting to verify that the file being removed will match what the client expects to be
removed. This series can help prevent the unintended deletion of a file.

This series does not prevent a second client from removing and creating a new file in the middle
of this sequence, but it does help avoid the unintended result.

In the case that a attribute is specified in the VERIFY operation and the server
does not support that attribute for the file system object, the error NFS4ERR_ATTRNOTSUPP is
returned to the client.

When the attribute rdattr_error or any set-only attribute (e.g., time_modify_set) is specified, the
error NFS4ERR_INVAL is returned to the client.

 PUTFH (directory filehandle)
 LOOKUP (file name)
 VERIFY (filehandle == fh)
 PUTFH (directory filehandle)
 REMOVE (file name)

RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 434

18.32. Operation 38: WRITE - Write to File
18.32.1. ARGUMENTS

enum stable_how4 {
 UNSTABLE4 = 0,
 DATA_SYNC4 = 1,
 FILE_SYNC4 = 2
};

struct WRITE4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 stable_how4 stable;
 opaque data<>;
};

18.32.2. RESULTS

struct WRITE4resok {
 count4 count;
 stable_how4 committed;
 verifier4 writeverf;
};

union WRITE4res switch (nfsstat4 status) {
 case NFS4_OK:
 WRITE4resok resok4;
 default:
 void;
};

18.32.3. DESCRIPTION

The WRITE operation is used to write data to a regular file. The target file is specified by the
current filehandle. The offset specifies the offset where the data should be written. An offset of
zero specifies that the write should start at the beginning of the file. The count, as encoded as
part of the opaque data parameter, represents the number of bytes of data that are to be written.
If the count is zero, the WRITE will succeed and return a count of zero subject to permissions
checking. The server write fewer bytes than requested by the client.

The client specifies with the stable parameter the method of how the data is to be processed by
the server. If stable is FILE_SYNC4, the server commit the data written plus all file system
metadata to stable storage before returning results. This corresponds to the NFSv2 protocol
semantics. Any other behavior constitutes a protocol violation. If stable is DATA_SYNC4, then the
server commit all of the data to stable storage and enough of the metadata to retrieve the
data before returning. The server implementor is free to implement DATA_SYNC4 in the same
fashion as FILE_SYNC4, but with a possible performance drop. If stable is UNSTABLE4, the server
is free to commit any part of the data and the metadata to stable storage, including all or none,

MAY

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 435

before returning a reply to the client. There is no guarantee whether or when any uncommitted
data will subsequently be committed to stable storage. The only guarantees made by the server
are that it will not destroy any data without changing the value of writeverf and that it will not
commit the data and metadata at a level less than that requested by the client.

Except when special stateids are used, the stateid value for a WRITE request represents a value
returned from a previous byte-range LOCK or OPEN request or the stateid associated with a
delegation. The stateid identifies the associated owners if any and is used by the server to verify
that the associated locks are still valid (e.g., have not been revoked).

Upon successful completion, the following results are returned. The count result is the number of
bytes of data written to the file. The server may write fewer bytes than requested. If so, the actual
number of bytes written starting at location, offset, is returned.

The server also returns an indication of the level of commitment of the data and metadata via
committed. Per Table 20,

The server commit the data at a stronger level than requested.
The server commit the data at a level at least as high as that committed.

The final portion of the result is the field writeverf. This field is the write verifier and is a cookie
that the client can use to determine whether a server has changed instance state (e.g., server
restart) between a call to WRITE and a subsequent call to either WRITE or COMMIT. This cookie

 be unchanged during a single instance of the NFSv4.1 server and be unique between
instances of the NFSv4.1 server. If the cookie changes, then the client assume that any data
written with an UNSTABLE4 value for committed and an old writeverf in the reply has been lost
and will need to be recovered.

If a client writes data to the server with the stable argument set to UNSTABLE4 and the reply
yields a committed response of DATA_SYNC4 or UNSTABLE4, the client will follow up some time
in the future with a COMMIT operation to synchronize outstanding asynchronous data and
metadata with the server's stable storage, barring client error. It is possible that due to client
crash or other error that a subsequent COMMIT will not be received by the server.

• MAY
• MUST

stable committed

UNSTABLE4 FILE_SYNC4, DATA_SYNC4, UNSTABLE4

DATA_SYNC4 FILE_SYNC4, DATA_SYNC4

FILE_SYNC4 FILE_SYNC4

Table 20: Valid Combinations of the Fields Stable in the
Request and Committed in the Reply

MUST MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 436

For a WRITE with a stateid value of all bits equal to zero, the server allow the WRITE to be
serviced subject to mandatory byte-range locks or the current share deny modes for the file. For
a WRITE with a stateid value of all bits equal to 1, the server allow the WRITE
operation to bypass locking checks at the server and otherwise is treated as if a stateid of all bits
equal to zero were used.

On success, the current filehandle retains its value.

MAY

MUST NOT

18.32.4. IMPLEMENTATION

It is possible for the server to write fewer bytes of data than requested by the client. In this case,
the server return an error unless no data was written at all. If the server writes less
than the number of bytes specified, the client will need to send another WRITE to write the
remaining data.

It is assumed that the act of writing data to a file will cause the time_modified and change
attributes of the file to be updated. However, these attributes be changed unless the
contents of the file are changed. Thus, a WRITE request with count set to zero cause
the time_modified and change attributes of the file to be updated.

Stable storage is persistent storage that survives:

Repeated power failures.
Hardware failures (of any board, power supply, etc.).
Repeated software crashes and restarts.

This definition does not address failure of the stable storage module itself.

The verifier is defined to allow a client to detect different instances of an NFSv4.1 protocol server
over which cached, uncommitted data may be lost. In the most likely case, the verifier allows the
client to detect server restarts. This information is required so that the client can safely
determine whether the server could have lost cached data. If the server fails unexpectedly and
the client has uncommitted data from previous WRITE requests (done with the stable argument
set to UNSTABLE4 and in which the result committed was returned as UNSTABLE4 as well), the
server might not have flushed cached data to stable storage. The burden of recovery is on the
client, and the client will need to retransmit the data to the server.

A suggested verifier would be to use the time that the server was last started (if restarting the
server results in lost buffers).

The reply's committed field allows the client to do more effective caching. If the server is
committing all WRITE requests to stable storage, then it return with committed set to
FILE_SYNC4, regardless of the value of the stable field in the arguments. A server that uses an
NVRAM accelerator may choose to implement this policy. The client can use this to increase the
effectiveness of the cache by discarding cached data that has already been committed on the
server.

SHOULD NOT

SHOULD NOT
SHOULD NOT

1.
2.
3.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 437

Some implementations may return NFS4ERR_NOSPC instead of NFS4ERR_DQUOT when a user's
quota is exceeded.

In the case that the current filehandle is of type NF4DIR, the server will return NFS4ERR_ISDIR. If
the current file is a symbolic link, the error NFS4ERR_SYMLINK will be returned. Otherwise, if
the current filehandle does not designate an ordinary file, the server will return
NFS4ERR_WRONG_TYPE.

If mandatory byte-range locking is in effect for the file, and the corresponding byte-range of the
data to be written to the file is READ_LT or WRITE_LT locked by an owner that is not associated
with the stateid, the server return NFS4ERR_LOCKED. If so, the client check if the
owner corresponding to the stateid used with the WRITE operation has a conflicting READ_LT
lock that overlaps with the byte-range that was to be written. If the stateid's owner has no
conflicting READ_LT lock, then the client try to get the appropriate write byte-range lock
via the LOCK operation before re-attempting the WRITE. When the WRITE completes, the client

 release the byte-range lock via LOCKU.

If the stateid's owner had a conflicting READ_LT lock, then the client has no choice but to return
an error to the application that attempted the WRITE. The reason is that since the stateid's owner
had a READ_LT lock, either the server attempted to temporarily effectively upgrade this READ_LT
lock to a WRITE_LT lock or the server has no upgrade capability. If the server attempted to
upgrade the READ_LT lock and failed, it is pointless for the client to re-attempt the upgrade via
the LOCK operation, because there might be another client also trying to upgrade. If two clients
are blocked trying to upgrade the same lock, the clients deadlock. If the server has no upgrade
capability, then it is pointless to try a LOCK operation to upgrade.

If one or more other clients have delegations for the file being written, those delegations be
recalled, and the operation cannot proceed until those delegations are returned or revoked.
Except where this happens very quickly, one or more NFS4ERR_DELAY errors will be returned to
requests made while the delegation remains outstanding. Normally, delegations will not be
recalled as a result of a WRITE operation since the recall will occur as a result of an earlier OPEN.
However, since it is possible for a WRITE to be done with a special stateid, the server needs to
check for this case even though the client should have done an OPEN previously.

MUST MUST

SHOULD

SHOULD

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 438

18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control
18.33.1. ARGUMENT

typedef opaque gsshandle4_t<>;

struct gss_cb_handles4 {
 rpc_gss_svc_t gcbp_service; /* RFC 2203 */
 gsshandle4_t gcbp_handle_from_server;
 gsshandle4_t gcbp_handle_from_client;
};

union callback_sec_parms4 switch (uint32_t cb_secflavor) {
case AUTH_NONE:
 void;
case AUTH_SYS:
 authsys_parms cbsp_sys_cred; /* RFC 5531 */
case RPCSEC_GSS:
 gss_cb_handles4 cbsp_gss_handles;
};

struct BACKCHANNEL_CTL4args {
 uint32_t bca_cb_program;
 callback_sec_parms4 bca_sec_parms<>;
};

18.33.2. RESULT

struct BACKCHANNEL_CTL4res {
 nfsstat4 bcr_status;
};

18.33.3. DESCRIPTION

The BACKCHANNEL_CTL operation replaces the backchannel's callback program number and
adds (not replaces) RPCSEC_GSS handles for use by the backchannel.

The arguments of the BACKCHANNEL_CTL call are a subset of the CREATE_SESSION parameters.
In the arguments of BACKCHANNEL_CTL, the bca_cb_program field and bca_sec_parms fields
correspond respectively to the csa_cb_program and csa_sec_parms fields of the arguments of
CREATE_SESSION (Section 18.36).

BACKCHANNEL_CTL appear in a COMPOUND that starts with SEQUENCE.

If the RPCSEC_GSS handle identified by gcbp_handle_from_server does not exist on the server,
the server return NFS4ERR_NOENT.

If an RPCSEC_GSS handle is using the SSV context (see Section 2.10.9), then because each SSV
RPCSEC_GSS handle shares a common SSV GSS context, there are security considerations specific
to this situation discussed in Section 2.10.10.

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 439

18.34. Operation 41: BIND_CONN_TO_SESSION - Associate Connection with
Session
18.34.1. ARGUMENT

enum channel_dir_from_client4 {
 CDFC4_FORE = 0x1,
 CDFC4_BACK = 0x2,
 CDFC4_FORE_OR_BOTH = 0x3,
 CDFC4_BACK_OR_BOTH = 0x7
};

struct BIND_CONN_TO_SESSION4args {
 sessionid4 bctsa_sessid;

 channel_dir_from_client4
 bctsa_dir;

 bool bctsa_use_conn_in_rdma_mode;
};

18.34.2. RESULT

enum channel_dir_from_server4 {
 CDFS4_FORE = 0x1,
 CDFS4_BACK = 0x2,
 CDFS4_BOTH = 0x3
};

struct BIND_CONN_TO_SESSION4resok {
 sessionid4 bctsr_sessid;

 channel_dir_from_server4
 bctsr_dir;

 bool bctsr_use_conn_in_rdma_mode;
};

union BIND_CONN_TO_SESSION4res
 switch (nfsstat4 bctsr_status) {

 case NFS4_OK:
 BIND_CONN_TO_SESSION4resok
 bctsr_resok4;

 default: void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 440

18.34.3. DESCRIPTION

BIND_CONN_TO_SESSION is used to associate additional connections with a session. It be
used on the connection being associated with the session. It be the only operation in the
COMPOUND procedure. If SP4_NONE (Section 18.35) state protection is used, any principal,
security flavor, or RPCSEC_GSS context be used to invoke the operation. If SP4_MACH_CRED
is used, RPCSEC_GSS be used with the integrity or privacy services, using the principal that
created the client ID. If SP4_SSV is used, RPCSEC_GSS with the SSV GSS mechanism (Section
2.10.9) and integrity or privacy be used.

If, when the client ID was created, the client opted for SP4_NONE state protection, the client is not
required to use BIND_CONN_TO_SESSION to associate the connection with the session, unless the
client wishes to associate the connection with the backchannel. When SP4_NONE protection is
used, simply sending a COMPOUND request with a SEQUENCE operation is sufficient to associate
the connection with the session specified in SEQUENCE.

The field bctsa_dir indicates whether the client wants to associate the connection with the fore
channel or the backchannel or both channels. The value CDFC4_FORE_OR_BOTH indicates that
the client wants to associate the connection with both the fore channel and backchannel, but will
accept the connection being associated to just the fore channel. The value
CDFC4_BACK_OR_BOTH indicates that the client wants to associate with both the fore channel
and backchannel, but will accept the connection being associated with just the backchannel. The
server replies in bctsr_dir which channel(s) the connection is associated with. If the client
specified CDFC4_FORE, the server return CDFS4_FORE. If the client specified CDFC4_BACK,
the server return CDFS4_BACK. If the client specified CDFC4_FORE_OR_BOTH, the server

 return CDFS4_FORE or CDFS4_BOTH. If the client specified CDFC4_BACK_OR_BOTH, the
server return CDFS4_BACK or CDFS4_BOTH.

See the CREATE_SESSION operation (Section 18.36), and the description of the argument
csa_use_conn_in_rdma_mode to understand bctsa_use_conn_in_rdma_mode, and the description
of csr_use_conn_in_rdma_mode to understand bctsr_use_conn_in_rdma_mode.

Invoking BIND_CONN_TO_SESSION on a connection already associated with the specified session
has no effect, and the server respond with NFS4_OK, unless the client is demanding
changes to the set of channels the connection is associated with. If so, the server return
NFS4ERR_INVAL.

MUST
MUST

MAY
MUST

MUST

MUST
MUST

MUST
MUST

MUST
MUST

18.34.4. IMPLEMENTATION

If a session's channel loses all connections, depending on the client ID's state protection and type
of channel, the client might need to use BIND_CONN_TO_SESSION to associate a new connection.
If the server restarted and does not keep the reply cache in stable storage, the server will not
recognize the session ID. The client will ultimately have to invoke EXCHANGE_ID to create a new
client ID and session.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 441

Suppose SP4_SSV state protection is being used, and BIND_CONN_TO_SESSION is among the
operations included in the spo_must_enforce set when the client ID was created (Section 18.35). If
so, there is an issue if SET_SSV is sent, no response is returned, and the last connection associated
with the client ID drops. The client, per the sessions model, retry the SET_SSV. But it needs
a new connection to do so, and associate that connection with the session via a
BIND_CONN_TO_SESSION authenticated with the SSV GSS mechanism. The problem is that the
RPCSEC_GSS message integrity codes use a subkey derived from the SSV as the key and the SSV
may have changed. While there are multiple recovery strategies, a single, general strategy is
described here.

The client reconnects.
The client assumes that the SET_SSV was executed, and so sends BIND_CONN_TO_SESSION
with the subkey (derived from the new SSV, i.e., what SET_SSV would have set the SSV to)
used as the key for the RPCSEC_GSS credential message integrity codes.
If the request succeeds, this means that the original attempted SET_SSV did execute
successfully. The client re-sends the original SET_SSV, which the server will reply to via the
reply cache.
If the server returns an RPC authentication error, this means that the server's current SSV
was not changed (and the SET_SSV was likely not executed). The client then tries
BIND_CONN_TO_SESSION with the subkey derived from the old SSV as the key for the
RPCSEC_GSS message integrity codes.
The attempted BIND_CONN_TO_SESSION with the old SSV should succeed. If so, the client re-
sends the original SET_SSV. If the original SET_SSV was not executed, then the server
executes it. If the original SET_SSV was executed but failed, the server will return the
SET_SSV from the reply cache.

MUST
MUST

•
•

•

•

•

18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID
The EXCHANGE_ID operation exchanges long-hand client and server identifiers (owners) and
provides access to a client ID, creating one if necessary. This client ID becomes associated with
the connection on which the operation is done, so that it is available when a CREATE_SESSION is
done or when the connection is used to issue a request on an existing session associated with the
current client.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 442

18.35.1. ARGUMENT

const EXCHGID4_FLAG_SUPP_MOVED_REFER = 0x00000001;
const EXCHGID4_FLAG_SUPP_MOVED_MIGR = 0x00000002;

const EXCHGID4_FLAG_BIND_PRINC_STATEID = 0x00000100;

const EXCHGID4_FLAG_USE_NON_PNFS = 0x00010000;
const EXCHGID4_FLAG_USE_PNFS_MDS = 0x00020000;
const EXCHGID4_FLAG_USE_PNFS_DS = 0x00040000;

const EXCHGID4_FLAG_MASK_PNFS = 0x00070000;

const EXCHGID4_FLAG_UPD_CONFIRMED_REC_A = 0x40000000;
const EXCHGID4_FLAG_CONFIRMED_R = 0x80000000;

struct state_protect_ops4 {
 bitmap4 spo_must_enforce;
 bitmap4 spo_must_allow;
};

struct ssv_sp_parms4 {
 state_protect_ops4 ssp_ops;
 sec_oid4 ssp_hash_algs<>;
 sec_oid4 ssp_encr_algs<>;
 uint32_t ssp_window;
 uint32_t ssp_num_gss_handles;
};

enum state_protect_how4 {
 SP4_NONE = 0,
 SP4_MACH_CRED = 1,
 SP4_SSV = 2
};

union state_protect4_a switch(state_protect_how4 spa_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spa_mach_ops;
 case SP4_SSV:
 ssv_sp_parms4 spa_ssv_parms;
};

struct EXCHANGE_ID4args {
 client_owner4 eia_clientowner;
 uint32_t eia_flags;
 state_protect4_a eia_state_protect;
 nfs_impl_id4 eia_client_impl_id<1>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 443

18.35.2. RESULT

struct ssv_prot_info4 {
 state_protect_ops4 spi_ops;
 uint32_t spi_hash_alg;
 uint32_t spi_encr_alg;
 uint32_t spi_ssv_len;
 uint32_t spi_window;
 gsshandle4_t spi_handles<>;
};

union state_protect4_r switch(state_protect_how4 spr_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spr_mach_ops;
 case SP4_SSV:
 ssv_prot_info4 spr_ssv_info;
};

struct EXCHANGE_ID4resok {
 clientid4 eir_clientid;
 sequenceid4 eir_sequenceid;
 uint32_t eir_flags;
 state_protect4_r eir_state_protect;
 server_owner4 eir_server_owner;
 opaque eir_server_scope<NFS4_OPAQUE_LIMIT>;
 nfs_impl_id4 eir_server_impl_id<1>;
};

union EXCHANGE_ID4res switch (nfsstat4 eir_status) {
case NFS4_OK:
 EXCHANGE_ID4resok eir_resok4;

default:
 void;
};

18.35.3. DESCRIPTION

The client uses the EXCHANGE_ID operation to register a particular instance of that client with
the server, as represented by a client_owner4. However, when the client_owner4 has already
been registered by other means (e.g., Transparent State Migration), the client may still use
EXCHANGE_ID to obtain the client ID assigned previously.

The client ID returned from this operation will be associated with the connection on which the
EXCHANGE_ID is received and will serve as a parent object for sessions created by the client on
this connection or to which the connection is bound. As a result of using those sessions to make
requests involving the creation of state, that state will become associated with the client ID
returned.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 444

In situations in which the registration of the client_owner has not occurred previously, the client
ID must first be used, along with the returned eir_sequenceid, in creating an associated session
using CREATE_SESSION.

If the flag EXCHGID4_FLAG_CONFIRMED_R is set in the result, eir_flags, then it is an indication
that the registration of the client_owner has already occurred and that a further
CREATE_SESSION is not needed to confirm it. Of course, subsequent CREATE_SESSION operations
may be needed for other reasons.

The value eir_sequenceid is used to establish an initial sequence value associated with the client
ID returned. In cases in which a CREATE_SESSION has already been done, there is no need for
this value, since sequencing of such request has already been established, and the client has no
need for this value and will ignore it.

EXCHANGE_ID be sent in a COMPOUND procedure that starts with SEQUENCE. However,
when a client communicates with a server for the first time, it will not have a session, so using
SEQUENCE will not be possible. If EXCHANGE_ID is sent without a preceding SEQUENCE, then it

 be the only operation in the COMPOUND procedure's request. If it is not, the server
return NFS4ERR_NOT_ONLY_OP.

The eia_clientowner field is composed of a co_verifier field and a co_ownerid string. As noted in
Section 2.4, the co_ownerid identifies the client, and the co_verifier specifies a particular
incarnation of that client. An EXCHANGE_ID sent with a new incarnation of the client will lead to
the server removing lock state of the old incarnation. On the other hand, when an EXCHANGE_ID
sent with the current incarnation and co_ownerid does not result in an unrelated error, it will
potentially update an existing client ID's properties or simply return information about the
existing client_id. The latter would happen when this operation is done to the same server using
different network addresses as part of creating trunked connections.

A server provide the same client ID to two different incarnations of an
eia_clientowner.

In addition to the client ID and sequence ID, the server returns a server owner
(eir_server_owner) and server scope (eir_server_scope). The former field is used in connection
with network trunking as described in Section 2.10.5. The latter field is used to allow clients to
determine when client IDs sent by one server may be recognized by another in the event of file
system migration (see Section 11.11.9 of the current document).

The client ID returned by EXCHANGE_ID is only unique relative to the combination of
eir_server_owner.so_major_id and eir_server_scope. Thus, if two servers return the same client
ID, the onus is on the client to distinguish the client IDs on the basis of
eir_server_owner.so_major_id and eir_server_scope. In the event two different servers claim
matching server_owner.so_major_id and eir_server_scope, the client can use the verification
techniques discussed in Section 2.10.5.1 to determine if the servers are distinct. If they are
distinct, then the client will need to note the destination network addresses of the connections
used with each server and use the network address as the final discriminator.

MAY

MUST MUST

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 445

The server, as defined by the unique identity expressed in the so_major_id of the server owner
and the server scope, needs to track several properties of each client ID it hands out. The
properties apply to the client ID and all sessions associated with the client ID. The properties are
derived from the arguments and results of EXCHANGE_ID. The client ID properties include:

The capabilities expressed by the following bits, which come from the results of
EXCHANGE_ID:

EXCHGID4_FLAG_SUPP_MOVED_REFER
EXCHGID4_FLAG_SUPP_MOVED_MIGR
EXCHGID4_FLAG_BIND_PRINC_STATEID
EXCHGID4_FLAG_USE_NON_PNFS
EXCHGID4_FLAG_USE_PNFS_MDS
EXCHGID4_FLAG_USE_PNFS_DS

These properties may be updated by subsequent EXCHANGE_ID operations on confirmed
client IDs though the server refuse to change them.

The state protection method used, one of SP4_NONE, SP4_MACH_CRED, or SP4_SSV, as set by
the spa_how field of the arguments to EXCHANGE_ID. Once the client ID is confirmed, this
property cannot be updated by subsequent EXCHANGE_ID operations.
For SP4_MACH_CRED or SP4_SSV state protection:

The list of operations (spo_must_enforce) that use the specified state protection. This
list comes from the results of EXCHANGE_ID.
The list of operations (spo_must_allow) that use the specified state protection. This list
comes from the results of EXCHANGE_ID.

Once the client ID is confirmed, these properties cannot be updated by subsequent
EXCHANGE_ID requests.

For SP4_SSV protection:

The OID of the hash algorithm. This property is represented by one of the algorithms in the
ssp_hash_algs field of the EXCHANGE_ID arguments. Once the client ID is confirmed, this
property cannot be updated by subsequent EXCHANGE_ID requests.
The OID of the encryption algorithm. This property is represented by one of the algorithms
in the ssp_encr_algs field of the EXCHANGE_ID arguments. Once the client ID is confirmed,
this property cannot be updated by subsequent EXCHANGE_ID requests.
The length of the SSV. This property is represented by the spi_ssv_len field in the
EXCHANGE_ID results. Once the client ID is confirmed, this property cannot be updated by
subsequent EXCHANGE_ID operations.

•

◦

◦

◦

◦

◦

◦

MAY

•

•

◦ MUST

◦ MAY

•

◦

◦

◦

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 446

There are and relationships among the length of the key of the
encryption algorithm ("key length"), the length of the output of hash algorithm ("hash
length"), and the length of the SSV ("SSV length").

key length be <= hash length. This is because the keys used for the encryption
algorithm are actually subkeys derived from the SSV, and the derivation is via the hash
algorithm. The selection of an encryption algorithm with a key length that exceeded the
length of the output of the hash algorithm would require padding, and thus weaken the
use of the encryption algorithm.
hash length be <= SSV length. This is because the SSV is a key used to derive
subkeys via an HMAC, and it is recommended that the key used as input to an HMAC be
at least as long as the length of the HMAC's hash algorithm's output (see

).
key length be <= SSV length. This is a transitive result of the above two
invariants.
key length be >= hash length / 2. This is because the subkey derivation is via an
HMAC and it is recommended that if the HMAC has to be truncated, it should not be
truncated to less than half the hash length (see Section 4 of RFC 2104).

Number of concurrent versions of the SSV the client and server will support (see Section
2.10.9). This property is represented by spi_window in the EXCHANGE_ID results. The
property may be updated by subsequent EXCHANGE_ID operations.

The client's implementation ID as represented by the eia_client_impl_id field of the
arguments. The property may be updated by subsequent EXCHANGE_ID requests.
The server's implementation ID as represented by the eir_server_impl_id field of the reply.
The property may be updated by replies to subsequent EXCHANGE_ID requests.

The eia_flags passed as part of the arguments and the eir_flags results allow the client and server
to inform each other of their capabilities as well as indicate how the client ID will be used.
Whether a bit is set or cleared on the arguments' flags does not force the server to set or clear the
same bit on the results' side. Bits not defined above cannot be set in the eia_flags field. If they are,
the server reject the operation with NFS4ERR_INVAL.

The EXCHGID4_FLAG_UPD_CONFIRMED_REC_A bit can only be set in eia_flags; it is always off in
eir_flags. The EXCHGID4_FLAG_CONFIRMED_R bit can only be set in eir_flags; it is always off in
eia_flags. If the server recognizes the co_ownerid and co_verifier as mapping to a confirmed
client ID, it sets EXCHGID4_FLAG_CONFIRMED_R in eir_flags. The
EXCHGID4_FLAG_CONFIRMED_R flag allows a client to tell if the client ID it is trying to create
already exists and is confirmed.

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set in eia_flags, this means that the client is
attempting to update properties of an existing confirmed client ID (if the client wants to update
properties of an unconfirmed client ID, it set
EXCHGID4_FLAG_UPD_CONFIRMED_REC_A). If so, it is that the client send the
update EXCHANGE_ID operation in the same COMPOUND as a SEQUENCE so that the

REQUIRED RECOMMENDED

▪ MUST

▪ SHOULD

Section 3 of
[52]
▪ SHOULD

▪ SHOULD

[52]

◦

•

•

MUST

MUST NOT
RECOMMENDED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 447

https://www.rfc-editor.org/rfc/rfc2104#section-3
https://www.rfc-editor.org/rfc/rfc2104#section-4

EXCHANGE_ID is executed exactly once. Whether the client can update the properties of client ID
depends on the state protection it selected when the client ID was created, and the principal and
security flavor it used when sending the EXCHANGE_ID operation. The situations described in
items 6, 7, 8, or 9 of the second numbered list of Section 18.35.4 below will apply. Note that if the
operation succeeds and returns a client ID that is already confirmed, the server set the
EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in eia_flags, this means that the client is
trying to establish a new client ID; it is attempting to trunk data communication to the server
(See Section 2.10.5); or it is attempting to update properties of an unconfirmed client ID. The
situations described in items 1, 2, 3, 4, or 5 of the second numbered list of Section 18.35.4 below
will apply. Note that if the operation succeeds and returns a client ID that was previously
confirmed, the server set the EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

When the EXCHGID4_FLAG_SUPP_MOVED_REFER flag bit is set, the client indicates that it is
capable of dealing with an NFS4ERR_MOVED error as part of a referral sequence. When this bit
is not set, it is still legal for the server to perform a referral sequence. However, a server may use
the fact that the client is incapable of correctly responding to a referral, by avoiding it for that
particular client. It may, for instance, act as a proxy for that particular file system, at some cost in
performance, although it is not obligated to do so. If the server will potentially perform a
referral, it set EXCHGID4_FLAG_SUPP_MOVED_REFER in eir_flags.

When the EXCHGID4_FLAG_SUPP_MOVED_MIGR is set, the client indicates that it is capable of
dealing with an NFS4ERR_MOVED error as part of a file system migration sequence. When this
bit is not set, it is still legal for the server to indicate that a file system has moved, when this in
fact happens. However, a server may use the fact that the client is incapable of correctly
responding to a migration in its scheduling of file systems to migrate so as to avoid migration of
file systems being actively used. It may also hide actual migrations from clients unable to deal
with them by acting as a proxy for a migrated file system for particular clients, at some cost in
performance, although it is not obligated to do so. If the server will potentially perform a
migration, it set EXCHGID4_FLAG_SUPP_MOVED_MIGR in eir_flags.

When EXCHGID4_FLAG_BIND_PRINC_STATEID is set, the client indicates that it wants the server
to bind the stateid to the principal. This means that when a principal creates a stateid, it has to be
the one to use the stateid. If the server will perform binding, it will return
EXCHGID4_FLAG_BIND_PRINC_STATEID. The server return
EXCHGID4_FLAG_BIND_PRINC_STATEID even if the client does not request it. If an update to the
client ID changes the value of EXCHGID4_FLAG_BIND_PRINC_STATEID's client ID property, the
effect applies only to new stateids. Existing stateids (and all stateids with the same "other" field)
that were created with stateid to principal binding in force will continue to have binding in
force. Existing stateids (and all stateids with the same "other" field) that were created with stateid
to principal not in force will continue to have binding not in force.

The EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and
EXCHGID4_FLAG_USE_PNFS_DS bits are described in Section 13.1 and convey roles the client ID
is to be used for in a pNFS environment. The server set one of the acceptable combinations
of these bits (roles) in eir_flags, as specified in that section. Note that the same client owner/

MUST

MUST

MUST

MUST

MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 448

server owner pair can have multiple roles. Multiple roles can be associated with the same client
ID or with different client IDs. Thus, if a client sends EXCHANGE_ID from the same client owner
to the same server owner multiple times, but specifies different pNFS roles each time, the server
might return different client IDs. Given that different pNFS roles might have different client IDs,
the client may ask for different properties for each role/client ID.

The spa_how field of the eia_state_protect field specifies how the client wants to protect its client,
locking, and session states from unauthorized changes (Section 2.10.8.3):

SP4_NONE. The client does not request the NFSv4.1 server to enforce state protection. The
NFSv4.1 server enforce state protection for the returned client ID.
SP4_MACH_CRED. If spa_how is SP4_MACH_CRED, then the client send the
EXCHANGE_ID operation with RPCSEC_GSS as the security flavor, and with a service of
RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY. If SP4_MACH_CRED is specified, then
the client wants to use an RPCSEC_GSS-based machine credential to protect its state. The
server note the principal the EXCHANGE_ID operation was sent with, and the GSS
mechanism used. These notes collectively comprise the machine credential.

After the client ID is confirmed, as long as the lease associated with the client ID is
unexpired, a subsequent EXCHANGE_ID operation that uses the same
eia_clientowner.co_owner as the first EXCHANGE_ID also use the same machine
credential as the first EXCHANGE_ID. The server returns the same client ID for the
subsequent EXCHANGE_ID as that returned from the first EXCHANGE_ID.

SP4_SSV. If spa_how is SP4_SSV, then the client send the EXCHANGE_ID operation with
RPCSEC_GSS as the security flavor, and with a service of RPC_GSS_SVC_INTEGRITY or
RPC_GSS_SVC_PRIVACY. If SP4_SSV is specified, then the client wants to use the SSV to protect
its state. The server records the credential used in the request as the machine credential (as
defined above) for the eia_clientowner.co_owner. The CREATE_SESSION operation that
confirms the client ID use the same machine credential.

When a client specifies SP4_MACH_CRED or SP4_SSV, it also provides two lists of operations (each
expressed as a bitmap). The first list is spo_must_enforce and consists of those operations the
client send (subject to the server confirming the list of operations in the result of
EXCHANGE_ID) with the machine credential (if SP4_MACH_CRED protection is specified) or the
SSV-based credential (if SP4_SSV protection is used). The client send the operations with
RPCSEC_GSS credentials that specify the RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY
security service. Typically, the first list of operations includes EXCHANGE_ID, CREATE_SESSION,
DELEGPURGE, DESTROY_SESSION, BIND_CONN_TO_SESSION, and DESTROY_CLIENTID. The client

 specify in this list any operations that require a filehandle because the server's
access policies conflict with the client's choice, and thus the client would then be unable to
access a subset of the server's namespace.

Note that if SP4_SSV protection is specified, and the client indicates that CREATE_SESSION must
be protected with SP4_SSV, because the SSV cannot exist without a confirmed client ID, the first
CREATE_SESSION instead be sent using the machine credential, and the server
accept the machine credential.

•
MUST NOT

• MUST

MUST

MUST

• MUST

MUST

MUST

MUST

SHOULD NOT
MAY

MUST MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 449

There is a corresponding result, also called spo_must_enforce, of the operations for which the
server will require SP4_MACH_CRED or SP4_SSV protection. Normally, the server's result equals
the client's argument, but the result be different. If the client requests one or more
operations in the set { EXCHANGE_ID, CREATE_SESSION, DELEGPURGE, DESTROY_SESSION,
BIND_CONN_TO_SESSION, DESTROY_CLIENTID }, then the result spo_must_enforce include
the operations the client requested from that set.

If spo_must_enforce in the results has BIND_CONN_TO_SESSION set, then connection binding
enforcement is enabled, and the client use the machine (if SP4_MACH_CRED protection is
used) or SSV (if SP4_SSV protection is used) credential on calls to BIND_CONN_TO_SESSION.

The second list is spo_must_allow and consists of those operations the client wants to have the
option of sending with the machine credential or the SSV-based credential, even if the object the
operations are performed on is not owned by the machine or SSV credential.

The corresponding result, also called spo_must_allow, consists of the operations the server will
allow the client to use SP4_SSV or SP4_MACH_CRED credentials with. Normally, the server's result
equals the client's argument, but the result be different.

The purpose of spo_must_allow is to allow clients to solve the following conundrum. Suppose the
client ID is confirmed with EXCHGID4_FLAG_BIND_PRINC_STATEID, and it calls OPEN with the
RPCSEC_GSS credentials of a normal user. Now suppose the user's credentials expire, and cannot
be renewed (e.g., a Kerberos ticket granting ticket expires, and the user has logged off and will
not be acquiring a new ticket granting ticket). The client will be unable to send CLOSE without
the user's credentials, which is to say the client has to either leave the state on the server or re-
send EXCHANGE_ID with a new verifier to clear all state, that is, unless the client includes CLOSE
on the list of operations in spo_must_allow and the server agrees.

The SP4_SSV protection parameters also have:

ssp_hash_algs:
This is the set of algorithms the client supports for the purpose of computing the digests
needed for the internal SSV GSS mechanism and for the SET_SSV operation. Each
algorithm is specified as an object identifier (OID). The algorithms for a server
are id-sha1, id-sha224, id-sha256, id-sha384, and id-sha512 .

Due to known weaknesses in id-sha1, it is that the client specify at least
one algorithm within ssp_hash_algs other than id-sha1.

The algorithm the server selects among the set is indicated in spi_hash_alg, a field of
spr_ssv_prot_info. The field spi_hash_alg is an index into the array ssp_hash_algs. Because
of known the weaknesses in id-sha1, it is that it not be selected by the
server as long as ssp_hash_algs contains any other supported algorithm.

If the server does not support any of the offered algorithms, it returns
NFS4ERR_HASH_ALG_UNSUPP. If ssp_hash_algs is empty, the server return
NFS4ERR_INVAL.

MAY

MUST

MUST

MAY

REQUIRED
[25]

RECOMMENDED

RECOMMENDED

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 450

ssp_encr_algs:
This is the set of algorithms the client supports for the purpose of providing privacy
protection for the internal SSV GSS mechanism. Each algorithm is specified as an OID. The

 algorithm for a server is id-aes256-CBC. The algorithms are id-
aes192-CBC and id-aes128-CBC . The selected algorithm is returned in spi_encr_alg, an
index into ssp_encr_algs. If the server does not support any of the offered algorithms, it
returns NFS4ERR_ENCR_ALG_UNSUPP. If ssp_encr_algs is empty, the server return
NFS4ERR_INVAL. Note that due to previously stated requirements and recommendations
on the relationships between key length and hash length, some combinations of

 and encryption algorithm and hash algorithm either
 or be used. Table 21 summarizes the illegal and discouraged combinations.

ssp_window:
This is the number of SSV versions the client wants the server to maintain (i.e., each
successful call to SET_SSV produces a new version of the SSV). If ssp_window is zero, the
server return NFS4ERR_INVAL. The server responds with spi_window, which

 exceed ssp_window and be at least one. Any requests on the backchannel or
fore channel that are using a version of the SSV that is outside the window will fail with an
ONC RPC authentication error, and the requester will have to retry them with the same
slot ID and sequence ID.

ssp_num_gss_handles:
This is the number of RPCSEC_GSS handles the server should create that are based on the
GSS SSV mechanism (see Section 2.10.9). It is not the total number of RPCSEC_GSS handles
for the client ID. Indeed, subsequent calls to EXCHANGE_ID will add RPCSEC_GSS handles.
The server responds with a list of handles in spi_handles. If the client asks for at least one
handle and the server cannot create it, the server return an error. The handles in
spi_handles are not available for use until the client ID is confirmed, which could be
immediately if EXCHANGE_ID returns EXCHGID4_FLAG_CONFIRMED_R, or upon
successful confirmation from CREATE_SESSION.

While a client ID can span all the connections that are connected to a server sharing the
same eir_server_owner.so_major_id, the RPCSEC_GSS handles returned in spi_handles can
only be used on connections connected to a server that returns the same the
eir_server_owner.so_major_id and eir_server_owner.so_minor_id on each connection. It is
permissible for the client to set ssp_num_gss_handles to zero; the client can create more
handles with another EXCHANGE_ID call.

Because each SSV RPCSEC_GSS handle shares a common SSV GSS context, there are
security considerations specific to this situation discussed in Section 2.10.10.

The seq_window (see Section 5.2.3.1 of RFC 2203) of each RPCSEC_GSS handle in
spi_handle be the same as the seq_window of the RPCSEC_GSS handle used for the
credential of the RPC request of which the EXCHANGE_ID operation was sent as a part.

REQUIRED RECOMMENDED
[26]

MUST

RECOMMENDED REQUIRED SHOULD
NOT MUST NOT

MUST MUST
NOT MUST

MUST

[4]
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 451

https://www.rfc-editor.org/rfc/rfc2203#section-5.2.3.1

The arguments include an array of up to one element in length called eia_client_impl_id. If
eia_client_impl_id is present, it contains the information identifying the implementation of the
client. Similarly, the results include an array of up to one element in length called
eir_server_impl_id that identifies the implementation of the server. Servers accept a zero-
length eia_client_impl_id array, and clients accept a zero-length eir_server_impl_id array.

A possible use for implementation identifiers would be in diagnostic software that extracts this
information in an attempt to identify interoperability problems, performance workload
behaviors, or general usage statistics. Since the intent of having access to this information is for
planning or general diagnosis only, the client and server interpret this
implementation identity information in a way that affects how the implementation interacts
with its peer. The client and server are not allowed to depend on the peer's manifesting a
particular allowed behavior based on an implementation identifier but are required to
interoperate as specified elsewhere in the protocol specification.

Because it is possible that some implementations might violate the protocol specification and
interpret the identity information, implementations provide facilities to allow the NFSv4
client and server to be configured to set the contents of the nfs_impl_id structures sent to any
specified value.

Encryption Algorithm be combined with be combined with

id-aes128-CBC id-sha384, id-sha512

id-aes192-CBC id-sha1 id-sha512

id-aes256-CBC id-sha1, id-sha224

Table 21

MUST NOT SHOULD NOT

MUST
MUST

MUST NOT

MUST

18.35.4. IMPLEMENTATION

A server's client record is a 5-tuple:

co_ownerid:

The client identifier string, from the eia_clientowner structure of the EXCHANGE_ID4args
structure.

co_verifier:

A client-specific value used to indicate incarnations (where a client restart represents a new
incarnation), from the eia_clientowner structure of the EXCHANGE_ID4args structure.

principal:

The principal that was defined in the RPC header's credential and/or verifier at the time the
client record was established.

1.

2.

3.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 452

client ID:

The shorthand client identifier, generated by the server and returned via the eir_clientid
field in the EXCHANGE_ID4resok structure.

confirmed:

A private field on the server indicating whether or not a client record has been confirmed. A
client record is confirmed if there has been a successful CREATE_SESSION operation to
confirm it. Otherwise, it is unconfirmed. An unconfirmed record is established by an
EXCHANGE_ID call. Any unconfirmed record that is not confirmed within a lease period

 be removed.

The following identifiers represent special values for the fields in the records.

ownerid_arg:
The value of the eia_clientowner.co_ownerid subfield of the EXCHANGE_ID4args structure
of the current request.

verifier_arg:
The value of the eia_clientowner.co_verifier subfield of the EXCHANGE_ID4args structure
of the current request.

old_verifier_arg:
A value of the eia_clientowner.co_verifier field of a client record received in a previous
request; this is distinct from verifier_arg.

principal_arg:
The value of the RPCSEC_GSS principal for the current request.

old_principal_arg:
A value of the principal of a client record as defined by the RPC header's credential or
verifier of a previous request. This is distinct from principal_arg.

clientid_ret:
The value of the eir_clientid field the server will return in the EXCHANGE_ID4resok
structure for the current request.

old_clientid_ret:
The value of the eir_clientid field the server returned in the EXCHANGE_ID4resok
structure for a previous request. This is distinct from clientid_ret.

confirmed:
The client ID has been confirmed.

unconfirmed:
The client ID has not been confirmed.

4.

5.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 453

Since EXCHANGE_ID is a non-idempotent operation, we must consider the possibility that retries
occur as a result of a client restart, network partition, malfunctioning router, etc. Retries are
identified by the value of the eia_clientowner field of EXCHANGE_ID4args, and the method for
dealing with them is outlined in the scenarios below.

The scenarios are described in terms of the client record(s) a server has for a given co_ownerid.
Note that if the client ID was created specifying SP4_SSV state protection and EXCHANGE_ID as
the one of the operations in spo_must_allow, then the server authorize EXCHANGE_IDs
with the SSV principal in addition to the principal that created the client ID.

MUST

1. New Owner ID

If the server has no client records with eia_clientowner.co_ownerid matching ownerid_arg,
and EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in the EXCHANGE_ID, then a new
shorthand client ID (let us call it clientid_ret) is generated, and the following unconfirmed
record is added to the server's state.

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

Subsequently, the server returns clientid_ret.

2. Non-Update on Existing Client ID

If the server has the following confirmed record, and the request does not have
EXCHGID4_FLAG_UPD_CONFIRMED_REC_A set, then the request is the result of a retried
request due to a faulty router or lost connection, or the client is trying to determine if it can
perform trunking.

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, confirmed }

Since the record has been confirmed, the client must have received the server's reply from
the initial EXCHANGE_ID request. Since the server has a confirmed record, and since
EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, with the possible exception of
eir_server_owner.so_minor_id, the server returns the same result it did when the client ID's
properties were last updated (or if never updated, the result when the client ID was created).
The confirmed record is unchanged.

3. Client Collision

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the server has the following
confirmed record, then this request is likely the result of a chance collision between the
values of the eia_clientowner.co_ownerid subfield of EXCHANGE_ID4args for two different
clients.

{ ownerid_arg, *, old_principal_arg, old_clientid_ret, confirmed }

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 454

If there is currently no state associated with old_clientid_ret, or if there is state but the lease
has expired, then this case is effectively equivalent to the New Owner ID case of Section
18.35.4, Paragraph 7, Item 1. The confirmed record is deleted, the old_clientid_ret and its lock
state are deleted, a new shorthand client ID is generated, and the following unconfirmed
record is added to the server's state.

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

Subsequently, the server returns clientid_ret.

If old_clientid_ret has an unexpired lease with state, then no state of old_clientid_ret is
changed or deleted. The server returns NFS4ERR_CLID_INUSE to indicate that the client
should retry with a different value for the eia_clientowner.co_ownerid subfield of
EXCHANGE_ID4args. The client record is not changed.

4. Replacement of Unconfirmed Record

If the EXCHGID4_FLAG_UPD_CONFIRMED_REC_A flag is not set, and the server has the
following unconfirmed record, then the client is attempting EXCHANGE_ID again on an
unconfirmed client ID, perhaps due to a retry, a client restart before client ID confirmation
(i.e., before CREATE_SESSION was called), or some other reason.

{ ownerid_arg, *, *, old_clientid_ret, unconfirmed }

It is possible that the properties of old_clientid_ret are different than those specified in the
current EXCHANGE_ID. Whether or not the properties are being updated, to eliminate
ambiguity, the server deletes the unconfirmed record, generates a new client ID
(clientid_ret), and establishes the following unconfirmed record:

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

5. Client Restart

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the server has the following
confirmed client record, then this request is likely from a previously confirmed client that
has restarted.

{ ownerid_arg, old_verifier_arg, principal_arg, old_clientid_ret, confirmed }

Since the previous incarnation of the same client will no longer be making requests, once the
new client ID is confirmed by CREATE_SESSION, byte-range locks and share reservations
should be released immediately rather than forcing the new incarnation to wait for the lease
time on the previous incarnation to expire. Furthermore, session state should be removed
since if the client had maintained that information across restart, this request would not
have been sent. If the server supports neither the CLAIM_DELEGATE_PREV nor
CLAIM_DELEG_PREV_FH claim types, associated delegations should be purged as well;
otherwise, delegations are retained and recovery proceeds according to Section 10.2.1.

After processing, clientid_ret is returned to the client and this client record is added:

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 455

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

The previously described confirmed record continues to exist, and thus the same
ownerid_arg exists in both a confirmed and unconfirmed state at the same time. The number
of states can collapse to one once the server receives an applicable CREATE_SESSION or
EXCHANGE_ID.

If the server subsequently receives a successful CREATE_SESSION that confirms
clientid_ret, then the server atomically destroys the confirmed record and makes the
unconfirmed record confirmed as described in Section 18.36.3.
If the server instead subsequently receives an EXCHANGE_ID with the client owner equal
to ownerid_arg, one strategy is to simply delete the unconfirmed record, and process the
EXCHANGE_ID as described in the entirety of Section 18.35.4.

◦

◦

6. Update

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has the following
confirmed record, then this request is an attempt at an update.

{ ownerid_arg, verifier_arg, principal_arg, clientid_ret, confirmed }

Since the record has been confirmed, the client must have received the server's reply from
the initial EXCHANGE_ID request. The server allows the update, and the client record is left
intact.

7. Update but No Confirmed Record

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has no confirmed record
corresponding ownerid_arg, then the server returns NFS4ERR_NOENT and leaves any
unconfirmed record intact.

8. Update but Wrong Verifier

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has the following
confirmed record, then this request is an illegal attempt at an update, perhaps because of a
retry from a previous client incarnation.

{ ownerid_arg, old_verifier_arg, *, clientid_ret, confirmed }

The server returns NFS4ERR_NOT_SAME and leaves the client record intact.

9. Update but Wrong Principal

If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server has the following
confirmed record, then this request is an illegal attempt at an update by an unauthorized
principal.

{ ownerid_arg, verifier_arg, old_principal_arg, clientid_ret, confirmed }

The server returns NFS4ERR_PERM and leaves the client record intact.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 456

18.36. Operation 43: CREATE_SESSION - Create New Session and Confirm
Client ID
18.36.1. ARGUMENT

struct channel_attrs4 {
 count4 ca_headerpadsize;
 count4 ca_maxrequestsize;
 count4 ca_maxresponsesize;
 count4 ca_maxresponsesize_cached;
 count4 ca_maxoperations;
 count4 ca_maxrequests;
 uint32_t ca_rdma_ird<1>;
};

const CREATE_SESSION4_FLAG_PERSIST = 0x00000001;
const CREATE_SESSION4_FLAG_CONN_BACK_CHAN = 0x00000002;
const CREATE_SESSION4_FLAG_CONN_RDMA = 0x00000004;

struct CREATE_SESSION4args {
 clientid4 csa_clientid;
 sequenceid4 csa_sequence;

 uint32_t csa_flags;

 channel_attrs4 csa_fore_chan_attrs;
 channel_attrs4 csa_back_chan_attrs;

 uint32_t csa_cb_program;
 callback_sec_parms4 csa_sec_parms<>;
};

18.36.2. RESULT

struct CREATE_SESSION4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequence;

 uint32_t csr_flags;

 channel_attrs4 csr_fore_chan_attrs;
 channel_attrs4 csr_back_chan_attrs;
};

union CREATE_SESSION4res switch (nfsstat4 csr_status) {
case NFS4_OK:
 CREATE_SESSION4resok csr_resok4;
default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 457

csa_clientid:

csa_sequence:

csa_flags:

18.36.3. DESCRIPTION

This operation is used by the client to create new session objects on the server.

CREATE_SESSION can be sent with or without a preceding SEQUENCE operation in the same
COMPOUND procedure. If CREATE_SESSION is sent with a preceding SEQUENCE operation, any
session created by CREATE_SESSION has no direct relation to the session specified in the
SEQUENCE operation, although the two sessions might be associated with the same client ID. If
CREATE_SESSION is sent without a preceding SEQUENCE, then it be the only operation in
the COMPOUND procedure's request. If it is not, the server return NFS4ERR_NOT_ONLY_OP.

In addition to creating a session, CREATE_SESSION has the following effects:

The first session created with a new client ID serves to confirm the creation of that client's
state on the server. The server returns the parameter values for the new session.
The connection CREATE_SESSION that is sent over is associated with the session's fore
channel.

The arguments and results of CREATE_SESSION are described as follows:

This is the client ID with which the new session will be associated. The
corresponding result is csr_sessionid, the session ID of the new session.

Each client ID serializes CREATE_SESSION via a per-client ID sequence number
(see Section 18.36.4). The corresponding result is csr_sequence, which be equal to
csa_sequence.

In the next three arguments, the client offers a value that is to be a property of the session.
Except where stated otherwise, it is that the server accept the value. If it is not
acceptable, the server use a different value. Regardless, the server return the value
the session will use (which will be either what the client offered, or what the server is insisting
on) to the client.

The csa_flags field contains a list of the following flag bits:

CREATE_SESSION4_FLAG_PERSIST:
If CREATE_SESSION4_FLAG_PERSIST is set, the client wants the server to provide a
persistent reply cache. For sessions in which only idempotent operations will be
used (e.g., a read-only session), clients set
CREATE_SESSION4_FLAG_PERSIST. If the server does not or cannot provide a
persistent reply cache, the server set CREATE_SESSION4_FLAG_PERSIST
in the field csr_flags.

If the server is a pNFS metadata server, for reasons described in Section 12.5.2 it
 support CREATE_SESSION4_FLAG_PERSIST if it supports the layout_hint

(Section 5.12.4) attribute.

MUST
MUST

•

•

MUST

RECOMMENDED
MAY MUST

SHOULD NOT

MUST NOT

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 458

csa_fore_chan_attrs, csa_back_chan_attrs:

CREATE_SESSION4_FLAG_CONN_BACK_CHAN:
If CREATE_SESSION4_FLAG_CONN_BACK_CHAN is set in csa_flags, the client is
requesting that the connection over which the CREATE_SESSION operation arrived
be associated with the session's backchannel in addition to its fore channel. If the
server agrees, it sets CREATE_SESSION4_FLAG_CONN_BACK_CHAN in the result field
csr_flags. If CREATE_SESSION4_FLAG_CONN_BACK_CHAN is not set in csa_flags, then
CREATE_SESSION4_FLAG_CONN_BACK_CHAN be set in csr_flags.

CREATE_SESSION4_FLAG_CONN_RDMA:
If CREATE_SESSION4_FLAG_CONN_RDMA is set in csa_flags, and if the connection
over which the CREATE_SESSION operation arrived is currently in non-RDMA mode
but has the capability to operate in RDMA mode, then the client is requesting that
the server "step up" to RDMA mode on the connection. If the server agrees, it sets
CREATE_SESSION4_FLAG_CONN_RDMA in the result field csr_flags. If
CREATE_SESSION4_FLAG_CONN_RDMA is not set in csa_flags, then
CREATE_SESSION4_FLAG_CONN_RDMA be set in csr_flags. Note that once
the server agrees to step up, it and the client exchange all future traffic on the
connection with RPC RDMA framing and not Record Marking ().

The csa_fore_chan_attrs and csa_back_chan_attrs
fields apply to attributes of the fore channel (which conveys requests originating from the
client to the server), and the backchannel (the channel that conveys callback requests
originating from the server to the client), respectively. The results are in corresponding
structures called csr_fore_chan_attrs and csr_back_chan_attrs. The results establish
attributes for each channel, and on all subsequent use of each channel of the session. Each
structure has the following fields:

ca_headerpadsize:
The maximum amount of padding the requester is willing to apply to ensure that
write payloads are aligned on some boundary at the replier. For each channel, the
server

will reply in ca_headerpadsize with its preferred value, or zero if padding is not
in use, and

 decrease this value but increase it.

ca_maxrequestsize:
The maximum size of a COMPOUND or CB_COMPOUND request that will be sent.
This size represents the XDR encoded size of the request, including the RPC headers
(including security flavor credentials and verifiers) but excludes any RPC transport
framing headers. Imagine a request coming over a non-RDMA TCP/IP connection,
and that it has a single Record Marking header preceding it. The maximum
allowable count encoded in the header will be ca_maxrequestsize. If a requester
sends a request that exceeds ca_maxrequestsize, the error NFS4ERR_REQ_TOO_BIG
will be returned per the description in Section 2.10.6.4. For each channel, the server

 decrease this value but increase it.

MUST NOT

MUST NOT
MUST

[32]

•

• MAY MUST NOT

MAY MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 459

ca_maxresponsesize:
The maximum size of a COMPOUND or CB_COMPOUND reply that the requester will
accept from the replier including RPC headers (see the ca_maxrequestsize
definition). For each channel, the server decrease this value, but
increase it. However, if the client selects a value for ca_maxresponsesize such that a
replier on a channel could never send a response, the server return
NFS4ERR_TOOSMALL in the CREATE_SESSION reply. After the session is created, if a
requester sends a request for which the size of the reply would exceed this value,
the replier will return NFS4ERR_REP_TOO_BIG, per the description in Section
2.10.6.4.

ca_maxresponsesize_cached:
Like ca_maxresponsesize, but the maximum size of a reply that will be stored in the
reply cache (Section 2.10.6.1). For each channel, the server decrease this value,
but increase it. If, in the reply to CREATE_SESSION, the value of
ca_maxresponsesize_cached of a channel is less than the value of
ca_maxresponsesize of the same channel, then this is an indication to the requester
that it needs to be selective about which replies it directs the replier to cache; for
example, large replies from non-idempotent operations (e.g., COMPOUND requests
with a READ operation) should not be cached. The requester decides which replies
to cache via an argument to the SEQUENCE (the sa_cachethis field, see Section 18.46)
or CB_SEQUENCE (the csa_cachethis field, see Section 20.9) operations. After the
session is created, if a requester sends a request for which the size of the reply
would exceed ca_maxresponsesize_cached, the replier will return
NFS4ERR_REP_TOO_BIG_TO_CACHE, per the description in Section 2.10.6.4.

ca_maxoperations:
The maximum number of operations the replier will accept in a COMPOUND or
CB_COMPOUND. For the backchannel, the server change the value the
client offers. For the fore channel, the server change the requested value. After
the session is created, if a requester sends a COMPOUND or CB_COMPOUND with
more operations than ca_maxoperations, the replier return
NFS4ERR_TOO_MANY_OPS.

ca_maxrequests:
The maximum number of concurrent COMPOUND or CB_COMPOUND requests the
requester will send on the session. Subsequent requests will each be assigned a slot
identifier by the requester within the range zero to ca_maxrequests - 1 inclusive. For
the backchannel, the server change the value the client offers. For the
fore channel, the server change the requested value.

ca_rdma_ird:
This array has a maximum of one element. If this array has one element, then the
element contains the inbound RDMA read queue depth (IRD). For each channel, the
server decrease this value, but increase it.

MAY MUST NOT

SHOULD

MAY
MUST NOT

MUST NOT
MAY

MUST

MUST NOT
MAY

MAY MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 460

csa_cb_program

csa_sec_parms

This is the ONC RPC program number the server use in any callbacks
sent through the backchannel to the client. The server specify an ONC RPC program
number equal to csa_cb_program and an ONC RPC version number equal to 4 in callbacks
sent to the client. If a CB_COMPOUND is sent to the client, the server use a minor
version number of 1. There is no corresponding result.

The field csa_sec_parms is an array of acceptable security credentials the server
can use on the session's backchannel. Three security flavors are supported: AUTH_NONE,
AUTH_SYS, and RPCSEC_GSS. If AUTH_NONE is specified for a credential, then this says the
client is authorizing the server to use AUTH_NONE on all callbacks for the session. If
AUTH_SYS is specified, then the client is authorizing the server to use AUTH_SYS on all
callbacks, using the credential specified cbsp_sys_cred. If RPCSEC_GSS is specified, then the
server is allowed to use the RPCSEC_GSS context specified in cbsp_gss_parms as the
RPCSEC_GSS context in the credential of the RPC header of callbacks to the client. There is
no corresponding result.

The RPCSEC_GSS context for the backchannel is specified via a pair of values of data type
gsshandle4_t. The data type gsshandle4_t represents an RPCSEC_GSS handle, and is
precisely the same as the data type of the "handle" field of the rpc_gss_init_res data type
defined in "Context Creation Response - Successful Acceptance", .

The first RPCSEC_GSS handle, gcbp_handle_from_server, is the fore handle the server
returned to the client (either in the handle field of data type rpc_gss_init_res or as one of
the elements of the spi_handles field returned in the reply to EXCHANGE_ID) when the
RPCSEC_GSS context was created on the server. The second handle,
gcbp_handle_from_client, is the back handle to which the client will map the RPCSEC_GSS
context. The server can immediately use the value of gcbp_handle_from_client in the
RPCSEC_GSS credential in callback RPCs. That is, the value in gcbp_handle_from_client can
be used as the value of the field "handle" in data type rpc_gss_cred_t (see "Elements of the
RPCSEC_GSS Security Protocol",) in callback RPCs. The server use the
RPCSEC_GSS security service specified in gcbp_service, i.e., it set the "service" field of
the rpc_gss_cred_t data type in RPCSEC_GSS credential to the value of gcbp_service (see
"RPC Request Header",).

If the RPCSEC_GSS handle identified by gcbp_handle_from_server does not exist on the
server, the server will return NFS4ERR_NOENT.

Within each element of csa_sec_parms, the fore and back RPCSEC_GSS contexts
share the same GSS context and have the same seq_window (see Section 5.2.3.1 of
RFC 2203). The fore and back RPCSEC_GSS context state are independent of each other
as far as the RPCSEC_GSS sequence number (see the seq_num field in the rpc_gss_cred_t
data type of Sections 5 and 5.3.1 of).

If an RPCSEC_GSS handle is using the SSV context (see Section 2.10.9), then because each
SSV RPCSEC_GSS handle shares a common SSV GSS context, there are security
considerations specific to this situation discussed in Section 2.10.10.

MUST
MUST

MUST

Section 5.2.3.1 of [4]

Section 5 of [4] MUST
MUST

Section 5.3.1 of [4]

MUST
MUST

[4]

[4]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 461

https://www.rfc-editor.org/rfc/rfc2203#section-5.2.3.1
https://www.rfc-editor.org/rfc/rfc2203#section-5
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.1
https://www.rfc-editor.org/rfc/rfc2203#section-5.2.3.1
https://www.rfc-editor.org/rfc/rfc2203#section-5
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.1

Once the session is created, the first SEQUENCE or CB_SEQUENCE received on a slot have a
sequence ID equal to 1; if not, the replier return NFS4ERR_SEQ_MISORDERED.

MUST
MUST

18.36.4. IMPLEMENTATION

To describe a possible implementation, the same notation for client records introduced in the
description of EXCHANGE_ID is used with the following addition:

clientid_arg: The value of the csa_clientid field of the CREATE_SESSION4args structure of the
current request.

Since CREATE_SESSION is a non-idempotent operation, we need to consider the possibility that
retries may occur as a result of a client restart, network partition, malfunctioning router, etc. For
each client ID created by EXCHANGE_ID, the server maintains a separate reply cache (called the
CREATE_SESSION reply cache) similar to the session reply cache used for SEQUENCE operations,
with two distinctions.

First, this is a reply cache just for detecting and processing CREATE_SESSION requests for a
given client ID.
Second, the size of the client ID reply cache is of one slot (and as a result, the
CREATE_SESSION request does not carry a slot number). This means that at most one
CREATE_SESSION request for a given client ID can be outstanding.

As previously stated, CREATE_SESSION can be sent with or without a preceding SEQUENCE
operation. Even if a SEQUENCE precedes CREATE_SESSION, the server maintain the
CREATE_SESSION reply cache, which is separate from the reply cache for the session associated
with a SEQUENCE. If CREATE_SESSION was originally sent by itself, the client send a retry of
the CREATE_SESSION operation within a COMPOUND preceded by a SEQUENCE. If
CREATE_SESSION was originally sent in a COMPOUND that started with a SEQUENCE, then the
client send a retry in a COMPOUND that starts with a SEQUENCE that has the same
session ID as the SEQUENCE of the original request. However, the client send a retry in a
COMPOUND that either has no preceding SEQUENCE, or has a preceding SEQUENCE that refers to
a different session than the original CREATE_SESSION. This might be necessary if the client sends
a CREATE_SESSION in a COMPOUND preceded by a SEQUENCE with session ID X, and session X
no longer exists. Regardless, any retry of CREATE_SESSION, with or without a preceding
SEQUENCE, use the same value of csa_sequence as the original.

After the client received a reply to an EXCHANGE_ID operation that contains a new, unconfirmed
client ID, the server expects the client to follow with a CREATE_SESSION operation to confirm the
client ID. The server expects value of csa_sequenceid in the arguments to that CREATE_SESSION
to be to equal the value of the field eir_sequenceid that was returned in results of the
EXCHANGE_ID that returned the unconfirmed client ID. Before the server replies to that
EXCHANGE_ID operation, it initializes the client ID slot to be equal to eir_sequenceid - 1

•

•

MUST

MAY

SHOULD
MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 462

(accounting for underflow), and records a contrived CREATE_SESSION result with a "cached"
result of NFS4ERR_SEQ_MISORDERED. With the client ID slot thus initialized, the processing of
the CREATE_SESSION operation is divided into four phases:

Client record look up. The server looks up the client ID in its client record table. If the server
contains no records with client ID equal to clientid_arg, then most likely the client's state has
been purged during a period of inactivity, possibly due to a loss of connectivity.
NFS4ERR_STALE_CLIENTID is returned, and no changes are made to any client records on
the server. Otherwise, the server goes to phase 2.
Sequence ID processing. If csa_sequenceid is equal to the sequence ID in the client ID's slot,
then this is a replay of the previous CREATE_SESSION request, and the server returns the
cached result. If csa_sequenceid is not equal to the sequence ID in the slot, and is more than
one greater (accounting for wraparound), then the server returns the error
NFS4ERR_SEQ_MISORDERED, and does not change the slot. If csa_sequenceid is equal to the
slot's sequence ID + 1 (accounting for wraparound), then the slot's sequence ID is set to
csa_sequenceid, and the CREATE_SESSION processing goes to the next phase. A subsequent
new CREATE_SESSION call over the same client ID use a csa_sequenceid that is one
greater than the sequence ID in the slot.
Client ID confirmation. If this would be the first session for the client ID, the
CREATE_SESSION operation serves to confirm the client ID. Otherwise, the client ID
confirmation phase is skipped and only the session creation phase occurs. Any case in which
there is more than one record with identical values for client ID represents a server
implementation error. Operation in the potential valid cases is summarized as follows.

Successful Confirmation

If the server has the following unconfirmed record, then this is the expected
confirmation of an unconfirmed record.

{ ownerid, verifier, principal_arg, clientid_arg, unconfirmed }

As noted in Section 18.35.4, the server might also have the following confirmed record.

{ ownerid, old_verifier, principal_arg, old_clientid, confirmed }

The server schedules the replacement of both records with:

{ ownerid, verifier, principal_arg, clientid_arg, confirmed }

The processing of CREATE_SESSION continues on to session creation. Once the session is
successfully created, the scheduled client record replacement is committed. If the
session is not successfully created, then no changes are made to any client records on
the server.

Unsuccessful Confirmation

If the server has the following record, then the client has changed principals after the
previous EXCHANGE_ID request, or there has been a chance collision between
shorthand client identifiers.

{ *, *, old_principal_arg, clientid_arg, * }

1.

2.

MUST

3.

◦

◦

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 463

Neither of these cases is permissible. Processing stops and NFS4ERR_CLID_INUSE is
returned to the client. No changes are made to any client records on the server.

Session creation. The server confirmed the client ID, either in this CREATE_SESSION
operation, or a previous CREATE_SESSION operation. The server examines the remaining
fields of the arguments.

The server creates the session by recording the parameter values used (including whether
the CREATE_SESSION4_FLAG_PERSIST flag is set and has been accepted by the server) and
allocating space for the session reply cache (if there is not enough space, the server returns
NFS4ERR_NOSPC). For each slot in the reply cache, the server sets the sequence ID to zero,
and records an entry containing a COMPOUND reply with zero operations and the error
NFS4ERR_SEQ_MISORDERED. This way, if the first SEQUENCE request sent has a sequence ID
equal to zero, the server can simply return what is in the reply cache:
NFS4ERR_SEQ_MISORDERED. The client initializes its reply cache for receiving callbacks in
the same way, and similarly, the first CB_SEQUENCE operation on a slot after session creation

 have a sequence ID of one.

If the session state is created successfully, the server associates the session with the client ID
provided by the client.

When a request that had CREATE_SESSION4_FLAG_CONN_RDMA set needs to be retried, the
retry be done on a new connection that is in non-RDMA mode. If properties of the new
connection are different enough that the arguments to CREATE_SESSION need to change,
then a non-retry be sent. The server will eventually dispose of any session that was
created on the original connection.

On the backchannel, the client and server might wish to have many slots, in some cases perhaps
more that the fore channel, in order to deal with the situations where the network link has high
latency and is the primary bottleneck for response to recalls. If so, and if the client provides too
few slots to the backchannel, the server might limit the number of recallable objects it gives to
the client.

Implementing RPCSEC_GSS callback support requires changes to both the client and server
implementations of RPCSEC_GSS. One possible set of changes includes:

Adding a data structure that wraps the GSS-API context with a reference count.
New functions to increment and decrement the reference count. If the reference count is
decremented to zero, the wrapper data structure and the GSS-API context it refers to would
be freed.
Change RPCSEC_GSS to create the wrapper data structure upon receiving GSS-API context
from gss_accept_sec_context() and gss_init_sec_context(). The reference count would be
initialized to 1.
Adding a function to map an existing RPCSEC_GSS handle to a pointer to the wrapper data
structure. The reference count would be incremented.
Adding a function to create a new RPCSEC_GSS handle from a pointer to the wrapper data
structure. The reference count would be incremented.

4.

MUST

MUST

MUST

•
•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 464

Replacing calls from RPCSEC_GSS that free GSS-API contexts, with calls to decrement the
reference count on the wrapper data structure.

•

18.37. Operation 44: DESTROY_SESSION - Destroy a Session
18.37.1. ARGUMENT

struct DESTROY_SESSION4args {
 sessionid4 dsa_sessionid;
};

18.37.2. RESULT

struct DESTROY_SESSION4res {
 nfsstat4 dsr_status;
};

18.37.3. DESCRIPTION

The DESTROY_SESSION operation closes the session and discards the session's reply cache, if any.
Any remaining connections associated with the session are immediately disassociated. If the
connection has no remaining associated sessions, the connection be closed by the server.
Locks, delegations, layouts, wants, and the lease, which are all tied to the client ID, are not
affected by DESTROY_SESSION.

DESTROY_SESSION be invoked on a connection that is associated with the session being
destroyed. In addition, if SP4_MACH_CRED state protection was specified when the client ID was
created, the RPCSEC_GSS principal that created the session be the one that destroys the
session, using RPCSEC_GSS privacy or integrity. If SP4_SSV state protection was specified when
the client ID was created, RPCSEC_GSS using the SSV mechanism (Section 2.10.9) be used,
with integrity or privacy.

If the COMPOUND request starts with SEQUENCE, and if the sessionids specified in SEQUENCE
and DESTROY_SESSION are the same, then

DESTROY_SESSION be the final operation in the COMPOUND request.
It is advisable to avoid placing DESTROY_SESSION in a COMPOUND request with other state-
modifying operations, because the DESTROY_SESSION will destroy the reply cache.
Because the session and its reply cache are destroyed, a client that retries the request may
receive an error in reply to the retry, even though the original request was successful.

If the COMPOUND request starts with SEQUENCE, and if the sessionids specified in SEQUENCE
and DESTROY_SESSION are different, then DESTROY_SESSION can appear in any position of the
COMPOUND request (except for the first position). The two sessionids can belong to different
client IDs.

MAY

MUST

MUST

MUST

• MUST
•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 465

If the COMPOUND request does not start with SEQUENCE, and if DESTROY_SESSION is not the
sole operation, then server return NFS4ERR_NOT_ONLY_OP.

If there is a backchannel on the session and the server has outstanding CB_COMPOUND
operations for the session which have not been replied to, then the server refuse to destroy
the session and return an error. If so, then in the event the backchannel is down, the server

 return NFS4ERR_CB_PATH_DOWN to inform the client that the backchannel needs to be
repaired before the server will allow the session to be destroyed. Otherwise, the error
CB_BACK_CHAN_BUSY be returned to indicate that there are CB_COMPOUNDs that need
to be replied to. The client reply to all outstanding CB_COMPOUNDs before re-sending
DESTROY_SESSION.

MUST

MAY

SHOULD

SHOULD
SHOULD

18.38. Operation 45: FREE_STATEID - Free Stateid with No Locks
18.38.1. ARGUMENT

struct FREE_STATEID4args {
 stateid4 fsa_stateid;
};

18.38.2. RESULT

struct FREE_STATEID4res {
 nfsstat4 fsr_status;
};

18.38.3. DESCRIPTION

The FREE_STATEID operation is used to free a stateid that no longer has any associated locks
(including opens, byte-range locks, delegations, and layouts). This may be because of client
LOCKU operations or because of server revocation. If there are valid locks (of any kind)
associated with the stateid in question, the error NFS4ERR_LOCKS_HELD will be returned, and
the associated stateid will not be freed.

When a stateid is freed that had been associated with revoked locks, by sending the
FREE_STATEID operation, the client acknowledges the loss of those locks. This allows the server,
once all such revoked state is acknowledged, to allow that client again to reclaim locks, without
encountering the edge conditions discussed in Section 8.4.2.

Once a successful FREE_STATEID is done for a given stateid, any subsequent use of that stateid
will result in an NFS4ERR_BAD_STATEID error.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 466

18.39. Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation
18.39.1. ARGUMENT

typedef nfstime4 attr_notice4;

struct GET_DIR_DELEGATION4args {
 /* CURRENT_FH: delegated directory */
 bool gdda_signal_deleg_avail;
 bitmap4 gdda_notification_types;
 attr_notice4 gdda_child_attr_delay;
 attr_notice4 gdda_dir_attr_delay;
 bitmap4 gdda_child_attributes;
 bitmap4 gdda_dir_attributes;
};

18.39.2. RESULT

struct GET_DIR_DELEGATION4resok {
 verifier4 gddr_cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 gddr_stateid;
 /* Which notifications can the server support */
 bitmap4 gddr_notification;
 bitmap4 gddr_child_attributes;
 bitmap4 gddr_dir_attributes;
};

enum gddrnf4_status {
 GDD4_OK = 0,
 GDD4_UNAVAIL = 1
};

union GET_DIR_DELEGATION4res_non_fatal
 switch (gddrnf4_status gddrnf_status) {
 case GDD4_OK:
 GET_DIR_DELEGATION4resok gddrnf_resok4;
 case GDD4_UNAVAIL:
 bool gddrnf_will_signal_deleg_avail;
};

union GET_DIR_DELEGATION4res
 switch (nfsstat4 gddr_status) {
 case NFS4_OK:
 GET_DIR_DELEGATION4res_non_fatal gddr_res_non_fatal4;
 default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 467

18.39.3. DESCRIPTION

The GET_DIR_DELEGATION operation is used by a client to request a directory delegation. The
directory is represented by the current filehandle. The client also specifies whether it wants the
server to notify it when the directory changes in certain ways by setting one or more bits in a
bitmap. The server may refuse to grant the delegation. In that case, the server will return
NFS4ERR_DIRDELEG_UNAVAIL. If the server decides to hand out the delegation, it will return a
cookie verifier for that directory. If the cookie verifier changes when the client is holding the
delegation, the delegation will be recalled unless the client has asked for notification for this
event.

The server will also return a directory delegation stateid, gddr_stateid, as a result of the
GET_DIR_DELEGATION operation. This stateid will appear in callback messages related to the
delegation, such as notifications and delegation recalls. The client will use this stateid to return
the delegation voluntarily or upon recall. A delegation is returned by calling the DELEGRETURN
operation.

The server might not be able to support notifications of certain events. If the client asks for such
notifications, the server inform the client of its inability to do so as part of the
GET_DIR_DELEGATION reply by not setting the appropriate bits in the supported notifications
bitmask, gddr_notification, contained in the reply. The server add bits to
gddr_notification that the client did not request.

The GET_DIR_DELEGATION operation can be used for both normal and named attribute
directories.

If client sets gdda_signal_deleg_avail to TRUE, then it is registering with the client a "want" for a
directory delegation. If the delegation is not available, and the server supports and will honor the
"want", the results will have gddrnf_will_signal_deleg_avail set to TRUE and no error will be
indicated on return. If so, the client should expect a future CB_RECALLABLE_OBJ_AVAIL
operation to indicate that a directory delegation is available. If the server does not wish to honor
the "want" or is not able to do so, it returns the error NFS4ERR_DIRDELEG_UNAVAIL. If the
delegation is immediately available, the server return it with the response to the
operation, rather than via a callback.

When a client makes a request for a directory delegation while it already holds a directory
delegation for that directory (including the case where it has been recalled but not yet returned
by the client or revoked by the server), the server reply with the value of gddr_status set to
NFS4_OK, the value of gddrnf_status set to GDD4_UNAVAIL, and the value of
gddrnf_will_signal_deleg_avail set to FALSE. The delegation the client held before the request
remains intact, and its state is unchanged. The current stateid is not changed (see Section
16.2.3.1.2 for a description of the current stateid).

MUST

MUST NOT

SHOULD

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 468

18.39.4. IMPLEMENTATION

Directory delegations provide the benefit of improving cache consistency of namespace
information. This is done through synchronous callbacks. A server must support synchronous
callbacks in order to support directory delegations. In addition to that, asynchronous
notifications provide a way to reduce network traffic as well as improve client performance in
certain conditions.

Notifications are specified in terms of potential changes to the directory. A client can ask to be
notified of events by setting one or more bits in gdda_notification_types. The client can ask for
notifications on addition of entries to a directory (by setting the NOTIFY4_ADD_ENTRY in
gdda_notification_types), notifications on entry removal (NOTIFY4_REMOVE_ENTRY), renames
(NOTIFY4_RENAME_ENTRY), directory attribute changes (NOTIFY4_CHANGE_DIR_ATTRIBUTES),
and cookie verifier changes (NOTIFY4_CHANGE_COOKIE_VERIFIER) by setting one or more
corresponding bits in the gdda_notification_types field.

The client can also ask for notifications of changes to attributes of directory entries
(NOTIFY4_CHANGE_CHILD_ATTRIBUTES) in order to keep its attribute cache up to date.
However, any changes made to child attributes do not cause the delegation to be recalled. If a
client is interested in directory entry caching or negative name caching, it can set the
gdda_notification_types appropriately to its particular need and the server will notify it of all
changes that would otherwise invalidate its name cache. The kind of notification a client asks for
may depend on the directory size, its rate of change, and the applications being used to access
that directory. The enumeration of the conditions under which a client might ask for a
notification is out of the scope of this specification.

For attribute notifications, the client will set bits in the gdda_dir_attributes bitmap to indicate
which attributes it wants to be notified of. If the server does not support notifications for changes
to a certain attribute, it set that attribute in the supported attribute bitmap
specified in the reply (gddr_dir_attributes). The client will also set in the gdda_child_attributes
bitmap the attributes of directory entries it wants to be notified of, and the server will indicate in
gddr_child_attributes which attributes of directory entries it will notify the client of.

The client will also let the server know if it wants to get the notification as soon as the attribute
change occurs or after a certain delay by setting a delay factor; gdda_child_attr_delay is for
attribute changes to directory entries and gdda_dir_attr_delay is for attribute changes to the
directory. If this delay factor is set to zero, that indicates to the server that the client wants to be
notified of any attribute changes as soon as they occur. If the delay factor is set to N seconds, the
server will make a best-effort guarantee that attribute updates are synchronized within N
seconds. If the client asks for a delay factor that the server does not support or that may cause
significant resource consumption on the server by causing the server to send a lot of
notifications, the server should not commit to sending out notifications for attributes and
therefore must not set the appropriate bit in the gddr_child_attributes and gddr_dir_attributes
bitmaps in the response.

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 469

The client use a security tuple (Section 2.6.1) that the directory or its applicable ancestor
(Section 2.6) is exported with. If not, the server return NFS4ERR_WRONGSEC to the
operation that both precedes GET_DIR_DELEGATION and sets the current filehandle (see Section
2.6.3.1).

The directory delegation covers all the entries in the directory except the parent entry. That
means if a directory and its parent both hold directory delegations, any changes to the parent
will not cause a notification to be sent for the child even though the child's parent entry points to
the parent directory.

MUST
MUST

18.40. Operation 47: GETDEVICEINFO - Get Device Information
18.40.1. ARGUMENT

struct GETDEVICEINFO4args {
 deviceid4 gdia_device_id;
 layouttype4 gdia_layout_type;
 count4 gdia_maxcount;
 bitmap4 gdia_notify_types;
};

18.40.2. RESULT

struct GETDEVICEINFO4resok {
 device_addr4 gdir_device_addr;
 bitmap4 gdir_notification;
};

union GETDEVICEINFO4res switch (nfsstat4 gdir_status) {
case NFS4_OK:
 GETDEVICEINFO4resok gdir_resok4;
case NFS4ERR_TOOSMALL:
 count4 gdir_mincount;
default:
 void;
};

18.40.3. DESCRIPTION

The GETDEVICEINFO operation returns pNFS storage device address information for the
specified device ID. The client identifies the device information to be returned by providing the
gdia_device_id and gdia_layout_type that uniquely identify the device. The client provides
gdia_maxcount to limit the number of bytes for the result. This maximum size represents all of
the data being returned within the GETDEVICEINFO4resok structure and includes the XDR
overhead. The server may return less data. If the server is unable to return any information
within the gdia_maxcount limit, the error NFS4ERR_TOOSMALL will be returned. However, if
gdia_maxcount is zero, NFS4ERR_TOOSMALL be returned.MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 470

The da_layout_type field of the gdir_device_addr returned by the server be equal to the
gdia_layout_type specified by the client. If it is not equal, the client ignore the response
as invalid and behave as if the server returned an error, even if the client does have support for
the layout type returned.

The client also provides a notification bitmap, gdia_notify_types, for the device ID mapping
notification for which it is interested in receiving; the server must support device ID notifications
for the notification request to have affect. The notification mask is composed in the same manner
as the bitmap for file attributes (Section 3.3.7). The numbers of bit positions are listed in the
notify_device_type4 enumeration type (Section 20.12). Only two enumerated values of
notify_device_type4 currently apply to GETDEVICEINFO: NOTIFY_DEVICEID4_CHANGE and
NOTIFY_DEVICEID4_DELETE (see Section 20.12).

The notification bitmap applies only to the specified device ID. If a client sends a
GETDEVICEINFO operation on a deviceID multiple times, the last notification bitmap is used by
the server for subsequent notifications. If the bitmap is zero or empty, then the device ID's
notifications are turned off.

If the client wants to just update or turn off notifications, it send a GETDEVICEINFO
operation with gdia_maxcount set to zero. In that event, if the device ID is valid, the reply's
da_addr_body field of the gdir_device_addr field will be of zero length.

If an unknown device ID is given in gdia_device_id, the server returns NFS4ERR_NOENT.
Otherwise, the device address information is returned in gdir_device_addr. Finally, if the server
supports notifications for device ID mappings, the gdir_notification result will contain a bitmap
of which notifications it will actually send to the client (via CB_NOTIFY_DEVICEID, see Section
20.12).

If NFS4ERR_TOOSMALL is returned, the results also contain gdir_mincount. The value of
gdir_mincount represents the minimum size necessary to obtain the device information.

MUST
SHOULD

MAY

18.40.4. IMPLEMENTATION

Aside from updating or turning off notifications, another use case for gdia_maxcount being set to
zero is to validate a device ID.

The client request a notification for changes or deletion of a device ID to device address
mapping so that the server can allow the client gracefully use a new mapping, without having
pending I/O fail abruptly, or force layouts using the device ID to be recalled or revoked.

It is possible that GETDEVICEINFO (and GETDEVICELIST) will race with CB_NOTIFY_DEVICEID,
i.e., CB_NOTIFY_DEVICEID arrives before the client gets and processes the response to
GETDEVICEINFO or GETDEVICELIST. The analysis of the race leverages the fact that the server

 delete a device ID that is referred to by a layout the client has.

CB_NOTIFY_DEVICEID deletes a device ID. If the client believes it has layouts that refer to the
device ID, then it is possible that layouts referring to the deleted device ID have been
revoked. The client should send a TEST_STATEID request using the stateid for each layout

SHOULD

MUST NOT

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 471

that might have been revoked. If TEST_STATEID indicates that any layouts have been
revoked, the client must recover from layout revocation as described in Section 12.5.6. If
TEST_STATEID indicates that at least one layout has not been revoked, the client should send
a GETDEVICEINFO operation on the supposedly deleted device ID to verify that the device ID
has been deleted.

If GETDEVICEINFO indicates that the device ID does not exist, then the client assumes the
server is faulty and recovers by sending an EXCHANGE_ID operation. If GETDEVICEINFO
indicates that the device ID does exist, then while the server is faulty for sending an
erroneous device ID deletion notification, the degree to which it is faulty does not require the
client to create a new client ID.

If the client does not have layouts that refer to the device ID, no harm is done. The client
should mark the device ID as deleted, and when GETDEVICEINFO or GETDEVICELIST results
are received that indicate that the device ID has been in fact deleted, the device ID should be
removed from the client's cache.

CB_NOTIFY_DEVICEID indicates that a device ID's device addressing mappings have changed.
The client should assume that the results from the in-progress GETDEVICEINFO will be stale
for the device ID once received, and so it should send another GETDEVICEINFO on the device
ID.

•

18.41. Operation 48: GETDEVICELIST - Get All Device Mappings for a File
System
18.41.1. ARGUMENT

struct GETDEVICELIST4args {
 /* CURRENT_FH: object belonging to the file system */
 layouttype4 gdla_layout_type;

 /* number of deviceIDs to return */
 count4 gdla_maxdevices;

 nfs_cookie4 gdla_cookie;
 verifier4 gdla_cookieverf;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 472

18.41.2. RESULT

struct GETDEVICELIST4resok {
 nfs_cookie4 gdlr_cookie;
 verifier4 gdlr_cookieverf;
 deviceid4 gdlr_deviceid_list<>;
 bool gdlr_eof;
};

union GETDEVICELIST4res switch (nfsstat4 gdlr_status) {
case NFS4_OK:
 GETDEVICELIST4resok gdlr_resok4;
default:
 void;
};

18.41.3. DESCRIPTION

This operation is used by the client to enumerate all of the device IDs that a server's file system
uses.

The client provides a current filehandle of a file object that belongs to the file system (i.e., all file
objects sharing the same fsid as that of the current filehandle) and the layout type in
gdia_layout_type. Since this operation might require multiple calls to enumerate all the device
IDs (and is thus similar to the operation), the client also provides
gdia_cookie and gdia_cookieverf to specify the current cursor position in the list. When the client
wants to read from the beginning of the file system's device mappings, it sets gdla_cookie to zero.
The field gdla_cookieverf be ignored by the server when gdla_cookie is zero. The client
provides gdla_maxdevices to limit the number of device IDs in the result. If gdla_maxdevices is
zero, the server return NFS4ERR_INVAL. The server return fewer device IDs.

The successful response to the operation will contain the cookie, gdlr_cookie, and the cookie
verifier, gdlr_cookieverf, to be used on the subsequent GETDEVICELIST. A gdlr_eof value of TRUE
signifies that there are no remaining entries in the server's device list. Each element of
gdlr_deviceid_list contains a device ID.

READDIR (Section 18.23)

MUST

MUST MAY

18.41.4. IMPLEMENTATION

An example of the use of this operation is for pNFS clients and servers that use
LAYOUT4_BLOCK_VOLUME layouts. In these environments it may be helpful for a client to
determine device accessibility upon first file system access.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 473

18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout
18.42.1. ARGUMENT

union newtime4 switch (bool nt_timechanged) {
case TRUE:
 nfstime4 nt_time;
case FALSE:
 void;
};

union newoffset4 switch (bool no_newoffset) {
case TRUE:
 offset4 no_offset;
case FALSE:
 void;
};

struct LAYOUTCOMMIT4args {
 /* CURRENT_FH: file */
 offset4 loca_offset;
 length4 loca_length;
 bool loca_reclaim;
 stateid4 loca_stateid;
 newoffset4 loca_last_write_offset;
 newtime4 loca_time_modify;
 layoutupdate4 loca_layoutupdate;
};

18.42.2. RESULT

union newsize4 switch (bool ns_sizechanged) {
case TRUE:
 length4 ns_size;
case FALSE:
 void;
};

struct LAYOUTCOMMIT4resok {
 newsize4 locr_newsize;
};

union LAYOUTCOMMIT4res switch (nfsstat4 locr_status) {
case NFS4_OK:
 LAYOUTCOMMIT4resok locr_resok4;
default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 474

18.42.3. DESCRIPTION

The LAYOUTCOMMIT operation commits changes in the layout represented by the current
filehandle, client ID (derived from the session ID in the preceding SEQUENCE operation), byte-
range, and stateid. Since layouts are sub-dividable, a smaller portion of a layout, retrieved via
LAYOUTGET, can be committed. The byte-range being committed is specified through the byte-
range (loca_offset and loca_length). This byte-range overlap with one or more existing
layouts previously granted via LAYOUTGET (Section 18.43), each with an iomode of
LAYOUTIOMODE4_RW. In the case where the iomode of any held layout segment is not
LAYOUTIOMODE4_RW, the server should return the error NFS4ERR_BAD_IOMODE. For the case
where the client does not hold matching layout segment(s) for the defined byte-range, the server
should return the error NFS4ERR_BAD_LAYOUT.

The LAYOUTCOMMIT operation indicates that the client has completed writes using a layout
obtained by a previous LAYOUTGET. The client may have only written a subset of the data range
it previously requested. LAYOUTCOMMIT allows it to commit or discard provisionally allocated
space and to update the server with a new end-of-file. The layout referenced by LAYOUTCOMMIT
is still valid after the operation completes and can be continued to be referenced by the client ID,
filehandle, byte-range, layout type, and stateid.

If the loca_reclaim field is set to TRUE, this indicates that the client is attempting to commit
changes to a layout after the restart of the metadata server during the metadata server's
recovery grace period (see Section 12.7.4). This type of request may be necessary when the client
has uncommitted writes to provisionally allocated byte-ranges of a file that were sent to the
storage devices before the restart of the metadata server. In this case, the layout provided by the
client be a subset of a writable layout that the client held immediately before the restart of
the metadata server. The value of the field loca_stateid be a value that the metadata server
returned before it restarted. The metadata server is free to accept or reject this request based on
its own internal metadata consistency checks. If the metadata server finds that the layout
provided by the client does not pass its consistency checks, it reject the request with the
status NFS4ERR_RECLAIM_BAD. The successful completion of the LAYOUTCOMMIT request with
loca_reclaim set to TRUE does NOT provide the client with a layout for the file. It simply commits
the changes to the layout specified in the loca_layoutupdate field. To obtain a layout for the file,
the client must send a LAYOUTGET request to the server after the server's grace period has
expired. If the metadata server receives a LAYOUTCOMMIT request with loca_reclaim set to TRUE
when the metadata server is not in its recovery grace period, it reject the request with the
status NFS4ERR_NO_GRACE.

Setting the loca_reclaim field to TRUE is required if and only if the committed layout was
acquired before the metadata server restart. If the client is committing a layout that was
acquired during the metadata server's grace period, it set the "reclaim" field to FALSE.

The loca_stateid is a layout stateid value as returned by previously successful layout operations
(see Section 12.5.3).

MUST

MUST
MUST

MUST

MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 475

The loca_last_write_offset field specifies the offset of the last byte written by the client previous to
the LAYOUTCOMMIT. Note that this value is never equal to the file's size (at most it is one byte
less than the file's size) and be less than or equal to NFS4_MAXFILEOFF. Also,
loca_last_write_offset overlap the range described by loca_offset and loca_length. The
metadata server may use this information to determine whether the file's size needs to be
updated. If the metadata server updates the file's size as the result of the LAYOUTCOMMIT
operation, it must return the new size (locr_newsize.ns_size) as part of the results.

The loca_time_modify field allows the client to suggest a modification time it would like the
metadata server to set. The metadata server may use the suggestion or it may use the time of the
LAYOUTCOMMIT operation to set the modification time. If the metadata server uses the client-
provided modification time, it should ensure that time does not flow backwards. If the client
wants to force the metadata server to set an exact time, the client should use a SETATTR
operation in a COMPOUND right after LAYOUTCOMMIT. See Section 12.5.4 for more details. If the
client desires the resultant modification time, it should construct the COMPOUND so that a
GETATTR follows the LAYOUTCOMMIT.

The loca_layoutupdate argument to LAYOUTCOMMIT provides a mechanism for a client to
provide layout-specific updates to the metadata server. For example, the layout update can
describe what byte-ranges of the original layout have been used and what byte-ranges can be
deallocated. There is no NFSv4.1 file layout-specific layoutupdate4 structure.

The layout information is more verbose for block devices than for objects and files because the
latter two hide the details of block allocation behind their storage protocols. At the minimum, the
client needs to communicate changes to the end-of-file location back to the server, and, if desired,
its view of the file's modification time. For block/volume layouts, it needs to specify precisely
which blocks have been used.

If the layout identified in the arguments does not exist, the error NFS4ERR_BADLAYOUT is
returned. The layout being committed may also be rejected if it does not correspond to an
existing layout with an iomode of LAYOUTIOMODE4_RW.

On success, the current filehandle retains its value and the current stateid retains its value.

MUST
MUST

18.42.4. IMPLEMENTATION

The client also use LAYOUTCOMMIT with the loca_reclaim field set to TRUE to convey hints
to modified file attributes or to report layout-type specific information such as I/O errors for
object-based storage layouts, as normally done during normal operation. Doing so may help the
metadata server to recover files more efficiently after restart. For example, some file system
implementations may require expansive recovery of file system objects if the metadata server
does not get a positive indication from all clients holding a LAYOUTIOMODE4_RW layout that
they have successfully completed all their writes. Sending a LAYOUTCOMMIT (if required) and
then following with LAYOUTRETURN can provide such an indication and allow for graceful and
efficient recovery.

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 476

If loca_reclaim is TRUE, the metadata server is free to either examine or ignore the value in the
field loca_stateid. The metadata server implementation might or might not encode in its layout
stateid information that allows the metadata server to perform a consistency check on the
LAYOUTCOMMIT request.

18.43. Operation 50: LAYOUTGET - Get Layout Information
18.43.1. ARGUMENT

struct LAYOUTGET4args {
 /* CURRENT_FH: file */
 bool loga_signal_layout_avail;
 layouttype4 loga_layout_type;
 layoutiomode4 loga_iomode;
 offset4 loga_offset;
 length4 loga_length;
 length4 loga_minlength;
 stateid4 loga_stateid;
 count4 loga_maxcount;
};

18.43.2. RESULT

struct LAYOUTGET4resok {
 bool logr_return_on_close;
 stateid4 logr_stateid;
 layout4 logr_layout<>;
};

union LAYOUTGET4res switch (nfsstat4 logr_status) {
case NFS4_OK:
 LAYOUTGET4resok logr_resok4;
case NFS4ERR_LAYOUTTRYLATER:
 bool logr_will_signal_layout_avail;
default:
 void;
};

18.43.3. DESCRIPTION

The LAYOUTGET operation requests a layout from the metadata server for reading or writing the
file given by the filehandle at the byte-range specified by offset and length. Layouts are identified
by the client ID (derived from the session ID in the preceding SEQUENCE operation), current
filehandle, layout type (loga_layout_type), and the layout stateid (loga_stateid). The use of the
loga_iomode field depends upon the layout type, but should reflect the client's data access intent.

If the metadata server is in a grace period, and does not persist layouts and device ID to device
address mappings, then it return NFS4ERR_GRACE (see Section 8.4.2.1).MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 477

The LAYOUTGET operation returns layout information for the specified byte-range: a layout. The
client actually specifies two ranges, both starting at the offset in the loga_offset field. The first
range is between loga_offset and loga_offset + loga_length - 1 inclusive. This range indicates the
desired range the client wants the layout to cover. The second range is between loga_offset and
loga_offset + loga_minlength - 1 inclusive. This range indicates the required range the client
needs the layout to cover. Thus, loga_minlength be less than or equal to loga_length.

When a length field is set to NFS4_UINT64_MAX, this indicates a desire (when loga_length is
NFS4_UINT64_MAX) or requirement (when loga_minlength is NFS4_UINT64_MAX) to get a layout
from loga_offset through the end-of-file, regardless of the file's length.

The following rules govern the relationships among, and the minima of, loga_length,
loga_minlength, and loga_offset.

If loga_length is less than loga_minlength, the metadata server return NFS4ERR_INVAL.
If loga_minlength is zero, this is an indication to the metadata server that the client desires
any layout at offset loga_offset or less that the metadata server has "readily available".
Readily is subjective, and depends on the layout type and the pNFS server implementation.
For example, some metadata servers might have to pre-allocate stable storage when they
receive a request for a range of a file that goes beyond the file's current length. If
loga_minlength is zero and loga_length is greater than zero, this tells the metadata server
what range of the layout the client would prefer to have. If loga_length and loga_minlength
are both zero, then the client is indicating that it desires a layout of any length with the
ending offset of the range no less than the value specified loga_offset, and the starting offset
at or below loga_offset. If the metadata server does not have a layout that is readily
available, then it return NFS4ERR_LAYOUTTRYLATER.
If the sum of loga_offset and loga_minlength exceeds NFS4_UINT64_MAX, and
loga_minlength is not NFS4_UINT64_MAX, the error NFS4ERR_INVAL result.
If the sum of loga_offset and loga_length exceeds NFS4_UINT64_MAX, and loga_length is not
NFS4_UINT64_MAX, the error NFS4ERR_INVAL result.

After the metadata server has performed the above checks on loga_offset, loga_minlength, and
loga_offset, the metadata server return a layout according to the rules in Table 22.

Acceptable layouts based on loga_minlength. Note: u64m = NFS4_UINT64_MAX; a_off =
loga_offset; a_minlen = loga_minlength.

MUST

• MUST
•

MUST
•

MUST
•

MUST

MUST

Layout
iomode of
request

Layout
a_minlen of
request

Layout
iomode of
reply

Layout
offset of
reply

Layout length of reply

_READ u64m be
_READ

 be <=
a_off

 be >= file length -
layout offset

_READ u64m be _RW be <=
a_off

 be u64m

MAY MUST MUST

MAY MUST MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 478

If loga_minlength is not zero and the metadata server cannot return a layout according to the
rules in Table 22, then the metadata server return the error NFS4ERR_BADLAYOUT. If
loga_minlength is zero and the metadata server cannot or will not return a layout according to
the rules in Table 22, then the metadata server return the error
NFS4ERR_LAYOUTTRYLATER. Assuming that loga_length is greater than loga_minlength or equal
to zero, the metadata server return a layout according to the rules in Table 23.

Desired layouts based on loga_length. The rules of Table 22 be applied first. Note: u64m =
NFS4_UINT64_MAX; a_off = loga_offset; a_len = loga_length.

Layout
iomode of
request

Layout
a_minlen of
request

Layout
iomode of
reply

Layout
offset of
reply

Layout length of reply

_READ > 0 and < u64m be
_READ

 be <=
a_off

 be >= MIN(file
length, a_minlen + a_off)
- layout offset

_READ > 0 and < u64m be _RW be <=
a_off

 be >= a_off - layout
offset + a_minlen

_READ 0 be
_READ

 be <=
a_off

 be > 0

_READ 0 be _RW be <=
a_off

 be > 0

_RW u64m be
_RW

 be <=
a_off

 be u64m

_RW > 0 and < u64m be
_RW

 be <=
a_off

 be >= a_off - layout
offset + a_minlen

_RW 0 be
_RW

 be <=
a_off

 be > 0

Table 22

MAY MUST MUST

MAY MUST MUST

MAY MUST MUST

MAY MUST MUST

MUST MUST MUST

MUST MUST MUST

MUST MUST MUST

MUST

MUST

SHOULD

MUST

Layout iomode
of request

Layout a_len
of request

Layout
iomode of
reply

Layout
offset of
reply

Layout length of
reply

_READ u64m be _READ be <=
a_off

 be u64m

_READ u64m be _RW be <=
a_off

 be u64m

MAY MUST SHOULD

MAY MUST SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 479

The loga_stateid field specifies a valid stateid. If a layout is not currently held by the client, the
loga_stateid field represents a stateid reflecting the correspondingly valid open, byte-range lock,
or delegation stateid. Once a layout is held on the file by the client, the loga_stateid field be
a stateid as returned from a previous LAYOUTGET or LAYOUTRETURN operation or provided by
a CB_LAYOUTRECALL operation (see Section 12.5.3).

The loga_maxcount field specifies the maximum layout size (in bytes) that the client can handle.
If the size of the layout structure exceeds the size specified by maxcount, the metadata server
will return the NFS4ERR_TOOSMALL error.

The returned layout is expressed as an array, logr_layout, with each element of type layout4. If a
file has a single striping pattern, then logr_layout contain just one entry. Otherwise, if
the requested range overlaps more than one striping pattern, logr_layout will contain the
required number of entries. The elements of logr_layout be sorted in ascending order of
the value of the lo_offset field of each element. There be no gaps or overlaps in the range
between two successive elements of logr_layout. The lo_iomode field in each element of
logr_layout be the same.

Table 22 and Table 23 both refer to a returned layout iomode, offset, and length. Because the
returned layout is encoded in the logr_layout array, more description is required.

Layout iomode
of request

Layout a_len
of request

Layout
iomode of
reply

Layout
offset of
reply

Layout length of
reply

_READ > 0 and <
u64m

 be _READ be <=
a_off

 be >= a_off -
layout offset + a_len

_READ > 0 and <
u64m

 be _RW be <=
a_off

 be >= a_off -
layout offset + a_len

_READ 0 be _READ be <=
a_off

 be > a_off -
layout offset

_READ 0 be _READ be <=
a_off

 be > a_off -
layout offset

_RW u64m be _RW be <=
a_off

 be u64m

_RW > 0 and <
u64m

 be _RW be <=
a_off

 be >= a_off -
layout offset + a_len

_RW 0 be _RW be <=
a_off

 be > a_off -
layout offset

Table 23

MAY MUST SHOULD

MAY MUST SHOULD

MAY MUST SHOULD

MAY MUST SHOULD

MUST MUST SHOULD

MUST MUST SHOULD

MUST MUST SHOULD

MUST

SHOULD

MUST
MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 480

iomode

offset

length

The value of the returned layout iomode listed in Table 22 and Table 23 is equal to the
value of the lo_iomode field in each element of logr_layout. As shown in Table 22 and Table
23, the metadata server return a layout with an lo_iomode different from the
requested iomode (field loga_iomode of the request). If it does so, it ensure that the
lo_iomode is more permissive than the loga_iomode requested. For example, this behavior
allows an implementation to upgrade LAYOUTIOMODE4_READ requests to
LAYOUTIOMODE4_RW requests at its discretion, within the limits of the layout type
specific protocol. A lo_iomode of either LAYOUTIOMODE4_READ or LAYOUTIOMODE4_RW

 be returned.

The value of the returned layout offset listed in Table 22 and Table 23 is always equal to
the lo_offset field of the first element logr_layout.

When setting the value of the returned layout length, the situation is complicated by the
possibility that the special layout length value NFS4_UINT64_MAX is involved. For a
logr_layout array of N elements, the lo_length field in the first N-1 elements be
NFS4_UINT64_MAX. The lo_length field of the last element of logr_layout can be
NFS4_UINT64_MAX under some conditions as described in the following list.

If an applicable rule of Table 22 states that the metadata server return a layout
of length NFS4_UINT64_MAX, then the lo_length field of the last element of logr_layout

 be NFS4_UINT64_MAX.
If an applicable rule of Table 22 states that the metadata server return a
layout of length NFS4_UINT64_MAX, then the lo_length field of the last element of
logr_layout be NFS4_UINT64_MAX.
If an applicable rule of Table 23 states that the metadata server return a
layout of length NFS4_UINT64_MAX, then the lo_length field of the last element of
logr_layout be NFS4_UINT64_MAX.
When the value of the returned layout length of Table 22 and Table 23 is not
NFS4_UINT64_MAX, then the returned layout length is equal to the sum of the
lo_length fields of each element of logr_layout.

The logr_return_on_close result field is a directive to return the layout before closing the file.
When the metadata server sets this return value to TRUE, it be prepared to recall the
layout in the case in which the client fails to return the layout before close. For the metadata
server that knows a layout must be returned before a close of the file, this return value can be
used to communicate the desired behavior to the client and thus remove one extra step from the
client's and metadata server's interaction.

The logr_stateid stateid is returned to the client for use in subsequent layout related operations.
See Sections 8.2, 12.5.3, and 12.5.5.2 for a further discussion and requirements.

The format of the returned layout (lo_content) is specific to the layout type. The value of the
layout type (lo_content.loc_type) for each of the elements of the array of layouts returned by the
metadata server (logr_layout) be equal to the loga_layout_type specified by the client. If it is
not equal, the client ignore the response as invalid and behave as if the metadata server
returned an error, even if the client does have support for the layout type returned.

MAY
MUST

MUST

MUST NOT

• MUST

MUST
• MUST NOT

MUST NOT
• SHOULD

SHOULD
•

MUST

MUST
SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 481

If neither the requested file nor its containing file system support layouts, the metadata server
 return NFS4ERR_LAYOUTUNAVAILABLE. If the layout type is not supported, the metadata

server return NFS4ERR_UNKNOWN_LAYOUTTYPE. If layouts are supported but no layout
matches the client provided layout identification, the metadata server return
NFS4ERR_BADLAYOUT. If an invalid loga_iomode is specified, or a loga_iomode of
LAYOUTIOMODE4_ANY is specified, the metadata server return NFS4ERR_BADIOMODE.

If the layout for the file is unavailable due to transient conditions, e.g., file sharing prohibits
layouts, the metadata server return NFS4ERR_LAYOUTTRYLATER.

If the layout request is rejected due to an overlapping layout recall, the metadata server
return NFS4ERR_RECALLCONFLICT. See Section 12.5.5.2 for details.

If the layout conflicts with a mandatory byte-range lock held on the file, and if the storage
devices have no method of enforcing mandatory locks, other than through the restriction of
layouts, the metadata server return NFS4ERR_LOCKED.

If client sets loga_signal_layout_avail to TRUE, then it is registering with the client a "want" for a
layout in the event the layout cannot be obtained due to resource exhaustion. If the metadata
server supports and will honor the "want", the results will have logr_will_signal_layout_avail set
to TRUE. If so, the client should expect a CB_RECALLABLE_OBJ_AVAIL operation to indicate that a
layout is available.

On success, the current filehandle retains its value and the current stateid is updated to match
the value as returned in the results.

MUST
MUST

MUST

MUST

MUST

MUST

SHOULD

18.43.4. IMPLEMENTATION

Typically, LAYOUTGET will be called as part of a COMPOUND request after an OPEN operation
and results in the client having location information for the file. This requires that loga_stateid
be set to the special stateid that tells the metadata server to use the current stateid, which is set
by OPEN (see Section 16.2.3.1.2). A client may also hold a layout across multiple OPENs. The client
specifies a layout type that limits what kind of layout the metadata server will return. This
prevents metadata servers from granting layouts that are unusable by the client.

As indicated by Table 22 and Table 23, the specification of LAYOUTGET allows a pNFS client and
server considerable flexibility. A pNFS client can take several strategies for sending LAYOUTGET.
Some examples are as follows.

If LAYOUTGET is preceded by OPEN in the same COMPOUND request and the OPEN requests
OPEN4_SHARE_ACCESS_READ access, the client might opt to request a _READ layout with
loga_offset set to zero, loga_minlength set to zero, and loga_length set to NFS4_UINT64_MAX.
If the file has space allocated to it, that space is striped over one or more storage devices, and
there is either no conflicting layout or the concept of a conflicting layout does not apply to
the pNFS server's layout type or implementation, then the metadata server might return a
layout with a starting offset of zero, and a length equal to the length of the file, if not
NFS4_UINT64_MAX. If the length of the file is not a multiple of the pNFS server's stripe width

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 482

(see Section 13.2 for a formal definition), the metadata server might round up the returned
layout's length.
If LAYOUTGET is preceded by OPEN in the same COMPOUND request, and the OPEN requests
OPEN4_SHARE_ACCESS_WRITE access and does not truncate the file, the client might opt to
request a _RW layout with loga_offset set to zero, loga_minlength set to zero, and loga_length
set to the file's current length (if known), or NFS4_UINT64_MAX. As with the previous case,
under some conditions the metadata server might return a layout that covers the entire
length of the file or beyond.
This strategy is as above, but the OPEN truncates the file. In this case, the client might
anticipate it will be writing to the file from offset zero, and so loga_offset and loga_minlength
are set to zero, and loga_length is set to the value of threshold4_write_iosize. The metadata
server might return a layout from offset zero with a length at least as long as
threshold4_write_iosize.
A process on the client invokes a request to read from offset 10000 for length 50000. The
client is using buffered I/O, and has buffer sizes of 4096 bytes. The client intends to map the
request of the process into a series of READ requests starting at offset 8192. The end offset
needs to be higher than 10000 + 50000 = 60000, and the next offset that is a multiple of 4096
is 61440. The difference between 61440 and that starting offset of the layout is 53248 (which
is the product of 4096 and 15). The value of threshold4_read_iosize is less than 53248, so the
client sends a LAYOUTGET request with loga_offset set to 8192, loga_minlength set to 53248,
and loga_length set to the file's length (if known) minus 8192 or NFS4_UINT64_MAX (if the
file's length is not known). Since this LAYOUTGET request exceeds the metadata server's
threshold, it grants the layout, possibly with an initial offset of zero, with an end offset of at
least 8192 + 53248 - 1 = 61439, but preferably a layout with an offset aligned on the stripe
width and a length that is a multiple of the stripe width.
This strategy is as above, but the client is not using buffered I/O, and instead all internal I/O
requests are sent directly to the server. The LAYOUTGET request has loga_offset equal to
10000 and loga_minlength set to 50000. The value of loga_length is set to the length of the file.
The metadata server is free to return a layout that fully overlaps the requested range, with a
starting offset and length aligned on the stripe width.
Again, a process on the client invokes a request to read from offset 10000 for length 50000
(i.e. a range with a starting offset of 10000 and an ending offset of 69999), and buffered I/O is
in use. The client is expecting that the server might not be able to return the layout for the
full I/O range. The client intends to map the request of the process into a series of thirteen
READ requests starting at offset 8192, each with length 4096, with a total length of 53248
(which equals 13 * 4096), which fully contains the range that client's process wants to read.
Because the value of threshold4_read_iosize is equal to 4096, it is practical and reasonable
for the client to use several LAYOUTGET operations to complete the series of READs. The
client sends a LAYOUTGET request with loga_offset set to 8192, loga_minlength set to 4096,
and loga_length set to 53248 or higher. The server will grant a layout possibly with an initial
offset of zero, with an end offset of at least 8192 + 4096 - 1 = 12287, but preferably a layout
with an offset aligned on the stripe width and a length that is a multiple of the stripe width.
This will allow the client to make forward progress, possibly sending more LAYOUTGET
operations for the remainder of the range.

•

•

•

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 483

An NFS client detects a sequential read pattern, and so sends a LAYOUTGET operation that
goes well beyond any current or pending read requests to the server. The server might
likewise detect this pattern, and grant the LAYOUTGET request. Once the client reads from an
offset of the file that represents 50% of the way through the range of the last layout it
received, in order to avoid stalling I/O that would wait for a layout, the client sends more
operations from an offset of the file that represents 50% of the way through the last layout it
received. The client continues to request layouts with byte-ranges that are well in advance of
the byte-ranges of recent and/or read requests of processes running on the client.
This strategy is as above, but the client fails to detect the pattern, but the server does. The
next time the metadata server gets a LAYOUTGET, it returns a layout with a length that is
well beyond loga_minlength.
A client is using buffered I/O, and has a long queue of write-behinds to process and also
detects a sequential write pattern. It sends a LAYOUTGET for a layout that spans the range of
the queued write-behinds and well beyond, including ranges beyond the filer's current
length. The client continues to send LAYOUTGET operations once the write-behind queue
reaches 50% of the maximum queue length.

Once the client has obtained a layout referring to a particular device ID, the metadata server
 delete the device ID until the layout is returned or revoked.

CB_NOTIFY_DEVICEID can race with LAYOUTGET. One race scenario is that LAYOUTGET returns a
device ID for which the client does not have device address mappings, and the metadata server
sends a CB_NOTIFY_DEVICEID to add the device ID to the client's awareness and meanwhile the
client sends GETDEVICEINFO on the device ID. This scenario is discussed in Section 18.40.4.
Another scenario is that the CB_NOTIFY_DEVICEID is processed by the client before it processes
the results from LAYOUTGET. The client will send a GETDEVICEINFO on the device ID. If the
results from GETDEVICEINFO are received before the client gets results from LAYOUTGET, then
there is no longer a race. If the results from LAYOUTGET are received before the results from
GETDEVICEINFO, the client can either wait for results of GETDEVICEINFO or send another one to
get possibly more up-to-date device address mappings for the device ID.

•

•

•

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 484

18.44. Operation 51: LAYOUTRETURN - Release Layout Information
18.44.1. ARGUMENT

/* Constants used for LAYOUTRETURN and CB_LAYOUTRECALL */
const LAYOUT4_RET_REC_FILE = 1;
const LAYOUT4_RET_REC_FSID = 2;
const LAYOUT4_RET_REC_ALL = 3;

enum layoutreturn_type4 {
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL
};

struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
};

union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
};

struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
};

18.44.2. RESULT

union layoutreturn_stateid switch (bool lrs_present) {
case TRUE:
 stateid4 lrs_stateid;
case FALSE:
 void;
};

union LAYOUTRETURN4res switch (nfsstat4 lorr_status) {
case NFS4_OK:
 layoutreturn_stateid lorr_stateid;
default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 485

18.44.3. DESCRIPTION

This operation returns from the client to the server one or more layouts represented by the client
ID (derived from the session ID in the preceding SEQUENCE operation), lora_layout_type, and
lora_iomode. When lr_returntype is LAYOUTRETURN4_FILE, the returned layout is further
identified by the current filehandle, lrf_offset, lrf_length, and lrf_stateid. If the lrf_length field is
NFS4_UINT64_MAX, all bytes of the layout, starting at lrf_offset, are returned. When
lr_returntype is LAYOUTRETURN4_FSID, the current filehandle is used to identify the file system
and all layouts matching the client ID, the fsid of the file system, lora_layout_type, and
lora_iomode are returned. When lr_returntype is LAYOUTRETURN4_ALL, all layouts matching
the client ID, lora_layout_type, and lora_iomode are returned and the current filehandle is not
used. After this call, the client use the returned layout(s) and the associated storage
protocol to access the file data.

If the set of layouts designated in the case of LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL is
empty, then no error results. In the case of LAYOUTRETURN4_FILE, the byte-range specified is
returned even if it is a subdivision of a layout previously obtained with LAYOUTGET, a
combination of multiple layouts previously obtained with LAYOUTGET, or a combination
including some layouts previously obtained with LAYOUTGET, and one or more subdivisions of
such layouts. When the byte-range does not designate any bytes for which a layout is held for the
specified file, client ID, layout type and mode, no error results. See Section 12.5.5.2.1.5 for
considerations with "bulk" return of layouts.

The layout being returned may be a subset or superset of a layout specified by
CB_LAYOUTRECALL. However, if it is a subset, the recall is not complete until the full recalled
scope has been returned. Recalled scope refers to the byte-range in the case of
LAYOUTRETURN4_FILE, the use of LAYOUTRETURN4_FSID, or the use of LAYOUTRETURN4_ALL.
There must be a LAYOUTRETURN with a matching scope to complete the return even if all
current layout ranges have been previously individually returned.

For all lr_returntype values, an iomode of LAYOUTIOMODE4_ANY specifies that all layouts that
match the other arguments to LAYOUTRETURN (i.e., client ID, lora_layout_type, and one of
current filehandle and range; fsid derived from current filehandle; or LAYOUTRETURN4_ALL)
are being returned.

In the case that lr_returntype is LAYOUTRETURN4_FILE, the lrf_stateid provided by the client is a
layout stateid as returned from previous layout operations. Note that the "seqid" field of
lrf_stateid be zero. See Sections 8.2, 12.5.3, and 12.5.5.2 for a further discussion and
requirements.

Return of a layout or all layouts does not invalidate the mapping of storage device ID to a storage
device address. The mapping remains in effect until specifically changed or deleted via device ID
notification callbacks. Of course if there are no remaining layouts that refer to a previously used
device ID, the server is free to delete a device ID without a notification callback, which will be the
case when notifications are not in effect.

MUST NOT

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 486

If the lora_reclaim field is set to TRUE, the client is attempting to return a layout that was
acquired before the restart of the metadata server during the metadata server's grace period.
When returning layouts that were acquired during the metadata server's grace period, the client

 set the lora_reclaim field to FALSE. The lora_reclaim field be set to FALSE also when
lr_layoutreturn is LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL. See

 for more details.

Layouts may be returned when recalled or voluntarily (i.e., before the server has recalled them).
In either case, the client must properly propagate state changed under the context of the layout
to the storage device(s) or to the metadata server before returning the layout.

If the client returns the layout in response to a CB_LAYOUTRECALL where the lor_recalltype field
of the clora_recall field was LAYOUTRECALL4_FILE, the client should use the lor_stateid value
from CB_LAYOUTRECALL as the value for lrf_stateid. Otherwise, it should use logr_stateid (from a
previous LAYOUTGET result) or lorr_stateid (from a previous LAYRETURN result). This is done to
indicate the point in time (in terms of layout stateid transitions) when the recall was sent. The
client uses the precise lora_recallstateid value and set the stateid's seqid to zero;
otherwise, NFS4ERR_BAD_STATEID be returned. NFS4ERR_OLD_STATEID can be returned if
the client is using an old seqid, and the server knows the client should not be using the old seqid.
For example, the client uses the seqid on slot 1 of the session, receives the response with the new
seqid, and uses the slot to send another request with the old seqid.

If a client fails to return a layout in a timely manner, then the metadata server use its
control protocol with the storage devices to fence the client from accessing the data referenced
by the layout. See Section 12.5.5 for more details.

If the LAYOUTRETURN request sets the lora_reclaim field to TRUE after the metadata server's
grace period, NFS4ERR_NO_GRACE is returned.

If the LAYOUTRETURN request sets the lora_reclaim field to TRUE and lr_returntype is set to
LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL, NFS4ERR_INVAL is returned.

If the client sets the lr_returntype field to LAYOUTRETURN4_FILE, then the lrs_stateid field will
represent the layout stateid as updated for this operation's processing; the current stateid will
also be updated to match the returned value. If the last byte of any layout for the current file,
client ID, and layout type is being returned and there are no remaining pending
CB_LAYOUTRECALL operations for which a LAYOUTRETURN operation must be done, lrs_present

 be FALSE, and no stateid will be returned. In addition, the COMPOUND request's current
stateid will be set to the all-zeroes special stateid (see Section 16.2.3.1.2). The server reject
with NFS4ERR_BAD_STATEID any further use of the current stateid in that COMPOUND until the
current stateid is re-established by a later stateid-returning operation.

On success, the current filehandle retains its value.

If the EXCHGID4_FLAG_BIND_PRINC_STATEID capability is set on the client ID (see Section 18.35),
the server will require that the principal, security flavor, and if applicable, the GSS mechanism,
combination that acquired the layout also be the one to send LAYOUTRETURN. This might not be

MUST MUST
LAYOUTCOMMIT

(Section 18.42)

MUST NOT
MUST

SHOULD

MUST
MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 487

possible if credentials for the principal are no longer available. The server will allow the
machine credential or SSV credential (see Section 18.35) to send LAYOUTRETURN if
LAYOUTRETURN's operation code was set in the spo_must_allow result of EXCHANGE_ID.

18.44.4. IMPLEMENTATION

The final LAYOUTRETURN operation in response to a CB_LAYOUTRECALL callback be
serialized with any outstanding, intersecting LAYOUTRETURN operations. Note that it is possible
that while a client is returning the layout for some recalled range, the server may recall a
superset of that range (e.g., LAYOUTRECALL4_ALL); the final return operation for the latter must
block until the former layout recall is done.

Returning all layouts in a file system using LAYOUTRETURN4_FSID is typically done in response
to a CB_LAYOUTRECALL for that file system as the final return operation. Similarly,
LAYOUTRETURN4_ALL is used in response to a recall callback for all layouts. It is possible that
the client already returned some outstanding layouts via individual LAYOUTRETURN calls and
the call for LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL marks the end of the
LAYOUTRETURN sequence. See Section 12.5.5.1 for more details.

Once the client has returned all layouts referring to a particular device ID, the server delete
the device ID.

MUST

MAY

18.45. Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object
18.45.1. ARGUMENT

enum secinfo_style4 {
 SECINFO_STYLE4_CURRENT_FH = 0,
 SECINFO_STYLE4_PARENT = 1
};

/* CURRENT_FH: object or child directory */
typedef secinfo_style4 SECINFO_NO_NAME4args;

18.45.2. RESULT

/* CURRENTFH: consumed if status is NFS4_OK */
typedef SECINFO4res SECINFO_NO_NAME4res;

18.45.3. DESCRIPTION

Like the SECINFO operation, SECINFO_NO_NAME is used by the client to obtain a list of valid RPC
authentication flavors for a specific file object. Unlike SECINFO, SECINFO_NO_NAME only works
with objects that are accessed by filehandle.

There are two styles of SECINFO_NO_NAME, as determined by the value of the secinfo_style4
enumeration. If SECINFO_STYLE4_CURRENT_FH is passed, then SECINFO_NO_NAME is querying
for the required security for the current filehandle. If SECINFO_STYLE4_PARENT is passed, then
SECINFO_NO_NAME is querying for the required security of the current filehandle's parent. If

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 488

the style selected is SECINFO_STYLE4_PARENT, then SECINFO should apply the same access
methodology used for LOOKUPP when evaluating the traversal to the parent directory.
Therefore, if the requester does not have the appropriate access to LOOKUPP the parent, then
SECINFO_NO_NAME must behave the same way and return NFS4ERR_ACCESS.

If PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH returns NFS4ERR_WRONGSEC, then the client
resolves the situation by sending a COMPOUND request that consists of PUTFH, PUTPUBFH, or
PUTROOTFH immediately followed by SECINFO_NO_NAME, style
SECINFO_STYLE4_CURRENT_FH. See Section 2.6 for instructions on dealing with
NFS4ERR_WRONGSEC error returns from PUTFH, PUTROOTFH, PUTPUBFH, or RESTOREFH.

If SECINFO_STYLE4_PARENT is specified and there is no parent directory, SECINFO_NO_NAME
 return NFS4ERR_NOENT.

On success, the current filehandle is consumed (see Section 2.6.3.1.1.8), and if the next operation
after SECINFO_NO_NAME tries to use the current filehandle, that operation will fail with the
status NFS4ERR_NOFILEHANDLE.

Everything else about SECINFO_NO_NAME is the same as SECINFO. See the discussion on
SECINFO (Section 18.29.3).

MUST

18.45.4. IMPLEMENTATION

See the discussion on SECINFO (Section 18.29.4).

18.46. Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and
Control
18.46.1. ARGUMENT

struct SEQUENCE4args {
 sessionid4 sa_sessionid;
 sequenceid4 sa_sequenceid;
 slotid4 sa_slotid;
 slotid4 sa_highest_slotid;
 bool sa_cachethis;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 489

18.46.2. RESULT

const SEQ4_STATUS_CB_PATH_DOWN = 0x00000001;
const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING = 0x00000002;
const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED = 0x00000004;
const SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED = 0x00000008;
const SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED = 0x00000010;
const SEQ4_STATUS_ADMIN_STATE_REVOKED = 0x00000020;
const SEQ4_STATUS_RECALLABLE_STATE_REVOKED = 0x00000040;
const SEQ4_STATUS_LEASE_MOVED = 0x00000080;
const SEQ4_STATUS_RESTART_RECLAIM_NEEDED = 0x00000100;
const SEQ4_STATUS_CB_PATH_DOWN_SESSION = 0x00000200;
const SEQ4_STATUS_BACKCHANNEL_FAULT = 0x00000400;
const SEQ4_STATUS_DEVID_CHANGED = 0x00000800;
const SEQ4_STATUS_DEVID_DELETED = 0x00001000;

struct SEQUENCE4resok {
 sessionid4 sr_sessionid;
 sequenceid4 sr_sequenceid;
 slotid4 sr_slotid;
 slotid4 sr_highest_slotid;
 slotid4 sr_target_highest_slotid;
 uint32_t sr_status_flags;
};

union SEQUENCE4res switch (nfsstat4 sr_status) {
case NFS4_OK:
 SEQUENCE4resok sr_resok4;
default:
 void;
};

18.46.3. DESCRIPTION

The SEQUENCE operation is used by the server to implement session request control and the
reply cache semantics.

SEQUENCE appear as the first operation of any COMPOUND in which it appears. The error
NFS4ERR_SEQUENCE_POS will be returned when it is found in any position in a COMPOUND
beyond the first. Operations other than SEQUENCE, BIND_CONN_TO_SESSION, EXCHANGE_ID,
CREATE_SESSION, and DESTROY_SESSION, appear as the first operation in a
COMPOUND. Such operations yield the error NFS4ERR_OP_NOT_IN_SESSION if they do
appear at the start of a COMPOUND.

If SEQUENCE is received on a connection not associated with the session via CREATE_SESSION or
BIND_CONN_TO_SESSION, and connection association enforcement is enabled (see Section 18.35),
then the server returns NFS4ERR_CONN_NOT_BOUND_TO_SESSION.

The sa_sessionid argument identifies the session to which this request applies. The sr_sessionid
result equal sa_sessionid.

MUST

MUST NOT
MUST

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 490

The sa_slotid argument is the index in the reply cache for the request. The sa_sequenceid field is
the sequence number of the request for the reply cache entry (slot). The sr_slotid result
equal sa_slotid. The sr_sequenceid result equal sa_sequenceid.

The sa_highest_slotid argument is the highest slot ID for which the client has a request
outstanding; it could be equal to sa_slotid. The server returns two "highest_slotid" values:
sr_highest_slotid and sr_target_highest_slotid. The former is the highest slot ID the server will
accept in future SEQUENCE operation, and be less than the value of
sa_highest_slotid (but see Section 2.10.6.1 for an exception). The latter is the highest slot ID the
server would prefer the client use on a future SEQUENCE operation.

If sa_cachethis is TRUE, then the client is requesting that the server cache the entire reply in the
server's reply cache; therefore, the server cache the reply (see Section 2.10.6.1.3). The
server cache the reply if sa_cachethis is FALSE. If the server does not cache the entire reply,
it still record that it executed the request at the specified slot and sequence ID.

The response to the SEQUENCE operation contains a word of status flags (sr_status_flags) that can
provide to the client information related to the status of the client's lock state and
communications paths. Note that any status bits relating to lock state be reset when lock
state is lost due to a server restart (even if the session is persistent across restarts; session
persistence does not imply lock state persistence) or the establishment of a new client instance.

SEQ4_STATUS_CB_PATH_DOWN
When set, indicates that the client has no operational backchannel path for any session
associated with the client ID, making it necessary for the client to re-establish one. This bit
remains set on all SEQUENCE responses on all sessions associated with the client ID until
at least one backchannel is available on any session associated with the client ID. If the
client fails to re-establish a backchannel for the client ID, it is subject to having recallable
state revoked.

SEQ4_STATUS_CB_PATH_DOWN_SESSION
When set, indicates that the session has no operational backchannel. There are two
reasons why SEQ4_STATUS_CB_PATH_DOWN_SESSION may be set and not
SEQ4_STATUS_CB_PATH_DOWN. First is that a callback operation that applies specifically
to the session (e.g., CB_RECALL_SLOT, see Section 20.8) needs to be sent. Second is that the
server did send a callback operation, but the connection was lost before the reply. The
server cannot be sure whether or not the client received the callback operation, and so,
per rules on request retry, the server retry the callback operation over the same
session. The SEQ4_STATUS_CB_PATH_DOWN_SESSION bit is the indication to the client that
it needs to associate a connection to the session's backchannel. This bit remains set on all
SEQUENCE responses of the session until a connection is associated with the session's a
backchannel. If the client fails to re-establish a backchannel for the session, it is subject to
having recallable state revoked.

MUST
MUST

SHOULD NOT

MUST
MAY

MUST

MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 491

SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING
When set, indicates that all GSS contexts or RPCSEC_GSS handles assigned to the session's
backchannel will expire within a period equal to the lease time. This bit remains set on all
SEQUENCE replies until at least one of the following are true:

All SSV RPCSEC_GSS handles on the session's backchannel have been destroyed and all
non-SSV GSS contexts have expired.
At least one more SSV RPCSEC_GSS handle has been added to the backchannel.
The expiration time of at least one non-SSV GSS context of an RPCSEC_GSS handle is
beyond the lease period from the current time (relative to the time of when a
SEQUENCE response was sent)

SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED
When set, indicates all non-SSV GSS contexts and all SSV RPCSEC_GSS handles assigned to
the session's backchannel have expired or have been destroyed. This bit remains set on all
SEQUENCE replies until at least one non-expired non-SSV GSS context for the session's
backchannel has been established or at least one SSV RPCSEC_GSS handle has been
assigned to the backchannel.

SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED
When set, indicates that the lease has expired and as a result the server released all of the
client's locking state. This status bit remains set on all SEQUENCE replies until the loss of
all such locks has been acknowledged by use of FREE_STATEID (see Section 18.38), or by
establishing a new client instance by destroying all sessions (via DESTROY_SESSION), the
client ID (via DESTROY_CLIENTID), and then invoking EXCHANGE_ID and
CREATE_SESSION to establish a new client ID.

SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED
When set, indicates that some subset of the client's locks have been revoked due to
expiration of the lease period followed by another client's conflicting LOCK operation. This
status bit remains set on all SEQUENCE replies until the loss of all such locks has been
acknowledged by use of FREE_STATEID.

SEQ4_STATUS_ADMIN_STATE_REVOKED
When set, indicates that one or more locks have been revoked without expiration of the
lease period, due to administrative action. This status bit remains set on all SEQUENCE
replies until the loss of all such locks has been acknowledged by use of FREE_STATEID.

SEQ4_STATUS_RECALLABLE_STATE_REVOKED
When set, indicates that one or more recallable objects have been revoked without
expiration of the lease period, due to the client's failure to return them when recalled,
which may be a consequence of there being no working backchannel and the client failing
to re-establish a backchannel per the SEQ4_STATUS_CB_PATH_DOWN,
SEQ4_STATUS_CB_PATH_DOWN_SESSION, or SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED
status flags. This status bit remains set on all SEQUENCE replies until the loss of all such
locks has been acknowledged by use of FREE_STATEID.

•

•
•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 492

SEQ4_STATUS_LEASE_MOVED
When set, indicates that responsibility for lease renewal has been transferred to one or
more new servers. This condition will continue until the client receives an
NFS4ERR_MOVED error and the server receives the subsequent GETATTR for the
fs_locations or fs_locations_info attribute for an access to each file system for which a lease
has been moved to a new server. See Section 11.11.9.2.

SEQ4_STATUS_RESTART_RECLAIM_NEEDED
When set, indicates that due to server restart, the client must reclaim locking state. Until
the client sends a global RECLAIM_COMPLETE (Section 18.51), every SEQUENCE operation
will return SEQ4_STATUS_RESTART_RECLAIM_NEEDED.

SEQ4_STATUS_BACKCHANNEL_FAULT
The server has encountered an unrecoverable fault with the backchannel (e.g., it has lost
track of the sequence ID for a slot in the backchannel). The client stop sending more
requests on the session's fore channel, wait for all outstanding requests to complete on the
fore and back channel, and then destroy the session.

SEQ4_STATUS_DEVID_CHANGED
The client is using device ID notifications and the server has changed a device ID mapping
held by the client. This flag will stay present until the client has obtained the new mapping
with GETDEVICEINFO.

SEQ4_STATUS_DEVID_DELETED
The client is using device ID notifications and the server has deleted a device ID mapping
held by the client. This flag will stay in effect until the client sends a GETDEVICEINFO on
the device ID with a null value in the argument gdia_notify_types.

The value of the sa_sequenceid argument relative to the cached sequence ID on the slot falls into
one of three cases.

If the difference between sa_sequenceid and the server's cached sequence ID at the slot ID is
two (2) or more, or if sa_sequenceid is less than the cached sequence ID (accounting for
wraparound of the unsigned sequence ID value), then the server return
NFS4ERR_SEQ_MISORDERED.
If sa_sequenceid and the cached sequence ID are the same, this is a retry, and the server
replies with what is recorded in the reply cache. The lease is possibly renewed as described
below.
If sa_sequenceid is one greater (accounting for wraparound) than the cached sequence ID,
then this is a new request, and the slot's sequence ID is incremented. The operations
subsequent to SEQUENCE, if any, are processed. If there are no other operations, the only
other effects are to cache the SEQUENCE reply in the slot, maintain the session's activity, and
possibly renew the lease.

If the client reuses a slot ID and sequence ID for a completely different request, the server
treat the request as if it is a retry of what it has already executed. The server however detect
the client's illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

MUST

•

MUST

•

•

MAY
MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 493

If SEQUENCE returns an error, then the state of the slot (sequence ID, cached reply)
change, and the associated lease be renewed.

If SEQUENCE returns NFS4_OK, then the associated lease be renewed (see Section 8.3),
except if SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED is returned in sr_status_flags.

MUST NOT
MUST NOT

MUST

18.46.4. IMPLEMENTATION

The server maintain a mapping of session ID to client ID in order to validate any
operations that follow SEQUENCE that take a stateid as an argument and/or result.

If the client establishes a persistent session, then a SEQUENCE received after a server restart
might encounter requests performed and recorded in a persistent reply cache before the server
restart. In this case, SEQUENCE will be processed successfully, while requests that were not
previously performed and recorded are rejected with NFS4ERR_DEADSESSION.

Depending on which of the operations within the COMPOUND were successfully performed
before the server restart, these operations will also have replies sent from the server reply cache.
Note that when these operations establish locking state, it is locking state that applies to the
previous server instance and to the previous client ID, even though the server restart, which
logically happened after these operations, eliminated that state. In the case of a partially
executed COMPOUND, processing may reach an operation not processed during the earlier
server instance, making this operation a new one and not performable on the existing session. In
this case, NFS4ERR_DEADSESSION will be returned from that operation.

MUST

18.47. Operation 54: SET_SSV - Update SSV for a Client ID
18.47.1. ARGUMENT

struct ssa_digest_input4 {
 SEQUENCE4args sdi_seqargs;
};

struct SET_SSV4args {
 opaque ssa_ssv<>;
 opaque ssa_digest<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 494

18.47.2. RESULT

struct ssr_digest_input4 {
 SEQUENCE4res sdi_seqres;
};

struct SET_SSV4resok {
 opaque ssr_digest<>;
};

union SET_SSV4res switch (nfsstat4 ssr_status) {
case NFS4_OK:
 SET_SSV4resok ssr_resok4;
default:
 void;
};

18.47.3. DESCRIPTION

This operation is used to update the SSV for a client ID. Before SET_SSV is called the first time on
a client ID, the SSV is zero. The SSV is the key used for the SSV GSS mechanism (Section 2.10.9)

SET_SSV be preceded by a SEQUENCE operation in the same COMPOUND. It be
used if the client did not opt for SP4_SSV state protection when the client ID was created (see
Section 18.35); the server returns NFS4ERR_INVAL in that case.

The field ssa_digest is computed as the output of the HMAC () using the subkey
derived from the SSV4_SUBKEY_MIC_I2T and current SSV as the key (see Section 2.10.9 for a
description of subkeys), and an XDR encoded value of data type ssa_digest_input4. The field
sdi_seqargs is equal to the arguments of the SEQUENCE operation for the COMPOUND procedure
that SET_SSV is within.

The argument ssa_ssv is XORed with the current SSV to produce the new SSV. The argument
ssa_ssv be generated randomly.

In the response, ssr_digest is the output of the HMAC using the subkey derived from
SSV4_SUBKEY_MIC_T2I and new SSV as the key, and an XDR encoded value of data type
ssr_digest_input4. The field sdi_seqres is equal to the results of the SEQUENCE operation for the
COMPOUND procedure that SET_SSV is within.

As noted in Section 18.35, the client and server can maintain multiple concurrent versions of the
SSV. The client and server each maintain an internal SSV version number, which is set to
one the first time SET_SSV executes on the server and the client receives the first SET_SSV reply.
Each subsequent SET_SSV increases the internal SSV version number by one. The value of this
version number corresponds to the smpt_ssv_seq, smt_ssv_seq, sspt_ssv_seq, and ssct_ssv_seq
fields of the SSV GSS mechanism tokens (see Section 2.10.9).

MUST MUST NOT

RFC 2104 [52]

SHOULD

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 495

18.47.4. IMPLEMENTATION

When the server receives ssa_digest, it verify the digest by computing the digest the same
way the client did and comparing it with ssa_digest. If the server gets a different result, this is an
error, NFS4ERR_BAD_SESSION_DIGEST. This error might be the result of another SET_SSV from
the same client ID changing the SSV. If so, the client recovers by sending a SET_SSV operation
again with a recomputed digest based on the subkey of the new SSV. If the transport connection
is dropped after the SET_SSV request is sent, but before the SET_SSV reply is received, then there
are special considerations for recovery if the client has no more connections associated with
sessions associated with the client ID of the SSV. See Section 18.34.4.

Clients send an ssa_ssv that is equal to a previous ssa_ssv, nor equal to a previous or
current SSV (including an ssa_ssv equal to zero since the SSV is initialized to zero when the client
ID is created).

Clients send SET_SSV with RPCSEC_GSS privacy. Servers support RPCSEC_GSS with
privacy for any COMPOUND that has { SEQUENCE, SET_SSV }.

A client send SET_SSV with the SSV GSS mechanism's credential because the
purpose of SET_SSV is to seed the SSV from non-SSV credentials. Instead, SET_SSV be
sent with the credential of a user that is accessing the client ID for the first time (Section 2.10.8.3).
However, if the client does send SET_SSV with SSV credentials, the digest protecting the
arguments uses the value of the SSV before ssa_ssv is XORed in, and the digest protecting the
results uses the value of the SSV after the ssa_ssv is XORed in.

MUST

SHOULD NOT

SHOULD MUST

SHOULD NOT
SHOULD

18.48. Operation 55: TEST_STATEID - Test Stateids for Validity
18.48.1. ARGUMENT

struct TEST_STATEID4args {
 stateid4 ts_stateids<>;
};

18.48.2. RESULT

struct TEST_STATEID4resok {
 nfsstat4 tsr_status_codes<>;
};

union TEST_STATEID4res switch (nfsstat4 tsr_status) {
 case NFS4_OK:
 TEST_STATEID4resok tsr_resok4;
 default:
 void;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 496

18.48.3. DESCRIPTION

The TEST_STATEID operation is used to check the validity of a set of stateids. It can be used at any
time, but the client should definitely use it when it receives an indication that one or more of its
stateids have been invalidated due to lock revocation. This occurs when the SEQUENCE operation
returns with one of the following sr_status_flags set:

SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED
SEQ4_STATUS_EXPIRED_ADMIN_STATE_REVOKED
SEQ4_STATUS_EXPIRED_RECALLABLE_STATE_REVOKED

The client can use TEST_STATEID one or more times to test the validity of its stateids. Each use of
TEST_STATEID allows a large set of such stateids to be tested and avoids problems with earlier
stateids in a COMPOUND request from interfering with the checking of subsequent stateids, as
would happen if individual stateids were tested by a series of corresponding by operations in a
COMPOUND request.

For each stateid, the server returns the status code that would be returned if that stateid were to
be used in normal operation. Returning such a status indication is not an error and does not
cause COMPOUND processing to terminate. Checks for the validity of the stateid proceed as they
would for normal operations with a number of exceptions:

There is no check for the type of stateid object, as would be the case for normal use of a
stateid.
There is no reference to the current filehandle.
Special stateids are always considered invalid (they result in the error code
NFS4ERR_BAD_STATEID).

All stateids are interpreted as being associated with the client for the current session. Any
possible association with a previous instance of the client (as stale stateids) is not considered.

The valid status values in the returned status_code array are NFS4ERR_OK,
NFS4ERR_BAD_STATEID, NFS4ERR_OLD_STATEID, NFS4ERR_EXPIRED,
NFS4ERR_ADMIN_REVOKED, and NFS4ERR_DELEG_REVOKED.

•
•
•

•

•
•

18.48.4. IMPLEMENTATION

See Sections 8.2.2 and 8.2.4 for a discussion of stateid structure, lifetime, and validation.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 497

18.49. Operation 56: WANT_DELEGATION - Request Delegation
18.49.1. ARGUMENT

union deleg_claim4 switch (open_claim_type4 dc_claim) {
/*
 * No special rights to object. Ordinary delegation
 * request of the specified object. Object identified
 * by filehandle.
 */
case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

/*
 * Right to file based on a delegation granted
 * to a previous boot instance of the client.
 * File is specified by filehandle.
 */
case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

/*
 * Right to the file established by an open previous
 * to server reboot. File identified by filehandle.
 * Used during server reclaim grace period.
 */
case CLAIM_PREVIOUS:
 /* CURRENT_FH: object being reclaimed */
 open_delegation_type4 dc_delegate_type;
};

struct WANT_DELEGATION4args {
 uint32_t wda_want;
 deleg_claim4 wda_claim;
};

18.49.2. RESULT

union WANT_DELEGATION4res switch (nfsstat4 wdr_status) {
case NFS4_OK:
 open_delegation4 wdr_resok4;
default:
 void;
};

18.49.3. DESCRIPTION

Where this description mandates the return of a specific error code for a specific condition, and
where multiple conditions apply, the server return any of the mandated error codes.MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 498

This operation allows a client to:

Get a delegation on all types of files except directories.
Register a "want" for a delegation for the specified file object, and be notified via a callback
when the delegation is available. The server support notifications of availability via
callbacks. If the server does not support registration of wants, it return an error to
indicate that, and instead return with ond_why set to WND4_CONTENTION or
WND4_RESOURCE and ond_server_will_push_deleg or ond_server_will_signal_avail set to
FALSE. When the server indicates that it will notify the client by means of a callback, it will
either provide the delegation using a CB_PUSH_DELEG operation or cancel its promise by
sending a CB_WANTS_CANCELLED operation.
Cancel a want for a delegation.

The client set OPEN4_SHARE_ACCESS_READ and set
OPEN4_SHARE_ACCESS_WRITE in wda_want. If it does, the server ignore them.

The meanings of the following flags in wda_want are the same as they are in OPEN, except as
noted below.

OPEN4_SHARE_ACCESS_WANT_READ_DELEG
OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG
OPEN4_SHARE_ACCESS_WANT_ANY_DELEG
OPEN4_SHARE_ACCESS_WANT_NO_DELEG. Unlike the OPEN operation, this flag

 be set by the client in the arguments to WANT_DELEGATION, and be ignored by
the server.
OPEN4_SHARE_ACCESS_WANT_CANCEL
OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL
OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

The handling of the above flags in WANT_DELEGATION is the same as in OPEN. Information
about the delegation and/or the promises the server is making regarding future callbacks are the
same as those described in the open_delegation4 structure.

The successful results of WANT_DELEGATION are of data type open_delegation4, which is the
same data type as the "delegation" field in the results of the OPEN operation (see Section 18.16.3).
The server constructs wdr_resok4 the same way it constructs OPEN's "delegation" with one
difference: WANT_DELEGATION return a delegation type of OPEN_DELEGATE_NONE.

If ((wda_want & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) &
~OPEN4_SHARE_ACCESS_WANT_NO_DELEG) is zero, then the client is indicating no explicit
desire or non-desire for a delegation and the server return NFS4ERR_INVAL.

The client uses the OPEN4_SHARE_ACCESS_WANT_CANCEL flag in the WANT_DELEGATION
operation to cancel a previously requested want for a delegation. Note that if the server is in the
process of sending the delegation (via CB_PUSH_DELEG) at the time the client sends a
cancellation of the want, the delegation might still be pushed to the client.

•
•

MAY
MUST NOT

MUST

•

SHOULD NOT SHOULD NOT
MUST

•
•
•
• SHOULD

NOT MUST

•
•
•

MUST NOT

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 499

If WANT_DELEGATION fails to return a delegation, and the server returns NFS4_OK, the server
 set the delegation type to OPEN4_DELEGATE_NONE_EXT, and set od_whynone, as described

in Section 18.16. Write delegations are not available for file types that are not writable. This
includes file objects of types NF4BLK, NF4CHR, NF4LNK, NF4SOCK, and NF4FIFO. If the client
requests OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG without
OPEN4_SHARE_ACCESS_WANT_READ_DELEG on an object with one of the aforementioned file
types, the server must set wdr_resok4.od_whynone.ond_why to
WND4_WRITE_DELEG_NOT_SUPP_FTYPE.

MUST

18.49.4. IMPLEMENTATION

A request for a conflicting delegation is not normally intended to trigger the recall of the existing
delegation. Servers may choose to treat some clients as having higher priority such that their
wants will trigger recall of an existing delegation, although that is expected to be an unusual
situation.

Servers will generally recall delegations assigned by WANT_DELEGATION on the same basis as
those assigned by OPEN. CB_RECALL will generally be done only when other clients perform
operations inconsistent with the delegation. The normal response to aging of delegations is to use
CB_RECALL_ANY, in order to give the client the opportunity to keep the delegations most useful
from its point of view.

18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID
18.50.1. ARGUMENT

struct DESTROY_CLIENTID4args {
 clientid4 dca_clientid;
};

18.50.2. RESULT

struct DESTROY_CLIENTID4res {
 nfsstat4 dcr_status;
};

18.50.3. DESCRIPTION

The DESTROY_CLIENTID operation destroys the client ID. If there are sessions (both idle and non-
idle), opens, locks, delegations, layouts, and/or wants (Section 18.49) associated with the
unexpired lease of the client ID, the server return NFS4ERR_CLIENTID_BUSY.
DESTROY_CLIENTID be preceded with a SEQUENCE operation as long as the client ID
derived from the session ID of SEQUENCE is not the same as the client ID to be destroyed. If the
client IDs are the same, then the server return NFS4ERR_CLIENTID_BUSY.

MUST
MAY

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 500

If DESTROY_CLIENTID is not prefixed by SEQUENCE, it be the only operation in the
COMPOUND request (otherwise, the server return NFS4ERR_NOT_ONLY_OP). If the
operation is sent without a SEQUENCE preceding it, a client that retransmits the request may
receive an error in response, because the original request might have been successfully
executed.

MUST
MUST

18.50.4. IMPLEMENTATION

DESTROY_CLIENTID allows a server to immediately reclaim the resources consumed by an
unused client ID, and also to forget that it ever generated the client ID. By forgetting that it ever
generated the client ID, the server can safely reuse the client ID on a future EXCHANGE_ID
operation.

18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished
18.51.1. ARGUMENT

struct RECLAIM_COMPLETE4args {
 /*
 * If rca_one_fs TRUE,
 *
 * CURRENT_FH: object in
 * file system reclaim is
 * complete for.
 */
 bool rca_one_fs;
};

18.51.2. RESULTS

struct RECLAIM_COMPLETE4res {
 nfsstat4 rcr_status;
};

18.51.3. DESCRIPTION

A RECLAIM_COMPLETE operation is used to indicate that the client has reclaimed all of the
locking state that it will recover using reclaim, when it is recovering state due to either a server
restart or the migration of a file system to another server. There are two types of
RECLAIM_COMPLETE operations:

When rca_one_fs is FALSE, a global RECLAIM_COMPLETE is being done. This indicates that
recovery of all locks that the client held on the previous server instance has been completed.
The current filehandle need not be set in this case.
When rca_one_fs is TRUE, a file system-specific RECLAIM_COMPLETE is being done. This
indicates that recovery of locks for a single fs (the one designated by the current filehandle)
due to the migration of the file system has been completed. Presence of a current filehandle
is required when rca_one_fs is set to TRUE. When the current filehandle designates a

•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 501

filehandle in a file system not in the process of migration, the operation returns NFS4_OK
and is otherwise ignored.

Once a RECLAIM_COMPLETE is done, there can be no further reclaim operations for locks whose
scope is defined as having completed recovery. Once the client sends RECLAIM_COMPLETE, the
server will not allow the client to do subsequent reclaims of locking state for that scope and, if
these are attempted, will return NFS4ERR_NO_GRACE.

Whenever a client establishes a new client ID and before it does the first non-reclaim operation
that obtains a lock, it send a RECLAIM_COMPLETE with rca_one_fs set to FALSE, even if
there are no locks to reclaim. If non-reclaim locking operations are done before the
RECLAIM_COMPLETE, an NFS4ERR_GRACE error will be returned.

Similarly, when the client accesses a migrated file system on a new server, before it sends the
first non-reclaim operation that obtains a lock on this new server, it send a
RECLAIM_COMPLETE with rca_one_fs set to TRUE and current filehandle within that file system,
even if there are no locks to reclaim. If non-reclaim locking operations are done on that file
system before the RECLAIM_COMPLETE, an NFS4ERR_GRACE error will be returned.

It should be noted that there are situations in which a client needs to issue both forms of
RECLAIM_COMPLETE. An example is an instance of file system migration in which the file
system is migrated to a server for which the client has no clientid. As a result, the client needs to
obtain a clientid from the server (incurring the responsibility to do RECLAIM_COMPLETE with
rca_one_fs set to FALSE) as well as RECLAIM_COMPLETE with rca_one_fs set to TRUE to complete
the per-fs grace period associated with the file system migration. These two may be done in any
order as long as all necessary lock reclaims have been done before issuing either of them.

Any locks not reclaimed at the point at which RECLAIM_COMPLETE is done become non-
reclaimable. The client attempt to reclaim them, either during the current server
instance or in any subsequent server instance, or on another server to which responsibility for
that file system is transferred. If the client were to do so, it would be violating the protocol by
representing itself as owning locks that it does not own, and so has no right to reclaim. See

 for a discussion of edge conditions related to lock reclaim.

By sending a RECLAIM_COMPLETE, the client indicates readiness to proceed to do normal non-
reclaim locking operations. The client should be aware that such operations may temporarily
result in NFS4ERR_GRACE errors until the server is ready to terminate its grace period.

MUST

MUST

MUST NOT

Section 8.4.3 of [66]

18.51.4. IMPLEMENTATION

Servers will typically use the information as to when reclaim activity is complete to reduce the
length of the grace period. When the server maintains in persistent storage a list of clients that
might have had locks, it is able to use the fact that all such clients have done a
RECLAIM_COMPLETE to terminate the grace period and begin normal operations (i.e., grant
requests for new locks) sooner than it might otherwise.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 502

https://www.rfc-editor.org/rfc/rfc5661#section-8.4.3

Latency can be minimized by doing a RECLAIM_COMPLETE as part of the COMPOUND request in
which the last lock-reclaiming operation is done. When there are no reclaims to be done,
RECLAIM_COMPLETE should be done immediately in order to allow the grace period to end as
soon as possible.

RECLAIM_COMPLETE should only be done once for each server instance or occasion of the
transition of a file system. If it is done a second time, the error NFS4ERR_COMPLETE_ALREADY
will result. Note that because of the session feature's retry protection, retries of COMPOUND
requests containing RECLAIM_COMPLETE operation will not result in this error.

When a RECLAIM_COMPLETE is sent, the client effectively acknowledges any locks not yet
reclaimed as lost. This allows the server to re-enable the client to recover locks if the occurrence
of edge conditions, as described in Section 8.4.3, had caused the server to disable the client's
ability to recover locks.

Because previous descriptions of RECLAIM_COMPLETE were not sufficiently explicit about the
circumstances in which use of RECLAIM_COMPLETE with rca_one_fs set to TRUE was
appropriate, there have been cases in which it has been misused by clients who have issued
RECLAIM_COMPLETE with rca_one_fs set to TRUE when it should have not been. There have also
been cases in which servers have, in various ways, not responded to such misuse as described
above, either ignoring the rca_one_fs setting (treating the operation as a global
RECLAIM_COMPLETE) or ignoring the entire operation.

While clients misuse this feature, and servers respond to such misuse as
described above, implementors need to be aware of the following considerations as they make
necessary trade-offs between interoperability with existing implementations and proper support
for facilities to allow lock recovery in the event of file system migration.

When servers have no support for becoming the destination server of a file system subject to
migration, there is no possibility of a per-fs RECLAIM_COMPLETE being done legitimately,
and occurrences of it be ignored. However, the negative consequences of accepting
such mistaken use are quite limited as long as the client does not issue it before all necessary
reclaims are done.
When a server might become the destination for a file system being migrated, inappropriate
use of per-fs RECLAIM_COMPLETE is more concerning. In the case in which the file system
designated is not within a per-fs grace period, the per-fs RECLAIM_COMPLETE be
ignored, with the negative consequences of accepting it being limited, as in the case in which
migration is not supported. However, if the server encounters a file system undergoing
migration, the operation cannot be accepted as if it were a global RECLAIM_COMPLETE
without invalidating its intended use.

SHOULD NOT SHOULD

•

SHOULD

•

SHOULD

18.52. Operation 10044: ILLEGAL - Illegal Operation
18.52.1. ARGUMENTS

void;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 503

18.52.2. RESULTS

struct ILLEGAL4res {
 nfsstat4 status;
};

18.52.3. DESCRIPTION

This operation is a placeholder for encoding a result to handle the case of the client sending an
operation code within COMPOUND that is not supported. See the COMPOUND procedure
description for more details.

The status field of ILLEGAL4res be set to NFS4ERR_OP_ILLEGAL.MUST

18.52.4. IMPLEMENTATION

A client will probably not send an operation with code OP_ILLEGAL but if it does, the response
will be ILLEGAL4res just as it would be with any other invalid operation code. Note that if the
server gets an illegal operation code that is not OP_ILLEGAL, and if the server checks for legal
operation codes during the XDR decode phase, then the ILLEGAL4res would not be returned.

19. NFSv4.1 Callback Procedures
The procedures used for callbacks are defined in the following sections. In the interest of clarity,
the terms "client" and "server" refer to NFS clients and servers, despite the fact that for an
individual callback RPC, the sense of these terms would be precisely the opposite.

Both procedures, CB_NULL and CB_COMPOUND, be implemented.MUST

19.1. Procedure 0: CB_NULL - No Operation
19.1.1. ARGUMENTS

void;

19.1.2. RESULTS

void;

19.1.3. DESCRIPTION

CB_NULL is the standard ONC RPC NULL procedure, with the standard void argument and void
response. Even though there is no direct functionality associated with this procedure, the server
will use CB_NULL to confirm the existence of a path for RPCs from the server to client.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 504

19.1.4. ERRORS

None.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 505

19.2. Procedure 1: CB_COMPOUND - Compound Operations

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 506

19.2.1. ARGUMENTS

enum nfs_cb_opnum4 {
 OP_CB_GETATTR = 3,
 OP_CB_RECALL = 4,
/* Callback operations new to NFSv4.1 */
 OP_CB_LAYOUTRECALL = 5,
 OP_CB_NOTIFY = 6,
 OP_CB_PUSH_DELEG = 7,
 OP_CB_RECALL_ANY = 8,
 OP_CB_RECALLABLE_OBJ_AVAIL = 9,
 OP_CB_RECALL_SLOT = 10,
 OP_CB_SEQUENCE = 11,
 OP_CB_WANTS_CANCELLED = 12,
 OP_CB_NOTIFY_LOCK = 13,
 OP_CB_NOTIFY_DEVICEID = 14,

 OP_CB_ILLEGAL = 10044
};

union nfs_cb_argop4 switch (unsigned argop) {
 case OP_CB_GETATTR:
 CB_GETATTR4args opcbgetattr;
 case OP_CB_RECALL:
 CB_RECALL4args opcbrecall;
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4args opcblayoutrecall;
 case OP_CB_NOTIFY:
 CB_NOTIFY4args opcbnotify;
 case OP_CB_PUSH_DELEG:
 CB_PUSH_DELEG4args opcbpush_deleg;
 case OP_CB_RECALL_ANY:
 CB_RECALL_ANY4args opcbrecall_any;
 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4args opcbrecallable_obj_avail;
 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4args opcbrecall_slot;
 case OP_CB_SEQUENCE:
 CB_SEQUENCE4args opcbsequence;
 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4args opcbwants_cancelled;
 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4args opcbnotify_lock;
 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4args opcbnotify_deviceid;
 case OP_CB_ILLEGAL: void;
};

struct CB_COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 uint32_t callback_ident;
 nfs_cb_argop4 argarray<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 507

19.2.2. RESULTS

union nfs_cb_resop4 switch (unsigned resop) {
 case OP_CB_GETATTR: CB_GETATTR4res opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4res opcbrecall;

 /* new NFSv4.1 operations */
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4res
 opcblayoutrecall;

 case OP_CB_NOTIFY: CB_NOTIFY4res opcbnotify;

 case OP_CB_PUSH_DELEG: CB_PUSH_DELEG4res
 opcbpush_deleg;

 case OP_CB_RECALL_ANY: CB_RECALL_ANY4res
 opcbrecall_any;

 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4res
 opcbrecallable_obj_avail;

 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4res
 opcbrecall_slot;

 case OP_CB_SEQUENCE: CB_SEQUENCE4res opcbsequence;

 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4res
 opcbwants_cancelled;

 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4res
 opcbnotify_lock;

 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4res
 opcbnotify_deviceid;

 /* Not new operation */
 case OP_CB_ILLEGAL: CB_ILLEGAL4res opcbillegal;
};

struct CB_COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_cb_resop4 resarray<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 508

19.2.3. DESCRIPTION

The CB_COMPOUND procedure is used to combine one or more of the callback procedures into a
single RPC request. The main callback RPC program has two main procedures: CB_NULL and
CB_COMPOUND. All other operations use the CB_COMPOUND procedure as a wrapper.

During the processing of the CB_COMPOUND procedure, the client may find that it does not have
the available resources to execute any or all of the operations within the CB_COMPOUND
sequence. Refer to Section 2.10.6.4 for details.

The minorversion field of the arguments be the same as the minorversion of the
COMPOUND procedure used to create the client ID and session. For NFSv4.1, minorversion
be set to 1.

Contained within the CB_COMPOUND results is a "status" field. This status be equal to the
status of the last operation that was executed within the CB_COMPOUND procedure. Therefore, if
an operation incurred an error, then the "status" value will be the same error value as is being
returned for the operation that failed.

The "tag" field is handled the same way as that of the COMPOUND procedure (see Section 16.2.3).

Illegal operation codes are handled in the same way as they are handled for the COMPOUND
procedure.

MUST
MUST

MUST

19.2.4. IMPLEMENTATION

The CB_COMPOUND procedure is used to combine individual operations into a single RPC
request. The client interprets each of the operations in turn. If an operation is executed by the
client and the status of that operation is NFS4_OK, then the next operation in the CB_COMPOUND
procedure is executed. The client continues this process until there are no more operations to be
executed or one of the operations has a status value other than NFS4_OK.

19.2.5. ERRORS

CB_COMPOUND will of course return every error that each operation on the backchannel can
return (see Table 13). However, if CB_COMPOUND returns zero operations, obviously the error
returned by COMPOUND has nothing to do with an error returned by an operation. The list of
errors CB_COMPOUND will return if it processes zero operations includes:

Error Notes

NFS4ERR_BADCHAR The tag argument has a character the replier does not
support.

NFS4ERR_BADXDR

NFS4ERR_DELAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 509

Error Notes

NFS4ERR_INVAL The tag argument is not in UTF-8 encoding.

NFS4ERR_MINOR_VERS_MISMATCH

NFS4ERR_SERVERFAULT

NFS4ERR_TOO_MANY_OPS

NFS4ERR_REP_TOO_BIG

NFS4ERR_REP_TOO_BIG_TO_CACHE

NFS4ERR_REQ_TOO_BIG

Table 24: CB_COMPOUND Error Returns

20. NFSv4.1 Callback Operations

20.1. Operation 3: CB_GETATTR - Get Attributes
20.1.1. ARGUMENT

struct CB_GETATTR4args {
 nfs_fh4 fh;
 bitmap4 attr_request;
};

20.1.2. RESULT

struct CB_GETATTR4resok {
 fattr4 obj_attributes;
};

union CB_GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 CB_GETATTR4resok resok4;
 default:
 void;
};

20.1.3. DESCRIPTION

The CB_GETATTR operation is used by the server to obtain the current modified state of a file that
has been OPEN_DELEGATE_WRITE delegated. The size and change attributes are the only ones
guaranteed to be serviced by the client. See Section 10.4.3 for a full description of how the client
and server are to interact with the use of CB_GETATTR.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 510

If the filehandle specified is not one for which the client holds an OPEN_DELEGATE_WRITE
delegation, an NFS4ERR_BADHANDLE error is returned.

20.1.4. IMPLEMENTATION

The client returns attrmask bits and the associated attribute values only for the change attribute,
and attributes that it may change (time_modify, and size).

20.2. Operation 4: CB_RECALL - Recall a Delegation
20.2.1. ARGUMENT

struct CB_RECALL4args {
 stateid4 stateid;
 bool truncate;
 nfs_fh4 fh;
};

20.2.2. RESULT

struct CB_RECALL4res {
 nfsstat4 status;
};

20.2.3. DESCRIPTION

The CB_RECALL operation is used to begin the process of recalling a delegation and returning it
to the server.

The truncate flag is used to optimize recall for a file object that is a regular file and is about to be
truncated to zero. When it is TRUE, the client is freed of the obligation to propagate modified
data for the file to the server, since this data is irrelevant.

If the handle specified is not one for which the client holds a delegation, an
NFS4ERR_BADHANDLE error is returned.

If the stateid specified is not one corresponding to an OPEN delegation for the file specified by
the filehandle, an NFS4ERR_BAD_STATEID is returned.

20.2.4. IMPLEMENTATION

The client reply to the callback immediately. Replying does not complete the recall
except when the value of the reply's status field is neither NFS4ERR_DELAY nor NFS4_OK. The
recall is not complete until the delegation is returned using a DELEGRETURN operation.

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 511

20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client
20.3.1. ARGUMENT

/*
 * NFSv4.1 callback arguments and results
 */

enum layoutrecall_type4 {
 LAYOUTRECALL4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRECALL4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRECALL4_ALL = LAYOUT4_RET_REC_ALL
};

struct layoutrecall_file4 {
 nfs_fh4 lor_fh;
 offset4 lor_offset;
 length4 lor_length;
 stateid4 lor_stateid;
};

union layoutrecall4 switch(layoutrecall_type4 lor_recalltype) {
case LAYOUTRECALL4_FILE:
 layoutrecall_file4 lor_layout;
case LAYOUTRECALL4_FSID:
 fsid4 lor_fsid;
case LAYOUTRECALL4_ALL:
 void;
};

struct CB_LAYOUTRECALL4args {
 layouttype4 clora_type;
 layoutiomode4 clora_iomode;
 bool clora_changed;
 layoutrecall4 clora_recall;
};

20.3.2. RESULT

struct CB_LAYOUTRECALL4res {
 nfsstat4 clorr_status;
};

20.3.3. DESCRIPTION

The CB_LAYOUTRECALL operation is used by the server to recall layouts from the client; as a
result, the client will begin the process of returning layouts via LAYOUTRETURN. The
CB_LAYOUTRECALL operation specifies one of three forms of recall processing with the value of
layoutrecall_type4. The recall is for one of the following: a specific layout of a specific file
(LAYOUTRECALL4_FILE), an entire file system ID (LAYOUTRECALL4_FSID), or all file systems
(LAYOUTRECALL4_ALL).

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 512

The behavior of the operation varies based on the value of the layoutrecall_type4. The value and
behaviors are:

LAYOUTRECALL4_FILE
For a layout to match the recall request, the values of the following fields must match those
of the layout: clora_type, clora_iomode, lor_fh, and the byte-range specified by lor_offset
and lor_length. The clora_iomode field may have a special value of LAYOUTIOMODE4_ANY.
The special value LAYOUTIOMODE4_ANY will match any iomode originally returned in a
layout; therefore, it acts as a wild card. The other special value used is for lor_length. If
lor_length has a value of NFS4_UINT64_MAX, the lor_length field means the maximum
possible file size. If a matching layout is found, it be returned using the
LAYOUTRETURN operation (see Section 18.44). An example of the field's special value use
is if clora_iomode is LAYOUTIOMODE4_ANY, lor_offset is zero, and lor_length is
NFS4_UINT64_MAX, then the entire layout is to be returned.

The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the client does not hold
layouts for the file or if the client does not have any overlapping layouts for the
specification in the layout recall.

LAYOUTRECALL4_FSID and LAYOUTRECALL4_ALL
If LAYOUTRECALL4_FSID is specified, the fsid specifies the file system for which any
outstanding layouts be returned. If LAYOUTRECALL4_ALL is specified, all
outstanding layouts be returned. In addition, LAYOUTRECALL4_FSID and
LAYOUTRECALL4_ALL specify that all the storage device ID to storage device address
mappings in the affected file system(s) are also recalled. The respective LAYOUTRETURN
with either LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL acknowledges to the server
that the client invalidated the said device mappings. See Section 12.5.5.2.1.5 for
considerations with "bulk" recall of layouts.

The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the client does not hold
layouts and does not have valid deviceid mappings.

In processing the layout recall request, the client also varies its behavior based on the value of
the clora_changed field. This field is used by the server to provide additional context for the
reason why the layout is being recalled. A FALSE value for clora_changed indicates that no
change in the layout is expected and the client may write modified data to the storage devices
involved; this must be done prior to returning the layout via LAYOUTRETURN. A TRUE value for
clora_changed indicates that the server is changing the layout. Examples of layout changes and
reasons for a TRUE indication are the following: the metadata server is restriping the file or a
permanent error has occurred on a storage device and the metadata server would like to provide
a new layout for the file. Therefore, a clora_changed value of TRUE indicates some level of
change for the layout and the client write and commit modified data to the storage
devices. In this case, the client writes and commits data through the metadata server.

MUST

MUST
MUST

SHOULD NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 513

See Section 12.5.3 for a description of how the lor_stateid field in the arguments is to be
constructed. Note that the "seqid" field of lor_stateid be zero. See Sections 8.2, 12.5.3,
and 12.5.5.2 for a further discussion and requirements.

MUST NOT

20.3.4. IMPLEMENTATION

The client's processing for CB_LAYOUTRECALL is similar to CB_RECALL (recall of file delegations)
in that the client responds to the request before actually returning layouts via the
LAYOUTRETURN operation. While the client responds to the CB_LAYOUTRECALL immediately,
the operation is not considered complete (i.e., considered pending) until all affected layouts are
returned to the server via the LAYOUTRETURN operation.

Before returning the layout to the server via LAYOUTRETURN, the client should wait for the
response from in-process or in-flight READ, WRITE, or COMMIT operations that use the recalled
layout.

If the client is holding modified data that is affected by a recalled layout, the client has various
options for writing the data to the server. As always, the client may write the data through the
metadata server. In fact, the client may not have a choice other than writing to the metadata
server when the clora_changed argument is TRUE and a new layout is unavailable from the
server. However, the client may be able to write the modified data to the storage device if the
clora_changed argument is FALSE; this needs to be done before returning the layout via
LAYOUTRETURN. If the client were to obtain a new layout covering the modified data's byte-
range, then writing to the storage devices is an available alternative. Note that before obtaining a
new layout, the client must first return the original layout.

In the case of modified data being written while the layout is held, the client must use
LAYOUTCOMMIT operations at the appropriate time; as required LAYOUTCOMMIT must be done
before the LAYOUTRETURN. If a large amount of modified data is outstanding, the client may
send LAYOUTRETURNs for portions of the recalled layout; this allows the server to monitor the
client's progress and adherence to the original recall request. However, the last LAYOUTRETURN
in a sequence of returns specify the full range being recalled (see Section 12.5.5.1 for
details).

If a server needs to delete a device ID and there are layouts referring to the device ID,
CB_LAYOUTRECALL be invoked to cause the client to return all layouts referring to the
device ID before the server can delete the device ID. If the client does not return the affected
layouts, the server revoke the layouts.

MUST

MUST

MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 514

20.4. Operation 6: CB_NOTIFY - Notify Client of Directory Changes

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 515

20.4.1. ARGUMENT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 516

/*
 * Directory notification types.
 */
enum notify_type4 {
 NOTIFY4_CHANGE_CHILD_ATTRS = 0,
 NOTIFY4_CHANGE_DIR_ATTRS = 1,
 NOTIFY4_REMOVE_ENTRY = 2,
 NOTIFY4_ADD_ENTRY = 3,
 NOTIFY4_RENAME_ENTRY = 4,
 NOTIFY4_CHANGE_COOKIE_VERIFIER = 5
};

/* Changed entry information. */
struct notify_entry4 {
 component4 ne_file;
 fattr4 ne_attrs;
};

/* Previous entry information */
struct prev_entry4 {
 notify_entry4 pe_prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 pe_prev_entry_cookie;
};

struct notify_remove4 {
 notify_entry4 nrm_old_entry;
 nfs_cookie4 nrm_old_entry_cookie;
};

struct notify_add4 {
 /*
 * Information on object
 * possibly renamed over.
 */
 notify_remove4 nad_old_entry<1>;
 notify_entry4 nad_new_entry;
 /* what READDIR would have returned for this entry */
 nfs_cookie4 nad_new_entry_cookie<1>;
 prev_entry4 nad_prev_entry<1>;
 bool nad_last_entry;
};

struct notify_attr4 {
 notify_entry4 na_changed_entry;
};

struct notify_rename4 {
 notify_remove4 nrn_old_entry;
 notify_add4 nrn_new_entry;
};

struct notify_verifier4 {
 verifier4 nv_old_cookieverf;
 verifier4 nv_new_cookieverf;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 517

/*
 * Objects of type notify_<>4 and
 * notify_device_<>4 are encoded in this.
 */
typedef opaque notifylist4<>;

struct notify4 {
 /* composed from notify_type4 or notify_deviceid_type4 */
 bitmap4 notify_mask;
 notifylist4 notify_vals;
};

struct CB_NOTIFY4args {
 stateid4 cna_stateid;
 nfs_fh4 cna_fh;
 notify4 cna_changes<>;
};

20.4.2. RESULT

struct CB_NOTIFY4res {
 nfsstat4 cnr_status;
};

20.4.3. DESCRIPTION

The CB_NOTIFY operation is used by the server to send notifications to clients about changes to
delegated directories. The registration of notifications for the directories occurs when the
delegation is established using GET_DIR_DELEGATION. These notifications are sent over the
backchannel. The notification is sent once the original request has been processed on the server.
The server will send an array of notifications for changes that might have occurred in the
directory. The notifications are sent as list of pairs of bitmaps and values. See Section 3.3.7 for a
description of how NFSv4.1 bitmaps work.

If the server has more notifications than can fit in the CB_COMPOUND request, it send a
sequence of serial CB_COMPOUND requests so that the client's view of the directory does not
become confused. For example, if the server indicates that a file named "foo" is added and that
the file "foo" is removed, the order in which the client receives these notifications needs to be the
same as the order in which the corresponding operations occurred on the server.

If the client holding the delegation makes any changes in the directory that cause files or sub-
directories to be added or removed, the server will notify that client of the resulting change(s). If
the client holding the delegation is making attribute or cookie verifier changes only, the server
does not need to send notifications to that client. The server will send the following information
for each operation:

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 518

NOTIFY4_ADD_ENTRY
The server will send information about the new directory entry being created along with
the cookie for that entry. The entry information (data type notify_add4) includes the
component name of the entry and attributes. The server will send this type of entry when
a file is actually being created, when an entry is being added to a directory as a result of a
rename across directories (see below), and when a hard link is being created to an existing
file. If this entry is added to the end of the directory, the server will set the nad_last_entry
flag to TRUE. If the file is added such that there is at least one entry before it, the server
will also return the previous entry information (nad_prev_entry, a variable-length array of
up to one element. If the array is of zero length, there is no previous entry), along with its
cookie. This is to help clients find the right location in their file name caches and directory
caches where this entry should be cached. If the new entry's cookie is available, it will be
in the nad_new_entry_cookie (another variable-length array of up to one element) field. If
the addition of the entry causes another entry to be deleted (which can only happen in the
rename case) atomically with the addition, then information on this entry is reported in
nad_old_entry.

NOTIFY4_REMOVE_ENTRY
The server will send information about the directory entry being deleted. The server will
also send the cookie value for the deleted entry so that clients can get to the cached
information for this entry.

NOTIFY4_RENAME_ENTRY
The server will send information about both the old entry and the new entry. This includes
the name and attributes for each entry. In addition, if the rename causes the deletion of an
entry (i.e., the case of a file renamed over), then this is reported in
nrn_new_new_entry.nad_old_entry. This notification is only sent if both entries are in the
same directory. If the rename is across directories, the server will send a remove
notification to one directory and an add notification to the other directory, assuming both
have a directory delegation.

NOTIFY4_CHANGE_CHILD_ATTRS/NOTIFY4_CHANGE_DIR_ATTRS
The client will use the attribute mask to inform the server of attributes for which it wants
to receive notifications. This change notification can be requested for changes to the
attributes of the directory as well as changes to any file's attributes in the directory by
using two separate attribute masks. The client cannot ask for change attribute notification
for a specific file. One attribute mask covers all the files in the directory. Upon any
attribute change, the server will send back the values of changed attributes. Notifications
might not make sense for some file system-wide attributes, and it is up to the server to
decide which subset it wants to support. The client can negotiate the frequency of attribute
notifications by letting the server know how often it wants to be notified of an attribute
change. The server will return supported notification frequencies or an indication that no
notification is permitted for directory or child attributes by setting the dir_notif_delay and
dir_entry_notif_delay attributes, respectively.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 519

NOTIFY4_CHANGE_COOKIE_VERIFIER
If the cookie verifier changes while a client is holding a delegation, the server will notify
the client so that it can invalidate its cookies and re-send a READDIR to get the new set of
cookies.

20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation
to Client
20.5.1. ARGUMENT

struct CB_PUSH_DELEG4args {
 nfs_fh4 cpda_fh;
 open_delegation4 cpda_delegation;

};

20.5.2. RESULT

struct CB_PUSH_DELEG4res {
 nfsstat4 cpdr_status;
};

20.5.3. DESCRIPTION

CB_PUSH_DELEG is used by the server both to signal to the client that the delegation it wants
(previously indicated via a want established from an OPEN or WANT_DELEGATION operation) is
available and to simultaneously offer the delegation to the client. The client has the choice of
accepting the delegation by returning NFS4_OK to the server, delaying the decision to accept the
offered delegation by returning NFS4ERR_DELAY, or permanently rejecting the offer of the
delegation by returning NFS4ERR_REJECT_DELEG. When a delegation is rejected in this fashion,
the want previously established is permanently deleted and the delegation is subject to
acquisition by another client.

20.5.4. IMPLEMENTATION

If the client does return NFS4ERR_DELAY and there is a conflicting delegation request, the server
 process it at the expense of the client that returned NFS4ERR_DELAY. The client's want will

not be cancelled, but be processed behind other delegation requests or registered wants.

When a client returns a status other than NFS4_OK, NFS4ERR_DELAY, or
NFS4ERR_REJECT_DELAY, the want remains pending, although servers may decide to cancel the
want by sending a CB_WANTS_CANCELLED.

MAY
MAY

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 520

20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects
20.6.1. ARGUMENT

const RCA4_TYPE_MASK_RDATA_DLG = 0;
const RCA4_TYPE_MASK_WDATA_DLG = 1;
const RCA4_TYPE_MASK_DIR_DLG = 2;
const RCA4_TYPE_MASK_FILE_LAYOUT = 3;
const RCA4_TYPE_MASK_BLK_LAYOUT = 4;
const RCA4_TYPE_MASK_OBJ_LAYOUT_MIN = 8;
const RCA4_TYPE_MASK_OBJ_LAYOUT_MAX = 9;
const RCA4_TYPE_MASK_OTHER_LAYOUT_MIN = 12;
const RCA4_TYPE_MASK_OTHER_LAYOUT_MAX = 15;

struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
};

20.6.2. RESULT

struct CB_RECALL_ANY4res {
 nfsstat4 crar_status;
};

20.6.3. DESCRIPTION

The server may decide that it cannot hold all of the state for recallable objects, such as
delegations and layouts, without running out of resources. In such a case, while not optimal, the
server is free to recall individual objects to reduce the load.

Because the general purpose of such recallable objects as delegations is to eliminate client
interaction with the server, the server cannot interpret lack of recent use as indicating that the
object is no longer useful. The absence of visible use is consistent with a delegation keeping
potential operations from being sent to the server. In the case of layouts, while it is true that the
usefulness of a layout is indicated by the use of the layout when storage devices receive I/O
requests, because there is no mandate that a storage device indicate to the metadata server any
past or present use of a layout, the metadata server is not likely to know which layouts are good
candidates to recall in response to low resources.

In order to implement an effective reclaim scheme for such objects, the server's knowledge of
available resources must be used to determine when objects must be recalled with the clients
selecting the actual objects to be returned.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 521

Server implementations may differ in their resource allocation requirements. For example, one
server may share resources among all classes of recallable objects, whereas another may use
separate resource pools for layouts and for delegations, or further separate resources by types of
delegations.

When a given resource pool is over-utilized, the server can send a CB_RECALL_ANY to clients
holding recallable objects of the types involved, allowing it to keep a certain number of such
objects and return any excess. A mask specifies which types of objects are to be limited. The
client chooses, based on its own knowledge of current usefulness, which of the objects in that
class should be returned.

A number of bits are defined. For some of these, ranges are defined and it is up to the definition
of the storage protocol to specify how these are to be used. There are ranges reserved for object-
based storage protocols and for other experimental storage protocols. An RFC defining such a
storage protocol needs to specify how particular bits within its range are to be used. For example,
it may specify a mapping between attributes of the layout (read vs. write, size of area) and the bit
to be used, or it may define a field in the layout where the associated bit position is made
available by the server to the client.

RCA4_TYPE_MASK_RDATA_DLG
The client is to return OPEN_DELEGATE_READ delegations on non-directory file objects.

RCA4_TYPE_MASK_WDATA_DLG
The client is to return OPEN_DELEGATE_WRITE delegations on regular file objects.

RCA4_TYPE_MASK_DIR_DLG
The client is to return directory delegations.

RCA4_TYPE_MASK_FILE_LAYOUT
The client is to return layouts of type LAYOUT4_NFSV4_1_FILES.

RCA4_TYPE_MASK_BLK_LAYOUT
See for a description.

RCA4_TYPE_MASK_OBJ_LAYOUT_MIN to RCA4_TYPE_MASK_OBJ_LAYOUT_MAX
See for a description.

RCA4_TYPE_MASK_OTHER_LAYOUT_MIN to RCA4_TYPE_MASK_OTHER_LAYOUT_MAX
This range is reserved for telling the client to recall layouts of experimental or site-specific
layout types (see Section 3.3.13).

When a bit is set in the type mask that corresponds to an undefined type of recallable object,
NFS4ERR_INVAL be returned. When a bit is set that corresponds to a defined type of object
but the client does not support an object of the type, NFS4ERR_INVAL be returned.
Future minor versions of NFSv4 may expand the set of valid type mask bits.

[48]

[47]

MUST
MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 522

CB_RECALL_ANY specifies a count of objects that the client may keep as opposed to a count that
the client must return. This is to avoid a potential race between a CB_RECALL_ANY that had a
count of objects to free with a set of client-originated operations to return layouts or delegations.
As a result of the race, the client and server would have differing ideas as to how many objects to
return. Hence, the client could mistakenly free too many.

If resource demands prompt it, the server may send another CB_RECALL_ANY with a lower
count, even if it has not yet received an acknowledgment from the client for a previous
CB_RECALL_ANY with the same type mask. Although the possibility exists that these will be
received by the client in an order different from the order in which they were sent, any such
permutation of the callback stream is harmless. It is the job of the client to bring down the size of
the recallable object set in line with each CB_RECALL_ANY received, and until that obligation is
met, it cannot be cancelled or modified by any subsequent CB_RECALL_ANY for the same type
mask. Thus, if the server sends two CB_RECALL_ANYs, the effect will be the same as if the lower
count was sent, whatever the order of recall receipt. Note that this means that a server may not
cancel the effect of a CB_RECALL_ANY by sending another recall with a higher count. When a
CB_RECALL_ANY is received and the count is already within the limit set or is above a limit that
the client is working to get down to, that callback has no effect.

Servers are generally free to deny recallable objects when insufficient resources are available.
Note that the effect of such a policy is implicitly to give precedence to existing objects relative to
requested ones, with the result that resources might not be optimally used. To prevent this,
servers are well advised to make the point at which they start sending CB_RECALL_ANY
callbacks somewhat below that at which they cease to give out new delegations and layouts. This
allows the client to purge its less-used objects whenever appropriate and so continue to have its
subsequent requests given new resources freed up by object returns.

20.6.4. IMPLEMENTATION

The client can choose to return any type of object specified by the mask. If a server wishes to
limit the use of objects of a specific type, it should only specify that type in the mask it sends.
Should the client fail to return requested objects, it is up to the server to handle this situation,
typically by sending specific recalls (i.e., sending CB_RECALL operations) to properly limit
resource usage. The server should give the client enough time to return objects before
proceeding to specific recalls. This time should not be less than the lease period.

20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for
Recallable Objects
20.7.1. ARGUMENT

typedef CB_RECALL_ANY4args CB_RECALLABLE_OBJ_AVAIL4args;

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 523

20.7.2. RESULT

struct CB_RECALLABLE_OBJ_AVAIL4res {
 nfsstat4 croa_status;
};

20.7.3. DESCRIPTION

CB_RECALLABLE_OBJ_AVAIL is used by the server to signal the client that the server has
resources to grant recallable objects that might previously have been denied by OPEN,
WANT_DELEGATION, GET_DIR_DELEG, or LAYOUTGET.

The argument craa_objects_to_keep means the total number of recallable objects of the types
indicated in the argument type_mask that the server believes it can allow the client to have,
including the number of such objects the client already has. A client that tries to acquire more
recallable objects than the server informs it can have runs the risk of having objects recalled.

The server is not obligated to reserve the difference between the number of the objects the client
currently has and the value of craa_objects_to_keep, nor does delaying the reply to
CB_RECALLABLE_OBJ_AVAIL prevent the server from using the resources of the recallable
objects for another purpose. Indeed, if a client responds slowly to CB_RECALLABLE_OBJ_AVAIL,
the server might interpret the client as having reduced capability to manage recallable objects,
and so cancel or reduce any reservation it is maintaining on behalf of the client. Thus, if the
client desires to acquire more recallable objects, it needs to reply quickly to
CB_RECALLABLE_OBJ_AVAIL, and then send the appropriate operations to acquire recallable
objects.

20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits
20.8.1. ARGUMENT

struct CB_RECALL_SLOT4args {
 slotid4 rsa_target_highest_slotid;
};

20.8.2. RESULT

struct CB_RECALL_SLOT4res {
 nfsstat4 rsr_status;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 524

20.8.3. DESCRIPTION

The CB_RECALL_SLOT operation requests the client to return session slots, and if applicable,
transport credits (e.g., RDMA credits for connections associated with the operations channel) of
the session's fore channel. CB_RECALL_SLOT specifies rsa_target_highest_slotid, the value of the
target highest slot ID the server wants for the session. The client then progress toward
reducing the session's highest slot ID to the target value.

If the session has only non-RDMA connections associated with its operations channel, then the
client need only wait for all outstanding requests with a slot ID > rsa_target_highest_slotid to
complete, then send a single COMPOUND consisting of a single SEQUENCE operation, with the
sa_highestslot field set to rsa_target_highest_slotid. If there are RDMA-based connections
associated with operation channel, then the client needs to also send enough zero-length "RDMA
Send" messages to take the total RDMA credit count to rsa_target_highest_slotid + 1 or below.

MUST

20.8.4. IMPLEMENTATION

If the client fails to reduce highest slot it has on the fore channel to what the server requests, the
server can force the issue by asserting flow control on the receive side of all connections bound
to the fore channel, and then finish servicing all outstanding requests that are in slots greater
than rsa_target_highest_slotid. Once that is done, the server can then open the flow control, and
any time the client sends a new request on a slot greater than rsa_target_highest_slotid, the
server can return NFS4ERR_BADSLOT.

20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and
Control
20.9.1. ARGUMENT

struct referring_call4 {
 sequenceid4 rc_sequenceid;
 slotid4 rc_slotid;
};

struct referring_call_list4 {
 sessionid4 rcl_sessionid;
 referring_call4 rcl_referring_calls<>;
};

struct CB_SEQUENCE4args {
 sessionid4 csa_sessionid;
 sequenceid4 csa_sequenceid;
 slotid4 csa_slotid;
 slotid4 csa_highest_slotid;
 bool csa_cachethis;
 referring_call_list4 csa_referring_call_lists<>;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 525

20.9.2. RESULT

struct CB_SEQUENCE4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequenceid;
 slotid4 csr_slotid;
 slotid4 csr_highest_slotid;
 slotid4 csr_target_highest_slotid;
};

union CB_SEQUENCE4res switch (nfsstat4 csr_status) {
case NFS4_OK:
 CB_SEQUENCE4resok csr_resok4;
default:
 void;
};

20.9.3. DESCRIPTION

The CB_SEQUENCE operation is used to manage operational accounting for the backchannel of
the session on which a request is sent. The contents include the session ID to which this request
belongs, the slot ID and sequence ID used by the server to implement session request control and
exactly once semantics, and exchanged slot ID maxima that are used to adjust the size of the
reply cache. In each CB_COMPOUND request, CB_SEQUENCE appear once and be the
first operation. The error NFS4ERR_SEQUENCE_POS be returned when CB_SEQUENCE is
found in any position in a CB_COMPOUND beyond the first. If any other operation is in the first
position of CB_COMPOUND, NFS4ERR_OP_NOT_IN_SESSION be returned.

See Section 18.46.3 for a description of how slots are processed.

If csa_cachethis is TRUE, then the server is requesting that the client cache the reply in the
callback reply cache. The client cache the reply (see Section 2.10.6.1.3).

The csa_referring_call_lists array is the list of COMPOUND requests, identified by session ID, slot
ID, and sequence ID. These are requests that the client previously sent to the server. These
previous requests created state that some operation(s) in the same CB_COMPOUND as the
csa_referring_call_lists are identifying. A session ID is included because leased state is tied to a
client ID, and a client ID can have multiple sessions. See Section 2.10.6.3.

The value of the csa_sequenceid argument relative to the cached sequence ID on the slot falls
into one of three cases.

If the difference between csa_sequenceid and the client's cached sequence ID at the slot ID is
two (2) or more, or if csa_sequenceid is less than the cached sequence ID (accounting for
wraparound of the unsigned sequence ID value), then the client return
NFS4ERR_SEQ_MISORDERED.
If csa_sequenceid and the cached sequence ID are the same, this is a retry, and the client
returns the CB_COMPOUND request's cached reply.

MUST MUST
MUST

MUST

MUST

•

MUST

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 526

If csa_sequenceid is one greater (accounting for wraparound) than the cached sequence ID,
then this is a new request, and the slot's sequence ID is incremented. The operations
subsequent to CB_SEQUENCE, if any, are processed. If there are no other operations, the only
other effects are to cache the CB_SEQUENCE reply in the slot, maintain the session's activity,
and when the server receives the CB_SEQUENCE reply, renew the lease of state related to the
client ID.

If the server reuses a slot ID and sequence ID for a completely different request, the client
treat the request as if it is a retry of what it has already executed. The client however detect
the server's illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

If CB_SEQUENCE returns an error, then the state of the slot (sequence ID, cached reply)
 change. See Section 2.10.6.1.3 for the conditions when the error

NFS4ERR_RETRY_UNCACHED_REP might be returned.

The client returns two "highest_slotid" values: csr_highest_slotid and csr_target_highest_slotid.
The former is the highest slot ID the client will accept in a future CB_SEQUENCE operation, and

 be less than the value of csa_highest_slotid (but see Section 2.10.6.1 for an
exception). The latter is the highest slot ID the client would prefer the server use on a future
CB_SEQUENCE operation.

•

MAY
MAY

MUST
NOT

SHOULD NOT

20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation
Wants
20.10.1. ARGUMENT

struct CB_WANTS_CANCELLED4args {
 bool cwca_contended_wants_cancelled;
 bool cwca_resourced_wants_cancelled;
};

20.10.2. RESULT

struct CB_WANTS_CANCELLED4res {
 nfsstat4 cwcr_status;
};

20.10.3. DESCRIPTION

The CB_WANTS_CANCELLED operation is used to notify the client that some or all of the wants it
registered for recallable delegations and layouts have been cancelled.

If cwca_contended_wants_cancelled is TRUE, this indicates that the server will not be pushing to
the client any delegations that become available after contention passes.

If cwca_resourced_wants_cancelled is TRUE, this indicates that the server will not notify the
client when there are resources on the server to grant delegations or layouts.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 527

After receiving a CB_WANTS_CANCELLED operation, the client is free to attempt to acquire the
delegations or layouts it was waiting for, and possibly re-register wants.

20.10.4. IMPLEMENTATION

When a client has an OPEN, WANT_DELEGATION, or GET_DIR_DELEGATION request
outstanding, when a CB_WANTS_CANCELLED is sent, the server may need to make clear to the
client whether a promise to signal delegation availability happened before the
CB_WANTS_CANCELLED and is thus covered by it, or after the CB_WANTS_CANCELLED in which
case it was not covered by it. The server can make this distinction by putting the appropriate
requests into the list of referring calls in the associated CB_SEQUENCE.

20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock
Availability
20.11.1. ARGUMENT

struct CB_NOTIFY_LOCK4args {
 nfs_fh4 cnla_fh;
 lock_owner4 cnla_lock_owner;
};

20.11.2. RESULT

struct CB_NOTIFY_LOCK4res {
 nfsstat4 cnlr_status;
};

20.11.3. DESCRIPTION

The server can use this operation to indicate that a byte-range lock for the given file and lock-
owner, previously requested by the client via an unsuccessful LOCK operation, might be
available.

This callback is meant to be used by servers to help reduce the latency of blocking locks in the
case where they recognize that a client that has been polling for a blocking byte-range lock may
now be able to acquire the lock. If the server supports this callback for a given file, it set
the OPEN4_RESULT_MAY_NOTIFY_LOCK flag when responding to successful opens for that file.
This does not commit the server to the use of CB_NOTIFY_LOCK, but the client may use this as a
hint to decide how frequently to poll for locks derived from that open.

If an OPEN operation results in an upgrade, in which the stateid returned has an "other" value
matching that of a stateid already allocated, with a new "seqid" indicating a change in the lock
being represented, then the value of the OPEN4_RESULT_MAY_NOTIFY_LOCK flag when
responding to that new OPEN controls handling from that point going forward. When parallel
OPENs are done on the same file and open-owner, the ordering of the "seqid" fields of the
returned stateids (subject to wraparound) are to be used to select the controlling value of the
OPEN4_RESULT_MAY_NOTIFY_LOCK flag.

MUST

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 528

20.11.4. IMPLEMENTATION

The server grant the byte-range lock to the client unless and until it receives a LOCK
operation from the client. Similarly, the client receiving this callback cannot assume that it now
has the lock or that a subsequent LOCK operation for the lock will be successful.

The server is not required to implement this callback, and even if it does, it is not required to use
it in any particular case. Therefore, the client must still rely on polling for blocking locks, as
described in Section 9.6.

Similarly, the client is not required to implement this callback, and even it does, is still free to
ignore it. Therefore, the server assume that the client will act based on the callback.

MUST NOT

MUST NOT

20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID
Changes
20.12.1. ARGUMENT

/*
 * Device notification types.
 */
enum notify_deviceid_type4 {
 NOTIFY_DEVICEID4_CHANGE = 1,
 NOTIFY_DEVICEID4_DELETE = 2
};

/* For NOTIFY4_DEVICEID4_DELETE */
struct notify_deviceid_delete4 {
 layouttype4 ndd_layouttype;
 deviceid4 ndd_deviceid;
};

/* For NOTIFY4_DEVICEID4_CHANGE */
struct notify_deviceid_change4 {
 layouttype4 ndc_layouttype;
 deviceid4 ndc_deviceid;
 bool ndc_immediate;
};

struct CB_NOTIFY_DEVICEID4args {
 notify4 cnda_changes<>;
};

20.12.2. RESULT

struct CB_NOTIFY_DEVICEID4res {
 nfsstat4 cndr_status;
};

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 529

20.12.3. DESCRIPTION

The CB_NOTIFY_DEVICEID operation is used by the server to send notifications to clients about
changes to pNFS device IDs. The registration of device ID notifications is optional and is done via
GETDEVICEINFO. These notifications are sent over the backchannel once the original request has
been processed on the server. The server will send an array of notifications, cnda_changes, as a
list of pairs of bitmaps and values. See Section 3.3.7 for a description of how NFSv4.1 bitmaps
work.

As with CB_NOTIFY (Section 20.4.3), it is possible the server has more notifications than can fit in
a CB_COMPOUND, thus requiring multiple CB_COMPOUNDs. Unlike CB_NOTIFY, serialization is
not an issue because unlike directory entries, device IDs cannot be re-used after being deleted
(Section 12.2.10).

All device ID notifications contain a device ID and a layout type. The layout type is necessary
because two different layout types can share the same device ID, and the common device ID can
have completely different mappings for each layout type.

The server will send the following notifications:

NOTIFY_DEVICEID4_CHANGE
A previously provided device-ID-to-device-address mapping has changed and the client
uses GETDEVICEINFO to obtain the updated mapping. The notification is encoded in a
value of data type notify_deviceid_change4. This data type also contains a boolean field,
ndc_immediate, which if TRUE indicates that the change will be enforced immediately, and
so the client might not be able to complete any pending I/O to the device ID. If
ndc_immediate is FALSE, then for an indefinite time, the client can complete pending I/O.
After pending I/O is complete, the client get the new device-ID-to-device-address
mappings before sending new I/O requests to the storage devices addressed by the device
ID.

NOTIFY4_DEVICEID_DELETE
Deletes a device ID from the mappings. This notification be sent if the client has
a layout that refers to the device ID. In other words, if the server is sending a delete device
ID notification, one of the following is true for layouts associated with the layout type:

The client never had a layout referring to that device ID.
The client has returned all layouts referring to that device ID.
The server has revoked all layouts referring to that device ID.

The notification is encoded in a value of data type notify_deviceid_delete4. After a server
deletes a device ID, it reuse that device ID for the same layout type until the
client ID is deleted.

SHOULD

MUST NOT

•
•
•

MUST NOT

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 530

20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation
20.13.1. ARGUMENT

 void;

20.13.2. RESULT

/*
 * CB_ILLEGAL: Response for illegal operation numbers
 */
struct CB_ILLEGAL4res {
 nfsstat4 status;
};

20.13.3. DESCRIPTION

This operation is a placeholder for encoding a result to handle the case of the server sending an
operation code within CB_COMPOUND that is not defined in the NFSv4.1 specification. See
Section 19.2.3 for more details.

The status field of CB_ILLEGAL4res be set to NFS4ERR_OP_ILLEGAL.MUST

20.13.4. IMPLEMENTATION

A server will probably not send an operation with code OP_CB_ILLEGAL, but if it does, the
response will be CB_ILLEGAL4res just as it would be with any other invalid operation code. Note
that if the client gets an illegal operation code that is not OP_ILLEGAL, and if the client checks for
legal operation codes during the XDR decode phase, then an instance of data type
CB_ILLEGAL4res will not be returned.

21. Security Considerations
Historically, the authentication model of NFS was based on the entire machine being the NFS
client, with the NFS server trusting the NFS client to authenticate the end-user. The NFS server in
turn shared its files only to specific clients, as identified by the client's source network address.
Given this model, the AUTH_SYS RPC security flavor simply identified the end-user using the
client to the NFS server. When processing NFS responses, the client ensured that the responses
came from the same network address and port number to which the request was sent. While
such a model is easy to implement and simple to deploy and use, it is unsafe. Thus, NFSv4.1
implementations are to support a security model that uses end-to-end authentication,
where an end-user on a client mutually authenticates (via cryptographic schemes that do not
expose passwords or keys in the clear on the network) to a principal on an NFS server.
Consideration is also given to the integrity and privacy of NFS requests and responses. The issues
of end-to-end mutual authentication, integrity, and privacy are discussed in Section 2.2.1.1.1.
There are specific considerations when using Kerberos V5 as described in Section 2.2.1.1.1.2.1.1.

REQUIRED

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 531

Note that being to implement does not mean to use; AUTH_SYS can be used
by NFSv4.1 clients and servers. However, AUTH_SYS is merely an security flavor in
NFSv4.1, and so interoperability via AUTH_SYS is not assured.

For reasons of reduced administration overhead, better performance, and/or reduction of CPU
utilization, users of NFSv4.1 implementations might decline to use security mechanisms that
enable integrity protection on each remote procedure call and response. The use of mechanisms
without integrity leaves the user vulnerable to a man-in-the-middle of the NFS client and server
that modifies the RPC request and/or the response. While implementations are free to provide
the option to use weaker security mechanisms, there are three operations in particular that
warrant the implementation overriding user choices.

The first two such operations are SECINFO and SECINFO_NO_NAME. It is
that the client send both operations such that they are protected with a security flavor that
has integrity protection, such as RPCSEC_GSS with either the rpc_gss_svc_integrity or
rpc_gss_svc_privacy service. Without integrity protection encapsulating SECINFO and
SECINFO_NO_NAME and their results, a man-in-the-middle could modify results such that
the client might select a weaker algorithm in the set allowed by the server, making the client
and/or server vulnerable to further attacks.
The third operation that use integrity protection is any GETATTR for the fs_locations
and fs_locations_info attributes, in order to mitigate the severity of a man-in-the-middle
attack. The attack has two steps. First the attacker modifies the unprotected results of some
operation to return NFS4ERR_MOVED. Second, when the client follows up with a GETATTR
for the fs_locations or fs_locations_info attributes, the attacker modifies the results to cause
the client to migrate its traffic to a server controlled by the attacker. With integrity
protection, this attack is mitigated.

Relative to previous NFS versions, NFSv4.1 has additional security considerations for pNFS (see
Sections 12.9 and 13.12), locking and session state (see Section 2.10.8.3), and state recovery
during grace period (see Section 8.4.2.1.1). With respect to locking and session state, if SP4_SSV
state protection is being used, Section 2.10.10 has specific security considerations for the NFSv4.1
client and server.

Security considerations for lock reclaim differ between the two different situations in which
state reclaim is to be done. The server failure situation is discussed in Section 8.4.2.1.1, while the
per-fs state reclaim done in support of migration/replication is discussed in Section 11.11.9.1.

The use of the multi-server namespace features described in Section 11 raises the possibility that
requests to determine the set of network addresses corresponding to a given server might be
interfered with or have their responses modified in flight. In light of this possibility, the following
considerations should be noted:

When DNS is used to convert server names to addresses and DNSSEC is not available,
the validity of the network addresses returned generally cannot be relied upon. However,
when combined with a trusted resolver, DNS over TLS and DNS over HTTPS can be
relied upon to provide valid address resolutions.

REQUIRED REQUIRED
OPTIONAL

• RECOMMENDED

• SHOULD

• [29]

[30] [34]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 532

In situations in which the validity of the provided addresses cannot be relied upon and the
client uses RPCSEC_GSS to access the designated server, it is possible for mutual
authentication to discover invalid server addresses as long as the RPCSEC_GSS
implementation used does not use insecure DNS queries to canonicalize the hostname
components of the service principal names, as explained in .

The fetching of attributes containing file system location information be performed
using integrity protection. It is important to note here that a client making a request of this
sort without using integrity protection needs be aware of the negative consequences of doing
so, which can lead to invalid hostnames or network addresses being returned. These include
cases in which the client is directed to a server under the control of an attacker, who might
get access to data written or provide incorrect values for data read. In light of this, the client
needs to recognize that using such returned location information to access an NFSv4 server
without use of RPCSEC_GSS (i.e., by using AUTH_SYS) poses dangers as it can result in the
client interacting with such an attacker-controlled server without any authentication
facilities to verify the server's identity.
Despite the fact that it is a requirement that implementations provide "support" for use of
RPCSEC_GSS, it cannot be assumed that use of RPCSEC_GSS is always available between any
particular client-server pair.
When a client has the network addresses of a server but not the associated hostnames, that
would interfere with its ability to use RPCSEC_GSS.

In light of the above, a server present file system location entries that correspond to file
systems on other servers using a hostname. This would allow the client to interrogate the
fs_locations on the destination server to obtain trunking information (as well as replica
information) using integrity protection, validating the name provided while assuring that the
response has not been modified in flight.

When RPCSEC_GSS is not available on a server, the client needs to be aware of the fact that the
location entries are subject to modification in flight and so cannot be relied upon. In the case of a
client being directed to another server after NFS4ERR_MOVED, this could vitiate the
authentication provided by the use of RPCSEC_GSS on the designated destination server. Even
when RPCSEC_GSS authentication is available on the destination, the server might still properly
authenticate as the server to which the client was erroneously directed. Without a way to decide
whether the server is a valid one, the client can only determine, using RPCSEC_GSS, that the
server corresponds to the name provided, with no basis for trusting that server. As a result, the
client use such unverified location entries as a basis for migration, even though
RPCSEC_GSS might be available on the destination.

When a file system location attribute is fetched upon connecting with an NFS server, it ,
as stated above, be done with integrity protection. When this not possible, it is generally best for
the client to ignore trunking and replica information or simply not fetch the location information
for these purposes.

[28]

• SHOULD

•

•

SHOULD

SHOULD NOT

SHOULD

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 533

When location information cannot be verified, it can be subjected to additional filtering to
prevent the client from being inappropriately directed. For example, if a range of network
addresses can be determined that assure that the servers and clients using AUTH_SYS are subject
to the appropriate set of constraints (e.g., physical network isolation, administrative controls on
the operating systems used), then network addresses in the appropriate range can be used with
others discarded or restricted in their use of AUTH_SYS.

To summarize considerations regarding the use of RPCSEC_GSS in fetching location information,
we need to consider the following possibilities for requests to interrogate location information,
with interrogation approaches on the referring and destination servers arrived at separately:

The use of integrity protection is in all cases, since the absence of integrity
protection exposes the client to the possibility of the results being modified in transit.
The use of requests issued without RPCSEC_GSS (i.e., using AUTH_SYS, which has no
provision to avoid modification of data in flight), while undesirable and a potential security
exposure, may not be avoidable in all cases. Where the use of the returned information
cannot be avoided, it is made subject to filtering as described above to eliminate the
possibility that the client would treat an invalid address as if it were a NFSv4 server. The
specifics will vary depending on the degree of network isolation and whether the request is
to the referring or destination servers.

Even if such requests are not interfered with in flight, it is possible for a compromised server to
direct the client to use inappropriate servers, such as those under the control of the attacker. It is
not clear that being directed to such servers represents a greater threat to the client than the
damage that could be done by the compromised server itself. However, it is possible that some
sorts of transient server compromises might be exploited to direct a client to a server capable of
doing greater damage over a longer time. One useful step to guard against this possibility is to
issue requests to fetch location data using RPCSEC_GSS, even if no mapping to an RPCSEC_GSS
principal is available. In this case, RPCSEC_GSS would not be used, as it typically is, to identify the
client principal to the server, but rather to make sure (via RPCSEC_GSS mutual authentication)
that the server being contacted is the one intended.

Similar considerations apply if the threat to be avoided is the redirection of client traffic to
inappropriate (i.e., poorly performing) servers. In both cases, there is no reason for the
information returned to depend on the identity of the client principal requesting it, while the
validity of the server information, which has the capability to affect all client principals, is of
considerable importance.

• RECOMMENDED

•

22. IANA Considerations
This section uses terms that are defined in .[63]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 534

22.1. IANA Actions
This update does not require any modification of, or additions to, registry entries or registry
rules associated with NFSv4.1. However, since this document obsoletes RFC 5661, IANA has
updated all registry entries and registry rules references that point to RFC 5661 to point to this
document instead.

Previous actions by IANA related to NFSv4.1 are listed in the remaining subsections of Section 22.

22.2. Named Attribute Definitions
IANA created a registry called the "NFSv4 Named Attribute Definitions Registry".

The NFSv4.1 protocol supports the association of a file with zero or more named attributes. The
namespace identifiers for these attributes are defined as string names. The protocol does not
define the specific assignment of the namespace for these file attributes. The IANA registry
promotes interoperability where common interests exist. While application developers are
allowed to define and use attributes as needed, they are encouraged to register the attributes
with IANA.

Such registered named attributes are presumed to apply to all minor versions of NFSv4,
including those defined subsequently to the registration. If the named attribute is intended to be
limited to specific minor versions, this will be clearly stated in the registry's assignment.

All assignments to the registry are made on a First Come First Served basis, per
. The policy for each assignment is Specification Required, per .

Under the NFSv4.1 specification, the name of a named attribute can in theory be up to 232 - 1
bytes in length, but in practice NFSv4.1 clients and servers will be unable to handle a string that
long. IANA should reject any assignment request with a named attribute that exceeds 128 UTF-8
characters. To give the IESG the flexibility to set up bases of assignment of Experimental Use and
Standards Action, the prefixes of "EXPE" and "STDS" are Reserved. The named attribute with a
zero-length name is Reserved.

The prefix "PRIV" is designated for Private Use. A site that wants to make use of unregistered
named attributes without risk of conflicting with an assignment in IANA's registry should use the
prefix "PRIV" in all of its named attributes.

Because some NFSv4.1 clients and servers have case-insensitive semantics, the fifteen additional
lower case and mixed case permutations of each of "EXPE", "PRIV", and "STDS" are Reserved (e.g.,
"expe", "expE", "exPe", etc. are Reserved). Similarly, IANA must not allow two assignments that
would conflict if both named attributes were converted to a common case.

Section 4.4 of
[63] Section 4.6 of [63]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 535

https://www.rfc-editor.org/rfc/rfc8126#section-4.4
https://www.rfc-editor.org/rfc/rfc8126#section-4.6

The registry of named attributes is a list of assignments, each containing three fields for each
assignment.

A US-ASCII string name that is the actual name of the attribute. This name must be unique.
This string name can be 1 to 128 UTF-8 characters long.
A reference to the specification of the named attribute. The reference can consume up to 256
bytes (or more if IANA permits).
The point of contact of the registrant. The point of contact can consume up to 256 bytes (or
more if IANA permits).

22.2.1. Initial Registry

There is no initial registry.

22.2.2. Updating Registrations

The registrant is always permitted to update the point of contact field. Any other change will
require Expert Review or IESG Approval.

1.

2.

3.

22.3. Device ID Notifications
IANA created a registry called the "NFSv4 Device ID Notifications Registry".

The potential exists for new notification types to be added to the CB_NOTIFY_DEVICEID operation
(see Section 20.12). This can be done via changes to the operations that register notifications, or
by adding new operations to NFSv4. This requires a new minor version of NFSv4, and requires a
Standards Track document from the IETF. Another way to add a notification is to specify a new
layout type (see Section 22.5).

Hence, all assignments to the registry are made on a Standards Action basis per
, with Expert Review required.

The registry is a list of assignments, each containing five fields per assignment.

The name of the notification type. This name must have the prefix "NOTIFY_DEVICEID4_".
This name must be unique.
The value of the notification. IANA will assign this number, and the request from the
registrant will use TBD1 instead of an actual value. IANA use a whole number that can
be no higher than 232-1, and should be the next available value. The value assigned must be
unique. A Designated Expert must be used to ensure that when the name of the notification
type and its value are added to the NFSv4.1 notify_deviceid_type4 enumerated data type in
the NFSv4.1 XDR description , the result continues to be a valid XDR description.
The Standards Track RFC(s) that describe the notification. If the RFC(s) have not yet been
published, the registrant will use RFCTBD2, RFCTBD3, etc. instead of an actual RFC number.
How the RFC introduces the notification. This is indicated by a single US-ASCII value. If the
value is N, it means a minor revision to the NFSv4 protocol. If the value is L, it means a new
pNFS layout type. Other values can be used with IESG Approval.

Section 4.6 of
[63]

1.

2.
MUST

[10]
3.

4.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 536

https://www.rfc-editor.org/rfc/rfc8126#section-4.6

The minor versions of NFSv4 that are allowed to use the notification. While these are
numeric values, IANA will not allocate and assign them; the author of the relevant RFCs with
IESG Approval assigns these numbers. Each time there is a new minor version of NFSv4
approved, a Designated Expert should review the registry to make recommended updates as
needed.

22.3.1. Initial Registry

The initial registry is in Table 25. Note that the next available value is zero.

22.3.2. Updating Registrations

The update of a registration will require IESG Approval on the advice of a Designated Expert.

5.

Notification Name Value RFC How Minor Versions

NOTIFY_DEVICEID4_CHANGE 1 RFC 8881 N 1

NOTIFY_DEVICEID4_DELETE 2 RFC 8881 N 1

Table 25: Initial Device ID Notification Assignments

22.4. Object Recall Types
IANA created a registry called the "NFSv4 Recallable Object Types Registry".

The potential exists for new object types to be added to the CB_RECALL_ANY operation (see
Section 20.6). This can be done via changes to the operations that add recallable types, or by
adding new operations to NFSv4. This requires a new minor version of NFSv4, and requires a
Standards Track document from IETF. Another way to add a new recallable object is to specify a
new layout type (see Section 22.5).

All assignments to the registry are made on a Standards Action basis per , with
Expert Review required.

Recallable object types are 32-bit unsigned numbers. There are no Reserved values. Values in the
range 12 through 15, inclusive, are designated for Private Use.

The registry is a list of assignments, each containing five fields per assignment.

The name of the recallable object type. This name must have the prefix "RCA4_TYPE_MASK_".
The name must be unique.
The value of the recallable object type. IANA will assign this number, and the request from
the registrant will use TBD1 instead of an actual value. IANA use a whole number that
can be no higher than 232-1, and should be the next available value. The value must be
unique. A Designated Expert must be used to ensure that when the name of the recallable
type and its value are added to the NFSv4 XDR description , the result continues to be a
valid XDR description.

Section 4.9 of [63]

1.

2.
MUST

[10]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 537

https://www.rfc-editor.org/rfc/rfc8126#section-4.9

The Standards Track RFC(s) that describe the recallable object type. If the RFC(s) have not yet
been published, the registrant will use RFCTBD2, RFCTBD3, etc. instead of an actual RFC
number.
How the RFC introduces the recallable object type. This is indicated by a single US-ASCII
value. If the value is N, it means a minor revision to the NFSv4 protocol. If the value is L, it
means a new pNFS layout type. Other values can be used with IESG Approval.
The minor versions of NFSv4 that are allowed to use the recallable object type. While these
are numeric values, IANA will not allocate and assign them; the author of the relevant RFCs
with IESG Approval assigns these numbers. Each time there is a new minor version of NFSv4
approved, a Designated Expert should review the registry to make recommended updates as
needed.

22.4.1. Initial Registry

The initial registry is in Table 26. Note that the next available value is five.

22.4.2. Updating Registrations

The update of a registration will require IESG Approval on the advice of a Designated Expert.

3.

4.

5.

Recallable Object Type Name Value RFC How Minor Versions

RCA4_TYPE_MASK_RDATA_DLG 0 RFC 8881 N 1

RCA4_TYPE_MASK_WDATA_DLG 1 RFC 8881 N 1

RCA4_TYPE_MASK_DIR_DLG 2 RFC 8881 N 1

RCA4_TYPE_MASK_FILE_LAYOUT 3 RFC 8881 N 1

RCA4_TYPE_MASK_BLK_LAYOUT 4 RFC 8881 L 1

RCA4_TYPE_MASK_OBJ_LAYOUT_MIN 8 RFC 8881 L 1

RCA4_TYPE_MASK_OBJ_LAYOUT_MAX 9 RFC 8881 L 1

Table 26: Initial Recallable Object Type Assignments

22.5. Layout Types
IANA created a registry called the "pNFS Layout Types Registry".

All assignments to the registry are made on a Standards Action basis, with Expert Review
required.

Layout types are 32-bit numbers. The value zero is Reserved. Values in the range 0x80000000 to
0xFFFFFFFF inclusive are designated for Private Use. IANA will assign numbers from the range
0x00000001 to 0x7FFFFFFF inclusive.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 538

The registry is a list of assignments, each containing five fields.

The name of the layout type. This name must have the prefix "LAYOUT4_". The name must be
unique.
The value of the layout type. IANA will assign this number, and the request from the
registrant will use TBD1 instead of an actual value. The value assigned must be unique. A
Designated Expert must be used to ensure that when the name of the layout type and its
value are added to the NFSv4.1 layouttype4 enumerated data type in the NFSv4.1 XDR
description , the result continues to be a valid XDR description.
The Standards Track RFC(s) that describe the notification. If the RFC(s) have not yet been
published, the registrant will use RFCTBD2, RFCTBD3, etc. instead of an actual RFC number.
Collectively, the RFC(s) must adhere to the guidelines listed in Section 22.5.3.
How the RFC introduces the layout type. This is indicated by a single US-ASCII value. If the
value is N, it means a minor revision to the NFSv4 protocol. If the value is L, it means a new
pNFS layout type. Other values can be used with IESG Approval.
The minor versions of NFSv4 that are allowed to use the notification. While these are
numeric values, IANA will not allocate and assign them; the author of the relevant RFCs with
IESG Approval assigns these numbers. Each time there is a new minor version of NFSv4
approved, a Designated Expert should review the registry to make recommended updates as
needed.

22.5.1. Initial Registry

The initial registry is in Table 27.

22.5.2. Updating Registrations

The update of a registration will require IESG Approval on the advice of a Designated Expert.

1.

2.

[10]
3.

4.

5.

Layout Type Name Value RFC How Minor Versions

LAYOUT4_NFSV4_1_FILES 0x1 RFC 8881 N 1

LAYOUT4_OSD2_OBJECTS 0x2 RFC 5664 L 1

LAYOUT4_BLOCK_VOLUME 0x3 RFC 5663 L 1

Table 27: Initial Layout Type Assignments

22.5.3. Guidelines for Writing Layout Type Specifications

The author of a new pNFS layout specification must follow these steps to obtain acceptance of the
layout type as a Standards Track RFC:

The author devises the new layout specification. 1.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 539

The new layout type specification , at a minimum:

Define the contents of the layout-type-specific fields of the following data types:

the da_addr_body field of the device_addr4 data type;
the loh_body field of the layouthint4 data type;
the loc_body field of layout_content4 data type (which in turn is the lo_content field of
the layout4 data type);
the lou_body field of the layoutupdate4 data type;

Describe or define the storage access protocol used to access the storage devices.
Describe whether revocation of layouts is supported.
At a minimum, describe the methods of recovery from:

Failure and restart for client, server, storage device.
Lease expiration from perspective of the active client, server, storage device.
Loss of layout state resulting in fencing of client access to storage devices (for an
example, see Section 12.7.3).

Include an IANA considerations section, which will in turn include:

A request to IANA for a new layout type per Section 22.5.
A list of requests to IANA for any new recallable object types for CB_RECALL_ANY; each
entry is to be presented in the form described in Section 22.4.
A list of requests to IANA for any new notification values for CB_NOTIFY_DEVICEID; each
entry is to be presented in the form described in Section 22.3.

Include a security considerations section. This section explain how the NFSv4.1
authentication, authorization, and access-control models are preserved. That is, if a
metadata server would restrict a READ or WRITE operation, how would pNFS via the
layout similarly restrict a corresponding input or output operation?

The author documents the new layout specification as an Internet-Draft.
The author submits the Internet-Draft for review through the IETF standards process as
defined in "The Internet Standards Process--Revision 3" (BCP 9). The new layout
specification will be submitted for eventual publication as a Standards Track RFC.
The layout specification progresses through the IETF standards process.

2. MUST

◦

▪

▪

▪

▪

◦

◦

◦

1.
2.
3.

◦

▪

▪

▪

◦ MUST

3.
4.

[35]

5.

22.6. Path Variable Definitions
This section deals with the IANA considerations associated with the variable substitution feature
for location names as described in Section 11.17.3. As described there, variables subject to
substitution consist of a domain name and a specific name within that domain, with the two
separated by a colon. There are two sets of IANA considerations here:

The list of variable names. 1.

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 540

For each variable name, the list of possible values.

Thus, there will be one registry for the list of variable names, and possibly one registry for listing
the values of each variable name.

2.

22.6.1. Path Variables Registry

IANA created a registry called the "NFSv4 Path Variables Registry".

22.6.1.1. Path Variable Values
Variable names are of the form "${", followed by a domain name, followed by a colon (":"),
followed by a domain-specific portion of the variable name, followed by "}". When the domain
name is "ietf.org", all variables names must be registered with IANA on a Standards Action basis,
with Expert Review required. Path variables with registered domain names neither part of nor
equal to ietf.org are assigned on a Hierarchical Allocation basis (delegating to the domain owner)
and thus of no concern to IANA, unless the domain owner chooses to register a variable name
from his domain. If the domain owner chooses to do so, IANA will do so on a First Come First
Serve basis. To accommodate registrants who do not have their own domain, IANA will accept
requests to register variables with the prefix "${FCFS.ietf.org:" on a First Come First Served basis.
Assignments on a First Come First Basis do not require Expert Review, unless the registrant also
wants IANA to establish a registry for the values of the registered variable.

The registry is a list of assignments, each containing three fields.

The name of the variable. The name of this variable must start with a "${" followed by a
registered domain name, followed by ":", or it must start with "${FCFS.ietf.org". The name
must be no more than 64 UTF-8 characters long. The name must be unique.
For assignments made on Standards Action basis, the Standards Track RFC(s) that describe
the variable. If the RFC(s) have not yet been published, the registrant will use RFCTBD1,
RFCTBD2, etc. instead of an actual RFC number. Note that the RFCs do not have to be a part
of an NFS minor version. For assignments made on a First Come First Serve basis, an
explanation (consuming no more than 1024 bytes, or more if IANA permits) of the purpose of
the variable. A reference to the explanation can be substituted.
The point of contact, including an email address. The point of contact can consume up to 256
bytes (or more if IANA permits). For assignments made on a Standards Action basis, the point
of contact is always IESG.

22.6.1.1.1. Initial Registry
The initial registry is in Table 28.

1.

2.

3.

Variable Name RFC Point of Contact

${ietf.org:CPU_ARCH} RFC 8881 IESG

${ietf.org:OS_TYPE} RFC 8881 IESG

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 541

IANA has created registries for the values of the variable names ${ietf.org:CPU_ARCH} and
${ietf.org:OS_TYPE}. See Sections 22.6.2 and 22.6.3.

For the values of the variable ${ietf.org:OS_VERSION}, no registry is needed as the specifics of the
values of the variable will vary with the value of ${ietf.org:OS_TYPE}. Thus, values for
${ietf.org:OS_VERSION} are on a Hierarchical Allocation basis and are of no concern to IANA.

22.6.1.1.2. Updating Registrations
The update of an assignment made on a Standards Action basis will require IESG Approval on
the advice of a Designated Expert.

The registrant can always update the point of contact of an assignment made on a First Come
First Serve basis. Any other update will require Expert Review.

Variable Name RFC Point of Contact

${ietf.org:OS_VERSION} RFC 8881 IESG

Table 28: Initial List of Path Variables

22.6.2. Values for the ${ietf.org:CPU_ARCH} Variable

IANA created a registry called the "NFSv4 ${ietf.org:CPU_ARCH} Value Registry".

Assignments to the registry are made on a First Come First Serve basis. The zero-length value of
${ietf.org:CPU_ARCH} is Reserved. Values with a prefix of "PRIV" are designated for Private Use.

The registry is a list of assignments, each containing three fields.

A value of the ${ietf.org:CPU_ARCH} variable. The value must be 1 to 32 UTF-8 characters
long. The value must be unique.
An explanation (consuming no more than 1024 bytes, or more if IANA permits) of what CPU
architecture the value denotes. A reference to the explanation can be substituted.
The point of contact, including an email address. The point of contact can consume up to 256
bytes (or more if IANA permits).

22.6.2.1. Initial Registry
There is no initial registry.

22.6.2.2. Updating Registrations
The registrant is free to update the assignment, i.e., change the explanation and/or point-of-
contact fields.

1.

2.

3.

22.6.3. Values for the ${ietf.org:OS_TYPE} Variable

IANA created a registry called the "NFSv4 ${ietf.org:OS_TYPE} Value Registry".

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 542

[1]

[2]

[3]

[4]

[5]

[6]

23. References

23.1. Normative References

, , ,
, , March 1997,
.

, , , ,
, May 2006, .

, ,
, , May 2009,

.

, , ,
, September 1997,

.

,

, , , July 2005,
.

,
,

, 2004, .

Assignments to the registry are made on a First Come First Serve basis. The zero-length value of
${ietf.org:OS_TYPE} is Reserved. Values with a prefix of "PRIV" are designated for Private Use.

The registry is a list of assignments, each containing three fields.

A value of the ${ietf.org:OS_TYPE} variable. The value must be 1 to 32 UTF-8 characters long.
The value must be unique.
An explanation (consuming no more than 1024 bytes, or more if IANA permits) of what CPU
architecture the value denotes. A reference to the explanation can be substituted.
The point of contact, including an email address. The point of contact can consume up to 256
bytes (or more if IANA permits).

22.6.3.1. Initial Registry
There is no initial registry.

22.6.3.2. Updating Registrations
The registrant is free to update the assignment, i.e., change the explanation and/or point of
contact fields.

1.

2.

3.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Eisler, M., Ed. "XDR: External Data Representation Standard" STD 67 RFC 4506
DOI 10.17487/RFC4506 <https://www.rfc-editor.org/info/rfc4506>

Thurlow, R. "RPC: Remote Procedure Call Protocol Specification Version 2" RFC
5531 DOI 10.17487/RFC5531 <https://www.rfc-editor.org/info/
rfc5531>

Eisler, M., Chiu, A., and L. Ling "RPCSEC_GSS Protocol Specification" RFC 2203
DOI 10.17487/RFC2203 <https://www.rfc-editor.org/info/
rfc2203>

Zhu, L., Jaganathan, K., and S. Hartman "The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism: Version
2" RFC 4121 DOI 10.17487/RFC4121 <https://www.rfc-editor.org/info/
rfc4121>

The Open Group "Section 3.191 of Chapter 3 of Base Definitions of The Open
Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version"
ISBN 1931624232 <https://www.opengroup.org>

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 543

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc2203
https://www.rfc-editor.org/info/rfc2203
https://www.rfc-editor.org/info/rfc4121
https://www.rfc-editor.org/info/rfc4121
https://www.opengroup.org

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

,
, , , January 2000,

.

,
, , ,

October 2007, .

, , , , February
2009, .

,

, , , January 2010,
.

,
,

, 2004, .

,
, , ,

January 2010, .

,
,

, 2004, .

,
,

, 2004, .

,
,

, 2004, .

,
, , , December 2002,

.

,
,

, 2004, .

,

, , May 1993.

, , , ,
, January 1998, .

Linn, J. "Generic Security Service Application Program Interface Version 2,
Update 1" RFC 2743 DOI 10.17487/RFC2743 <https://www.rfc-
editor.org/info/rfc2743>

Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Garcia "A Remote Direct
Memory Access Protocol Specification" RFC 5040 DOI 10.17487/RFC5040

<https://www.rfc-editor.org/info/rfc5040>

Eisler, M. "RPCSEC_GSS Version 2" RFC 5403 DOI 10.17487/RFC5403
<https://www.rfc-editor.org/info/rfc5403>

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed. "Network File System (NFS)
Version 4 Minor Version 1 External Data Representation Standard (XDR)
Description" RFC 5662 DOI 10.17487/RFC5662 <https://www.rfc-
editor.org/info/rfc5662>

The Open Group "Section 3.372 of Chapter 3 of Base Definitions of The Open
Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version"
ISBN 1931624232 <https://www.opengroup.org>

Eisler, M. "IANA Considerations for Remote Procedure Call (RPC) Network
Identifiers and Universal Address Formats" RFC 5665 DOI 10.17487/RFC5665

<https://www.rfc-editor.org/info/rfc5665>

The Open Group "Section 'read()' of System Interfaces of The Open Group Base
Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

The Open Group "Section 'readdir()' of System Interfaces of The Open Group
Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

The Open Group "Section 'write()' of System Interfaces of The Open Group Base
Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

Hoffman, P. and M. Blanchet "Preparation of Internationalized Strings
("stringprep")" RFC 3454 DOI 10.17487/RFC3454 <https://
www.rfc-editor.org/info/rfc3454>

The Open Group "Section 'chmod()' of System Interfaces of The Open Group
Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

International Organization for Standardization "Information Technology -
Universal Multiple-octet coded Character Set (UCS) - Part 1: Architecture and
Basic Multilingual Plane" ISO Standard 10646-1

Alvestrand, H. "IETF Policy on Character Sets and Languages" BCP 18 RFC 2277
DOI 10.17487/RFC2277 <https://www.rfc-editor.org/info/rfc2277>

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 544

https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc5040
https://www.rfc-editor.org/info/rfc5403
https://www.rfc-editor.org/info/rfc5662
https://www.rfc-editor.org/info/rfc5662
https://www.opengroup.org
https://www.rfc-editor.org/info/rfc5665
https://www.opengroup.org
https://www.opengroup.org
https://www.opengroup.org
https://www.rfc-editor.org/info/rfc3454
https://www.rfc-editor.org/info/rfc3454
https://www.opengroup.org
https://www.rfc-editor.org/info/rfc2277

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

,
, , ,

March 2003, .

,
,

, 2004, .

,
,

, 2004, .

,
,

, 2004, .

,
,

, 2004, .

,

, ,
, June 2005, .

,
, May 2016,

.

, ,
, , November 2016,

.

,
, , , July 2005,

.

,
, , , March 2005,

.

,
, ,

, May 2016, .

,
, , , November 2016,

.

Hoffman, P. and M. Blanchet "Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)" RFC 3491 DOI 10.17487/RFC3491

<https://www.rfc-editor.org/info/rfc3491>

The Open Group "Section 'fcntl()' of System Interfaces of The Open Group Base
Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

The Open Group "Section 'fsync()' of System Interfaces of The Open Group Base
Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

The Open Group "Section 'getpwnam()' of System Interfaces of The Open Group
Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

The Open Group "Section 'unlink()' of System Interfaces of The Open Group
Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version" ISBN
1931624232 <https://www.opengroup.org>

Schaad, J., Kaliski, B., and R. Housley "Additional Algorithms and Identifiers for
RSA Cryptography for use in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile" RFC 4055 DOI 10.17487/
RFC4055 <https://www.rfc-editor.org/info/rfc4055>

National Institute of Standards and Technology "Computer Security Objects
Register" <https://csrc.nist.gov/projects/computer-security-objects-
register/algorithm-registration>

Adamson, A. and N. Williams "Remote Procedure Call (RPC) Security Version 3"
RFC 7861 DOI 10.17487/RFC7861 <https://www.rfc-editor.org/
info/rfc7861>

Neuman, C., Yu, T., Hartman, S., and K. Raeburn "The Kerberos Network
Authentication Service (V5)" RFC 4120 DOI 10.17487/RFC4120
<https://www.rfc-editor.org/info/rfc4120>

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose "DNS Security
Introduction and Requirements" RFC 4033 DOI 10.17487/RFC4033
<https://www.rfc-editor.org/info/rfc4033>

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman
"Specification for DNS over Transport Layer Security (TLS)" RFC 7858 DOI
10.17487/RFC7858 <https://www.rfc-editor.org/info/rfc7858>

Adamson, A. and N. Williams "Requirements for NFSv4 Multi-Domain
Namespace Deployment" RFC 8000 DOI 10.17487/RFC8000
<https://www.rfc-editor.org/info/rfc8000>

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 545

https://www.rfc-editor.org/info/rfc3491
https://www.opengroup.org
https://www.opengroup.org
https://www.opengroup.org
https://www.opengroup.org
https://www.rfc-editor.org/info/rfc4055
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://www.rfc-editor.org/info/rfc7861
https://www.rfc-editor.org/info/rfc7861
https://www.rfc-editor.org/info/rfc4120
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8000

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

,
, ,

, June 2017, .

,
, , , October 2017,

.

, , ,
, October 2018, .

23.2. Informative References

, ,
, , 7 May 2019,

.

, , ,
, April 2003, .

,
, , , June 1995,

.

, ,
, , June 2000,
.

Lever, C., Ed., Simpson, W., and T. Talpey "Remote Direct Memory Access
Transport for Remote Procedure Call Version 1" RFC 8166 DOI 10.17487/
RFC8166 <https://www.rfc-editor.org/info/rfc8166>

Lever, C. "Network File System (NFS) Upper-Layer Binding to RPC-over-RDMA
Version 1" RFC 8267 DOI 10.17487/RFC8267 <https://www.rfc-
editor.org/info/rfc8267>

Hoffman, P. and P. McManus "DNS Queries over HTTPS (DoH)" RFC 8484 DOI
10.17487/RFC8484 <https://www.rfc-editor.org/info/rfc8484>

, , , ,
October 1996.
Bradner, S. "The Internet Standards Process -- Revision 3" BCP 9 RFC 2026

,
, , , January 2014.

Kolkman, O., Bradner, S., and S. Turner "Characterization of Proposed
Standards" BCP 9 RFC 7127

,
, , , September 2009.

Dusseault, L. and R. Sparks "Guidance on Interoperation and Implementation
Reports for Advancement to Draft Standard" BCP 9 RFC 5657

,
, , , October 2011.

Housley, R., Crocker, D., and E. Burger "Reducing the Standards Track to Two
Maturity Levels" BCP 9 RFC 6410

,
, , , December 2013.

Resnick, P. "Retirement of the "Internet Official Protocol Standards" Summary
Document" BCP 9 RFC 7100

, , ,
, March 2015.

Dawkins, S. "Increasing the Number of Area Directors in an IETF Area" BCP 9
RFC 7475

<https://www.rfc-editor.org/info/bcp9>

Roach, A. "Process for Handling Non-Major Revisions to Existing RFCs" Work in
Progress Internet-Draft, draft-roach-bis-documents-00 <https://
tools.ietf.org/html/draft-roach-bis-documents-00>

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M., and D.
Noveck "Network File System (NFS) version 4 Protocol" RFC 3530 DOI 10.17487/
RFC3530 <https://www.rfc-editor.org/info/rfc3530>

Callaghan, B., Pawlowski, B., and P. Staubach "NFS Version 3 Protocol
Specification" RFC 1813 DOI 10.17487/RFC1813 <https://www.rfc-
editor.org/info/rfc1813>

Eisler, M. "LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM"
RFC 2847 DOI 10.17487/RFC2847 <https://www.rfc-editor.org/info/
rfc2847>

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 546

https://www.rfc-editor.org/info/rfc8166
https://www.rfc-editor.org/info/rfc8267
https://www.rfc-editor.org/info/rfc8267
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/bcp9
https://tools.ietf.org/html/draft-roach-bis-documents-00
https://tools.ietf.org/html/draft-roach-bis-documents-00
https://www.rfc-editor.org/info/rfc3530
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc2847
https://www.rfc-editor.org/info/rfc2847

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

,
, , , June

1999, .

, ,
, June 1990.

,
, , , January 2002,

.

, , ,
, August 1995, .

, , , February 1996.

, , ,
, March 1989, .

, ,
, January 1991.

,
, , , January 2010,

.

, ,
, , January 2010,
.

, , , ,
October 1996, .

, , , ,
October 1996, .

, , July 2008,
.

,
, , , February 1997,

.

, , ,
, June 1999, .

, ,
, February 1998.

, ,
, April 1994.

Eisler, M. "NFS Version 2 and Version 3 Security Issues and the NFS Protocol's
Use of RPCSEC_GSS and Kerberos V5" RFC 2623 DOI 10.17487/RFC2623

<https://www.rfc-editor.org/info/rfc2623>

Juszczak, C. "Improving the Performance and Correctness of an NFS Server"
USENIX Conference Proceedings

Reynolds, J., Ed. "Assigned Numbers: RFC 1700 is Replaced by an On-line
Database" RFC 3232 DOI 10.17487/RFC3232 <https://www.rfc-
editor.org/info/rfc3232>

Srinivasan, R. "Binding Protocols for ONC RPC Version 2" RFC 1833 DOI
10.17487/RFC1833 <https://www.rfc-editor.org/info/rfc1833>

Werme, R. "RPC XID Issues" USENIX Conference Proceedings

Nowicki, B. "NFS: Network File System Protocol specification" RFC 1094 DOI
10.17487/RFC1094 <https://www.rfc-editor.org/info/rfc1094>

Bhide, A., Elnozahy, E. N., and S. P. Morgan "A Highly Available Network Server"
USENIX Conference Proceedings

Halevy, B., Welch, B., and J. Zelenka "Object-Based Parallel NFS (pNFS)
Operations" RFC 5664 DOI 10.17487/RFC5664 <https://www.rfc-
editor.org/info/rfc5664>

Black, D., Fridella, S., and J. Glasgow "Parallel NFS (pNFS) Block/Volume Layout"
RFC 5663 DOI 10.17487/RFC5663 <https://www.rfc-editor.org/info/
rfc5663>

Callaghan, B. "WebNFS Client Specification" RFC 2054 DOI 10.17487/RFC2054
<https://www.rfc-editor.org/info/rfc2054>

Callaghan, B. "WebNFS Server Specification" RFC 2055 DOI 10.17487/RFC2055
<https://www.rfc-editor.org/info/rfc2055>

IESG "IESG Processing of RFC Errata for the IETF Stream" <https://
www.ietf.org/about/groups/iesg/statements/processing-rfc-errata/>

Krawczyk, H., Bellare, M., and R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Shepler, S. "NFS Version 4 Design Considerations" RFC 2624 DOI 10.17487/
RFC2624 <https://www.rfc-editor.org/info/rfc2624>

The Open Group "Protocols for Interworking: XNFS, Version 3W" ISBN
1-85912-184-5

Floyd, S. and V. Jacobson "The Synchronization of Periodic Routing Messages"
IEEE/ACM Transactions on Networking, 2(2), pp. 122-136

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 547

https://www.rfc-editor.org/info/rfc2623
https://www.rfc-editor.org/info/rfc3232
https://www.rfc-editor.org/info/rfc3232
https://www.rfc-editor.org/info/rfc1833
https://www.rfc-editor.org/info/rfc1094
https://www.rfc-editor.org/info/rfc5664
https://www.rfc-editor.org/info/rfc5664
https://www.rfc-editor.org/info/rfc5663
https://www.rfc-editor.org/info/rfc5663
https://www.rfc-editor.org/info/rfc2054
https://www.rfc-editor.org/info/rfc2055
https://www.ietf.org/about/groups/iesg/statements/processing-rfc-errata/
https://www.ietf.org/about/groups/iesg/statements/processing-rfc-errata/
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2624

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

,
, ,

, April 2014, .

, ,
, October 2003.

, ,
, July 2004, .

,
,

, 2000.

,
, 2004, .

, , , , October
1997, .

, ,
, , January 2000,

.

,
, , , , June

2017, .

, , ,
.

,
, , , ,

, , May 1996,
.

,
, , , January

2010, .

, , ,
, July 2017, .

,
, , , March 2015,

.

,
, , , July 2016,

.

Chadalapaka, M., Satran, J., Meth, K., and D. Black "Internet Small Computer
System Interface (iSCSI) Protocol (Consolidated)" RFC 7143 DOI 10.17487/
RFC7143 <https://www.rfc-editor.org/info/rfc7143>

Snively, R. "Fibre Channel Protocol for SCSI, 2nd Version (FCP-2)" ANSI/INCITS,
350-2003

Weber, R.O. "Object-Based Storage Device Commands (OSD)" ANSI/INCITS,
400-2004 <https://www.t10.org/drafts.htm>

Carns, P. H., Ligon III, W. B., Ross, R. B., and R. Thakur "PVFS: A Parallel File
System for Linux Clusters." Proceedings of the 4th Annual Linux Showcase and
Conference

The Open Group "The Open Group Base Specifications Issue 6, IEEE Std 1003.1,
2004 Edition" <https://www.opengroup.org>

Callaghan, B. "NFS URL Scheme" RFC 2224 DOI 10.17487/RFC2224
<https://www.rfc-editor.org/info/rfc2224>

Chiu, A., Eisler, M., and B. Callaghan "Security Negotiation for WebNFS" RFC
2755 DOI 10.17487/RFC2755 <https://www.rfc-editor.org/info/
rfc2755>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

RFC Errata Erratum ID 2006 RFC 5661 <https://www.rfc-editor.org/errata/
eid2006>

Spasojevic, M. and M. Satayanarayanan "An Empirical Study of a Wide-Area
Distributed File System" ACM Transactions on Computer Systems Vol. 14 No. 2
pp. 200-222 DOI 10.1145/227695.227698 <https://
doi.org/10.1145/227695.227698>

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed. "Network File System (NFS)
Version 4 Minor Version 1 Protocol" RFC 5661 DOI 10.17487/RFC5661

<https://www.rfc-editor.org/info/rfc5661>

Noveck, D. "Rules for NFSv4 Extensions and Minor Versions" RFC 8178 DOI
10.17487/RFC8178 <https://www.rfc-editor.org/info/rfc8178>

Haynes, T., Ed. and D. Noveck, Ed. "Network File System (NFS) Version 4
Protocol" RFC 7530 DOI 10.17487/RFC7530 <https://www.rfc-
editor.org/info/rfc7530>

Noveck, D., Ed., Shivam, P., Lever, C., and B. Baker "NFSv4.0 Migration:
Specification Update" RFC 7931 DOI 10.17487/RFC7931 <https://
www.rfc-editor.org/info/rfc7931>

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 548

https://www.rfc-editor.org/info/rfc7143
https://www.t10.org/drafts.htm
https://www.opengroup.org
https://www.rfc-editor.org/info/rfc2224
https://www.rfc-editor.org/info/rfc2755
https://www.rfc-editor.org/info/rfc2755
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/errata/eid2006
https://www.rfc-editor.org/errata/eid2006
https://doi.org/10.1145/227695.227698
https://doi.org/10.1145/227695.227698
https://www.rfc-editor.org/info/rfc5661
https://www.rfc-editor.org/info/rfc8178
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7931
https://www.rfc-editor.org/info/rfc7931

[70]

[71]

[72]

, , ,
, August 2018, .

, , ,
, , May 2014,

.

,
, , , , July 2003,

.

Haynes, T. "Requirements for Parallel NFS (pNFS) Layout Types" RFC 8434 DOI
10.17487/RFC8434 <https://www.rfc-editor.org/info/rfc8434>

Farrell, S. and H. Tschofenig "Pervasive Monitoring Is an Attack" BCP 188 RFC
7258 DOI 10.17487/RFC7258 <https://www.rfc-editor.org/info/
rfc7258>

Rescorla, E. and B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/info/rfc3552>

Appendix A. The Need for This Update
This document includes an explanation of how clients and servers are to determine the
particular network access paths to be used to access a file system. This includes descriptions of
how to handle changes to the specific replica to be used or to the set of addresses to be used to
access it, and how to deal transparently with transfers of responsibility that need to be made.
This includes cases in which there is a shift between one replica and another and those in which
different network access paths are used to access the same replica.

As a result of the following problems in RFC 5661 , it was necessary to provide the specific
updates that are made by this document. These updates are described in Appendix B.

RFC 5661 , while it dealt with situations in which various forms of clustering allowed
coordination of the state assigned by cooperating servers to be used, made no provisions for
Transparent State Migration. Within NFSv4.0, Transparent State Migration was first
explained clearly in RFC 7530 and corrected and clarified by RFC 7931 . No
corresponding explanation for NFSv4.1 had been provided.
Although NFSv4.1 provided a clear definition of how trunking detection was to be done,
there was no clear specification of how trunking discovery was to be done, despite the fact
that the specification clearly indicated that this information could be made available via the
file system location attributes.
Because the existence of multiple network access paths to the same file system was dealt
with as if there were multiple replicas, issues relating to transitions between replicas could
never be clearly distinguished from trunking-related transitions between the addresses used
to access a particular file system instance. As a result, in situations in which both migration
and trunking configuration changes were involved, neither of these could be clearly dealt
with, and the relationship between these two features was not seriously addressed.
Because use of two network access paths to the same file system instance (i.e., trunking) was
often treated as if two replicas were involved, it was considered that two replicas were being
used simultaneously. As a result, the treatment of replicas being used simultaneously in RFC
5661 was not clear, as it covered the two distinct cases of a single file system instance
being accessed by two different network access paths and two replicas being accessed
simultaneously, with the limitations of the latter case not being clearly laid out.

[66]

• [66]

[68] [69]

•

•

•

[66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 549

https://www.rfc-editor.org/info/rfc8434
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552

The majority of the consequences of these issues are dealt with by presenting in Section 11 a
replacement for Section 11 of RFC 5661 . This replacement modifies existing subsections
within that section and adds new ones as described in Appendix B.1. Also, some existing sections
were deleted. These changes were made in order to do the following:

Reorganize the description so that the case of two network access paths to the same file
system instance is distinguished clearly from the case of two different replicas since, in the
former case, locking state is shared and there also can be sharing of session state.
Provide a clear statement regarding the desirability of transparent transfer of state between
replicas together with a recommendation that either transparent transfer or a single-fs grace
period be provided.
Specifically delineate how a client is to handle such transfers, taking into account the
differences from the treatment in made necessary by the major protocol changes to
NFSv4.1.
Discuss the relationship between transparent state transfer and Parallel NFS (pNFS).
Clarify the fs_locations_info attribute in order to specify which portions of the provided
information apply to a specific network access path and which apply to the replica that the
path is used to access.

In addition, other sections of RFC 5661 were updated to correct the consequences of the
incorrect assumptions underlying the treatment of multi-server namespace issues. These are
described in Appendices B.2 through B.4.

A revised introductory section regarding multi-server namespace facilities is provided.
A more realistic treatment of server scope is provided. This treatment reflects the more
limited coordination of locking state adopted by servers actually sharing a common server
scope.
Some confusing text regarding changes in server_owner has been clarified.
The description of some existing errors has been modified to more clearly explain certain
error situations to reflect the existence of trunking and the possible use of fs-specific grace
periods. For details, see Appendix B.3.
New descriptions of certain existing operations are provided, either because the existing
treatment did not account for situations that would arise in dealing with Transparent State
Migration, or because some types of reclaim issues were not adequately dealt with in the
context of fs-specific grace periods. For details, see Appendix B.2.

[66]

•

•

•
[69]

•
•

[66]

•
•

•
•

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 550

https://www.rfc-editor.org/rfc/rfc5661#section-11

Appendix B. Changes in This Update

B.1. Revisions Made to Section 11 of RFC 5661
A number of areas have been revised or extended, in many cases replacing subsections within
Section 11 of RFC 5661 :

New introductory material, including a terminology section, replaces the material in RFC
5661 , ranging from the start of the original Section 11 up to and including Section 11.1.
The new material starts at the beginning of Section 11 and continues through 11.2.
A significant reorganization of the material in Sections 11.4 and 11.5 of RFC 5661 was
necessary. The reasons for the reorganization of these sections into a single section with
multiple subsections are discussed in Appendix B.1.1 below. This replacement appears as
Section 11.5.

New material relating to the handling of the file system location attributes is contained in
Sections 11.5.1 and 11.5.7.

A new section describing requirements for user and group handling within a multi-server
namespace has been added as Section 11.7.
A major replacement for Section 11.7 of RFC 5661 , entitled "Effecting File System
Transitions", appears as Sections 11.9 through 11.14. The reasons for the reorganization of
this section into multiple sections are discussed in Appendix B.1.2.
A replacement for Section 11.10 of RFC 5661 , entitled "The Attribute fs_locations_info",
appears as Section 11.17, with Appendix B.1.3 describing the differences between the new
section and the treatment within . A revised treatment was necessary because the
original treatment did not make clear how the added attribute information relates to the
case of trunked paths to the same replica. These issues were not addressed in RFC 5661
where the concepts of a replica and a network path used to access a replica were not clearly
distinguished.

[66]

•
[66]

• [66]

•

• [66]

• [66]

[66]

[66]

B.1.1. Reorganization of Sections 11.4 and 11.5 of RFC 5661
Previously, issues related to the fact that multiple location entries directed the client to the same
file system instance were dealt with in Section 11.5 of RFC 5661 . Because of the new
treatment of trunking, these issues now belong within Section 11.5.

In this new section, trunking is covered in Section 11.5.2 together with the other uses of file
system location information described in Sections 11.5.3 through 11.5.6.

[66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 551

https://www.rfc-editor.org/rfc/rfc5661#section-11
https://www.rfc-editor.org/rfc/rfc5661#section-11
https://www.rfc-editor.org/rfc/rfc5661#section-11.1
https://www.rfc-editor.org/rfc/rfc5661#section-11.4
https://www.rfc-editor.org/rfc/rfc5661#section-11.5
https://www.rfc-editor.org/rfc/rfc5661#section-11.7
https://www.rfc-editor.org/rfc/rfc5661#section-11.10
https://www.rfc-editor.org/rfc/rfc5661#section-11.5

As a result, Section 11.5, which replaces Section 11.4 of RFC 5661 , is substantially different
than the section it replaces in that some original sections have been replaced by corresponding
sections as described below, while new sections have been added:

The material in Section 11.5, exclusive of subsections, replaces the material in Section 11.4 of
RFC 5661 exclusive of subsections.
Section 11.5.1 is the new first subsection of the overall section.
Section 11.5.2 is the new second subsection of the overall section.
Each of the Sections 11.5.4, 11.5.5, and 11.5.6 replaces (in order) one of the corresponding
Sections 11.4.1, 11.4.2, and 11.4.3 of RFC 5661 .
Section 11.5.7 is the new final subsection of the overall section.

[66]

•
[66]

•
•
•

[66]
•

B.1.2. Reorganization of Material Dealing with File System Transitions
The material relating to file system transition, previously contained in Section 11.7 of RFC 5661

 has been reorganized and augmented as described below:

Because there can be a shift of the network access paths used to access a file system instance
without any shift between replicas, a new Section 11.9 distinguishes between those cases in
which there is a shift between distinct replicas and those involving a shift in network access
paths with no shift between replicas.

As a result, the new Section 11.10 deals with network address transitions, while the bulk of
the original Section 11.7 of RFC 5661 has been extensively modified as reflected in
Section 11.11, which is now limited to cases in which there is a shift between two different
sets of replicas.

The additional Section 11.12 discusses the case in which a shift to a different replica is made
and state is transferred to allow the client the ability to have continued access to its
accumulated locking state on the new server.
The additional Section 11.13 discusses the client's response to access transitions, how it
determines whether migration has occurred, and how it gets access to any transferred
locking and session state.
The additional Section 11.14 discusses the responsibilities of the source and destination
servers when transferring locking and session state.

This reorganization has caused a renumbering of the sections within as
described below:

The new Sections 11.9 and 11.10 have resulted in the renumbering of existing sections with
these numbers.

 has been substantially modified and appears as Section 11.11. The
necessary modifications reflect the fact that this section only deals with transitions between
replicas, while transitions between network addresses are dealt with in other sections.
Details of the reorganization are described later in this section.
Sections 11.12, 11.13, and 11.14 have been added.

[66]

•

[66]

•

•

•

Section 11 of [66]

•

• Section 11.7 of [66]

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 552

https://www.rfc-editor.org/rfc/rfc5661#section-11.4
https://www.rfc-editor.org/rfc/rfc5661#section-11.4
https://www.rfc-editor.org/rfc/rfc5661#section-11.4.1
https://www.rfc-editor.org/rfc/rfc5661#section-11.4.2
https://www.rfc-editor.org/rfc/rfc5661#section-11.4.3
https://www.rfc-editor.org/rfc/rfc5661#section-11.7
https://www.rfc-editor.org/rfc/rfc5661#section-11.7
https://www.rfc-editor.org/rfc/rfc5661#section-11
https://www.rfc-editor.org/rfc/rfc5661#section-11.7

Consequently, Sections 11.8, 11.9, 11.10, and 11.11 in now appear as Sections 11.15, 11.16,
11.17, and 11.18, respectively.

As part of this general reorganization, Section 11.7 of RFC 5661 has been modified as
described below:

Sections 11.7 and 11.7.1 of RFC 5661 have been replaced by Sections 11.11 and 11.11.1,
respectively.
Section 11.7.2 of RFC 5661 (and included subsections) has been deleted.
Sections 11.7.3, 11.7.4, 11.7.5, 11.7.5.1, and 11.7.6 of RFC 5661 have been replaced by
Sections 11.11.2, 11.11.3, 11.11.4, 11.11.4.1, and 11.11.5 respectively in this document.
Section 11.7.7 of RFC 5661 has been replaced by Section 11.11.9. This subsection has been
moved to the end of the section dealing with file system transitions.
Sections 11.7.8, 11.7.9, and 11.7.10 of RFC 5661 have been replaced by Sections 11.11.6,
11.11.7, and 11.11.8 respectively in this document.

• [66]

[66]

• [66]

•
• [66]

• [66]

• [66]

B.1.3. Updates to the Treatment of fs_locations_info
Various elements of the fs_locations_info attribute contain information that applies to either a
specific file system replica or to a network path or set of network paths used to access such a
replica. The original treatment of fs_locations_info (Section 11.10 of RFC 5661) did not clearly
distinguish these cases, in part because the document did not clearly distinguish replicas from
the paths used to access them.

In addition, special clarification has been provided with regard to the following fields:

With regard to the handling of FSLI4GF_GOING, it was clarified that this only applies to the
unavailability of a replica rather than to a path to access a replica.
In describing the appropriate value for a server to use for fli_valid_for, it was clarified that
there is no need for the client to frequently fetch the fs_locations_info value to be prepared
for shifts in trunking patterns.
Clarification of the rules for extensions to the fls_info has been provided. The original
treatment reflected the extension model that was in effect at the time RFC 5661 was
written, but has been updated in accordance with the extension model described in RFC
8178 .

[66]

•

•

•
[66]

[67]

B.2. Revisions Made to Operations in RFC 5661
Descriptions have been revised to address issues that arose in effecting necessary changes to
multi-server namespace features.

The treatment of EXCHANGE_ID (Section 18.35 of RFC 5661) assumed that client IDs
cannot be created/confirmed other than by the EXCHANGE_ID and CREATE_SESSION
operations. Also, the necessary use of EXCHANGE_ID in recovery from migration and related
situations was not clearly addressed. A revised treatment of EXCHANGE_ID was necessary,

• [66]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 553

https://www.rfc-editor.org/rfc/rfc5661#section-11.8
https://www.rfc-editor.org/rfc/rfc5661#section-11.9
https://www.rfc-editor.org/rfc/rfc5661#section-11.10
https://www.rfc-editor.org/rfc/rfc5661#section-11.11
https://www.rfc-editor.org/rfc/rfc5661#section-11.7
https://www.rfc-editor.org/rfc/rfc5661#section-11.7
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.1
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.2
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.3
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.4
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.5
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.5.1
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.6
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.7
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.8
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.9
https://www.rfc-editor.org/rfc/rfc5661#section-11.7.10
https://www.rfc-editor.org/rfc/rfc5661#section-11.10
https://www.rfc-editor.org/rfc/rfc5661#section-18.35

and it appears in Section 18.35, while the specific differences between it and the treatment
within are explained in Appendix B.2.1 below.
The treatment of RECLAIM_COMPLETE in Section 18.51 of RFC 5661 was not sufficiently
clear about the purpose and use of the rca_one_fs and how the server was to deal with
inappropriate values of this argument. Because the resulting confusion raised
interoperability issues, a new treatment of RECLAIM_COMPLETE was necessary, and it
appears in Section 18.51, while the specific differences between it and the treatment within
RFC 5661 are discussed in Appendix B.2.2 below. In addition, the definitions of the
reclaim-related errors have received an updated treatment in Section 15.1.9 to reflect the
fact that there are multiple contexts for lock reclaim operations.

[66]
• [66]

[66]

B.2.1. Revision of Treatment of EXCHANGE_ID
There was a number of issues in the original treatment of EXCHANGE_ID in RFC 5661 that
caused problems for Transparent State Migration and for the transfer of access between different
network access paths to the same file system instance.

These issues arose from the fact that this treatment was written:

Assuming that a client ID can only become known to a server by having been created by
executing an EXCHANGE_ID, with confirmation of the ID only possible by execution of a
CREATE_SESSION.
Considering the interactions between a client and a server only occurring on a single
network address.

As these assumptions have become invalid in the context of Transparent State Migration and
active use of trunking, the treatment has been modified in several respects:

It had been assumed that an EXCHANGE_ID executed when the server was already aware
that a given client instance was either updating associated parameters (e.g., with respect to
callbacks) or dealing with a previously lost reply by retransmitting. As a result, any slot
sequence returned by that operation would be of no use. The original treatment went so far
as to say that it " " be used, although this usage was not in accord with . This
created a difficulty when an EXCHANGE_ID is done after Transparent State Migration since
that slot sequence would need to be used in a subsequent CREATE_SESSION.

In the updated treatment, CREATE_SESSION is a way that client IDs are confirmed, but it is
understood that other ways are possible. The slot sequence can be used as needed, and cases
in which it would be of no use are appropriately noted.

It had been assumed that the only functions of EXCHANGE_ID were to inform the server of
the client, to create the client ID, and to communicate it to the client. When multiple
simultaneous connections are involved, as often happens when trunking, that treatment was
inadequate in that it ignored the role of EXCHANGE_ID in associating the client ID with the
connection on which it was done, so that it could be used by a subsequent CREATE_SESSION
whose parameters do not include an explicit client ID.

[66]

•

•

•

MUST NOT [1]

•

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 554

https://www.rfc-editor.org/rfc/rfc5661#section-18.51

The new treatment explicitly discusses the role of EXCHANGE_ID in associating the client ID
with the connection so it can be used by CREATE_SESSION and in associating a connection
with an existing session.

The new treatment can be found in Section 18.35 above. It supersedes the treatment in Section
18.35 of RFC 5661 .[66]

B.2.2. Revision of Treatment of RECLAIM_COMPLETE
The following changes were made to the treatment of RECLAIM_COMPLETE in RFC 5661 to
arrive at the treatment in Section 18.51:

In a number of places, the text was made more explicit about the purpose of rca_one_fs and
its connection to file system migration.
There is a discussion of situations in which particular forms of RECLAIM_COMPLETE would
need to be done.
There is a discussion of interoperability issues between implementations that may have
arisen due to the lack of clarity of the previous treatment of RECLAIM_COMPLETE.

[66]

•

•

•

B.3. Revisions Made to Error Definitions in RFC 5661
The new handling of various situations required revisions to some existing error definitions:

Because of the need to appropriately address trunking-related issues, some uses of the term
"replica" in RFC 5661 became problematic because a shift in network access paths was
considered to be a shift to a different replica. As a result, the original definition of
NFS4ERR_MOVED (in Section 15.1.2.4 of RFC 5661) was updated to reflect the different
handling of unavailability of a particular fs via a specific network address.

Since such a situation is no longer considered to constitute unavailability of a file system
instance, the description has been changed, even though the set of circumstances in which it
is to be returned remains the same. The new paragraph explicitly recognizes that a different
network address might be used, while the previous description, misleadingly, treated this as
a shift between two replicas while only a single file system instance might be involved. The
updated description appears in Section 15.1.2.4.

Because of the need to accommodate the use of fs-specific grace periods, it was necessary to
clarify some of the definitions of reclaim-related errors in Section 15 of RFC 5661 so that
the text applies properly to reclaims for all types of grace periods. The updated descriptions
appear within Section 15.1.9.
Because of the need to provide the clarifications in errata report 2006 and to adapt these
to properly explain the interaction of NFS4ERR_DELAY with the reply cache, a revised
description of NFS4ERR_DELAY appears in Section 15.1.1.3. This errata report, unlike many
other RFC 5661 errata reports, is addressed in this document because of the extensive use of
NFS4ERR_DELAY in connection with state migration and session migration.

•
[66]

[66]

•
[66]

• [64]

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 555

https://www.rfc-editor.org/rfc/rfc5661#section-18.35
https://www.rfc-editor.org/rfc/rfc5661#section-15.1.2.4
https://www.rfc-editor.org/rfc/rfc5661#section-15

B.4. Other Revisions Made to RFC 5661
Besides the major reworking of Section 11 of RFC 5661 and the associated revisions to
existing operations and errors, there were a number of related changes that were necessary:

The summary in Section 1.7.3.3 of RFC 5661 was revised to reflect the changes made to
Section 11 above. The updated summary appears as Section 1.8.3.3 above.
The discussion of server scope in Section 2.10.4 of RFC 5661 was replaced since it
appeared to require a level of inter-server coordination incompatible with its basic function
of avoiding the need for a globally uniform means of assigning server_owner values. A
revised treatment appears in Section 2.10.4.
The discussion of trunking in Section 2.10.5 of RFC 5661 was revised to more clearly
explain the multiple types of trunking support and how the client can be made aware of the
existing trunking configuration. In addition, while the last paragraph (exclusive of
subsections) of that section dealing with server_owner changes was literally true, it had been
a source of confusion. Since the original paragraph could be read as suggesting that such
changes be handled nondisruptively, the issue was clarified in the revised Section 2.10.5.

[66]

• [66]

• [66]

• [66]

Appendix C. Security Issues That Need to Be Addressed
The following issues in the treatment of security within the NFSv4.1 specification need to be
addressed:

The Security Considerations Section of RFC 5661 was not written in accordance with RFC
3552 (BCP 72) . Of particular concern was the fact that the section did not contain a threat
analysis.
Initial analysis of the existing security issues with NFSv4.1 has made it likely that a revised
Security Considerations section for the existing protocol (one containing a threat analysis)
would be likely to conclude that NFSv4.1 does not meet the goal of secure use on the
Internet.

The Security Considerations section of this document (Section 21) has not been thoroughly
revised to correct the difficulties mentioned above. Instead, it has been modified to take proper
account of issues related to the multi-server namespace features discussed in Section 11, leaving
the incomplete discussion and security weaknesses pretty much as they were.

The following major security issues need to be addressed in a satisfactory fashion before an
updated Security Considerations section can be published as part of a bis document for NFSv4.1:

The continued use of AUTH_SYS and the security exposures it creates need to be addressed.
Addressing this issue must not be limited to the questions of whether the designation of this
as was justified and whether it should be changed.

In any event, it may not be possible at this point to correct the security problems created by
continued use of AUTH_SYS simply by revising this designation.

• [66]
[72]

•

•

OPTIONAL

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 556

https://www.rfc-editor.org/rfc/rfc5661#section-11
https://www.rfc-editor.org/rfc/rfc5661#section-1.7.3.3
https://www.rfc-editor.org/rfc/rfc5661#section-2.10.4
https://www.rfc-editor.org/rfc/rfc5661#section-2.10.5

Acknowledgments

Acknowledgments for This Update
The authors wish to acknowledge the important role of of Netapp in clarifying
the need for trunking discovery functionality, and exploring the role of the file system location
attributes in providing the necessary support.

The lack of attention within the protocol to the possibility of pervasive monitoring attacks
such as those described in RFC 7258 (also BCP 188).

In that connection, the use of CREATE_SESSION without privacy protection needs to be
addressed as it exposes the session ID to view by an attacker. This is worrisome as this is
precisely the type of protocol artifact alluded to in RFC 7258, which can enable further
mischief on the part of the attacker as it enables denial-of-service attacks that can be
executed effectively with only a single, normally low-value, credential, even when
RPCSEC_GSS authentication is in use.

The lack of effective use of privacy and integrity, even where the infrastructure to support
use of RPCSEC_GSS is present, needs to be addressed.

In light of the security exposures that this situation creates, it is not enough to define a
protocol that could address this problem with the provision of sufficient resources. Instead,
what is needed is a way to provide the necessary security with very limited performance
costs and without requiring security infrastructure, which experience has shown is difficult
for many clients and servers to provide.

In trying to provide a major security upgrade for a deployed protocol such as NFSv4.1, the
working group and the Internet community are likely to find themselves dealing with a number
of considerations such as the following:

The need to accommodate existing deployments of protocols specified previously in existing
Proposed Standards.
The difficulty of effecting changes to existing, interoperating implementations.
The difficulty of making changes to NFSv4 protocols other than those in the form of

 extensions.
The tendency of those responsible for existing NFSv4 deployments to ignore security flaws in
the context of local area networks under the mistaken impression that network isolation
provides, in and of itself, isolation from all potential attackers.

Given that the above-mentioned difficulties apply to minor version zero as well, it may make
sense to deal with these security issues in a common document that applies to all NFSv4 minor
versions. If that approach is taken, the Security Considerations section of an eventual NFv4.1 bis
document would reference that common document, and the defining RFCs for other minor
versions might do so as well.

•
[71]

•

•

•
•

OPTIONAL
•

Andy Adamson

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 557

The authors wish to thank of Hammerspace for drawing our attention to the fact
that internationalization and security might best be handled in documents dealing with such
protocol issues as they apply to all NFSv4 minor versions.

The authors also wish to acknowledge the work of of Oracle with NFSv4.1 client and
server prototypes of Transparent State Migration functionality.

The authors wish to thank others that brought attention to important issues. The comments of
 of Primary Data related to trunking helped to clarify the role of DNS in

trunking discovery. 's comments brought attention to problems in the handling of
the per-fs version of RECLAIM_COMPLETE.

The authors wish to thank of Netapp for her helpful review comments.

Acknowledgments for RFC 5661
The initial text for the SECINFO extensions were edited by with contributions from

, , and .

The initial text for the SESSIONS extensions were edited by , ,
 with contributions from , , , ,

, , , , , and .

Initial text relating to multi-server namespace features, including the concept of referrals, were
contributed by , , and with contributions from

, , and .

The initial text for the Directory Delegations support were contributed by with
input from , , , , and .

The initial text for the ACL explanations were contributed by and .

The pNFS work was inspired by the NASD and OSD work done by . has
also been a champion of high-performance parallel I/O. and started
the pNFS effort with a problem statement document for the IETF that formed the basis for the
pNFS work in NFSv4.1.

The initial text for the parallel NFS support was edited by and .
Additional authors for those documents were , , and .
Additional input came from the informal group that contributed to the construction of the initial
pNFS drafts; specific acknowledgment goes to , , ,

, and .

 found several errors in draft versions of the ONC RPC XDR description of the
NFSv4.1 protocol.

 provided, in numerous ways, essential coordination and management of
the process of editing the specification documents.

Tom Haynes

Xuan Qi

Trond Myklebust
Rick Macklem

Olga Kornievskaia

Mike Eisler
Peng Dai Sergey Klyushin Carl Burnett

Tom Talpey Spencer Shepler Jon
Bauman Charles Antonelli Brent Callaghan Mike Eisler John Howard
Chet Juszczak Trond Myklebust Dave Noveck John Scott Mike Stolarchuk Mark Wittle

Dave Noveck Carl Burnett Charles Fan Ted
Anderson Neil Brown Jon Haswell

Saadia Khan
Dave Noveck Mike Eisler Carl Burnett Ted Anderson Tom Talpey

Sam Falkner Lisa Week

Garth Gibson Gary Grider
Garth Gibson Peter Corbett

Brent Welch Garth Goodson
Benny Halevy David Black Andy Adamson

Gary Grider Peter Corbett Dave Noveck Peter
Honeyman Stephen Fridella

Fredric Isaman

Audrey Van Belleghem

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 558

 gave feedback on the file layout's striping pattern design.

Several formal inspection teams were formed to review various areas of the protocol. All the
inspections found significant errors and room for improvement. NFSv4.1's inspection teams
were:

ACLs, with the following inspectors: , , , ,
, , , and .

Sessions, with the following inspectors: , , ,
, , , , ,

, , and .

Initial pNFS inspection, with the following inspectors: , ,
, , , , , , ,

, and .

Global namespace, with the following inspectors: , , ,
, , , , , ,

and .

NFSv4.1 file layout type, with the following inspectors: , ,
, , , , and .

NFSv4.1 locking and directory delegations, with the following inspectors: ,
, , , , , ,

and .

EXCHANGE_ID and DESTROY_CLIENTID, with the following inspectors: ,
, , , , , ,

, , , and .

Final pNFS inspection, with the following inspectors: , ,
, , , , , ,

, , , , , ,
, , and .

A review team worked together to generate the tables of assignments of error sets to operations
and make sure that each such assignment had two or more people validating it. Participating in
the process were , , , , ,

, , , , , and .

, , , , , , and
provided valuable review and guidance.

 found several errors in the SSV specification.

 found several places where the use of RPCSEC_GSS was underspecified.

Richard Jernigan

• Sam Falkner Bruce Fields Rahul Iyer Saadia Khan
Dave Noveck Lisa Week Mario Wurzl Alan Yoder

• William Brown Tom Doeppner Robert Gordon
Benny Halevy Fredric Isaman Rick Macklem Trond Myklebust Dave Noveck Karen
Rochford John Scott Peter Shah

• Andy Adamson David Black Mike
Eisler Marc Eshel Sam Falkner Garth Goodson Benny Halevy Rahul Iyer Trond Myklebust
Spencer Shepler Lisa Week

• Mike Eisler Dan Ellard Craig Everhart
Fredric Isaman Trond Myklebust Dave Noveck Theresa Raj Spencer Shepler Renu Tewari

Robert Thurlow

• Andy Adamson Marc Eshel Sam
Falkner Garth Goodson Rahul Iyer Trond Myklebust Lisa Week

• Mike Eisler
Pranoop Erasani Robert Gordon Saadia Khan Eric Kustarz Dave Noveck Spencer Shepler

Amy Weaver

• Mike Eisler Pranoop
Erasani Robert Gordon Benny Halevy Fredric Isaman Saadia Khan Ricardo Labiaga Rick
Macklem Trond Myklebust Spencer Shepler Brent Welch

• Andy Adamson Mike Eisler Mark
Eshel Sam Falkner Jason Glasgow Garth Goodson Robert Gordon Benny Halevy Dean
Hildebrand Rahul Iyer Suchit Kaura Trond Myklebust Anatoly Pinchuk Spencer Shepler
Renu Tewari Lisa Week Brent Welch

Andy Adamson Mike Eisler Sam Falkner Garth Goodson Robert Gordon
Trond Myklebust Dave Noveck Spencer Shepler Tom Talpey Amy Weaver Lisa Week

Jari Arkko David Black Scott Bradner Lisa Dusseault Lars Eggert Chris Newman Tim Polk

Olga Kornievskaia

Ricardo Labiaga

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 559

Those who provided miscellaneous comments include: , ,
, , , , , ,

, , , , , ,
, , , , and .

Andy Adamson Sunil Bhargo Alex
Burlyga Pranoop Erasani Bruce Fields Vadim Finkelstein Jason Goldschmidt Vijay K. Gurbani
Sergey Klyushin Ricardo Labiaga James Lentini Anshul Madan Daniel Muntz Daniel Picken
Archana Ramani Jim Rees Mahesh Siddheshwar Tom Talpey Peter Varga

Authors' Addresses
David Noveck ()������
NetApp
1601 Trapelo Road, Suite 16

, Waltham MA 02451
United States of America

 +1-781-768-5347 Phone:
 dnoveck@netapp.com Email:

Charles Lever
Oracle Corporation
1015 Granger Avenue

, Ann Arbor MI 48104
United States of America

 +1-248-614-5091 Phone:
 chuck.lever@oracle.com Email:

RFC 8881 NFSv4.1 with Namespace Update August 2020

Noveck & Lever Standards Track Page 560

tel:+1-781-768-5347
mailto:dnoveck@netapp.com
tel:+1-248-614-5091
mailto:chuck.lever@oracle.com

	RFC 8881
	Network File System (NFS) Version 4 Minor Version 1 Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Introduction to This Update
	1.2. The NFS Version 4 Minor Version 1 Protocol
	1.3. Requirements Language
	1.4. Scope of This Document
	1.5. NFSv4 Goals
	1.6. NFSv4.1 Goals
	1.7. General Definitions
	1.8. Overview of NFSv4.1 Features
	1.8.1. RPC and Security
	1.8.2. Protocol Structure
	1.8.2.1. Core Protocol
	1.8.2.2. Parallel Access

	1.8.3. File System Model
	1.8.3.1. Filehandles
	1.8.3.2. File Attributes
	1.8.3.3. Multi-Server Namespace

	1.8.4. Locking Facilities

	1.9. Differences from NFSv4.0

	2. Core Infrastructure
	2.1. Introduction
	2.2. RPC and XDR
	2.2.1. RPC-Based Security
	2.2.1.1. RPC Security Flavors
	2.2.1.1.1. RPCSEC_GSS and Security Services
	2.2.1.1.1.1. Identification, Authentication, Integrity, Privacy
	2.2.1.1.1.2. Security Mechanisms for NFSv4.1
	2.2.1.1.1.2.1. Kerberos V5
	2.2.1.1.1.2.1.1. Security Considerations for Cryptographic Algorithms in Kerberos V5
	2.2.1.1.1.3. GSS Server Principal

	2.3. COMPOUND and CB_COMPOUND
	2.4. Client Identifiers and Client Owners
	2.4.1. Upgrade from NFSv4.0 to NFSv4.1
	2.4.2. Server Release of Client ID
	2.4.3. Resolving Client Owner Conflicts

	2.5. Server Owners
	2.6. Security Service Negotiation
	2.6.1. NFSv4.1 Security Tuples
	2.6.2. SECINFO and SECINFO_NO_NAME
	2.6.3. Security Error
	2.6.3.1. Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME
	2.6.3.1.1. Put Filehandle Operations
	2.6.3.1.1.1. Put Filehandle Operation + SAVEFH
	2.6.3.1.1.2. Two or More Put Filehandle Operations
	2.6.3.1.1.3. Put Filehandle Operation + LOOKUP (or OPEN of an Existing Name)
	2.6.3.1.1.4. Put Filehandle Operation + LOOKUPP
	2.6.3.1.1.5. Put Filehandle Operation + SECINFO/SECINFO_NO_NAME
	2.6.3.1.1.6. Put Filehandle Operation + Nothing
	2.6.3.1.1.7. Put Filehandle Operation + Anything Else
	2.6.3.1.1.8. Operations after SECINFO and SECINFO_NO_NAME
	2.6.3.1.2. LINK and RENAME

	2.7. Minor Versioning
	2.8. Non-RPC-Based Security Services
	2.8.1. Authorization
	2.8.2. Auditing
	2.8.3. Intrusion Detection

	2.9. Transport Layers
	2.9.1. REQUIRED and RECOMMENDED Properties of Transports
	2.9.2. Client and Server Transport Behavior
	2.9.3. Ports

	2.10. Session
	2.10.1. Motivation and Overview
	2.10.2. NFSv4 Integration
	2.10.2.1. SEQUENCE and CB_SEQUENCE
	2.10.2.2. Client ID and Session Association

	2.10.3. Channels
	2.10.3.1. Association of Connections, Channels, and Sessions

	2.10.4. Server Scope
	2.10.5. Trunking
	2.10.5.1. Verifying Claims of Matching Server Identity

	2.10.6. Exactly Once Semantics
	2.10.6.1. Slot Identifiers and Reply Cache
	2.10.6.1.1. Caching of SEQUENCE and CB_SEQUENCE Replies
	2.10.6.1.2. Errors from SEQUENCE and CB_SEQUENCE
	2.10.6.1.3. Optional Reply Caching
	2.10.6.1.3.1. False Retry

	2.10.6.2. Retry and Replay of Reply
	2.10.6.3. Resolving Server Callback Races
	2.10.6.4. COMPOUND and CB_COMPOUND Construction Issues
	2.10.6.5. Persistence

	2.10.7. RDMA Considerations
	2.10.7.1. RDMA Connection Resources
	2.10.7.2. Flow Control
	2.10.7.3. Padding
	2.10.7.4. Dual RDMA and Non-RDMA Transports

	2.10.8. Session Security
	2.10.8.1. Session Callback Security
	2.10.8.2. Backchannel RPC Security
	2.10.8.3. Protection from Unauthorized State Changes

	2.10.9. The Secret State Verifier (SSV) GSS Mechanism
	2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV Mechanism
	2.10.11. Session Mechanics - Steady State
	2.10.11.1. Obligations of the Server
	2.10.11.2. Obligations of the Client
	2.10.11.3. Steps the Client Takes to Establish a Session

	2.10.12. Session Inactivity Timer
	2.10.13. Session Mechanics - Recovery
	2.10.13.1. Events Requiring Client Action
	2.10.13.1.1. RPCSEC_GSS Context Loss by Callback Path
	2.10.13.1.2. Connection Loss
	2.10.13.1.3. Backchannel GSS Context Loss
	2.10.13.1.4. Loss of Session

	2.10.13.2. Events Requiring Server Action
	2.10.13.2.1. Client Crash and Restart
	2.10.13.2.2. Client Crash with No Restart
	2.10.13.2.3. Extended Network Partition
	2.10.13.2.4. Backchannel Connection Loss
	2.10.13.2.5. GSS Context Loss

	2.10.14. Parallel NFS and Sessions

	3. Protocol Constants and Data Types
	3.1. Basic Constants
	3.2. Basic Data Types
	3.3. Structured Data Types
	3.3.1. nfstime4
	3.3.2. time_how4
	3.3.3. settime4
	3.3.4. specdata4
	3.3.5. fsid4
	3.3.6. change_policy4
	3.3.7. fattr4
	3.3.8. change_info4
	3.3.9. netaddr4
	3.3.10. state_owner4
	3.3.10.1. open_owner4
	3.3.10.2. lock_owner4

	3.3.11. open_to_lock_owner4
	3.3.12. stateid4
	3.3.13. layouttype4
	3.3.14. deviceid4
	3.3.15. device_addr4
	3.3.16. layout_content4
	3.3.17. layout4
	3.3.18. layoutupdate4
	3.3.19. layouthint4
	3.3.20. layoutiomode4
	3.3.21. nfs_impl_id4
	3.3.22. threshold_item4
	3.3.23. mdsthreshold4

	4. Filehandles
	4.1. Obtaining the First Filehandle
	4.1.1. Root Filehandle
	4.1.2. Public Filehandle

	4.2. Filehandle Types
	4.2.1. General Properties of a Filehandle
	4.2.2. Persistent Filehandle
	4.2.3. Volatile Filehandle

	4.3. One Method of Constructing a Volatile Filehandle
	4.4. Client Recovery from Filehandle Expiration

	5. File Attributes
	5.1. REQUIRED Attributes
	5.2. RECOMMENDED Attributes
	5.3. Named Attributes
	5.4. Classification of Attributes
	5.5. Set-Only and Get-Only Attributes
	5.6. REQUIRED Attributes - List and Definition References
	5.7. RECOMMENDED Attributes - List and Definition References
	5.8. Attribute Definitions
	5.8.1. Definitions of REQUIRED Attributes
	5.8.1.1. Attribute 0: supported_attrs
	5.8.1.2. Attribute 1: type
	5.8.1.3. Attribute 2: fh_expire_type
	5.8.1.4. Attribute 3: change
	5.8.1.5. Attribute 4: size
	5.8.1.6. Attribute 5: link_support
	5.8.1.7. Attribute 6: symlink_support
	5.8.1.8. Attribute 7: named_attr
	5.8.1.9. Attribute 8: fsid
	5.8.1.10. Attribute 9: unique_handles
	5.8.1.11. Attribute 10: lease_time
	5.8.1.12. Attribute 11: rdattr_error
	5.8.1.13. Attribute 19: filehandle
	5.8.1.14. Attribute 75: suppattr_exclcreat

	5.8.2. Definitions of Uncategorized RECOMMENDED Attributes
	5.8.2.1. Attribute 14: archive
	5.8.2.2. Attribute 15: cansettime
	5.8.2.3. Attribute 16: case_insensitive
	5.8.2.4. Attribute 17: case_preserving
	5.8.2.5. Attribute 60: change_policy
	5.8.2.6. Attribute 18: chown_restricted
	5.8.2.7. Attribute 20: fileid
	5.8.2.8. Attribute 21: files_avail
	5.8.2.9. Attribute 22: files_free
	5.8.2.10. Attribute 23: files_total
	5.8.2.11. Attribute 76: fs_charset_cap
	5.8.2.12. Attribute 24: fs_locations
	5.8.2.13. Attribute 67: fs_locations_info
	5.8.2.14. Attribute 61: fs_status
	5.8.2.15. Attribute 25: hidden
	5.8.2.16. Attribute 26: homogeneous
	5.8.2.17. Attribute 27: maxfilesize
	5.8.2.18. Attribute 28: maxlink
	5.8.2.19. Attribute 29: maxname
	5.8.2.20. Attribute 30: maxread
	5.8.2.21. Attribute 31: maxwrite
	5.8.2.22. Attribute 32: mimetype
	5.8.2.23. Attribute 55: mounted_on_fileid
	5.8.2.24. Attribute 34: no_trunc
	5.8.2.25. Attribute 35: numlinks
	5.8.2.26. Attribute 36: owner
	5.8.2.27. Attribute 37: owner_group
	5.8.2.28. Attribute 38: quota_avail_hard
	5.8.2.29. Attribute 39: quota_avail_soft
	5.8.2.30. Attribute 40: quota_used
	5.8.2.31. Attribute 41: rawdev
	5.8.2.32. Attribute 42: space_avail
	5.8.2.33. Attribute 43: space_free
	5.8.2.34. Attribute 44: space_total
	5.8.2.35. Attribute 45: space_used
	5.8.2.36. Attribute 46: system
	5.8.2.37. Attribute 47: time_access
	5.8.2.38. Attribute 48: time_access_set
	5.8.2.39. Attribute 49: time_backup
	5.8.2.40. Attribute 50: time_create
	5.8.2.41. Attribute 51: time_delta
	5.8.2.42. Attribute 52: time_metadata
	5.8.2.43. Attribute 53: time_modify
	5.8.2.44. Attribute 54: time_modify_set

	5.9. Interpreting owner and owner_group
	5.10. Character Case Attributes
	5.11. Directory Notification Attributes
	5.11.1. Attribute 56: dir_notif_delay
	5.11.2. Attribute 57: dirent_notif_delay

	5.12. pNFS Attribute Definitions
	5.12.1. Attribute 62: fs_layout_type
	5.12.2. Attribute 66: layout_alignment
	5.12.3. Attribute 65: layout_blksize
	5.12.4. Attribute 63: layout_hint
	5.12.5. Attribute 64: layout_type
	5.12.6. Attribute 68: mdsthreshold

	5.13. Retention Attributes
	5.13.1. Attribute 69: retention_get
	5.13.2. Attribute 70: retention_set
	5.13.3. Attribute 71: retentevt_get
	5.13.4. Attribute 72: retentevt_set
	5.13.5. Attribute 73: retention_hold

	6. Access Control Attributes
	6.1. Goals
	6.2. File Attributes Discussion
	6.2.1. Attribute 12: acl
	6.2.1.1. ACE Type
	6.2.1.2. Attribute 13: aclsupport
	6.2.1.3. ACE Access Mask
	6.2.1.3.1. Discussion of Mask Attributes
	6.2.1.3.2. ACE4_DELETE vs. ACE4_DELETE_CHILD

	6.2.1.4. ACE flag
	6.2.1.4.1. Discussion of Flag Bits

	6.2.1.5. ACE Who
	6.2.1.5.1. Discussion of EVERYONE@

	6.2.2. Attribute 58: dacl
	6.2.3. Attribute 59: sacl
	6.2.4. Attribute 33: mode
	6.2.5. Attribute 74: mode_set_masked

	6.3. Common Methods
	6.3.1. Interpreting an ACL
	6.3.1.1. Server Considerations
	6.3.1.2. Client Considerations

	6.3.2. Computing a Mode Attribute from an ACL
	6.3.2.1. Discussion

	6.4. Requirements
	6.4.1. Setting the Mode and/or ACL Attributes
	6.4.1.1. Setting Mode and not ACL
	6.4.1.2. Setting ACL and Not Mode
	6.4.1.3. Setting Both ACL and Mode

	6.4.2. Retrieving the Mode and/or ACL Attributes
	6.4.3. Creating New Objects
	6.4.3.1. The Inherited ACL
	6.4.3.2. Automatic Inheritance

	7. Single-Server Namespace
	7.1. Server Exports
	7.2. Browsing Exports
	7.3. Server Pseudo File System
	7.4. Multiple Roots
	7.5. Filehandle Volatility
	7.6. Exported Root
	7.7. Mount Point Crossing
	7.8. Security Policy and Namespace Presentation

	8. State Management
	8.1. Client and Session ID
	8.2. Stateid Definition
	8.2.1. Stateid Types
	8.2.2. Stateid Structure
	8.2.3. Special Stateids
	8.2.4. Stateid Lifetime and Validation
	8.2.5. Stateid Use for I/O Operations
	8.2.6. Stateid Use for SETATTR Operations

	8.3. Lease Renewal
	8.4. Crash Recovery
	8.4.1. Client Failure and Recovery
	8.4.2. Server Failure and Recovery
	8.4.2.1. State Reclaim
	8.4.2.1.1. Security Considerations for State Reclaim

	8.4.3. Network Partitions and Recovery

	8.5. Server Revocation of Locks
	8.6. Short and Long Leases
	8.7. Clocks, Propagation Delay, and Calculating Lease Expiration
	8.8. Obsolete Locking Infrastructure from NFSv4.0

	9. File Locking and Share Reservations
	9.1. Opens and Byte-Range Locks
	9.1.1. State-Owner Definition
	9.1.2. Use of the Stateid and Locking

	9.2. Lock Ranges
	9.3. Upgrading and Downgrading Locks
	9.4. Stateid Seqid Values and Byte-Range Locks
	9.5. Issues with Multiple Open-Owners
	9.6. Blocking Locks
	9.7. Share Reservations
	9.8. OPEN/CLOSE Operations
	9.9. Open Upgrade and Downgrade
	9.10. Parallel OPENs
	9.11. Reclaim of Open and Byte-Range Locks

	10. Client-Side Caching
	10.1. Performance Challenges for Client-Side Caching
	10.2. Delegation and Callbacks
	10.2.1. Delegation Recovery

	10.3. Data Caching
	10.3.1. Data Caching and OPENs
	10.3.2. Data Caching and File Locking
	10.3.3. Data Caching and Mandatory File Locking
	10.3.4. Data Caching and File Identity

	10.4. Open Delegation
	10.4.1. Open Delegation and Data Caching
	10.4.2. Open Delegation and File Locks
	10.4.3. Handling of CB_GETATTR
	10.4.4. Recall of Open Delegation
	10.4.5. Clients That Fail to Honor Delegation Recalls
	10.4.6. Delegation Revocation
	10.4.7. Delegations via WANT_DELEGATION

	10.5. Data Caching and Revocation
	10.5.1. Revocation Recovery for Write Open Delegation

	10.6. Attribute Caching
	10.7. Data and Metadata Caching and Memory Mapped Files
	10.8. Name and Directory Caching without Directory Delegations
	10.8.1. Name Caching
	10.8.2. Directory Caching

	10.9. Directory Delegations
	10.9.1. Introduction to Directory Delegations
	10.9.2. Directory Delegation Design
	10.9.3. Attributes in Support of Directory Notifications
	10.9.4. Directory Delegation Recall
	10.9.5. Directory Delegation Recovery

	11. Multi-Server Namespace
	11.1. Terminology
	11.1.1. Terminology Related to Trunking
	11.1.2. Terminology Related to File System Location

	11.2. File System Location Attributes
	11.3. File System Presence or Absence
	11.4. Getting Attributes for an Absent File System
	11.4.1. GETATTR within an Absent File System
	11.4.2. READDIR and Absent File Systems

	11.5. Uses of File System Location Information
	11.5.1. Combining Multiple Uses in a Single Attribute
	11.5.2. File System Location Attributes and Trunking
	11.5.3. File System Location Attributes and Connection Type Selection
	11.5.4. File System Replication
	11.5.4.1. File System Trunking Presented as Replication

	11.5.5. File System Migration
	11.5.6. Referrals
	11.5.7. Changes in a File System Location Attribute

	11.6. Trunking without File System Location Information
	11.7. Users and Groups in a Multi-Server Namespace
	11.8. Additional Client-Side Considerations
	11.9. Overview of File Access Transitions
	11.10. Effecting Network Endpoint Transitions
	11.11. Effecting File System Transitions
	11.11.1. File System Transitions and Simultaneous Access
	11.11.2. Filehandles and File System Transitions
	11.11.3. Fileids and File System Transitions
	11.11.4. Fsids and File System Transitions
	11.11.4.1. File System Splitting

	11.11.5. The Change Attribute and File System Transitions
	11.11.6. Write Verifiers and File System Transitions
	11.11.7. READDIR Cookies and Verifiers and File System Transitions
	11.11.8. File System Data and File System Transitions
	11.11.9. Lock State and File System Transitions
	11.11.9.1. Security Consideration Related to Reclaiming Lock State after File System Transitions
	11.11.9.2. Leases and File System Transitions
	11.11.9.3. Transitions and the Lease_time Attribute

	11.12. Transferring State upon Migration
	11.12.1. Transparent State Migration and pNFS

	11.13. Client Responsibilities When Access Is Transitioned
	11.13.1. Client Transition Notifications
	11.13.2. Performing Migration Discovery
	11.13.3. Overview of Client Response to NFS4ERR_MOVED
	11.13.4. Obtaining Access to Sessions and State after Migration
	11.13.5. Obtaining Access to Sessions and State after Network Address Transfer

	11.14. Server Responsibilities Upon Migration
	11.14.1. Server Responsibilities in Effecting State Reclaim after Migration
	11.14.2. Server Responsibilities in Effecting Transparent State Migration
	11.14.3. Server Responsibilities in Effecting Session Transfer

	11.15. Effecting File System Referrals
	11.15.1. Referral Example (LOOKUP)
	11.15.2. Referral Example (READDIR)

	11.16. The Attribute fs_locations
	11.17. The Attribute fs_locations_info
	11.17.1. The fs_locations_server4 Structure
	11.17.2. The fs_locations_info4 Structure
	11.17.3. The fs_locations_item4 Structure

	11.18. The Attribute fs_status

	12. Parallel NFS (pNFS)
	12.1. Introduction
	12.2. pNFS Definitions
	12.2.1. Metadata
	12.2.2. Metadata Server
	12.2.3. pNFS Client
	12.2.4. Storage Device
	12.2.5. Storage Protocol
	12.2.6. Control Protocol
	12.2.7. Layout Types
	12.2.8. Layout
	12.2.9. Layout Iomode
	12.2.10. Device IDs

	12.3. pNFS Operations
	12.4. pNFS Attributes
	12.5. Layout Semantics
	12.5.1. Guarantees Provided by Layouts
	12.5.2. Getting a Layout
	12.5.3. Layout Stateid
	12.5.4. Committing a Layout
	12.5.4.1. LAYOUTCOMMIT and change/time_modify
	12.5.4.2. LAYOUTCOMMIT and size
	12.5.4.3. LAYOUTCOMMIT and layoutupdate

	12.5.5. Recalling a Layout
	12.5.5.1. Layout Recall Callback Robustness
	12.5.5.2. Sequencing of Layout Operations
	12.5.5.2.1. Layout Recall and Return Sequencing
	12.5.5.2.1.1. Get/Return Sequencing
	12.5.5.2.1.2. Client Considerations
	12.5.5.2.1.3. Server Considerations
	12.5.5.2.1.4. Wraparound and Validation of Seqid
	12.5.5.2.1.5. Bulk Recall and Return

	12.5.6. Revoking Layouts
	12.5.7. Metadata Server Write Propagation

	12.6. pNFS Mechanics
	12.7. Recovery
	12.7.1. Recovery from Client Restart
	12.7.2. Dealing with Lease Expiration on the Client
	12.7.3. Dealing with Loss of Layout State on the Metadata Server
	12.7.4. Recovery from Metadata Server Restart
	12.7.5. Operations during Metadata Server Grace Period
	12.7.6. Storage Device Recovery

	12.8. Metadata and Storage Device Roles
	12.9. Security Considerations for pNFS

	13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type
	13.1. Client ID and Session Considerations
	13.1.1. Sessions Considerations for Data Servers

	13.2. File Layout Definitions
	13.3. File Layout Data Types
	13.4. Interpreting the File Layout
	13.4.1. Determining the Stripe Unit Number
	13.4.2. Interpreting the File Layout Using Sparse Packing
	13.4.3. Interpreting the File Layout Using Dense Packing
	13.4.4. Sparse and Dense Stripe Unit Packing

	13.5. Data Server Multipathing
	13.6. Operations Sent to NFSv4.1 Data Servers
	13.7. COMMIT through Metadata Server
	13.8. The Layout Iomode
	13.9. Metadata and Data Server State Coordination
	13.9.1. Global Stateid Requirements
	13.9.2. Data Server State Propagation
	13.9.2.1. Lock State Propagation
	13.9.2.2. Open and Deny Mode Validation
	13.9.2.3. File Attributes

	13.10. Data Server Component File Size
	13.11. Layout Revocation and Fencing
	13.12. Security Considerations for the File Layout Type

	14. Internationalization
	14.1. Stringprep Profile for the utf8str_cs Type
	14.1.1. Intended Applicability of the nfs4_cs_prep Profile
	14.1.2. Character Repertoire of nfs4_cs_prep
	14.1.3. Mapping Used by nfs4_cs_prep
	14.1.4. Normalization used by nfs4_cs_prep
	14.1.5. Prohibited Output for nfs4_cs_prep
	14.1.6. Bidirectional Output for nfs4_cs_prep

	14.2. Stringprep Profile for the utf8str_cis Type
	14.2.1. Intended Applicability of the nfs4_cis_prep Profile
	14.2.2. Character Repertoire of nfs4_cis_prep
	14.2.3. Mapping Used by nfs4_cis_prep
	14.2.4. Normalization Used by nfs4_cis_prep
	14.2.5. Prohibited Output for nfs4_cis_prep
	14.2.6. Bidirectional Output for nfs4_cis_prep

	14.3. Stringprep Profile for the utf8str_mixed Type
	14.3.1. Intended Applicability of the nfs4_mixed_prep Profile
	14.3.2. Character Repertoire of nfs4_mixed_prep
	14.3.3. Mapping Used by nfs4_cis_prep
	14.3.4. Normalization Used by nfs4_mixed_prep
	14.3.5. Prohibited Output for nfs4_mixed_prep
	14.3.6. Bidirectional Output for nfs4_mixed_prep

	14.4. UTF-8 Capabilities
	14.5. UTF-8 Related Errors

	15. Error Values
	15.1. Error Definitions
	15.1.1. General Errors
	15.1.1.1. NFS4ERR_BADXDR (Error Code 10036)
	15.1.1.2. NFS4ERR_BAD_COOKIE (Error Code 10003)
	15.1.1.3. NFS4ERR_DELAY (Error Code 10008)
	15.1.1.4. NFS4ERR_INVAL (Error Code 22)
	15.1.1.5. NFS4ERR_NOTSUPP (Error Code 10004)
	15.1.1.6. NFS4ERR_SERVERFAULT (Error Code 10006)
	15.1.1.7. NFS4ERR_TOOSMALL (Error Code 10005)

	15.1.2. Filehandle Errors
	15.1.2.1. NFS4ERR_BADHANDLE (Error Code 10001)
	15.1.2.2. NFS4ERR_FHEXPIRED (Error Code 10014)
	15.1.2.3. NFS4ERR_ISDIR (Error Code 21)
	15.1.2.4. NFS4ERR_MOVED (Error Code 10019)
	15.1.2.5. NFS4ERR_NOFILEHANDLE (Error Code 10020)
	15.1.2.6. NFS4ERR_NOTDIR (Error Code 20)
	15.1.2.7. NFS4ERR_STALE (Error Code 70)
	15.1.2.8. NFS4ERR_SYMLINK (Error Code 10029)
	15.1.2.9. NFS4ERR_WRONG_TYPE (Error Code 10083)

	15.1.3. Compound Structure Errors
	15.1.3.1. NFS_OK (Error code 0)
	15.1.3.2. NFS4ERR_MINOR_VERS_MISMATCH (Error code 10021)
	15.1.3.3. NFS4ERR_NOT_ONLY_OP (Error Code 10081)
	15.1.3.4. NFS4ERR_OP_ILLEGAL (Error Code 10044)
	15.1.3.5. NFS4ERR_OP_NOT_IN_SESSION (Error Code 10071)
	15.1.3.6. NFS4ERR_REP_TOO_BIG (Error Code 10066)
	15.1.3.7. NFS4ERR_REP_TOO_BIG_TO_CACHE (Error Code 10067)
	15.1.3.8. NFS4ERR_REQ_TOO_BIG (Error Code 10065)
	15.1.3.9. NFS4ERR_RETRY_UNCACHED_REP (Error Code 10068)
	15.1.3.10. NFS4ERR_SEQUENCE_POS (Error Code 10064)
	15.1.3.11. NFS4ERR_TOO_MANY_OPS (Error Code 10070)
	15.1.3.12. NFS4ERR_UNSAFE_COMPOUND (Error Code 10068)

	15.1.4. File System Errors
	15.1.4.1. NFS4ERR_BADTYPE (Error Code 10007)
	15.1.4.2. NFS4ERR_DQUOT (Error Code 69)
	15.1.4.3. NFS4ERR_EXIST (Error Code 17)
	15.1.4.4. NFS4ERR_FBIG (Error Code 27)
	15.1.4.5. NFS4ERR_FILE_OPEN (Error Code 10046)
	15.1.4.6. NFS4ERR_IO (Error Code 5)
	15.1.4.7. NFS4ERR_MLINK (Error Code 31)
	15.1.4.8. NFS4ERR_NOENT (Error Code 2)
	15.1.4.9. NFS4ERR_NOSPC (Error Code 28)
	15.1.4.10. NFS4ERR_NOTEMPTY (Error Code 66)
	15.1.4.11. NFS4ERR_ROFS (Error Code 30)
	15.1.4.12. NFS4ERR_XDEV (Error Code 18)

	15.1.5. State Management Errors
	15.1.5.1. NFS4ERR_ADMIN_REVOKED (Error Code 10047)
	15.1.5.2. NFS4ERR_BAD_STATEID (Error Code 10026)
	15.1.5.3. NFS4ERR_DELEG_REVOKED (Error Code 10087)
	15.1.5.4. NFS4ERR_EXPIRED (Error Code 10011)
	15.1.5.5. NFS4ERR_OLD_STATEID (Error Code 10024)

	15.1.6. Security Errors
	15.1.6.1. NFS4ERR_ACCESS (Error Code 13)
	15.1.6.2. NFS4ERR_PERM (Error Code 1)
	15.1.6.3. NFS4ERR_WRONGSEC (Error Code 10016)
	15.1.6.4. NFS4ERR_WRONG_CRED (Error Code 10082)

	15.1.7. Name Errors
	15.1.7.1. NFS4ERR_BADCHAR (Error Code 10040)
	15.1.7.2. NFS4ERR_BADNAME (Error Code 10041)
	15.1.7.3. NFS4ERR_NAMETOOLONG (Error Code 63)

	15.1.8. Locking Errors
	15.1.8.1. NFS4ERR_BAD_RANGE (Error Code 10042)
	15.1.8.2. NFS4ERR_DEADLOCK (Error Code 10045)
	15.1.8.3. NFS4ERR_DENIED (Error Code 10010)
	15.1.8.4. NFS4ERR_LOCKED (Error Code 10012)
	15.1.8.5. NFS4ERR_LOCKS_HELD (Error Code 10037)
	15.1.8.6. NFS4ERR_LOCK_NOTSUPP (Error Code 10043)
	15.1.8.7. NFS4ERR_LOCK_RANGE (Error Code 10028)
	15.1.8.8. NFS4ERR_OPENMODE (Error Code 10038)
	15.1.8.9. NFS4ERR_SHARE_DENIED (Error Code 10015)

	15.1.9. Reclaim Errors
	15.1.9.1. NFS4ERR_COMPLETE_ALREADY (Error Code 10054)
	15.1.9.2. NFS4ERR_GRACE (Error Code 10013)
	15.1.9.3. NFS4ERR_NO_GRACE (Error Code 10033)
	15.1.9.4. NFS4ERR_RECLAIM_BAD (Error Code 10034)
	15.1.9.5. NFS4ERR_RECLAIM_CONFLICT (Error Code 10035)

	15.1.10. pNFS Errors
	15.1.10.1. NFS4ERR_BADIOMODE (Error Code 10049)
	15.1.10.2. NFS4ERR_BADLAYOUT (Error Code 10050)
	15.1.10.3. NFS4ERR_LAYOUTTRYLATER (Error Code 10058)
	15.1.10.4. NFS4ERR_LAYOUTUNAVAILABLE (Error Code 10059)
	15.1.10.5. NFS4ERR_NOMATCHING_LAYOUT (Error Code 10060)
	15.1.10.6. NFS4ERR_PNFS_IO_HOLE (Error Code 10075)
	15.1.10.7. NFS4ERR_PNFS_NO_LAYOUT (Error Code 10080)
	15.1.10.8. NFS4ERR_RETURNCONFLICT (Error Code 10086)
	15.1.10.9. NFS4ERR_UNKNOWN_LAYOUTTYPE (Error Code 10062)

	15.1.11. Session Use Errors
	15.1.11.1. NFS4ERR_BADSESSION (Error Code 10052)
	15.1.11.2. NFS4ERR_BADSLOT (Error Code 10053)
	15.1.11.3. NFS4ERR_BAD_HIGH_SLOT (Error Code 10077)
	15.1.11.4. NFS4ERR_CB_PATH_DOWN (Error Code 10048)
	15.1.11.5. NFS4ERR_DEADSESSION (Error Code 10078)
	15.1.11.6. NFS4ERR_CONN_NOT_BOUND_TO_SESSION (Error Code 10055)
	15.1.11.7. NFS4ERR_SEQ_FALSE_RETRY (Error Code 10076)
	15.1.11.8. NFS4ERR_SEQ_MISORDERED (Error Code 10063)

	15.1.12. Session Management Errors
	15.1.12.1. NFS4ERR_BACK_CHAN_BUSY (Error Code 10057)
	15.1.12.2. NFS4ERR_BAD_SESSION_DIGEST (Error Code 10051)

	15.1.13. Client Management Errors
	15.1.13.1. NFS4ERR_CLIENTID_BUSY (Error Code 10074)
	15.1.13.2. NFS4ERR_CLID_INUSE (Error Code 10017)
	15.1.13.3. NFS4ERR_ENCR_ALG_UNSUPP (Error Code 10079)
	15.1.13.4. NFS4ERR_HASH_ALG_UNSUPP (Error Code 10072)
	15.1.13.5. NFS4ERR_STALE_CLIENTID (Error Code 10022)

	15.1.14. Delegation Errors
	15.1.14.1. NFS4ERR_DELEG_ALREADY_WANTED (Error Code 10056)
	15.1.14.2. NFS4ERR_DIRDELEG_UNAVAIL (Error Code 10084)
	15.1.14.3. NFS4ERR_RECALLCONFLICT (Error Code 10061)
	15.1.14.4. NFS4ERR_REJECT_DELEG (Error Code 10085)

	15.1.15. Attribute Handling Errors
	15.1.15.1. NFS4ERR_ATTRNOTSUPP (Error Code 10032)
	15.1.15.2. NFS4ERR_BADOWNER (Error Code 10039)
	15.1.15.3. NFS4ERR_NOT_SAME (Error Code 10027)
	15.1.15.4. NFS4ERR_SAME (Error Code 10009)

	15.1.16. Obsoleted Errors
	15.1.16.1. NFS4ERR_BAD_SEQID (Error Code 10026)
	15.1.16.2. NFS4ERR_LEASE_MOVED (Error Code 10031)
	15.1.16.3. NFS4ERR_NXIO (Error Code 5)
	15.1.16.4. NFS4ERR_RESTOREFH (Error Code 10030)
	15.1.16.5. NFS4ERR_STALE_STATEID (Error Code 10023)

	15.2. Operations and Their Valid Errors
	15.3. Callback Operations and Their Valid Errors
	15.4. Errors and the Operations That Use Them

	16. NFSv4.1 Procedures
	16.1. Procedure 0: NULL - No Operation
	16.1.1. ARGUMENTS
	16.1.2. RESULTS
	16.1.3. DESCRIPTION
	16.1.4. ERRORS

	16.2. Procedure 1: COMPOUND - Compound Operations
	16.2.1. ARGUMENTS
	16.2.2. RESULTS
	16.2.3. DESCRIPTION
	16.2.3.1. Current Filehandle and Stateid
	16.2.3.1.1. Current Filehandle
	16.2.3.1.2. Current Stateid

	16.2.4. ERRORS

	17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL
	18. NFSv4.1 Operations
	18.1. Operation 3: ACCESS - Check Access Rights
	18.1.1. ARGUMENTS
	18.1.2. RESULTS
	18.1.3. DESCRIPTION
	18.1.4. IMPLEMENTATION

	18.2. Operation 4: CLOSE - Close File
	18.2.1. ARGUMENTS
	18.2.2. RESULTS
	18.2.3. DESCRIPTION
	18.2.4. IMPLEMENTATION

	18.3. Operation 5: COMMIT - Commit Cached Data
	18.3.1. ARGUMENTS
	18.3.2. RESULTS
	18.3.3. DESCRIPTION
	18.3.4. IMPLEMENTATION

	18.4. Operation 6: CREATE - Create a Non-Regular File Object
	18.4.1. ARGUMENTS
	18.4.2. RESULTS
	18.4.3. DESCRIPTION
	18.4.4. IMPLEMENTATION

	18.5. Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery
	18.5.1. ARGUMENTS
	18.5.2. RESULTS
	18.5.3. DESCRIPTION

	18.6. Operation 8: DELEGRETURN - Return Delegation
	18.6.1. ARGUMENTS
	18.6.2. RESULTS
	18.6.3. DESCRIPTION

	18.7. Operation 9: GETATTR - Get Attributes
	18.7.1. ARGUMENTS
	18.7.2. RESULTS
	18.7.3. DESCRIPTION
	18.7.4. IMPLEMENTATION

	18.8. Operation 10: GETFH - Get Current Filehandle
	18.8.1. ARGUMENTS
	18.8.2. RESULTS
	18.8.3. DESCRIPTION
	18.8.4. IMPLEMENTATION

	18.9. Operation 11: LINK - Create Link to a File
	18.9.1. ARGUMENTS
	18.9.2. RESULTS
	18.9.3. DESCRIPTION
	18.9.4. IMPLEMENTATION

	18.10. Operation 12: LOCK - Create Lock
	18.10.1. ARGUMENTS
	18.10.2. RESULTS
	18.10.3. DESCRIPTION
	18.10.4. IMPLEMENTATION

	18.11. Operation 13: LOCKT - Test for Lock
	18.11.1. ARGUMENTS
	18.11.2. RESULTS
	18.11.3. DESCRIPTION
	18.11.4. IMPLEMENTATION

	18.12. Operation 14: LOCKU - Unlock File
	18.12.1. ARGUMENTS
	18.12.2. RESULTS
	18.12.3. DESCRIPTION
	18.12.4. IMPLEMENTATION

	18.13. Operation 15: LOOKUP - Lookup Filename
	18.13.1. ARGUMENTS
	18.13.2. RESULTS
	18.13.3. DESCRIPTION
	18.13.4. IMPLEMENTATION

	18.14. Operation 16: LOOKUPP - Lookup Parent Directory
	18.14.1. ARGUMENTS
	18.14.2. RESULTS
	18.14.3. DESCRIPTION
	18.14.4. IMPLEMENTATION

	18.15. Operation 17: NVERIFY - Verify Difference in Attributes
	18.15.1. ARGUMENTS
	18.15.2. RESULTS
	18.15.3. DESCRIPTION
	18.15.4. IMPLEMENTATION

	18.16. Operation 18: OPEN - Open a Regular File
	18.16.1. ARGUMENTS
	18.16.2. RESULTS
	18.16.3. DESCRIPTION
	18.16.4. IMPLEMENTATION
	18.16.4.1. Warning to Client Implementors

	18.17. Operation 19: OPENATTR - Open Named Attribute Directory
	18.17.1. ARGUMENTS
	18.17.2. RESULTS
	18.17.3. DESCRIPTION
	18.17.4. IMPLEMENTATION

	18.18. Operation 21: OPEN_DOWNGRADE - Reduce Open File Access
	18.18.1. ARGUMENTS
	18.18.2. RESULTS
	18.18.3. DESCRIPTION
	18.18.4. IMPLEMENTATION

	18.19. Operation 22: PUTFH - Set Current Filehandle
	18.19.1. ARGUMENTS
	18.19.2. RESULTS
	18.19.3. DESCRIPTION
	18.19.4. IMPLEMENTATION

	18.20. Operation 23: PUTPUBFH - Set Public Filehandle
	18.20.1. ARGUMENT
	18.20.2. RESULT
	18.20.3. DESCRIPTION
	18.20.4. IMPLEMENTATION

	18.21. Operation 24: PUTROOTFH - Set Root Filehandle
	18.21.1. ARGUMENTS
	18.21.2. RESULTS
	18.21.3. DESCRIPTION
	18.21.4. IMPLEMENTATION

	18.22. Operation 25: READ - Read from File
	18.22.1. ARGUMENTS
	18.22.2. RESULTS
	18.22.3. DESCRIPTION
	18.22.4. IMPLEMENTATION

	18.23. Operation 26: READDIR - Read Directory
	18.23.1. ARGUMENTS
	18.23.2. RESULTS
	18.23.3. DESCRIPTION
	18.23.4. IMPLEMENTATION

	18.24. Operation 27: READLINK - Read Symbolic Link
	18.24.1. ARGUMENTS
	18.24.2. RESULTS
	18.24.3. DESCRIPTION
	18.24.4. IMPLEMENTATION

	18.25. Operation 28: REMOVE - Remove File System Object
	18.25.1. ARGUMENTS
	18.25.2. RESULTS
	18.25.3. DESCRIPTION
	18.25.4. IMPLEMENTATION

	18.26. Operation 29: RENAME - Rename Directory Entry
	18.26.1. ARGUMENTS
	18.26.2. RESULTS
	18.26.3. DESCRIPTION
	18.26.4. IMPLEMENTATION

	18.27. Operation 31: RESTOREFH - Restore Saved Filehandle
	18.27.1. ARGUMENTS
	18.27.2. RESULTS
	18.27.3. DESCRIPTION
	18.27.4. IMPLEMENTATION

	18.28. Operation 32: SAVEFH - Save Current Filehandle
	18.28.1. ARGUMENTS
	18.28.2. RESULTS
	18.28.3. DESCRIPTION
	18.28.4. IMPLEMENTATION

	18.29. Operation 33: SECINFO - Obtain Available Security
	18.29.1. ARGUMENTS
	18.29.2. RESULTS
	18.29.3. DESCRIPTION
	18.29.4. IMPLEMENTATION

	18.30. Operation 34: SETATTR - Set Attributes
	18.30.1. ARGUMENTS
	18.30.2. RESULTS
	18.30.3. DESCRIPTION
	18.30.4. IMPLEMENTATION

	18.31. Operation 37: VERIFY - Verify Same Attributes
	18.31.1. ARGUMENTS
	18.31.2. RESULTS
	18.31.3. DESCRIPTION
	18.31.4. IMPLEMENTATION

	18.32. Operation 38: WRITE - Write to File
	18.32.1. ARGUMENTS
	18.32.2. RESULTS
	18.32.3. DESCRIPTION
	18.32.4. IMPLEMENTATION

	18.33. Operation 40: BACKCHANNEL_CTL - Backchannel Control
	18.33.1. ARGUMENT
	18.33.2. RESULT
	18.33.3. DESCRIPTION

	18.34. Operation 41: BIND_CONN_TO_SESSION - Associate Connection with Session
	18.34.1. ARGUMENT
	18.34.2. RESULT
	18.34.3. DESCRIPTION
	18.34.4. IMPLEMENTATION

	18.35. Operation 42: EXCHANGE_ID - Instantiate Client ID
	18.35.1. ARGUMENT
	18.35.2. RESULT
	18.35.3. DESCRIPTION
	18.35.4. IMPLEMENTATION

	18.36. Operation 43: CREATE_SESSION - Create New Session and Confirm Client ID
	18.36.1. ARGUMENT
	18.36.2. RESULT
	18.36.3. DESCRIPTION
	18.36.4. IMPLEMENTATION

	18.37. Operation 44: DESTROY_SESSION - Destroy a Session
	18.37.1. ARGUMENT
	18.37.2. RESULT
	18.37.3. DESCRIPTION

	18.38. Operation 45: FREE_STATEID - Free Stateid with No Locks
	18.38.1. ARGUMENT
	18.38.2. RESULT
	18.38.3. DESCRIPTION

	18.39. Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation
	18.39.1. ARGUMENT
	18.39.2. RESULT
	18.39.3. DESCRIPTION
	18.39.4. IMPLEMENTATION

	18.40. Operation 47: GETDEVICEINFO - Get Device Information
	18.40.1. ARGUMENT
	18.40.2. RESULT
	18.40.3. DESCRIPTION
	18.40.4. IMPLEMENTATION

	18.41. Operation 48: GETDEVICELIST - Get All Device Mappings for a File System
	18.41.1. ARGUMENT
	18.41.2. RESULT
	18.41.3. DESCRIPTION
	18.41.4. IMPLEMENTATION

	18.42. Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout
	18.42.1. ARGUMENT
	18.42.2. RESULT
	18.42.3. DESCRIPTION
	18.42.4. IMPLEMENTATION

	18.43. Operation 50: LAYOUTGET - Get Layout Information
	18.43.1. ARGUMENT
	18.43.2. RESULT
	18.43.3. DESCRIPTION
	18.43.4. IMPLEMENTATION

	18.44. Operation 51: LAYOUTRETURN - Release Layout Information
	18.44.1. ARGUMENT
	18.44.2. RESULT
	18.44.3. DESCRIPTION
	18.44.4. IMPLEMENTATION

	18.45. Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object
	18.45.1. ARGUMENT
	18.45.2. RESULT
	18.45.3. DESCRIPTION
	18.45.4. IMPLEMENTATION

	18.46. Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and Control
	18.46.1. ARGUMENT
	18.46.2. RESULT
	18.46.3. DESCRIPTION
	18.46.4. IMPLEMENTATION

	18.47. Operation 54: SET_SSV - Update SSV for a Client ID
	18.47.1. ARGUMENT
	18.47.2. RESULT
	18.47.3. DESCRIPTION
	18.47.4. IMPLEMENTATION

	18.48. Operation 55: TEST_STATEID - Test Stateids for Validity
	18.48.1. ARGUMENT
	18.48.2. RESULT
	18.48.3. DESCRIPTION
	18.48.4. IMPLEMENTATION

	18.49. Operation 56: WANT_DELEGATION - Request Delegation
	18.49.1. ARGUMENT
	18.49.2. RESULT
	18.49.3. DESCRIPTION
	18.49.4. IMPLEMENTATION

	18.50. Operation 57: DESTROY_CLIENTID - Destroy a Client ID
	18.50.1. ARGUMENT
	18.50.2. RESULT
	18.50.3. DESCRIPTION
	18.50.4. IMPLEMENTATION

	18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished
	18.51.1. ARGUMENT
	18.51.2. RESULTS
	18.51.3. DESCRIPTION
	18.51.4. IMPLEMENTATION

	18.52. Operation 10044: ILLEGAL - Illegal Operation
	18.52.1. ARGUMENTS
	18.52.2. RESULTS
	18.52.3. DESCRIPTION
	18.52.4. IMPLEMENTATION

	19. NFSv4.1 Callback Procedures
	19.1. Procedure 0: CB_NULL - No Operation
	19.1.1. ARGUMENTS
	19.1.2. RESULTS
	19.1.3. DESCRIPTION
	19.1.4. ERRORS

	19.2. Procedure 1: CB_COMPOUND - Compound Operations
	19.2.1. ARGUMENTS
	19.2.2. RESULTS
	19.2.3. DESCRIPTION
	19.2.4. IMPLEMENTATION
	19.2.5. ERRORS

	20. NFSv4.1 Callback Operations
	20.1. Operation 3: CB_GETATTR - Get Attributes
	20.1.1. ARGUMENT
	20.1.2. RESULT
	20.1.3. DESCRIPTION
	20.1.4. IMPLEMENTATION

	20.2. Operation 4: CB_RECALL - Recall a Delegation
	20.2.1. ARGUMENT
	20.2.2. RESULT
	20.2.3. DESCRIPTION
	20.2.4. IMPLEMENTATION

	20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client
	20.3.1. ARGUMENT
	20.3.2. RESULT
	20.3.3. DESCRIPTION
	20.3.4. IMPLEMENTATION

	20.4. Operation 6: CB_NOTIFY - Notify Client of Directory Changes
	20.4.1. ARGUMENT
	20.4.2. RESULT
	20.4.3. DESCRIPTION

	20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation to Client
	20.5.1. ARGUMENT
	20.5.2. RESULT
	20.5.3. DESCRIPTION
	20.5.4. IMPLEMENTATION

	20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects
	20.6.1. ARGUMENT
	20.6.2. RESULT
	20.6.3. DESCRIPTION
	20.6.4. IMPLEMENTATION

	20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for Recallable Objects
	20.7.1. ARGUMENT
	20.7.2. RESULT
	20.7.3. DESCRIPTION

	20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits
	20.8.1. ARGUMENT
	20.8.2. RESULT
	20.8.3. DESCRIPTION
	20.8.4. IMPLEMENTATION

	20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and Control
	20.9.1. ARGUMENT
	20.9.2. RESULT
	20.9.3. DESCRIPTION

	20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation Wants
	20.10.1. ARGUMENT
	20.10.2. RESULT
	20.10.3. DESCRIPTION
	20.10.4. IMPLEMENTATION

	20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock Availability
	20.11.1. ARGUMENT
	20.11.2. RESULT
	20.11.3. DESCRIPTION
	20.11.4. IMPLEMENTATION

	20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID Changes
	20.12.1. ARGUMENT
	20.12.2. RESULT
	20.12.3. DESCRIPTION

	20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation
	20.13.1. ARGUMENT
	20.13.2. RESULT
	20.13.3. DESCRIPTION
	20.13.4. IMPLEMENTATION

	21. Security Considerations
	22. IANA Considerations
	22.1. IANA Actions
	22.2. Named Attribute Definitions
	22.2.1. Initial Registry
	22.2.2. Updating Registrations

	22.3. Device ID Notifications
	22.3.1. Initial Registry
	22.3.2. Updating Registrations

	22.4. Object Recall Types
	22.4.1. Initial Registry
	22.4.2. Updating Registrations

	22.5. Layout Types
	22.5.1. Initial Registry
	22.5.2. Updating Registrations
	22.5.3. Guidelines for Writing Layout Type Specifications

	22.6. Path Variable Definitions
	22.6.1. Path Variables Registry
	22.6.1.1. Path Variable Values
	22.6.1.1.1. Initial Registry
	22.6.1.1.2. Updating Registrations

	22.6.2. Values for the ${ietf.org:CPU_ARCH} Variable
	22.6.2.1. Initial Registry
	22.6.2.2. Updating Registrations

	22.6.3. Values for the ${ietf.org:OS_TYPE} Variable
	22.6.3.1. Initial Registry
	22.6.3.2. Updating Registrations

	23. References
	23.1. Normative References
	23.2. Informative References

	Appendix A. The Need for This Update
	Appendix B. Changes in This Update
	B.1. Revisions Made to Section 11 of RFC 5661
	B.1.1. Reorganization of Sections 11.4 and 11.5 of RFC 5661
	B.1.2. Reorganization of Material Dealing with File System Transitions
	B.1.3. Updates to the Treatment of fs_locations_info

	B.2. Revisions Made to Operations in RFC 5661
	B.2.1. Revision of Treatment of EXCHANGE_ID
	B.2.2. Revision of Treatment of RECLAIM_COMPLETE

	B.3. Revisions Made to Error Definitions in RFC 5661
	B.4. Other Revisions Made to RFC 5661
	Appendix C. Security Issues That Need to Be Addressed
	Acknowledgments
	Acknowledgments for This Update
	Acknowledgments for RFC 5661
	Authors' Addresses

 Network File System (NFS) Version 4 Minor Version 1 Protocol

 NetApp

 1601 Trapelo Road, Suite 16
 Waltham
 MA
 02451
 United States of America

 +1-781-768-5347
 dnoveck@netapp.com

 Oracle Corporation

 1015 Granger Avenue
 Ann Arbor
 MI
 48104
 United States of America

 +1-248-614-5091
 chuck.lever@oracle.com

 Transport
 NFSv4
 example

	This document describes the Network File System (NFS) version 4
	minor version 1,
 including features retained from the base protocol (NFS version 4 minor
 version 0, which is specified in RFC 7530) and protocol
 extensions made subsequently. The later minor version
 has no dependencies on NFS version 4 minor version 0, and
 is considered a separate protocol.

	This document obsoletes RFC 5661. It substantially revises the treatment
	of features relating to multi-server namespace, superseding the
	description of those features appearing in RFC 5661.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s)
 controlling the copyright in such materials, this document may not
 be modified outside the IETF Standards Process, and derivative
 works of it may not be created outside the IETF Standards Process,
 except to format it for publication as an RFC or to translate it
 into languages other than English.

 Table of Contents

 . Introduction

 . Introduction to This Update

 . The NFS Version 4 Minor Version 1 Protocol

 . Requirements Language

 . Scope of This Document

 . NFSv4 Goals

 . NFSv4.1 Goals

 . General Definitions

 . Overview of NFSv4.1 Features

 . Differences from NFSv4.0

 . Core Infrastructure

 . Introduction

 . RPC and XDR

 . COMPOUND and CB_COMPOUND

 . Client Identifiers and Client Owners

 . Server Owners

 . Security Service Negotiation

 . Minor Versioning

 . Non-RPC-Based Security Services

 . Transport Layers

 . Session

 . Protocol Constants and Data Types

 . Basic Constants

 . Basic Data Types

 . Structured Data Types

 . Filehandles

 . Obtaining the First Filehandle

 . Filehandle Types

 . One Method of Constructing a Volatile Filehandle

 . Client Recovery from Filehandle Expiration

 . File Attributes

 . REQUIRED Attributes

 . RECOMMENDED Attributes

 . Named Attributes

 . Classification of Attributes

 . Set-Only and Get-Only Attributes

 . REQUIRED Attributes - List and Definition References

 . RECOMMENDED Attributes - List and Definition References

 . Attribute Definitions

 . Interpreting owner and owner_group

 . Character Case Attributes

 . Directory Notification Attributes

 . pNFS Attribute Definitions

 . Retention Attributes

 . Access Control Attributes

 . Goals

 . File Attributes Discussion

 . Common Methods

 . Requirements

 . Single-Server Namespace

 . Server Exports

 . Browsing Exports

 . Server Pseudo File System

 . Multiple Roots

 . Filehandle Volatility

 . Exported Root

 . Mount Point Crossing

 . Security Policy and Namespace Presentation

 . State Management

 . Client and Session ID

 . Stateid Definition

 . Lease Renewal

 . Crash Recovery

 . Server Revocation of Locks

 . Short and Long Leases

 . Clocks, Propagation Delay, and Calculating Lease Expiration

 . Obsolete Locking Infrastructure from NFSv4.0

 . File Locking and Share Reservations

 . Opens and Byte-Range Locks

 . Lock Ranges

 . Upgrading and Downgrading Locks

 . Stateid Seqid Values and Byte-Range Locks

 . Issues with Multiple Open-Owners

 . Blocking Locks

 . Share Reservations

 . OPEN/CLOSE Operations

 . Open Upgrade and Downgrade

 . Parallel OPENs

 . Reclaim of Open and Byte-Range Locks

 . Client-Side Caching

 . Performance Challenges for Client-Side Caching

 . Delegation and Callbacks

 . Data Caching

 . Open Delegation

 . Data Caching and Revocation

 . Attribute Caching

 . Data and Metadata Caching and Memory Mapped Files

 . Name and Directory Caching without Directory Delegations

 . Directory Delegations

 . Multi-Server Namespace

 . Terminology

 . File System Location Attributes

 . File System Presence or Absence

 . Getting Attributes for an Absent File System

 . Uses of File System Location Information

 . Trunking without File System Location Information

 . Users and Groups in a Multi-Server Namespace

 . Additional Client-Side Considerations

 . Overview of File Access Transitions

 . Effecting Network Endpoint Transitions

 . Effecting File System Transitions

 . Transferring State upon Migration

 . Client Responsibilities When Access Is Transitioned

 . Server Responsibilities Upon Migration

 . Effecting File System Referrals

 . The Attribute fs_locations

 . The Attribute fs_locations_info

 . The Attribute fs_status

 . Parallel NFS (pNFS)

 . Introduction

 . pNFS Definitions

 . pNFS Operations

 . pNFS Attributes

 . Layout Semantics

 . pNFS Mechanics

 . Recovery

 . Metadata and Storage Device Roles

 . Security Considerations for pNFS

 . NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type

 . Client ID and Session Considerations

 . File Layout Definitions

 . File Layout Data Types

 . Interpreting the File Layout

 . Data Server Multipathing

 . Operations Sent to NFSv4.1 Data Servers

 . COMMIT through Metadata Server

 . The Layout Iomode

 . Metadata and Data Server State Coordination

 . Data Server Component File Size

 . Layout Revocation and Fencing

 . Security Considerations for the File Layout Type

 . Internationalization

 . Stringprep Profile for the utf8str_cs Type

 . Stringprep Profile for the utf8str_cis Type

 . Stringprep Profile for the utf8str_mixed Type

 . UTF-8 Capabilities

 . UTF-8 Related Errors

 . Error Values

 . Error Definitions

 . Operations and Their Valid Errors

 . Callback Operations and Their Valid Errors

 . Errors and the Operations That Use Them

 . NFSv4.1 Procedures

 . Procedure 0: NULL - No Operation

 . Procedure 1: COMPOUND - Compound Operations

 . Operations: REQUIRED, RECOMMENDED, or OPTIONAL

 . NFSv4.1 Operations

 . Operation 3: ACCESS - Check Access Rights

 . Operation 4: CLOSE - Close File

 . Operation 5: COMMIT - Commit Cached Data

 . Operation 6: CREATE - Create a Non-Regular File Object

 . Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery

 . Operation 8: DELEGRETURN - Return Delegation

 . Operation 9: GETATTR - Get Attributes

 . Operation 10: GETFH - Get Current Filehandle

 . Operation 11: LINK - Create Link to a File

 . Operation 12: LOCK - Create Lock

 . Operation 13: LOCKT - Test for Lock

 . Operation 14: LOCKU - Unlock File

 . Operation 15: LOOKUP - Lookup Filename

 . Operation 16: LOOKUPP - Lookup Parent Directory

 . Operation 17: NVERIFY - Verify Difference in Attributes

 . Operation 18: OPEN - Open a Regular File

 . Operation 19: OPENATTR - Open Named Attribute Directory

 . Operation 21: OPEN_DOWNGRADE - Reduce Open File Access

 . Operation 22: PUTFH - Set Current Filehandle

 . Operation 23: PUTPUBFH - Set Public Filehandle

 . Operation 24: PUTROOTFH - Set Root Filehandle

 . Operation 25: READ - Read from File

 . Operation 26: READDIR - Read Directory

 . Operation 27: READLINK - Read Symbolic Link

 . Operation 28: REMOVE - Remove File System Object

 . Operation 29: RENAME - Rename Directory Entry

 . Operation 31: RESTOREFH - Restore Saved Filehandle

 . Operation 32: SAVEFH - Save Current Filehandle

 . Operation 33: SECINFO - Obtain Available Security

 . Operation 34: SETATTR - Set Attributes

 . Operation 37: VERIFY - Verify Same Attributes

 . Operation 38: WRITE - Write to File

 . Operation 40: BACKCHANNEL_CTL - Backchannel Control

 . Operation 41: BIND_CONN_TO_SESSION - Associate Connection with Session

 . Operation 42: EXCHANGE_ID - Instantiate Client ID

 . Operation 43: CREATE_SESSION - Create New Session and Confirm Client ID

 . Operation 44: DESTROY_SESSION - Destroy a Session

 . Operation 45: FREE_STATEID - Free Stateid with No Locks

 . Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation

 . Operation 47: GETDEVICEINFO - Get Device Information

 . Operation 48: GETDEVICELIST - Get All Device Mappings for a File System

 . Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout

 . Operation 50: LAYOUTGET - Get Layout Information

 . Operation 51: LAYOUTRETURN - Release Layout Information

 . Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object

 . Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and Control

 . Operation 54: SET_SSV - Update SSV for a Client ID

 . Operation 55: TEST_STATEID - Test Stateids for Validity

 . Operation 56: WANT_DELEGATION - Request Delegation

 . Operation 57: DESTROY_CLIENTID - Destroy a Client ID

 . Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished

 . Operation 10044: ILLEGAL - Illegal Operation

 . NFSv4.1 Callback Procedures

 . Procedure 0: CB_NULL - No Operation

 . Procedure 1: CB_COMPOUND - Compound Operations

 . NFSv4.1 Callback Operations

 . Operation 3: CB_GETATTR - Get Attributes

 . Operation 4: CB_RECALL - Recall a Delegation

 . Operation 5: CB_LAYOUTRECALL - Recall Layout from Client

 . Operation 6: CB_NOTIFY - Notify Client of Directory Changes

 . Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation to Client

 . Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects

 . Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for Recallable Objects

 . Operation 10: CB_RECALL_SLOT - Change Flow Control Limits

 . Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and Control

 . Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation Wants

 . Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock Availability

 . Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID Changes

 . Operation 10044: CB_ILLEGAL - Illegal Callback Operation

 . Security Considerations

 . IANA Considerations

 . IANA Actions

 . Named Attribute Definitions

 . Device ID Notifications

 . Object Recall Types

 . Layout Types

 . Path Variable Definitions

 . References

 . Normative References

 . Informative References

 . The Need for This Update

 . Changes in This Update

 . Revisions Made to Section 11 of RFC 5661

 . Revisions Made to Operations in RFC 5661

 . Revisions Made to Error Definitions in RFC 5661

 . Other Revisions Made to RFC 5661

 . Security Issues That Need to Be Addressed

 Acknowledgments

 Authors' Addresses

 Introduction

 Introduction to This Update

 Two important features previously defined in minor version 0 but
 never fully addressed in minor version 1 are trunking, which is the
 simultaneous use of
 multiple connections between a client and server, potentially to
 different network addresses, and Transparent State Migration, which
 allows a file system to be transferred between servers in a way that
 provides to the client the ability to maintain its existing locking
 state across the transfer.

 The revised description of the NFS version 4 minor version 1
 (NFSv4.1) protocol presented in this update is necessary to enable
 full use of these features together with other multi-server namespace
 features. This document is in the form of an updated description of
 the NFSv4.1 protocol previously defined in RFC 5661
 .
 RFC 5661 is obsoleted by this document. However, the update has a
 limited scope and is focused on enabling full use of trunking and
 Transparent State Migration. The need for these changes is discussed
 in . describes the specific changes made to
 arrive at the current text.

 This limited-scope update replaces the current NFSv4.1 RFC with the
 intention of providing an authoritative and complete specification, the
 motivation for which is discussed in
 ,
 addressing the issues within the scope of the update. However, it will
 not address issues that are known but outside of this limited scope
 as could be expected by a full update of the protocol. Below are some
 areas that are known to need addressing in a future update of the
 protocol:

 Work needs to be done with regard to RFC 8178
 , which establishes NFSv4-wide
	versioning rules. As
 RFC 5661 is currently inconsistent with
	that document, changes are needed in order
	to arrive at a situation in which there
	would be no need for RFC 8178 to update the NFSv4.1 specification.

 Work needs to be done with regard to RFC 8434
	 , which establishes the requirements
	for parallel NFS (pNFS) layout types, which are not clearly defined in
	RFC 5661. When that
	work is done and the resulting documents approved,
	the new NFSv4.1 specification document will provide a clear set
	of requirements for layout types and a description of the file layout
	type that conforms to those requirements. Other layout types will
	have their own specification documents that conform to those
	requirements as well.

	Work needs to be done to address many errata reports relevant to
	RFC 5661, other than errata report 2006 ,
	which is addressed in this document.
	Addressing that report was not deferrable because of the
	interaction of the changes suggested there
	and the newly described handling of state and session migration.

 The errata reports that have been deferred and that will need to
 be addressed in a later document include reports currently assigned
	a range of statuses in the errata reporting system, including reports
	marked Accepted and those marked Hold For Document Update
	because the change was
	too minor to address immediately.

 In addition, there is a set of other reports, including at least one
 in state Rejected, that will need to be addressed in a later document.
	This will involve making changes to consensus decisions reflected
	in RFC 5661, in situations in which the working group has decided that
	the treatment in RFC 5661 is incorrect and needs to be revised to
	reflect the working group's new consensus and to ensure compatibility
	with existing implementations that do not follow the handling
	described in RFC 5661.

	Note that it is expected that all such errata reports will remain
	relevant to implementors and the authors of an eventual rfc5661bis,
	despite the fact that this document
	obsoletes RFC 5661 .

 	
	There is a need for a new approach to the description of
	internationalization since the current internationalization section
	() has never been
	implemented and does
	not meet the needs of the NFSv4 protocol. Possible solutions are
	to create a new internationalization section modeled on that in
	 or to create a new document describing
	internationalization for all
 NFSv4 minor versions and reference that document in the RFCs
	defining both NFSv4.0 and NFSv4.1.

	There is a need for a revised treatment of security
 in NFSv4.1. The issues with the existing treatment are discussed in
 .

 Until the above work is done, there will not be a consistent set of
 documents that provides a description of the NFSv4.1 protocol, and any
 full description would involve documents updating other documents
 within the specification. The updates applied by
 RFC 8434 and RFC 8178

 to RFC 5661 also apply to this specification, and will apply to
 any subsequent v4.1 specification until that work is done.

 The NFS Version 4 Minor Version 1 Protocol

 The NFS version 4 minor version 1 (NFSv4.1) protocol
 is the second minor version of the NFS version 4
 (NFSv4) protocol. The first minor version, NFSv4.0, is
 now described in RFC 7530 . It generally
 follows the guidelines for minor versioning that are
 listed in Section
 of RFC 3530 . However, it
 diverges from guidelines 11 ("a client and server
 that support minor version X must support minor
 versions 0 through X-1") and 12 ("no new features may be
 introduced as mandatory in a minor version"). These
 divergences are due to the introduction of
 the sessions model for managing non-idempotent
 operations and the RECLAIM_COMPLETE operation.
 These two new features are infrastructural in
 nature and simplify implementation of existing and
 other new features. Making them anything but REQUIRED
 would add undue complexity to protocol definition and
 implementation. NFSv4.1 accordingly updates the
 minor versioning
 guidelines.

 As a minor version, NFSv4.1 is consistent with the overall
 goals for NFSv4, but extends the protocol so as to
 better meet those goals, based on experiences with NFSv4.0.
 In addition, NFSv4.1 has adopted some additional goals, which
 motivate some of the major extensions in NFSv4.1.

 Requirements Language
 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " MAY", and
 " OPTIONAL" in this document are to be interpreted as described in
 RFC 2119 .

 Scope of This Document

 This document describes the NFSv4.1 protocol. With
 respect to NFSv4.0, this document does not:

 describe the NFSv4.0 protocol, except where needed
 to contrast with NFSv4.1.

 modify the specification of the NFSv4.0 protocol.

 clarify the NFSv4.0 protocol.

 NFSv4 Goals

 The NFSv4 protocol is a further revision of the NFS protocol
 defined already by NFSv3
 . It retains
 the essential characteristics of previous versions: easy
 recovery; independence of transport protocols, operating systems, and
 file systems; simplicity; and good performance. NFSv4 has the following goals:

 Improved access and good performance on the Internet

 The protocol is designed to transit firewalls easily, perform well
 where latency is high and bandwidth is low, and scale to very
 large numbers of clients per server.

 Strong security with negotiation built into the protocol

 The protocol builds on the work of the ONCRPC working group in
 supporting the RPCSEC_GSS protocol. Additionally, the
 NFSv4.1 protocol provides a mechanism to allow clients and
 servers the ability to negotiate security and require clients and servers to
 support a minimal set of security schemes.

 Good cross-platform interoperability

 The protocol features a file system model that provides a useful,
 common set of features that does not unduly favor one file system
 or operating system over another.

 Designed for protocol extensions

 The protocol is designed to accept standard extensions within a
 framework that enables and encourages backward compatibility.

 NFSv4.1 Goals

 NFSv4.1 has the following goals, within the framework
 established by the overall NFSv4 goals.

 To correct significant structural weaknesses and oversights
 discovered in the base protocol.

 To add clarity and specificity to areas left
 unaddressed or not addressed in sufficient
 detail in the base protocol. However, as stated
 in , it is not
 a goal to clarify the NFSv4.0 protocol in the
 NFSv4.1 specification.

 To add specific features based on experience with the existing
 protocol and recent industry developments.

 To provide protocol support to take advantage of clustered
 server deployments including the ability to provide scalable
 parallel access to files distributed among multiple servers.

 General Definitions

 The following definitions provide an appropriate context for the reader.

 Byte:

 In this document, a byte is an octet, i.e., a datum
 exactly 8 bits in length.

 Client:

 The client is the entity that accesses the NFS server's
 resources. The client may be an application that contains
 the logic to access the NFS server directly. The client
 may also be the traditional operating system client that
	 provides remote file system services for a set of applications.

 A client is uniquely identified by a client owner.

 With reference to byte-range locking, the client is also the entity that
 maintains a set of locks on behalf of one or more
 applications. This client is responsible for crash or
 failure recovery for those locks it manages.

 Note that multiple clients may share the same transport and
 connection and
 multiple clients may exist on the same network node.

 Client ID:

 The client ID is a 64-bit quantity used as a unique, short-hand reference to
 a client-supplied verifier and client owner. The server is
 responsible for supplying the client ID.

 Client Owner:

 The client owner is a unique string, opaque to the server,
 that identifies a client. Multiple network connections and source
 network addresses originating from those connections may share
 a client owner. The server is expected to treat requests
 from connections with the same client owner as coming from
 the same client.

 File System:

 The file system is the collection of objects on a server (as
 identified by the major identifier of a server
 owner, which is defined later in this section)
 that share the same fsid attribute (see).

 Lease:

 A lease is an interval of time defined by the server for which the
 client is irrevocably granted locks. At the end of a
 lease period, locks may be revoked if the lease has not
 been extended. A lock must be revoked if a conflicting
 lock has been granted after the lease interval.

 A server grants a client a single lease for all state.

 Lock:

 The term "lock" is used to refer to byte-range (in UNIX environments,
 also known as record)
 locks, share reservations, delegations, or layouts unless
 specifically stated otherwise.

 Secret State Verifier (SSV):

 The SSV is a unique secret key shared between a client and
 server. The SSV serves as the secret key for an internal (that
 is, internal to NFSv4.1) Generic Security Services (GSS)
 mechanism (the SSV GSS mechanism;
 see). The SSV GSS mechanism uses the
 SSV to compute message integrity code (MIC) and Wrap tokens.
 See for more details on how NFSv4.1 uses
 the SSV and the SSV GSS mechanism.

 Server:

 The Server is the entity responsible for coordinating
 client access to a set of file systems and is identified by a server
 owner. A server can span multiple network addresses.

 Server Owner:

 The server owner identifies the server to the client.
 The server owner consists of a major identifier and a minor identifier.
 When the client has two connections each to a peer with the
 same major identifier, the client assumes that both peers are
 the same server (the server namespace is the
 same via each connection) and that
 lock state is shareable across both connections. When each peer
 has both the same major and minor identifiers, the client
 assumes that each connection might be associable with the same session.

 Stable Storage:

 Stable storage is storage from which data stored by
 an NFSv4.1 server can be recovered without data
 loss from multiple power failures (including cascading
 power failures, that is, several power failures in quick
 succession), operating system failures, and/or hardware
 failure of components other than the storage medium itself
 (such as disk, nonvolatile RAM, flash memory, etc.).

 Some examples of stable storage that are allowable for an
 NFS server include:

 Media commit of data; that is, the modified data has
 been successfully written to the disk media, for
 example, the disk platter.

 An immediate reply disk drive with battery-backed,
 on-drive intermediate storage or uninterruptible power
 system (UPS).

 Server commit of data with battery-backed intermediate
 storage and recovery software.

 Cache commit with uninterruptible power system (UPS) and
 recovery software.

 Stateid:

 A stateid is a 128-bit quantity returned by a server that uniquely
 defines the open and locking states provided by the server
 for a specific open-owner or lock-owner/open-owner pair
 for a specific file and type of lock.

 Verifier:

 A verifier is a 64-bit quantity generated by the client that the server
 can use to determine if the client has restarted and lost
 all previous lock state.

 Overview of NFSv4.1 Features

 The major features of
 the NFSv4.1 protocol will be reviewed in brief. This will be done
 to provide an appropriate context for both the reader who is familiar
 with the previous versions of the NFS protocol and the reader
 who is new to the NFS protocols. For the reader new to the NFS protocols,
 there is still a set of fundamental knowledge that is expected.
 The reader should be familiar with the External Data
 Representation (XDR) and Remote Procedure Call (RPC) protocols
 as described in and .
 A basic knowledge of file systems and distributed file systems is expected as well.

 In general, this specification of NFSv4.1 will
 not distinguish those features added in minor version
 1 from those present in the base protocol but
 will treat NFSv4.1 as a unified whole. See for a summary of
 the differences between NFSv4.0 and NFSv4.1.

 RPC and Security

 As with previous versions of NFS, the External Data Representation
 (XDR) and Remote Procedure Call (RPC) mechanisms used for the NFSv4.1 protocol are those defined in
 and . To
 meet end-to-end security requirements, the RPCSEC_GSS framework
 is used to extend the basic
 RPC security. With the
 use of RPCSEC_GSS, various mechanisms can be provided to offer
 authentication, integrity, and privacy to the NFSv4 protocol.
 Kerberos V5 is used as described in
 to provide one
 security framework.
 With the use of
 RPCSEC_GSS, other mechanisms may also be specified and used for NFSv4.1 security.

 To enable in-band security negotiation, the NFSv4.1 protocol
 has operations that provide the client a method of
 querying the server about its policies regarding which security
 mechanisms must be used for access to the server's file system
 resources. With this, the client can securely match the security
 mechanism that meets the policies specified at both the client and
 server.

	NFSv4.1 introduces parallel access (see), which is
	called pNFS.

The security framework
	described in this section is
	significantly modified by the
	introduction of pNFS (see),
	because data access is sometimes not over
	RPC. The level of significance varies
	with the storage protocol (see) and can be as low as zero
 impact (see).

 Protocol Structure

 Core Protocol

 Unlike NFSv3, which used a series of ancillary
 protocols (e.g., NLM, NSM (Network Status Monitor), MOUNT), within all minor versions
 of NFSv4 a single RPC protocol is used to make requests to
 the server.

Facilities that had been separate protocols, such
 as locking, are now integrated within a single unified
 protocol.

 Parallel Access

 Minor version 1 supports high-performance data access to a
 clustered server implementation by enabling a separation of
 metadata access and data access, with the latter done to
 multiple servers in parallel.

 Such parallel data access is controlled by recallable
 objects known as "layouts", which are integrated into the
 protocol locking model. Clients direct requests for
 data access to a set of data servers specified by the
 layout via a data
 storage protocol which may be NFSv4.1 or may be another
 protocol.

	 Because the protocols used for parallel
	 data access are not necessarily
	 RPC-based, the RPC-based security model
	 () is
	 obviously impacted (see).
	 The degree of impact varies with the
	 storage protocol (see) used for
	 data access, and can be as low as zero (see
).

 File System Model

 The general file system
 model used for the NFSv4.1 protocol
 is the same as previous versions. The server file system is
 hierarchical with the regular files contained within being
 treated as opaque byte
 streams. In a slight departure, file and directory names are encoded
 with UTF-8 to deal with the basics of internationalization.

 The NFSv4.1 protocol does not require a separate
 protocol to provide for the initial mapping between path
 name and filehandle. All file systems exported by a server
 are presented as a tree so that all file systems are reachable
 from a special per-server global root filehandle. This
 allows LOOKUP operations to be used to perform functions
 previously provided by the MOUNT protocol. The server
 provides any necessary pseudo file systems to bridge any
 gaps that arise due to unexported gaps between exported
 file systems.

 Filehandles

 As in previous versions of the NFS protocol, opaque
 filehandles are used to identify individual files
 and directories. Lookup-type and create operations
 translate file and directory names to
 filehandles, which are then used to identify objects
 in subsequent operations.

 The NFSv4.1 protocol provides support for
 persistent filehandles, guaranteed to be valid
 for the lifetime of the file system object designated.
 In addition, it provides support to servers to provide
 filehandles with more limited validity guarantees,
 called volatile filehandles.

 File Attributes

	 The NFSv4.1 protocol has a rich and extensible
	 file object attribute structure, which is divided
	 into REQUIRED, RECOMMENDED, and named attributes
	 (see).

	 Several (but not all) of the REQUIRED attributes
	 are derived from the attributes of NFSv3 (see
	 the definition of the fattr3 data type in). An example of a REQUIRED
	 attribute is the file object's type () so that regular files
	 can be distinguished from directories (also known
	 as folders in some operating environments) and
	 other types of objects. REQUIRED attributes are
	 discussed in .

	 An example of three RECOMMENDED attributes are
	 acl, sacl, and dacl. These attributes define an
	 Access Control List (ACL) on a file object
	 (). An ACL provides
	 directory and file access control beyond the
	 model used in NFSv3. The ACL definition allows
	 for specification of specific sets of permissions
	 for individual users and groups. In addition,
	 ACL inheritance allows propagation of access
	 permissions and restrictions down a directory tree
	 as file system objects are created. RECOMMENDED
	 attributes are discussed in .

 A named attribute is an opaque byte stream that is associated
 with a directory or file and referred to by a string name.
 Named attributes are meant to be used by client applications
 as a method to associate application-specific data with a
 regular file or directory. NFSv4.1 modifies named attributes
 relative to NFSv4.0 by tightening the allowed operations in
 order to prevent the development of non-interoperable
 implementations. Named attributes are discussed in .

 Multi-Server Namespace

 NFSv4.1 contains a number of features to allow
 implementation of namespaces that cross server boundaries
 and that allow and facilitate a nondisruptive transfer of
 support for individual file systems between servers. They
 are all based upon attributes that allow one file system to
 specify alternate, additional, and new location information
 that specifies how the client may access
 that file system.

 These attributes can be used to provide for individual active
 file systems:

 Alternate network addresses to access the
 current file system instance.

 The locations of alternate file system instances
 or replicas to be used in the event that the current
 file system instance becomes unavailable.

 These file system location
 attributes may be used together with the concept
 of absent file systems, in which a position in the server
 namespace is associated with locations on other servers without
 there being any corresponding file system instance on the
 current server. For example,

 These attributes may be used with absent file systems
 to implement referrals whereby one server may direct the
 client to a file system provided by another server. This
 allows extensive multi-server namespaces to be constructed.

 These attributes may be provided when a previously
 present file system becomes absent. This allows
 nondisruptive migration of file systems to alternate
 servers.

 Locking Facilities

 As mentioned previously, NFSv4.1 is a single protocol that
 includes locking facilities. These locking facilities
 include support for many types of locks including a number
 of sorts of recallable locks. Recallable locks such as
 delegations allow the client to be assured that certain
 events will not occur so long as that lock is held. When
 circumstances change, the lock is recalled
 via a callback request. The assurances provided by
 delegations allow more extensive caching to be done safely
 when circumstances allow it.

	The types of locks are:

 Share reservations as established by OPEN operations.

 Byte-range locks.

 File delegations, which are recallable locks that assure
 the holder that inconsistent opens and file changes cannot
 occur so long as the delegation is held.

 Directory delegations, which are recallable locks
 that assure the holder that inconsistent directory
 modifications cannot occur so long as the delegation
 is held.

 Layouts, which are recallable objects that assure the
 holder that direct access to the file data may be
 performed directly by the client and that no change
 to the data's location that is inconsistent with that access
 may be made so long as the layout is held.

 All locks for a given client are tied together under a
 single client-wide lease. All requests made on sessions
 associated with the client renew that lease. When the client's
 lease
 is not promptly renewed, the client's locks are subject to revocation.
 In the event of server restart, clients have the
 opportunity to safely reclaim their locks within a special
 grace period.

 Differences from NFSv4.0

 The following summarizes the major differences between minor version
 1 and the base protocol:

 Implementation of the sessions model ().

 Parallel access to data ().

 Addition of the RECLAIM_COMPLETE operation to better structure
 the lock reclamation process ().

 Enhanced delegation support as follows.

	 Delegations on directories and other
	 file types in addition to regular files (,).

	

	 Operations to optimize acquisition of recalled
	 or denied delegations (, ,).

	

	 Notifications of changes to files and directories
	 (,).

	

	 A method to allow a server to indicate that it is
	 recalling one or more delegations for resource
	 management reasons, and thus a method to allow
	 the client to pick which delegations to return
	 ().

	 Attributes can be set atomically
	 during exclusive file create via the OPEN operation
	 (see the new EXCLUSIVE4_1 creation method in
).

	 Open files can be preserved if removed and the
	 hard link count ("hard link" is defined in
	 an Open Group standard) goes
	 to zero, thus obviating the
	 need for clients to rename deleted files to
	 partially hidden names -- colloquially called
	 "silly rename" (see the new
	 OPEN4_RESULT_PRESERVE_UNLINKED reply flag in
).

	 Improved compatibility with Microsoft Windows for
	 Access Control Lists (, ,).

 Data retention ().

 Identification of the implementation of the NFS client
 and server ().

	 Support for notification of the availability of
	 byte-range locks (see the new
	 OPEN4_RESULT_MAY_NOTIFY_LOCK reply flag in and see).

 In NFSv4.1, LIPKEY and SPKM-3 are not required security mechanisms
 .

 Core Infrastructure

 Introduction

 NFSv4.1 relies on core infrastructure common to nearly
 every operation. This core infrastructure is described in the remainder
 of this section.

 RPC and XDR

 The NFSv4.1 protocol is a Remote Procedure Call (RPC)
 application that uses RPC version 2 and the corresponding eXternal
 Data Representation (XDR) as defined in
 and
 .

 RPC-Based Security

 Previous NFS versions have been thought of as having a
 host-based authentication model, where the NFS server
 authenticates the NFS client, and trusts the client
 to authenticate all users.
 Actually, NFS has always depended on RPC for
 authentication. One of the first forms of RPC authentication,
 AUTH_SYS, had no strong authentication and
 required a host-based authentication
 approach. NFSv4.1 also depends on RPC for basic security
 services and mandates RPC support for a user-based
 authentication model. The user-based authentication
 model has user principals authenticated by a server, and
 in turn the server authenticated by user principals.
 RPC provides some basic security services that are used
 by NFSv4.1.

 RPC Security Flavors

 As described in "Authentication", ,
 RPC security is encapsulated in the RPC header, via a
 security or authentication flavor, and information
 specific to the specified security flavor.
 Every RPC header conveys information used to identify
 and authenticate a client and server. As discussed in
 ,
 some security flavors provide additional security
 services.

 NFSv4.1 clients and servers MUST implement RPCSEC_GSS.
 (This requirement to implement is not a requirement to
 use.) Other flavors, such as AUTH_NONE and
 AUTH_SYS, MAY be implemented as well.

 RPCSEC_GSS and Security Services

 RPCSEC_GSS uses the
 functionality of GSS-API . This allows for the
 use of various security mechanisms by the RPC layer
 without the additional implementation overhead of
 adding RPC security flavors.

 Identification, Authentication, Integrity, Privacy

 Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate
 users on clients to servers, and servers to users. It can also
 perform integrity checking on the entire RPC message, including
 the RPC header, and on the arguments or results. Finally, privacy,
 usually via encryption, is a service available with RPCSEC_GSS.
 Privacy is performed on the arguments and results. Note that
 if privacy is selected, integrity, authentication, and identification
 are enabled.
 If privacy is not selected, but integrity is selected, authentication
 and identification are enabled. If integrity and privacy are not
 selected, but authentication is enabled,
 identification is enabled. RPCSEC_GSS does not provide identification as
 a separate service.

 Although GSS-API has an authentication service distinct from its
 privacy and integrity services, GSS-API's
 authentication service is not used for RPCSEC_GSS's authentication
 service. Instead, each RPC request and response header is
 integrity protected with the GSS-API integrity service, and
 this allows RPCSEC_GSS to offer per-RPC authentication and
 identity. See for more information.

 NFSv4.1 client and servers MUST support RPCSEC_GSS's integrity and authentication
 service. NFSv4.1 servers MUST support RPCSEC_GSS's privacy service.
 NFSv4.1 clients SHOULD support RPCSEC_GSS's privacy service.

 Security Mechanisms for NFSv4.1

 RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that
 provide security services. Therefore, NFSv4.1 clients and servers
 MUST support the Kerberos V5 security mechanism.

 The use of RPCSEC_GSS requires selection of mechanism,
 quality of protection (QOP), and service (authentication,
 integrity, privacy). For the mandated security mechanisms,
 NFSv4.1 specifies that a QOP of zero is used, leaving it up
 to the mechanism or the mechanism's configuration to map
 QOP zero to
 an appropriate level of protection.
 Each mandated mechanism specifies a minimum set of cryptographic
 algorithms for implementing integrity and privacy. NFSv4.1
 clients and servers MUST be implemented on operating environments
 that comply with the REQUIRED cryptographic algorithms
 of each REQUIRED mechanism.

 Kerberos V5

 The Kerberos V5 GSS-API mechanism as described in
 MUST be implemented with
 the RPCSEC_GSS services as specified in the following
 table:

 column descriptions:
 1 == number of pseudo flavor
 2 == name of pseudo flavor
 3 == mechanism's OID
 4 == RPCSEC_GSS service
 5 == NFSv4.1 clients MUST support
 6 == NFSv4.1 servers MUST support

 1 2 3 4 5 6
 --
 390003 krb5 1.2.840.113554.1.2.2 rpc_gss_svc_none yes yes
 390004 krb5i 1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
 390005 krb5p 1.2.840.113554.1.2.2 rpc_gss_svc_privacy no yes

 Note that the number and name of the pseudo flavor
 are presented here as a mapping aid to the implementor.
 Because the NFSv4.1 protocol includes a method to negotiate
 security and it understands the GSS-API mechanism, the pseudo flavor
 is not needed. The pseudo flavor is needed for the NFSv3 since the security negotiation is done via
 the MOUNT protocol as described in .

 At the time NFSv4.1 was specified, the Advanced Encryption
 Standard (AES) with HMAC-SHA1 was
 a REQUIRED algorithm set for Kerberos V5. In contrast, when
 NFSv4.0 was specified, weaker algorithm sets were REQUIRED for
 Kerberos V5, and were REQUIRED in the NFSv4.0 specification, because
 the Kerberos V5 specification at the time did not specify stronger
 algorithms.
 The NFSv4.1 specification does not specify REQUIRED algorithms
 for Kerberos V5, and instead, the implementor is expected
 to track the evolution of the Kerberos V5 standard if and when
 stronger algorithms are specified.

 Security Considerations for Cryptographic Algorithms in Kerberos V5

 When deploying NFSv4.1, the strength of the security achieved depends
 on the existing Kerberos V5 infrastructure. The algorithms
 of Kerberos V5 are not directly exposed to or selectable by the
 client or server, so there is some due diligence required by
 the user of NFSv4.1 to ensure that security is acceptable
 where needed.

 GSS Server Principal

 Regardless of what security mechanism under RPCSEC_GSS
 is being used, the NFS server MUST identify itself
 in GSS-API via a GSS_C_NT_HOSTBASED_SERVICE name type.
 GSS_C_NT_HOSTBASED_SERVICE names are of the form:

 service@hostname

 For NFS, the "service" element is

 nfs

 Implementations of security mechanisms will convert
 nfs@hostname to various different forms. For Kerberos
 V5, the following form is RECOMMENDED:

 nfs/hostname

 COMPOUND and CB_COMPOUND

 A significant departure from the versions of the NFS
 protocol before NFSv4 is the introduction of the
 COMPOUND procedure. For the NFSv4 protocol,
 in all minor versions, there are exactly two RPC procedures,
 NULL and COMPOUND. The COMPOUND procedure is defined
 as a series of individual operations and these operations
 perform the sorts of functions performed by traditional
 NFS procedures.

 The operations combined within a COMPOUND
 request are evaluated in order by the server, without
 any atomicity guarantees. A limited set of facilities
 exist to pass results from one operation to another. Once an
 operation returns a failing result, the evaluation ends
 and the results of all
 evaluated operations are returned to the client.

 With the use of the COMPOUND procedure, the client is able to build
 simple or complex requests. These COMPOUND requests allow for a
 reduction in the number of RPCs needed for logical file system
 operations. For example, multi-component look up requests can
 be constructed by combining multiple LOOKUP operations. Those
 can be further combined with operations such as GETATTR, READDIR,
 or OPEN plus READ to do more complicated sets of operation without
 incurring additional latency.

 NFSv4.1 also contains a considerable set of
 callback operations in which the server makes an RPC
 directed at the client. Callback RPCs have a similar
 structure to that of the normal server requests.
 In all minor versions of the NFSv4 protocol,
 there are two callback RPC procedures:
 CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is defined
 in an analogous fashion to that of COMPOUND
 with its own set of callback operations.

 The addition of new server and callback operations within the
 COMPOUND and CB_COMPOUND request
 framework provides a means of extending the protocol in
 subsequent minor versions.

 Except for a small number of operations needed for session
 creation, server requests and callback requests are performed
 within the context of a session. Sessions provide a client
 context for every request and support robust replay
 protection for non-idempotent requests.

 Client Identifiers and Client Owners

 For each operation that obtains or depends on locking state, the
 specific client needs to be identifiable by the server.

 Each distinct client instance is represented
 by a client ID. A client ID is a 64-bit identifier
 representing a specific client at a given time.
 The client ID is changed whenever the client re-initializes,
 and may change when the server re-initializes.
 Client IDs are used to support lock identification
 and crash recovery.

 During steady state operation,
 the client ID associated with each operation
 is derived from the session (see) on which the operation is sent. A session is associated with
 a client ID when the session is created.

 Unlike NFSv4.0, the only NFSv4.1 operations possible before a
 client ID is established are those needed to
 establish the client ID.

 A sequence of an EXCHANGE_ID operation followed by a
 CREATE_SESSION operation using that client ID
 (eir_clientid as returned from EXCHANGE_ID)
 is required to establish and confirm the
 client ID on the server. Establishment of identification by a
 new incarnation of the client also has the effect of immediately
 releasing any locking state that a previous incarnation of that
 same client might have had on the server. Such released state
 would include all byte-range lock, share reservation, layout state, and -- where the server supports neither the CLAIM_DELEGATE_PREV nor CLAIM_DELEG_CUR_FH claim types -- all delegation state associated with the same client with the same
 identity. For discussion of delegation state recovery, see
 . For discussion of layout state
 recovery, see .

 Releasing such state requires that the server be able to determine
 that one client instance is the successor of another. Where this
 cannot be done, for any of a number of reasons, the locking state
 will remain for a time subject to lease expiration
 (see)
 and the new client will need to wait for
 such state to be removed, if it makes conflicting lock requests.

 Client identification is encapsulated in the following client owner
 data type:

struct client_owner4 {
 verifier4 co_verifier;
 opaque co_ownerid<NFS4_OPAQUE_LIMIT>;
};

 The first field, co_verifier, is a client incarnation
 verifier, allowing the server to distinguish successive incarnations
 (e.g., reboots) of the same client. The server will start the process of
 canceling the client's leased state if co_verifier
 is different than what the server has previously
 recorded for the identified client (as specified in
 the co_ownerid field).

 The second field, co_ownerid, is a variable length string that uniquely defines
 the client so that subsequent instances of the same client bear the
 same co_ownerid with a different verifier.

 There are several considerations for how the client
 generates the co_ownerid string:

 The string should be unique so that multiple clients
 do not present the same string. The consequences of
 two clients presenting the same string range from
 one client getting an error to one client having its
 leased state abruptly and unexpectedly cancelled.

 The string should be selected so that subsequent incarnations
 (e.g., restarts) of the same client cause the client to present
 the same string. The implementor
 is cautioned from an approach that requires the string to
 be recorded in a local file because this precludes the use
 of the implementation in an environment where there is no local
 disk and all file access is from an NFSv4.1 server.

 The string should be the same for each server network address that
 the client accesses.
 This way, if a server has multiple interfaces, the client
 can trunk traffic over multiple network paths
 as described in .
 (Note: the precise opposite was advised in the NFSv4.0
 specification .)

 The algorithm for generating the string should not
 assume that the client's network address will not
 change, unless the client implementation knows it
 is using statically assigned network addresses.
 This includes changes between client incarnations
 and even changes while the client is still running
 in its current incarnation. Thus, with dynamic
 address assignment, if the
 client includes just the client's network address
 in the co_ownerid string, there is a real risk
 that after the
 client gives up the network address, another
 client, using a similar algorithm for generating
 the co_ownerid string, would generate a conflicting
 co_ownerid string.

 Given the above considerations, an example of a well-generated co_ownerid
 string is one that includes:

 If applicable, the client's statically assigned network address.

 Additional information that tends to be unique, such as one or more
 of:

 The client machine's serial number (for privacy reasons, it is best
 to perform some one-way function on the serial number).

 A Media Access Control (MAC) address (again, a one-way function should be performed).

 The timestamp of when the NFSv4.1 software was first installed
 on the client (though this is subject to the previously mentioned
 caution about using information that is stored in a file, because the
 file might only be accessible over NFSv4.1).

 A true random number. However, since this number ought to be the same
 between client incarnations, this shares the same problem as that of
 using the timestamp of the software installation.

 For a user-level NFSv4.1 client, it should contain additional
 information to distinguish the client from other user-level clients
 running on the same host, such as a process identifier or other unique
 sequence.

 The client ID is assigned by the server (the eir_clientid result from EXCHANGE_ID)
 and should be chosen so that it will not
 conflict with a client ID previously assigned by the
 server. This applies across server restarts.

 In the event of a server restart, a client may find
 out that its current client ID is no longer valid when
 it receives an NFS4ERR_STALE_CLIENTID error. The precise
 circumstances depend on the characteristics of the
 sessions involved, specifically whether the session is
 persistent (see), but in
 each case the client will receive this error when it attempts
 to establish a new session with the existing client ID and
 receives the error NFS4ERR_STALE_CLIENTID, indicating that a new
 client ID needs to be obtained via EXCHANGE_ID and the new session
 established with that client ID.

 When a session is not persistent, the client will find out that
 it needs to create a new session as a result of getting an
 NFS4ERR_BADSESSION, since the session in question was lost
 as part of a server restart. When the existing client ID is
 presented to a server as part of creating a session
 and that client ID is not recognized, as would happen after a server
 restart, the server will reject the request with the error
 NFS4ERR_STALE_CLIENTID.

 In the case of the session being persistent, the
 client will re-establish communication using the
 existing session after the restart. This session
 will be associated with the existing client ID but
 may only be used to retransmit operations that the
 client previously transmitted and did not see replies
 to. Replies to operations that the server previously performed
 will come from the reply cache; otherwise,
 NFS4ERR_DEADSESSION will be returned.
 Hence, such a session is referred to as "dead". In this situation,
 in order to perform new operations, the client needs to
 establish a new session. If an attempt is made to
 establish this new session with the existing client ID,
 the server will reject the request with
 NFS4ERR_STALE_CLIENTID.

 When NFS4ERR_STALE_CLIENTID is received in either of
 these situations, the client needs to obtain a
 new client ID by use of the EXCHANGE_ID operation, then
 use that client ID as the basis of a new session, and
 then proceed to
 any other necessary recovery for the server restart case (see
).

 See the descriptions of EXCHANGE_ID
 () and CREATE_SESSION
 () for a complete
 specification of these operations.

 Upgrade from NFSv4.0 to NFSv4.1

 To facilitate upgrade from NFSv4.0 to NFSv4.1, a server
 may compare a value of data type client_owner4 in an EXCHANGE_ID with a
 value of data type nfs_client_id4 that was established using the SETCLIENTID operation of
 NFSv4.0. A server that does so will allow
 an upgraded client to avoid waiting
 until the lease (i.e., the lease established by the NFSv4.0 instance
 client) expires.
 This requires that the value of data type client_owner4 be constructed
 the same way as the value of data type nfs_client_id4. If the latter's
 contents included the server's network address (per the
 recommendations of the NFSv4.0 specification), and
 the NFSv4.1 client does not wish to use a client
 ID that prevents trunking, it should send two
 EXCHANGE_ID operations. The first EXCHANGE_ID will
 have a client_owner4 equal to the nfs_client_id4.
 This will clear the state created by the NFSv4.0
 client. The second EXCHANGE_ID will not have the
 server's network address. The state created for the
 second EXCHANGE_ID will not have to wait for lease
 expiration, because there will be no state to expire.

 Server Release of Client ID

 NFSv4.1 introduces a new operation called
 DESTROY_CLIENTID (),
 which the client SHOULD use to destroy a client ID it
 no longer needs. This permits graceful, bilateral release of
 a client ID. The operation cannot be used if there are sessions
 associated with the client ID, or state with an unexpired lease.

 If the server determines that the client holds no associated state
 for its client ID (associated state includes unrevoked sessions,
 opens, locks, delegations, layouts, and wants), the server MAY
 choose to unilaterally release the client ID in order to
 conserve resources.

 If the client
 contacts the server after this release, the server
 MUST ensure that the client receives the appropriate error
 so that it will use the EXCHANGE_ID/CREATE_SESSION
 sequence to establish a new client ID.
 The server ought to be very hesitant to
 release a client ID since the resulting work on the
 client to recover from such an event will be the same
 burden as if the server had failed and restarted.
 Typically, a server would not release a client ID
 unless there had been no activity from that client
 for many minutes. As long as there are sessions,
 opens, locks, delegations, layouts, or wants, the
 server MUST NOT release the client ID. See for discussion on
 releasing inactive sessions.

 Resolving Client Owner Conflicts

 When the server gets an EXCHANGE_ID for a client owner that
 currently has no state, or that has state but the lease has expired,
 the server MUST allow the
 EXCHANGE_ID and confirm the new client ID if followed by the
 appropriate CREATE_SESSION.

 When the server gets an EXCHANGE_ID for a
 new incarnation of a client owner that
 currently has an old incarnation with state and an unexpired lease, the
 server is allowed to dispose of the state of the
 previous incarnation of the client owner if
 one of the following is true:

 The principal that created the client ID for the client owner
 is the same as the principal that is sending the EXCHANGE_ID operation.
 Note that if the client ID was created with
 SP4_MACH_CRED state protection (),
 the principal MUST be based on RPCSEC_GSS authentication,
 the RPCSEC_GSS service used MUST be integrity or
 privacy, and the
 same GSS mechanism and principal
 MUST be used as that used when the client ID
 was created.

 The client ID was established with SP4_SSV
 protection (,

)

 and the client sends the EXCHANGE_ID with the
 security flavor set to RPCSEC_GSS using the GSS
 SSV mechanism ().

 The client ID was established with SP4_SSV
 protection, and under the conditions described herein,
 the EXCHANGE_ID was sent with SP4_MACH_CRED state protection.
 Because the SSV might not persist
 across client and server restart, and because
 the first time a client sends EXCHANGE_ID to
 a server it does not have an SSV, the client
 MAY send the subsequent EXCHANGE_ID without
 an SSV RPCSEC_GSS handle. Instead, as with
 SP4_MACH_CRED protection, the principal MUST be
 based on RPCSEC_GSS authentication, the RPCSEC_GSS
 service used MUST be integrity or privacy, and the
 same GSS mechanism and principal MUST be used as
 that used when the client ID was created.

 If none of the above situations apply, the server
 MUST return NFS4ERR_CLID_INUSE.

 If the server accepts the principal and co_ownerid
 as matching that which created the client ID, and
 the co_verifier in the EXCHANGE_ID differs from the
 co_verifier used when the client ID was created,
 then after the server receives a CREATE_SESSION that
 confirms the client ID, the server deletes state.

 If the co_verifier values are the same (e.g., the
 client either is updating properties of the client ID
 () or
 is attempting trunking (),
 the server MUST NOT delete state.

 Server Owners

 The server owner is similar to a client owner
 (), but unlike the
 client owner, there is no shorthand server ID.
 The server owner is defined in the following data type:

struct server_owner4 {
 uint64_t so_minor_id;
 opaque so_major_id<NFS4_OPAQUE_LIMIT>;
};

 The server owner is returned from
 EXCHANGE_ID. When the so_major_id fields are the same in
 two EXCHANGE_ID results, the connections that each EXCHANGE_ID
 were sent over can be assumed to address the same server
 (as defined in). If
 the so_minor_id fields are also the same, then not only
 do both connections connect to the same server, but the
 session can be shared across both
 connections. The reader is cautioned that multiple
 servers may deliberately or accidentally claim to have
 the same so_major_id or so_major_id/so_minor_id; the
 reader should examine Sections and
 in order to avoid
 acting on falsely matching server owner values.

 The considerations for generating an so_major_id are
 similar to that for generating a co_ownerid string (see
). The consequences
 of two servers generating conflicting so_major_id values
 are less dire than they are for co_ownerid conflicts
 because the client can use RPCSEC_GSS to compare the
 authenticity of each server
 (see).

 Security Service Negotiation

 With the NFSv4.1 server potentially offering
 multiple security mechanisms, the client needs a method
 to determine or negotiate which mechanism is to be
 used for its communication with the server. The NFS
 server may have multiple points within its file system
 namespace that are available for use by NFS clients.
 These points can be considered security policy boundaries,
 and, in some NFS implementations, are tied to NFS export points.
 In turn, the NFS server may be configured such that each
 of these security policy boundaries may have different or multiple
 security mechanisms in use.

 The security negotiation between client and server
 SHOULD be done with a secure channel to eliminate
 the possibility of a third party intercepting the
 negotiation sequence and forcing the client and server
 to choose a lower level of security than required or
 desired. See
 for further discussion.

 NFSv4.1 Security Tuples

 An NFS server can assign one or more "security tuples" to each
 security policy boundary in its namespace. Each security tuple
 consists of a security flavor
 (see) and, if the flavor
 is RPCSEC_GSS, a GSS-API mechanism Object Identifier (OID), a GSS-API quality of
 protection, and an RPCSEC_GSS service.

 SECINFO and SECINFO_NO_NAME

 The SECINFO and SECINFO_NO_NAME operations allow the client to
 determine, on a per-filehandle basis, what security tuple is to be
 used for server access. In general, the client will not have to
 use either operation except during initial communication with the
 server or when the client crosses security policy boundaries at the
 server. However, the server's policies may also change at any time
 and force the client to negotiate a new security tuple.

 Where the use of different security tuples would affect the type of
 access that would be allowed if a request was sent over the same
 connection used for the SECINFO or SECINFO_NO_NAME operation
 (e.g., read-only vs. read-write) access, security tuples that allow
 greater access should be presented first. Where the general level
 of access is the same and different security flavors limit the
 range of principals whose privileges are recognized (e.g., allowing
 or disallowing root access), flavors supporting the greatest range
 of principals should be listed first.

 Security Error

 Based on the assumption that each NFSv4.1 client
 and server MUST support a minimum set of security (i.e.,
 Kerberos V5 under RPCSEC_GSS),
 the NFS client will initiate file access to the server
 with one of the minimal security tuples. During
 communication with the server, the client may receive an
 NFS error of NFS4ERR_WRONGSEC. This error allows the
 server to notify the client that the security tuple
 currently being used contravenes the server's
 security policy. The client is then responsible for
 determining (see) what
 security tuples are available at the server and choosing
 one that is appropriate for the client.

 Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME

 This section explains the mechanics of NFSv4.1 security negotiation.

 Put Filehandle Operations

 The term "put filehandle operation" refers to
 PUTROOTFH, PUTPUBFH, PUTFH, and RESTOREFH. Each of the subsections
 herein describes how the server handles a subseries of operations
 that starts with a put filehandle operation.

 Put Filehandle Operation + SAVEFH

 The client is saving a filehandle for a future
 RESTOREFH, LINK, or RENAME. SAVEFH MUST NOT
 return NFS4ERR_WRONGSEC. To determine whether or not the put
 filehandle operation returns NFS4ERR_WRONGSEC,
 the server implementation pretends SAVEFH is not in
 the series of operations and examines which of the
 situations described in the other subsections of apply.

 Two or More Put Filehandle Operations

 For a series of N put filehandle operations, the server
 MUST NOT return NFS4ERR_WRONGSEC to the first N-1 put
 filehandle operations.

The Nth put filehandle operation
 is handled as if it is the first in a subseries of
 operations.
 For example, if the
 server received a COMPOUND request with this series of
 operations -- PUTFH, PUTROOTFH, LOOKUP -- then the
 PUTFH operation is ignored for NFS4ERR_WRONGSEC purposes, and the
 PUTROOTFH, LOOKUP subseries is processed as according
 to .

 Put Filehandle Operation + LOOKUP (or OPEN of an Existing Name)

 This situation also applies to a put filehandle operation followed
 by a LOOKUP or an OPEN operation that specifies an existing component name.

 In this situation, the client is potentially crossing
 a security policy boundary, and the set of security tuples
 the parent directory supports may differ from those of
 the child.
 The server implementation may decide whether to impose
 any restrictions on security policy administration.
 There are at least three approaches (sec_policy_child is
 the tuple set of the child export, sec_policy_parent is
 that of the parent).

 sec_policy_child <= sec_policy_parent (<= for subset). This
 means that the set of security tuples specified on the
 security policy of a child directory is always a subset
 of its parent directory.

 sec_policy_child ^ sec_policy_parent != {} (^ for intersection, {}
 for the empty set). This means that the set of security tuples specified
 on the security policy of a child directory always has a non-empty intersection
 with that of the parent.

 sec_policy_child ^ sec_policy_parent == {}. This means that the
 set of security tuples specified on the security policy of a child directory
 may not intersect with that of the parent. In other words, there
 are no restrictions on how the system administrator may
 set up these tuples.

 In order for a server to support approaches (b)
 (for the case when a client chooses a flavor that is
 not a member of sec_policy_parent) and (c), the put
 filehandle operation cannot return NFS4ERR_WRONGSEC
 when there is a security tuple mismatch. Instead,
 it should be returned from the LOOKUP (or OPEN by
 existing component name) that follows.

 Since the above guideline does not contradict approach
 (a), it should be followed in general. Even if approach
 (a) is implemented, it is possible for the security
 tuple used to be acceptable for the target of LOOKUP
 but not for the filehandles used in the put filehandle operation. The
 put filehandle operation
 could be a PUTROOTFH or PUTPUBFH, where the
 client cannot know the security tuples for the root
 or public filehandle. Or the security policy for the
 filehandle used by the put filehandle operation
 could have changed since the
 time the filehandle was obtained.

 Therefore, an NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC
 in response to the put filehandle operation
 if the operation
 is immediately followed by a LOOKUP or an OPEN by component name.

 Put Filehandle Operation + LOOKUPP

 Since SECINFO only works its way down, there is no way LOOKUPP can
 return NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME
 solves this issue via style
 SECINFO_STYLE4_PARENT, which works in the opposite direction as SECINFO.
 As with , a put filehandle operation
 that is followed by a LOOKUPP
 MUST NOT return NFS4ERR_WRONGSEC.
 If the server does not support SECINFO_NO_NAME, the client's
 only recourse is to send the put filehandle operation,
 LOOKUPP, GETFH sequence
 of operations with every security tuple it supports.

 Regardless of whether SECINFO_NO_NAME is supported, an
 NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC in
 response to a put filehandle operation if the
 operation is immediately followed by a LOOKUPP.

 Put Filehandle Operation + SECINFO/SECINFO_NO_NAME

 A security-sensitive client is allowed to choose
 a strong security tuple when querying a server to
 determine a file object's permitted security tuples.
 The security tuple chosen by the client does not have
 to be included in the tuple list of the security policy
 of either the parent directory indicated in the put filehandle
 operation or the child file object indicated in SECINFO (or any parent directory
 indicated in SECINFO_NO_NAME). Of course, the server has to be
 configured for whatever security
 tuple the client selects; otherwise, the request will
 fail at the RPC layer with an appropriate authentication error.

 In theory, there is no connection between the security
 flavor used by SECINFO or SECINFO_NO_NAME and those
 supported by the security policy. But in practice, the
 client may start looking for strong flavors from those
 supported by the security policy, followed by those in
 the REQUIRED set.

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to a
 put filehandle operation that
 is immediately followed by SECINFO or SECINFO_NO_NAME.
 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC from SECINFO or
 SECINFO_NO_NAME.

 Put Filehandle Operation + Nothing

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC.

 Put Filehandle Operation + Anything Else

 "Anything Else" includes OPEN by filehandle.

 The security policy enforcement applies to the
 filehandle specified in the put filehandle operation. Therefore, the
 put filehandle operation MUST
 return NFS4ERR_WRONGSEC when there is a security tuple
 mismatch. This avoids the complexity of
 adding NFS4ERR_WRONGSEC as an allowable error to every
 other operation.

 A COMPOUND containing the series put filehandle
 operation + SECINFO_NO_NAME (style SECINFO_STYLE4_CURRENT_FH) is an
 efficient way for the client to recover from
 NFS4ERR_WRONGSEC.

 The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to
 any operation other than a put filehandle operation,
 LOOKUP, LOOKUPP, and OPEN (by component name).

 Operations after SECINFO and SECINFO_NO_NAME

 Suppose a client sends a COMPOUND procedure
 containing the series SEQUENCE, PUTFH,
 SECINFO_NONAME, READ, and suppose the security tuple
 used does not match that required for the target
 file. By rule (see),
 neither PUTFH nor SECINFO_NO_NAME can
 return NFS4ERR_WRONGSEC. By rule (see), READ cannot return
 NFS4ERR_WRONGSEC. The issue is resolved by the fact
 that SECINFO and SECINFO_NO_NAME consume the current
 filehandle (note that this is a change from NFSv4.0). This leaves no current filehandle for
 READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

 LINK and RENAME

 The LINK and RENAME operations use both the current
 and saved filehandles.
 Technically, the server MAY return NFS4ERR_WRONGSEC from
 LINK or RENAME
 if the security policy of the
 saved filehandle rejects the security flavor used in the
 COMPOUND request's credentials. If the server does so,
 then if there is no intersection between the security
 policies of saved and current filehandles, this means that it
 will be impossible for the client to perform the intended
 LINK or RENAME operation.

 For example, suppose the client sends this COMPOUND
 request: SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH,
 RENAME "c" "d", where filehandles bFH and aFH refer
 to different directories. Suppose no common security
 tuple exists between the security policies of aFH and
 bFH. If the client sends the request using credentials
 acceptable to bFH's security policy but not aFH's
 policy, then the PUTFH aFH operation will fail with
 NFS4ERR_WRONGSEC. After a SECINFO_NO_NAME request,
 the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH
 aFH, RENAME "c" "d", using credentials acceptable to
 aFH's security policy but not bFH's policy. The server
 returns NFS4ERR_WRONGSEC on the RENAME operation.

 To prevent a client from an endless sequence of a
 request containing LINK or RENAME, followed by a request
 containing SECINFO_NO_NAME or SECINFO, the server MUST detect
 when the security policies of the current and saved
 filehandles have no mutually acceptable security tuple,
 and MUST NOT return NFS4ERR_WRONGSEC from LINK or RENAME
 in that situation. Instead
 the server MUST do one of two things:

 The server can return NFS4ERR_XDEV.

 The server can
 allow the security policy of the current filehandle to
 override that of the saved filehandle, and so return NFS4_OK.

 Minor Versioning

 To address the requirement of an NFS protocol that can evolve as the
 need arises, the NFSv4.1 protocol contains the rules and
 framework to allow for future minor changes or versioning.

 The base assumption with respect to minor versioning is that any
 future accepted minor version will be
 documented in one or more Standards Track RFCs.
 Minor version 0 of the NFSv4 protocol is represented by
 , and minor version 1 is represented by
 this RFC.
 The COMPOUND and CB_COMPOUND
 procedures support the encoding of the minor version
 being requested by the client.

 The following items represent the basic rules for the development of
 minor versions. Note that a future minor version may modify
 or add to the following rules as part of the minor version definition.

 Procedures are not added or deleted.

 To maintain the general RPC model, NFSv4 minor versions will
 not add to or delete procedures from the NFS program.

 Minor versions may add operations to the COMPOUND and CB_COMPOUND
 procedures.

 The addition of operations to the COMPOUND and CB_COMPOUND procedures
 does not affect the RPC model.

 Minor versions may append attributes to the bitmap4 that represents
 sets of attributes and to the fattr4 that represents sets of attribute
 values.

 This allows for the expansion of the attribute model to allow for
 future growth or adaptation.

 Minor version X must append any new attributes after the last
 documented attribute.

 Since attribute results are specified as an opaque array of
 per-attribute, XDR-encoded results, the complexity of adding new
 attributes in the midst of the current definitions would be too
 burdensome.

 Minor versions must not modify the structure of an existing
 operation's arguments or results.

 Again, the complexity of handling multiple structure definitions for a
 single operation is too burdensome. New operations should be added
 instead of modifying existing structures for a minor version.

 This rule does not preclude the following adaptations in a minor version:

 adding bits to flag fields, such as new attributes to GETATTR's bitmap4
 data type, and providing corresponding variants of opaque arrays,
 such as a notify4 used together with such bitmaps

 adding bits to existing attributes like ACLs that have flag words

 extending enumerated types (including NFS4ERR_*) with new values

 adding cases to a switched union

 Minor versions must not modify the structure of existing attributes.

 Minor versions must not delete operations.

 This prevents the potential reuse of a particular operation "slot" in
 a future minor version.

 Minor versions must not delete attributes.

 Minor versions must not delete flag bits or enumeration values.

 Minor versions may declare an operation MUST NOT be implemented.

 Specifying that an operation MUST NOT be implemented is equivalent
 to obsoleting an operation. For the client, it means that the
 operation MUST NOT be sent to the server. For the server, an NFS
 error can be returned as opposed to "dropping" the request as an XDR
 decode error. This approach allows for the obsolescence of an
 operation while maintaining its structure so that a future minor version can reintroduce the operation.

 Minor versions may declare that an attribute MUST NOT be implemented.

 Minor versions may declare that a flag bit or enumeration value MUST NOT
 be implemented.

 Minor versions may downgrade features from REQUIRED to RECOMMENDED,
 or RECOMMENDED to OPTIONAL.

 Minor versions may upgrade features from OPTIONAL to RECOMMENDED, or
 RECOMMENDED to REQUIRED.

 A client and server that support minor version X SHOULD support minor
 versions zero through X-1 as well.

 Except for infrastructural changes, a minor version must not
 introduce REQUIRED new features.

 This rule allows for the introduction of new functionality and forces
 the use of implementation experience before designating a feature as
 REQUIRED. On the other hand, some classes of features are
 infrastructural and have broad effects. Allowing infrastructural features
 to be RECOMMENDED or OPTIONAL complicates implementation of the minor version.

 A client MUST NOT attempt to use a stateid, filehandle, or similar
 returned object from the COMPOUND procedure with minor version X for
 another COMPOUND procedure with minor version Y, where X != Y.

 Non-RPC-Based Security Services

 As described in ,
 NFSv4.1 relies on RPC for identification,
 authentication, integrity, and privacy. NFSv4.1 itself
 provides or enables additional security services as described in the
 next several subsections.

 Authorization

 Authorization to access a file object via an NFSv4.1
 operation is ultimately determined by the NFSv4.1
 server. A client can predetermine its access to a file
 object via the OPEN ()
 and the ACCESS ()
 operations.

 Principals with appropriate access rights can modify the
 authorization on a file object via the SETATTR
 () operation. Attributes that affect
 access rights include mode, owner, owner_group, acl, dacl, and
 sacl. See .

 Auditing

 NFSv4.1 provides auditing on a per-file object basis, via the acl
 and sacl attributes as described in . It is
 outside the scope of this specification to specify audit log
 formats or management policies.

 Intrusion Detection

 NFSv4.1 provides alarm control on a per-file object basis, via the
 acl and sacl attributes as described in .
 Alarms may serve as the basis for intrusion detection. It is
 outside the scope of this specification to specify heuristics for
 detecting intrusion via alarms.

 Transport Layers

 REQUIRED and RECOMMENDED Properties of Transports

 NFSv4.1 works over Remote Direct Memory Access (RDMA) and non-RDMA-based transports with
 the following attributes:

 The transport supports reliable delivery of data, which
 NFSv4.1 requires but neither NFSv4.1 nor RPC has facilities
 for ensuring .

 The transport delivers data in the order it was sent.
 Ordered delivery simplifies detection of transmit
 errors, and simplifies the sending of arbitrary sized
 requests and responses via the record marking
 protocol .

 Where an NFSv4.1 implementation supports operation
 over the IP network protocol, any transport used between
 NFS and IP MUST be among the IETF-approved congestion
 control transport protocols. At the time this document
 was written, the only two transports that had the above
 attributes were TCP and the Stream
 Control Transmission Protocol (SCTP). To enhance the
 possibilities for interoperability, an NFSv4.1
 implementation MUST support operation over the TCP
 transport protocol.

 Even if NFSv4.1 is used over a non-IP network
 protocol, it is RECOMMENDED that the transport support
 congestion control.

 It is permissible for a connectionless transport to
 be used under NFSv4.1; however, reliable and in-order
 delivery of data combined with congestion control
 by the connectionless transport is
 REQUIRED. As a consequence, UDP by itself MUST NOT be used
 as an NFSv4.1 transport. NFSv4.1 assumes that a client transport
 address and server transport address used to send data
 over a transport together constitute a connection,
 even if the underlying transport eschews the concept
 of a connection.

 Client and Server Transport Behavior

 If a connection-oriented transport (e.g., TCP) is used,
 the client and server SHOULD use long-lived connections
 for at least three reasons:

 This will prevent the weakening of the transport's
 congestion control mechanisms via short-lived
 connections.

 This will improve performance for the WAN environment
 by eliminating the need for connection setup
 handshakes.

 The NFSv4.1 callback model differs from NFSv4.0, and
 requires the client and server to maintain a
 client-created backchannel (see) for the server to use.

 In order to reduce congestion, if a connection-oriented
 transport is used, and the request is not the NULL
 procedure:

 A requester MUST NOT retry a request unless the connection the request
 was sent over was lost before the reply was
 received.

 A replier MUST NOT silently drop a request, even if the request is a
 retry. (The silent drop behavior of RPCSEC_GSS
 does not apply
 because this behavior happens at the RPCSEC_GSS layer,
 a lower layer in the request processing.) Instead, the
 replier SHOULD return an appropriate error (see
),
 or it MAY disconnect the connection.

 When sending a reply, the replier MUST send the reply
 to the same full network address (e.g., if using an
 IP-based transport, the source port of the requester
 is part of the full network address) from which the requester
 sent the request. If using a connection-oriented
 transport, replies MUST be sent on the same connection from which
 the request was received.

 If a connection is dropped after the replier receives
 the request but before the replier sends the reply, the
 replier might have a pending reply.
 If a connection is established with the same
 source and destination full network address as the
 dropped connection, then the replier MUST NOT send
 the reply until the requester retries the request. The
 reason for this prohibition is that the requester MAY
 retry a request over a different connection (provided that connection
 is associated with the original request's session).

 When using RDMA transports, there are other reasons for not
 tolerating retries over the same connection:

 RDMA transports use "credits" to enforce flow control, where
 a credit is a right to a peer to transmit a message.
 If one peer were to retransmit a request (or reply), it would
 consume an additional credit.
 If the replier
 retransmitted a reply, it would certainly result in an RDMA
 connection loss, since the requester would typically only post a
 single receive buffer for each request. If the requester
 retransmitted a request, the additional credit consumed on the
 server might lead to RDMA connection failure unless the client
 accounted for it and decreased its available credit, leading to
 wasted resources.

 RDMA credits present a new issue to the reply cache in
 NFSv4.1. The reply cache may be used when a connection within a
 session is lost, such as after the client reconnects. Credit
 information is a dynamic property of the RDMA connection, and stale
 values must not be replayed from the cache. This implies that the
 reply cache contents must not be blindly used when replies are
 sent from it, and credit information appropriate to the channel
 must be refreshed by the RPC layer.

 In addition, as described in
 , while a session is active,
 the NFSv4.1 requester MUST NOT stop waiting for a reply.

 Ports

 Historically, NFSv3 servers have listened over
 TCP port 2049. The registered port 2049
 for the NFS protocol should be the default configuration. NFSv4.1
 clients SHOULD NOT use the RPC binding protocols as described in
 .

 Session

 NFSv4.1 clients and servers MUST support and MUST use the session
 feature as described in this section.

 Motivation and Overview

 Previous versions and minor versions of NFS have suffered from
 the following:

 Lack of support for Exactly Once Semantics (EOS). This includes
 lack of support for EOS through server failure and recovery.

 Limited callback support, including no support for sending callbacks
 through firewalls, and races between replies to normal requests
 and callbacks.

 Limited trunking over multiple network paths.

 Requiring machine credentials for fully secure operation.

 Through the introduction of a session, NFSv4.1 addresses the
 above shortfalls with practical solutions:

 EOS is enabled by a reply cache with a bounded size,
 making it feasible to keep the cache in persistent storage and enable
 EOS through server failure and recovery. One reason that
 previous revisions of NFS did not support EOS was
 because some EOS approaches often limited parallelism.
 As will be explained in
 ,
 NFSv4.1 supports both EOS and unlimited parallelism.

 The NFSv4.1 client (defined in) creates transport
 connections and provides them to the server to use for sending
 callback requests, thus solving the firewall issue
 (). Races between
 responses from client requests and callbacks caused by
 the requests are detected via the session's sequencing
 properties that are a consequence of EOS
 ().

 The NFSv4.1 client can associate an arbitrary number of connections with
 the session, and thus provide trunking ().

 The NFSv4.1 client and server produce a session key independent of client
 and server machine credentials which can be
 used to compute a digest for protecting critical session management operations
 ().

 The NFSv4.1 client can also create secure RPCSEC_GSS contexts
 for use by the session's backchannel that do not require
 the server to authenticate to a client machine principal
 ().

 A session is a dynamically created, long-lived server object
 created by a client and used over time from one or more transport
 connections. Its function is to maintain the server's state
 relative to the connection(s) belonging to a client instance. This
 state is entirely independent of the connection itself, and indeed
 the state exists whether or not the connection exists. A client may
 have one or more sessions associated with it so that
 client-associated state may be accessed using any of the sessions
 associated with that client's client ID, when connections are
 associated with those sessions. When no connections are associated
 with any of a client ID's sessions for an extended time, such
 objects as locks, opens, delegations, layouts, etc. are subject to
 expiration. The session serves as an object representing a means
 of access by a client to the associated client state on the server,
 independent of the physical means of access to that state.

 A single client may create multiple sessions. A single session MUST NOT serve multiple clients.

 NFSv4 Integration

 Sessions are part of NFSv4.1 and not NFSv4.0. Normally, a major
 infrastructure change such as sessions would require a new major
 version number to an Open Network Computing (ONC) RPC program like
 NFS. However, because NFSv4 encapsulates its functionality in a single procedure, COMPOUND,
 and because COMPOUND can support an arbitrary number of
 operations, sessions have been added to NFSv4.1 with little difficulty. COMPOUND includes
 a minor version number field, and for NFSv4.1 this minor version
 is set to 1. When the NFSv4 server processes a COMPOUND with
 the minor version set to 1, it expects a different set of
 operations than it does for NFSv4.0. NFSv4.1 defines the
 SEQUENCE operation, which is required for every
 COMPOUND that operates over an established session, with the
 exception of some session administration operations, such
 as DESTROY_SESSION ().

 SEQUENCE and CB_SEQUENCE

 In NFSv4.1, when the SEQUENCE operation is present, it MUST be
 the first operation in the COMPOUND procedure. The primary purpose
 of SEQUENCE is to carry the session identifier. The session identifier
 associates all other operations in the COMPOUND procedure with
 a particular session. SEQUENCE also contains required information
 for maintaining EOS (see).
 Session-enabled NFSv4.1 COMPOUND requests thus have the form:

 +-----+--------------+-----------+------------+-----------+----
 | tag | minorversion | numops |SEQUENCE op | op + args | ...
 | | (== 1) | (limited) | + args | |
 +-----+--------------+-----------+------------+-----------+----

 and the replies have the form:

 +------------+-----+--------+-------------------------------+--//
 |last status | tag | numres |status + SEQUENCE op + results | //
 +------------+-----+--------+-------------------------------+--//
 //-----------------------+----
 // status + op + results | ...
 //-----------------------+----

 A CB_COMPOUND procedure request and reply has a similar form to
 COMPOUND, but
 instead of a SEQUENCE operation, there is a CB_SEQUENCE operation.
 CB_COMPOUND also has an additional field called "callback_ident", which
 is superfluous in NFSv4.1 and MUST be ignored by
 the client. CB_SEQUENCE has the same information
 as SEQUENCE, and also includes other information needed to resolve
 callback races
 ().

 Client ID and Session Association

 Each client ID () can have
 zero or more active sessions. A client ID and associated
 session are required to perform file access in
 NFSv4.1. Each time a session is used (whether by a client sending
 a request to the server or the client replying to a callback
 request from the server), the state leased to its associated
 client ID is automatically renewed.

 State (which can consist of share reservations, locks, delegations,
 and layouts ()) is tied to
 the client ID. Client state is not tied to any individual session.
 Successive state changing operations from a given state
 owner MAY go over different sessions, provided the
 session is associated with the same client ID. A callback
 MAY arrive over a different session than that of the request
 that originally acquired the state pertaining to the
 callback. For example, if session A is used to
 acquire a delegation, a request to recall the
 delegation MAY arrive over session B if both sessions are
 associated with the same client ID. Sections
 and
 discuss
 the security considerations around callbacks.

 Channels

 A channel is not a connection. A channel represents the
 direction ONC RPC requests are sent.

 Each session has one or two channels: the fore channel and the backchannel.
 Because there are at most two channels per session, and because each
 channel has a distinct purpose, channels are not assigned
 identifiers.

 The fore channel is
 used for ordinary requests from the client to the server, and
 carries COMPOUND requests and responses.
 A session always has a fore channel.

 The backchannel is used for callback requests from server
 to client, and carries CB_COMPOUND requests and responses.
 Whether or not there is a backchannel is decided by the
 client; however, many features of NFSv4.1 require a backchannel.
 NFSv4.1 servers MUST support backchannels.

 Each session has resources for each channel,
 including separate reply caches (see
).

 Note that even the backchannel requires a reply cache (or, at least,
 a slot table in order to detect retries) because
 some callback operations are non-idempotent.

 Association of Connections, Channels, and Sessions

 Each channel is associated with zero or more transport
 connections (whether of the same transport protocol or different
 transport protocols). A connection can be associated with
 one channel or both channels of a session; the client
 and server negotiate whether a connection will carry
 traffic for one channel or both channels via the
 CREATE_SESSION () and the BIND_CONN_TO_SESSION () operations. When a
 session is created via CREATE_SESSION, the connection
 that transported the CREATE_SESSION request is
 automatically associated with the fore channel, and
 optionally the backchannel. If the client specifies no
 state protection ()
 when the session is created, then when SEQUENCE is
 transmitted on a different connection, the connection
 is automatically associated with the fore channel of
 the session specified in the SEQUENCE operation.

 A connection's association with a session is
 not exclusive. A connection associated with the channel(s)
 of one session may be simultaneously
 associated with the channel(s) of other sessions including
 sessions associated with other client IDs.

 It is permissible for connections of multiple transport
 types to be associated with the same channel. For
 example, both TCP and RDMA connections can be
 associated with the fore channel. In the event an
 RDMA and non-RDMA connection are associated with the
 same channel, the maximum number of slots SHOULD be
 at least one more than the total number of RDMA credits
 ().
 This way, if all RDMA credits are used, the non-RDMA
 connection can have at least one outstanding request.
 If a server supports multiple transport types, it MUST
 allow a client to associate connections from each transport
 to a channel.

 It is permissible for a connection of one type of
 transport to be associated with the fore channel,
 and a connection of a different type to be associated
 with the backchannel.

 Server Scope

 Servers each specify a server scope value in the form
 of an opaque string eir_server_scope returned as part of
 the results of an EXCHANGE_ID operation. The purpose of
 the server scope is to allow a group of servers to
 indicate to clients that a set of servers sharing the
 same server scope value has arranged to use distinct
 values of opaque identifiers so that the two servers never
 assign the same value to two distinct objects. Thus, the identifiers
 generated by two servers within that set can be assumed compatible
 so that, in certain important cases,
 identifiers generated by one server in that set may be
 presented to
 another server of the same scope.

 The use of such compatible values does not imply that
 a value generated by one server will always be accepted
 by another. In most cases, it will not. However, a
 server will not inadvertently accept a value generated by another
 server. When it does accept it, it will be because
 it is recognized as valid and carrying the same meaning
 as on another server of the same scope.

 When servers are of the same server scope, this compatibility
 of values applies to the following identifiers:

 Filehandle values. A filehandle value accepted by two
 servers of the same server scope denotes the same object.
 A WRITE operation sent to one server is reflected immediately
 in a READ sent to the other.

 Server owner values. When the server scope values are
 the same, server owner value may be validly compared.
 In cases where the server scope values are different, server
 owner values are treated as different even if they
 contain identical strings of bytes.

 The coordination among servers required to provide such
 compatibility can be quite minimal, and limited to a simple
 partition of the ID space. The recognition of common values
 requires additional implementation, but this can be tailored
 to the specific situations in which that recognition is
 desired.

 Clients will have occasion to compare the server scope values
 of multiple servers under a number of circumstances, each of
 which will be discussed under the appropriate functional
 section:

 When server owner values received in response to
 EXCHANGE_ID operations sent to multiple network
 addresses are compared for the purpose of determining
 the validity of various forms of trunking, as described
 in .

 When network or server reconfiguration causes the same
 network address to possibly be directed to different
 servers, with the necessity for the client to determine
 when lock reclaim should be attempted, as described
 in .

 When two replies from EXCHANGE_ID, each from two different
 server network addresses, have the same server scope, there
 are a number of ways a client can validate that the common
 server scope is due to two servers cooperating in a group.

 If both EXCHANGE_ID requests were sent with RPCSEC_GSS
	(, ,
)
 authentication and the server principal is the same for
 both targets, the equality of server scope is validated.
 It is RECOMMENDED that two servers intending to share the
 same server scope and server_owner major_id also share the
	same principal name. In some cases, this
	simplifies the client's task of validating server scope.

 The client may accept the appearance of the second
 server in the fs_locations or fs_locations_info attribute
 for a relevant file system. For example, if there is
 a migration event for a particular file system
 or there are locks to be reclaimed on a particular file
 system, the attributes for that particular file system
 may be used. The client sends the GETATTR request to
 the first server for the fs_locations or
 fs_locations_info attribute with RPCSEC_GSS
 authentication. It may need to do this in advance
 of the need to verify the common server scope.
 If the client successfully authenticates the reply
 to GETATTR, and the GETATTR request and reply containing
 the fs_locations or fs_locations_info attribute refers
 to the second server, then the equality of server scope
 is supported. A client may choose to limit the use of
 this form of support to information relevant to the
 specific file system involved (e.g. a file system
 being migrated).

 Trunking

 Trunking is the use of multiple connections between a
 client and server in order to increase the speed of data
 transfer. NFSv4.1 supports two types of trunking:
 session trunking and client ID trunking.

 In the context of a single server network address, it
 can be assumed that all connections are accessing the
 same server, and NFSv4.1
 servers MUST support both forms of trunking. When
 multiple connections use a set of network addresses
 to access the same server, the server
 MUST support both forms of trunking.
 NFSv4.1 servers in a clustered configuration MAY allow
 network addresses for different servers to use client ID
 trunking.

 Clients may use either form of trunking as long as they
 do not, when trunking between different server network
 addresses, violate the servers' mandates as to the
 kinds of trunking to be allowed (see below). With regard
 to callback channels, the client MUST allow the server to
 choose among all callback channels valid for a given
 client ID and MUST support trunking when the connections
 supporting the backchannel allow session or client ID
 trunking to be used for callbacks.

 Session trunking is essentially the association of multiple
 connections, each with potentially different target and/or source
 network addresses, to the same session. When the target network
 addresses (server addresses) of the two connections are the same,
 the server MUST
 support such session trunking. When the target network addresses
 are different, the server MAY indicate such support using the
 data returned by the EXCHANGE_ID operation (see below).

 Client ID trunking is the association of multiple
 sessions to the same client ID. Servers MUST support client ID
 trunking for two target network addresses whenever they allow
 session trunking for those same two network addresses.
 In addition, a server MAY, by presenting the same
 major server owner ID
 () and server scope
 (), allow an additional
 case of client ID trunking. When two
 servers return the same major server owner and server
 scope, it means that the two servers are cooperating on
 locking state management, which is a prerequisite
 for client ID trunking.

 Distinguishing when the client is allowed to use session and
 client ID trunking requires understanding how the results of the
 EXCHANGE_ID ()
 operation identify a server.
 Suppose a client sends EXCHANGE_IDs over two different
 connections, each with a possibly different target
 network address, but each EXCHANGE_ID operation has the same
 value in the eia_clientowner field. If the same
 NFSv4.1 server is listening over each connection,
 then each EXCHANGE_ID result MUST return the same
 values of eir_clientid, eir_server_owner.so_major_id,
 and eir_server_scope. The client can then treat each
 connection as referring to the same server (subject
 to verification; see
 below),
 and it can use each connection to trunk requests and
 replies.

 The client's choice is whether session trunking
 or client ID trunking applies.

 Session Trunking.

 If the eia_clientowner argument is the same in
 two different EXCHANGE_ID requests, and
 the eir_clientid, eir_server_owner.so_major_id,
 eir_server_owner.so_minor_id, and eir_server_scope
 results match in both EXCHANGE_ID results, then
 the client is permitted to perform session trunking.
 If the client has no session mapping to the tuple of
 eir_clientid, eir_server_owner.so_major_id, eir_server_scope, and
 eir_server_owner.so_minor_id, then it creates
 the session via a CREATE_SESSION operation over one
 of the connections, which associates the connection
 to the session. If there is a session for the tuple,
 the client can send BIND_CONN_TO_SESSION to associate
 the connection to the session.

 Of course, if the client
 does not desire to use session trunking, it is not
 required to do so. It can invoke
 CREATE_SESSION on the connection. This will result
 in client ID trunking as described below. It can also
 decide to drop the connection if it does not choose to
 use trunking.

 Client ID Trunking.

 If the eia_clientowner argument is the same in
 two different EXCHANGE_ID requests, and
 the eir_clientid, eir_server_owner.so_major_id,
 and eir_server_scope
 results match in both EXCHANGE_ID results, then
 the client is permitted to perform client ID trunking
 (regardless of whether the eir_server_owner.so_minor_id results match).
 The client can associate
 each connection with different sessions, where
 each session is associated with the same server.

 The client completes the act of client ID trunking by invoking
 CREATE_SESSION on each connection, using the same
 client ID that was returned in eir_clientid. These
 invocations create two sessions and also associate
 each connection with its respective session. The client
 is free to decline to use client ID trunking by simply
 dropping the connection at this point.

 When doing client ID trunking, locking state
 is shared across sessions associated with that same
 client ID. This requires the server to coordinate
 state across sessions and the client to be able to
 associate the same locking state with multiple sessions.

 It is always possible that, as a result of various sorts
 of reconfiguration events, eir_server_scope and
 eir_server_owner values may be different on subsequent
 EXCHANGE_ID requests made to the same network address.

 In most cases, such reconfiguration events will be
 disruptive and indicate that an IP address formerly connected
 to one server is now connected to an entirely different one.

 Some guidelines on client handling of such situations follow:

 When eir_server_scope changes, the client has no assurance
 that any IDs that it obtained previously (e.g., filehandles) can
 be validly used on the new server, and, even if the new
 server accepts them, there is no assurance that this is not
 due to accident. Thus, it is best to treat all such state
 as lost or stale, although a client may assume that the
 probability of inadvertent acceptance is low and treat
 this situation as within the next case.

 When eir_server_scope remains the same and
 eir_server_owner.so_major_id changes, the client can use
 the filehandles it has, consider its locking state lost,
	and attempt
	to reclaim or otherwise re-obtain its locks. It might find
	that
 its filehandle is now stale. However, if NFS4ERR_STALE is not
	returned, it can proceed to reclaim or otherwise re-obtain its
	open locking state.

 When eir_server_scope and
 eir_server_owner.so_major_id remain the same,
 the client has to use the now-current values
 of eir_server_owner.so_minor_id in deciding on appropriate
 forms of trunking. This may result in connections being
	dropped or new sessions being created.

 Verifying Claims of Matching Server Identity

 When the server responds using two different connections that claim
 matching or partially matching eir_server_owner,
 eir_server_scope, and eir_clientid values, the client
 does not have to trust the servers' claims. The client
 may verify these claims before trunking traffic in
 the following ways:

 For session trunking,
 clients SHOULD
 reliably verify if connections between different
 network paths are in fact associated with the same NFSv4.1
 server and usable on the same session, and servers
 MUST allow clients to perform reliable verification.
 When a client ID is created, the client SHOULD specify that
 BIND_CONN_TO_SESSION is to be verified according to the
 SP4_SSV or SP4_MACH_CRED ()
 state protection options. For SP4_SSV, reliable
 verification depends on a shared secret (the
 SSV) that is established via the SET_SSV (see
) operation.

 When a new connection is associated with the
 session (via the BIND_CONN_TO_SESSION operation,
 see), if
 the client specified SP4_SSV state protection for the
 BIND_CONN_TO_SESSION operation, the client MUST send
 the BIND_CONN_TO_SESSION with RPCSEC_GSS protection,
 using integrity or privacy, and an RPCSEC_GSS handle created
 with the GSS SSV mechanism (see).

 If the client mistakenly tries to associate a
 connection to a session of a wrong server, the
 server will either reject the attempt because
 it is not aware of the session identifier of the
 BIND_CONN_TO_SESSION arguments, or it will reject
 the attempt because the RPCSEC_GSS authentication
 fails. Even if the server mistakenly or maliciously
 accepts the connection association attempt, the
 RPCSEC_GSS verifier it computes in the response
 will not be verified by the client, so the client will
 know it cannot use the connection for trunking the
 specified session.
 If the
 client specified SP4_MACH_CRED state protection, the
 BIND_CONN_TO_SESSION operation will use RPCSEC_GSS
 integrity or privacy, using the same credential that
 was used when the client ID was created. Mutual
 authentication via RPCSEC_GSS assures the client
 that the connection is associated with the correct
 session of the correct server.

 For client ID trunking, the client has at least two
 options for verifying that the same client ID
 obtained from two different EXCHANGE_ID operations
 came from the same server. The first option is
 to use RPCSEC_GSS authentication when sending each
 EXCHANGE_ID operation. Each time an EXCHANGE_ID is sent with
 RPCSEC_GSS authentication, the client notes the
 principal name of the GSS target. If the EXCHANGE_ID
 results indicate that client ID trunking is possible,
 and the GSS targets' principal names are the same,
 the servers are the same and client ID trunking is
 allowed.

 The second option for verification is to
 use SP4_SSV protection. When the client sends
 EXCHANGE_ID, it specifies SP4_SSV protection. The
 first EXCHANGE_ID the client sends always has to
 be confirmed by a CREATE_SESSION call. The client
 then sends SET_SSV. Later, the client
 sends EXCHANGE_ID to a second destination
 network address different from the one the first
 EXCHANGE_ID was sent to.
 The client checks that each EXCHANGE_ID reply has the
 same eir_clientid, eir_server_owner.so_major_id, and
 eir_server_scope. If so, the client verifies the
 claim by sending a CREATE_SESSION operation to the second
 destination address, protected with RPCSEC_GSS integrity
 using an RPCSEC_GSS handle returned by the second
 EXCHANGE_ID. If the server accepts the CREATE_SESSION
 request, and if the client verifies the RPCSEC_GSS
 verifier and integrity codes, then the client has
 proof the second server knows the SSV, and thus
 the two servers are cooperating for the purposes of
 specifying server scope and client ID trunking.

 Exactly Once Semantics

 Via the session, NFSv4.1 offers exactly once semantics (EOS)
 for requests sent over a channel. EOS is supported on both the
 fore channel and backchannel.

 Each COMPOUND or CB_COMPOUND request that is sent
 with a leading SEQUENCE or CB_SEQUENCE operation MUST
 be executed by the receiver exactly once. This requirement
 holds regardless of whether the request is sent with reply
 caching specified (see).
 The requirement holds even if the requester is sending the
 request over a session created between a pNFS data client
 and pNFS data server. To understand the rationale for this requirement,
 divide the requests into three
 classifications:

 Non-idempotent requests.

 Idempotent modifying requests.

 Idempotent non-modifying requests.

 An example of a non-idempotent request is
 RENAME. Obviously, if a replier executes the
 same RENAME request twice, and the first execution succeeds,
 the re-execution will fail. If the replier returns the
 result from the re-execution, this result is incorrect.
 Therefore, EOS is required for non-idempotent requests.

 An example of an idempotent modifying request is
 a COMPOUND request containing a WRITE operation.
 Repeated execution of the same WRITE
 has the same effect as execution of that WRITE a single time.
 Nevertheless, enforcing EOS for WRITEs and other idempotent
 modifying requests is necessary
 to avoid data corruption.

 Suppose a client sends WRITE A to a
 noncompliant server that does not enforce EOS, and
 receives no response, perhaps due to a network
 partition. The client reconnects to the server and
 re-sends WRITE A. Now, the server has
 outstanding two instances of A. The
 server can be in a situation in which it executes and
 replies to the retry of A, while the first
 A is still waiting in the server's internal I/O system for some
 resource. Upon receiving the
 reply to the second attempt of WRITE A,
 the client believes its WRITE is done so it is free
 to send WRITE B, which overlaps the byte-range of
 A. When the original A is dispatched from the server's
 I/O system and
 executed (thus the second time A will have
 been written), then what has been
 written by B can be overwritten and thus corrupted.

 An example of an idempotent non-modifying request
 is a COMPOUND containing SEQUENCE, PUTFH, READLINK,
 and nothing else. The re-execution of such a
 request will not cause data corruption or
 produce an incorrect result. Nonetheless,
 to keep the implementation simple,
 the replier MUST enforce EOS for all requests, whether or not
 idempotent and non-modifying.

 Note that true and complete EOS is not possible unless the
 server persists the reply cache in stable storage, and unless the
 server is somehow implemented to never require a restart
 (indeed, if such a server exists, the distinction between a
 reply cache kept in stable storage versus one that is not is
 one without meaning). See for
 a discussion of persistence in the reply cache.
 Regardless, even if the server does not persist the reply cache,
 EOS improves robustness and correctness over previous versions
 of NFS because the legacy duplicate request/reply caches were
 based on the ONC RPC transaction identifier (XID).

 explains the shortcomings of the XID as a basis for
 a reply cache and describes how NFSv4.1 sessions improve
 upon the XID.

 Slot Identifiers and Reply Cache

 The RPC layer provides a transaction ID (XID), which,
 while required to be unique, is not
 convenient for tracking requests for two reasons.
 First, the XID is only
 meaningful to the requester; it cannot be interpreted
 by the replier except to test for equality with
 previously sent requests. When consulting an RPC-based
 duplicate request cache, the opaqueness of the XID requires
 a computationally expensive look up (often via a hash that
 includes XID and source address). NFSv4.1 requests use
 a non-opaque slot ID, which is an index into a slot table,
 which is far more efficient. Second, because RPC requests
 can be executed by the replier in any order, there is
 no bound on the number of requests that may be outstanding
 at any time. To achieve perfect EOS, using ONC RPC
 would require storing all replies in the reply cache.
 XIDs are 32 bits; storing over four billion (2 32) replies
 in the reply cache is not practical. In practice, previous versions
 of NFS have chosen to store a fixed number of replies in
 the cache, and to use a least recently used (LRU) approach to
 replacing cache entries with new entries when the cache
 is full. In NFSv4.1, the number of outstanding requests is
 bounded by the size of the slot table, and a sequence ID
 per slot is used to tell the replier when it is safe to
 delete a cached reply.

 In the NFSv4.1 reply cache, when the requester sends a new request,
 it selects a slot ID in the
 range 0..N, where N is the replier's current maximum slot ID
 granted to the requester on the session over which the request is to be
 sent. The value of N starts out as equal to
 ca_maxrequests - 1 (), but
 can be adjusted by the response to SEQUENCE or CB_SEQUENCE as described
 later in this section.
 The slot ID must be unused by any of the requests that the
 requester has already active on the session. "Unused" here means the
 requester has no outstanding request for that slot ID.

 A slot contains a sequence ID and the cached reply corresponding to
 the request sent with that sequence ID. The sequence ID is a
 32-bit unsigned value, and is therefore in the range 0..0xFFFFFFFF (2 32 - 1).
 The first time a slot is used, the requester MUST specify
 a sequence ID of one ().
 Each time a slot is reused, the request MUST specify a sequence ID
 that is one greater than that of the previous request on the
 slot. If the previous sequence ID was 0xFFFFFFFF, then the next
 request for the slot MUST have the sequence ID set to zero (i.e.,
 (2 32 - 1) + 1 mod 2 32).

 The sequence ID accompanies the slot ID in each request. It is
 for the critical check at the replier: it used to efficiently
 determine whether a request using a certain
 slot ID is a retransmit or a new, never-before-seen request. It is
 not feasible for the requester to assert that it is retransmitting to
 implement this, because for any given request the requester cannot
 know whether the replier has seen it unless the replier actually replies. Of
 course, if the requester has seen the reply, the requester would
 not retransmit.

 The replier compares each received request's
 sequence ID with the last one previously received for that slot ID,
 to see if the new request is:

 A new request, in which the sequence ID is one greater
 than that previously seen in the slot (accounting for sequence
 wraparound). The replier proceeds to execute the new request,
 and the replier
 MUST increase the slot's sequence ID by one.

 A retransmitted request, in which the sequence ID is equal to
 that currently recorded in the slot.
 If the original request has
 executed to completion, the replier returns the cached
 reply. See for direction on how the replier
 deals with retries of requests that are still in progress.

 A misordered retry, in which the sequence ID
 is less than (accounting for sequence wraparound)
 that previously seen in the slot. The
 replier MUST return NFS4ERR_SEQ_MISORDERED (as the
 result from SEQUENCE or CB_SEQUENCE).

 A misordered new request, in which the sequence ID
 is two or more than (accounting for sequence
 wraparound) that previously seen in the
 slot. Note that because the sequence ID MUST
 wrap around to zero once it reaches 0xFFFFFFFF, a
 misordered new request and a misordered retry
 cannot be distinguished. Thus, the replier MUST
 return NFS4ERR_SEQ_MISORDERED (as the result from
 SEQUENCE or CB_SEQUENCE).

 Unlike the XID, the slot ID is always within a specific
 range; this has two implications. The first
 implication is that for a given session, the replier
 need only cache the results of a limited number of
 COMPOUND requests.
 The second implication derives
 from the first, which is that unlike XID-indexed reply
 caches (also known as duplicate request caches - DRCs),
 the slot ID-based reply cache cannot be overflowed.
 Through use of the sequence ID to identify
 retransmitted requests, the replier does not need to
 actually cache the request itself, reducing the
 storage requirements of the reply cache further. These
 facilities make it practical to maintain all the
 required entries for an effective reply cache.

 The slot ID, sequence ID, and session ID therefore take over the traditional role
 of the XID and source network address in the replier's
 reply cache implementation.
 This approach is considerably
 more portable and completely robust -- it is not subject to the
 reassignment of ports as clients reconnect over IP
 networks. In addition, the RPC XID is not used in the reply cache,
 enhancing robustness of the cache in the face of any rapid reuse of
 XIDs by the requester. While the replier does not care
 about the XID for the purposes of reply cache management
 (but the replier MUST return the same XID that was in the request),
 nonetheless there are considerations for the XID in NFSv4.1
 that are the same as all other previous versions of NFS.
 The RPC XID remains in each message and needs to be formulated
 in NFSv4.1 requests as in any other ONC RPC request. The reasons
 include:

 The RPC layer retains its existing semantics and implementation.

 The requester and replier must be able to interoperate at the
 RPC layer, prior to the NFSv4.1 decoding of the SEQUENCE or CB_SEQUENCE
 operation.

 If an operation is being used that does not start with
 SEQUENCE or CB_SEQUENCE (e.g., BIND_CONN_TO_SESSION),
 then the RPC XID is needed for correct operation to
 match the reply to the request.

 The SEQUENCE or CB_SEQUENCE operation may generate an error.
 If so, the embedded slot ID, sequence ID, and session ID (if
 present) in the request will not be in the reply, and the
 requester has only the XID to match the reply to the request.

 Given that well-formulated XIDs continue to be required,
 this raises the question: why do SEQUENCE and CB_SEQUENCE replies
 have a session ID, slot ID, and sequence ID? Having the session ID
 in the reply means that the requester does not have to use the
 XID to look up
 the session ID, which would be necessary if the connection were
 associated with multiple sessions. Having the slot ID and sequence ID
 in the reply means that the requester does not have to use the XID to
 look up the slot ID and sequence ID.
 Furthermore, since the XID is only 32 bits, it is too small to
 guarantee the re-association of a reply with its request
 ; having
 session ID, slot ID, and sequence ID in the reply allows the
 client to validate that the reply in fact belongs to the matched request.

 The SEQUENCE (and CB_SEQUENCE) operation also carries
 a "highest_slotid" value, which carries additional
 requester slot usage information. The requester MUST
 always indicate the slot ID representing the outstanding request with the
 highest-numbered slot
 value.
 The requester should in all cases provide the most
 conservative value possible, although it can be increased somewhat
 above the actual instantaneous usage to maintain some minimum or
 optimal level. This provides a way for the requester to yield unused
 request slots back to the replier, which in turn can use the
 information to reallocate resources.

 The replier
 responds with both a new target highest_slotid and an
 enforced highest_slotid, described as follows:

 The target highest_slotid is
 an indication to the requester of the highest_slotid the replier
 wishes the requester to be using. This permits the replier to withdraw
 (or add) resources from a requester that has been found to not be
 using them, in order to more fairly share resources among a varying
 level of demand from other requesters. The requester must always comply
 with the replier's value updates, since they indicate newly
 established hard limits on the requester's access to session
 resources. However, because of request pipelining, the requester may
 have active requests in flight reflecting prior values; therefore,
 the replier must not immediately require the requester to comply.

 The enforced highest_slotid indicates the highest slot ID
 the requester is permitted to use on a subsequent SEQUENCE or
 CB_SEQUENCE operation. The replier's enforced highest_slotid SHOULD
 be no less than the highest_slotid the requester indicated
 in the SEQUENCE or CB_SEQUENCE arguments.

 A requester can be intransigent with respect to lowering its
 highest_slotid argument to a Sequence operation, i.e. the requester
 continues to ignore the target highest_slotid in the response to
 a Sequence operation, and continues to set its highest_slotid
 argument to be higher than the target highest_slotid. This can
 be considered particularly egregious behavior when the replier
 knows there are no outstanding requests with slot IDs higher than
 its target highest_slotid. When faced with such intransigence,
 the replier is free to take more forceful action, and MAY reply with
 a new enforced highest_slotid that is less than its previous
 enforced highest_slotid. Thereafter, if the requester continues
 to send requests with a highest_slotid that is greater than
 the replier's new enforced highest_slotid, the server MAY return
 NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in the request is greater
 than the new enforced highest_slotid and the request is a retry.

 The replier SHOULD retain the slots it wants to retire
 until
 the requester sends a request with a highest_slotid less than
 or equal to the replier's new enforced highest_slotid.

 The requester can also be intransigent with
 respect to sending non-retry requests that have a slot ID that
 exceeds the replier's highest_slotid.
 Once the replier has forcibly lowered the enforced
 highest_slotid, the requester is only allowed to
 send retries on slots that exceed the replier's highest_slotid.
 If a request is received with a slot ID that is higher than
 the new enforced highest_slotid, and the sequence ID
 is one higher than what is in the slot's reply cache, then
 the server can both retire the slot and return NFS4ERR_BADSLOT
 (however, the server MUST NOT do one and not the other).
 The reason it is safe to retire the slot
 is because by using the next sequence ID, the requester
 is indicating it has received the previous reply for the
 slot.

 The requester SHOULD use the lowest available
 slot when sending a new request. This way, the
 replier may be able to retire slot entries faster.
 However, where the replier is actively adjusting
 its granted highest_slotid,
 it will not be able
 to use only the receipt of the slot ID and highest_slotid
 in the request. Neither the slot ID nor the
 highest_slotid used in a request may reflect the
 replier's current idea of the requester's session
 limit, because the request may have been sent from the
 requester before the update was received. Therefore,
 in the downward adjustment case, the replier may have
 to retain a number of reply cache entries at least as
 large as the old value of maximum requests
 outstanding, until it can infer that the requester
 has seen a reply containing the new granted highest_slotid.
 The replier can infer that the requester has seen such a
 reply when it receives a new request with the same
 slot ID as the request replied to and the next higher
 sequence ID.

 Caching of SEQUENCE and CB_SEQUENCE Replies

 When a SEQUENCE or CB_SEQUENCE operation is
 successfully executed, its reply MUST always be
 cached. Specifically, session ID, sequence ID,
 and slot ID MUST be cached in the reply cache.
 The reply from SEQUENCE also includes the highest
 slot ID, target highest slot ID, and status flags. Instead
 of caching these values, the server MAY
 re-compute the values from the current
 state of the fore channel, session, and/or client
 ID as appropriate. Similarly, the reply from
 CB_SEQUENCE includes a highest slot ID and target
 highest slot ID. The client
 MAY re-compute the values from the
 current state of the session as appropriate.

 Regardless of whether or not a replier is re-computing highest slot ID,
 target slot ID, and status on replies to retries, the requester
 MUST NOT assume that the values are being re-computed whenever it
 receives a reply after a retry is sent, since it has no way
 of knowing whether the reply it has received was sent by the
 replier in response to the retry or is a delayed response to
 the original request. Therefore, it may be the case that
 highest slot ID, target slot ID, or status bits may reflect
 the state of affairs when the request was first executed.
 Although acting based on such delayed information is valid,
 it may cause the receiver of the reply to do unneeded work. Requesters
 MAY choose to send additional requests to get the current
 state of affairs or use the state of affairs reported by
 subsequent requests, in preference to acting immediately
 on data that might be out of date.

 Errors from SEQUENCE and CB_SEQUENCE

 Any time SEQUENCE or CB_SEQUENCE returns an error, the
 sequence ID of the slot MUST NOT change. The replier MUST NOT
 modify the reply cache entry for the slot whenever an error
 is returned from SEQUENCE or CB_SEQUENCE.

 Optional Reply Caching

 On a per-request basis, the requester can choose to
 direct the replier to cache the reply to all operations
 after the first operation (SEQUENCE or CB_SEQUENCE) via
 the sa_cachethis or csa_cachethis fields of the arguments
 to SEQUENCE or CB_SEQUENCE.
 The reason it would not direct the replier to cache
 the entire reply is that the request is composed of all
 idempotent operations .
 Caching the reply may offer little benefit. If
 the reply is too large (see

),

 it may not be cacheable anyway. Even if the reply to
 idempotent request is small enough to cache, unnecessarily
 caching the reply slows down the server and increases
 RPC latency.

 Whether or not the requester requests the reply to be cached
 has no effect on the slot processing. If the
 result of SEQUENCE or CB_SEQUENCE is NFS4_OK, then
 the slot's sequence ID MUST be incremented by one.
 If a requester does not direct the replier to cache
 the reply, the replier MUST do one of following:

 The replier can cache the entire original reply.
 Even though sa_cachethis or csa_cachethis is FALSE,
 the replier is always free to cache. It may choose
 this approach in order to simplify implementation.

 The replier enters into its reply cache a reply consisting
 of the original results to the SEQUENCE or CB_SEQUENCE
 operation, and with the next operation in
 COMPOUND or CB_COMPOUND having the error NFS4ERR_RETRY_UNCACHED_REP.
 Thus, if the requester later retries the request, it will
 get NFS4ERR_RETRY_UNCACHED_REP.

 If a replier receives a retried Sequence operation where the reply
 to the COMPOUND or CB_COMPOUND was not cached, then the replier,

 MAY return NFS4ERR_RETRY_UNCACHED_REP
	 in reply to a Sequence operation if the
	 Sequence operation is not the first
	 operation (granted, a requester that
	 does so is in violation of the NFSv4.1
	 protocol).

 MUST NOT return
	 NFS4ERR_RETRY_UNCACHED_REP in reply to
	 a Sequence operation if the Sequence
	 operation is the first operation.

 If the second operation is an illegal operation, or an
 operation that was legal in a previous minor version of
 NFSv4 and MUST NOT
 be supported in the current minor version (e.g., SETCLIENTID), the
 replier MUST NOT ever return NFS4ERR_RETRY_UNCACHED_REP.
 Instead the replier MUST return NFS4ERR_OP_ILLEGAL or
 NFS4ERR_BADXDR or NFS4ERR_NOTSUPP as appropriate.

 If the second operation can result in another error status,
 the replier MAY return a status other than NFS4ERR_RETRY_UNCACHED_REP,
 provided the operation is not executed in such a way that the state
 of the replier is changed. Examples of such
 an error status include: NFS4ERR_NOTSUPP returned for an
 operation that is legal but not REQUIRED in the current
 minor versions, and thus not supported by the replier;
 NFS4ERR_SEQUENCE_POS; and NFS4ERR_REQ_TOO_BIG.

	The discussion above assumes that the
	retried request matches the original
	one.
	discusses what the replier might do, and
	 MUST do when original and retried requests do not match.
 Since the replier may
	only cache a small amount of the
	information that would be required to
	determine whether this is a case of a
	false retry, the replier may send to the
	client any of the following responses:

 The cached reply to the original request (if the replier has cached
 it in its entirety and the users of the original request and retry match).

 A reply that consists only of the Sequence operation with the error
	 NFS4ERR_SEQ_FALSE_RETRY.

	A reply consisting of the response to Sequence with the status
	NFS4_OK, together with the second operation as it appeared in the retried
	request with an error of NFS4ERR_RETRY_UNCACHED_REP or other error as
	described above.

 A reply that consists of the response to Sequence with the status
	NFS4_OK, together with the second operation as it appeared in the original
	request with an error of NFS4ERR_RETRY_UNCACHED_REP or other error as
	described above.

 False Retry

	If a requester sent a Sequence operation
	with a slot ID and sequence ID that are
	in the reply cache but the replier
	detected that the retried request is not
	the same as the original request,
	including a retry that has different
	operations or different arguments in the
	operations from the original and a retry
	that uses a different principal in the
	RPC request's credential field that
	translates to a different user, then this
	is a false retry. When the replier
	detects a false retry, it is permitted
	(but not always obligated) to return
	NFS4ERR_SEQ_FALSE_RETRY in response to the
	Sequence operation when it detects a
	false retry.

	Translations of particularly privileged
	user values to other users due to the
	lack of appropriately secure credentials,
	as configured on the replier, should be
	applied before determining whether the
	users are the same or different. If the
	replier determines the users are
	different between the original request
	and a retry, then the replier MUST return
	NFS4ERR_SEQ_FALSE_RETRY.

	If an operation of the retry is an
	illegal operation, or an operation that
	was legal in a previous minor version of
	NFSv4 and MUST NOT be supported in the
	current minor version (e.g., SETCLIENTID),
	the replier MAY return
	NFS4ERR_SEQ_FALSE_RETRY (and MUST do so if
	the users of the original request and
	retry differ). Otherwise, the replier MAY return
	NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or
	NFS4ERR_NOTSUPP as appropriate. Note
	that the handling is in contrast for how the
	replier deals with retries requests with
	no cached reply. The difference is due to
	NFS4ERR_SEQ_FALSE_RETRY being a valid error
	for only Sequence operations, whereas
	NFS4ERR_RETRY_UNCACHED_REP is a valid
	error for all operations except illegal
	operations and operations that MUST NOT be
	supported in the current minor version of
	NFSv4.

 Retry and Replay of Reply

 A requester MUST NOT retry a request, unless
 the connection it used to send the request
 disconnects. The requester can then reconnect
 and re-send the request, or it can re-send the
 request over a different connection that is
 associated with the same session.

 If the requester is a server wanting to re-send a callback
 operation over the backchannel of a session, the requester
 of course cannot reconnect because only the client can
 associate connections with the backchannel. The
 server can re-send the request over another connection that
 is bound to the same session's backchannel. If there is no
 such connection, the server
 MUST indicate that the session has no backchannel by setting
 the SEQ4_STATUS_CB_PATH_DOWN_SESSION flag bit in the response
 to the next SEQUENCE operation from the client. The client MUST
 then associate a connection with the session (or destroy
 the session).

 Note that it is not fatal for a requester to retry
 without a disconnect between the request and retry.
 However, the retry does consume resources, especially
 with RDMA, where each request, retry or not, consumes
 a credit. Retries for no reason, especially retries
 sent shortly after the previous attempt, are a poor
 use of network bandwidth and defeat the purpose of a
 transport's inherent congestion control system.

 A requester MUST wait for a reply to a request before using
 the slot for another request. If it does not wait for
 a reply, then the requester does not know what
 sequence ID to use for the slot on its next request.
 For example, suppose a requester sends a request with sequence ID
 1, and does not wait for the response. The next time it uses
 the slot, it sends the new request with sequence ID 2.
 If the replier has not seen the request with sequence ID 1, then
 the replier is not expecting sequence ID 2, and rejects the
 requester's new request with NFS4ERR_SEQ_MISORDERED (as the
 result from SEQUENCE or CB_SEQUENCE).

 RDMA fabrics do not guarantee that the memory handles
 (Steering Tags) within each RPC/RDMA "chunk"
 are valid on a scope
 outside that of a single connection. Therefore, handles used by
 the direct operations become invalid after connection loss. The
 server must ensure that any RDMA operations that must be replayed
 from the reply cache use the newly provided handle(s) from the
 most recent request.

 A retry might be sent while the original request is still in
 progress on the replier. The replier SHOULD deal with the issue
 by returning NFS4ERR_DELAY as the reply to SEQUENCE or CB_SEQUENCE
 operation, but implementations MAY return NFS4ERR_MISORDERED.
 Since errors from SEQUENCE and CB_SEQUENCE are
 never recorded in the reply cache, this approach allows the
 results of the execution of the original request to be
 properly recorded in the reply cache (assuming that the requester
 specified the reply to be cached).

 Resolving Server Callback Races

 It is possible for server callbacks to arrive at the
 client before the reply from related fore channel
 operations. For example, a client may have been
 granted a delegation to a file it has opened, but the
 reply to the OPEN (informing the client of the
 granting of the delegation) may be delayed in the
 network. If a conflicting operation arrives at the
 server, it will recall the delegation using the
 backchannel, which may be on a different
 transport connection, perhaps even a different
 network, or even a different session associated with
 the same client ID.

 The presence of a session between the client and server
 alleviates this issue. When a session is in place,
 each client request is uniquely identified by its {
 session ID, slot ID, sequence ID } triple. By the rules under which
 slot entries (reply cache entries) are
 retired, the server has knowledge whether the client
 has "seen" each of the server's replies. The server
 can therefore provide sufficient information to the
 client to allow it to disambiguate between an
 erroneous or conflicting callback race
 condition.

 For each client operation that might result in some
 sort of server callback, the server SHOULD "remember"
 the { session ID, slot ID, sequence ID } triple of the client request
 until the slot ID retirement rules allow the server to
 determine that the client has, in fact, seen the
 server's reply. Until the time the { session ID, slot ID,
 sequence ID } request triple can be retired, any recalls
 of the associated object MUST carry an array of these
 referring identifiers (in the CB_SEQUENCE operation's
 arguments), for the benefit of the client. After this
 time, it is not necessary for the server to provide
 this information in related callbacks, since it is
 certain that a race condition can no longer occur.

 The CB_SEQUENCE operation that begins each server
 callback carries a list of "referring" { session ID, slot ID,
 sequence ID } triples. If the client finds the request
 corresponding to the referring session ID, slot ID, and sequence ID
 to be currently outstanding (i.e., the server's reply has
 not been seen by the client), it can determine that
 the callback has raced the reply, and act
 accordingly. If the client does not find the request
 corresponding to the referring triple to be outstanding (including
 the case of a session ID referring to a destroyed session),
 then there is no race with respect to this triple.
 The server SHOULD limit the referring triples
 to requests that refer to just those that apply to the objects
 referred to in
 the CB_COMPOUND procedure.

 The client must not simply wait forever for the
 expected server reply to arrive before responding to the
 CB_COMPOUND that won the race,
 because it is possible
 that it will be delayed indefinitely. The client should
 assume the likely case that the reply will arrive within
 the average round-trip time for COMPOUND requests to the
 server, and wait that period of time. If
 that period of time
 expires, it can respond to the CB_COMPOUND with
 NFS4ERR_DELAY. There are other scenarios under which callbacks
 may race replies.
 Among them are pNFS layout recalls as described in
 .

 COMPOUND and CB_COMPOUND Construction Issues

 Very large requests and replies may pose both buffer
 management issues (especially with RDMA) and reply
 cache issues. When the session is created
 (), for each channel (fore and
 back), the client and server
 negotiate the maximum-sized request they will
 send or process (ca_maxrequestsize), the maximum-sized reply
 they will return or process (ca_maxresponsesize), and the
 maximum-sized reply they will store in the reply cache
 (ca_maxresponsesize_cached).

 If a request exceeds ca_maxrequestsize, the reply will
 have the status NFS4ERR_REQ_TOO_BIG. A replier MAY
 return NFS4ERR_REQ_TOO_BIG as the status for the first operation
 (SEQUENCE or CB_SEQUENCE) in the request (which means that
 no operations in the request executed and that the
 state of the slot in the reply cache is unchanged), or it MAY
 opt to return it on a subsequent operation in the same
 COMPOUND or CB_COMPOUND request (which means that at least one
 operation did execute and that the state of the slot in the reply cache does
 change). The replier SHOULD set NFS4ERR_REQ_TOO_BIG on the
 operation that exceeds ca_maxrequestsize.

 If a reply exceeds ca_maxresponsesize, the reply will
 have the status NFS4ERR_REP_TOO_BIG. A replier MAY
 return NFS4ERR_REP_TOO_BIG as the status for the first operation
 (SEQUENCE or CB_SEQUENCE) in the request, or it MAY
 opt to return it on a subsequent operation (in the same
 COMPOUND or CB_COMPOUND reply). A replier MAY return NFS4ERR_REP_TOO_BIG
 in the reply to SEQUENCE or CB_SEQUENCE, even if the response
 would still exceed ca_maxresponsesize.

 If sa_cachethis or csa_cachethis is TRUE, then the
 replier MUST cache a reply except if an error is
 returned by the SEQUENCE or CB_SEQUENCE operation (see
). If the reply exceeds
 ca_maxresponsesize_cached (and sa_cachethis or
 csa_cachethis is TRUE), then the server MUST return
 NFS4ERR_REP_TOO_BIG_TO_CACHE. Even if
 NFS4ERR_REP_TOO_BIG_TO_CACHE (or any other error for
 that matter) is returned on an operation other than the
 first operation (SEQUENCE or CB_SEQUENCE), then
 the reply MUST be cached if sa_cachethis or
 csa_cachethis is TRUE.
 For example, if a COMPOUND has eleven
 operations, including SEQUENCE, the fifth operation is
 a RENAME, and the tenth operation is a READ for one
 million bytes, the server may return
 NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth operation.
 Since the server executed several operations, especially
 the non-idempotent RENAME, the client's request to
 cache the reply needs to be honored in order for the
 correct operation of exactly once semantics. If the
 client retries the request, the server will have cached
 a reply that contains results for ten of the eleven requested
 operations, with
 the tenth operation having a status of NFS4ERR_REP_TOO_BIG_TO_CACHE.

 A client needs to take care that, when sending
 operations that change the current filehandle (except for
 PUTFH, PUTPUBFH, PUTROOTFH, and RESTOREFH), it
 does not exceed the maximum reply buffer before the GETFH
 operation. Otherwise, the client will have to retry
 the operation that changed the current filehandle, in order
 to obtain the desired filehandle.
 For the OPEN operation (see),
 retry is not always available as an option.
 The following guidelines for the handling of
 filehandle-changing operations are advised:

 Within the same COMPOUND procedure, a client
 SHOULD send GETFH immediately after a current
 filehandle-changing operation. A client
 MUST send GETFH after a current filehandle-changing operation
 that is also non-idempotent (e.g., the OPEN operation), unless
 the operation is RESTOREFH. RESTOREFH is
 an exception, because even though it is
 non-idempotent, the filehandle RESTOREFH
 produced originated from an operation that
 is either idempotent (e.g., PUTFH, LOOKUP),
 or non-idempotent (e.g., OPEN, CREATE). If the
 origin is non-idempotent, then because the client
 MUST send GETFH after the origin operation, the
 client can recover if RESTOREFH returns an error.

 A server MAY return NFS4ERR_REP_TOO_BIG or
 NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE)
 on a filehandle-changing operation if the reply would
 be too large on the next operation.

 A server SHOULD return NFS4ERR_REP_TOO_BIG or
 NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE)
 on a filehandle-changing, non-idempotent operation if the reply would
 be too large on the next operation, especially if the operation
 is OPEN.

 A server MAY return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent
 current filehandle-changing operation, if
 it looks at the next operation (in the same COMPOUND procedure)
 and finds it is
 not GETFH. The server SHOULD do this if it is unable to
 determine in advance whether the total response size
 would exceed ca_maxresponsesize_cached or ca_maxresponsesize.

 Persistence

 Since the reply cache is bounded, it is practical for
 the reply cache to persist across server restarts.
 The replier MUST persist the following information
 if it agreed to persist the session (when the session
 was created; see):

 The session ID.

 The slot table including the sequence ID and cached reply for
 each slot.

 The above are sufficient for a replier to provide EOS semantics
 for any requests that were sent and executed before the server
 restarted.
 If the replier is a client, then there is no need for
 it to persist any more information, unless the client will
 be persisting all other state across client restart, in which case,
 the server will never see any NFSv4.1-level protocol manifestation
 of a client restart.
 If the replier is a server, with just the
 slot table and session ID persisting,
 any requests the client retries after the server restart will
 return the results that are cached in the reply cache,
 and any new requests (i.e., the sequence ID is one greater than the
 slot's sequence ID) MUST be rejected with NFS4ERR_DEADSESSION
 (returned by SEQUENCE). Such a session is considered dead.
 A server MAY re-animate a session
 after a server restart so that the session will accept new
 requests as well as retries. To re-animate a session,
 the server needs to persist additional information
 through server restart:

 The client ID. This is a prerequisite to let the client
 create more sessions associated with the same client ID
 as the re-animated session.

 The client ID's sequence ID that is used for creating
 sessions (see Sections and
). This is a
 prerequisite to let the client create more sessions.

 The principal that created the client ID. This
 allows the server to authenticate the client when
 it sends EXCHANGE_ID.

 The SSV, if SP4_SSV state protection was
 specified when the client ID was created (see). This lets the
 client create new sessions, and associate connections
 with the new and existing sessions.

 The properties of the client ID as defined in
 .

 A persistent reply cache places certain demands on the server.
 The execution of the sequence of operations (starting with SEQUENCE)
 and placement of its results in the persistent cache MUST be atomic. If
 a client retries a sequence of operations that was previously
 executed on the server, the only acceptable outcomes are either
 the original cached reply or an indication that the client ID
 or session has been lost (indicating a catastrophic loss
 of the reply cache or a session that has been deleted because
 the client failed to use the session for an extended period
 of time).

 A server could fail and restart in the middle of a
 COMPOUND procedure that contains one or more non-idempotent
 or idempotent-but-modifying operations. This creates
 an even higher challenge for atomic execution and
 placement of results in the reply cache. One way
 to view the problem is as a single transaction consisting of
 each operation in the COMPOUND followed by storing
 the result in persistent storage, then finally a transaction
 commit. If there is a failure before the transaction
 is committed, then the server rolls back the transaction.
 If the server itself fails, then when it restarts, its
 recovery logic could roll back the transaction
 before starting the NFSv4.1 server.

 While the description of the
 implementation for atomic execution of the request
 and caching of the reply
 is beyond the scope of this document, an example implementation
 for NFSv2 is described in .

 RDMA Considerations

 A complete discussion of the operation of RPC-based
 protocols over RDMA transports is in . A
 discussion of the operation of NFSv4, including NFSv4.1,
 over RDMA is in . Where RDMA is considered,
 this specification assumes the use of such a layering;
 it addresses only the upper-layer issues relevant to
 making best use of RPC/RDMA.

 RDMA Connection Resources

 RDMA requires its consumers to register memory and post
 buffers of a specific size and number for receive
 operations.

 Registration of memory can be a relatively high-overhead operation,
 since it requires pinning of buffers, assignment of attributes
 (e.g., readable/writable), and initialization of hardware
 translation. Preregistration is desirable to reduce overhead.
 These registrations are specific to hardware interfaces and even to
 RDMA connection endpoints; therefore, negotiation of their limits is
 desirable to manage resources effectively.

 Following basic registration, these buffers must be posted by
 the RPC layer to handle receives. These buffers remain in use by
 the RPC/NFSv4.1 implementation; the size and number of them must be
 known to the remote peer in order to avoid RDMA errors that would
 cause a fatal error on the RDMA connection.

 NFSv4.1 manages slots as resources on a per-session
 basis (see), while RDMA
 connections manage credits on a per-connection basis.
 This means that in order for a peer to send data over
 RDMA to a remote buffer, it has to have both an NFSv4.1
 slot and an RDMA credit. If multiple RDMA connections
 are associated with a session, then if the total number
 of credits across all RDMA connections associated with
 the session is X, and the number of slots in the session
 is Y, then the maximum number of outstanding requests
 is the lesser of X and Y.

 Flow Control

 Previous versions of NFS do not provide flow control;
 instead, they rely on the windowing provided by
 transports like TCP to throttle requests. This does
 not work with RDMA, which provides no operation flow
 control and will terminate a connection in error when
 limits are exceeded.

 Limits such as maximum number of requests
 outstanding are therefore negotiated when a session
 is created (see the ca_maxrequests field in). These limits then
 provide the maxima within which each connection associated
 with the session's channel(s) must remain.
 RDMA connections are managed within these limits as
 described in ; if there are multiple
 RDMA connections, then the maximum number of requests
 for a channel will be divided among the RDMA
 connections. Put a different way, the onus is on the
 replier to ensure that the total number of RDMA credits
 across all connections associated with the replier's
 channel does exceed the channel's maximum number of
 outstanding requests.

 The limits may also be modified
 dynamically at the replier's choosing by manipulating
 certain parameters present in each NFSv4.1 reply. In
 addition, the CB_RECALL_SLOT callback operation (see
) can be sent by
 a server to a client to return RDMA credits to the
 server, thereby lowering the maximum number of requests
 a client can have outstanding to the server.

 Padding

 Header padding is requested by each peer at session initiation
 (see the ca_headerpadsize argument to CREATE_SESSION in
), and
 subsequently used by the RPC RDMA layer, as described in .
 Zero padding is permitted.

 Padding leverages the useful property
 that RDMA preserve alignment of data, even when they are
 placed into anonymous (untagged) buffers. If requested, client
 inline writes will insert appropriate pad bytes within the request
 header to align the data payload on the specified boundary. The
 client is encouraged to add sufficient padding (up to the
 negotiated size) so that
 the "data" field of the WRITE operation
 is aligned.
 Most servers can make good use of such padding,
 which allows them to chain receive buffers in such a way that any
 data carried by client requests will be placed into appropriate
 buffers at the server, ready for file system processing. The
 receiver's RPC layer encounters no overhead from skipping over pad
 bytes, and the RDMA layer's high performance makes the insertion
 and transmission of padding on the sender a significant
 optimization. In this way, the need for servers to perform RDMA
 Read to satisfy all but the largest client writes is obviated. An
 added benefit is the reduction of message round trips on the network
 -- a potentially good trade, where latency is present.

 The value to choose for padding is subject to a number of criteria.
 A primary source of variable-length data in the RPC header is the
 authentication information, the form of which is client-determined,
 possibly in response to server specification. The contents of
 COMPOUNDs, sizes of strings such as those passed to RENAME, etc. all
 go into the determination of a maximal NFSv4.1 request size and
 therefore minimal buffer size. The client must select its offered
 value carefully, so as to avoid overburdening the server, and vice
 versa. The benefit of an appropriate padding value is higher
 performance.

 Sender gather:
 |RPC Request|Pad bytes|Length| -> |User data...|
 \------+----------------------/ \
 \ \
 \ Receiver scatter: \-----------+- ...
 /-----+----------------\ \ \
 |RPC Request|Pad|Length| -> |FS buffer|->|FS buffer|->...

 In the above case, the server may recycle unused buffers to the
 next posted receive if unused by the actual received request, or
 may pass the now-complete buffers by reference for normal write
 processing. For a server that can make use of it, this removes
 any need for data copies of incoming data, without resorting to
 complicated end-to-end buffer advertisement and management. This
 includes most kernel-based and integrated server designs, among
 many others. The client may perform similar optimizations, if
 desired.

 Dual RDMA and Non-RDMA Transports

 Some RDMA transports (e.g., RFC 5040)
 permit a "streaming" (non-RDMA) phase,
 where ordinary traffic might flow before "stepping up"
 to RDMA mode, commencing RDMA traffic. Some RDMA
 transports start connections always in RDMA mode.
 NFSv4.1 allows, but does not assume, a streaming phase
 before RDMA mode. When a connection
 is associated with a session, the client and server negotiate whether the
 connection is used in RDMA or non-RDMA mode (see Sections
 and
).

 Session Security

 Session Callback Security

 Via session/connection association, NFSv4.1 improves security over
 that provided by NFSv4.0 for the backchannel. The
 connection is client-initiated (see
) and subject to the same
 firewall and routing checks as the fore channel.
 At the client's option (see),
 connection association is fully authenticated before being
 activated (see).
 Traffic from the server over the
 backchannel is authenticated exactly as the client specifies
 (see).

 Backchannel RPC Security

 When the NFSv4.1 client establishes the backchannel, it
 informs the server of the security flavors and principals
 to use when sending requests. If the security flavor is
 RPCSEC_GSS, the client expresses the principal in the form
 of an established RPCSEC_GSS context. The server is free
 to use any of the flavor/principal combinations the client
 offers, but it MUST NOT use unoffered combinations.

 This way, the client need not provide a target
 GSS principal for the backchannel as it did with
 NFSv4.0, nor does the server have to implement an
 RPCSEC_GSS initiator as it did with NFSv4.0 .

 The CREATE_SESSION ()
 and BACKCHANNEL_CTL ()
 operations allow the client to specify flavor/principal combinations.

 Also note that the SP4_SSV state protection mode
 (see Sections and) has the side
 benefit of providing SSV-derived RPCSEC_GSS contexts ().

 Protection from Unauthorized State Changes

 As described to this point in the specification, the state model
 of NFSv4.1 is vulnerable to an attacker that
 sends a SEQUENCE operation with a forged session ID and with a slot ID that
 it expects the legitimate client to use next. When the legitimate client
 uses the slot ID with the same sequence number, the server
 returns the attacker's result from the reply cache, which
 disrupts the legitimate client and thus denies service to it.
 Similarly, an attacker could send a CREATE_SESSION with a forged
 client ID to create a new session associated with the client ID.
 The attacker could send requests using the new session that
 change locking state, such as LOCKU operations to release locks
 the legitimate client has acquired. Setting a security
 policy on the file that requires RPCSEC_GSS credentials when
 manipulating the file's state is one potential work around,
 but has the disadvantage of preventing a legitimate client from
 releasing state when RPCSEC_GSS is required to do so, but
 a GSS context cannot be obtained (possibly because the user
 has logged off the client).

 NFSv4.1 provides three options to a client for state protection,
 which are specified when a client creates
 a client ID via EXCHANGE_ID ().

 The first (SP4_NONE) is to simply waive state protection.

 The other two options (SP4_MACH_CRED and SP4_SSV)
 share several traits:

 An RPCSEC_GSS-based credential is used to authenticate
 client ID and session maintenance operations,
 including creating and destroying a session,
 associating a connection with the session, and
 destroying the client ID.

 Because RPCSEC_GSS is used to authenticate
 client ID and session maintenance, the attacker cannot
 associate a rogue connection with a legitimate session, or
 associate a rogue session with a legitimate client ID in
 order to maliciously alter the client ID's lock state
 via CLOSE, LOCKU, DELEGRETURN, LAYOUTRETURN, etc.

 In cases where the server's security policies on a
 portion of its namespace require RPCSEC_GSS authentication,
 a client may have to use an RPCSEC_GSS credential
 to remove per-file state (e.g., LOCKU, CLOSE, etc.).
 The server may require that the principal that removes
 the state match certain criteria (e.g.,
 the principal might have to be the same as the one
 that acquired the state). However, the client might
 not have an RPCSEC_GSS context for such a principal,
 and might not be able to create such a context (perhaps
 because the user has logged off). When the client
 establishes SP4_MACH_CRED or SP4_SSV protection,
 it can specify a list of operations that the server MUST
 allow using the machine credential (if SP4_MACH_CRED
 is used) or the SSV credential (if SP4_SSV is used).

 The SP4_MACH_CRED state protection option uses a machine
 credential where the principal that
 creates the client ID MUST also be the principal
 that performs client ID and session maintenance
 operations.
 The security of the machine credential state protection approach
 depends entirely on safeguarding the per-machine credential.
 Assuming a proper safeguard using the per-machine credential
 for operations like CREATE_SESSION, BIND_CONN_TO_SESSION,
 DESTROY_SESSION, and DESTROY_CLIENTID will prevent an attacker
 from associating a rogue connection with a session, or
 associating a rogue session with a client ID.

 There are at least three scenarios for the SP4_MACH_CRED
 option:

 The system administrator configures a unique,
 permanent per-machine credential for one of the
 mandated GSS mechanisms (e.g., if Kerberos
 V5 is used, a "keytab" containing a principal derived from a
 client host name could be used).

 The client is used by a single user, and so the
 client ID and its sessions are used by just that
 user. If the user's credential expires, then session
 and client ID maintenance cannot occur, but since
 the client has a single user, only that user is
 inconvenienced.

 The physical client has multiple users, but the
 client implementation has a unique client ID for
 each user. This is effectively the same as the
 second scenario, but a disadvantage is that each
 user needs to be allocated at least one session each,
 so the approach suffers from lack of economy.

 The SP4_SSV protection option uses the SSV (), via RPCSEC_GSS and the SSV GSS
 mechanism (), to protect state from attack.
 The SP4_SSV protection option is intended for the situation
 comprised of a client that has multiple active users and a system
 administrator who wants to avoid the burden of installing a permanent
 machine credential on each client. The SSV is
 established and updated on the server via SET_SSV (see). To prevent eavesdropping,
 a client SHOULD send SET_SSV via RPCSEC_GSS with
 the privacy service. Several aspects of the SSV
 make it intractable for an attacker to guess the SSV,
 and thus associate rogue connections with a session,
 and rogue sessions with a client ID:

 The arguments to and results of SET_SSV include digests of the old and
 new SSV, respectively.

 Because the initial value of the SSV is zero,
 therefore known, the client that opts for SP4_SSV
 protection and opts to apply SP4_SSV protection to
 BIND_CONN_TO_SESSION and CREATE_SESSION MUST send
 at least one SET_SSV operation before the first
 BIND_CONN_TO_SESSION operation or before the second
 CREATE_SESSION operation on a client ID. If it does
 not, the SSV mechanism will not generate tokens
 ().

 A client SHOULD send SET_SSV as soon as a session
 is created.

 A SET_SSV request does not replace the SSV with the argument to
 SET_SSV. Instead, the current SSV on the server is logically
 exclusive ORed (XORed) with the argument to SET_SSV.
 Each time a new principal uses a client ID for the first
 time, the client
 SHOULD send a SET_SSV with that principal's RPCSEC_GSS
 credentials, with RPCSEC_GSS service set to RPC_GSS_SVC_PRIVACY.

 Here are the types of attacks that can be attempted by an attacker named
 Eve on a victim named Bob, and how SP4_SSV protection foils
 each attack:

 Suppose Eve is the first user to log into a
 legitimate client. Eve's use of an NFSv4.1
 file system will cause the legitimate client to
 create a client ID
 with SP4_SSV protection, specifying that the BIND_CONN_TO_SESSION
 operation MUST use the SSV credential. Eve's use of
 the file system also causes an SSV to be created. The
 SET_SSV operation that creates the SSV will be protected by
 the RPCSEC_GSS context created by the legitimate
 client, which uses Eve's GSS principal and
 credentials. Eve can eavesdrop on the network while
 her RPCSEC_GSS context is created and the SET_SSV
 using her context is sent. Even if the legitimate
 client sends the SET_SSV with RPC_GSS_SVC_PRIVACY,
 because Eve knows her own credentials, she can
 decrypt the SSV. Eve can compute an RPCSEC_GSS
 credential that BIND_CONN_TO_SESSION will accept,
 and so associate a new connection with the
 legitimate session. Eve can change the slot ID and
 sequence state of a legitimate session, and/or the
 SSV state, in such a way that when Bob accesses
 the server via the same legitimate client, the
 legitimate client will be unable to use the session.

 The client's only recourse is to create a new client
 ID for Bob to use, and establish a new SSV for the
 client ID. The client will be unable to delete
 the old client ID, and will let the lease on the old
 client ID expire.

 Once the legitimate client establishes an SSV over
 the new session using Bob's RPCSEC_GSS context,
 Eve can use the new session via the legitimate
 client, but she cannot disrupt Bob. Moreover,
 because the client SHOULD have modified the SSV
 due to Eve using the new session, Bob cannot get
 revenge on Eve by associating a rogue connection
 with the session.

 The question is how did the legitimate client detect
 that Eve has hijacked the old session? When the
 client detects that a new principal, Bob, wants to
 use the session, it SHOULD have sent a SET_SSV,
 which leads to the following sub-scenarios:

 Let us suppose that from the rogue connection, Eve
 sent a SET_SSV with the same slot ID and sequence ID that
 the legitimate client later uses. The server will
 assume the SET_SSV sent with Bob's credentials is a retry,
 and return to the legitimate
 client the reply it sent Eve. However, unless Eve can
 correctly guess the SSV the legitimate client will use,
 the digest verification checks in the SET_SSV response
 will fail. That is an indication to the client that the
 session has apparently been hijacked.

 Alternatively, Eve sent a SET_SSV with a different slot ID than
 the legitimate client uses for its SET_SSV. Then the digest
 verification of the SET_SSV sent with Bob's credentials fails
 on the server, and the error returned to the client makes it
 apparent that the session has been hijacked.

 Alternatively, Eve sent an operation other than SET_SSV,
 but with the same slot ID and sequence that the legitimate client
 uses for its SET_SSV. The server returns to the legitimate
 client the response it sent Eve. The client sees that the
 response is not at all what it expects. The client
 assumes either session hijacking or a server bug, and either way
 destroys the old session.

 Eve associates a rogue connection with the session
 as above, and then destroys the session. Again, Bob
 goes to use the server from the legitimate client,
 which sends a SET_SSV using Bob's credentials. The client receives an error
 that indicates that the session does not exist. When
 the client tries to create a new session, this
 will fail because the SSV it has does not match that which the
 server has, and now the client knows the session
 was hijacked. The legitimate client establishes a
 new client ID.

 If Eve creates a connection before the legitimate
 client establishes an SSV, because the initial
 value of the SSV is zero and therefore known,
 Eve can send a SET_SSV that will pass the digest
 verification check. However, because the new
 connection has not been associated with the session,
 the SET_SSV is rejected for that reason.

 In summary, an attacker's disruption of state when
 SP4_SSV protection is in use is limited to the
 formative period of a client ID, its first session,
 and the establishment of the SSV. Once a non-malicious
 user uses the client ID, the client quickly detects
 any hijack and rectifies the situation. Once a
 non-malicious user successfully modifies the SSV,
 the attacker cannot use NFSv4.1 operations to disrupt
 the non-malicious user.

 Note that neither the SP4_MACH_CRED nor
 SP4_SSV protection approaches prevent hijacking
 of a transport connection that has previously been
 associated with a session. If the goal of a counter-threat
 strategy is to prevent connection hijacking, the use of IPsec is RECOMMENDED.

 If a connection hijack occurs, the hijacker could in
 theory change locking state and negatively impact the
 service to legitimate clients. However, if the server
 is configured to require the use of RPCSEC_GSS with
 integrity or privacy on the affected file objects, and
 if EXCHGID4_FLAG_BIND_PRINC_STATEID capability () is in force, this will
 thwart unauthorized attempts to change locking state.

 The Secret State Verifier (SSV) GSS Mechanism

 The SSV provides the secret key for a GSS mechanism internal to NFSv4.1
 that NFSv4.1 uses for state protection. Contexts for this
 mechanism are not established via the RPCSEC_GSS
 protocol. Instead, the contexts are automatically
 created when EXCHANGE_ID specifies
 SP4_SSV protection. The only tokens
 defined are the PerMsgToken (emitted by GSS_GetMIC)
 and the SealedMessage token (emitted by GSS_Wrap).

 The mechanism OID for the SSV mechanism is
 iso.org.dod.internet.private.enterprise.Michael
 Eisler.nfs.ssv_mech (1.3.6.1.4.1.28882.1.1). While the
 SSV mechanism does not define any initial context
 tokens, the OID can be used to let servers indicate
 that the SSV mechanism is acceptable whenever the
 client sends a SECINFO or SECINFO_NO_NAME operation
 (see

).

 The SSV mechanism defines four subkeys derived from
 the SSV value. Each time SET_SSV is invoked, the subkeys
 are recalculated by the client and server. The
 calculation of each of the four subkeys depends on each
 of the four respective ssv_subkey4 enumerated values. The calculation
 uses the HMAC
 algorithm, using the current SSV as the key, the one-way hash
 algorithm as negotiated by EXCHANGE_ID,
 and the input text as represented by the XDR encoded
 enumeration value for that subkey of data type ssv_subkey4.
 If the length of the output of the HMAC algorithm exceeds the length of
 key of the encryption algorithm (which is also negotiated by EXCHANGE_ID),
 then the subkey MUST be truncated from the HMAC output, i.e., if the
 subkey is of N bytes long, then the first N bytes of the HMAC output
 MUST be used for the subkey. The specification of EXCHANGE_ID
 states that the length of the output of the HMAC algorithm MUST NOT
 be less than the length of subkey needed for the encryption algorithm
 (see).

/* Input for computing subkeys */
enum ssv_subkey4 {
 SSV4_SUBKEY_MIC_I2T = 1,
 SSV4_SUBKEY_MIC_T2I = 2,
 SSV4_SUBKEY_SEAL_I2T = 3,
 SSV4_SUBKEY_SEAL_T2I = 4
};

 The subkey derived from SSV4_SUBKEY_MIC_I2T
 is used for calculating message integrity codes (MICs)
 that originate from the NFSv4.1 client, whether as part
 of a request over the fore channel or a response
 over the backchannel. The subkey derived from
 SSV4_SUBKEY_MIC_T2I is used for MICs originating from the
 NFSv4.1 server. The subkey derived from SSV4_SUBKEY_SEAL_I2T
 is used for encryption text originating from the NFSv4.1
 client, and the subkey derived from SSV4_SUBKEY_SEAL_T2I
 is used for encryption text originating from the
 NFSv4.1 server.

 The PerMsgToken description is based on an XDR definition:

/* Input for computing smt_hmac */
struct ssv_mic_plain_tkn4 {
 uint32_t smpt_ssv_seq;
 opaque smpt_orig_plain<>;
};

/* SSV GSS PerMsgToken token */
struct ssv_mic_tkn4 {
 uint32_t smt_ssv_seq;
 opaque smt_hmac<>;
};

 The field smt_hmac is an HMAC calculated by using the
 subkey derived from SSV4_SUBKEY_MIC_I2T or
 SSV4_SUBKEY_MIC_T2I as the key, the one-way hash algorithm
 as negotiated by EXCHANGE_ID, and the input text
 as represented by data of type ssv_mic_plain_tkn4.
 The field smpt_ssv_seq is the same as smt_ssv_seq.
 The field smpt_orig_plain is the "message" input passed
 to GSS_GetMIC() (see).
 The caller of GSS_GetMIC() provides a pointer to a buffer
 containing the plain text. The SSV mechanism's entry point for
 GSS_GetMIC() encodes this into an opaque array, and the encoding
 will include an initial four-byte length, plus any necessary padding.
 Prepended to this will be the XDR encoded value of smpt_ssv_seq,
 thus making up an XDR encoding of a value of data type
 ssv_mic_plain_tkn4, which in turn is the input into the HMAC.

 The token emitted by GSS_GetMIC() is XDR encoded and
 of XDR data type ssv_mic_tkn4. The field smt_ssv_seq
 comes from the SSV sequence number, which is equal to
 one after SET_SSV ()
 is called the first time on a client
 ID.
 Thereafter, the SSV sequence number is incremented on each SET_SSV.
 Thus, smt_ssv_seq represents the version of the SSV at
 the time GSS_GetMIC() was called. As noted in , the client and server
 can maintain multiple concurrent versions of the SSV.
 This allows the SSV to be changed without serializing
 all RPC calls that use the SSV mechanism with SET_SSV
 operations.
 Once the HMAC is calculated, it is XDR encoded into
 smt_hmac, which will include an initial four-byte length,
 and any necessary padding. Prepended to this will be
 the XDR encoded value of smt_ssv_seq.

 The SealedMessage description is based on an XDR definition:

/* Input for computing ssct_encr_data and ssct_hmac */
struct ssv_seal_plain_tkn4 {
 opaque sspt_confounder<>;
 uint32_t sspt_ssv_seq;
 opaque sspt_orig_plain<>;
 opaque sspt_pad<>;
};

/* SSV GSS SealedMessage token */
struct ssv_seal_cipher_tkn4 {
 uint32_t ssct_ssv_seq;
 opaque ssct_iv<>;
 opaque ssct_encr_data<>;
 opaque ssct_hmac<>;
};

 The token emitted by GSS_Wrap() is XDR encoded and
 of XDR data type ssv_seal_cipher_tkn4.

 The ssct_ssv_seq field has the same meaning as smt_ssv_seq.

 The ssct_encr_data field is the result of encrypting a
 value of the XDR encoded data type ssv_seal_plain_tkn4.
 The encryption key is the subkey derived from SSV4_SUBKEY_SEAL_I2T
 or SSV4_SUBKEY_SEAL_T2I, and the encryption
 algorithm is that negotiated by EXCHANGE_ID.

 The ssct_iv field is the initialization vector (IV)
 for the encryption algorithm (if applicable) and is
 sent in clear text. The content and size of the IV MUST
 comply with the specification of the encryption algorithm.
 For example, the id-aes256-CBC algorithm MUST use
 a 16-byte initialization vector (IV), which MUST be
 unpredictable for each instance of a value of data type
 ssv_seal_plain_tkn4 that is encrypted with a particular
 SSV key.

 The ssct_hmac field is the result of computing an HMAC using the value
 of the XDR encoded data type ssv_seal_plain_tkn4 as the input
 text. The key is the subkey derived from SSV4_SUBKEY_MIC_I2T or
 SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that
 negotiated by EXCHANGE_ID.

 The sspt_confounder field is a random value.

 The sspt_ssv_seq field is the same as ssvt_ssv_seq.

 The field sspt_orig_plain field is the original plaintext
 and is the "input_message" input passed to
 GSS_Wrap() (see).
 As with the handling of the plaintext by the SSV mechanism's
 GSS_GetMIC() entry point, the entry point for GSS_Wrap()
 expects a pointer to the plaintext, and will XDR encode
 an opaque array into sspt_orig_plain
 representing the plain text, along with
 the other fields of an instance of data type ssv_seal_plain_tkn4.

 The sspt_pad field is present to support encryption
 algorithms that require inputs to be in fixed-sized
 blocks. The content of sspt_pad is zero filled
 except for the length. Beware that the XDR encoding
 of ssv_seal_plain_tkn4 contains three variable-length
 arrays, and so each array consumes four bytes for an
 array length, and each array that follows the length
 is always padded to a multiple of four bytes per the
 XDR standard.

 For example, suppose the encryption algorithm uses 16-byte blocks, and
 the sspt_confounder is three bytes long, and
 the sspt_orig_plain field is 15 bytes long.

 The XDR encoding of sspt_confounder uses eight bytes
 (4 + 3 + 1-byte pad),

 the XDR encoding of sspt_ssv_seq uses four bytes,

 the XDR encoding of sspt_orig_plain uses 20 bytes
 (4 + 15 + 1-byte pad),

 and the smallest XDR encoding of the sspt_pad field
 is four bytes.

 This totals 36 bytes. The next multiple of 16 is 48;
 thus, the length field of sspt_pad needs to be set to
 12 bytes, or a total encoding of 16 bytes.

 The total number of XDR encoded bytes is thus 8 +
 4 + 20 + 16 = 48.

 GSS_Wrap() emits a token that is an XDR
 encoding of a value of data type ssv_seal_cipher_tkn4.

 Note that regardless of whether or not the caller of GSS_Wrap()
 requests confidentiality, the token always has
 confidentiality. This is because the SSV mechanism
 is for RPCSEC_GSS, and RPCSEC_GSS never produces
 GSS_wrap() tokens without confidentiality.

 There is one SSV per client ID.
 There is a single GSS context for
 a client ID / SSV pair.
 All SSV mechanism RPCSEC_GSS handles of a client ID / SSV pair
 share the same GSS context.
 SSV GSS contexts do not expire except when the SSV
 is destroyed (causes would include the client ID
 being destroyed or a server restart).
 Since one
 purpose of context expiration is to replace keys that
 have been in use for "too long", hence vulnerable to
 compromise by brute force or accident, the client can
 replace the SSV key by
 sending periodic SET_SSV operations, which is done by cycling through
 different users' RPCSEC_GSS credentials. This way, the SSV is
 replaced without destroying the SSV's GSS contexts.

 SSV RPCSEC_GSS handles can be expired or deleted by the server
 at any time, and the EXCHANGE_ID operation can be used to create
 more SSV RPCSEC_GSS handles. Expiration of SSV RPCSEC_GSS handles
 does not imply that the SSV or its GSS context has expired.

 The client MUST establish an SSV via SET_SSV before the
 SSV GSS context can be used to emit tokens from GSS_Wrap()
 and GSS_GetMIC(). If SET_SSV has not been successfully
 called, attempts to emit tokens MUST fail.

 The SSV mechanism does not support replay detection and sequencing
 in its tokens because RPCSEC_GSS does not use those features (see
 "Context Creation Requests",). However, discusses special
 considerations for the SSV mechanism when used with RPCSEC_GSS.

 Security Considerations for RPCSEC_GSS When Using the SSV Mechanism

 When a client ID is created with SP4_SSV state protection (see), the client is permitted to associate
 multiple RPCSEC_GSS handles with the single SSV GSS context
 (see). Because of the way RPCSEC_GSS
 (both version 1 and version 2, see and
) calculate the verifier of the reply,
 special care must be taken by the implementation of the NFSv4.1
 client to prevent attacks by a man-in-the-middle. The verifier
 of an RPCSEC_GSS reply is the output of GSS_GetMIC() applied to
 the input value of the seq_num field of the RPCSEC_GSS credential
 (data type rpc_gss_cred_ver_1_t) (see). If multiple RPCSEC_GSS handles share
 the same
 GSS context, then if one handle is used to send a request with the
 same seq_num value as another handle, an attacker could block the
 reply, and replace it with the verifier used for the other handle.

 There are multiple ways to prevent the attack on the SSV RPCSEC_GSS
 verifier in the reply. The simplest is believed to be as follows.

 Each time one or more new SSV RPCSEC_GSS handles are created via
 EXCHANGE_ID, the client SHOULD send a SET_SSV operation to modify
 the SSV. By changing the SSV, the new handles will not result in the
 re-use of an SSV RPCSEC_GSS verifier in a reply.

 When a requester decides to use N SSV RPCSEC_GSS handles, it SHOULD
 assign a unique and non-overlapping range of seq_nums to each SSV
 RPCSEC_GSS handle. The size of each range SHOULD be equal to MAXSEQ
 / N (see for the definition
 of MAXSEQ). When an SSV RPCSEC_GSS handle reaches its maximum, it
 SHOULD force the replier to destroy the handle by sending a NULL
 RPC request with seq_num set to MAXSEQ + 1 (see
).

 When the requester wants to increase or decrease N, it SHOULD force
 the replier to destroy all N handles by sending a NULL RPC request on
 each handle with seq_num set to MAXSEQ + 1. If the requester is the
 client, it SHOULD send a SET_SSV operation before using new handles.
 If the requester is the server, then the client SHOULD send a SET_SSV
 operation when it detects that the server has forced it to destroy a
 backchannel's SSV RPCSEC_GSS handle. By sending a SET_SSV operation,
 the SSV will change, and so the attacker will be unavailable to
 successfully replay a previous verifier in a reply to the requester.

 Note that if the replier carefully creates the SSV RPCSEC_GSS
 handles, the related risk of a man-in-the-middle splicing a forged
 SSV RPCSEC_GSS credential with a verifier for another handle does
 not exist. This is because the verifier in an RPCSEC_GSS request
 is computed from input that includes both the RPCSEC_GSS handle and
 seq_num (see). Provided the
 replier takes care to avoid re-using the value of an RPCSEC_GSS
 handle that it creates, such as by including a generation number in the
 handle, the man-in-the-middle will not be able to successfully replay
 a previous verifier in the request to a replier.

 Session Mechanics - Steady State

 Obligations of the Server

 The server has the primary obligation to monitor the
 state of backchannel resources that the client has
 created for the server (RPCSEC_GSS contexts and backchannel
 connections). If these resources vanish, the
 server takes action as specified in .

 Obligations of the Client

 The client SHOULD honor the following obligations in order to
 utilize the session:

 Keep a necessary session from going idle on the server. A client
 that requires a session but nonetheless is not
 sending operations risks having the session be destroyed
 by the server. This is because sessions consume
 resources, and resource limitations may force the
 server to cull an inactive session. A server MAY consider
 a session to be inactive if the client has not used
 the session before the session inactivity timer () has expired.

 Destroy the session when not needed. If a client has
 multiple sessions, one of which has no
 requests waiting for replies, and has been idle for
 some period of time, it SHOULD destroy the session.

 Maintain GSS contexts and RPCSEC_GSS handles
 for the backchannel. If the client
 requires the server to use the RPCSEC_GSS security
 flavor for callbacks, then it needs to be sure the
 RPCSEC_GSS handles and/or their GSS
 contexts that are handed to the server via BACKCHANNEL_CTL or
 CREATE_SESSION are unexpired.

 Preserve a connection for a backchannel. The server
 requires a backchannel in order to gracefully recall
 recallable state or notify the client of certain
 events. Note that if the connection is not being used
 for the fore channel, there is no way for the client to tell
 if the connection is still alive (e.g., the server
 restarted without sending a disconnect). The onus is
 on the server, not the client, to determine if the
 backchannel's connection is alive, and to indicate in
 the response to a SEQUENCE operation when the last
 connection associated with a session's backchannel
 has disconnected.

 Steps the Client Takes to Establish a Session

 If the client does not have a client ID, the client
 sends EXCHANGE_ID to establish a client ID. If it
 opts for SP4_MACH_CRED or SP4_SSV protection, in the
 spo_must_enforce list of operations, it SHOULD at
 minimum specify CREATE_SESSION, DESTROY_SESSION,
 BIND_CONN_TO_SESSION, BACKCHANNEL_CTL, and DESTROY_CLIENTID.
 If it opts for SP4_SSV protection, the client needs to
 ask for SSV-based RPCSEC_GSS handles.

 The client uses the client ID to send a
 CREATE_SESSION on a connection to the server.
 The results of CREATE_SESSION indicate whether or not the
 server will persist the session reply cache through
 a server that has restarted, and the client notes this
 for future reference.

 If the client specified SP4_SSV state protection
 when the client ID was created, then it SHOULD send
 SET_SSV in the first COMPOUND after the session is
 created. Each time a new principal goes to use the
 client ID, it SHOULD send a SET_SSV again.

 If the client wants to use delegations, layouts,
 directory notifications, or any other state that
 requires a backchannel, then it needs to add a connection
 to the backchannel if CREATE_SESSION did not already
 do so. The client creates a connection, and calls
 BIND_CONN_TO_SESSION to associate the connection
 with the session and the session's backchannel. If
 CREATE_SESSION did not already do so, the client MUST
 tell the server what security is required in order
 for the client to accept callbacks. The client does
 this via BACKCHANNEL_CTL. If the client selected
 SP4_MACH_CRED or SP4_SSV protection when it called
 EXCHANGE_ID, then the client SHOULD specify that the
 backchannel use RPCSEC_GSS contexts for security.

 If the client wants to use additional
 connections for the backchannel, then it needs to call
 BIND_CONN_TO_SESSION on each connection it wants to
 use with the session. If the client wants to use
 additional connections for the fore channel, then
 it needs to call BIND_CONN_TO_SESSION if it specified
 SP4_SSV or SP4_MACH_CRED state protection when the
 client ID was created.

 At this point, the session has reached steady state.

 Session Inactivity Timer

 The server MAY maintain a session inactivity timer for
 each session. If the session inactivity timer expires,
 then the server MAY destroy the session. To avoid losing
 a session due to inactivity, the client MUST renew
 the session inactivity timer. The length of session
 inactivity timer MUST NOT be less than the lease_time
 attribute ().
 As with lease renewal (),
 when the server receives a SEQUENCE operation,
 it resets the session inactivity timer, and MUST NOT allow the
 timer to expire while the rest of the operations in the
 COMPOUND procedure's request are still executing. Once the
 last operation has finished, the server MUST set the session
 inactivity timer to expire no sooner than the sum of the
 current time and the value of the lease_time attribute.

 Session Mechanics - Recovery

 Events Requiring Client Action

 The following events require client action to recover.

 RPCSEC_GSS Context Loss by Callback Path

 If all RPCSEC_GSS handles
 granted by the client to the server for callback use have
 expired, the client MUST
 establish a new handle via BACKCHANNEL_CTL. The
 sr_status_flags field of the SEQUENCE results indicates when callback handles
 are nearly expired, or fully expired (see).

 Connection Loss

 If the client loses the last connection of the session
 and wants to retain the session, then it needs to
 create a new connection, and if, when the client
 ID was created, BIND_CONN_TO_SESSION was specified
 in the spo_must_enforce list, the client MUST use
 BIND_CONN_TO_SESSION to associate the connection with
 the session.

 If there was a request outstanding at the time
 of connection loss, then if the client wants to continue
 to use the session, it MUST retry the request, as
 described in
 . Note that it
 is not necessary to retry requests over a connection
 with the same source network address or the same
 destination network address as the lost connection. As
 long as the session ID, slot ID, and sequence ID in the
 retry match that of the original request, the server
 will recognize the request as a retry if it executed
 the request prior to disconnect.

 If the connection that was lost was the last one associated with
 the backchannel, and the client wants to retain the backchannel and/or
 prevent revocation of recallable state, the client needs to
 reconnect, and if it does, it
 MUST associate the connection to the session and backchannel via
 BIND_CONN_TO_SESSION.
 The server SHOULD indicate when it has no callback connection
 via the sr_status_flags result from SEQUENCE.

 Backchannel GSS Context Loss

 Via the sr_status_flags result of the SEQUENCE operation or
 other means, the client will learn if some or all of
 the RPCSEC_GSS contexts it assigned to the backchannel have
 been lost. If the client wants to retain the backchannel and/or
 not put recallable state subject to revocation,
 the client needs to use BACKCHANNEL_CTL to
 assign new contexts.

 Loss of Session

 The replier might lose a record of the session. Causes include:

 Replier failure and restart.

 A catastrophe that causes the reply cache to be corrupted or
 lost on the media on which it was stored. This applies
 even if the replier indicated in the CREATE_SESSION results
 that it would persist the cache.

 The server purges the session of a client that has been
 inactive for a very extended period of time.

 As a result of configuration changes among a set of clustered
 servers, a network address previously connected to one
 server becomes connected to a different server that has
 no knowledge of the session in question. Such a configuration
 change will generally only happen when the original server
 ceases to function for a time.

 Loss of reply cache is equivalent to loss of session.
 The replier indicates loss of session to the requester
 by returning NFS4ERR_BADSESSION on the next operation
 that uses the session ID that refers to the lost
 session.

 After an event like a server restart, the client may have
 lost its connections. The client assumes for the moment
 that the session has not been lost. It reconnects, and
 if it specified connection association enforcement when
 the session was created, it
 invokes BIND_CONN_TO_SESSION using the session ID. Otherwise,
 it invokes SEQUENCE. If
 BIND_CONN_TO_SESSION or SEQUENCE returns NFS4ERR_BADSESSION, the
 client knows the session is not available to it when communicating
 with that network address. If the connection survives
 session loss, then the next SEQUENCE operation the client
 sends over the connection will get back NFS4ERR_BADSESSION.
 The client again knows the session was lost.

 Here is one suggested algorithm for the client when it gets
 NFS4ERR_BADSESSION. It is not obligatory in that, if a
 client does not want to take advantage of such features as
 trunking, it may omit parts of it. However, it is a useful
 example that draws attention to various possible recovery
 issues:

 If the client has other connections to
 other server network addresses
 associated with the same session, attempt
 a COMPOUND with a single operation, SEQUENCE,
 on each of the other connections.

 If the attempts succeed, the session is still alive,
 and this is a strong indicator that the server's
 network address has moved.
 The client might send an EXCHANGE_ID on the
 connection that returned NFS4ERR_BADSESSION
 to see if there are opportunities for client ID
 trunking (i.e., the same client ID and so_major_id value
	 are
 returned). The client might use DNS to see if
 the moved network address was replaced with another,
 so that the performance and availability benefits of
 session trunking can continue.

 If the SEQUENCE requests fail with NFS4ERR_BADSESSION,
 then the session no longer exists on any of the
 server network addresses for which the client has connections
 associated with that session ID. It is possible the
 session is still alive and available on other
 network addresses. The client sends an EXCHANGE_ID
 on all the connections to see if the server owner
 is still listening on those network addresses.
 If the same server owner is returned but a new
 client ID is returned, this is a strong
 indicator of a server restart. If both the same
 server owner and same client ID are
 returned, then this is a strong indication
 that the server did delete the session, and the
 client will need to send a CREATE_SESSION if it
 has no other sessions for that client ID.
 If a different server owner is returned,
 the client can use DNS to find
 other network addresses. If it does not, or if
 DNS does not find any other addresses for the server,
 then the client will be unable to provide NFSv4.1
 service, and fatal errors should be returned
 to processes that were using the server. If the
 client is using a "mount" paradigm, unmounting
 the server is advised.

 If the client knows of no other connections associated
 with the session ID and server network addresses that
 are, or have been, associated with the session ID,
 then the client can use DNS to find
 other network addresses. If it does not, or if
 DNS does not find any other addresses for the server,
 then the client will be unable to provide NFSv4.1
 service, and fatal errors should be returned
 to processes that were using the server. If the
 client is using a "mount" paradigm, unmounting
 the server is advised.

 If there is a reconfiguration event that results in the
 same network address being assigned to servers where the
 eir_server_scope value is different, it cannot be guaranteed
 that a session ID generated by the first will be recognized
 as invalid by the first. Therefore, in managing server
 reconfigurations among servers with different server scope
 values, it is necessary to make sure that all clients have
 disconnected from the first server before effecting
 the reconfiguration. Nonetheless, clients should not
 assume that servers will always adhere to this requirement;
 clients MUST be prepared to deal with unexpected
 effects of server reconfigurations.
 Even where a session ID is inappropriately
 recognized as valid, it is likely either that the connection
 will not be recognized as valid or that a sequence value
 for a slot will not be correct. Therefore, when a client
 receives results indicating such unexpected errors, the use of
 EXCHANGE_ID to determine the current server configuration
 is RECOMMENDED.

 A variation on the above is that after a server's network
 address moves, there is no NFSv4.1 server listening, e.g., no
 listener on port 2049. In this example, one of the following occur: the NFSv4 server returns
 NFS4ERR_MINOR_VERS_MISMATCH, the NFS server returns a
 PROG_MISMATCH error, the RPC listener on 2049 returns
 PROG_UNVAIL, or attempts to reconnect to the network address
 timeout. These SHOULD be treated as equivalent to SEQUENCE
 returning NFS4ERR_BADSESSION for these purposes.

 When the client detects session loss, it needs to call CREATE_SESSION
 to recover. Any non-idempotent operations that were in progress
 might have been performed on the server at the time of
 session loss. The client has no general way to recover from this.

 Note that loss of session does not imply loss of byte-range lock, open, delegation,
 or layout state because locks, opens, delegations, and layouts
 are tied to the client ID and depend on the client ID, not the session.
 Nor does loss of byte-range lock, open, delegation,
 or layout state imply loss of session state, because the session depends
 on the client ID; loss of client ID however does imply loss of
 session, byte-range lock, open, delegation, and layout state.
 See .
 A session can survive a server restart,
 but lock recovery may still be needed.

 It is possible that CREATE_SESSION will fail with NFS4ERR_STALE_CLIENTID
 (e.g., the server restarts and does not preserve client ID
 state).
 If so, the client needs to call EXCHANGE_ID, followed by
 CREATE_SESSION.

 Events Requiring Server Action

 The following events require server action to recover.

 Client Crash and Restart

 As described in ,
 a restarted client sends EXCHANGE_ID in such a way that it
 causes the server to delete any sessions it had.

 Client Crash with No Restart

 If a client crashes and never comes back, it will never send
 EXCHANGE_ID with its old client owner. Thus, the server has session
 state that will never be used again. After an extended period of time,
 and if the server has resource constraints, it MAY destroy the old
 session as well as locking state.

 Extended Network Partition

 To the server, the extended network partition may be no
 different from a
 client crash with no
 restart (see
).
 Unless the server can discern that there is
 a network partition, it is free to treat the
 situation as if the client has crashed permanently.

 Backchannel Connection Loss

 If there were callback requests outstanding at the time
 of a connection loss, then the server
 MUST retry the requests, as described in
 . Note that it
 is not necessary to retry requests over a connection
 with the same source network address or the same destination
 network address as the lost connection. As long as
 the session ID, slot ID, and sequence ID in the retry
 match that of the original request, the callback target will
 recognize the request as a retry even if it did see the request
 prior to disconnect.

 If the connection lost is the last one associated with the backchannel,
 then the server MUST indicate that in the sr_status_flags field of
 every SEQUENCE reply until the backchannel is re-established.
 There are two situations, each of which uses different
 status flags: no connectivity for the session's backchannel
 and no connectivity for any session backchannel of the client.
 See for a description of
 the appropriate flags in sr_status_flags.

 GSS Context Loss

 The server SHOULD monitor when the number of RPCSEC_GSS
 handles assigned to the backchannel reaches one, and when that
 one handle is near expiry (i.e., between
 one and two periods of lease time), and
 indicate so in the sr_status_flags field of all SEQUENCE replies.
 The server MUST indicate when all of the
 backchannel's assigned RPCSEC_GSS handles
 have expired via the sr_status_flags field of all SEQUENCE replies.

 Parallel NFS and Sessions

 A client and server can potentially be a non-pNFS implementation,
 a metadata server implementation, a data server implementation, or two or
 three types of implementations. The EXCHGID4_FLAG_USE_NON_PNFS,
 EXCHGID4_FLAG_USE_PNFS_MDS, and EXCHGID4_FLAG_USE_PNFS_DS flags
 (not mutually exclusive) are passed in the EXCHANGE_ID arguments
 and results to allow the client to indicate how it wants to use sessions created
 under the client ID, and to allow the server to indicate how it
 will allow the sessions to be used.
 See for pNFS sessions considerations.

 Protocol Constants and Data Types

 The syntax and semantics to describe the data types of the NFSv4.1
 protocol are defined in the XDR (RFC 4506) and RPC
 (RFC 5531) documents. The next sections
 build upon the XDR data types to define constants, types, and structures
 specific to this protocol. The full list of XDR data types is in .

 Basic Constants

const NFS4_FHSIZE = 128;
const NFS4_VERIFIER_SIZE = 8;
const NFS4_OPAQUE_LIMIT = 1024;
const NFS4_SESSIONID_SIZE = 16;

const NFS4_INT64_MAX = 0x7fffffffffffffff;
const NFS4_UINT64_MAX = 0xffffffffffffffff;
const NFS4_INT32_MAX = 0x7fffffff;
const NFS4_UINT32_MAX = 0xffffffff;

const NFS4_MAXFILELEN = 0xffffffffffffffff;
const NFS4_MAXFILEOFF = 0xfffffffffffffffe;

 Except where noted, all these constants are defined in bytes.

 NFS4_FHSIZE is the maximum size of a filehandle.

 NFS4_VERIFIER_SIZE is the fixed size of a verifier.

 NFS4_OPAQUE_LIMIT is the maximum size of certain
 opaque information.

 NFS4_SESSIONID_SIZE is the fixed size of a session identifier.

 NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.

 NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit integer.

 NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.

 NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit integer.

 NFS4_MAXFILELEN is the maximum length of a regular file.

 NFS4_MAXFILEOFF is the maximum offset into a regular file.

 Basic Data Types

	These are the base NFSv4.1 data types.

 Data Type
 Definition

 int32_t
 typedef int int32_t;

 uint32_t
 typedef unsigned int uint32_t;

 int64_t
 typedef hyper int64_t;

 uint64_t
 typedef unsigned hyper uint64_t;

 attrlist4

 typedef opaque attrlist4<>;
 Used for file/directory attributes.

 bitmap4

 typedef uint32_t bitmap4<>;
 Used in attribute array encoding.

 changeid4

 typedef uint64_t changeid4;
 Used in the definition of change_info4.

 clientid4

 typedef uint64_t clientid4;
 Shorthand reference to client identification.

 count4

 typedef uint32_t count4;
 Various count parameters (READ, WRITE,
	 COMMIT).

 length4

 typedef uint64_t length4;
 The length of a byte-range within a file.

 mode4

 typedef uint32_t mode4;
 Mode attribute data type.

 nfs_cookie4

 typedef uint64_t nfs_cookie4;
 Opaque cookie value for READDIR.

 nfs_fh4

 typedef opaque nfs_fh4<NFS4_FHSIZE>;
 Filehandle definition.

 nfs_ftype4

 enum nfs_ftype4;
 Various defined file types.

 nfsstat4

 enum nfsstat4;
 Return value for operations.

 offset4

 typedef uint64_t offset4;
 Various offset designations (READ, WRITE, LOCK, COMMIT).

 qop4

 typedef uint32_t qop4;
 Quality of protection designation in SECINFO.

 sec_oid4

 typedef opaque sec_oid4<>;
 Security Object Identifier. The sec_oid4 data type is not
	 really opaque. Instead, it contains an ASN.1 OBJECT IDENTIFIER
	 as used by GSS-API in the mech_type argument to
	 GSS_Init_sec_context. See for details.

 sequenceid4

 typedef uint32_t sequenceid4;
 Sequence number used for various session operations
	 (EXCHANGE_ID, CREATE_SESSION, SEQUENCE, CB_SEQUENCE).

 seqid4

 typedef uint32_t seqid4;
 Sequence identifier used for locking.

 sessionid4

 typedef opaque sessionid4[NFS4_SESSIONID_SIZE];
 Session identifier.

 slotid4

 typedef uint32_t slotid4;
 Sequencing artifact for various session operations
	 (SEQUENCE, CB_SEQUENCE).

 utf8string

 typedef opaque utf8string<>;
 UTF-8 encoding for strings.

 utf8str_cis

 typedef utf8string utf8str_cis;
 Case-insensitive UTF-8 string.

 utf8str_cs

 typedef utf8string utf8str_cs;
 Case-sensitive UTF-8 string.

 utf8str_mixed

 typedef utf8string utf8str_mixed;
 UTF-8 strings with a case-sensitive prefix and a
	case-insensitive suffix.

 component4

 typedef utf8str_cs component4;
 Represents pathname components.

 linktext4

 typedef utf8str_cs linktext4;
 Symbolic link contents ("symbolic link" is defined in an
	 Open Group
	 standard).

 pathname4

 typedef component4 pathname4<>;
 Represents pathname for fs_locations.

 verifier4

 typedef opaque verifier4[NFS4_VERIFIER_SIZE];
 Verifier used for various operations (COMMIT, CREATE,
	 EXCHANGE_ID, OPEN, READDIR, WRITE) NFS4_VERIFIER_SIZE is defined
	 as 8.

 End of Base Data Types

 Structured Data Types

 nfstime4

struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
};

	The nfstime4 data type gives the number of seconds and
	nanoseconds since midnight or zero hour January 1, 1970
	Coordinated Universal Time (UTC). Values greater than zero
	for the seconds field denote dates after the zero hour January 1,
	1970. Values less than zero for the seconds field denote
	dates before the zero hour January 1, 1970. In both cases, the
	nseconds field is to be added to the seconds field for the
	final time representation. For example, if the time to be
	represented is one-half second before zero hour January 1, 1970,
	the seconds field would have a value of negative one (-1) and
	the nseconds field would have a value of one-half second
	(500000000). Values greater than 999,999,999 for nseconds are
	invalid.

	This data type is used to pass time and date information. A
	server converts to and from its local representation of time
	when processing time values, preserving as much accuracy as
	possible. If the precision of timestamps stored for a
	file system object is less than defined, loss of precision can
	occur. An adjunct time maintenance protocol is RECOMMENDED to
	reduce client and server time skew.

 time_how4

enum time_how4 {
 SET_TO_SERVER_TIME4 = 0,
 SET_TO_CLIENT_TIME4 = 1
};

 settime4

union settime4 switch (time_how4 set_it) {
 case SET_TO_CLIENT_TIME4:
 nfstime4 time;
 default:
 void;
};

	The time_how4 and settime4 data types are used
	for setting timestamps in file object attributes. If set_it is SET_TO_SERVER_TIME4, then the server
	uses its local representation of time for the time value.

 specdata4

struct specdata4 {
 uint32_t specdata1; /* major device number */
 uint32_t specdata2; /* minor device number */
};

	This data type represents the device numbers for the device file
	types NF4CHR and NF4BLK.

 fsid4

struct fsid4 {
 uint64_t major;
 uint64_t minor;
};

 change_policy4

struct change_policy4 {
 uint64_t cp_major;
 uint64_t cp_minor;
};

 The change_policy4 data type is used for the change_policy
 RECOMMENDED attribute. It provides change sequencing indication
 analogous to the change attribute. To enable the server to
 present a value valid across server re-initialization without
 requiring persistent storage, two 64-bit quantities are used,
 allowing one to be a server instance ID and the second to be
 incremented non-persistently, within a given server instance.

 fattr4

struct fattr4 {
 bitmap4 attrmask;
 attrlist4 attr_vals;
};

	The fattr4 data type is used to represent file and directory attributes.

	The bitmap is a counted array of 32-bit integers used to contain bit
	values. The position of the integer in the array that contains bit n
	can be computed from the expression (n / 32), and its bit within that
	integer is (n mod 32).

 0 1
+-----------+-----------+-----------+--
| count | 31 .. 0 | 63 .. 32 |
+-----------+-----------+-----------+--

 change_info4

struct change_info4 {
 bool atomic;
 changeid4 before;
 changeid4 after;
};

	This data type is used with the CREATE, LINK, OPEN, REMOVE, and RENAME
	operations to let the client know the value of the change attribute
	for the directory in which the target file system object resides.

 netaddr4

struct netaddr4 {
 /* see struct rpcb in RFC 1833 */
 string na_r_netid<>; /* network id */
 string na_r_addr<>; /* universal address */
};

	The netaddr4 data type is used to identify network transport endpoints.
	The na_r_netid and na_r_addr fields respectively contain a netid
 and uaddr. The netid and uaddr concepts are defined in
	 . The netid and uaddr formats for
 TCP over IPv4 and TCP over IPv6 are defined in ,
 specifically Tables 2 and 3 and in
	Sections and .

 state_owner4

struct state_owner4 {
 clientid4 clientid;
 opaque owner<NFS4_OPAQUE_LIMIT>;
};

typedef state_owner4 open_owner4;
typedef state_owner4 lock_owner4;

 The state_owner4 data type is the base type for the
 open_owner4 () and
 lock_owner4 ().

 open_owner4

	 This data type is used to identify the owner of OPEN state.

 lock_owner4

	 This structure is used to identify the owner of byte-range
 locking state.

 open_to_lock_owner4

struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
};

	This data type is used for the first LOCK operation done for
	an open_owner4. It provides both the open_stateid and
	lock_owner, such that the transition is made from a valid
	open_stateid sequence to that of the new lock_stateid
	sequence. Using this mechanism avoids the confirmation of the
	lock_owner/lock_seqid pair since it is tied to established
	state in the form of the open_stateid/open_seqid.

 stateid4

struct stateid4 {
 uint32_t seqid;
 opaque other[12];
};

	This data type is used for the various state sharing
	mechanisms between the client and server. The client
	never modifies a value of data type stateid.
 The starting value of the
	"seqid" field is undefined. The server is required to
	increment the "seqid" field by one at each transition
	of the stateid. This is important since the client will
	inspect the seqid in OPEN stateids to determine the order of
	OPEN processing done by the server.

 layouttype4

enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 0x1,
 LAYOUT4_OSD2_OBJECTS = 0x2,
 LAYOUT4_BLOCK_VOLUME = 0x3
};

	This data type indicates what type of layout is being used.
	The file server advertises the
	layout types it supports through the fs_layout_type file
	system attribute ().
	A client asks for layouts of a particular type in LAYOUTGET,
	and processes those layouts in its layout-type-specific logic.

	The layouttype4 data type is 32 bits in length. The range
	represented by the layout type is split into three parts. Type
 0x0 is reserved. Types
	within the range 0x00000001-0x7FFFFFFF are globally unique and
	are assigned according to the description in ; they are maintained by IANA. Types
	within the range 0x80000000-0xFFFFFFFF are site specific and
	for private use only.

	The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1
	file layout type, as defined in , is to be used. The LAYOUT4_OSD2_OBJECTS
	enumeration specifies that the object layout, as defined in
	 , is to be used. Similarly,
	the LAYOUT4_BLOCK_VOLUME enumeration specifies that the block/volume
	layout, as defined in , is to be
	used.

 deviceid4

const NFS4_DEVICEID4_SIZE = 16;

typedef opaque deviceid4[NFS4_DEVICEID4_SIZE];

	Layout information includes device IDs that
	specify a storage device through a compact handle.
	Addressing and type information is obtained
	with the GETDEVICEINFO operation. Device IDs
	are not guaranteed to be valid across metadata
	server restarts. A device ID is unique per client
	ID and layout type. See for more details.

 device_addr4

struct device_addr4 {
 layouttype4 da_layout_type;
 opaque da_addr_body<>;
};

 The device address is used to set up a communication channel
 with the storage device. Different layout types will require
 different data types to define how they communicate
 with storage devices. The opaque da_addr_body field is
 interpreted based on the specified da_layout_type field.

 This document defines the device address for the NFSv4.1 file
 layout (see), which
 identifies a storage device by network IP address and port
 number. This is sufficient for the clients to communicate
 with the NFSv4.1 storage devices, and may be sufficient for
 other layout types as well. Device types for object-based storage
 devices and block storage devices (e.g., Small Computer System
 Interface (SCSI) volume labels)
 are defined by their respective layout specifications.

 layout_content4

struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
};

 The loc_body field is interpreted based on the layout type (loc_type).
 This document defines the loc_body for the NFSv4.1
	file layout type; see for its definition.

 layout4

struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
};

	The layout4 data type defines a layout for a file. The layout
	type specific data is opaque within lo_content.
 Since layouts are sub-dividable, the offset
	and length together with the file's filehandle, the client ID,
	iomode, and layout type identify the layout.

 layoutupdate4

struct layoutupdate4 {
 layouttype4 lou_type;
 opaque lou_body<>;
};

	The layoutupdate4 data type is used by the client to return
	updated layout information to the metadata server via the
	LAYOUTCOMMIT () operation.
	This data type provides a channel to pass
	layout type specific information (in field lou_body)
 back to the metadata server.
	For example, for the block/volume layout type, this could include the
	list of reserved blocks that were written. The contents of
	the opaque lou_body argument are determined by the layout type.
	The NFSv4.1 file-based layout
	does not use this data type; if lou_type is LAYOUT4_NFSV4_1_FILES,
 the lou_body field MUST
	have a zero length.

 layouthint4

struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
};

	The layouthint4 data type is used by the client to pass in a
	hint about the type of layout it would like created for a particular
	file. It is the data type specified by the layout_hint
	attribute described in .
	The metadata server may ignore the hint
	or may selectively ignore fields within the hint. This hint should
	be provided at create time as part of the initial attributes within
	OPEN. The loh_body field is specific to the type of layout (loh_type).
 The NFSv4.1 file-based layout uses the nfsv4_1_file_layouthint4
	data type as defined in .

 layoutiomode4

enum layoutiomode4 {
 LAYOUTIOMODE4_READ = 1,
 LAYOUTIOMODE4_RW = 2,
 LAYOUTIOMODE4_ANY = 3
};

	The iomode specifies whether the client intends to just read or both
 read and write the data represented by the
	layout. While the LAYOUTIOMODE4_ANY iomode MUST NOT be used in
 the arguments to the LAYOUTGET operation, it MAY
	be used in the arguments to the LAYOUTRETURN and CB_LAYOUTRECALL
 operations. The LAYOUTIOMODE4_ANY iomode
	specifies that layouts pertaining to both LAYOUTIOMODE4_READ
 and LAYOUTIOMODE4_RW iomodes are being returned or recalled,
 respectively. The metadata server's use of the iomode may
 depend on the layout type being used. The storage devices MAY
 validate I/O accesses against the iomode and reject invalid accesses.

 nfs_impl_id4

struct nfs_impl_id4 {
 utf8str_cis nii_domain;
 utf8str_cs nii_name;
 nfstime4 nii_date;
};

	This data type is used to identify client and server
	implementation details. The nii_domain field is the DNS domain
	name with which the implementor is associated. The nii_name
	field is the product name of the implementation and is
	completely free form. It is RECOMMENDED that the nii_name be
	used to distinguish machine architecture, machine platforms,
	revisions, versions, and patch levels. The nii_date field is
	the timestamp of when the software instance was published or
	built.

 threshold_item4

struct threshold_item4 {
 layouttype4 thi_layout_type;
 bitmap4 thi_hintset;
 opaque thi_hintlist<>;
};

	This data type contains a list of hints specific to
	a layout type for helping the client determine when
	it should send I/O directly through the metadata
	server versus the storage devices. The data type
	consists of the layout type (thi_layout_type),
	a bitmap (thi_hintset) describing the set of
	hints supported by the server (they may differ
	based on the layout type), and a list of hints
	(thi_hintlist) whose content is determined by
	the hintset bitmap. See the mdsthreshold attribute
	for more details.

 The thi_hintset field is a bitmap of the following values:

 name
 #
 Data Type
 Description

 threshold4_read_size
 0
 length4

 If a file's length is less than the value of threshold4_read_size,
 then it is RECOMMENDED that the client read from the file via the MDS and not
 a storage device.

 threshold4_write_size
 1
 length4

 If a file's length is less than the value of threshold4_write_size,
 then it is RECOMMENDED that the client write to the file via the MDS and not
 a storage device.

 threshold4_read_iosize
 2
 length4

 For read I/O sizes below this threshold, it is RECOMMENDED to
 	read data through the MDS.

 threshold4_write_iosize
 3
 length4

 For write I/O sizes below this threshold, it is RECOMMENDED to
 	write data through the MDS.

 mdsthreshold4

struct mdsthreshold4 {
 threshold_item4 mth_hints<>;
};

 This data type holds an array of elements of data type
 threshold_item4,
	each of which is valid for a particular layout type. An array
	is necessary because a server can support multiple layout types
	for a single file.

 Filehandles

 The filehandle in the NFS protocol is a per-server unique identifier
 for a file system object. The contents of the filehandle are opaque
 to the client. Therefore, the server is responsible for translating
 the filehandle to an internal representation of the file system
 object.

 Obtaining the First Filehandle

 The operations of the NFS protocol are defined in terms of one
 or more filehandles. Therefore, the client needs a filehandle
 to initiate communication with the server. With the NFSv3
 protocol (RFC 1813), there
 exists an ancillary protocol to obtain this first filehandle.
 The MOUNT protocol, RPC program number 100005, provides the
 mechanism of translating a string-based file system pathname to
 a filehandle, which can then be used by the NFS protocols.

 The MOUNT protocol has deficiencies in the area of security and
 use via firewalls. This is one reason that the use of the
 public filehandle was introduced in RFC 2054 and RFC 2055. With the use of the public
 filehandle in combination with the LOOKUP operation in the NFSv3
 protocol, it has been demonstrated that the
 MOUNT protocol is unnecessary for viable interaction between NFS
 client and server.

 Therefore, the NFSv4.1 protocol will not use an ancillary
 protocol for translation from string-based pathnames to a filehandle.
 Two special filehandles will be used as starting points for the NFS
 client.

 Root Filehandle

 The first of the special filehandles is the ROOT filehandle. The ROOT
 filehandle is the "conceptual" root of the file system namespace at
 the NFS server. The client uses or starts with the ROOT filehandle
 by employing the PUTROOTFH operation. The PUTROOTFH operation
 instructs the server to set the "current" filehandle to the ROOT of
 the server's file tree. Once this PUTROOTFH operation is used, the
 client can then traverse the entirety of the server's file tree with
 the LOOKUP operation. A complete discussion of the server namespace
 is in .

 Public Filehandle

 The second special filehandle is the PUBLIC filehandle. Unlike the
 ROOT filehandle, the PUBLIC filehandle may be bound or represent an
 arbitrary file system object at the server. The server is responsible
 for this binding. It may be that the PUBLIC filehandle and the ROOT
 filehandle refer to the same file system object. However, it is up to
 the administrative software at the server and the policies of the
 server administrator to define the binding of the PUBLIC filehandle
 and server file system object. The client may not make any
 assumptions about this binding. The client uses the PUBLIC filehandle
 via the PUTPUBFH operation.

 Filehandle Types

 In the NFSv3 protocol, there was one type of filehandle
 with a single set of semantics. This type of filehandle is termed
 "persistent" in NFSv4.1. The semantics of a persistent
 filehandle remain the same as before. A new type of filehandle
 introduced in NFSv4.1 is the "volatile" filehandle, which
 attempts to accommodate certain server environments.

 The volatile filehandle type was introduced to address server
 functionality or implementation issues that make correct
 implementation of a persistent filehandle infeasible. Some server
 environments do not provide a file-system-level invariant that can be
 used to construct a persistent filehandle. The underlying server
 file system may not provide the invariant or the server's file system
 programming interfaces may not provide access to the needed invariant.
 Volatile filehandles may ease the implementation of server
 functionality such as hierarchical storage management or file system
 reorganization or migration. However, the volatile filehandle
 increases the implementation burden for the client.

 Since the client will need to handle persistent and volatile
 filehandles differently, a file attribute is defined that may be used
 by the client to determine the filehandle types being returned by the
 server.

 General Properties of a Filehandle

 The filehandle contains all the information the
 server needs to distinguish an individual file.
 To the client, the filehandle is opaque. The
 client stores filehandles for use in a later
 request and can compare two filehandles from the
 same server for equality by doing a byte-by-byte
 comparison. However, the client MUST NOT otherwise
 interpret the contents of filehandles. If two
 filehandles from the same server are equal, they
 MUST refer to the same file. Servers SHOULD try
 to maintain a one-to-one correspondence between
 filehandles and files, but this is not required.
 Clients MUST use filehandle comparisons only to
 improve performance, not for correct behavior.
 All clients need to be prepared for situations
 in which it cannot be determined whether two
 filehandles denote the same object and in such
 cases, avoid making invalid assumptions that might
 cause incorrect behavior. Further discussion
 of filehandle and attribute comparison in the
 context of data caching is presented in .

 As an example, in the case that two different pathnames when
 traversed at the server terminate at the same file system object, the
 server SHOULD return the same filehandle for each path. This can
 occur if a hard link (see) is used
 to create two file names that refer to the same underlying
 file object and associated data. For example, if paths /a/b/c
 and /a/d/c refer to the same file, the server SHOULD return
 the same filehandle for both pathnames' traversals.

 Persistent Filehandle

 A persistent filehandle is defined as having a fixed value for the
 lifetime of the file system object to which it refers. Once the
 server creates the filehandle for a file system object, the server
 MUST accept the same filehandle for the object for the lifetime of the
 object. If the server restarts, the NFS server MUST honor
 the same filehandle value as it did in the server's previous
 instantiation. Similarly, if the file system is migrated, the new NFS
 server MUST honor the same filehandle as the old NFS server.

 The persistent filehandle will be become stale or invalid when the
 file system object is removed. When the server is presented with a
 persistent filehandle that refers to a deleted object, it MUST return
 an error of NFS4ERR_STALE. A filehandle may become stale when the
 file system containing the object is no longer available. The file
 system may become unavailable if it exists on removable media and the
 media is no longer available at the server or the file system in whole
 has been destroyed or the file system has simply been removed from the
 server's namespace (i.e., unmounted in a UNIX environment).

 Volatile Filehandle

 A volatile filehandle does not share the same longevity
 characteristics of a persistent filehandle. The server may
 determine that a volatile filehandle is no longer valid at many
 different points in time. If the server can definitively determine
 that a volatile filehandle refers to an object that has been removed,
 the server should return NFS4ERR_STALE to the client (as is the case
 for persistent filehandles). In all other cases where the server
 determines that a volatile filehandle can no longer be used, it should
 return an error of NFS4ERR_FHEXPIRED.

 The REQUIRED attribute "fh_expire_type" is used by the client to
 determine what type of filehandle the server is providing for a
 particular file system. This attribute is a bitmask with the
 following values:

 FH4_PERSISTENT

 The value of FH4_PERSISTENT is used to indicate a persistent
 filehandle, which is valid until the object is removed from the
 file system. The server will not return NFS4ERR_FHEXPIRED for this
 filehandle. FH4_PERSISTENT is defined as a value in which none of the
 bits specified below are set.

 FH4_VOLATILE_ANY

 The filehandle may expire at any time, except as specifically
 excluded (i.e., FH4_NO_EXPIRE_WITH_OPEN).

 FH4_NOEXPIRE_WITH_OPEN

 May only be set when FH4_VOLATILE_ANY is set. If this bit is set,
 then the meaning of FH4_VOLATILE_ANY is qualified to exclude any
 expiration of the filehandle when it is open.

 FH4_VOL_MIGRATION

	 The filehandle will expire as a result of a file system
	 transition (migration or replication), in those cases in
	 which the continuity of filehandle use is not specified by
	 handle class information
	 within the fs_locations_info attribute. When this bit is
	 set, clients without access to fs_locations_info
	 information should assume that filehandles will expire on file
	 system transitions.

 FH4_VOL_RENAME

 The filehandle will expire during rename. This includes a rename by
 the requesting client or a rename by any other client. If FH4_VOL_ANY
 is set, FH4_VOL_RENAME is redundant.

 Servers that provide volatile filehandles that can expire
 while open require special care as regards handling of RENAMEs
 and REMOVEs. This situation can arise if FH4_VOL_MIGRATION or
 FH4_VOL_RENAME is set, if FH4_VOLATILE_ANY is set and
 FH4_NOEXPIRE_WITH_OPEN is not set, or if a non-read-only file system
 has a transition target in a different handle
 class. In these cases, the server should deny a RENAME
 or REMOVE that would affect an OPEN file of any of the
 components leading to the OPEN file. In addition, the server
 should deny all RENAME or REMOVE requests during the grace period,
 in order to make sure that reclaims of files where filehandles
 may have expired do not do a reclaim for the wrong file.

 Volatile filehandles are especially suitable for implementation
 of the pseudo file systems used to bridge exports. See
 for a discussion of this.

 One Method of Constructing a Volatile Filehandle

 A volatile filehandle, while opaque to the client, could contain:

[volatile bit = 1 | server boot time | slot | generation number]

 slot is an index in the server volatile filehandle table
 generation number is the generation number for the table entry/slot

 When the client presents a volatile filehandle, the server makes the
 following checks, which assume that the check for the volatile bit has
 passed. If the server boot time is less than the current server boot
 time, return NFS4ERR_FHEXPIRED. If slot is out of range, return
 NFS4ERR_BADHANDLE. If the generation number does not match, return
 NFS4ERR_FHEXPIRED.

 When the server restarts, the table is gone (it is volatile).

 If the volatile bit is 0, then it is a persistent filehandle with a
 different structure following it.

 Client Recovery from Filehandle Expiration

 If possible, the client SHOULD recover from the receipt of an
 NFS4ERR_FHEXPIRED error. The client must take on additional
 responsibility so that it may prepare itself to recover from the
 expiration of a volatile filehandle. If the server returns persistent
 filehandles, the client does not need these additional steps.

 For volatile filehandles, most commonly the client will need to store
 the component names leading up to and including the file system object
 in question. With these names, the client should be able to recover
 by finding a filehandle in the namespace that is still available or
 by starting at the root of the server's file system namespace.

 If the expired filehandle refers to an object that has been removed
 from the file system, obviously the client will not be able to recover
 from the expired filehandle.

 It is also possible that the expired filehandle refers to a file that
 has been renamed. If the file was renamed by another client, again it
 is possible that the original client will not be able to recover.
 However, in the case that the client itself is renaming the file and
 the file is open, it is possible that the client may be able to
 recover. The client can determine the new pathname based on the
 processing of the rename request. The client can then regenerate the
 new filehandle based on the new pathname. The client could also use
 the COMPOUND procedure to construct a series of operations
 like:

 RENAME A B
 LOOKUP B
 GETFH

 Note that the COMPOUND procedure does not provide atomicity. This
 example only reduces the overhead of recovering from an expired
 filehandle.

 File Attributes

 To meet the requirements of extensibility and increased
 interoperability with non-UNIX platforms, attributes need to be handled
 in a flexible manner. The NFSv3 fattr3 structure contains a
 fixed list of attributes that not all clients and servers are able to
 support or care about. The fattr3 structure cannot be extended as
 new needs arise and it provides no way to indicate non-support. With
 the NFSv4.1 protocol, the client is able to query what attributes
 the server supports and construct requests with only those supported
 attributes (or a subset thereof).

 To this end, attributes are divided into three groups: REQUIRED,
 RECOMMENDED, and named. Both REQUIRED and RECOMMENDED attributes are
 supported in the NFSv4.1 protocol by a specific and well-defined
 encoding and are identified by number. They are requested by setting
 a bit in the bit vector sent in the GETATTR request; the server
 response includes a bit vector to list what attributes were returned
 in the response. New REQUIRED or RECOMMENDED attributes may be added
 to the NFSv4 protocol as part of a new minor version
 by publishing a
 Standards Track RFC that allocates a new attribute number value and
 defines the encoding for the attribute. See
 for further
 discussion.

 Named attributes are accessed by the new OPENATTR operation, which
 accesses a hidden directory of attributes associated with a file
 system object. OPENATTR takes a filehandle for the object and returns
 the filehandle for the attribute hierarchy. The filehandle for the
 named attributes is a directory object accessible by LOOKUP or READDIR
 and contains files whose names represent the named attributes and
 whose data bytes are the value of the attribute. For example:

 LOOKUP
 "foo"
 ; look up file

 GETATTR
 attrbits

 OPENATTR

 ; access foo's named attributes

 LOOKUP
 "x11icon"
 ; look up specific attribute

 READ
 0,4096
 ; read stream of bytes

 Named attributes are intended for data needed by applications rather
 than by an NFS client implementation. NFS implementors are strongly
 encouraged to define their new attributes as RECOMMENDED attributes by
 bringing them to the IETF Standards Track process.

 The set of attributes that are classified as REQUIRED is
 deliberately small since servers need to do whatever it takes to support
 them. A server should support as many of the RECOMMENDED attributes
 as possible but, by their definition, the server is not required to
 support all of them. Attributes are deemed REQUIRED if the data is
 both needed by a large number of clients and is not otherwise
 reasonably computable by the client when support is not provided on
 the server.

 Note that the hidden directory returned by OPENATTR is a convenience
 for protocol processing. The client should not make any assumptions
 about the server's implementation of named attributes and whether
 or not the underlying file system at the server has a named
 attribute directory. Therefore, operations such as SETATTR and
 GETATTR on the named attribute directory are undefined.

 REQUIRED Attributes

 These MUST be supported by every NFSv4.1 client and server in
 order to ensure a minimum level of interoperability. The server MUST
 store and return these attributes, and the client MUST be able to
 function with an attribute set limited to these attributes. With just
 the REQUIRED attributes some client functionality may be impaired or
 limited in some ways. A client may ask for any of these attributes to
 be returned by setting a bit in the GETATTR request, and the server
 MUST return their value.

 RECOMMENDED Attributes

 These attributes are understood well enough to warrant support in the
 NFSv4.1 protocol. However, they may not be supported on all
 clients and servers. A client may ask for any of these attributes to
 be returned by setting a bit in the GETATTR request but must handle
 the case where the server does not return them. A client MAY ask for
 the set of attributes the server supports and SHOULD NOT request
 attributes the server does not support. A server should be tolerant
 of requests for unsupported attributes and simply not return them
 rather than considering the request an error. It is expected that
 servers will support all attributes they comfortably can and only fail
 to support attributes that are difficult to support in their
 operating environments. A server should provide attributes whenever
 they don't have to "tell lies" to the client. For example, a file
 modification time should be either an accurate time or should not be
 supported by the server. At times this will be difficult for
 clients, but a client is better positioned to decide whether and how to
 fabricate or construct an attribute or whether to do without the
 attribute.

 Named Attributes

 These attributes are not supported by direct encoding in the NFSv4
 protocol but are accessed by string names rather than
 numbers and correspond to an uninterpreted stream of bytes that are
 stored with the file system object. The namespace for these
 attributes may be accessed by using the OPENATTR operation. The
 OPENATTR operation returns a filehandle for a virtual "named attribute
 directory", and further perusal and modification of the namespace may
 be done using operations that work on more typical directories. In
 particular, READDIR may be used to get a list of such named attributes,
 and LOOKUP and OPEN may select a particular attribute. Creation of
 a new named attribute may be the result of an OPEN specifying file
 creation.

 Once an OPEN is done, named attributes may be examined and changed
 by normal READ and WRITE operations using the filehandles and stateids
 returned by OPEN.

 Named attributes and the named attribute directory may have
 their own (non-named) attributes. Each of these objects MUST have all
 of the REQUIRED attributes and may have additional RECOMMENDED
 attributes. However, the set of attributes for named attributes
 and the named attribute directory need not be, and
 typically will not be, as large as that for other objects in that
 file system.

 Named attributes and the named attribute directory might be the
 target of delegations (in the case of the named attribute directory,
 these will be directory delegations). However, since granting of
 delegations is at the server's discretion, a server
 need not support delegations on named attributes or the named
 attribute directory.

 It is RECOMMENDED that servers support arbitrary named attributes. A
 client should not depend on the ability to store any named attributes
 in the server's file system. If a server does support named
 attributes, a client that is also able to handle them should be able
 to copy a file's data and metadata with complete transparency from
 one location to another; this would imply that names allowed for
 regular directory entries are valid for named attribute names as well.

 In NFSv4.1, the structure of named attribute directories is
 restricted in a number of ways, in order to prevent the development
 of non-interoperable implementations in which some servers support
 a fully general hierarchical directory structure for named attributes
 while others support a limited but adequate structure for named attributes.
 In such an environment, clients or applications might come to
 depend on non-portable extensions. The restrictions are:

 CREATE is not allowed in a named attribute directory. Thus, such
 objects as symbolic links and special files are not allowed to
 be named attributes. Further, directories may not be created
 in a named attribute directory, so no hierarchical structure of
 named attributes for a single object is allowed.

 If OPENATTR is done on a named attribute directory or on
 a named attribute, the server MUST return NFS4ERR_WRONG_TYPE.

 Doing a RENAME of a named attribute to a different named
 attribute directory or to an ordinary (i.e., non-named-attribute)
 directory is not allowed.

 Creating hard links between named attribute directories or
 between named attribute directories and ordinary directories
 is not allowed.

 Names of attributes will not be controlled by this document or other
 IETF Standards Track documents. See

 for further discussion.

 Classification of Attributes

 Each of the REQUIRED and RECOMMENDED attributes can be classified in
 one of three categories: per server (i.e., the value of the attribute will
 be the same for all file objects that share the same
 server owner; see for a definition of server
 owner), per file system (i.e., the value of the attribute will
 be the same for some or all file objects that share the
 same fsid attribute and
 server owner), or per file system
 object. Note that it is possible that some per file system attributes
 may vary within the file system, depending on the value of
 the "homogeneous"
 attribute. Note that the attributes time_access_set and
 time_modify_set are not listed in this section because they are
 write-only attributes corresponding to time_access and time_modify,
 and are used in a special instance of SETATTR.

	 The per-server attribute is:

	 lease_time
	

	 The per-file system attributes are:

	 supported_attrs, suppattr_exclcreat, fh_expire_type, link_support,
	 symlink_support, unique_handles, aclsupport,
	 cansettime, case_insensitive, case_preserving,
	 chown_restricted, files_avail, files_free,
	 files_total, fs_locations, homogeneous, maxfilesize,
	 maxname, maxread, maxwrite, no_trunc, space_avail,
	 space_free, space_total, time_delta,
 change_policy, fs_status,
	 fs_layout_type, fs_locations_info, fs_charset_cap
	

	 The per-file system object attributes are:

	 type, change, size, named_attr, fsid, rdattr_error,
	 filehandle, acl, archive, fileid, hidden, maxlink,
	 mimetype, mode, numlinks, owner, owner_group, rawdev,
	 space_used, system, time_access, time_backup,
	 time_create, time_metadata, time_modify,
	 mounted_on_fileid, dir_notif_delay, dirent_notif_delay,
 dacl, sacl,
	 layout_type, layout_hint, layout_blksize, layout_alignment,
 mdsthreshold, retention_get, retention_set, retentevt_get,
 retentevt_set, retention_hold, mode_set_masked
	

 For quota_avail_hard, quota_avail_soft, and quota_used, see their
 definitions below for the appropriate classification.

 Set-Only and Get-Only Attributes

 Some REQUIRED and RECOMMENDED attributes are set-only; i.e., they
 can be set via SETATTR but not retrieved via GETATTR. Similarly, some
 REQUIRED and RECOMMENDED attributes are get-only; i.e., they
 can be retrieved via GETATTR but not set via SETATTR. If a client attempts
 to set a get-only attribute or get a set-only attributes, the server
 MUST return NFS4ERR_INVAL.

 REQUIRED Attributes - List and Definition References

 The list of REQUIRED attributes appears in .
 The meaning of the columns of the table are:

 Name:
 The name of the attribute.
 Id:
 The number assigned to the attribute. In
 the event of conflicts between the assigned number and , the latter is
 likely authoritative, but should be resolved with Errata to
 this document and/or
 . See for the Errata process.
 Data Type:
 The XDR data type of the attribute.
 Acc:
 Access allowed to the attribute. R means
 read-only (GETATTR may retrieve, SETATTR may not
 set). W means write-only (SETATTR may set, GETATTR
 may not retrieve). R W means read/write (GETATTR
 may retrieve, SETATTR may set).
 Defined in:
 The section of this specification that describes the
 attribute.

 Name
 Id
 Data Type
 Acc
 Defined in:

 supported_attrs
 0
 bitmap4
 R

 type
 1
 nfs_ftype4
 R

 fh_expire_type
 2
 uint32_t
 R

 change
 3
 uint64_t
 R

 size
 4
 uint64_t
 R W

 link_support
 5
 bool
 R

 symlink_support
 6
 bool
 R

 named_attr
 7
 bool
 R

 fsid
 8
 fsid4
 R

 unique_handles
 9
 bool
 R

 lease_time
 10
 nfs_lease4
 R

 rdattr_error
 11
 enum
 R

 filehandle
 19
 nfs_fh4
 R

 suppattr_exclcreat
 75
 bitmap4
 R

 RECOMMENDED Attributes - List and Definition References

 The RECOMMENDED attributes are defined in
 . The meanings
 of the column headers are the same as
 ; see for the meanings.

 Name
 Id
 Data Type
 Acc
 Defined in:

 acl
 12
 nfsace4<>
 R W

 aclsupport
 13
 uint32_t
 R

 archive
 14
 bool
 R W

 cansettime
 15
 bool
 R

 case_insensitive
 16
 bool
 R

 case_preserving
 17
 bool
 R

 change_policy
 60
 chg_policy4
 R

 chown_restricted
 18
 bool
 R

 dacl
 58
 nfsacl41
 R W

 dir_notif_delay
 56
 nfstime4
 R

 dirent_notif_delay
 57
 nfstime4
 R

 fileid
 20
 uint64_t
 R

 files_avail
 21
 uint64_t
 R

 files_free
 22
 uint64_t
 R

 files_total
 23
 uint64_t
 R

 fs_charset_cap
 76
 uint32_t
 R

 fs_layout_type
 62
 layouttype4<>
 R

 fs_locations
 24
 fs_locations
 R

 fs_locations_info
 67
 fs_locations_info4
 R

 fs_status
 61
 fs4_status
 R

 hidden
 25
 bool
 R W

 homogeneous
 26
 bool
 R

 layout_alignment
 66
 uint32_t
 R

 layout_blksize
 65
 uint32_t
 R

 layout_hint
 63
 layouthint4
 W

 layout_type
 64
 layouttype4<>
 R

 maxfilesize
 27
 uint64_t
 R

 maxlink
 28
 uint32_t
 R

 maxname
 29
 uint32_t
 R

 maxread
 30
 uint64_t
 R

 maxwrite
 31
 uint64_t
 R

 mdsthreshold
 68
 mdsthreshold4
 R

 mimetype
 32
 utf8str_cs
 R W

 mode
 33
 mode4
 R W

 mode_set_masked
 74
 mode_masked4
 W

 mounted_on_fileid
 55
 uint64_t
 R

 no_trunc
 34
 bool
 R

 numlinks
 35
 uint32_t
 R

 owner
 36
 utf8str_mixed
 R W

 owner_group
 37
 utf8str_mixed
 R W

 quota_avail_hard
 38
 uint64_t
 R

 quota_avail_soft
 39
 uint64_t
 R

 quota_used
 40
 uint64_t
 R

 rawdev
 41
 specdata4
 R

 retentevt_get
 71
 retention_get4
 R

 retentevt_set
 72
 retention_set4
 W

 retention_get
 69
 retention_get4
 R

 retention_hold
 73
 uint64_t
 R W

 retention_set
 70
 retention_set4
 W

 sacl
 59
 nfsacl41
 R W

 space_avail
 42
 uint64_t
 R

 space_free
 43
 uint64_t
 R

 space_total
 44
 uint64_t
 R

 space_used
 45
 uint64_t
 R

 system
 46
 bool
 R W

 time_access
 47
 nfstime4
 R

 time_access_set
 48
 settime4
 W

 time_backup
 49
 nfstime4
 R W

 time_create
 50
 nfstime4
 R W

 time_delta
 51
 nfstime4
 R

 time_metadata
 52
 nfstime4
 R

 time_modify
 53
 nfstime4
 R

 time_modify_set
 54
 settime4
 W

 Attribute Definitions

 Definitions of REQUIRED Attributes

 Attribute 0: supported_attrs

	The bit vector that would retrieve all REQUIRED and
	 RECOMMENDED attributes that are supported for this object.
	The scope of this attribute applies to all objects with a
	matching fsid.

 Attribute 1: type

	 Designates the type of an object in terms of one of a number
 of special constants:

 NF4REG designates a regular file.

 NF4DIR designates a directory.

 NF4BLK designates a block device special file.

 NF4CHR designates a character device special file.

 NF4LNK designates a symbolic link.

 NF4SOCK designates a named socket special file.

 NF4FIFO designates a fifo special file.

 NF4ATTRDIR designates a named attribute directory.

 NF4NAMEDATTR designates a named attribute.

 Within the explanatory text and operation descriptions, the
 following phrases will be used with the meanings given below:

 The phrase "is a directory" means that the object's
 type attribute is NF4DIR or NF4ATTRDIR.

 The phrase "is a special file" means that the object's type
 attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO.

 The phrases "is an ordinary file" and
 "is a regular file" mean that the object's
 type attribute is NF4REG or NF4NAMEDATTR.

 Attribute 2: fh_expire_type

	 Server uses this to specify filehandle expiration behavior
	 to the client. See for additional
	 description.

 Attribute 3: change

	 A value created by the server that the client can use to
	 determine if file data, directory contents, or attributes of
	 the object have been modified. The server may return the
	 object's time_metadata attribute for this attribute's value,
	 but only if the file system object cannot be updated more
	 frequently than the resolution of time_metadata.

 Attribute 4: size

	 The size of the object in bytes.

 Attribute 5: link_support

	 TRUE, if the object's file system supports hard links.

 Attribute 6: symlink_support

	 TRUE, if the object's file system supports symbolic links.

 Attribute 7: named_attr

	 TRUE, if this object has named attributes. In other words,
	 object has a non-empty named attribute directory.

 Attribute 8: fsid

	 Unique file system identifier for the file system holding this
	 object. The fsid attribute has major and minor components, each of
	 which are of data type uint64_t.

 Attribute 9: unique_handles

	 TRUE, if two distinct filehandles are guaranteed to refer to two
	 different file system objects.

 Attribute 10: lease_time

	 Duration of the lease at server in seconds.

 Attribute 11: rdattr_error

	 Error returned from an attempt to retrieve attributes during a READDIR operation.

 Attribute 19: filehandle

	 The filehandle of this object (primarily for READDIR requests).

 Attribute 75: suppattr_exclcreat

	The bit vector that would set all REQUIRED and
	 RECOMMENDED attributes that are supported by the EXCLUSIVE4_1
 method of file creation via the OPEN operation.
	The scope of this attribute applies to all objects with a
	matching fsid.

 Definitions of Uncategorized RECOMMENDED Attributes

 The definitions of most of the RECOMMENDED attributes follow. Collections
 that share a common category are defined in other sections.

 Attribute 14: archive

	TRUE, if this file has been archived since the time of last
	modification (deprecated in favor of time_backup).

 Attribute 15: cansettime

	TRUE, if the server is able to change the times for a
	file system object as specified in a SETATTR operation.

 Attribute 16: case_insensitive

	TRUE, if file name comparisons on this file system are case
	insensitive.

 Attribute 17: case_preserving

	TRUE, if file name case on this file system is preserved.

 Attribute 60: change_policy

	A value created by the server that the client can use to
	determine if some server policy related to the current
 file system has been subject to change. If the value
 remains the same, then the client can be sure that the
 values of the attributes related to fs location
 and the fss_type field of the fs_status attribute have
 not changed. On the other hand, a change in this value does
 necessarily imply a change in policy. It is up to the client
 to interrogate the server to determine if some policy relevant to
 it has changed. See for
 details.

 This attribute MUST change when the value returned by
 the fs_locations or fs_locations_info attribute changes, when
 a file system goes from read-only to writable or vice versa,
 or when the allowable set of security flavors for the file system
 or any part thereof is changed.

 Attribute 18: chown_restricted

	If TRUE, the server will reject any request to change either
	the owner or the group associated with a file if the caller
	is not a privileged user (for example, "root" in UNIX
	operating environments or, in Windows 2000, the "Take
	Ownership" privilege).

 Attribute 20: fileid

	A number uniquely identifying the file within the file system.

 Attribute 21: files_avail

	File slots available to this user on the file system
	containing this object -- this should be the smallest
	relevant limit.

 Attribute 22: files_free

	Free file slots on the file system containing this object --
	this should be the smallest relevant limit.

 Attribute 23: files_total

	Total file slots on the file system containing this object.

 Attribute 76: fs_charset_cap

 Character set capabilities for this file system. See
 .

 Attribute 24: fs_locations

 Locations where this file system may be found. If the server
 returns NFS4ERR_MOVED as an error, this attribute MUST be
 supported.
 See for more details.

 Attribute 67: fs_locations_info

	Full function file system location.
 See for more details.

 Attribute 61: fs_status

	Generic file system type information.
 See for more details.

 Attribute 25: hidden

	TRUE, if the file is considered hidden with respect to
	the Windows API.

 Attribute 26: homogeneous

	TRUE, if this object's file system is homogeneous; i.e., all
	objects in the file system (all objects on the server with the
	same fsid) have common values for all per-file-system attributes.

 Attribute 27: maxfilesize

	Maximum supported file size for the file system of this object.

 Attribute 28: maxlink

	Maximum number of links for this object.

 Attribute 29: maxname

	Maximum file name size supported for this object.

 Attribute 30: maxread

	Maximum amount of data the READ operation will return for this object.

 Attribute 31: maxwrite

	Maximum amount of data the WRITE operation will accept for this object.
	This
	attribute SHOULD be supported if the file is writable. Lack
	of this attribute can lead to the client either wasting
	bandwidth or not receiving the best performance.

 Attribute 32: mimetype

	MIME body type/subtype of this object.

 Attribute 55: mounted_on_fileid

	Like fileid, but if the target filehandle is the root of a
	file system, this attribute represents the fileid of the
	underlying directory.

	UNIX-based operating environments connect a file system into
	the namespace by connecting (mounting) the file system onto
	the existing file object (the mount point, usually a
	directory) of an existing file system. When the mount point's
	parent directory is read via an API like readdir(), the return
	results are directory entries, each with a component name and
	a fileid. The fileid of the mount point's directory entry will
	be different from the fileid that the stat() system call
	returns. The stat() system call is returning the fileid of the
	root of the mounted file system, whereas readdir() is
	returning the fileid that stat() would have returned before any
	file systems were mounted on the mount point.

	Unlike NFSv3, NFSv4.1 allows a client's LOOKUP
	request to cross other file systems. The client detects the
	file system crossing whenever the filehandle argument of
	LOOKUP has an fsid attribute different from that of the
	filehandle returned by LOOKUP. A UNIX-based client will
	consider this a "mount point crossing". UNIX has a legacy
	scheme for allowing a process to determine its current working
	directory. This relies on readdir() of a mount point's parent
	and stat() of the mount point returning fileids as previously
	described. The mounted_on_fileid attribute corresponds to the
	fileid that readdir() would have returned as described
	previously.

	While the NFSv4.1 client could simply fabricate a fileid
	corresponding to what mounted_on_fileid provides (and if the
	server does not support mounted_on_fileid, the client has no
	choice), there is a risk that the client will generate a
	fileid that conflicts with one that is already assigned to
	another object in the file system. Instead, if the server can
	provide the mounted_on_fileid, the potential for client
	operational problems in this area is eliminated.

	If the server detects that there is no mounted point at the
	target file object, then the value for mounted_on_fileid that
	it returns is the same as that of the fileid attribute.

	The mounted_on_fileid attribute is RECOMMENDED, so the server
	 SHOULD provide it if possible, and for a UNIX-based server,
	this is straightforward. Usually, mounted_on_fileid will be
	requested during a READDIR operation, in which case it is
	trivial (at least for UNIX-based servers) to return
	mounted_on_fileid since it is equal to the fileid of a
	directory entry returned by readdir(). If mounted_on_fileid
	is requested in a GETATTR operation, the server should obey an
	invariant that has it returning a value that is equal to the
	file object's entry in the object's parent directory,
	i.e., what readdir() would have returned. Some operating
	environments allow a series of two or more file systems to be
	mounted onto a single mount point. In this case, for the
	server to obey the aforementioned invariant, it will need to
	find the base mount point, and not the intermediate mount
	points.

 Attribute 34: no_trunc

	If this attribute is TRUE, then if the client uses a file
 name longer than name_max, an error will be
	returned instead of the name being truncated.

 Attribute 35: numlinks

	Number of hard links to this object.

 Attribute 36: owner

	The string name of the owner of this object.

 Attribute 37: owner_group

	The string name of the group ownership of this object.

 Attribute 38: quota_avail_hard

	The value in bytes that represents the amount of additional
	disk space beyond the current allocation that can be allocated
	to this file or directory before further allocations will be
	refused. It is understood that this space may be consumed by
	allocations to other files or directories.

 Attribute 39: quota_avail_soft

	The value in bytes that represents the amount of additional
	disk space that can be allocated to this file or directory
	before the user may reasonably be warned. It is understood
	that this space may be consumed by allocations to other files
	or directories though there is a rule as to which other files
	or directories.

 Attribute 40: quota_used

	The value in bytes that represents the amount of disk
	space used by this file or directory and possibly a
	number of other similar files or directories, where the
	set of "similar" meets at least the criterion that
	allocating space to any file or directory in the set
	will reduce the "quota_avail_hard" of every other file
	or directory in the set.

	Note that there may be a number of distinct but
	overlapping sets of files or directories for which a
	quota_used value is maintained, e.g., "all files with a
	given owner", "all files with a given group owner", etc.
	The server is at liberty to choose any of those sets when
 providing the content of the quota_used attribute, but
	should do so in a repeatable way. The rule may be
	configured per file system or may be "choose the set with
	the smallest quota".

 Attribute 41: rawdev

	Raw device number of file of type NF4BLK or NF4CHR. The device
 number is split into major and minor numbers.
	If the file's type attribute is not NF4BLK or NF4CHR,
	the value returned SHOULD NOT be considered useful.

 Attribute 42: space_avail

	Disk space in bytes available to this user on the file system
	containing this object -- this should be the smallest
	relevant limit.

 Attribute 43: space_free

	Free disk space in bytes on the file system containing this
	object -- this should be the smallest relevant limit.

 Attribute 44: space_total

	Total disk space in bytes on the file system containing this object.

 Attribute 45: space_used

	Number of file system bytes allocated to this object.

 Attribute 46: system

	This attribute is TRUE if this file is a "system" file with
	respect to the Windows operating environment.

 Attribute 47: time_access

	The time_access attribute represents the time of last access to
	the object by a READ operation sent to the server. The notion
	of what is an "access" depends on the server's operating environment
	and/or the server's file system semantics. For example, for
	servers obeying Portable Operating System Interface (POSIX) semantics, time_access would be updated only
	by the READ and READDIR operations and not any of the operations
	that modify the content of the object ,
	 , . Of
	course, setting the corresponding time_access_set attribute is
	another way to modify the time_access attribute.

	Whenever the file object resides on a writable file system,
	the server should make its best efforts to record time_access into
	stable storage. However, to mitigate the performance effects
	of doing so, and most especially whenever the server is
	satisfying the read of the object's content from its cache,
	the server MAY cache access time updates and lazily write them
	to stable storage. It is also acceptable to give
	administrators of the server the option to disable time_access
	updates.

 Attribute 48: time_access_set

	Sets the time of last access to the object. SETATTR use only.

 Attribute 49: time_backup

	The time of last backup of the object.

 Attribute 50: time_create

	The time of creation of the object. This attribute does not
	have any relation to the traditional UNIX file attribute
	"ctime" or "change time".

 Attribute 51: time_delta

	Smallest useful server time granularity.

 Attribute 52: time_metadata

	The time of last metadata modification of the object.

 Attribute 53: time_modify

	The time of last modification to the object.

 Attribute 54: time_modify_set

	Sets the time of last modification to the object. SETATTR use only.

 Interpreting owner and owner_group

 The RECOMMENDED attributes "owner" and "owner_group" (and also
 users and groups within the "acl" attribute) are represented in
 terms of a UTF-8 string. To avoid a representation that is tied
 to a particular underlying implementation at the client or
 server, the use of the UTF-8 string has been chosen. Note that
 Section
 of RFC 2624 provides
 additional rationale. It is expected that the client and server
 will have their own local representation of owner and
 owner_group that is used for local storage or presentation to
 the end user. Therefore, it is expected that when these
 attributes are transferred between the client and server,
 the local representation is translated to a syntax of the form
 "user@dns_domain". This will allow for a client and server that
 do not use the same local representation the ability to
 translate to a common syntax that can be interpreted by both.

 Similarly, security principals may be represented in different
 ways by different security mechanisms. Servers normally
 translate these representations into a common format,
 generally that used by local storage, to serve as a means of
 identifying the users corresponding to these security
 principals. When these local identifiers are translated to
 the form of the owner attribute, associated with files created
 by such principals, they identify, in a common format, the
 users associated with each corresponding set of security
 principals.

 The translation used to interpret owner and group strings is
 not specified as part of the protocol. This allows various
 solutions to be employed. For example, a local translation
 table may be consulted that maps a numeric identifier to the
 user@dns_domain syntax. A name service may also be used to
 accomplish the translation. A server may provide a more
 general service, not limited by any particular translation
 (which would only translate a limited set of possible strings)
 by storing the owner and owner_group attributes in local
 storage without any translation or it may augment a
 translation method by storing the entire string for attributes
 for which no translation is available while using the local
 representation for those cases in which a translation is
 available.

 Servers that do not provide support for all possible values of
 the owner and owner_group attributes SHOULD return an error
 (NFS4ERR_BADOWNER) when a string is presented that has no
 translation, as the value to be set for a SETATTR of the
 owner, owner_group, or acl attributes. When a server does
 accept an owner or owner_group value as valid on a SETATTR
 (and similarly for the owner and group strings in an acl), it
 is promising to return that same string when a corresponding
 GETATTR is done. Configuration changes (including
 changes from the mapping of the string to the local representation)
 and ill-constructed
 name translations (those that contain aliasing) may make that
 promise impossible to honor. Servers should make appropriate
 efforts to avoid a situation in which these attributes have
 their values changed when no real change to ownership has
 occurred.

 The "dns_domain" portion of the owner string is meant to be a
 DNS domain name, for example, user@example.org. Servers should
 accept as valid a set of users for at least one domain. A
 server may treat other domains as having no valid
 translations. A more general service is provided when a
 server is capable of accepting users for multiple domains, or
 for all domains, subject to security constraints.

 In the case where there is no translation available to the
 client or server, the attribute value will be constructed
 without the "@". Therefore, the absence of the @ from the
 owner or owner_group attribute signifies that no translation
 was available at the sender and that the receiver of the
 attribute should not use that string as a basis for
 translation into its own internal format. Even though the
 attribute value cannot be translated, it may still be useful.
 In the case of a client, the attribute string may be used for
 local display of ownership.

 To provide a greater degree of compatibility with NFSv3,
 which identified users and groups by 32-bit unsigned user
 identifiers and group identifiers, owner and group strings that
 consist of decimal numeric values with no leading zeros can be
 given a special interpretation by clients and servers that
 choose to provide such support. The receiver may treat such a
 user or group string as representing the same user as would be
 represented by an NFSv3 uid or gid having the corresponding
 numeric value. A server is not obligated to accept such a
 string, but may return an NFS4ERR_BADOWNER instead. To avoid
 this mechanism being used to subvert user and group translation,
 so that a client might pass all of the owners and groups in
 numeric form, a server SHOULD return an NFS4ERR_BADOWNER error
 when there is a valid translation for the user or owner
 designated in this way. In that case, the client must use the
 appropriate name@domain string and not the special form for compatibility.

 The owner string "nobody" may be used to designate an
 anonymous user, which will be associated with a file created
 by a security principal that cannot be mapped through normal
 means to the owner attribute. Users and implementations
 of NFSv4.1 SHOULD NOT use "nobody" to designate a real user whose access is not anonymous.

 Character Case Attributes

 With respect to the case_insensitive and case_preserving
 attributes, each UCS-4 character (which UTF-8 encodes) can be
 mapped according to Appendix

 of RFC 3454 .
 For general character handling and internationalization issues,
 see .

 Directory Notification Attributes

 As described in , the
 client can request a minimum delay for notifications of changes
 to attributes, but the server is free to ignore what the client
 requests. The client can determine in advance what notification
 delays the server will accept by sending a GETATTR operation for either or
 both of two directory notification attributes. When the client
 calls the GET_DIR_DELEGATION operation and asks for attribute
 change notifications, it should request notification delays that
 are no less than the values in the server-provided attributes.

 Attribute 56: dir_notif_delay

	The dir_notif_delay attribute is the minimum number of seconds
	the server will delay before notifying the client of a change
	to the directory's attributes.

 Attribute 57: dirent_notif_delay

	The dirent_notif_delay attribute is the minimum number of seconds
	the server will delay before notifying the client of a change
	to a file object that has an entry in the directory.

 pNFS Attribute Definitions

 Attribute 62: fs_layout_type

	The fs_layout_type attribute (see
) applies to a
	file system and indicates what layout types are supported by
	the file system. When the client encounters a new fsid, the
	client SHOULD obtain the value for the fs_layout_type
	attribute associated with the new file system. This attribute
	is used by the client to determine if the layout types
	supported by the server match any of the client's supported
	layout types.

 Attribute 66: layout_alignment

	When a client holds layouts on files of a file system, the
 layout_alignment attribute indicates the preferred alignment
 for I/O to files on that file system. Where possible, the
 client should send READ and WRITE operations with offsets
 that are whole multiples of the layout_alignment attribute.

 Attribute 65: layout_blksize

	When a client holds layouts on files of a file system, the
	layout_blksize attribute indicates the preferred block size
	for I/O to files on that file system. Where possible, the
	client should send READ operations with a count argument that
	is a whole multiple of layout_blksize, and WRITE operations
	with a data argument of size that is a whole multiple of
	layout_blksize.

 Attribute 63: layout_hint

	The layout_hint attribute (see
) may be set on
	newly created files to influence the metadata server's choice
	for the file's layout. If possible, this attribute is one of
	those set in the initial attributes within the OPEN operation.
	The metadata server may choose to ignore this attribute. The
	layout_hint attribute is a subset of the layout structure
	returned by LAYOUTGET. For example, instead of specifying
	particular devices, this would be used to suggest the stripe
	width of a file. The server implementation determines which
	fields within the layout will be used.

 Attribute 64: layout_type

	This attribute lists the layout type(s) available for a file.
	The value returned by the server is for informational purposes
	only. The client will use the LAYOUTGET operation to obtain
	the information needed in order to perform I/O, for example,
	the specific device information for the file and its layout.

 Attribute 68: mdsthreshold

	This attribute is a server-provided hint used to communicate
	to the client when it is more efficient to send READ and
	WRITE operations to the metadata server or the data server.
	The two types of thresholds described are file size thresholds
	and I/O size thresholds. If a file's size is smaller than the
	file size threshold, data accesses SHOULD be sent to the
	metadata server. If an I/O request has a length
 that is below the I/O size threshold,
	the I/O SHOULD be sent to the metadata server.
	Each threshold type is specified separately for read and
	write.

	The server MAY provide both types of thresholds for a file.
	If both file size and I/O size are provided, the client SHOULD
	reach or exceed both thresholds before sending its read or write
	requests to the data server. Alternatively, if only one of
	the specified thresholds is reached or exceeded, the I/O requests are
	sent to the metadata server.

	For each threshold type, a value of zero indicates no READ or WRITE
	should be sent to the metadata server, while a value of all ones
	indicates that all READs or WRITEs should be sent to the metadata
	server.

	The attribute is available on a per-filehandle basis. If the
	current filehandle refers to a non-pNFS file or directory, the
	metadata server should return an attribute that is
	representative of the filehandle's file system. It is suggested
	that this attribute is queried as part of the OPEN operation.
	Due to dynamic system changes, the client should not assume that
	the attribute will remain constant for any specific time period;
	thus, it should be periodically refreshed.

 Retention Attributes

 Retention is a concept whereby a file object can be placed in an
 immutable, undeletable, unrenamable state for a fixed or
 infinite duration of time. Once in this "retained" state, the
 file cannot be moved out of the state until the duration of
 retention has been reached.

 When retention is enabled, retention MUST extend to the data of
 the file, and the name of file. The server MAY extend retention
 to any other property of the file, including any subset of
 REQUIRED, RECOMMENDED, and named attributes, with the
 exceptions noted in this section.

 Servers MAY support or not support retention on
 any file object type.

 The five retention attributes are explained in the next subsections.

 Attribute 69: retention_get

 If retention is enabled for the associated file,
 this attribute's value represents the retention
 begin time of the file object. This attribute's
 value is only readable with the GETATTR operation
 and MUST NOT be modified by the SETATTR operation
 (). The value of the
 attribute consists of:

const RET4_DURATION_INFINITE = 0xffffffffffffffff;
struct retention_get4 {
 uint64_t rg_duration;
 nfstime4 rg_begin_time<1>;
};

 The field rg_duration is the duration in seconds indicating how
 long the file will be retained once retention is enabled. The
 field rg_begin_time is an array of up to one absolute time
 value. If the array is zero length, no beginning retention time
 has been established, and retention is not enabled.
 If rg_duration is equal to RET4_DURATION_INFINITE, the file, once
 retention is enabled, will be retained for an infinite duration.

 If (as soon as) rg_duration is zero, then rg_begin_time will be
 of zero length, and again, retention is not (no longer) enabled.

 Attribute 70: retention_set

	This attribute is used to set the retention
	duration and optionally enable retention for
	the associated file object. This attribute is
	only modifiable via the SETATTR operation and
 MUST NOT be retrieved by the GETATTR operation
 ().
	This attribute corresponds to retention_get.
	The value of the attribute consists of:

struct retention_set4 {
 bool rs_enable;
 uint64_t rs_duration<1>;
};

 If the client sets rs_enable to TRUE, then it is enabling
 retention on the file object with the begin time of retention
 starting from the server's current time and date. The
 duration of the retention can also be provided if the
 rs_duration array is of length one. The duration is the time in
 seconds from the begin time of retention, and if set to
 RET4_DURATION_INFINITE, the file is to be retained forever. If
 retention is enabled, with no duration specified in either
 this SETATTR or a previous SETATTR, the duration defaults to
 zero seconds. The server MAY restrict the enabling of
 retention or the duration of retention on the basis of the
 ACE4_WRITE_RETENTION ACL permission. The enabling of
 retention MUST NOT prevent the enabling of event-based
 retention or the modification of the retention_hold
 attribute.

 The following rules apply to both the retention_set and
 retentevt_set attributes.

	 As long as retention is not enabled, the client
	 is permitted to decrease the duration.

	 The duration can always be set to an
	 equal or higher value, even if retention is
	 enabled. Note that once retention is enabled,
	 the actual duration (as returned by the
	 retention_get or retentevt_get attributes;
	 see
	 or)
	 is constantly counting down to zero (one unit
	 per second), unless the duration was set to
	 RET4_DURATION_INFINITE. Thus, it will not be
	 possible for the client to precisely extend the
	 duration on a file that has retention enabled.

	 While retention is enabled, attempts to disable
	 retention or decrease the retention's duration
	 MUST fail with the error NFS4ERR_INVAL.

 If the principal attempting to change
 retention_set or retentevt_set does not have
 ACE4_WRITE_RETENTION permissions, the attempt
 MUST fail with NFS4ERR_ACCESS.

 Attribute 71: retentevt_get

	Gets the event-based retention duration, and if enabled, the
 event-based retention begin time of the file object. This
 attribute is like retention_get, but refers to event-based
 retention. The event that triggers event-based retention is
 not defined by the NFSv4.1 specification.

 Attribute 72: retentevt_set

	Sets the event-based retention duration, and optionally enables
	event-based retention on the file object. This attribute
	corresponds to retentevt_get and is like retention_set, but
	refers to event-based retention. When event-based retention
	is set, the file MUST be retained even if non-event-based
	retention has been set, and the duration of non-event-based
	retention has been reached. Conversely, when non-event-based
	retention has been set, the file MUST be retained even if
	event-based retention has been set, and the duration of
	event-based retention has been reached. The server MAY
	restrict the enabling of event-based retention or the duration
	of event-based retention on the basis of the
	ACE4_WRITE_RETENTION ACL permission. The enabling of
	event-based retention MUST NOT prevent the enabling of
	non-event-based retention or the modification of the
	retention_hold attribute.

 Attribute 73: retention_hold

	Gets or sets administrative retention holds, one hold per bit
 position.

	This attribute allows one to 64 administrative holds, one hold
	per bit on the attribute. If retention_hold is not zero, then
	the file MUST NOT be deleted, renamed, or modified, even if
	the duration on enabled event or non-event-based retention has
	been reached. The server MAY restrict the modification of
	retention_hold on the basis of the ACE4_WRITE_RETENTION_HOLD
	ACL permission. The enabling of administration retention
	holds does not prevent the enabling of event-based or
	non-event-based retention.

	If the principal attempting to change retention_hold does
	not have ACE4_WRITE_RETENTION_HOLD permissions,
	the attempt MUST fail with NFS4ERR_ACCESS.

 Access Control Attributes

 Access Control Lists (ACLs) are file attributes that specify
 fine-grained access control. This section covers the
 "acl", "dacl", "sacl",
 "aclsupport", "mode", and
 "mode_set_masked" file attributes and their
 interactions. Note that file attributes may apply to any file
 system object.

 Goals

 ACLs and modes represent two well-established models for
 specifying permissions. This section specifies requirements
 that attempt to meet the following goals:

 If a server supports the mode attribute, it should provide
 reasonable semantics to clients that only set and retrieve
 the mode attribute.

 If a server supports ACL attributes, it should provide
 reasonable semantics to clients that only set and retrieve
 those attributes.

 On servers that support the mode attribute, if ACL
 attributes have never been set on an object, via
 inheritance or explicitly, the behavior should be
 traditional UNIX-like behavior.

 On servers that support the mode attribute, if the ACL
 attributes have been previously set on an object, either
 explicitly or via inheritance:

 Setting only the mode attribute should effectively
 control the traditional UNIX-like permissions of read,
 write, and execute on owner, owner_group, and other.

 Setting only the mode attribute should provide
 reasonable security. For example, setting a mode of
 000 should be enough to ensure that future OPEN operations for
 OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any principal fail, regardless of a
 previously existing or inherited ACL.

 NFSv4.1 may introduce different
 semantics relating to the mode and ACL attributes,
 but it does not render invalid any previously
 existing implementations. Additionally, this
 section provides clarifications based on previous
 implementations and discussions around them.

 On servers that support both the mode and the acl or
 dacl attributes, the server must keep the two consistent
 with each other. The value of the mode attribute (with
 the exception of the three high-order bits described in
) must be determined entirely
 by the value of the ACL, so that use of the mode is
 never required for anything other than setting the
 three high-order bits. See
 for exact requirements.

 When a mode attribute is set on an object, the ACL
 attributes may need to be modified in order to not conflict
 with the new mode. In such cases, it is desirable that the
 ACL keep as much information as possible. This includes
 information about inheritance, AUDIT and ALARM ACEs, and
 permissions granted and denied that do not conflict with
 the new mode.

 File Attributes Discussion

 Attribute 12: acl

 The NFSv4.1 ACL attribute contains an array of Access
 Control Entries (ACEs) that are associated with the file
 system object. Although the client can set and
 get the acl attribute, the server is responsible for using
 the ACL to perform access control. The client can use the
 OPEN or ACCESS operations to check access without modifying
 or reading data or metadata.

 The NFS ACE structure is defined as follows:

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;

struct nfsace4 {
 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8str_mixed who;
};

 To determine if a request succeeds, the server processes
 each nfsace4 entry in order. Only ACEs that have a "who"
 that matches the requester are considered. Each ACE is
 processed until all of the bits of the requester's access
 have been ALLOWED. Once a bit (see below) has been ALLOWED
 by an ACCESS_ALLOWED_ACE, it is no longer considered in the
 processing of later ACEs. If an ACCESS_DENIED_ACE is
 encountered where the requester's access still has unALLOWED
 bits in common with the "access_mask" of the ACE, the
 request is denied. When the ACL is fully processed, if
 there are bits in the requester's mask that have not been
 ALLOWED or DENIED, access is denied.

 Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE
 types do not affect a requester's access, and instead are
 for triggering events as a result of a requester's access
 attempt. Therefore, AUDIT and ALARM ACEs are processed only
 after processing ALLOW and DENY ACEs.

 The NFSv4.1 ACL model is quite rich. Some server
 platforms may provide access-control functionality that goes
 beyond the UNIX-style mode attribute, but that is not as
 rich as the NFS ACL model. So that users can take advantage
 of this more limited functionality, the server may support
 the acl attributes by mapping between its ACL model and the
 NFSv4.1 ACL model. Servers must ensure that the ACL
 they actually store or enforce is at least as strict as the
 NFSv4 ACL that was set. It is tempting to accomplish this
 by rejecting any ACL that falls outside the small set that
 can be represented accurately. However, such an approach
 can render ACLs unusable without special client-side
 knowledge of the server's mapping, which defeats the purpose
 of having a common NFSv4 ACL protocol. Therefore, servers
 should accept every ACL that they can without compromising
 security. To help accomplish this, servers may make a
 special exception, in the case of unsupported permission
 bits, to the rule that bits not ALLOWED or DENIED by an ACL
 must be denied. For example, a UNIX-style server might
 choose to silently allow read attribute permissions even
 though an ACL does not explicitly allow those permissions.
 (An ACL that explicitly denies permission to read attributes
 should still be rejected.)

 The situation is complicated by the fact that a server may
 have multiple modules that enforce ACLs. For example, the
 enforcement for NFSv4.1 access may be different from,
 but not weaker than, the enforcement for local access, and
 both may be different from the enforcement for access
 through other protocols such as SMB (Server Message Block). So it may be useful for
 a server to accept an ACL even if not all of its modules are
 able to support it.

 The guiding principle with regard to NFSv4 access is
 that the server must not accept ACLs that appear to
 make access to the file more restrictive than it really is.

 ACE Type

 The constants used for the type field (acetype4) are as
 follows:

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;
const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;
const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

 Only the ALLOWED and DENIED bits may be used in the
 dacl attribute, and only the AUDIT and ALARM bits may be
 used in the sacl attribute. All four are permitted in the
 acl attribute.

 Value
 Abbreviation
 Description

 ACE4_ACCESS_ALLOWED_ACE_TYPE
 ALLOW

 Explicitly grants the access defined in acemask4 to
 the file or directory.

 ACE4_ACCESS_DENIED_ACE_TYPE
 DENY

 Explicitly denies the access defined in acemask4 to
 the file or directory.

 ACE4_SYSTEM_AUDIT_ACE_TYPE
 AUDIT

 Log (in a system-dependent way) any access attempt to
 a file or directory that uses any of the access
 methods specified in acemask4.

 ACE4_SYSTEM_ALARM_ACE_TYPE
 ALARM

 Generate an alarm (in a system-dependent way) when any
 access attempt is made to a file or directory for the
 access methods specified in acemask4.

 The "Abbreviation" column denotes how the
 types will be referred to throughout the rest of this
 section.

 Attribute 13: aclsupport

 A server need not support all of the above ACE types.
	 This attribute indicates which ACE types are supported for
	 the current file system. The bitmask constants used to
	 represent the above definitions within the aclsupport
	 attribute are as follows:

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

 Servers that support either the ALLOW or DENY ACE type
 SHOULD support both ALLOW and DENY ACE types.

 Clients should not attempt to set an ACE unless the server
 claims support for that ACE type. If the server receives a
 request to set an ACE that it cannot store, it MUST reject
 the request with NFS4ERR_ATTRNOTSUPP. If the server
 receives a request to set an ACE that it can store but
 cannot enforce, the server SHOULD reject the request with
 NFS4ERR_ATTRNOTSUPP.

 Support for any of the ACL attributes is
 optional (albeit RECOMMENDED).
 However, a server that supports either of the new ACL
 attributes (dacl or sacl) MUST allow use of the new ACL
 attributes to access all of the ACE types that it
 supports. In other words, if such a server supports ALLOW
 or DENY ACEs, then it MUST support the dacl attribute, and
 if it supports AUDIT or ALARM ACEs, then it MUST support
 the sacl attribute.

 ACE Access Mask

 The bitmask constants used for the access mask field
 are as follows:

const ACE4_READ_DATA = 0x00000001;
const ACE4_LIST_DIRECTORY = 0x00000001;
const ACE4_WRITE_DATA = 0x00000002;
const ACE4_ADD_FILE = 0x00000002;
const ACE4_APPEND_DATA = 0x00000004;
const ACE4_ADD_SUBDIRECTORY = 0x00000004;
const ACE4_READ_NAMED_ATTRS = 0x00000008;
const ACE4_WRITE_NAMED_ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE_CHILD = 0x00000040;
const ACE4_READ_ATTRIBUTES = 0x00000080;
const ACE4_WRITE_ATTRIBUTES = 0x00000100;
const ACE4_WRITE_RETENTION = 0x00000200;
const ACE4_WRITE_RETENTION_HOLD = 0x00000400;

const ACE4_DELETE = 0x00010000;
const ACE4_READ_ACL = 0x00020000;
const ACE4_WRITE_ACL = 0x00040000;
const ACE4_WRITE_OWNER = 0x00080000;
const ACE4_SYNCHRONIZE = 0x00100000;

	 Note that some masks have coincident values, for
	 example, ACE4_READ_DATA and ACE4_LIST_DIRECTORY.
	 The mask entries ACE4_LIST_DIRECTORY,
	 ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are
	 intended to be used with directory objects,
	 while ACE4_READ_DATA, ACE4_WRITE_DATA, and
	 ACE4_APPEND_DATA are intended to be used with
	 non-directory objects.

 Discussion of Mask Attributes
 ACE4_READ_DATA

 Operation(s) affected:

 READ
 OPEN

 Discussion:

		 Permission to read the data of the file.

		 Servers SHOULD allow a user the ability to read the data
		 of the file when only the ACE4_EXECUTE access mask bit is
		 allowed.

 ACE4_LIST_DIRECTORY

 Operation(s) affected:
 READDIR
 Discussion:

		 Permission to list the contents of a directory.
		

 ACE4_WRITE_DATA

 Operation(s) affected:

 WRITE
 OPEN
 SETATTR of size

 Discussion:

		 Permission to modify a file's data.
		

 ACE4_ADD_FILE

 Operation(s) affected:

 CREATE
 LINK
 OPEN
 RENAME

 Discussion:

		 Permission to add a new file in a directory.
		 The CREATE operation is affected when nfs_ftype4
		 is NF4LNK, NF4BLK, NF4CHR, NF4SOCK, or
		 NF4FIFO. (NF4DIR is not listed because it is
		 covered by ACE4_ADD_SUBDIRECTORY.) OPEN is
		 affected when used to create a regular file.
		 LINK and RENAME are always affected.
		

 ACE4_APPEND_DATA

 Operation(s) affected:

 WRITE
 OPEN
 SETATTR of size

 Discussion:

		 The ability to modify a file's data, but only
		 starting at EOF. This allows for the notion of
		 append-only files, by allowing ACE4_APPEND_DATA
		 and denying ACE4_WRITE_DATA to the same user or
		 group. If a file has an ACL such as the one
		 described above and a WRITE request is made for
		 somewhere other than EOF, the server SHOULD
		 return NFS4ERR_ACCESS.
		

 ACE4_ADD_SUBDIRECTORY

 Operation(s) affected:

 CREATE
 RENAME

 Discussion:

		 Permission to create a subdirectory in a
		 directory. The CREATE operation is affected
		 when nfs_ftype4 is NF4DIR. The RENAME operation
		 is always affected.
		

 ACE4_READ_NAMED_ATTRS

 Operation(s) affected:

 OPENATTR

 Discussion:

		 Permission to read the named attributes of a
		 file or to look up the named attribute
		 directory. OPENATTR is affected when it is not
		 used to create a named attribute directory.
		 This is when 1) createdir is TRUE, but a named
		 attribute directory already exists, or 2)
		 createdir is FALSE.
		

 ACE4_WRITE_NAMED_ATTRS

 Operation(s) affected:

 OPENATTR

 Discussion:

		 Permission to write the named attributes of a
		 file or to create a named attribute directory.
		 OPENATTR is affected when it is used to create a
		 named attribute directory. This is when
		 createdir is TRUE and no named attribute
		 directory exists. The ability to check whether
		 or not a named attribute directory exists
		 depends on the ability to look it up; therefore,
		 users also need the ACE4_READ_NAMED_ATTRS
		 permission in order to create a named attribute
		 directory.
		

 ACE4_EXECUTE

 Operation(s) affected:

 READ
 OPEN
 REMOVE
 RENAME
 LINK
 CREATE

 Discussion:

		 Permission to execute a file.

		 Servers SHOULD allow a
		 user the ability to read the data of the file
		 when only the ACE4_EXECUTE access mask bit is
		 allowed. This is because there is no way to
		 execute a file without reading the contents.
		 Though a server may treat ACE4_EXECUTE and
		 ACE4_READ_DATA bits identically when deciding to
		 permit a READ operation, it SHOULD still allow
		 the two bits to be set independently in ACLs,
		 and MUST distinguish between them when replying
		 to ACCESS operations. In particular, servers
		 SHOULD NOT silently turn on one of the two bits
		 when the other is set, as that would make it
		 impossible for the client to correctly enforce
		 the distinction between read and execute
		 permissions.

 As an example, following a SETATTR of the following ACL:

 nfsuser:ACE4_EXECUTE:ALLOW

		 A subsequent GETATTR of ACL for that file SHOULD return:

 nfsuser:ACE4_EXECUTE:ALLOW

		 Rather than:

 nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW

 ACE4_EXECUTE

 Operation(s) affected:
 LOOKUP
 Discussion:

		 Permission to traverse/search a directory.
		

 ACE4_DELETE_CHILD

 Operation(s) affected:

 REMOVE
 RENAME

 Discussion:

		 Permission to delete a file or directory within
		 a directory.

		 See
		 for information on ACE4_DELETE and
		 ACE4_DELETE_CHILD interact.
		

 ACE4_READ_ATTRIBUTES

 Operation(s) affected:

 GETATTR of file system object attributes
 VERIFY
 NVERIFY
 READDIR

 Discussion:

		 The ability to read basic attributes (non-ACLs)
		 of a file. On a UNIX system, basic attributes
		 can be thought of as the stat-level attributes.
		 Allowing this access mask bit would mean that the
		 entity can execute "ls -l" and stat. If a
		 READDIR operation requests attributes, this mask
		 must be allowed for the READDIR to succeed.
		

 ACE4_WRITE_ATTRIBUTES

 Operation(s) affected:

 SETATTR of time_access_set, time_backup,
 time_create, time_modify_set, mimetype, hidden, system

 Discussion:

		 Permission to change the times associated with a
		 file or directory to an arbitrary value. Also
		 permission to change the mimetype, hidden, and
		 system attributes. A user having
		 ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be
		 allowed to set the times associated with a file
		 to the current server time.
		

 ACE4_WRITE_RETENTION

 Operation(s) affected:
 SETATTR of retention_set, retentevt_set.
 Discussion:

		 Permission to modify the durations of event and
		 non-event-based retention. Also permission to
		 enable event and non-event-based retention. A
		 server MAY behave such that setting
		 ACE4_WRITE_ATTRIBUTES allows
		 ACE4_WRITE_RETENTION.
		

 ACE4_WRITE_RETENTION_HOLD

 Operation(s) affected:
 SETATTR of retention_hold.
 Discussion:

		 Permission to modify the administration
		 retention holds. A server MAY map
		 ACE4_WRITE_ATTRIBUTES to
		 ACE_WRITE_RETENTION_HOLD.
		

 ACE4_DELETE

 Operation(s) affected:
 REMOVE
 Discussion:

		 Permission to delete the
		 file or directory.

		 See
		 for information on ACE4_DELETE and
		 ACE4_DELETE_CHILD interact.
		

 ACE4_READ_ACL

 Operation(s) affected:

 GETATTR of acl, dacl, or sacl
 NVERIFY
 VERIFY

 Discussion:

		 Permission to read the ACL.
		

 ACE4_WRITE_ACL

 Operation(s) affected:
 SETATTR of acl and mode
 Discussion:
 Permission to write the acl and mode attributes.

 ACE4_WRITE_OWNER

 Operation(s) affected:
 SETATTR of owner and owner_group
 Discussion:

		 Permission to write the owner and owner_group
		 attributes. On UNIX systems, this is the
		 ability to execute chown() and chgrp().
		

 ACE4_SYNCHRONIZE

 Operation(s) affected:
 NONE
 Discussion:

		 Permission to use the file object as a
		 synchronization primitive for interprocess
		 communication. This permission is not enforced
		 or interpreted by the NFSv4.1 server on behalf of
		 the client.

 Typically, the ACE4_SYNCHRONIZE permission is
 only meaningful on local file systems, i.e.,
 file systems not accessed via NFSv4.1. The reason
 that the permission bit exists is that some operating
 environments, such as Windows, use ACE4_SYNCHRONIZE.

 For example, if a client copies a file that has
 ACE4_SYNCHRONIZE set from a local file system to
 an NFSv4.1 server, and then later copies the file
 from the NFSv4.1 server to a local file system,
 it is likely that if ACE4_SYNCHRONIZE was set
 in the original file, the client will want it
 set in the second copy. The first copy will not
 have the permission set unless the NFSv4.1 server
 has the means to set the ACE4_SYNCHRONIZE bit. The
 second copy will not have the permission set unless
 the NFSv4.1 server has the means to retrieve the
 ACE4_SYNCHRONIZE bit.

 Server implementations need not provide the granularity
 of control that is implied by this list of masks. For
 example, POSIX-based systems might not distinguish
 ACE4_APPEND_DATA (the ability to append to a file) from
 ACE4_WRITE_DATA (the ability to modify existing
 contents); both masks would be tied to a single "write"
 permission . When such a server returns attributes to the
 client, it would show both ACE4_APPEND_DATA and
 ACE4_WRITE_DATA if and only if the write permission is
 enabled.

 If a server receives a SETATTR request that it cannot
 accurately implement, it should err in the direction of
 more restricted access, except in the previously
 discussed cases of execute and read. For example,
 suppose a server cannot distinguish overwriting data
 from appending new data, as described in the previous
 paragraph. If a client submits an ALLOW ACE where
 ACE4_APPEND_DATA is set but ACE4_WRITE_DATA is not (or
 vice versa), the server should either turn off
 ACE4_APPEND_DATA or reject the request with
 NFS4ERR_ATTRNOTSUPP.

 ACE4_DELETE vs. ACE4_DELETE_CHILD

 Two access mask bits govern the ability to delete a
 directory entry: ACE4_DELETE on the object
 itself (the "target") and ACE4_DELETE_CHILD on
 the containing directory (the "parent").

 Many systems also take the "sticky bit" (MODE4_SVTX)
 on a directory to allow unlink only to a user that
 owns either the target or the parent; on some
 such systems the decision also depends on
 whether the target is writable.

 Servers SHOULD allow unlink if either ACE4_DELETE
 is permitted on the target, or ACE4_DELETE_CHILD is
 permitted on the parent. (Note that this is
 true even if the parent or target explicitly
 denies one of these permissions.)

 If the ACLs in question neither explicitly ALLOW
 nor DENY either of the above, and if MODE4_SVTX is
 not set on the parent, then the server SHOULD allow
 the removal if and only if ACE4_ADD_FILE is permitted.
 In the case where MODE4_SVTX is set, the server
 may also require the remover to own either the parent
 or the target, or may require the target to be
 writable.

 This allows servers to support something close to
 traditional UNIX-like semantics, with ACE4_ADD_FILE
 taking the place of the write bit.

 ACE flag

 The bitmask constants used for the flag field are as
 follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;
const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;
const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;
const ACE4_INHERIT_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;
const ACE4_IDENTIFIER_GROUP = 0x00000040;
const ACE4_INHERITED_ACE = 0x00000080;

 A server need not support any of these flags. If the
 server supports flags that are similar to, but not
 exactly the same as, these flags, the implementation
 may define a mapping between the protocol-defined
 flags and the implementation-defined flags.

 For example, suppose a client tries to set an ACE with
 ACE4_FILE_INHERIT_ACE set but not
 ACE4_DIRECTORY_INHERIT_ACE. If the server does not
 support any form of ACL inheritance, the server should
 reject the request with NFS4ERR_ATTRNOTSUPP. If the
 server supports a single "inherit ACE" flag that
 applies to both files and directories, the server may
 reject the request (i.e., requiring the client to set
 both the file and directory inheritance flags). The
 server may also accept the request and silently turn
 on the ACE4_DIRECTORY_INHERIT_ACE flag.

 Discussion of Flag Bits

 ACE4_FILE_INHERIT_ACE

 Any non-directory file in any
 sub-directory will get this ACE
 inherited.

 ACE4_DIRECTORY_INHERIT_ACE

 Can be placed on a directory and indicates
 that this ACE should be added to each new
 directory created.

 If this flag is set in an ACE in an ACL
 attribute to be set on a non-directory
 file system object, the operation
 attempting to set the ACL SHOULD fail
 with NFS4ERR_ATTRNOTSUPP.

 ACE4_NO_PROPAGATE_INHERIT_ACE

 Can be placed on a directory. This flag
 tells the server that inheritance of this
 ACE should stop at newly created child
 directories.

 ACE4_INHERIT_ONLY_ACE

 Can be placed on a directory but does not
 apply to the directory; ALLOW and DENY ACEs
 with this bit set do not affect access to
 the directory, and AUDIT and ALARM ACEs
 with this bit set do not trigger log or
 alarm events. Such ACEs only take effect
 once they are applied (with this bit
 cleared) to newly created files and
 directories as specified by the
 ACE4_FILE_INHERIT_ACE and ACE4_DIRECTORY_INHERIT_ACE
 flags.

 If this flag is present on an ACE, but
 neither ACE4_DIRECTORY_INHERIT_ACE nor
 ACE4_FILE_INHERIT_ACE is present, then
 an operation attempting to set such an
 attribute SHOULD fail with
 NFS4ERR_ATTRNOTSUPP.

 ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and
 ACE4_FAILED_ACCESS_ACE_FLAG

 The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG
 (SUCCESS) and ACE4_FAILED_ACCESS_ACE_FLAG
 (FAILED) flag bits may be set only on
 ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and
 ACE4_SYSTEM_ALARM_ACE_TYPE (ALARM) ACE
 types. If during the processing of the
 file's ACL, the server encounters an AUDIT
 or ALARM ACE that matches the principal
 attempting the OPEN, the server notes that
 fact, and the presence, if any, of the
 SUCCESS and FAILED flags encountered in
 the AUDIT or ALARM ACE. Once the server
 completes the ACL processing, it then
 notes if the operation succeeded or
 failed. If the operation succeeded, and if
 the SUCCESS flag was set for a matching
 AUDIT or ALARM ACE, then the appropriate
 AUDIT or ALARM event occurs. If the
 operation failed, and if the FAILED flag
 was set for the matching AUDIT or ALARM
 ACE, then the appropriate AUDIT or ALARM
 event occurs. Either or both of the
 SUCCESS or FAILED can be set, but if
 neither is set, the AUDIT or ALARM ACE is
 not useful.

 The previously described processing
 applies to ACCESS operations even when
 they return NFS4_OK. For the purposes of
 AUDIT and ALARM, we consider an ACCESS
 operation to be a "failure" if it fails
 to return a bit that was requested and
		 supported.

 ACE4_IDENTIFIER_GROUP

 Indicates that the "who" refers to a GROUP
 as defined under UNIX or a GROUP ACCOUNT
 as defined under Windows. Clients and
 servers MUST ignore the
 ACE4_IDENTIFIER_GROUP flag on ACEs with a
 who value equal to one of the special
 identifiers outlined in
 .

 ACE4_INHERITED_ACE

 Indicates that this ACE is inherited from
 a parent directory. A server that supports
 automatic inheritance will place
 this flag on any ACEs inherited from the
 parent directory when creating a new
 object. Client applications will use this
 to perform automatic inheritance.
 Clients and servers MUST clear this
 bit in the acl attribute; it may only
 be used in the dacl and sacl attributes.

 ACE Who

 The "who" field of an ACE is an identifier that
 specifies the principal or principals to whom the ACE
 applies. It may refer to a user or a group, with the flag
 bit ACE4_IDENTIFIER_GROUP specifying which.

 There are several special identifiers that need to be
 understood universally, rather than in the context of a
 particular DNS domain. Some of these identifiers cannot be
 understood when an NFS client accesses the server, but
 have meaning when a local process accesses the file. The
 ability to display and modify these permissions is
 permitted over NFS, even if none of the access methods on
 the server understands the identifiers.

 Who
 Description

 OWNER

 The owner of the file.

 GROUP

 The group associated with the file.

 EVERYONE

 The world, including the owner and owning group.

 INTERACTIVE

 Accessed from an interactive terminal.

 NETWORK

 Accessed via the network.

 DIALUP

 Accessed as a dialup user to the server.

 BATCH

 Accessed from a batch job.

 ANONYMOUS

 Accessed without any authentication.

 AUTHENTICATED

 Any authenticated user (opposite of
 ANONYMOUS).

 SERVICE

 Access from a system service.

 To avoid conflict, these special identifiers are
 distinguished by an appended "@" and should appear in the
 form "xxxx@" (with no domain name after the "@"), for
 example, ANONYMOUS@.

 The ACE4_IDENTIFIER_GROUP flag MUST be ignored on
 entries with these special identifiers. When encoding
 entries with these special identifiers, the
 ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

 Discussion of EVERYONE@

 It is important to note that "EVERYONE@" is not
 equivalent to the UNIX "other" entity. This is
 because, by definition, UNIX "other" does not include
 the owner or owning group of a file. "EVERYONE@" means
 literally everyone, including the owner or owning
 group.

 Attribute 58: dacl

 The dacl attribute is like the acl attribute,
 but dacl allows
 just ALLOW and DENY ACEs. The dacl
 attribute supports automatic inheritance (see
).

 Attribute 59: sacl

 The sacl attribute is like the acl attribute,
 but sacl allows
 just AUDIT and ALARM ACEs. The sacl
 attribute supports automatic inheritance (see
).

 Attribute 33: mode

 The NFSv4.1 mode attribute is based on the UNIX mode
 bits. The following bits are defined:

const MODE4_SUID = 0x800; /* set user id on execution */
const MODE4_SGID = 0x400; /* set group id on execution */
const MODE4_SVTX = 0x200; /* save text even after use */
const MODE4_RUSR = 0x100; /* read permission: owner */
const MODE4_WUSR = 0x080; /* write permission: owner */
const MODE4_XUSR = 0x040; /* execute permission: owner */
const MODE4_RGRP = 0x020; /* read permission: group */
const MODE4_WGRP = 0x010; /* write permission: group */
const MODE4_XGRP = 0x008; /* execute permission: group */
const MODE4_ROTH = 0x004; /* read permission: other */
const MODE4_WOTH = 0x002; /* write permission: other */
const MODE4_XOTH = 0x001; /* execute permission: other */

 Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the
 principal identified in the owner attribute. Bits MODE4_RGRP,
 MODE4_WGRP, and MODE4_XGRP apply to principals identified in
 the owner_group attribute but who are not identified in the
 owner attribute. Bits MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply
 to any principal that does not match that in the owner
 attribute and does not have a group matching that of the
 owner_group attribute.

 Bits within a mode other than those specified above
 are not defined by this protocol. A server
 MUST NOT return bits other than those defined above in a
 GETATTR or READDIR operation, and it MUST return NFS4ERR_INVAL
 if bits other than those defined above are set in a SETATTR,
 CREATE, OPEN, VERIFY, or NVERIFY operation.

 Attribute 74: mode_set_masked

 The mode_set_masked attribute is a write-only attribute
 that allows individual bits in the mode attribute to be
 set or reset, without changing others. It allows, for
 example, the bits MODE4_SUID, MODE4_SGID, and MODE4_SVTX
 to be modified while leaving unmodified any of the
 nine low-order mode bits devoted to permissions.

 In such instances that the nine low-order bits are left
 unmodified, then neither the acl nor the dacl attribute
 should be automatically modified as discussed in
	 .

 The mode_set_masked attribute consists of two words,
 each in the form of a mode4. The first consists of the
 value to be applied to the current mode value and the
 second is a mask. Only bits set to one in the mask word
 are changed (set or reset) in the file's mode. All
 other bits in the mode remain unchanged. Bits in the
 first word that correspond to bits that are zero in
 the mask are ignored, except that undefined bits are
 checked for validity and can result in NFS4ERR_INVAL as
 described below.

 The mode_set_masked attribute is only valid in a SETATTR
 operation. If it is used in a CREATE or OPEN operation, the
 server MUST return NFS4ERR_INVAL.

 Bits not defined as valid in the mode attribute are not
 valid in either word of the mode_set_masked attribute.
 The server MUST return NFS4ERR_INVAL
 if any such bits are set to one in a SETATTR.
If the mode and
 mode_set_masked attributes are both specified in the
 same SETATTR, the server MUST also return NFS4ERR_INVAL.

 Common Methods

 The requirements in this section will be referred to in future
 sections, especially .

 Interpreting an ACL

 Server Considerations

	 The server uses the algorithm described in
	 to determine whether an ACL
	 allows access to an object. However, the ACL might not be
	 the sole determiner of access. For example:

 In the case of a file system exported as read-only,
 the server may deny write access even though
 an object's ACL grants it.

 Server implementations MAY grant ACE4_WRITE_ACL
 and ACE4_READ_ACL permissions to prevent
 a situation from arising in which there is no valid
 way to ever modify the ACL.

 All servers will allow a user the ability to read
 the data of the file when only the execute
 permission is granted (i.e., if the ACL denies the
 user the ACE4_READ_DATA access and allows the user
 ACE4_EXECUTE, the server will allow the user to
 read the data of the file).

 Many servers have the notion of owner-override in
 which the owner of the object is allowed to
 override accesses that are denied by the ACL.
 This may be helpful, for example, to allow users
 continued access to open files on which the
 permissions have changed.

 Many servers have the notion of a
 "superuser" that has privileges beyond
 an ordinary user. The superuser may be able
 to read or write data or metadata in ways that would
 not be permitted by the ACL.

 A retention attribute might also block access otherwise
 allowed by ACLs (see).

 Client Considerations

 Clients SHOULD NOT do their own access checks based on
 their interpretation of the ACL, but rather use the OPEN and
 ACCESS operations to do access checks. This allows the
 client to act on the results of having the server
 determine whether or not access should be granted based on
 its interpretation of the ACL.

 Clients must be aware of situations in which an object's
 ACL will define a certain access even though the server
 will not enforce it. In general, but especially in these
 situations, the client needs to do its part in the
 enforcement of access as defined by the ACL. To do this,
 the client MAY send the appropriate ACCESS operation
 prior to servicing the request of the user or application
 in order to determine whether the user or application
 should be granted the access requested. For examples in
 which the ACL may define accesses that the server doesn't
 enforce, see .

 Computing a Mode Attribute from an ACL

 The following method can be used to calculate the MODE4_R*,
 MODE4_W*, and MODE4_X* bits of a mode attribute, based upon
 an ACL.

 First, for each of the special identifiers OWNER@, GROUP@, and
 EVERYONE@, evaluate the ACL in order, considering only ALLOW
 and DENY ACEs for the identifier EVERYONE@ and for the
 identifier under consideration. The result of the evaluation
 will be an NFSv4 ACL mask showing exactly which bits are
 permitted to that identifier.

 Then translate the calculated mask for OWNER@, GROUP@, and
 EVERYONE@ into mode bits for, respectively, the user, group,
 and other, as follows:

 Set the read bit (MODE4_RUSR, MODE4_RGRP, or
 MODE4_ROTH) if and only if ACE4_READ_DATA is set in
 the corresponding mask.

 Set the write bit (MODE4_WUSR, MODE4_WGRP, or
 MODE4_WOTH) if and only if ACE4_WRITE_DATA and
 ACE4_APPEND_DATA are both set in the corresponding
 mask.

 Set the execute bit (MODE4_XUSR, MODE4_XGRP, or
 MODE4_XOTH), if and only if ACE4_EXECUTE is set in the
 corresponding mask.

 Discussion

 Some server implementations also add bits permitted to
 named users and groups to the group bits (MODE4_RGRP,
 MODE4_WGRP, and MODE4_XGRP).

 Implementations are discouraged from doing this, because
 it has been found to cause confusion for users who see
 members of a file's group denied access that the mode
 bits appear to allow. (The presence of DENY ACEs may also
 lead to such behavior, but DENY ACEs are expected to be
 more rarely used.)

 The same user confusion seen when fetching the mode also
 results if setting the mode does not effectively control
 permissions for the owner, group, and other users; this
 motivates some of the requirements that follow.

 Requirements

 The server that supports both mode and ACL must take care to
 synchronize the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with
 the ACEs that have respective who fields of "OWNER@", "GROUP@",
 and "EVERYONE@". This way, the client can see if semantically equivalent
 access permissions exist whether the client asks for the owner,
 owner_group, and mode attributes or for just the ACL.

 In this section, much is made of the methods in . Many requirements refer to this section.
 But note that the methods have behaviors specified with
 " SHOULD". This is intentional, to avoid invalidating
 existing implementations that compute the mode according to the
 withdrawn POSIX ACL draft (1003.1e draft 17), rather than by
 actual permissions on owner, group, and other.

 Setting the Mode and/or ACL Attributes

 In the case where a server supports the sacl or
 dacl attribute, in addition to the acl attribute,
 the server MUST fail a request to set the acl
 attribute simultaneously with a dacl or sacl
 attribute. The error to be given is NFS4ERR_ATTRNOTSUPP.

 Setting Mode and not ACL

 When any of the nine low-order mode bits
 are subject to change, either because the mode
 attribute was set or because the mode_set_masked
 attribute was set and the mask included one or more
 bits from the nine low-order mode bits,
 and no ACL attribute is explicitly
 set, the acl and dacl attributes must be modified
 in accordance with the updated value of those bits.
 This must happen
 even if the value of the low-order bits
 is the same after the mode is set as before.

 Note that any AUDIT or ALARM ACEs (hence any ACEs in the
 sacl attribute) are unaffected by changes to the mode.

 In cases in which the permissions bits are subject to
 change, the acl and dacl attributes
 MUST be modified such that the mode computed via the
 method in

 yields the low-order nine bits (MODE4_R*, MODE4_W*,
 MODE4_X*) of the mode attribute as modified by the
 attribute change. The ACL attributes
 SHOULD also be modified such that:

 If MODE4_RGRP is not set, entities explicitly
 listed in the ACL other than OWNER@ and EVERYONE@
 SHOULD NOT be granted ACE4_READ_DATA.

 If MODE4_WGRP is not set, entities explicitly
 listed in the ACL other than OWNER@ and
 EVERYONE@ SHOULD NOT be granted
 ACE4_WRITE_DATA or ACE4_APPEND_DATA.

 If MODE4_XGRP is not set, entities explicitly
 listed in the ACL other than OWNER@ and EVERYONE@
 SHOULD NOT be granted ACE4_EXECUTE.

 Access mask bits other than those listed above, appearing
 in ALLOW ACEs, MAY also be disabled.

 Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do
 not affect the permissions of the ACL itself, nor do ACEs
 of the type AUDIT and ALARM. As such, it is desirable to
 leave these ACEs unmodified when modifying the ACL
 attributes.

 Also note that the requirement may be met by
 discarding the acl and dacl, in favor of an ACL
 that represents the mode and only the mode. This is
 permitted, but it is preferable for a server to
 preserve as much of the ACL as possible without
 violating the above requirements. Discarding the
 ACL makes it effectively impossible for a file
 created with a mode attribute to inherit an ACL
 (see).

 Setting ACL and Not Mode

 When setting the acl or dacl and not setting the
 mode or mode_set_masked attributes, the permission
 bits of the mode need to be derived from the ACL.
 In this case, the ACL attribute SHOULD be set as
 given. The nine low-order bits of the mode
 attribute (MODE4_R*, MODE4_W*, MODE4_X*) MUST be
 modified to match the result of the method in
	 . The three high-order bits
 of the mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX)
 SHOULD remain unchanged.

 Setting Both ACL and Mode

 When setting both the mode (includes use of either the
 mode attribute or the mode_set_masked attribute)
 and the acl or dacl attributes in the
 same operation, the attributes MUST be applied in this
 order: mode (or mode_set_masked), then ACL. The
 mode-related attribute is set as given,
 then the ACL attribute is set as given, possibly changing
 the final mode, as described above in
 .

 Retrieving the Mode and/or ACL Attributes

 This section applies only to servers that support both the
 mode and ACL attributes.

 Some server implementations may have a concept of
 "objects without ACLs", meaning that all permissions
 are granted and denied according to the mode attribute and
 that no ACL attribute is stored for that object. If an ACL
 attribute is requested of such a server, the server SHOULD
 return an ACL that does not conflict with the mode; that is to
 say, the ACL returned SHOULD represent the nine low-order bits
 of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) as
 described in .

 For other server implementations, the ACL attribute is always
 present for every object. Such servers SHOULD store at least
 the three high-order bits of the mode attribute (MODE4_SUID,
 MODE4_SGID, MODE4_SVTX). The server SHOULD return a mode
 attribute if one is requested, and the low-order nine bits of
 the mode (MODE4_R*, MODE4_W*, MODE4_X*) MUST match the result
 of applying the method in
 to the ACL attribute.

 Creating New Objects

 If a server supports any ACL attributes, it may use the ACL
 attributes on the parent directory to compute an initial ACL
 attribute for a newly created object. This will be referred to
 as the inherited ACL within this section. The act of adding
 one or more ACEs to the inherited ACL that are based upon ACEs
 in the parent directory's ACL will be referred to as
 inheriting an ACE within this section.

 Implementors should standardize what the behavior of CREATE
 and OPEN must be depending on the presence or absence of the
 mode and ACL attributes.

 If just the mode is given in the call:

 In this case, inheritance
 SHOULD take place, but the mode MUST be applied to the
 inherited ACL as described in , thereby modifying the ACL.

 If just the ACL is given in the call:

 In this case, inheritance SHOULD NOT take place, and
 the ACL as defined in the CREATE or OPEN will be set
 without modification, and the mode modified as in
 .
		

 If both mode and ACL are given in the call:

 In this case, inheritance
 SHOULD NOT take place, and both attributes will be set
 as described in .
		

 If neither mode nor ACL is given in the call:

 In the case where an object is being created without
 any initial attributes at all, e.g., an OPEN operation
 with an opentype4 of OPEN4_CREATE and a createmode4 of
 EXCLUSIVE4, inheritance SHOULD NOT take place (note that
 EXCLUSIVE4_1 is a better choice of createmode4, since it
 does permit initial attributes).
 Instead, the server SHOULD set permissions to deny all
 access to the newly created object. It is expected
 that the appropriate client will set the desired
 attributes in a subsequent SETATTR operation, and the
 server SHOULD allow that operation to succeed,
 regardless of what permissions the object is created
 with. For example, an empty ACL denies all
 permissions, but the server should allow the owner's
 SETATTR to succeed even though WRITE_ACL is implicitly
 denied.

 In other cases, inheritance SHOULD take place, and no
 modifications to the ACL will happen. The mode
 attribute, if supported, MUST be as computed in
	 , with the MODE4_SUID,
 MODE4_SGID, and MODE4_SVTX bits clear.
 If no inheritable ACEs exist on the parent directory,
 the rules for creating acl, dacl, or sacl attributes
 are implementation defined.
 If either the dacl or sacl attribute is supported,
 then the ACL4_DEFAULTED flag SHOULD be set on the
 newly created attributes.

 The Inherited ACL

 If the object being created is not a directory, the
 inherited ACL SHOULD NOT inherit ACEs from the parent
 directory ACL unless the ACE4_FILE_INHERIT_FLAG is set.

 If the object being created is a directory, the inherited
 ACL should inherit all inheritable ACEs from the parent
 directory, that is, those that have the ACE4_FILE_INHERIT_ACE or
 ACE4_DIRECTORY_INHERIT_ACE flag set.
If the inheritable
 ACE has ACE4_FILE_INHERIT_ACE set but
 ACE4_DIRECTORY_INHERIT_ACE is clear, the inherited ACE on
 the newly created directory MUST have the
 ACE4_INHERIT_ONLY_ACE flag set to prevent the directory
 from being affected by ACEs meant for non-directories.

 When a new directory is created, the server MAY split
 any inherited ACE that is both inheritable and effective
 (in other words, that has neither ACE4_INHERIT_ONLY_ACE
 nor ACE4_NO_PROPAGATE_INHERIT_ACE set), into two ACEs,
 one with no inheritance flags and one with
 ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or
 sacl attribute, both of those ACEs SHOULD also have the
 ACE4_INHERITED_ACE flag set.) This makes it simpler to
 modify the effective permissions on the directory
 without modifying the ACE that is to be inherited to the
 new directory's children.

 Automatic Inheritance

 The acl attribute consists only of an array of ACEs, but
 the sacl
 and dacl attributes
 also include an additional flag field.

struct nfsacl41 {
 aclflag4 na41_flag;
 nfsace4 na41_aces<>;
};

 The flag field
 applies to the entire sacl or dacl; three flag values are
 defined:

const ACL4_AUTO_INHERIT = 0x00000001;
const ACL4_PROTECTED = 0x00000002;
const ACL4_DEFAULTED = 0x00000004;

 and all other bits must be cleared. The
 ACE4_INHERITED_ACE flag may be set in the ACEs of the sacl
 or dacl (whereas it must always be cleared in the acl).

 Together these features allow a server to support automatic
 inheritance, which we now explain in more detail.

 Inheritable ACEs are normally inherited by child objects only
 at the time that the child objects are created; later
 modifications to inheritable ACEs do not result in
 modifications to inherited ACEs on descendants.

 However, the dacl and sacl provide an OPTIONAL mechanism
 that allows a client application to propagate changes to
 inheritable ACEs to an entire directory hierarchy.

 A server that supports this performs inheritance at object
 creation time in the normal way, and SHOULD set the
 ACE4_INHERITED_ACE flag on any inherited ACEs as they are
 added to the new object.

 A client application such as an ACL editor may then propagate
 changes to inheritable ACEs on a directory by recursively
 traversing that directory's descendants and modifying each ACL
 encountered to remove any ACEs with the ACE4_INHERITED_ACE flag
 and to replace them by the new inheritable ACEs (also with the
 ACE4_INHERITED_ACE flag set). It uses the existing ACE
 inheritance flags in the obvious way to decide which ACEs to
 propagate. (Note that it may encounter further inheritable
 ACEs when descending the directory hierarchy and that those
 will also need to be taken into account when propagating
 inheritable ACEs to further descendants.)

 The reach of this propagation may be limited in two ways:
 first, automatic inheritance is not performed from any
 directory ACL that has the ACL4_AUTO_INHERIT flag
 cleared; and second, automatic inheritance stops wherever
 an ACL with the ACL4_PROTECTED flag is set, preventing
 modification of that ACL and also (if the ACL is set on
 a directory) of the ACL on any of the object's descendants.

 This propagation is performed independently for the sacl
 and the dacl attributes; thus, the ACL4_AUTO_INHERIT and
 ACL4_PROTECTED flags may be independently set for the sacl
 and the dacl, and propagation of one type of acl may continue
 down a hierarchy even where propagation of the other acl has
 stopped.

 New objects should be created with a dacl and a sacl that
 both have the ACL4_PROTECTED flag cleared and the
 ACL4_AUTO_INHERIT flag set to the same value as that on,
 respectively, the sacl or dacl of the parent object.

 Both the dacl and sacl attributes are RECOMMENDED, and a server
 may support one without supporting the other.

 A server that supports both the old acl attribute and
 one or both of the new dacl or sacl attributes must do so
 in such a way as to keep all three attributes consistent
 with each other. Thus, the ACEs reported in the acl attribute
 should be the union of the ACEs reported in the dacl and
 sacl attributes, except that the ACE4_INHERITED_ACE flag must
 be cleared from the ACEs in the acl. And of course a
 client that queries only the acl will be unable to determine
 the values of the sacl or dacl flag fields.

 When a client performs a SETATTR for the acl attribute,
 the server SHOULD set the ACL4_PROTECTED flag to true on
 both the sacl and the dacl. By using the acl attribute,
 as opposed to the dacl or sacl attributes, the client signals
 that it may not understand automatic inheritance, and thus
 cannot be trusted to set an ACL for which automatic
 inheritance would make sense.

 When a client application queries an ACL, modifies it, and sets
 it again, it should leave any ACEs marked with
 ACE4_INHERITED_ACE unchanged, in their original order, at the
 end of the ACL. If the application is unable to do this, it
 should set the ACL4_PROTECTED flag. This behavior
 is not enforced by servers, but violations of this rule may
 lead to unexpected results when applications perform automatic
 inheritance.

 If a server also supports the mode attribute, it SHOULD set the
 mode in such a way that leaves inherited ACEs unchanged, in
 their original order, at the end of the ACL. If it is unable
 to do so, it SHOULD set the ACL4_PROTECTED flag on the file's
 dacl.

 Finally, in the case where the request that creates a new file
 or directory does not also set permissions for that file or
 directory, and there are also no ACEs to inherit from the
 parent's directory, then the server's choice of ACL for the new
 object is implementation-dependent. In this case, the server
 SHOULD set the ACL4_DEFAULTED flag on the ACL it chooses for
 the new object. An application performing automatic
 inheritance takes the ACL4_DEFAULTED flag as a sign that the
 ACL should be completely replaced by one generated using the
 automatic inheritance rules.

 Single-Server Namespace

 This section describes the NFSv4 single-server namespace.
 Single-server namespaces may be presented directly to clients,
 or they may be used as a basis to form larger multi-server
 namespaces (e.g., site-wide or organization-wide) to be presented
 to clients, as described in .

 Server Exports

 On a UNIX server, the namespace describes all the files reachable by
 pathnames under the root directory or "/". On a Windows server, the
 namespace constitutes all the files on disks named by mapped disk
 letters. NFS server administrators rarely make the entire server's
 file system namespace available to NFS clients. More often, portions
 of the namespace are made available via an "export" feature. In
 previous versions of the NFS protocol, the root filehandle for each
 export is obtained through the MOUNT protocol; the client sent a
 string that identified the export name within the namespace and
 the server returned the root filehandle
 for that export. The MOUNT protocol also provided an EXPORTS
 procedure that enumerated the server's exports.

 Browsing Exports

 The NFSv4.1 protocol provides a root filehandle that clients can
 use to obtain filehandles for the exports of a particular server,
 via a series of LOOKUP operations within a COMPOUND, to traverse
 a path. A common user experience is to use a graphical user interface
 (perhaps a file "Open" dialog window) to find a file via progressive
 browsing through a directory tree. The client must be able to move
 from one export to another export via single-component, progressive
 LOOKUP operations.

 This style of browsing is not well supported by the NFSv3 protocol. In NFSv3, the client expects all
 LOOKUP operations to remain
 within a single server file system. For example, the device attribute
 will not change. This prevents a client from taking namespace paths
 that span exports.

 In the case of NFSv3, an automounter on the client
 can obtain a snapshot of the server's namespace
 using the EXPORTS procedure of the MOUNT protocol.
 If it understands the server's pathname syntax,
 it can create an image of the server's namespace
 on the client. The parts of the namespace that
 are not exported by the server are filled in
 with directories that might be constructed similarly
 to an NFSv4.1 "pseudo file system" (see) that
 allows the user to browse from one mounted file
 system to another. There is a drawback to this
 representation of the server's namespace on the
 client: it is static. If the server administrator
 adds a new export, the client will be unaware of it.

 Server Pseudo File System

 NFSv4.1 servers avoid this namespace inconsistency by
 presenting all the exports for a given server within the
 framework of a single namespace for that server.
 An NFSv4.1 client uses LOOKUP and READDIR
 operations to browse seamlessly from one export to another.

 Where there are portions of the server namespace that are not
 exported, clients require some way of traversing those portions
 to reach actual exported file systems. A technique that servers
 may use to provide for this is to bridge the unexported portion of
 the namespace via a
 "pseudo file system" that provides a view of exported directories
 only. A pseudo file system has a unique fsid and behaves like a
 normal, read-only file system.

 Based on the construction of the server's namespace, it is possible
 that multiple pseudo file systems may exist. For example,

 /a pseudo file system
 /a/b real file system
 /a/b/c pseudo file system
 /a/b/c/d real file system

 Each of the pseudo file systems is considered a separate entity and
 therefore MUST have its own fsid, unique among all the fsids for that
 server.

 Multiple Roots

 Certain operating environments are sometimes described as
 having "multiple roots". In such environments, individual file
 systems are commonly represented by disk or volume names.
 NFSv4 servers for these platforms can construct a pseudo file
 system above these root names so that disk letters or volume names are
 simply directory names in the pseudo root.

 Filehandle Volatility

 The nature of the server's pseudo file system is that it is a logical
 representation of file system(s) available from the server.
 Therefore, the pseudo file system is most likely constructed
 dynamically when the server is first instantiated. It is expected
 that the pseudo file system may not have an on-disk counterpart from
 which persistent filehandles could be constructed. Even though it is
 preferable that the server provide persistent filehandles for the
 pseudo file system, the NFS client should expect that pseudo file
 system filehandles are volatile. This can be confirmed by checking
 the associated "fh_expire_type" attribute for those filehandles in
 question. If the filehandles are volatile, the NFS client must be
 prepared to recover a filehandle value (e.g., with a series of
 LOOKUP operations) when receiving an error of NFS4ERR_FHEXPIRED.

 Because it is quite likely that servers will implement pseudo
 file systems using volatile filehandles, clients need to be
 prepared for them, rather than assuming that all filehandles
 will be persistent.

 Exported Root

 If the server's root file system is exported, one might conclude that
 a pseudo file system is unneeded. This is not necessarily so. Assume the
 following file systems on a server:

 / fs1 (exported)
 /a fs2 (not exported)
 /a/b fs3 (exported)

 Because fs2 is not exported, fs3 cannot be reached with simple
 LOOKUPs. The server must bridge the gap with a pseudo file system.

 Mount Point Crossing

 The server file system environment may be constructed in such a way
 that one file system contains a directory that is 'covered' or
 mounted upon by a second file system. For example:

 /a/b (file system 1)
 /a/b/c/d (file system 2)

 The pseudo file system for this server may be constructed to look
 like:

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/c/d (file system 2)

 It is the server's responsibility to present the pseudo file system
 that is complete to the client. If the client sends a LOOKUP request
 for the path /a/b/c/d, the server's response is the filehandle of
 the root of the file system /a/b/c/d. In previous versions of the
 NFS protocol,
 the server would respond with the filehandle of directory
 /a/b/c/d within the file system /a/b.

 The NFS client will be able to determine if it crosses a server mount
 point by a change in the value of the "fsid" attribute.

 Security Policy and Namespace Presentation

 Because NFSv4 clients possess the ability to change the security
 mechanisms used, after determining what is allowed,
 by using SECINFO and SECINFO_NONAME, the server
 SHOULD NOT present a different view of the namespace based on
 the security mechanism being used by a client. Instead, it
 should present a consistent view and return NFS4ERR_WRONGSEC
 if an attempt is made to access data with an inappropriate
 security mechanism.

 If security considerations make it necessary to hide the existence
 of a particular file system, as opposed to all of the data within
 it, the server can apply the security policy of
 a shared resource in the server's namespace to components of the
 resource's ancestors. For example:

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/MySecretProject (file system 2)

 The /a/b/MySecretProject directory is a real file system and
 is the shared resource.
 Suppose the security policy for /a/b/MySecretProject is Kerberos
 with integrity and it is desired to limit knowledge of the existence
 of this file system. In this case, the
 server should apply the same security policy to /a/b. This allows
 for knowledge of the existence of a file system to be secured
 when desirable.

 For the case of the use of multiple, disjoint security mechanisms in
 the server's resources, applying that sort of policy would result
 in the higher-level file system not being accessible using any
 security flavor.
Therefore, that sort of configuration is not compatible
 with hiding the existence (as opposed to the contents) from clients
 using multiple disjoint sets of security flavors.

 In other circumstances, a desirable policy is for the security of a
 particular object in the
 server's namespace to include the union of all security mechanisms of
 all direct descendants. A common and convenient practice, unless
 strong security requirements dictate otherwise, is to make the
 entire the pseudo file system accessible by all of the valid security
 mechanisms.

 Where there is concern about the security of data on the network,
 clients should use strong security mechanisms to access the pseudo
 file system in order to prevent man-in-the-middle attacks.

 State Management

 Integrating locking into the NFS protocol necessarily causes it to be
 stateful. With the inclusion of such features as share reservations,
 file and directory delegations, recallable layouts, and support for
 mandatory byte-range locking, the protocol becomes substantially more
 dependent on proper management of state than the traditional
 combination of NFS and NLM (Network Lock Manager)
 . These features include expanded
 locking facilities, which provide some measure of inter-client
 exclusion, but the state also offers
 features not readily providable using a stateless model.
 There are three components to
 making this state manageable:

 clear division between client and server

 ability to reliably detect inconsistency in state between client
 and server

 simple and robust recovery mechanisms

 In this model, the server owns the state information. The client
 requests changes in locks and the server responds with the changes
 made. Non-client-initiated changes in locking state are infrequent.
 The client receives prompt notification of such changes and can adjust
 its view of the locking state to reflect the server's changes.

 Individual pieces of state created by the server and passed to the
 client at its request are represented by 128-bit stateids. These
 stateids may represent a particular open file, a set of
 byte-range locks held
 by a particular owner, or a recallable delegation of privileges
 to access a file in particular ways or at a particular location.

 In all cases, there is a transition from the most general
 information that represents a client as a whole to the eventual
 lightweight stateid used for most client and server
 locking interactions. The details of this transition will vary
 with the type of object but it always starts with a client ID.

 Client and Session ID

 A client must establish a client ID (see)
 and then one or more sessionids (see) before
 performing any operations to open, byte-range lock, delegate, or obtain
 a layout for a file object.
 Each session ID is associated with a specific client ID, and thus
 serves as a shorthand reference to an NFSv4.1 client.

 For some types of locking interactions, the client will represent
 some number of internal locking entities called "owners", which
 normally correspond to processes internal to the client. For
 other types of locking-related objects, such as delegations and
 layouts, no such intermediate entities are provided for, and the
 locking-related objects are considered to be transferred
 directly between the server and a unitary client.

 Stateid Definition

 When the server grants a lock of any type (including opens,
 byte-range locks, delegations, and layouts), it responds with a
 unique stateid that represents a set of locks (often a single
 lock) for the same file, of the same type, and sharing the same
 ownership characteristics. Thus, opens of the same file by
 different open-owners each have an identifying stateid. Similarly,
 each set of byte-range locks on a file owned by a specific lock-owner
 has its own
 identifying stateid. Delegations and layouts also have
 associated stateids by which they may be referenced.
 The stateid is used as a shorthand reference to a lock or set
 of locks, and given a stateid, the server can determine the associated
 state-owner or state-owners (in the case of an open-owner/lock-owner pair)
 and the associated filehandle. When stateids are used, the current
 filehandle must be the one associated with that stateid.

 All stateids associated with a given client ID are associated with
 a common lease that represents the claim of those stateids
 and the objects they represent to be maintained
 by the server. See for a
 discussion of the lease.

 The server may assign stateids independently for different clients.
 A stateid with the same bit pattern for one client may designate
 an entirely different set of locks for a different client. The
 stateid is always interpreted with respect to the client ID associated
 with the current session. Stateids apply to all sessions associated
 with the given client ID, and the client may use a stateid obtained from
 one session on another session associated with the same client ID.

 Stateid Types

 With the exception of special stateids (see),
 each stateid
 represents locking objects of one of a set of types defined
 by the NFSv4.1 protocol. Note that in all these cases, where
 we speak of guarantee, it is understood there are
 situations such as a client restart, or lock revocation,
 that allow the guarantee to be voided.

 Stateids may represent opens of files.

 Each stateid in this case represents the OPEN state for a
 given client ID/open-owner/filehandle triple. Such
 stateids are subject to change (with consequent
 incrementing of the stateid's seqid) in response to OPENs that
 result in upgrade and OPEN_DOWNGRADE operations.

 Stateids may represent sets of byte-range locks.

 All locks held on a particular file by a particular owner and
 gotten under the aegis of a particular open file
 are associated with a single stateid with the seqid
 being incremented whenever LOCK and LOCKU operations affect that
 set of locks.

 Stateids may represent file delegations, which are
 recallable guarantees by the server to the client
 that other clients will not reference or
 modify a particular file, until the delegation
 is returned. In NFSv4.1, file delegations may be
 obtained on both regular and non-regular files.

 A stateid represents a single delegation held by
 a client for a particular filehandle.

 Stateids may represent directory delegations, which
 are recallable guarantees by the server to the client
 that other clients will not modify the directory,
 until the delegation is returned.

 A stateid represents a single delegation held by
 a client for a particular directory filehandle.

 Stateids may represent layouts, which are recallable
 guarantees by the server to the client that particular
 files may be accessed via an alternate data access
 protocol at specific locations. Such access is
 limited to particular sets of byte-ranges and may
 proceed until those byte-ranges are reduced or the
 layout is returned.

 A stateid represents the set of all layouts held by a particular
 client for a particular filehandle with a given
 layout type. The seqid is updated as the layouts
 of that set of byte-ranges change, via layout stateid changing operations such
 as LAYOUTGET and LAYOUTRETURN.

 Stateid Structure

	 Stateids are divided into two fields, a 96-bit
	 "other" field identifying the specific set
	 of locks and a 32-bit "seqid" sequence value.
	 Except in the case of special stateids
 (see),
	 a particular value of the
 "other" field denotes a
 set of locks of the same type (for example,
 byte-range locks, opens, delegations, or layouts),
 for a specific file or directory, and sharing
 the same ownership characteristics. The seqid
 designates a specific instance of such a set of
 locks, and is incremented to indicate changes in
 such a set of locks, either by the addition or
 deletion of locks from the set, a change in the
 byte-range they apply to, or an upgrade or downgrade
 in the type of one or more locks.

 When such a set of locks is first created, the server returns a
 stateid with seqid value of one. On subsequent
 operations that modify the set of locks, the server
 is required to increment the "seqid" field by one
 whenever it returns a stateid for the same
 state-owner/file/type combination and there is some
 change in the set of locks actually designated.
 In this case, the server will return a stateid with an "other" field
 the same as previously used for that
 state-owner/file/type combination, with an
 incremented "seqid" field.
 This pattern continues until the seqid is incremented
 past NFS4_UINT32_MAX, and one
 (not zero) is the next seqid value.

	 The purpose of the incrementing of the seqid
	 is to allow the server to
	 communicate to the client the order in which
	 operations that modified locking state associated
	 with a stateid have been processed and to make
 it possible for the client to send requests
 that are conditional on the set of locks not
 having changed since the stateid in question
 was returned.

	 Except for layout stateids (),
 when a client sends a stateid to the server, it has two
 choices with regard to the seqid sent. It may set the seqid
 to zero to indicate to the server that it wishes the most
 up-to-date seqid for that stateid's "other" field to be
 used. This would be the common choice in the case of a
 stateid sent with a READ or WRITE operation. It also may
 set a non-zero value, in which case the server checks if that
 seqid is the correct one. In that case, the server is
 required to return NFS4ERR_OLD_STATEID if the seqid is lower
 than the most current value and NFS4ERR_BAD_STATEID if the
 seqid is greater than the most current value. This would be
 the common choice in the case of stateids sent with a CLOSE
 or OPEN_DOWNGRADE. Because OPENs may be sent in parallel
 for the same owner, a client might close a file without
 knowing that an OPEN upgrade had been done by the server,
 changing the lock in question. If CLOSE were sent with a
 zero seqid, the OPEN upgrade would be cancelled before the
 client even received an indication that an upgrade had
 happened.

 When a stateid is sent by the server to the client as part of
 a callback operation, it is not subject to checking for
 a current seqid and returning NFS4ERR_OLD_STATEID. This
 is because the client is not in a position to know the
 most up-to-date seqid and thus cannot verify it. Unless
 specially noted, the seqid value for a stateid sent by the
 server to the client as part of a callback is required
 to be zero with NFS4ERR_BAD_STATEID returned if it is
 not.

 In making comparisons between seqids, both by the client
	 in determining the order of operations and by the server
	 in determining whether the NFS4ERR_OLD_STATEID is to be
 returned, the possibility of the seqid being swapped
	 around past the NFS4_UINT32_MAX value needs to be taken
	 into account. When two seqid values are being compared,
 	 the total count of slots for all sessions associated
	 with the current client is used to do this. When one
	 seqid value is less than this total slot count and
	 another seqid value is greater than NFS4_UINT32_MAX
	 minus the total slot count, the former is to be treated
	 as lower than the latter, despite the fact that it is
	 numerically greater.

 Special Stateids

 Stateid values whose "other" field is either all zeros or all
 ones are reserved. They may not be assigned by the server but
 have special meanings defined by the protocol. The particular
 meaning depends on whether the "other" field is all zeros or
 all ones and the specific value of the "seqid" field.

 The following combinations of "other" and "seqid" are defined
 in NFSv4.1:

 When "other" and "seqid" are both zero, the
 stateid is treated as a special anonymous
 stateid, which can be used in READ, WRITE,
 and SETATTR requests to indicate the absence
 of any OPEN state associated with the
 request. When an anonymous stateid value is
 used and an existing open denies the form of
 access requested, then access will be denied
 to the request. This stateid MUST NOT be
 used on operations to data servers ().

 When "other" and "seqid" are both all ones,
 the stateid is a special READ bypass stateid.
 When this value is used in WRITE or SETATTR,
 it is treated like the anonymous value.
 When used in READ, the server MAY grant
 access, even if access would normally be
 denied to READ operations. This stateid MUST NOT be used on operations to data servers.

 When "other" is zero and "seqid" is one,
 the stateid represents the current stateid,
 which is whatever value is the last stateid
 returned by an operation within the COMPOUND.
 In the case of an OPEN, the stateid returned
 for the open file and not the delegation is
 used. The stateid passed to the operation in
 place of the special value has its "seqid"
 value set to zero, except when the current
 stateid is used by the operation CLOSE or
 OPEN_DOWNGRADE. If there is no operation
 in the COMPOUND that has returned a stateid
 value, the server MUST return the error
	 NFS4ERR_BAD_STATEID. As illustrated in , if the value of a
	 current stateid is a special stateid and the
	 stateid of an operation's arguments has
	 "other" set to zero and "seqid" set to one,
	 then the server MUST return the error
	 NFS4ERR_BAD_STATEID.

 When "other" is zero and "seqid" is NFS4_UINT32_MAX,
 the stateid represents a reserved stateid
 value defined to be invalid. When this
 stateid is used, the server MUST return the error
 NFS4ERR_BAD_STATEID.

 If a stateid value is used that has all zeros or all ones in the
 "other" field but does not match one of the cases above, the server
 MUST return the error NFS4ERR_BAD_STATEID.

 Special stateids, unlike other stateids, are not associated with
 individual client IDs or filehandles and can be used with all valid
 client IDs and filehandles. In the case of a special
 stateid designating the current stateid, the current stateid
 value substituted for the special stateid is associated with a
 particular client ID and filehandle, and so, if it is used
 where the current filehandle does not match that associated with the current
 stateid, the operation to which the stateid is passed will return
 NFS4ERR_BAD_STATEID.

 Stateid Lifetime and Validation

 Stateids must remain valid until either a client restart or a
 server restart or until the client returns all of the locks
 associated with the stateid by means of an operation such as
 CLOSE or DELEGRETURN.

 If the locks are lost due to revocation, as long
 as the client ID is valid, the stateid remains
 a valid designation of that revoked state until
 the client frees it by using FREE_STATEID.

 Stateids associated
 with byte-range locks are an exception. They remain valid even
 if a LOCKU frees all remaining locks, so long as the open file
 with which they are associated remains open, unless the client
 frees the stateids via the FREE_STATEID operation.

 It should be noted that there are situations in which the
 client's locks become invalid, without the client requesting
 they be returned. These include lease expiration and a number
 of forms of lock revocation within the lease period. It is
 important to note that in these situations, the stateid remains
 valid and the client can use it to determine the disposition of
 the associated lost locks.

 An "other" value must never be reused for a different purpose
 (i.e., different filehandle, owner, or type of locks) within the
 context of a single client ID. A server may retain the "other"
 value for the same purpose beyond the point where it may otherwise
 be freed, but if it does so, it must maintain "seqid" continuity
 with previous values.

 One mechanism that may be used to satisfy the requirement that the
 server recognize invalid and out-of-date stateids is for
 the server to divide the "other" field of the stateid into two
 fields.

 an index into a table of locking-state structures.

 a generation number that is incremented on each allocation
 of a table entry for a particular use.

 And then store in each table entry,

 the client ID with which the stateid is associated.

 the current generation number for the (at most one)
 valid stateid sharing this index value.

 the filehandle of the file on which the locks are taken.

 an indication of the type of stateid (open, byte-range lock,
 file delegation, directory delegation, layout).

 the last "seqid" value returned corresponding to the current
 "other" value.

 an indication of the current status of the locks
 associated with this stateid, in particular,
 whether these have been revoked and if so, for what reason.

 With this information, an incoming stateid can be validated and
 the appropriate error returned when necessary. Special and
 non-special stateids are handled separately. (See
 for a discussion of special
 stateids.)

 Note that stateids are implicitly qualified by the current client
 ID, as derived from the client ID associated with the current
 session. Note, however, that the semantics of the session will
 prevent stateids associated with a previous client or server
 instance from being analyzed by this procedure.

 If server restart has resulted in an invalid
 client ID or a session ID that is invalid, SEQUENCE will return
 an error and the operation that takes a stateid as an argument will never
 be processed.

 If there has been a server restart where there is a persistent
 session and all leased state has been lost, then the session
 in question will, although valid, be marked as dead, and any
 operation not satisfied by means of the reply cache will
 receive the error NFS4ERR_DEADSESSION, and thus not be
 processed as indicated below.

 When a stateid is being tested and the "other" field is all
 zeros or all ones, a check that
 the "other" and "seqid" fields match a defined combination for
 a special stateid is done and the results determined as follows:

 If the "other" and "seqid" fields do not match a defined
 combination associated with a special stateid, the error
 NFS4ERR_BAD_STATEID is returned.

 If the special stateid is one designating the current
 stateid and there is a current stateid, then the current
 stateid is substituted for the special stateid and the
 checks appropriate to non-special stateids are performed.

 If the combination is valid in general but is not
 appropriate to the context in which the stateid is used
 (e.g., an all-zero stateid is used when an OPEN stateid
 is required in a LOCK operation), the error
 NFS4ERR_BAD_STATEID is also returned.

 Otherwise, the check is completed and the special stateid
 is accepted as valid.

 When a stateid is being tested,
 and the "other" field is neither all zeros nor all ones, the
 following procedure could be used to
 validate an incoming stateid and return an appropriate error,
 when necessary, assuming that the "other" field would be divided
 into a table index and an entry generation.

 If the table index field is outside the range of the
 associated table, return NFS4ERR_BAD_STATEID.

 If the selected table entry is of a different generation than
 that specified in the incoming stateid, return
 NFS4ERR_BAD_STATEID.

 If the selected table entry does not match the current
 filehandle, return NFS4ERR_BAD_STATEID.

 If the client ID in the table entry does not match the
 client ID associated with the current session,
 return NFS4ERR_BAD_STATEID.

 If the stateid represents revoked state, then return
 NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or
 NFS4ERR_DELEG_REVOKED, as appropriate.

 If the stateid type is not valid for the context in which the
 stateid appears, return NFS4ERR_BAD_STATEID.
 Note that a stateid may be valid in general, as would be
 reported by the TEST_STATEID operation, but be invalid for
 a particular operation, as, for example, when a stateid
 that doesn't represent byte-range locks is passed to
 the non-from_open case of LOCK or to LOCKU, or when a stateid
 that does not represent an open is passed to CLOSE or
 OPEN_DOWNGRADE. In such cases, the server MUST return
 NFS4ERR_BAD_STATEID.

 If the "seqid" field is not zero and it is greater
 than the current sequence value corresponding to the
 current "other" field, return NFS4ERR_BAD_STATEID.

 If the "seqid" field is not zero and it is less
 than the current sequence value corresponding to the
 current "other" field, return NFS4ERR_OLD_STATEID.

 Otherwise, the stateid is valid and the table entry
 should contain any additional information about the
 type of stateid and information associated with that
 particular type of stateid, such as the associated
 set of locks, e.g., open-owner and
 lock-owner information, as well as information on the
 specific locks, e.g., open modes and byte-ranges.

 Stateid Use for I/O Operations

 Clients performing I/O operations need to select an
 appropriate stateid based on the
 locks (including opens and delegations) held by the client and
 the various types of state-owners sending the I/O requests.
 SETATTR operations that change the file size are treated
 like I/O operations in this regard.

 The following rules, applied in order of decreasing priority,
 govern the selection of the appropriate stateid. In following
 these rules, the client will only consider locks of which it
 has actually received notification by an appropriate operation
 response or callback. Note that the
 rules are slightly different in the case of I/O to data servers
 when file layouts are being
 used (see).

 If the client holds a delegation for the file in question, the
 delegation stateid SHOULD be used.

 Otherwise, if the entity corresponding to the lock-owner (e.g., a process)
 sending the I/O has a byte-range lock stateid for the associated open file,
 then the byte-range lock stateid for that lock-owner and open file SHOULD
 be used.

 If there is no byte-range lock stateid, then the OPEN stateid for the open
 file in question SHOULD be used.

 Finally, if none of the above apply, then a special stateid
 SHOULD be used.

 Ignoring these rules may result in situations in which the server
 does not have information necessary to properly process the request.
 For example, when mandatory byte-range locks are in effect, if the
 stateid does not indicate the proper lock-owner, via a lock stateid,
 a request might be avoidably rejected.

 The server however should not try to enforce these ordering rules
 and should use whatever information is available to properly process
 I/O requests. In particular, when a client has a delegation for a given file, it
 SHOULD take note of this fact in processing a request, even if it is
 sent with a special stateid.

 Stateid Use for SETATTR Operations

 Because each operation is associated with a session ID and from that
 the clientid can be determined, operations do not need to
 include a stateid for the server to be able to determine whether
 they should cause a delegation to be recalled or are to be
 treated as done within the scope of the delegation.

 In the case of SETATTR operations, a stateid is present. In cases
 other than those that set the file size, the client may send either
 a special stateid or, when a delegation is held for the file in
 question, a delegation stateid. While the server SHOULD validate
 the stateid and may use the stateid to optimize the determination
 as to whether a delegation is held, it SHOULD note the presence of
 a delegation even when a special stateid is sent, and MUST accept a
 valid delegation stateid when sent.

 Lease Renewal

 Each client/server pair, as represented by a client ID, has a single
 lease.
 The purpose of the lease is to allow the client to indicate
 to the server, in a low-overhead way, that it is active, and
 thus that the server is to retain the client's locks. This arrangement
 allows the server to remove stale locking-related objects
 that are held by a client that has crashed or is otherwise
 unreachable, once the relevant lease expires. This in turn allows
 other clients to obtain conflicting locks without being
 delayed indefinitely by inactive or unreachable clients.
 It is not a
 mechanism for cache consistency and lease
 renewals may not be denied if the lease interval has not expired.

 Since each session is associated with a specific
 client (identified by the client's client ID), any
 operation sent on that session is an indication
 that the associated client is reachable. When a
 request is sent for a given session, successful
 execution of a SEQUENCE operation (or successful
 retrieval of the result of SEQUENCE from the reply
 cache) on an unexpired lease will result in the
 lease being implicitly renewed, for the standard
 renewal period (equal to the lease_time attribute).

 If the client ID's lease has not expired when the
 server receives a SEQUENCE operation, then the server
 MUST renew the lease. If the client ID's lease has expired
 when the server receives a SEQUENCE operation, the
 server MAY renew the lease; this depends on whether
 any state was revoked as a result of the client's
 failure to renew the lease before expiration.

 Absent other activity that would renew the lease, a COMPOUND
 consisting of a single SEQUENCE operation will suffice. The
 client should also take communication-related delays into
 account and take steps to ensure that the renewal messages
 actually reach the server in good time. For example:

 When trunking is in effect, the client should
 consider sending multiple requests on different
 connections, in order to ensure that renewal
 occurs, even in the event of blockage in the
 path used for one of those connections.

	 Transport retransmission delays might become
	 so large as to approach or exceed the length
	 of the lease period.	This may be particularly
	 likely when the server is unresponsive due to
	 a restart; see . If the client implementation is not careful,
	 transport retransmission delays can result in the
	 client failing to detect a server restart before
	 the grace period ends. The scenario is that the
	 client is using a transport with exponential
	 backoff, such that the maximum retransmission
	 timeout exceeds both the grace period and the
	 lease_time attribute. A network partition causes
	 the client's connection's retransmission interval
	 to back off, and even after the partition heals,
	 the next transport-level retransmission is sent
	 after the server has restarted and its grace
	 period ends.

 The client MUST either recover from the ensuing
 NFS4ERR_NO_GRACE errors or it MUST ensure that,
 despite transport-level retransmission intervals
 that exceed the lease_time, a SEQUENCE operation is sent
 that renews the lease before expiration. The client can achieve this
 by associating a new connection with the session,
 and sending a SEQUENCE operation on it. However, if
 the attempt to establish a new connection is delayed
 for some reason (e.g., exponential backoff of the connection
 establishment packets), the client will have to
 abort the connection establishment attempt before
 the lease expires, and attempt to reconnect.

 If the server renews the lease upon receiving
 a SEQUENCE operation, the server MUST NOT allow the lease
 to expire while the rest of the operations
 in the COMPOUND procedure's request are still
 executing. Once the last operation has finished, and
 the response to COMPOUND has been sent, the server
 MUST set the lease to expire no sooner than the
 sum of current time and the value of the lease_time attribute.

 A client ID's lease can expire when it has been
 at least the lease interval (lease_time) since the
 last lease-renewing SEQUENCE operation was sent
 on any of the client ID's sessions and there
 are no active COMPOUND operations on any such sessions.

 Because the SEQUENCE operation is the basic mechanism to renew
 a lease, and because it must be done at least once for each
 lease period, it is the natural mechanism whereby the server
 will inform the client of changes in the lease status that the
 client needs to be informed of. The client should inspect the
 status flags (sr_status_flags) returned by sequence and take
 the appropriate action (see
 for details).

 The status bits SEQ4_STATUS_CB_PATH_DOWN and
 SEQ4_STATUS_CB_PATH_DOWN_SESSION indicate problems with
 the backchannel that the client may need to address
 in order to receive callback requests.

 The status bits SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING and
 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED indicate
 problems with GSS contexts or RPCSEC_GSS handles
 for the backchannel that the
 client might have to address in order to allow callback requests
 to be sent.

 The status bits SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED,
 SEQ4_STATUS_ADMIN_STATE_REVOKED, and
 SEQ4_STATUS_RECALLABLE_STATE_REVOKED notify the
 client of lock revocation events. When these bits
 are set, the client should use TEST_STATEID to find
 what stateids have been revoked and use FREE_STATEID
 to acknowledge loss of the associated state.

 The status bit SEQ4_STATUS_LEASE_MOVE
 indicates that
 responsibility for lease renewal has been transferred to
 one or more new servers.

 The status bit SEQ4_STATUS_RESTART_RECLAIM_NEEDED
	 indicates that due to server
	 restart the client must reclaim locking state.

 The status bit SEQ4_STATUS_BACKCHANNEL_FAULT
 indicates that the server has encountered an unrecoverable fault
 with the backchannel (e.g., it has lost track of a
 sequence ID for a slot in the backchannel).

 Crash Recovery

 A critical requirement in crash recovery is that both the client
 and the server know when the other has failed. Additionally, it
 is required that a client sees a consistent view of data across
 server restarts. All READ and WRITE operations that
 may have been queued within the client or network buffers must
 wait until the client has successfully recovered the locks
 protecting the READ and WRITE operations. Any that reach the
 server before the server can safely determine that the client
 has recovered enough locking state to be sure that such
 operations can be safely processed must be rejected.
 This will happen because either:

 The state presented is no longer valid since it is
 associated with a now invalid client ID. In this case, the
 client will receive either an NFS4ERR_BADSESSION or
 NFS4ERR_DEADSESSION error, and any attempt to attach a new
 session to that invalid client ID will result in an
 NFS4ERR_STALE_CLIENTID error.

 Subsequent recovery of locks may make execution of the
 operation inappropriate (NFS4ERR_GRACE).

 Client Failure and Recovery

 In the event that a client fails, the server may release the
 client's locks when the associated lease has expired. Conflicting
 locks from another client may only be granted after this lease
 expiration. As discussed in , when
 a client has not failed and re-establishes its lease before expiration
 occurs, requests for conflicting locks will not be granted.

 To minimize client delay upon restart, lock requests are associated
 with an instance of the client by a client-supplied verifier. This
 verifier is part of the client_owner4 sent in the initial
 EXCHANGE_ID call made by the client.
 The server returns a client ID as a result of the EXCHANGE_ID
 operation. The client then confirms the use of the client ID by
 establishing a session associated with that client ID (see
 for a
 description of how this is done). All locks,
 including opens, byte-range locks, delegations, and layouts obtained
 by sessions using that client ID, are associated with that client ID.

 Since the verifier will be changed by the client upon each
 initialization, the server can compare a new verifier to the verifier
 associated with currently held locks and determine that they do not
 match. This signifies the client's new instantiation and subsequent
 loss (upon confirmation of the new client ID) of locking
 state. As a result, the server is free to release all
 locks held that are associated with the old client ID that was
 derived from the old verifier. At this point, conflicting locks from
 other clients, kept waiting while the lease had not yet expired, can
 be granted. In addition, all stateids associated with the old client ID
 can also be freed, as they are no longer reference-able.

 Note that the verifier must have the same uniqueness properties as the
 verifier for the COMMIT operation.

 Server Failure and Recovery

 If the server loses locking state (usually as a result of a restart), it must allow clients time to discover this fact and
 re-establish the lost locking state. The client must be able to
 re-establish the locking state without having the server deny valid
 requests because the server has granted conflicting access to another
 client. Likewise, if there is a possibility that clients have not
 yet re-established their locking state for a file and that
 such locking state might make it invalid to perform READ or
 WRITE operations. For example, if mandatory locks are a possibility,
 the server must disallow READ and WRITE operations for that file.

 A client can determine that loss of locking
 state has occurred via several methods.

	When a SEQUENCE (most common) or other operation returns
	NFS4ERR_BADSESSION, this may mean that the session has
	been destroyed but the client ID is still valid.
	The client sends a CREATE_SESSION request with the
	client ID to re-establish the session. If
	CREATE_SESSION fails with NFS4ERR_STALE_CLIENTID,
	the client must establish a new client ID (see
) and re-establish its
	lock state with the new client ID, after the CREATE_SESSION
 operation succeeds (see).

 When a SEQUENCE (most common) or other operation on a
 persistent session returns NFS4ERR_DEADSESSION, this indicates
 that a session is no longer usable for new, i.e., not satisfied
 from the reply cache, operations. Once all pending operations
 are determined to be either performed before the retry or not
 performed, the client sends a CREATE_SESSION request with the
	client ID to re-establish the session. If
	CREATE_SESSION fails with NFS4ERR_STALE_CLIENTID,
	the client must establish a new client ID (see
) and re-establish its
	lock state after the CREATE_SESSION, with the
 new client ID, succeeds
 ().

	When an operation, neither SEQUENCE nor preceded by SEQUENCE (for
	example, CREATE_SESSION, DESTROY_SESSION), returns
	NFS4ERR_STALE_CLIENTID, the client MUST establish
	a new client ID () and
	re-establish its lock state ().

 State Reclaim

 When state information and the associated locks are lost
 as a result of a server restart, the protocol must provide
 a way to cause that state to be re-established. The
 approach used is to define, for most types of locking
 state (layouts are an exception), a request whose function
 is to allow the client to
 re-establish on the server a lock first obtained from a
 previous instance. Generally, these requests are variants
 of the requests normally used to create locks of that type
 and are referred to as "reclaim-type" requests, and the process
 of re-establishing such locks is referred to as "reclaiming"
 them.

 Because each client must have an opportunity to reclaim
 all of the locks that it has without the possibility that
 some other client will be granted a conflicting lock,
 a "grace period" is devoted
 to the reclaim process. During this period, requests
 creating client IDs and
 sessions are handled normally, but locking requests are
 subject to special restrictions. Only
 reclaim-type locking requests are allowed, unless the
 server can reliably determine (through state
 persistently maintained across restart instances) that
 granting any such lock cannot possibly conflict with a
 subsequent reclaim.
 When a request is made to obtain
 a new lock (i.e., not a reclaim-type request) during the
 grace period and such a determination cannot be made,
 the server must return the error NFS4ERR_GRACE.

 Once a session is established using the new client ID, the
 client will use reclaim-type locking requests (e.g., LOCK
 operations with reclaim set to TRUE and OPEN operations with a
 claim type of CLAIM_PREVIOUS; see
) to re-establish its locking
 state. Once this is done, or if there is no such locking
 state to reclaim, the client sends a global RECLAIM_COMPLETE
 operation, i.e., one with the rca_one_fs argument set to FALSE, to
 indicate that it has reclaimed all of the locking state that
 it will reclaim. Once a client sends such a RECLAIM_COMPLETE
 operation, it may attempt non-reclaim locking operations,
 although it might get an NFS4ERR_GRACE status result from each such operation until
 the period of special handling is over.
 See for a discussion of the
 analogous handling lock reclamation in the case of file systems
 transitioning from server to server.

 During the grace period, the server must reject READ
 and WRITE operations
 and non-reclaim locking requests (i.e., other LOCK
 and OPEN operations) with an error of NFS4ERR_GRACE,
 unless it can guarantee that these may be done
 safely, as described below.

 The grace period may last until all clients that are known to
 possibly have had locks have done a global RECLAIM_COMPLETE operation, indicating
 that they have finished reclaiming the locks they held before
 the server restart. This means that a client that has done a
 RECLAIM_COMPLETE must be prepared to receive an NFS4ERR_GRACE
 when attempting to acquire new locks.
 In order for the server to know that all clients with possible prior
 lock state have done a RECLAIM_COMPLETE,
 the server must maintain in stable
 storage a list clients that may have such locks. The server
 may also terminate the grace period before all clients have
 done a global RECLAIM_COMPLETE. The server SHOULD NOT terminate the
 grace period before a time equal to the lease period in order
 to give clients an opportunity to find out about the server
 restart, as a result of sending requests on associated
 sessions with a frequency governed by the lease time.
 Note that when a client does not send such requests (or they
 are sent by the client but not received by the server),
 it is possible for the grace period to expire before the client
 finds out that the server restart has occurred.

 Some additional time in
 order to allow a client to
 establish a new client ID and session and to effect lock
 reclaims may be added to the lease time. Note that
 analogous rules apply to
 file system-specific grace periods discussed in
 .

 If the server can reliably determine that granting a non-reclaim
 request will not conflict with reclamation of locks by other
 clients, the NFS4ERR_GRACE error does not have to be returned
 even within the grace period, although NFS4ERR_GRACE must always
 be returned to clients attempting a non-reclaim lock request
 before doing their own global RECLAIM_COMPLETE.
 For the server to be able
 to service READ and WRITE operations during the grace period, it must
 again be able to guarantee that no possible conflict could arise
 between a potential reclaim locking request and the READ or WRITE
 operation. If the server is unable to offer that guarantee, the
 NFS4ERR_GRACE error must be returned to the client.

 For a server to provide simple, valid handling during the grace
 period, the easiest method is to simply reject all non-reclaim locking
 requests and READ and WRITE operations by returning the NFS4ERR_GRACE
 error. However, a server may keep information about granted locks in
 stable storage. With this information, the server could determine if
 a locking, READ or WRITE operation can be safely processed.

 For example, if the server maintained on stable storage summary
 information on whether mandatory locks exist, either mandatory
 byte-range locks, or share reservations specifying deny modes,
 many requests could be allowed during the grace period. If it
 is known that no such share reservations exist, OPEN request that
 do not specify deny modes may be safely granted. If, in addition,
 it is known that no mandatory byte-range locks exist, either
 through information stored on stable storage or simply because
 the server does not support such locks, READ and WRITE operations
 may be safely processed during the grace period.
 Another important case is where it is known that no mandatory
 byte-range locks exist, either because the server does not
 provide support for them or because their absence is known
 from persistently recorded data. In this case, READ and
 WRITE operations specifying stateids derived from reclaim-type
 operations may be validly processed during the grace period
 because of the fact that the valid reclaim ensures that no lock
 subsequently granted can prevent the I/O.

 To reiterate, for a server that allows non-reclaim lock and I/O
 requests to be processed during the grace period, it MUST determine
 that no lock subsequently reclaimed will be rejected and that no lock
 subsequently reclaimed would have prevented any I/O operation
 processed during the grace period.

 Clients should be prepared for the return of NFS4ERR_GRACE errors for
 non-reclaim lock and I/O requests. In this case, the client should
 employ a retry mechanism for the request. A delay (on the order of
 several seconds) between retries should be used to avoid overwhelming
 the server. Further discussion of the general issue is included in
 . The client must account for the server that
 can perform I/O and non-reclaim locking requests within the grace period
 as well as those that cannot do so.

 A reclaim-type locking request outside the server's grace period
 can only succeed if the server can guarantee that no conflicting
 lock or I/O request has been granted since restart.

 A server may, upon restart, establish a new value for the lease
 period. Therefore, clients should, once a new client ID is
 established, refetch the lease_time attribute and use it as the basis
 for lease renewal for the lease associated with that server. However,
 the server must establish, for this restart event, a grace period at
 least as long as the lease period for the previous server
 instantiation. This allows the client state obtained during the
 previous server instance to be reliably re-established.

 The possibility exists that, because of server configuration
 events, the client will be communicating with a server
 different than the one on which the locks were obtained, as
 shown by the combination of eir_server_scope and
 eir_server_owner. This leads to the issue of if and when
 the client should attempt to reclaim locks previously obtained
 on what is being reported as a different server. The rules
 to resolve this question are as follows:

 If the server scope is different, the client should not
 attempt to reclaim locks. In this situation, no lock
 reclaim is possible. Any attempt to re-obtain the locks
 with non-reclaim operations is problematic since there is
 no guarantee that the existing filehandles will be recognized
 by the new server, or that if recognized, they denote the
 same objects. It is best to treat the locks as having been
 revoked by the reconfiguration event.

 If the server scope is the same, the client should attempt
 to reclaim locks, even if the eir_server_owner value is
 different. In this situation, it is the responsibility
 of the server to return NFS4ERR_NO_GRACE if it cannot
 provide correct support for lock reclaim operations,
 including the prevention of edge conditions.

 The eir_server_owner field is not used in making this
 determination. Its function is to specify trunking
 possibilities for the client (see)
 and not to control lock reclaim.

 Security Considerations for State Reclaim

 During the grace period, a client can reclaim state that it believes or
 asserts it had before the server restarted. Unless the server
 maintained a complete record of all the state the client had,
 the server has little choice but to trust the client. (Of course,
 if the server maintained a complete record, then it would not
 have to force the client to reclaim state after server restart.)
 While the server has to trust the client to tell the truth, the
 negative consequences for security are limited to enabling
	 denial-of-service attacks in situations in which AUTH_SYS is
	 supported. The
 fundamental rule for the server when processing reclaim requests
 is that it MUST NOT grant the reclaim if an equivalent non-reclaim
 request would not be granted during steady state due to access
 control or access conflict issues. For example, an OPEN request
	 during a reclaim will be refused with NFS4ERR_ACCESS if the principal making
	 the request does not have access to open the file according to the
	 discretionary ACL () on the file.

 Nonetheless, it is possible that a client operating in error or
 maliciously could, during reclaim, prevent another client from
 reclaiming access to state. For example, an attacker could
 send an OPEN reclaim operation with a deny mode that prevents
 another client from reclaiming the OPEN state it had before the
 server restarted.
 The attacker could perform the same denial of service during
 steady state prior to server restart, as long as the
 attacker had permissions. Given that the attack
 vectors are equivalent, the grace period does not offer any
 additional opportunity for denial of service, and any concerns
 about this attack vector, whether during grace or steady state,
 are addressed the same way: use RPCSEC_GSS for authentication
 and limit access to the file only to principals that the owner of
 the file trusts.

 Note that if prior to restart the server had client
 IDs with the EXCHGID4_FLAG_BIND_PRINC_STATEID () capability set, then the server
 SHOULD record in stable storage the client owner and the
 principal that established the client ID via EXCHANGE_ID.
 If the server does not, then there is a risk a client will
 be unable to reclaim state if it does not have a credential
 for a principal that was originally authorized to
 establish the state.

 Network Partitions and Recovery

 If the duration of a network partition is greater than the lease
 period provided by the server, the server will not have received a
 lease renewal from the client. If this occurs, the server may free
 all locks held for the client or it may allow the lock state to
 remain for a considerable period, subject to the constraint that
 if a request for a conflicting lock is made, locks associated with
 an expired lease do not prevent such a conflicting lock from being
 granted but MUST be revoked as necessary so as to avoid interfering with
 such conflicting requests.

 If the server chooses to delay freeing of lock state until there
 is a conflict, it may either free all of the client's locks once
 there is a conflict or it may only revoke the minimum set of locks
 necessary to allow conflicting requests. When it adopts the
 finer-grained approach, it must revoke all locks associated with a
 given stateid, even if the conflict is with only a subset of locks.

 When the server chooses to free all of a client's lock state, either
 immediately upon lease expiration or as a result of the first
 attempt to obtain a conflicting a lock, the server may report the
 loss of lock state in a number of ways.

 The server may choose to invalidate the session and the associated
 client ID. In this case, once the client can communicate
 with the server, it will receive an NFS4ERR_BADSESSION error. Upon
 attempting to create a new session, it would get an
 NFS4ERR_STALE_CLIENTID. Upon creating the new client ID and new
 session, the client will attempt to reclaim locks. Normally, the
 server will not allow the client to reclaim locks, because the
 server will not be in its recovery grace period.

 Another possibility is for the server to maintain the session and
 client ID but for all stateids held by the
 client to become invalid or stale. Once the client can reach
 the server after such a network partition, the status returned by
 the SEQUENCE operation will indicate a loss of locking state; i.e.,
 the flag SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED will be set in
 sr_status_flags. In
 addition, all I/O submitted by the
 client with the now invalid stateids will fail with the server
 returning the error NFS4ERR_EXPIRED. Once the client learns of
 the loss of locking state, it
 will suitably notify the applications that held the invalidated
 locks. The client should then take action to free invalidated
 stateids, either by establishing a new client ID using a new
 verifier or by doing a FREE_STATEID operation to release each
 of the invalidated stateids.

 When the server adopts a finer-grained approach to revocation
 of locks when a client's lease has expired, only a subset of stateids
 will normally become invalid during a network partition.
 When the client can communicate with the server after such a
 network partition heals, the status returned by the SEQUENCE
 operation will indicate a partial loss of locking state
 (SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED).
 In addition, operations, including I/O submitted by the
 client, with the now invalid stateids will fail with the server
 returning the error NFS4ERR_EXPIRED. Once the client learns of
 the loss of locking state, it will use the TEST_STATEID operation
 on all of its stateids to
 determine which locks have been lost and then
 suitably notify the applications that held the invalidated
 locks. The client can then release the invalidated locking
 state and acknowledge the revocation of the associated locks
 by doing a FREE_STATEID operation on each of the invalidated
 stateids.

 When a network partition is combined with a server restart, there are
 edge conditions that place requirements on the server in order to
 avoid silent data corruption following the server restart. Two of these
 edge conditions are known, and are discussed below.

 The first edge condition arises as a result of the scenarios such as
 the following:

 Client A acquires a lock.

 Client A and server experience mutual network partition, such that
 client A is unable to renew its lease.

 Client A's lease expires, and the server releases the lock.

 Client B acquires a lock that would have conflicted
 with that of client A.

 Client B releases its lock.

 Server restarts.

 Network partition between client A and server heals.

 Client A connects to a new server instance and finds out about
 server restart.

 Client A reclaims its lock within the server's grace period.

 Thus, at the final step, the server has erroneously granted client A's
 lock reclaim. If client B modified the object the lock was protecting,
 client A will experience object corruption.

 The second known edge condition arises in situations such as the following:

 Client A acquires one or more locks.

 Server restarts.

 Client A and server experience mutual network
 partition, such that client A is unable to reclaim
 all of its locks within the grace period.

 Server's reclaim grace period ends. Client A has either
 no locks or an incomplete set of locks known to the server.

 Client B acquires a lock that would have conflicted
 with a lock of client A that was not reclaimed.

 Client B releases the lock.

 Server restarts a second time.

 Network partition between client A and server heals.

 Client A connects to new server instance and finds out about
 server restart.

 Client A reclaims its lock within the server's
 grace period.

 As with the first edge condition, the final step of the scenario of
 the second edge condition has the server erroneously granting client
 A's lock reclaim.

 Solving the first and second edge conditions requires either that the server
 always assumes after it restarts that some edge condition
 occurs, and thus returns NFS4ERR_NO_GRACE for all reclaim attempts, or that the server
 record some information in stable storage. The amount
 of information the
 server records in stable storage is in inverse proportion to how harsh
 the server intends to be whenever edge conditions arise.
 The server
 that is completely tolerant of all edge conditions will record in
 stable storage every lock that is acquired, removing the lock record
 from stable storage only when the lock is released.
 For the two edge conditions discussed above, the harshest a
 server can be, and still support a grace period for reclaims, requires
 that the server record in stable storage some minimal
 information. For example, a server implementation could, for each
 client, save in stable storage a record containing:

 the co_ownerid field from the client_owner4 presented in the
 EXCHANGE_ID operation.

 a boolean that indicates if the client's lease expired
 or if there was administrative intervention (see
) to revoke
 a byte-range lock, share reservation, or delegation and
 there has been no acknowledgment, via FREE_STATEID,
 of such revocation.

 a boolean that indicates whether the client may have locks
 that it believes to be reclaimable in situations in which the
 grace period was terminated, making the server's view of
 lock reclaimability suspect. The server will set this for
 any client record in stable storage where the client has
 not done a suitable RECLAIM_COMPLETE (global or file
 system-specific depending on the target of the lock
 request) before it grants any new (i.e., not reclaimed)
 lock to any client.

 Assuming the above record keeping, for the first edge condition, after
 the server restarts, the record that client A's lease expired means
 that another client could have acquired a conflicting byte-range lock,
 share reservation, or delegation. Hence, the server must reject a
 reclaim from client A with the error NFS4ERR_NO_GRACE.

 For the second edge condition, after the server restarts for a second
 time, the indication that the client had not completed its
 reclaims at the time at which the grace period ended
 means that the server must reject a reclaim from client A
 with the error NFS4ERR_NO_GRACE.

 When either edge condition occurs, the client's attempt to reclaim
 locks will result in the error NFS4ERR_NO_GRACE. When this is
 received, or after the client restarts with no lock state, the
 client will send a global RECLAIM_COMPLETE. When
 the RECLAIM_COMPLETE is received, the server and client are
 again in agreement regarding reclaimable locks and both booleans in persistent
 storage can be reset, to be set again only when there is a subsequent
 event that causes lock reclaim operations to be questionable.

 Regardless of the level and approach to record keeping, the server
 MUST implement one of the following strategies (which apply to
 reclaims of share reservations, byte-range locks, and delegations):

 Reject all reclaims with NFS4ERR_NO_GRACE. This
 is extremely unforgiving, but necessary if the server does not
 record lock state in stable storage.

 Record sufficient state in stable storage such that
 all known edge conditions involving server restart,
 including the two noted in this section, are
 detected. It is acceptable to erroneously recognize an edge condition
 and not allow a reclaim, when, with sufficient knowledge, it
 would be allowed. The error the server would return in this
 case is NFS4ERR_NO_GRACE. Note that it is not known if there are other
 edge conditions.

 In the event that, after a server restart, the server
 determines there is unrecoverable damage or
 corruption to the information in stable storage, then for
 all clients and/or locks that may be affected, the server MUST
 return NFS4ERR_NO_GRACE.

 A mandate for the client's handling of the NFS4ERR_NO_GRACE error is
 outside the scope of this specification, since the strategies for such
 handling are very dependent on the client's operating environment.
 However, one potential approach is described below.

 When the client receives NFS4ERR_NO_GRACE, it could examine the change
 attribute of the objects for which the client is trying to reclaim state,
 and use that to determine whether to re-establish the state via normal
 OPEN or LOCK operations. This is acceptable provided that the client's
 operating environment allows it. In other words, the client
 implementor is advised to document for his users the behavior. The
 client could also inform the application that its byte-range lock or share
 reservations (whether or not they were delegated) have been lost, such
 as via a UNIX signal, a Graphical User Interface (GUI) pop-up window, etc.
 See
 for a discussion of what the client should do
 for dealing with unreclaimed delegations on client state.

 For further discussion of revocation of locks, see
 .

 Server Revocation of Locks

 At any point, the server can revoke locks held by a client, and the
 client must be prepared for this event. When the client detects that
 its locks have been or may have been revoked, the client is
 responsible for validating the state information between itself and
 the server. Validating locking state for the client means that it
 must verify or reclaim state for each lock currently held.

 The first occasion of lock revocation is upon server
 restart. Note that this includes situations
 in which sessions are persistent and locking state is
 lost. In this class of instances, the client will
 receive an error (NFS4ERR_STALE_CLIENTID) on an
 operation that takes client ID, usually as part of
 recovery in response to a problem with the current
 session), and the client will proceed
 with normal crash recovery as described in the .

 The second occasion of lock revocation is the inability to renew the lease
 before expiration, as discussed in
 . While this is
 considered a rare or unusual event,
 the client must be prepared to recover. The server is responsible
 for determining the precise consequences of the lease expiration,
 informing the client of the scope of the lock revocation decided
 upon. The client then uses the status information provided
 by the server in the SEQUENCE results (field sr_status_flags,
 see)
 to synchronize its locking state with that of the
 server, in order to recover.

 The third occasion of lock revocation can occur as a result of
 revocation of locks within the lease period, either because of
 administrative intervention or because a recallable lock (a
 delegation or layout) was not returned within the lease period
 after having been recalled. While these are
 considered rare events, they are possible, and the client must be
 prepared to deal with them. When either of these events occurs,
 the client finds out about the situation through the status returned
 by the SEQUENCE operation. Any use of stateids associated with
 locks revoked during the lease period will receive the error
 NFS4ERR_ADMIN_REVOKED or NFS4ERR_DELEG_REVOKED, as appropriate.

 In all situations in which a subset of locking state may have been
 revoked, which include all cases in which locking state is revoked
 within the lease period, it is up to the client to determine which
 locks have been revoked and which have not. It does this by
 using the TEST_STATEID operation on the appropriate set of stateids.
 Once the set of revoked locks has been determined, the applications
 can be notified, and the invalidated stateids can be freed and
 lock revocation acknowledged by using FREE_STATEID.

 Short and Long Leases

 When determining the time period for the server lease, the usual lease
 trade-offs apply. A short lease is good for fast server recovery at a
 cost of increased operations to effect lease renewal (when there are
 no other operations during the period to effect lease renewal as a
 side effect). A long lease is certainly kinder and gentler to
 servers trying to handle very large numbers of clients. The number of extra requests
 to effect lock renewal drops in inverse
 proportion to the lease time. The disadvantages of a long lease
 include the possibility of slower recovery after certain failures.
 After server failure, a longer grace period may be required when
 some clients do not promptly reclaim their locks and do a
 global RECLAIM_COMPLETE. In the event of client failure,
 the longer period for a lease to expire will force conflicting
 requests to wait longer.

 A long lease is practical if the server can store lease state in
 stable storage. Upon recovery, the server can reconstruct the
 lease state from its stable storage and continue operation with
 its clients.

 Clocks, Propagation Delay, and Calculating Lease Expiration

 To avoid the need for synchronized clocks, lease times are granted by
 the server as a time delta. However, there is a requirement that the
 client and server clocks do not drift excessively over the duration of
 the lease. There is also the issue of propagation delay across the
 network, which could easily be several hundred milliseconds, as well as
 the possibility that requests will be lost and need to be
 retransmitted.

 To take propagation delay into account, the client should
 subtract it from lease times (e.g., if the client estimates the
 one-way propagation delay as 200 milliseconds, then it can
 assume that the lease is already 200 milliseconds old when it
 gets it). In addition, it will take another 200 milliseconds to
 get a response back to the server. So the client must send a
 lease renewal or write data back to the server at least 400
 milliseconds before the lease would expire. If the propagation delay
 varies over the life of the lease (e.g., the client is on a mobile
 host), the client will need to continuously subtract the increase
 in propagation delay from the lease times.

 The server's lease period configuration should take into account the
 network distance of the clients that will be accessing the server's
 resources. It is expected that the lease period will take into
 account the network propagation delays and other network delay factors
 for the client population. Since the protocol does not allow for an
 automatic method to determine an appropriate lease period, the
 server's administrator may have to tune the lease period.

 Obsolete Locking Infrastructure from NFSv4.0

 There are a number of operations and fields within existing
 operations that no longer have a function in NFSv4.1.
 In one way or another, these changes are all due to
 the implementation of sessions that provide client context
 and exactly once semantics as a base feature of the protocol,
 separate from locking itself.

 The following NFSv4.0 operations MUST NOT be implemented in NFSv4.1.
 The server MUST return NFS4ERR_NOTSUPP if these operations are
 found in an NFSv4.1 COMPOUND.

 SETCLIENTID since its function has been replaced by
 EXCHANGE_ID.

 SETCLIENTID_CONFIRM since client ID confirmation now
 happens by means of CREATE_SESSION.

 OPEN_CONFIRM because state-owner-based seqids
 have been replaced by the sequence ID in the
 SEQUENCE operation.

 RELEASE_LOCKOWNER because lock-owners with no associated
 locks do not have any sequence-related state and so can
 be deleted by the server at will.

 RENEW because every SEQUENCE operation for a session causes
 lease renewal, making a separate operation superfluous.

 Also, there are a number of fields, present in existing operations,
 related to locking that have no use in minor version 1. They
 were used in minor version 0 to perform functions now provided
 in a different
 fashion.

 Sequence ids used to sequence requests for a given state-owner
 and to provide retry protection, now provided
 via sessions.

 Client IDs used to identify the client associated with a given
 request. Client identification is now available using the client ID
 associated with the current session, without needing an explicit
 client ID field.

 Such vestigial fields in existing operations have no function in
 NFSv4.1 and are ignored by the server. Note that client IDs in
 operations new to NFSv4.1 (such as CREATE_SESSION and DESTROY_CLIENTID)
 are not ignored.

 File Locking and Share Reservations

 To support Win32 share reservations, it is necessary to provide
 operations that atomically open or create files. Having a
 separate share/unshare operation would not allow correct
 implementation of the Win32 OpenFile API. In order to
 correctly implement share semantics, the previous NFS protocol
 mechanisms used when a file is opened or created (LOOKUP, CREATE,
 ACCESS) need to be replaced. The NFSv4.1 protocol defines
 an OPEN operation that is capable of atomically looking up, creating,
 and locking a file on the server.

 Opens and Byte-Range Locks

 It is assumed that manipulating a byte-range lock is rare when
 compared to READ
 and WRITE operations. It is also assumed that server restarts and network
 partitions are relatively rare. Therefore, it is important that the
 READ and WRITE operations have a lightweight mechanism to indicate if
 they possess a held lock. A LOCK operation contains the
 heavyweight information required to establish a byte-range lock and uniquely
 define the owner of the lock.

 State-Owner Definition

 When opening a file or requesting a byte-range lock, the
 client must specify an identifier that represents the owner of
 the requested lock. This identifier is in the form of a
 state-owner, represented in the protocol by a state_owner4, a
 variable-length opaque array that, when concatenated with the
 current client ID, uniquely defines the owner of a lock managed
 by the client. This may be a thread ID, process ID, or other
 unique value.

 Owners of opens and owners of byte-range locks are separate
 entities and remain separate even if the same opaque arrays
 are used to designate owners of each. The protocol distinguishes
 between open-owners (represented by open_owner4 structures)
 and lock-owners (represented by lock_owner4 structures).

 Each open is associated with a specific open-owner while each
 byte-range lock is associated with a lock-owner and an
 open-owner, the latter being the open-owner associated with the
 open file under which the LOCK operation was done. Delegations
 and layouts, on the other hand, are not associated with a
 specific owner but are associated with the client as a whole
 (identified by a client ID).

 Use of the Stateid and Locking

 All READ, WRITE, and SETATTR operations contain a stateid. For the
 purposes of this section, SETATTR operations that change the size
 attribute of a file are treated as if they are writing the area
 between the old and new sizes (i.e., the byte-range truncated or added to the
 file by means of the SETATTR), even where SETATTR is not explicitly
 mentioned in the text. The stateid passed to one of these operations must
 be one that represents an open, a set of byte-range locks, or a
 delegation, or it may be a special stateid representing anonymous
 access or the special bypass stateid.

 If the state-owner performs a READ or WRITE operation in a situation in which
 it has established a byte-range lock or share reservation
 on the server (any OPEN constitutes a share reservation), the
 stateid (previously returned by the server) must be used to
 indicate what locks, including both byte-range
 locks and share reservations, are held by the state-owner. If no state
 is established by the client, either a byte-range lock or a share reservation,
 a special stateid for anonymous state (zero as the value for "other" and "seqid")
 is used. (See for a description of
 'special' stateids in general.)
 Regardless of whether a stateid for anonymous state
 or a stateid returned by the server is used, if there is a
 conflicting share reservation or mandatory byte-range lock held on the
 file, the server MUST refuse to service the READ or WRITE operation.

 Share reservations are established by OPEN operations and by their
 nature are mandatory in that when the OPEN denies READ or WRITE
 operations, that denial results in such operations being rejected with
 error NFS4ERR_LOCKED. Byte-range locks may be implemented by the server
 as either mandatory or advisory, or the choice of mandatory or
 advisory behavior may be determined by the server on the basis of the
 file being accessed (for example, some UNIX-based servers support a
 "mandatory lock bit" on the mode attribute such that if set, byte-range
 locks are required on the file before I/O is possible). When byte-range
 locks are advisory, they only prevent the granting of conflicting lock
 requests and have no effect on READs or WRITEs. Mandatory byte-range
 locks, however, prevent conflicting I/O operations. When they are
 attempted, they are rejected with NFS4ERR_LOCKED. When the client
 gets NFS4ERR_LOCKED on a file for which it knows it has the proper share
 reservation, it will need to send a LOCK operation on the byte-range of
 the file that includes the byte-range the I/O was to be performed on, with
 an appropriate locktype field of the LOCK operation's arguments (i.e., READ*_LT for a READ operation, WRITE*_LT
 for a WRITE operation).

 Note that for UNIX environments that support mandatory byte-range locking,
 the distinction between advisory and mandatory locking is subtle. In
 fact, advisory and mandatory byte-range locks are exactly the same as
 far as the APIs and requirements on implementation. If the mandatory
 lock attribute is set on the file, the server checks to see if the
 lock-owner has an appropriate shared (READ_LT) or exclusive (WRITE_LT) byte-range
 lock on the byte-range it wishes to READ from or WRITE to. If there is no
 appropriate lock, the server checks if there is a conflicting lock
 (which can be done by attempting to acquire the conflicting lock on
 behalf of the lock-owner, and if successful, release the lock after
 the READ or WRITE operation is done), and if there is, the server returns
 NFS4ERR_LOCKED.

 For Windows environments, byte-range locks are always mandatory, so the
 server always checks for byte-range locks during I/O requests.

 Thus, the LOCK operation does not need to distinguish
 between advisory and mandatory byte-range locks. It is the
 server's processing of the READ and WRITE operations that introduces
 the distinction.

 Every stateid that is validly passed to READ, WRITE, or SETATTR,
 with the exception of special stateid values,
 defines an access mode for the file (i.e.,
 OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
 OPEN4_SHARE_ACCESS_BOTH).

 For stateids associated with opens, this is the mode defined by
 the original OPEN that caused the
 allocation of the OPEN stateid
 and as modified by subsequent OPENs and OPEN_DOWNGRADEs for the
 same open-owner/file pair.

 For stateids returned by byte-range LOCK operations,
 the appropriate mode is the access mode for the OPEN
 stateid associated with the lock set represented by the stateid.

 For delegation stateids, the access mode is based on the type of delegation.

 When a READ, WRITE, or SETATTR (that specifies the
 size attribute) operation is done, the operation is subject to checking against
 the access mode to verify that the operation is appropriate given the
 stateid with which the operation is associated.

 In the case of WRITE-type operations (i.e., WRITEs and SETATTRs that
 set size), the server MUST verify that the access mode allows writing
 and MUST return an NFS4ERR_OPENMODE error if it does not. In the case of
 READ, the server may perform the corresponding check on the access
 mode, or it may choose to allow READ on OPENs for OPEN4_SHARE_ACCESS_WRITE, to
 accommodate clients whose WRITE implementation may unavoidably do
 reads (e.g., due to buffer cache constraints). However, even if READs
 are allowed in these circumstances, the server MUST still check for
 locks that conflict with the READ (e.g., another OPEN specified OPEN4_SHARE_DENY_READ or OPEN4_SHARE_DENY_BOTH). Note that a server that does enforce the access mode check
 on READs need not explicitly check for conflicting share reservations
 since the existence of OPEN for OPEN4_SHARE_ACCESS_READ guarantees that no
 conflicting share reservation can exist.

 The READ bypass special stateid (all bits of "other" and "seqid" set
 to one)
 indicates a desire to bypass locking checks. The server MAY
 allow READ operations to bypass
 locking checks at the server, when this special stateid is used.
 However, WRITE operations with
 this special stateid value MUST NOT bypass locking checks and are
 treated exactly the same as if a special stateid for anonymous state
 were used.

 A lock may not be granted while a READ or WRITE operation using one of
 the special stateids is being performed and the scope of the lock
 to be granted would conflict with the READ or WRITE operation.
 This can occur when:

 A mandatory byte-range lock is requested with a byte-range that
 conflicts with the byte-range of the READ or WRITE operation.
 For the purposes of this paragraph, a conflict occurs when
 a shared lock is requested and a WRITE operation is being
 performed, or an exclusive lock is requested and either a
 READ or a WRITE operation is being performed.

 A share reservation is requested that denies reading and/or
 writing and the corresponding operation is being performed.

 A delegation is to be granted and the delegation type would
 prevent the I/O operation, i.e., READ and WRITE conflict with
 an OPEN_DELEGATE_WRITE delegation and WRITE conflicts with an OPEN_DELEGATE_READ delegation.

 When a client holds a delegation, it needs to ensure
 that the stateid sent conveys the association of
 operation with the delegation, to avoid the delegation from
 being avoidably recalled. When the delegation stateid,
 a stateid open associated with that delegation, or a stateid
 representing byte-range locks derived from such an open is
 used, the server knows that the READ, WRITE, or SETATTR
 does not conflict with the delegation but is sent under
 the aegis of the delegation. Even though it is possible
 for the server to determine from the client ID (via
 the session ID) that the client does in fact have a
 delegation, the server is not obliged to check this, so
 using a special stateid can result in avoidable recall
 of the delegation.

 Lock Ranges

 The protocol allows a lock-owner to request a lock with a byte-range
 and then either upgrade, downgrade, or unlock a sub-range of
 the initial lock, or a byte-range that
 overlaps -- fully or partially -- either with that initial lock or a
 combination of a set of existing locks for the same lock-owner. It
 is expected that this will be an uncommon type of request. In any
 case, servers or server file systems may not be able to support
 sub-range lock semantics. In the event that a server receives a
 locking request that represents a sub-range of current locking state
 for the lock-owner, the server is allowed to return the error
 NFS4ERR_LOCK_RANGE to signify that it does not support sub-range lock
 operations. Therefore, the client should be prepared to receive this
 error and, if appropriate, report the error to the requesting
 application.

 The client is discouraged from combining multiple independent locking
 ranges that happen to be adjacent into a single request since the
 server may not support sub-range requests for reasons related to
 the recovery of byte-range locking state in the event of server failure. As
 discussed in , the
 server may employ certain optimizations during recovery that work
 effectively only when the client's behavior during lock recovery is
 similar to the client's locking behavior prior to server failure.

 Upgrading and Downgrading Locks

 If a client has a WRITE_LT lock on a byte-range, it can request an atomic
 downgrade of the lock to a READ_LT lock via the LOCK operation, by setting
 the type to READ_LT. If the server supports atomic downgrade, the
 request will succeed. If not, it will return NFS4ERR_LOCK_NOTSUPP. The
 client should be prepared to receive this error and, if appropriate,
 report the error to the requesting application.

 If a client has a READ_LT lock on a byte-range, it can request an atomic
 upgrade of the lock to a WRITE_LT lock via the LOCK operation by setting
 the type to WRITE_LT or WRITEW_LT. If the server does not support
 atomic upgrade, it will return NFS4ERR_LOCK_NOTSUPP. If the upgrade
 can be achieved without an existing conflict, the request will
 succeed. Otherwise, the server will return either NFS4ERR_DENIED or
 NFS4ERR_DEADLOCK. The error NFS4ERR_DEADLOCK is returned if the client
 sent the LOCK operation with the type set to WRITEW_LT and the server
 has detected a deadlock. The client should be prepared to receive such
 errors and, if appropriate, report the error to the requesting
 application.

 Stateid Seqid Values and Byte-Range Locks

 When a LOCK or LOCKU operation is performed,
 the stateid returned has the same "other" value as the argument's
 stateid, and a
 "seqid" value that is incremented (relative to the argument's
 stateid) to reflect the occurrence
 of the LOCK or LOCKU operation. The server MUST increment
 the value of the "seqid" field whenever there is any change
 to the locking status of any byte offset as described by
 any of the locks covered by the stateid. A change in locking
 status includes a change from locked to unlocked or the reverse or
 a change from being locked for READ_LT to being locked for WRITE_LT
 or the reverse.

 When there is no such change, as, for example, when a range
 already locked for WRITE_LT is locked again for WRITE_LT, the
 server MAY increment the "seqid" value.

 Issues with Multiple Open-Owners

 When the same file is opened by multiple open-owners,
 a client will have multiple OPEN stateids for that
 file, each associated with a different open-owner.
 In that case, there can be multiple LOCK and LOCKU
 requests for the same lock-owner sent using the
 different OPEN stateids, and so a situation may
 arise in which there are multiple stateids, each
 representing byte-range locks on the same file and
 held by the same lock-owner but each associated with
 a different open-owner.

 In such a situation, the locking status of each byte
 (i.e., whether it is locked, the READ_LT or WRITE_LT type of
 the lock, and the lock-owner holding the lock) MUST
 reflect the last LOCK or LOCKU operation done for the
 lock-owner in question, independent of the stateid through
 which the request was sent.

 When a byte is locked by the lock-owner in question, the
 open-owner to which that byte-range lock is assigned SHOULD be that
 of the open-owner associated with the stateid through
 which the last LOCK of that byte was done. When there
 is a change in the open-owner associated with locks for
 the stateid through which a LOCK or LOCKU was done, the
 "seqid" field of the stateid MUST be incremented, even
 if the locking, in terms of lock-owners has not changed.
 When there is a change to the set of locked bytes associated
 with a different stateid for the same lock-owner, i.e.,
 associated with a different open-owner, the "seqid" value
 for that stateid MUST NOT be incremented.

 Blocking Locks

 Some clients require the support of blocking locks. While NFSv4.1
 provides a callback when a previously unavailable lock becomes
 available, this is an OPTIONAL feature and clients cannot
 depend on its presence. Clients need to be prepared to continually
 poll for the lock. This presents a fairness problem. Two of
 the lock types, READW_LT and WRITEW_LT, are used to indicate to the
 server that the client is requesting a blocking lock. When the
 callback is not used, the server should maintain an ordered
 list of pending blocking locks. When the conflicting lock is
 released, the server may wait for the period of time equal to
 lease_time for the first waiting
 client to re-request the lock. After the lease period expires, the
 next waiting client request is allowed the lock. Clients are required
 to poll at an interval sufficiently small that it is likely to acquire
 the lock in a timely manner. The server is not required to maintain a
 list of pending blocked locks as it is used to increase fairness and
 not correct operation. Because of the unordered nature of crash
 recovery, storing of lock state to stable storage would be required to
 guarantee ordered granting of blocking locks.

 Servers may also note the lock types and delay returning denial of the
 request to allow extra time for a conflicting lock to be released,
 allowing a successful return. In this way, clients can avoid the
 burden of needless frequent polling for blocking locks. The server
 should take care in the length of delay in the event the client
 retransmits the request.

 If a server receives a blocking LOCK operation, denies it, and then
 later receives a nonblocking request for the same lock, which is
 also denied, then it should remove the lock in question from its list of
 pending blocking locks. Clients should use such a nonblocking request
 to indicate to the server that this is the last time they intend to poll
 for the lock, as may happen when the process requesting the lock is
 interrupted. This is a courtesy to the server, to prevent it from
 unnecessarily waiting a lease period before granting other LOCK operations.
 However, clients are not required to perform this courtesy, and servers
 must not depend on them doing so. Also, clients must be prepared for
 the possibility that this final locking request will be accepted.

 When a server indicates, via the flag OPEN4_RESULT_MAY_NOTIFY_LOCK, that
 CB_NOTIFY_LOCK callbacks might be done for the current open file, the
 client should take notice of this, but, since this is a hint, cannot
 rely on a CB_NOTIFY_LOCK always being done. A client may reasonably
 reduce the frequency with which it polls for a denied lock, since the
 greater latency that might occur is likely to be eliminated given a
 prompt callback, but it still needs to poll. When it receives a
 CB_NOTIFY_LOCK, it should promptly try to obtain the lock, but it
 should be aware that other clients may be polling and that the server is under
 no obligation to reserve the lock for that particular client.

 Share Reservations

 A share reservation is a mechanism to control access to a file. It is
 a separate and independent mechanism from byte-range locking. When a
 client opens a file, it sends an OPEN operation to the server
 specifying the type of access required (READ, WRITE, or BOTH) and the
 type of access to deny others (OPEN4_SHARE_DENY_NONE,
 OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH). If
 the OPEN fails, the client will fail the application's open request.

 Pseudo-code definition of the semantics:

 if (request.access == 0) {
 return (NFS4ERR_INVAL)
 } else {
 if ((request.access & file_state.deny)) ||
 (request.deny & file_state.access)) {
 return (NFS4ERR_SHARE_DENIED)
 }
 return (NFS4ERR_OK);

 When doing this checking of share reservations on OPEN, the current
 file_state used in the algorithm includes bits that reflect all
 current opens, including those for the open-owner making the
 new OPEN request.

 The constants used for the OPEN and OPEN_DOWNGRADE operations for the
 access and deny fields are as follows:

const OPEN4_SHARE_ACCESS_READ = 0x00000001;
const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

const OPEN4_SHARE_DENY_NONE = 0x00000000;
const OPEN4_SHARE_DENY_READ = 0x00000001;
const OPEN4_SHARE_DENY_WRITE = 0x00000002;
const OPEN4_SHARE_DENY_BOTH = 0x00000003;

 OPEN/CLOSE Operations

 To provide correct share semantics, a client MUST use the OPEN
 operation to obtain the initial filehandle and indicate the desired
 access and what access, if any, to deny. Even if the client intends to
 use a special stateid for anonymous state or READ bypass,
 it must still obtain the
 filehandle for the regular file with the OPEN operation so the
 appropriate share semantics can be applied. Clients that do not
 have a deny mode built into their programming interfaces for opening
 a file should request a deny mode of
 OPEN4_SHARE_DENY_NONE.

 The OPEN operation with the CREATE flag also subsumes the CREATE
 operation for regular files as used in previous versions of the NFS
 protocol. This allows a create with a share to be done atomically.

 The CLOSE operation removes all share reservations held by the
 open-owner on that file. If byte-range locks are held, the client
 SHOULD release all locks before sending a CLOSE operation. The server MAY free
 all outstanding locks on CLOSE, but some servers may not support the
 CLOSE of a file that still has byte-range locks held. The server MUST
 return failure, NFS4ERR_LOCKS_HELD, if any locks would exist after the
 CLOSE.

 The LOOKUP operation will return a filehandle without establishing any
 lock state on the server. Without a valid stateid, the server will
 assume that the client has the least access. For example, if one
 client opened a file with OPEN4_SHARE_DENY_BOTH and another client
 accesses the file via a filehandle obtained through LOOKUP, the
 second client could only read the file using the special read
 bypass stateid. The second client could not WRITE the file
 at all because it would
 not have a valid stateid from OPEN and the special anonymous stateid would
 not be allowed access.

 Open Upgrade and Downgrade

 When an OPEN is done for a file and the open-owner for which the OPEN
 is being done already has the file open, the result is to upgrade the
 open file status maintained on the server to include the access and
 deny bits specified by the new OPEN as well as those for the existing
 OPEN. The result is that there is one open file, as far as the
 protocol is concerned, and it includes the union of the access and
 deny bits for all of the OPEN requests completed. The OPEN
 is represented by a single stateid whose "other" value matches
 that of the original open, and whose "seqid" value is incremented
 to reflect the occurrence of the upgrade. The increment is required
 in cases in which the "upgrade" results in no change to the open mode (e.g., an OPEN
 is done for read when the existing open file is opened for
 OPEN4_SHARE_ACCESS_BOTH). Only a single CLOSE will be done to reset the
 effects of both OPENs. The client may use the stateid returned
 by the OPEN effecting the upgrade or with a stateid sharing the
 same "other" field and a seqid of zero,
 although care needs to be taken as far as upgrades that happen
 while the CLOSE is pending. Note that the
 client, when sending the OPEN, may not know that the same file is in
 fact being opened. The above only applies if both OPENs result in
 the OPENed object being designated by the same filehandle.

 When the server chooses to export multiple filehandles corresponding
 to the same file object and returns different filehandles on two
 different OPENs of the same file object, the server MUST NOT "OR"
 together the access and deny bits and coalesce the two open files.
 Instead, the server must maintain separate OPENs with separate
 stateids and will require separate CLOSEs to free them.

 When multiple open files on the client are merged into a single OPEN
 file object on the server, the close of one of the open files (on the
 client) may necessitate change of the access and deny status of the
 open file on the server. This is because the union of the access and
 deny bits for the remaining opens may be smaller (i.e., a proper
 subset) than previously. The OPEN_DOWNGRADE operation is used to make
 the necessary change and the client should use it to update the server
 so that share reservation requests by other clients are handled
 properly. The stateid returned has the same "other" field as
 that passed to the server. The "seqid" value in the returned
 stateid MUST be incremented, even in situations in which there is
 no change to the access and deny bits for the file.

 Parallel OPENs

 Unlike the case of NFSv4.0, in which OPEN operations for the same
 open-owner are inherently serialized because of the owner-based seqid,
 multiple OPENs for the same open-owner may be done in parallel. When
 clients do this, they may encounter situations in which, because
 of the existence of hard links, two OPEN operations may turn out
 to open the same file, with a later OPEN performed being an upgrade of
 the first, with this fact only visible to the
 client once the operations complete.

 In this situation, clients may determine the order in which the
 OPENs were performed by examining the stateids returned by the OPENs.
 Stateids that share a common value of the "other" field can be
 recognized as having opened the same file, with the order of the
 operations determinable from the order of the "seqid" fields, mod
 any possible wraparound of the 32-bit field.

 When the possibility exists that the client will send multiple
 OPENs for the same open-owner in parallel, it may be the case that
 an open upgrade may happen without the client knowing beforehand
 that this could happen. Because of this possibility, CLOSEs and
 OPEN_DOWNGRADEs should generally be sent with a non-zero seqid
 in the stateid, to avoid the possibility that the status change
 associated with an open upgrade is not inadvertently lost.

 Reclaim of Open and Byte-Range Locks

 Special forms of the LOCK and OPEN operations are provided when it
 is necessary to re-establish byte-range locks or opens after a
 server failure.

 To reclaim existing opens, an OPEN operation is performed
 using a CLAIM_PREVIOUS. Because the client, in this type
 of situation, will have already opened the file and have
 the filehandle of the target file, this operation requires
 that the current filehandle be the target file, rather than
 a directory, and no file name is specified.

 To reclaim byte-range locks, a LOCK operation with the
 reclaim parameter set to true is used.

 Reclaims of opens associated with delegations are discussed in
 .

 Client-Side Caching

 Client-side caching of data, of file attributes, and of file names is
 essential to providing good performance with the NFS protocol.
 Providing distributed cache coherence is a difficult problem, and
 previous versions of the NFS protocol have not attempted it. Instead,
 several NFS client implementation techniques have been used to reduce
 the problems that a lack of coherence poses for users. These
 techniques have not been clearly defined by earlier protocol
 specifications, and it is often unclear what is valid or invalid client
 behavior.

 The NFSv4.1 protocol uses many techniques similar to those that
 have been used in previous protocol versions. The NFSv4.1
 protocol does not provide distributed cache coherence. However, it
 defines a more limited set of caching guarantees to allow locks and
 share reservations to be used without destructive interference from
 client-side caching.

 In addition, the NFSv4.1 protocol introduces a delegation
 mechanism, which allows many decisions normally made by the server to
 be made locally by clients. This mechanism provides efficient support
 of the common cases where sharing is infrequent or where sharing is
 read-only.

 Performance Challenges for Client-Side Caching

 Caching techniques used in previous versions of the NFS protocol have
 been successful in providing good performance. However, several
 scalability challenges can arise when those techniques are used with
 very large numbers of clients. This is particularly true when clients
 are geographically distributed, which classically increases the latency
 for cache revalidation requests.

 The previous versions of the NFS protocol repeat their file data cache
 validation requests at the time the file is opened. This behavior can
 have serious performance drawbacks. A common case is one in which a
 file is only accessed by a single client. Therefore, sharing is
 infrequent.

 In this case, repeated references to the server to find that no
 conflicts exist are expensive. A better option with regards to
 performance is to allow a client that repeatedly opens a file to do so
 without reference to the server. This is done until potentially
 conflicting operations from another client actually occur.

 A similar situation arises in connection with byte-range locking. Sending
 LOCK and LOCKU operations as well as the READ and
 WRITE operations necessary to make data caching consistent with the
 locking semantics (see)
 can severely limit performance. When locking is used to provide
 protection against infrequent conflicts, a large penalty is incurred.
 This penalty may discourage the use of byte-range locking by applications.

 The NFSv4.1 protocol provides more aggressive caching strategies
 with the following design goals:

 Compatibility with a large range of server semantics.

 Providing the same caching benefits as previous versions of
 the NFS protocol when unable to support the more aggressive model.

 Requirements for aggressive caching are organized so that a
 large portion of the benefit can be obtained even when not
 all of the requirements can be met.

 The appropriate requirements for the server are discussed in later
 sections in which specific forms of caching are covered (see
).

 Delegation and Callbacks

 Recallable delegation of server responsibilities for a file to a
 client improves performance by avoiding repeated requests to the
 server in the absence of inter-client conflict. With the use of a
 "callback" RPC from server to client, a server recalls delegated
 responsibilities when another client engages in sharing of a delegated
 file.

 A delegation is passed from the server to the client, specifying the
 object of the delegation and the type of delegation. There are
 different types of delegations, but each type contains a stateid to be
 used to represent the delegation when performing operations that
 depend on the delegation. This stateid is similar to those associated
 with locks and share reservations but differs in that the stateid for
 a delegation is associated with a client ID and may be used on behalf
 of all the open-owners for the given client. A delegation is made
 to the client as a whole and not to any specific process or thread of
 control within it.

 The backchannel is established by CREATE_SESSION and
 BIND_CONN_TO_SESSION, and the client is required
 to maintain it. Because the backchannel may be down, even
 temporarily,
 correct protocol operation does not depend on
 them. Preliminary testing of backchannel functionality by means of a
 CB_COMPOUND procedure with a single operation, CB_SEQUENCE,
 can be used to check the continuity of the backchannel. A
 server avoids delegating responsibilities until it has
 determined that the backchannel exists. Because the granting of a
 delegation is always conditional upon the absence of conflicting
 access, clients MUST NOT assume that a delegation will be granted and
 they MUST always be prepared for OPENs, WANT_DELEGATIONs, and
 GET_DIR_DELEGATIONs to be processed without any
 delegations being granted.

 Unlike locks, an operation by a second client to a delegated file will
 cause the server to recall a delegation through a callback. For
 individual operations, we will describe, under IMPLEMENTATION, when
 such operations are required to effect a recall. A number of
 points should be noted, however.

 The server is free to recall a delegation
 whenever it feels it is desirable and may do so even if no
 operations requiring recall are being done.

 Operations done outside the NFSv4.1 protocol, due to, for
 example, access by other protocols, or by local access,
 also need to result in delegation recall when they make
 analogous changes to file system data. What is crucial
 is if the change would invalidate the guarantees provided
 by the delegation. When this is possible, the
 delegation needs to be recalled and MUST be returned or
 revoked before allowing the operation to proceed.

 The semantics of the file system are crucial in defining
 when delegation recall is required. If a particular change
 within a specific implementation causes change to a
 file attribute, then delegation recall is required, whether
 that operation has been specifically listed as requiring
 delegation recall. Again, what is critical is whether the
 guarantees provided by the delegation are being invalidated.

 Despite those caveats, the implementation sections for a number
 of operations describe situations in which delegation recall
 would be required under some common circumstances:

 For GETATTR, see .

 For OPEN, see .

 For READ, see .

 For REMOVE, see .

 For RENAME, see .

 For SETATTR, see .

 For WRITE, see .

 On recall, the client holding the delegation needs to flush modified
 state (such as modified data) to the server and return the
 delegation. The conflicting request will not be acted on until
 the recall is complete. The recall is considered complete when
 the client returns the delegation or the server times its wait
 for the delegation to be returned and revokes the delegation as
 a result of the timeout. In the interim, the server will either
 delay responding to conflicting requests or respond to them with
 NFS4ERR_DELAY. Following the resolution of the recall, the
 server has the information necessary to grant or deny the second
 client's request.

 At the time the client receives a delegation recall, it may have
 substantial state that needs to be flushed to the server. Therefore,
 the server should allow sufficient time for the delegation to be
 returned since it may involve numerous RPCs to the server. If the
 server is able to determine that the client is diligently flushing
 state to the server as a result of the recall, the server may extend
 the usual time allowed for a recall. However, the time allowed for
 recall completion should not be unbounded.

 An example of this is when responsibility to mediate opens on a given
 file is delegated to a client (see).
 The server will not know what opens are in effect on the client.
 Without this knowledge, the server will be unable to determine if the
 access and deny states for the file allow any particular open until
 the delegation for the file has been returned.

 A client failure or a network partition can result in failure to
 respond to a recall callback. In this case, the server will revoke the
 delegation, which in turn will render useless any modified state still
 on the client.

 Delegation Recovery

 There are three situations that delegation recovery needs to deal with:

 client restart

 server restart

 network partition (full or backchannel-only)

 In the event the client restarts, the failure to renew
 the lease will result in the revocation of byte-range locks and share
 reservations. Delegations, however, may be treated a bit differently.

 There will be situations in which delegations will need to be
 re-established after a client restarts. The reason for this
 is that the client may have file data stored locally and this data was
 associated with the previously held delegations. The client will need
 to re-establish the appropriate file state on the server.

 To allow for this type of client recovery, the server MAY extend the
 period for delegation recovery beyond the typical lease expiration
 period. This implies that requests from other clients that conflict
 with these delegations will need to wait. Because the normal recall
 process may require significant time for the client to flush changed
 state to the server, other clients need be prepared for delays that
 occur because of a conflicting delegation. This longer interval would
 increase the window for clients to restart and consult stable storage
 so that the delegations can be reclaimed. For OPEN delegations, such
 delegations are reclaimed using OPEN with a claim type of
 CLAIM_DELEGATE_PREV or CLAIM_DELEG_PREV_FH (see Sections

 and for discussion of OPEN delegation
 and the details of OPEN, respectively).

 A server MAY support claim types of CLAIM_DELEGATE_PREV and
 CLAIM_DELEG_PREV_FH, and if it
 does, it MUST NOT remove delegations upon a CREATE_SESSION that
 confirm a client ID created by EXCHANGE_ID.
 Instead, the server MUST, for a period of time no less than that of the value of
 the lease_time attribute, maintain the client's delegations to allow
 time for the client to send CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH requests. The server
 that supports CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH MUST support the DELEGPURGE
 operation.

 When the server restarts, delegations are reclaimed (using
 the OPEN operation with CLAIM_PREVIOUS) in a similar fashion to byte-range
 locks and share reservations. However, there is a slight semantic
 difference. In the normal case, if the server decides that a
 delegation should not be granted, it performs the requested action
 (e.g., OPEN) without granting any delegation. For reclaim, the server
 grants the delegation but a special designation is applied so that the
 client treats the delegation as having been granted but recalled by
 the server. Because of this, the client has the duty to write all
 modified state to the server and then return the delegation. This
 process of handling delegation reclaim reconciles three principles of
 the NFSv4.1 protocol:

 Upon reclaim, a client reporting resources assigned to it by an
 earlier server instance must be granted those resources.

 The server has unquestionable authority to determine whether
 delegations are to be granted and, once granted, whether they are to
 be continued.

 The use of callbacks should not be depended upon until the client has
 proven its ability to receive them.

 When a client needs to reclaim a delegation and there is no associated
 open, the client may use the CLAIM_PREVIOUS variant of the
 WANT_DELEGATION operation. However, since the server is not required
 to support this operation, an alternative is to reclaim via a dummy OPEN
 together with the delegation
 using an OPEN of type CLAIM_PREVIOUS. The dummy open file can
 be released using a CLOSE to re-establish the original state to be
 reclaimed, a delegation without an associated open.

 When a client has more than a single open associated with a delegation,
 state for those additional opens can be established using OPEN
 operations of type CLAIM_DELEGATE_CUR. When these are used to
 establish opens associated with reclaimed delegations, the
 server MUST allow them when made within the grace period.

 When a network partition occurs, delegations are subject to freeing by
 the server when the lease renewal period expires. This is similar to
 the behavior for locks and share reservations. For delegations,
 however, the server may extend the period in which conflicting
 requests are held off. Eventually, the occurrence of a conflicting
 request from another client will cause revocation of the delegation.
 A loss of the backchannel (e.g., by later network configuration
 change) will have the same effect. A recall request will fail and
 revocation of the delegation will result.

 A client normally finds out about revocation of a delegation when it
 uses a stateid associated with a delegation and receives one of the
 errors NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or NFS4ERR_DELEG_REVOKED.
 It also may find out about delegation revocation
 after a client restart when it attempts to reclaim a delegation and
 receives that same error. Note that in the case of a revoked OPEN_DELEGATE_WRITE delegation, there are issues because data may have been modified
 by the client whose delegation is revoked and separately by other
 clients. See
 for a discussion of such issues. Note also that when
 delegations are revoked, information about the revoked delegation will
 be written by the server to stable storage (as described in
). This is done
 to deal with the case in
 which a server restarts after revoking a delegation but before the
 client holding the revoked delegation is notified about the
 revocation.

 Data Caching

 When applications share access to a set of files, they need to be
 implemented so as to take account of the possibility of conflicting
 access by another application. This is true whether the applications
 in question execute on different clients or reside on the same client.

 Share reservations and byte-range locks are the facilities the NFSv4.1 protocol
 provides to allow applications to coordinate access by
 using mutual exclusion facilities. The NFSv4.1 protocol's
 data caching must be implemented such that it does not invalidate the
 assumptions on which those using these facilities depend.

 Data Caching and OPENs

 In order to avoid invalidating the sharing assumptions on which
 applications rely, NFSv4.1 clients should not provide cached
 data to applications or modify it on behalf of an application when it
 would not be valid to obtain or modify that same data via a READ or
 WRITE operation.

 Furthermore, in the absence of an OPEN delegation
 (see),
 two additional rules apply. Note that these rules are
 obeyed in practice by many NFSv3 clients.

 First, cached data present on a client must be revalidated after doing
 an OPEN. Revalidating means that the client fetches the change
 attribute from the server, compares it with the cached change
 attribute, and if different, declares the cached data (as well as the
 cached attributes) as invalid. This is to ensure that the data for
 the OPENed file is still correctly reflected in the client's cache.
 This validation must be done at least when the client's OPEN operation
 includes a deny of OPEN4_SHARE_DENY_WRITE or
 OPEN4_SHARE_DENY_BOTH, thus terminating a period in which
 other
 clients may have had the opportunity to open the file with
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH
 access. Clients may choose to do the revalidation more often (i.e., at
 OPENs specifying a deny mode of OPEN4_SHARE_DENY_NONE) to parallel the NFSv3 protocol's
 practice for the benefit of users assuming this degree of cache
 revalidation.

 Since the change attribute is updated for data and metadata
 modifications, some client implementors may be tempted to use the
 time_modify attribute and not the change attribute to validate cached data, so that
 metadata changes do not spuriously invalidate clean data. The
 implementor is cautioned in this approach. The change attribute is
 guaranteed to change for each update to the file, whereas time_modify
 is guaranteed to change only at the granularity of the time_delta
 attribute. Use by the client's data cache validation logic of
 time_modify and not change runs the risk of the client incorrectly
 marking stale data as valid. Thus, any cache validation approach
 by the client MUST include the use of the change attribute.

 Second, modified data must be flushed to the server before closing a
 file OPENed for OPEN4_SHARE_ACCESS_WRITE. This is complementary to the first rule. If
 the data is not flushed at CLOSE, the revalidation done
 after the client OPENs a file is unable to achieve its
 purpose. The other aspect to flushing the data before
 close is that the data must be committed to stable
 storage, at the server, before the CLOSE operation is
 requested by the client. In the case of a server restart and a CLOSEd
 file, it may not be possible to retransmit the data to be written to
 the file, hence, this requirement.

 Data Caching and File Locking

 For those applications that choose to use byte-range locking instead of
 share reservations to exclude inconsistent file access, there is an
 analogous set of constraints that apply to client-side data caching.
 These rules are effective only if the byte-range locking is used in a way
 that matches in an equivalent way the actual READ and WRITE operations
 executed. This is as opposed to byte-range locking that is based on pure
 convention. For example, it is possible to manipulate a two-megabyte
 file by dividing the file into two one-megabyte ranges and protecting
 access to the two byte-ranges by byte-range locks on bytes zero and one. A WRITE_LT lock on
 byte zero of the file would represent the right to perform
 READ and WRITE operations on the first byte-range. A WRITE_LT lock on
 byte one of the file would represent the right to perform READ and WRITE
 operations on the second byte-range. As long as all applications
 manipulating the file obey this convention, they will work on a local
 file system. However, they may not work with the NFSv4.1
 protocol unless clients refrain from data caching.

 The rules for data caching in the byte-range locking environment are:

 First, when a client obtains a byte-range lock for a particular byte-range, the
 data cache corresponding to that byte-range (if any cache data exists)
 must be revalidated. If the change attribute indicates that the file
 may have been updated since the cached data was obtained, the client
 must flush or invalidate the cached data for the newly locked byte-range.
 A client might choose to invalidate all of the non-modified cached data
 that it has for the file, but the only requirement for correct
 operation is to invalidate all of the data in the newly locked byte-range.

 Second, before releasing a WRITE_LT lock for a byte-range, all modified data
 for that byte-range must be flushed to the server. The modified data must
 also be written to stable storage.

 Note that flushing data to the server and the invalidation of cached
 data must reflect the actual byte-ranges locked or unlocked. Rounding
 these up or down to reflect client cache block boundaries will cause
 problems if not carefully done. For example, writing a modified block
 when only half of that block is within an area being unlocked may
 cause invalid modification to the byte-range outside the unlocked area.
 This, in turn, may be part of a byte-range locked by another client.
 Clients can avoid this situation by synchronously performing portions
 of WRITE operations that overlap that portion (initial or final) that
 is not a full block. Similarly, invalidating a locked area that is
 not an integral number of full buffer blocks would require the client
 to read one or two partial blocks from the server if the revalidation
 procedure shows that the data that the client possesses may not be
 valid.

 The data that is written to the server as a prerequisite to the
 unlocking of a byte-range must be written, at the server, to stable
 storage. The client may accomplish this either with synchronous
 writes or by following asynchronous writes with a COMMIT operation.
 This is required because retransmission of the modified data after a
 server restart might conflict with a lock held by another client.

 A client implementation may choose to accommodate applications that
 use byte-range locking in non-standard ways (e.g., using a byte-range lock as a
 global semaphore) by flushing to the server more data upon a LOCKU
 than is covered by the locked range. This may include modified data
 within files other than the one for which the unlocks are being done.
 In such cases, the client must not interfere with applications whose
 READs and WRITEs are being done only within the bounds of byte-range locks
 that the application holds. For example, an application locks a
 single byte of a file and proceeds to write that single byte. A
 client that chose to handle a LOCKU by flushing all modified data to
 the server could validly write that single byte in response to an
 unrelated LOCKU operation. However, it would not be valid to write the entire
 block in which that single written byte was located since it includes
 an area that is not locked and might be locked by another client.
 Client implementations can avoid this problem by dividing files with
 modified data into those for which all modifications are done to areas
 covered by an appropriate byte-range lock and those for which there are
 modifications not covered by a byte-range lock. Any writes done for the
 former class of files must not include areas not locked and thus not
 modified on the client.

 Data Caching and Mandatory File Locking

 Client-side data caching needs to respect mandatory byte-range locking when
 it is in effect. The presence of mandatory byte-range locking for a given
 file is indicated when the client gets back NFS4ERR_LOCKED from a READ
 or WRITE operation on a file for which it has an appropriate share reservation. When
 mandatory locking is in effect for a file, the client must check for
 an appropriate byte-range lock for data being read or written. If a byte-range lock
 exists for the range being read or written, the client may satisfy the
 request using the client's validated cache. If an appropriate
 byte-range lock is not held for the range of the read or write, the read or write
 request must not be satisfied by the client's cache and the request
 must be sent to the server for processing. When a read or write
 request partially overlaps a locked byte-range, the request should be
 subdivided into multiple pieces with each byte-range (locked or not)
 treated appropriately.

 Data Caching and File Identity

 When clients cache data, the file data needs to be organized according
 to the file system object to which the data belongs. For NFSv3
 clients, the typical practice has been to assume for the purpose of
 caching that distinct filehandles represent distinct file system
 objects. The client then has the choice to organize and maintain the
 data cache on this basis.

 In the NFSv4.1 protocol, there is now the possibility to have
 significant deviations from a "one filehandle per object" model
 because a filehandle may be constructed on the basis of the object's
 pathname. Therefore, clients need a reliable method to determine if
 two filehandles designate the same file system object. If clients
 were simply to assume that all distinct filehandles denote distinct
 objects and proceed to do data caching on this basis, caching
 inconsistencies would arise between the distinct client-side objects
 that mapped to the same server-side object.

 By providing a method to differentiate filehandles, the NFSv4.1
 protocol alleviates a potential functional regression in comparison
 with the NFSv3 protocol. Without this method, caching
 inconsistencies within the same client could occur, and this has not
 been present in previous versions of the NFS protocol. Note that it
 is possible to have such inconsistencies with applications executing
 on multiple clients, but that is not the issue being addressed here.

 For the purposes of data caching, the following steps allow an
 NFSv4.1 client to determine whether two distinct filehandles denote
 the same server-side object:

 If GETATTR directed to two filehandles returns different values of the
 fsid attribute, then the filehandles represent distinct objects.

 If GETATTR for any file with an fsid that matches the fsid of the two
 filehandles in question returns a unique_handles attribute with a
 value of TRUE, then the two objects are distinct.

 If GETATTR directed to the two filehandles does not return the fileid
 attribute for both of the handles, then it cannot be determined
 whether the two objects are the same. Therefore,
 operations that depend on that knowledge (e.g.,
 client-side data caching) cannot be
 done reliably. Note that if GETATTR does not return the fileid
	 attribute for both filehandles, it will return it for neither of
	 the filehandles, since the fsid for both filehandles is the same.

 If GETATTR directed to the two filehandles returns different values
 for the fileid attribute, then they are distinct objects.

 Otherwise, they are the same object.

 Open Delegation

 When a file is being OPENed, the server may delegate further handling
 of opens and closes for that file to the opening client. Any such
 delegation is recallable since the circumstances that allowed for the
 delegation are subject to change. In particular, if the server
 receives a conflicting OPEN from another client, the server must recall
 the delegation before deciding whether the OPEN from the other client
 may be granted. Making a delegation is up to the server, and clients
 should not assume that any particular OPEN either will or will not
 result in an OPEN delegation. The following is a typical set of
 conditions that servers might use in deciding whether an OPEN should be
 delegated:

 The client must be able to respond to the
 server's callback requests. If a backchannel
 has been established, the server will send
 a CB_COMPOUND request, containing a single
 operation, CB_SEQUENCE, for a test of backchannel
 availability.

 The client must have responded properly to previous recalls.

 There must be no current OPEN conflicting with the requested
 delegation.

 There should be no current delegation that conflicts with the
 delegation being requested.

 The probability of future conflicting open requests should be
 low based on the recent history of the file.

 The existence of any server-specific semantics of OPEN/CLOSE
 that would make the required handling incompatible with the
 prescribed handling that the delegated client would apply
 (see below).

 There are two types of OPEN delegations: OPEN_DELEGATE_READ and OPEN_DELEGATE_WRITE. An OPEN_DELEGATE_READ
 delegation allows a client to handle, on its own, requests to open a
 file for reading that do not deny OPEN4_SHARE_ACCESS_READ access to others. Multiple
 OPEN_DELEGATE_READ delegations may be outstanding simultaneously and do not
 conflict. An OPEN_DELEGATE_WRITE delegation allows the client to handle, on its
 own, all opens. Only one OPEN_DELEGATE_WRITE delegation may exist for a given
 file at a given time, and it is inconsistent with any OPEN_DELEGATE_READ delegations.

 When a client has an OPEN_DELEGATE_READ delegation, it is assured that
 neither the contents, the attributes (with the exception of
 time_access), nor the names of any
 links to the file will change without its knowledge, so long as the
 delegation is held. When a client has an OPEN_DELEGATE_WRITE delegation, it
 may modify the file data locally since no other client will be
 accessing the file's data. The client holding an OPEN_DELEGATE_WRITE delegation
 may only locally affect file attributes that are intimately
 connected with the file data: size, change, time_access,
 time_metadata, and time_modify.
 All other attributes must be reflected on the server.

 When a client has an OPEN delegation, it does not need to send OPENs or
 CLOSEs to the server. Instead, the client may update the
 appropriate status internally. For an OPEN_DELEGATE_READ delegation, opens
 that cannot be handled locally (opens that are for OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH or that
 deny OPEN4_SHARE_ACCESS_READ access) must be sent to the server.

 When an OPEN delegation is made, the reply to the OPEN contains an
 OPEN delegation structure that specifies the following:

 the type of delegation (OPEN_DELEGATE_READ or OPEN_DELEGATE_WRITE).

 space limitation information to control flushing of data on close
 (OPEN_DELEGATE_WRITE delegation only;
 see)

 an nfsace4 specifying read and write permissions

 a stateid to represent the delegation

 The delegation stateid is separate and distinct from the stateid for
 the OPEN proper. The standard stateid, unlike the delegation stateid,
 is associated with a particular lock-owner and will continue to be
 valid after the delegation is recalled and the file remains open.

 When a request internal to the client is made to open a file and an OPEN
 delegation is in effect, it will be accepted or rejected solely on the
 basis of the following conditions. Any requirement for other checks
 to be made by the delegate should result in the OPEN delegation being
 denied so that the checks can be made by the server itself.

 The access and deny bits for the request and the file as
 described in .

 The read and write permissions as determined below.

 The nfsace4 passed with delegation can be used to avoid frequent
 ACCESS calls. The permission check should be as follows:

 If the nfsace4 indicates that the open may be done, then it should be
 granted without reference to the server.

 If the nfsace4 indicates that the open may not be done, then an ACCESS
 request must be sent to the server to obtain the definitive answer.

 The server may return an nfsace4 that is more restrictive than the
 actual ACL of the file. This includes an nfsace4 that specifies
 denial of all access. Note that some common practices such as mapping
 the traditional user "root" to the user "nobody" (see) may make it incorrect
 to return the actual ACL of the file in the delegation response.

 The use of a delegation together with various other forms of caching
 creates the possibility that no server authentication and authorization
 will ever be
 performed for a given user since all of the user's requests might be
 satisfied locally. Where the client is depending on the server for
 authentication and authorization, the client should be sure authentication and authorization occurs for
 each user by use of the ACCESS operation. This should be the case
 even if an ACCESS operation would not be required otherwise. As
 mentioned before, the server may enforce frequent authentication by
 returning an nfsace4 denying all access with every OPEN delegation.

 Open Delegation and Data Caching

 An OPEN delegation allows much of the message overhead associated with
 the opening and closing files to be eliminated. An open when an OPEN
 delegation is in effect does not require that a validation
 message be sent to the server. The continued endurance of the
 "OPEN_DELEGATE_READ delegation" provides a guarantee that no OPEN
 for OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, and thus
 no write, has occurred. Similarly, when closing a file opened
 for OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH and if an OPEN_DELEGATE_WRITE delegation is in effect,
 the data written does not have to be written to the server until
 the OPEN delegation is recalled. The continued endurance of
 the OPEN delegation provides a
 guarantee that no open, and thus no READ or WRITE, has been done by
 another client.

 For the purposes of OPEN delegation, READs and WRITEs done without an
 OPEN are treated as the functional equivalents of a corresponding type
 of OPEN. Although a client SHOULD NOT use special stateids when
 an open exists, delegation handling on the server can use the
 client ID associated with the current session to determine if the
 operation has been done by the holder of the delegation (in which
 case, no recall is necessary) or by another client (in which case,
 the delegation must be recalled and I/O not proceed until the
 delegation is returned or revoked).

 With delegations, a client is able to avoid writing data to the server
 when the CLOSE of a file is serviced. The file close system call is
 the usual point at which the client is notified of a lack of stable
 storage for the modified file data generated by the application. At
 the close, file data is written to the server and, through normal
 accounting, the server is able to determine if the available file system
 space for the data has been exceeded (i.e., the server returns
 NFS4ERR_NOSPC or NFS4ERR_DQUOT). This accounting includes quotas.
 The introduction of delegations requires that an alternative method be
 in place for the same type of communication to occur between client
 and server.

 In the delegation response, the server provides either the limit of
 the size of the file or the number of modified blocks and associated
 block size. The server must ensure that the client will be able to
 write modified data to the server of a size equal to that provided in the
 original delegation. The server must make this assurance for all
 outstanding delegations. Therefore, the server must be careful in its
 management of available space for new or modified data, taking into
 account available file system space and any applicable quotas. The
 server can recall delegations as a result of managing the available
 file system space. The client should abide by the server's state
 space limits for delegations. If the client exceeds the stated limits
 for the delegation, the server's behavior is undefined.

 Based on server conditions, quotas, or available file system space, the
 server may grant OPEN_DELEGATE_WRITE delegations with very restrictive space
 limitations. The limitations may be defined in a way that will always
 force modified data to be flushed to the server on close.

 With respect to authentication, flushing modified data to the server
 after a CLOSE has occurred may be problematic. For example, the user
 of the application may have logged off the client, and unexpired
 authentication credentials may not be present. In this case, the
 client may need to take special care to ensure that local unexpired
 credentials will in fact be available. This may be accomplished by
 tracking the expiration time of credentials and flushing data well in
 advance of their expiration or by making private copies of credentials
 to assure their availability when needed.

 Open Delegation and File Locks

 When a client holds an OPEN_DELEGATE_WRITE delegation, lock operations are
 performed locally. This includes those required for mandatory byte-range
 locking. This can be done since the delegation implies that there can
 be no conflicting locks. Similarly, all of the revalidations that
 would normally be associated with obtaining locks and the flushing of
 data associated with the releasing of locks need not be done.

 When a client holds an OPEN_DELEGATE_READ delegation, lock operations are not
 performed locally. All lock operations, including those requesting
 non-exclusive locks, are sent to the server for resolution.

 Handling of CB_GETATTR

 The server needs to employ special handling for a GETATTR where the
 target is a file that has an OPEN_DELEGATE_WRITE delegation in effect. The
 reason for this is that the client holding the OPEN_DELEGATE_WRITE delegation may
 have modified the data, and the server needs to reflect this change to
 the second client that submitted the GETATTR. Therefore, the client
 holding the OPEN_DELEGATE_WRITE delegation needs to be interrogated. The server
 will use the CB_GETATTR operation. The only attributes that the
 server can reliably query via CB_GETATTR are size and change.

 Since CB_GETATTR is being used to satisfy another client's GETATTR
 request, the server only needs to know if the client holding the
 delegation has a modified version of the file. If the client's copy
 of the delegated file is not modified (data or size), the server can
 satisfy the second client's GETATTR request from the attributes stored
 locally at the server. If the file is modified, the server only needs
 to know about this modified state. If the server determines that the
 file is currently modified, it will respond to the second client's
 GETATTR as if the file had been modified locally at the server.

 Since the form of the change attribute is determined by the server and
 is opaque to the client, the client and server need to agree on a
 method of communicating the modified state of the file. For the size
 attribute, the client will report its current view of the file size.
 For the change attribute, the handling is more involved.

 For the client, the following steps will be taken when receiving an
 OPEN_DELEGATE_WRITE delegation:

 The value of the change attribute will be obtained from the server and
 cached. Let this value be represented by c.

 The client will create a value greater than c that will be used for
 communicating that modified data is held at the client. Let this value be
 represented by d.

 When the client is queried via CB_GETATTR for the change attribute, it
 checks to see if it holds modified data. If the file is modified, the
 value d is returned for the change attribute value. If this file is
 not currently modified, the client returns the value c for the change
 attribute.

 For simplicity of implementation, the client MAY for each CB_GETATTR
 return the same value d. This is true even if, between successive
 CB_GETATTR operations, the client again modifies the file's data or
 metadata in its cache. The client can return the same value because
 the only requirement is that the client be able to indicate to the
 server that the client holds modified data. Therefore, the value of d
 may always be c + 1.

 While the change attribute is opaque to the client in the sense that
 it has no idea what units of time, if any, the server is counting
 change with, it is not opaque in that the client has to treat it as an
 unsigned integer, and the server has to be able to see the results of
 the client's changes to that integer. Therefore, the server MUST
 encode the change attribute in network order when sending it to the
 client. The client MUST decode it from network order to its native
 order when receiving it, and the client MUST encode it in network order
 when sending it to the server. For this reason, change is defined as
 an unsigned integer rather than an opaque array of bytes.

 For the server, the following steps will be taken when providing an
 OPEN_DELEGATE_WRITE delegation:

 Upon providing an OPEN_DELEGATE_WRITE delegation, the server will cache a copy of the
 change attribute in the data structure it uses to record the
 delegation. Let this value be represented by sc.

 When a second client sends a GETATTR operation on the same file to the
 server, the server obtains the change attribute from the first client.
 Let this value be cc.

 If the value cc is equal to sc, the file is not modified and the
 server returns the current values for change, time_metadata, and
 time_modify (for example) to the second client.

 If the value cc is NOT equal to sc, the file is currently modified at
 the first client and most likely will be modified at the server at a
 future time. The server then uses its current time to construct
 attribute values for time_metadata and time_modify. A new value of
 sc, which we will call nsc, is computed by the server, such that nsc
 >= sc + 1. The server then returns the constructed time_metadata,
 time_modify, and nsc values to the requester. The server replaces sc
 in the delegation record with nsc. To prevent the possibility of
 time_modify, time_metadata, and change from appearing to go backward
 (which would happen if the client holding the delegation fails to
 write its modified data to the server before the delegation is revoked
 or returned), the server SHOULD update the file's metadata record with
 the constructed attribute values. For reasons of reasonable
 performance, committing the constructed attribute values to stable
 storage is OPTIONAL.

 As discussed earlier in this section, the client MAY return the same
 cc value on subsequent CB_GETATTR calls, even if the file was modified
 in the client's cache yet again between successive CB_GETATTR calls.
 Therefore, the server must assume that the file has been modified yet
 again, and MUST take care to ensure that the new nsc it constructs and
 returns is greater than the previous nsc it returned. An example
 implementation's delegation record would satisfy this mandate by
 including a boolean field (let us call it "modified") that is set to
 FALSE when the delegation is granted, and an sc value set at the time
 of grant to the change attribute value. The modified field would be
 set to TRUE the first time cc != sc, and would stay TRUE until the
 delegation is returned or revoked. The processing for constructing
 nsc, time_modify, and time_metadata would use this pseudo code:

 if (!modified) {
 do CB_GETATTR for change and size;

 if (cc != sc)
 modified = TRUE;
 } else {
 do CB_GETATTR for size;
 }

 if (modified) {
 sc = sc + 1;
 time_modify = time_metadata = current_time;
 update sc, time_modify, time_metadata into file's metadata;
 }

	 This would return to the client (that sent GETATTR) the attributes
 it requested, but make sure size comes from what
 CB_GETATTR returned. The server would not update the file's
 metadata with the client's modified size.

 In the case that the file attribute size is different than the
 server's current value, the server treats this as a modification
 regardless of the value of the change attribute retrieved via
 CB_GETATTR and responds to the second client as in the last step.

 This methodology resolves issues of clock differences between client
 and server and other scenarios where the use of CB_GETATTR break down.

 It should be noted that the server is under no obligation to use
 CB_GETATTR, and therefore the server MAY simply recall the delegation
 to avoid its use.

 Recall of Open Delegation

 The following events necessitate recall of an OPEN delegation:

 potentially conflicting OPEN request (or a READ or WRITE operation
 done with a special stateid)

 SETATTR sent by another client

 REMOVE request for the file

 RENAME request for the file as either the source or target of the RENAME

 Whether a RENAME of a directory in the path leading to the file
 results in recall of an OPEN delegation depends on the semantics of
 the server's file system. If that file system denies such RENAMEs when
 a file is open, the recall must be performed to determine whether the
 file in question is, in fact, open.

 In addition to the situations above, the server may choose to recall
 OPEN delegations at any time if resource constraints make it advisable
 to do so. Clients should always be prepared for the possibility of
 recall.

 When a client receives a recall for an OPEN delegation, it needs
 to update state on the server before returning the delegation.
 These same updates must be done whenever a client chooses to
 return a delegation voluntarily. The following items of state
 need to be dealt with:

 If the file associated with the delegation is no longer open and no
 previous CLOSE operation has been sent to the server, a CLOSE
 operation must be sent to the server.

 If a file has other open references at the client, then OPEN
 operations must be sent to the server. The appropriate stateids will
 be provided by the server for subsequent use by the client since the
 delegation stateid will no longer be valid. These OPEN requests are
 done with the claim type of CLAIM_DELEGATE_CUR. This will allow the
 presentation of the delegation stateid so that the client can
 establish the appropriate rights to perform the OPEN. (See
 , which describes the OPEN operation,
 for details.)

 If there are granted byte-range locks, the corresponding LOCK operations
 need to be performed. This applies to the OPEN_DELEGATE_WRITE delegation case
 only.

 For an OPEN_DELEGATE_WRITE delegation, if
 at the time of recall the file is not open for
 OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, all modified
 data for the file must be flushed to the
 server. If the delegation had not existed, the client would have done
 this data flush before the CLOSE operation.

 For an OPEN_DELEGATE_WRITE delegation when a file is still open at the time of
 recall, any modified data for the file needs to be flushed to the
 server.

 With the OPEN_DELEGATE_WRITE delegation in place, it is possible that the file
 was truncated during the duration of the delegation. For example, the
 truncation could have occurred as a result of an OPEN UNCHECKED with a
 size attribute value of zero. Therefore, if a truncation of
 the file has occurred and this operation has not been propagated to
 the server, the truncation must occur before any modified data is
 written to the server.

 In the case of OPEN_DELEGATE_WRITE delegation, byte-range locking imposes some
 additional requirements. To precisely maintain the associated
 invariant, it is required to flush any modified data in any byte-range for
 which a WRITE_LT lock was released while the OPEN_DELEGATE_WRITE delegation was in
 effect. However, because the OPEN_DELEGATE_WRITE delegation implies no other
 locking by other clients, a simpler implementation is to flush all
 modified data for the file (as described just above) if any WRITE_LT lock
 has been released while the OPEN_DELEGATE_WRITE delegation was in effect.

 An implementation need not wait until delegation recall (or
 the decision to voluntarily return a delegation) to perform any of the above
 actions, if implementation considerations (e.g., resource availability
 constraints) make that desirable. Generally, however, the fact that
 the actual OPEN state of the file may continue to change makes it not
 worthwhile to send information about opens and closes to the server,
 except as part of delegation return. An exception is
 when the client has no more internal opens of the file. In this
 case, sending a CLOSE is useful because it
 reduces resource utilization on the client
 and server.

Regardless of the client's choices on scheduling these
 actions, all must be performed before the delegation is returned,
 including (when applicable) the close that corresponds to the OPEN
 that resulted in the delegation. These actions can be performed
 either in previous requests or in previous operations in the same
 COMPOUND request.

 Clients That Fail to Honor Delegation Recalls

 A client may fail to respond to a recall for various reasons, such as
 a failure of the backchannel from server to the client. The client
 may be unaware of a failure in the backchannel. This lack of
 awareness could result in the client finding out long after the
 failure that its delegation has been revoked, and another client has
 modified the data for which the client had a delegation. This is
 especially a problem for the client that held an OPEN_DELEGATE_WRITE delegation.

 Status bits returned by SEQUENCE operations help to provide an
 alternate way of informing the client of issues regarding the
 status of the backchannel and of recalled delegations. When the
 backchannel is not available, the server returns the status bit
 SEQ4_STATUS_CB_PATH_DOWN on SEQUENCE operations. The client can
 react by attempting to re-establish the backchannel and by
 returning recallable objects if a backchannel cannot be successfully
 re-established.

 Whether the backchannel is functioning or not, it may be that the
 recalled delegation is not returned. Note that the client's lease
 might still be renewed, even though the recalled delegation is not
 returned. In this situation, servers SHOULD revoke delegations that
 are not returned in a period of time equal to the lease period. This
 period of time should allow the client time to note the
 backchannel-down status and re-establish the backchannel.

 When delegations are revoked, the server will return with the
 SEQ4_STATUS_RECALLABLE_STATE_REVOKED status bit set on subsequent
 SEQUENCE operations. The client should note this and then use
 TEST_STATEID to find which delegations have been revoked.

 Delegation Revocation

 At the point a delegation is revoked, if there are associated opens
 on the client, these opens may or may not be revoked. If no
 byte-range lock or open is granted that is inconsistent with the existing open,
 the stateid for the open may remain valid and be disconnected
 from the revoked delegation, just as would be the case if the
 delegation were returned.

 For example, if an OPEN for OPEN4_SHARE_ACCESS_BOTH with a deny of OPEN4_SHARE_DENY_NONE is
 associated with the delegation, granting of another such OPEN
 to a different client will revoke the delegation but need not
 revoke the OPEN, since the two OPENs are consistent with each other.
 On the other hand, if an OPEN denying write access is
 granted, then the existing OPEN must be revoked.

 When opens and/or locks are revoked,
 the applications holding these opens or locks need to be notified.
 This notification usually occurs by returning errors for READ/WRITE
 operations or when a close is attempted for the open file.

 If no opens exist for the file at the point the delegation is revoked,
 then notification of the revocation is unnecessary. However, if there
 is modified data present at the client for the file, the user of the
 application should be notified. Unfortunately, it may not be possible
 to notify the user since active applications may not be present at the
 client. See
 for additional details.

 Delegations via WANT_DELEGATION

 In addition to providing delegations as part of the reply
 to OPEN operations, servers MAY provide delegations
 separate from open, via the OPTIONAL WANT_DELEGATION operation. This
 allows delegations to be obtained in advance of an OPEN that
 might benefit from them, for objects that are not a valid target
 of OPEN, or to deal with cases in which a
 delegation has been recalled and the client wants to make
 an attempt to re-establish it if the absence of use by other
 clients allows that.

 The WANT_DELEGATION operation may be performed on any type of
 file object other than a directory.

 When a delegation is obtained using WANT_DELEGATION, any open
 files for the same filehandle held by that client are to be
 treated as subordinate to the delegation, just as if they had
 been created using an OPEN of type CLAIM_DELEGATE_CUR. They are
 otherwise unchanged as to seqid, access and deny modes, and the
 relationship with byte-range locks. Similarly, because
 existing byte-range
 locks are subordinate to an open, those byte-range locks also become
 indirectly subordinate to that new delegation.

 The WANT_DELEGATION operation provides for delivery of delegations
 via callbacks, when the delegations are not immediately available.
 When a requested delegation is available, it is delivered to the
 client via a CB_PUSH_DELEG operation. When this happens, open files
 for the same filehandle become subordinate to the new delegation
 at the point at which the delegation is delivered, just as if they had
 been created using an OPEN of type CLAIM_DELEGATE_CUR.
 Similarly, this occurs for existing byte-range locks subordinate to an open.

 Data Caching and Revocation

 When locks and delegations are revoked, the assumptions upon which
 successful caching depends are no longer guaranteed. For any locks or
 share reservations that have been revoked, the corresponding state-owner
 needs to be notified. This notification includes applications with a
 file open that has a corresponding delegation that has been revoked.
 Cached data associated with the revocation must be removed from the
 client. In the case of modified data existing in the client's cache,
 that data must be removed from the client without being written to
 the server. As mentioned, the assumptions made by the client are no
 longer valid at the point when a lock or delegation has been revoked.
 For example, another client may have been granted a conflicting byte-range lock
 after the revocation of the byte-range lock at the first client. Therefore, the
 data within the lock range may have been modified by the other client.
 Obviously, the first client is unable to guarantee to the application
 what has occurred to the file in the case of revocation.

 Notification to a state-owner will in many cases consist of simply
 returning an error on the next and all subsequent READs/WRITEs to the
 open file or on the close. Where the methods available to a client
 make such notification impossible because errors for certain
 operations may not be returned, more drastic action such as signals or
 process termination may be appropriate. The justification here is
 that an invariant on which an application depends may be violated.
 Depending on how errors are typically treated for the client-operating
 environment, further levels of notification including logging, console
 messages, and GUI pop-ups may be appropriate.

 Revocation Recovery for Write Open Delegation

 Revocation recovery for an OPEN_DELEGATE_WRITE delegation poses the special
 issue of modified data in the client cache while the file is not open.
 In this situation, any client that does not flush modified data to
 the server on each close must ensure that the user receives
 appropriate notification of the failure as a result of the revocation.
 Since such situations may require human action to correct problems,
 notification schemes in which the appropriate user or administrator is
 notified may be necessary. Logging and console messages are typical
 examples.

 If there is modified data on the client, it must not be flushed
 normally to the server. A client may attempt to provide a copy of the
 file data as modified during the delegation under a different name in
 the file system namespace to ease recovery. Note that when the
 client can determine that the file has not been modified by any other
 client, or when the client has a complete cached copy of the file in
 question, such a saved copy of the client's view of the file may be of
 particular value for recovery. In another case, recovery using a copy
 of the file based partially on the client's cached data and partially
 on the server's copy as modified by other clients will be anything but
 straightforward, so clients may avoid saving file contents in these
 situations or specially mark the results to warn users of possible
 problems.

 Saving of such modified data in delegation revocation situations
 may be limited to files of a certain size or might be used only when
 sufficient disk space is available within the target file system.
 Such saving may also be restricted to situations when the client has
 sufficient buffering resources to keep the cached copy available
 until it is properly stored to the target file system.

 Attribute Caching

 This section pertains to the caching of a file's attributes on a client
 when that client does not hold a delegation on the file.

 The attributes discussed in this section do not include named
 attributes. Individual named attributes are analogous to files, and
 caching of the data for these needs to be handled just as data caching
 is for ordinary files. Similarly, LOOKUP results from an OPENATTR
 directory (as well as the directory's contents) are to be cached on
 the same basis as any other pathnames.

 Clients may cache file attributes obtained from the server and use
 them to avoid subsequent GETATTR requests. Such caching is write
 through in that modification to file attributes is always done by
 means of requests to the server and should not be done locally and
 should not be cached. The exception to this are modifications to attributes that
 are intimately connected with data caching. Therefore, extending a
 file by writing data to the local data cache is reflected immediately
 in the size as seen on the client without this change being
 immediately reflected on the server. Normally, such changes are not
 propagated directly to the server, but when the modified data is
 flushed to the server, analogous attribute changes are made on the
 server. When OPEN delegation is in effect, the modified attributes
 may be returned to the server in reaction to a CB_RECALL call.

 The result of local caching of attributes is that the attribute
 caches maintained on individual clients will not be coherent.
 Changes made in one order on the server may be seen in a different
 order on one client and in a third order on another client.

 The typical file system application programming interfaces do not
 provide means to atomically modify or interrogate attributes for
 multiple files at the same time. The following rules provide an
 environment where the potential incoherencies mentioned above can be
 reasonably managed. These rules are derived from the practice of
 previous NFS protocols.

 All attributes for a given file (per-fsid attributes excepted) are
 cached as a unit at the client so that no non-serializability can
 arise within the context of a single file.

 An upper time boundary is maintained on how long a client cache entry
 can be kept without being refreshed from the server.

 When operations are performed that change attributes at the server,
 the updated attribute set is requested as part of the containing RPC.
 This includes directory operations that update attributes indirectly.
 This is accomplished by following the modifying operation with a
 GETATTR operation and then using the results of the GETATTR to update
 the client's cached attributes.

 Note that if the full set of attributes to be cached is requested by
 READDIR, the results can be cached by the client on the same basis as
 attributes obtained via GETATTR.

 A client may validate its cached version of attributes for a file by
 fetching both the change and time_access attributes and assuming
 that if the change attribute has the same value as it did when the
 attributes were cached, then no attributes other than time_access have
 changed. The reason why time_access is also fetched is because many
 servers operate in environments where the operation that updates
 change does not update time_access. For example, POSIX file semantics
 do not update access time when a file is modified by the write system
 call . Therefore, the client that wants a current time_access value
 should fetch it with change during the attribute cache validation
 processing and update its cached time_access.

 The client may maintain a cache of modified attributes for those
 attributes intimately connected with data of modified regular files
 (size, time_modify, and change). Other than those three attributes,
 the client MUST NOT maintain a cache of modified attributes. Instead,
 attribute changes are immediately sent to the server.

 In some operating environments, the equivalent to time_access is
 expected to be implicitly updated by each read of the content of the
 file object. If an NFS client is caching the content of a file
 object, whether it is a regular file, directory, or symbolic link, the
 client SHOULD NOT update the time_access attribute (via SETATTR or a
 small READ or READDIR request) on the server with each read that is
 satisfied from cache. The reason is that this can defeat the
 performance benefits of caching content, especially since an explicit
 SETATTR of time_access may alter the change attribute on the server.
 If the change attribute changes, clients that are caching the content
 will think the content has changed, and will re-read unmodified data
 from the server. Nor is the client encouraged to maintain a modified
 version of time_access in its cache, since the client either would
 eventually have to write the access time to the server
 with bad performance effects or never update the
 server's time_access, thereby resulting in a situation where an
 application that caches access time between a close and open of
 the same file observes the access time oscillating between the past and
 present. The time_access attribute always means the time of last
 access to a file by a read that was satisfied by the server. This way
 clients will tend to see only time_access changes that go forward in
 time.

 Data and Metadata Caching and Memory Mapped Files

 Some operating environments include the capability for an application
 to map a file's content into the application's address space. Each
 time the application accesses a memory location that corresponds to a
 block that has not been loaded into the address space, a page fault
 occurs and the file is read (or if the block does not exist in the
 file, the block is allocated and then instantiated in the
 application's address space).

 As long as each memory-mapped access to the file requires a page
 fault, the relevant attributes of the file that are used to detect
 access and modification (time_access, time_metadata, time_modify, and
 change) will be updated. However, in many operating environments,
 when page faults are not required, these attributes will not be updated
 on reads or updates to the file via memory access (regardless of
 whether the file is local or is accessed remotely). A client or
 server MAY fail to update attributes of a file that is being accessed
 via memory-mapped I/O. This has several implications:

 If there is an application on the server that has memory mapped a file
 that a client is also accessing, the client may not be able to get a
 consistent value of the change attribute to determine
 whether or not its cache is stale. A server that knows that
 the file is memory-mapped could always pessimistically
 return updated values for change so as to force the
 application to always get the most up-to-date data
 and metadata for the file. However, due to the negative performance
 implications of this, such behavior is OPTIONAL.

 If the memory-mapped file is not being modified on the server, and
 instead is just being read by an application via the memory-mapped
 interface, the client will not see an updated time_access attribute.
 However, in many operating environments, neither will any process
 running on the server. Thus, NFS clients are at no disadvantage with
 respect to local processes.

 If there is another client that is memory mapping the file, and if
 that client is holding an OPEN_DELEGATE_WRITE delegation, the same set of issues as
 discussed in the previous two bullet points apply. So, when a server
 does a CB_GETATTR to a file that the client has modified in its cache,
 the reply from CB_GETATTR will not necessarily be accurate. As
 discussed earlier, the client's obligation is to report that the file
 has been modified since the delegation was granted, not whether it has
 been modified again between successive CB_GETATTR calls, and the
 server MUST assume that any file the client has modified in cache has
 been modified again between successive CB_GETATTR calls. Depending on
 the nature of the client's memory management system, this weak
 obligation may not be possible. A client MAY return stale information
 in CB_GETATTR whenever the file is memory-mapped.

 The mixture of memory mapping and byte-range locking on the same file is
 problematic. Consider the following scenario, where a page size on
 each client is 8192 bytes.

 Client A memory maps the first page (8192 bytes) of file X.

 Client B memory maps the first page (8192 bytes) of file X.

 Client A WRITE_LT locks the first 4096 bytes.

 Client B WRITE_LT locks the second 4096 bytes.

 Client A, via a STORE instruction, modifies part of its locked byte-range.

 Simultaneous to client A, client B executes a STORE on part of its
 locked byte-range.

 Here the challenge is for each client to resynchronize to get a
 correct view of the first page. In many operating environments, the
 virtual memory management systems on each client only know a page is
 modified, not that a subset of the page corresponding to the
 respective lock byte-ranges has been modified. So it is not possible for
 each client to do the right thing, which is to write to the
 server only that portion of the page that is locked. For example, if
 client A simply writes out the page, and then client B writes out the
 page, client A's data is lost.

 Moreover, if mandatory locking is enabled on the file, then we have a
 different problem. When clients A and B execute the STORE instructions,
 the resulting page faults require a byte-range lock on the entire page.
 Each client then tries to extend their locked range to the entire
 page, which results in a deadlock. Communicating the NFS4ERR_DEADLOCK
 error to a STORE instruction is difficult at best.

 If a client is locking the entire memory-mapped file, there is no
 problem with advisory or mandatory byte-range locking, at least until the
 client unlocks a byte-range in the middle of the file.

 Given the above issues, the following are permitted:

 Clients and servers MAY deny memory mapping a file for which they know there are
 byte-range locks.

 Clients and servers MAY deny a byte-range lock on a file they know is
 memory-mapped.

 A client MAY deny memory mapping a file that it knows requires
 mandatory locking for I/O. If mandatory locking is enabled after the
 file is opened and mapped, the client MAY deny the application further
 access to its mapped file.

 Name and Directory Caching without Directory Delegations

 The NFSv4.1 directory delegation facility
 (described in below) is OPTIONAL
 for servers to implement. Even where it is
 implemented, it may not always be functional because of resource
 availability issues or other constraints. Thus, it is
 important to understand how name and directory caching are done
 in the absence of directory delegations. These topics are
 discussed in the next two subsections.

 Name Caching

 The results of LOOKUP and READDIR operations may be cached to avoid
 the cost of subsequent LOOKUP operations. Just as in the case of
 attribute caching, inconsistencies may arise among the various client
 caches. To mitigate the effects of these inconsistencies and given
 the context of typical file system APIs, an upper time boundary is
 maintained for how long a client name cache entry can be kept without
 verifying that the entry has not been made invalid by a directory
 change operation performed by another client.

 When a client is not making changes to a directory for which there
 exist name cache entries, the client needs to periodically fetch
 attributes for that directory to ensure that it is not being modified.
 After determining that no modification has occurred, the expiration
 time for the associated name cache entries may be updated to be the
 current time plus the name cache staleness bound.

 When a client is making changes to a given directory, it needs to
 determine whether there have been changes made to the directory by
 other clients. It does this by using the change attribute as reported
 before and after the directory operation in the associated
 change_info4 value returned for the operation. The server is able to
 communicate to the client whether the change_info4 data is provided
 atomically with respect to the directory operation. If the change
 values are provided atomically, the client has a basis for determining,
 given proper care, whether other clients are modifying the directory
 in question.

 The simplest way to enable the client to make this determination is
 for the client to serialize all changes made to a specific directory.
 When this is done, and the server provides before and after values of the
 change attribute atomically, the client can simply compare the
 after value of the change attribute from one operation on a
 directory with the before value on the subsequent operation
 modifying that directory. When these are equal, the client is
 assured that no other client is modifying the directory in question.

 When such serialization is not used, and there may be multiple
 simultaneous outstanding operations modifying a single directory sent
 from a single client, making this sort of determination can be more
 complicated. If two such operations
 complete in a different order than they were actually performed,
 that might give an appearance consistent with modification being
 made by another client. Where this appears to happen, the client
 needs to await the completion of all such modifications that were
 started previously, to see if the outstanding before and after
 change numbers can be sorted into a chain such that the before
 value of one change number matches the after value of a previous
 one, in a chain consistent with this client being the only one
 modifying the directory.

 In either of these cases, the client is able to determine whether
 the directory is being modified by another client.
 If the comparison indicates that the directory was updated by
 another client, the name cache associated with the modified directory
 is purged from the client. If the comparison indicates no
 modification, the name cache can be updated on the client to reflect
 the directory operation and the associated timeout can be extended. The
 post-operation change value needs to be saved as the basis for future
 change_info4 comparisons.

 As demonstrated by the scenario above, name caching requires that the
 client revalidate name cache data by inspecting the change attribute
 of a directory at the point when the name cache item was cached. This
 requires that the server update the change attribute for directories
 when the contents of the corresponding directory is modified. For a
 client to use the change_info4 information appropriately and
 correctly, the server must report the pre- and post-operation change
 attribute values atomically. When the server is unable to report the
 before and after values atomically with respect to the directory
 operation, the server must indicate that fact in the change_info4
 return value. When the information is not atomically reported, the
 client should not assume that other clients have not changed the
 directory.

 Directory Caching

 The results of READDIR operations may be used to avoid subsequent
 READDIR operations. Just as in the cases of attribute and name
 caching, inconsistencies may arise among the various client caches. To
 mitigate the effects of these inconsistencies, and given the context of
 typical file system APIs, the following rules should be followed:

 Cached READDIR information for a directory that is not obtained in a
 single READDIR operation must always be a consistent snapshot of
 directory contents. This is determined by using a GETATTR before the
 first READDIR and after the last READDIR that contributes to the
 cache.

 An upper time boundary is maintained to indicate the length of time a
 directory cache entry is considered valid before the client must
 revalidate the cached information.

 The revalidation technique parallels that discussed in the case of
 name caching. When the client is not changing the directory in
 question, checking the change attribute of the directory with GETATTR
 is adequate. The lifetime of the cache entry can be extended at these
 checkpoints. When a client is modifying the directory, the client
 needs to use the change_info4 data to determine whether there are
 other clients modifying the directory. If it is determined that no
 other client modifications are occurring, the client may update its
 directory cache to reflect its own changes.

 As demonstrated previously, directory caching requires that the client
 revalidate directory cache data by inspecting the change attribute of
 a directory at the point when the directory was cached. This requires
 that the server update the change attribute for directories when the
 contents of the corresponding directory is modified. For a client to
 use the change_info4 information appropriately and correctly, the
 server must report the pre- and post-operation change attribute values
 atomically. When the server is unable to report the before and after
 values atomically with respect to the directory operation, the server
 must indicate that fact in the change_info4 return value. When the
 information is not atomically reported, the client should not assume
 that other clients have not changed the directory.

 Directory Delegations

 Introduction to Directory Delegations

 Directory caching for the NFSv4.1 protocol, as previously
 described, is similar to file
 caching in previous versions. Clients typically cache
 directory information for
 a duration determined by the client. At the end of a predefined
 timeout, the client will query the server to see if the directory has
 been updated. By caching attributes, clients reduce the number of
 GETATTR calls made to the server to validate attributes. Furthermore,
 frequently accessed files and directories, such as the current
 working directory, have their attributes cached on the client so that
 some NFS operations can be performed without having to make an RPC
 call. By caching name and inode information about most recently
 looked up entries in a Directory Name Lookup Cache (DNLC), clients do
 not need to send LOOKUP calls to the server every time these files
 are accessed.

 This caching approach works reasonably well at reducing network
 traffic in many environments. However, it does not address
 environments where there are numerous queries for files that do not
 exist. In these cases of "misses", the client sends requests to
 the server in order to provide reasonable application semantics and
 promptly detect the creation of new directory entries. Examples of
 high miss activity are compilation in software development
 environments. The current behavior of NFS limits its potential
 scalability and wide-area sharing effectiveness in these types of
 environments. Other distributed stateful file system architectures
 such as AFS and DFS have proven that adding state around directory
 contents can greatly reduce network traffic in high-miss
 environments.

 Delegation of directory contents is an OPTIONAL feature of NFSv4.1.
 Directory delegations provide similar traffic reduction
 benefits as with file delegations. By allowing clients to cache
 directory contents (in a read-only fashion) while being notified of
 changes, the client can avoid making frequent requests to interrogate
 the contents of slowly-changing directories, reducing network traffic
 and improving client performance. It can also simplify the task of
 determining whether other clients are making changes to the directory
 when the client itself is making many changes to the directory and
 changes are not serialized.

 Directory delegations allow improved namespace cache consistency to be
 achieved through delegations and synchronous recalls, in the absence
 of notifications. In addition, if time-based consistency is
 sufficient, asynchronous notifications can provide performance
 benefits for the client, and possibly the server, under some common
 operating conditions such as slowly-changing and/or very large
 directories.

 Directory Delegation Design

 NFSv4.1 introduces the GET_DIR_DELEGATION
 () operation to allow the
 client to ask for a
 directory delegation. The delegation covers directory attributes and
 all entries in the directory. If either of these change, the
 delegation will be recalled synchronously. The operation causing the
 recall will have to wait before the recall is complete. Any changes
 to directory entry attributes will not cause the delegation to be
 recalled.

 In addition to asking for delegations, a client can also ask for
 notifications for certain events. These events include changes to
 the directory's attributes and/or its contents. If a client asks for
 notification for a certain event, the server will notify the client
 when that event occurs. This will not result in the delegation being
 recalled for that client. The notifications are asynchronous and
 provide a way of avoiding recalls in situations where a directory is
 changing enough that the pure recall model may not be effective while
 trying to allow the client to get substantial benefit. In the absence
 of notifications, once the delegation is recalled the client has to
 refresh its directory cache; this might not be very efficient for
 very large directories.

 The delegation is read-only and the client may not make changes to
 the directory other than by performing NFSv4.1 operations that modify
 the directory or the associated file attributes so that the server
 has knowledge of these changes. In order to keep the client's
 namespace synchronized with that of the server, the server will notify
 the delegation-holding client (assuming it has requested
 notifications) of the changes made as a result of that client's
 directory-modifying operations. This is to avoid any need for
 that client to send subsequent GETATTR or READDIR operations
 to the server. If a single client is holding the delegation
 and that client makes any changes to the directory (i.e., the
 changes are made via operations sent on a session
 associated with the client ID holding the delegation), the
 delegation will not be recalled. Multiple clients may hold a delegation
 on the same directory, but if any such client modifies the directory,
 the server MUST recall the delegation from the other clients,
 unless those clients have made provisions to be notified of that
 sort of modification.

 Delegations can be recalled by the server at any time. Normally, the
 server will recall the delegation when the directory changes in a way
 that is not covered by the notification, or when the directory
 changes and notifications have not been requested.
 If another client removes the directory for
 which a delegation has been granted, the server will recall the
 delegation.

 Attributes in Support of Directory Notifications

 See for a description of the attributes
 associated with directory notifications.

 Directory Delegation Recall

 The server will recall the directory delegation by sending a callback
 to the client. It will use the same callback procedure as used for
 recalling file delegations. The server will recall the delegation
 when the directory changes in a way that is not covered by the
 notification. However, the server need not recall the delegation if
 attributes of an entry within the directory change.

 If the
 server notices that handing out a delegation for a directory is
 causing too many notifications to be sent out, it may decide to
 not hand out delegations for that directory and/or recall those already
 granted. If a client tries to remove the directory for which
 a delegation has been granted, the server will recall all associated delegations.

 The implementation sections for a number
 of operations describe situations in which notification or
 delegation recall would be required under some common circumstances.
 In this regard, a similar set of caveats to those listed
 in apply.

 For CREATE, see .

 For LINK, see .

 For OPEN, see .

 For REMOVE, see .

 For RENAME, see .

 For SETATTR, see .

 Directory Delegation Recovery

 Recovery from client or server restart for state on regular files
 has two main goals: avoiding the necessity of
 breaking application guarantees with respect to locked files and
 delivery of updates cached at the client. Neither of these
 goals applies to directories protected by OPEN_DELEGATE_READ delegations and
 notifications. Thus, no provision is made for reclaiming
 directory delegations in the event of client or server restart.
 The client can simply establish a directory delegation in the
 same fashion as was done initially.

 Multi-Server Namespace

 NFSv4.1 supports attributes that allow a namespace to extend
 beyond the boundaries of a single server. It is desirable
 that clients and servers support construction of such
 multi-server namespaces. Use of such multi-server namespaces
 is OPTIONAL; however, and for many purposes,
 single-server namespaces are perfectly acceptable. The use
 of multi-server namespaces can provide many advantages
 by separating a file system's logical position in a namespace
 from the (possibly changing) logistical and administrative
 considerations that cause a particular file system to be
 located on a particular server via a single network access
 path that has to be known in advance or determined using DNS.

 Terminology

 In this section as a whole (i.e., within all of),
 the phrase "client ID" always refers to the
 64-bit shorthand identifier assigned by the server (a clientid4)
 and never to the structure that the client uses to identify itself
 to the server (called an nfs_client_id4 or client_owner in NFSv4.0
 and NFSv4.1, respectively). The opaque identifier within those
 structures is referred to as a "client id string".

 Terminology Related to Trunking

 It is particularly important to clarify the distinction
 between trunking detection and trunking discovery.
 The definitions we present are applicable to all
 minor versions of NFSv4, but we will focus on how
 these terms apply to NFS version 4.1.

 Trunking detection refers to ways of deciding whether two
 specific network
 addresses are connected to the same NFSv4 server. The
 means available to make this determination depends on the protocol
 version, and, in some cases, on the client implementation.

 In the case of NFS version 4.1 and later minor versions, the
 means of
 trunking detection are as described in this document
 and are available to every client. Two network addresses
 connected to the same server can always be used together
 to access a particular server
 but cannot necessarily be used together
 to access a single session. See below for definitions
 of the terms "server-trunkable" and "session-trunkable".

 Trunking discovery is a process by which a client using one
 network address can obtain other addresses that are connected
 to the same server.
 Typically, it builds on a trunking detection facility by providing
	one or more methods by which candidate addresses are made
 available to the client,
	who can then use trunking detection to appropriately filter them.

 Despite the support for trunking detection, there was no
	description of trunking discovery provided in
 RFC 5661 , making it necessary to provide
	those means in this document.

	The combination of a server network address and a particular
	connection type to be used by a connection
	is referred to as a "server endpoint". Although using different
	connection types may result in different ports being used, the
	use of different ports by multiple connections to the same
	network address in such cases is not the essence of the distinction
	between the two endpoints used. This is in contrast to the case
	of port-specific endpoints,
	in which the explicit specification of port numbers within network
	addresses is used to allow a single server node to support multiple
	NFS servers.

 Two network addresses connected to the same server are said to
 be server-trunkable. Two such addresses support the use of
	client ID trunking, as described in .

 Two network addresses connected to the same server such that
 	those addresses can be used to support a single common session
 are referred to as session-trunkable. Note that two addresses
 	may be server-trunkable without being session-trunkable, and that,
	when two connections of different connection types are made
	to the same network address and are based on a single file
	system location entry, they are always
	session-trunkable, independent of the connection type, as
	specified by , since their derivation from
	the same file system location entry, together with the identity of
	their network addresses, assures that both connections are to the
	same server and will return server-owner information, allowing
	session trunking to be used.

 Terminology Related to File System Location

 Regarding the terminology that relates to the construction of multi-server
 namespaces out of a set of local per-server namespaces:

	Each server has a set of exported file systems that may be accessed
	by NFSv4 clients. Typically, this is done by assigning each
	file system a name within the pseudo-fs associated with the
	server, although the pseudo-fs may be dispensed with if there
	is only a single exported file system. Each such file system
	is part of the server's local namespace, and can be considered
	as a file system instance within a larger multi-server namespace.

	The set of all exported file systems for a given server
	constitutes that server's local namespace.

	In some cases, a server will have a namespace more extensive
	than its local namespace by using features associated with
	attributes that provide file system location information.
	These features,
	which allow construction of a multi-server namespace,
	are all described in individual sections below and include
	referrals (),
	migration (), and
 replication ().

	A file system present in a server's pseudo-fs may have multiple
	file system instances on different servers associated with it.
	All such instances are considered replicas of one another.
	Whether such replicas can be used simultaneously is discussed in
	 , while the level of
	coordination between them (important when switching
	between them) is discussed in Sections
	
 through below.

	When a file system is present in a server's pseudo-fs, but
	there is no corresponding local file system, it is said to
	be "absent". In such cases, all associated instances will
	be accessed on other servers.

 Regarding the terminology that relates to attributes used in trunking
 discovery and other multi-server namespace features:

 File system location attributes include the fs_locations and
 fs_locations_info attributes.

 File system location entries provide the individual file system
 locations within the file system location attributes.
	Each such entry specifies a
 server, in the form of a hostname or an address, and an fs name,
	which designates the location of the file system within
	the server's local namespace. A file system location entry designates a set
	of server endpoints to which the client may establish connections.
	There may be multiple endpoints because a hostname may map to
	multiple network addresses and because multiple connection types
	may be
	used to communicate with a single network address. However,
	except where explicit port numbers are used to designate a set
	of servers within a single server node, all
	such endpoints MUST designate a way of connecting to a single server.
 The exact form of the location entry varies with the
 particular file system location attribute used, as described in
 .

 The network addresses used in file system location entries
 typically appear without port number indications and are
 used to designate a server at one of the standard ports for NFS access,
 e.g., 2049 for TCP or 20049 for use with RPC-over-RDMA. Port
	numbers may be used
 in file system location entries to designate servers (typically
 user-level ones) accessed using other port numbers. In the case where
	network addresses indicate trunking relationships, the use of an explicit
	port number is inappropriate since trunking is a relationship between
	network addresses. See for
	details.

 File system location elements are derived from
	location entries, and each
 describes a particular network access path consisting of a network
	address and a location within the server's local namespace.
	Such location elements need not appear
 within a file system location attribute, but the
 existence of each location element derives from a corresponding
 location entry. When a
 location entry specifies an IP address, there is only a single
 corresponding location element. File system location entries that
 contain a hostname are resolved using DNS, and may result
 in one or more location elements. All location elements
 consist of a location address that includes the IP address of
 an interface to a server and an fs name, which is the location
 of the file system within the server's local namespace. The fs name
 can be empty if the server has no pseudo-fs and only a single exported
	file system at the root filehandle.

 Two file system location elements are said to be
	server-trunkable if they
 specify the same fs name and the location addresses are such
 that the location addresses are server-trunkable. When the
	corresponding network paths are used, the client will always be
	able to use client ID trunking, but will only be able to use
	session trunking if the paths are also session-trunkable.

 Two file system location elements are said to be session-trunkable
 if they
 specify the same fs name and the location addresses are such
 that the location addresses are session-trunkable. When the
	corresponding network paths are used, the client will be able to
	able to use either client ID trunking or session trunking.

 Discussion of the term "replica" is complicated by the fact that
 the term was used in RFC 5661 with a meaning
 different from that used in this document. In short,
 in each replica is identified by a
 single network access path, while in the current document, a set
 of network access paths that have server-trunkable network
 addresses and the same root-relative file system pathname is
 considered to be a single replica with multiple network access
 paths.

 Each set of server-trunkable location elements defines a set of
 available network access paths to a particular file system.
 When there
 are multiple such file systems, each of which containing the
 same data, these file systems are considered replicas
 of one another. Logically, such replication
 is symmetric, since the fs currently in use and an alternate fs
 are replicas of each other. Often, in other documents, the term
 "replica" is not applied to the fs currently in use, despite the
 fact that the replication relation is inherently symmetric.

 File System Location Attributes

 NFSv4.1 contains attributes that provide information
 about how a given file system may be accessed
 (i.e., at what network address and namespace position). As a result, file systems
 in the namespace of one server can be
 associated with one or more instances of that
 file system on other servers. These attributes contain file
 system location
 entries specifying a server address
 target (either as a DNS name representing one or more IP
 addresses or as a specific IP address) together with the pathname
 of that file system within the associated single-server namespace.

 The fs_locations_info RECOMMENDED attribute
 allows specification of one or more file system instance locations
 where the data corresponding to a given file
 system may be found.
 In addition to the specification of file system instance locations,
 this attribute provides helpful information to do the following:

	Guide choices among the various file system instances
	provided (e.g., priority for use, writability, currency, etc.).

	Help the client efficiently effect as seamless
	a transition as possible among multiple file system instances,
 when and if that should be necessary.

	Guide the selection of the appropriate
	connection type to be used when establishing a connection.

 Within the fs_locations_info attribute, each
 fs_locations_server4 entry corresponds to a file system
 location entry: the fls_server field designates the server,
 and the fl_rootpath field of the encompassing fs_locations_item4
 gives the location pathname within the server's pseudo-fs.

 The fs_locations attribute defined in NFSv4.0 is also a part of
 NFSv4.1. This attribute only allows specification of the file system
 locations where the data corresponding to a given file
 system may be found. Servers SHOULD make this attribute available
 whenever fs_locations_info is supported, but client use of
 fs_locations_info is preferable because it provides more information.

 Within the fs_locations attribute, each fs_location4 contains a
 file system location entry with the server field designating
 the server and the rootpath field giving the location pathname
 within the server's pseudo-fs.

 File System Presence or Absence

 A given location in an NFSv4.1 namespace (typically but not necessarily
 a multi-server namespace) can have a number of file system instance
 locations
 associated with it (via the fs_locations or fs_locations_info
 attribute). There may also be an actual current file system at
 that location, accessible via normal namespace operations (e.g.,
 LOOKUP). In this case, the file system is said to be
 "present" at that position in the namespace, and clients will
 typically use it, reserving use of additional locations
 specified via the location-related attributes to situations in
 which the principal location is no longer available.

 When there is no actual file system at the namespace location
 in question, the file system is said to be "absent". An absent
 file system contains no files or directories other than the
 root. Any reference to it, except
 to access a small set of attributes useful in determining
 alternate locations, will result in an error, NFS4ERR_MOVED.
 Note that if the server ever returns the error NFS4ERR_MOVED,
 it MUST support the fs_locations
 attribute and SHOULD support the fs_locations_info and fs_status
 attributes.

 While the error name suggests that we have a case of a file system
 that once was present, and has only become absent later, this is
 only one possibility. A position in the namespace may be permanently
 absent with the set of file system(s) designated by the location
 attributes being the only realization.
 The name NFS4ERR_MOVED reflects an earlier,
 more limited conception of its function, but this error will be
 returned whenever the referenced file system is absent, whether it
 has moved or not.

 Except in the case of GETATTR-type operations (to be discussed
 later), when the
 current filehandle at the start of an operation is within an
 absent file system, that operation is not performed and the error
 NFS4ERR_MOVED is returned, to indicate that the file system is
 absent on the current server.

 Because a GETFH cannot succeed if the current filehandle is
 within an absent file system, filehandles within an absent
 file system cannot be transferred to the client. When a
 client does have filehandles within an absent file system, it
 is the result of obtaining them when the file system was
 present, and having the file system become
 absent subsequently.

 It should be noted that because the check for the current
 filehandle being within an absent file system happens at the
 start of every operation, operations that change the current
 filehandle so that it is within an absent file system will not
 result in an error. This allows such combinations as
 PUTFH-GETATTR and LOOKUP-GETATTR to be used to get attribute
 information, particularly location attribute information,
 as discussed below.

 The RECOMMENDED file system attribute fs_status
 can be used to interrogate the present/absent status of a
 given file system.

 Getting Attributes for an Absent File System

 When a file system is absent, most attributes are not available,
 but it is necessary to allow the client access to the small
 set of attributes that are available, and most particularly
 those that give information about the correct current locations
 for this file system: fs_locations and fs_locations_info.

 GETATTR within an Absent File System

 As mentioned above, an exception is made for GETATTR in that
 attributes may be obtained for a filehandle within an absent
 file system. This exception only applies if the attribute
 mask contains at least one attribute bit that indicates the
 client is interested in a result regarding an absent file
 system: fs_locations, fs_locations_info, or fs_status.
 If none of these attributes
 is requested, GETATTR will result in an NFS4ERR_MOVED error.

 When a GETATTR is done on an absent file system, the set of
 supported attributes is very limited. Many attributes, including
 those that are normally REQUIRED, will not be available on an
 absent file system. In addition to the attributes mentioned
 above (fs_locations, fs_locations_info, fs_status), the following
 attributes SHOULD be available on absent file systems. In the
 case of RECOMMENDED attributes, they should be available at
 least to the same degree that they are available on present file systems.

 change_policy:

 This attribute is useful for absent file systems
 and can be helpful in summarizing to the client when any
 of the location-related attributes change.

 fsid:

 This attribute should be provided so that the client
 can determine file system boundaries, including, in
 particular, the boundary between present and absent file
 systems. This value must be different from any other fsid
 on the current server and need have no particular relationship
 to fsids on any particular destination to which the client
 might be directed.

 mounted_on_fileid:

 For objects at the top of an absent
 file system, this attribute needs to be available. Since
 the fileid is within the present parent file
 system, there should be no need to reference the absent file
 system to provide this information.

 Other attributes SHOULD NOT be made available for absent file
 systems, even when it is possible to provide them. The server
 should not assume that more information is always better and
 should avoid gratuitously providing additional information.

 When a GETATTR operation includes a bit mask for one of the
 attributes fs_locations, fs_locations_info, or fs_status, but
 where the bit mask includes attributes that are not supported,
 GETATTR will not return an error, but will return the mask
 of the actual attributes supported with the results.

 Handling of VERIFY/NVERIFY is similar to GETATTR in that if
 the attribute mask does not include fs_locations, fs_locations_info,
 or fs_status, the error NFS4ERR_MOVED will result. It differs in
 that any appearance in the attribute mask of an attribute not
 supported for an absent file system (and note that this will
 include some normally REQUIRED attributes) will also cause
 an NFS4ERR_MOVED result.

 READDIR and Absent File Systems

 A READDIR performed when the current filehandle is within an
 absent file system will result in an NFS4ERR_MOVED error,
 since, unlike the case of GETATTR, no such exception is
 made for READDIR.

 Attributes for an absent file system may be fetched via a
 READDIR for a directory in a present file system, when that
 directory contains the root directories of one or more absent
 file systems. In this case, the handling is as follows:

 If the attribute set requested includes one of the attributes
 fs_locations, fs_locations_info, or fs_status, then fetching of
 attributes proceeds normally and no NFS4ERR_MOVED indication
 is returned, even when the rdattr_error attribute is
 requested.

 If the attribute set requested does not include one of the
 attributes
 fs_locations, fs_locations_info, or fs_status, then if the
 rdattr_error attribute is requested, each directory entry for
 the root of an absent file system will report
 NFS4ERR_MOVED as the value of the rdattr_error attribute.

 If the attribute set requested does not include any of the
 attributes fs_locations, fs_locations_info, fs_status, or
 rdattr_error, then the occurrence of the root of an absent
 file system within the directory will result in the
 READDIR failing with an NFS4ERR_MOVED error.

 The unavailability of an attribute because of a file system's
 absence, even one that is ordinarily REQUIRED, does not result
 in any error indication. The set of attributes returned for
 the root directory of the absent file system in that case is
 simply restricted to those actually available.

 Uses of File System Location Information

 The file system location attributes
 (i.e., fs_locations and fs_locations_info),
 together with the possibility of absent file systems, provide
 a number of important facilities for reliable, manageable,
 and scalable data access.

 When a file system is present, these attributes can provide
 the following:

 The locations of alternative replicas to be used to access the
 same data in the event of server failures, communications problems,
 or other difficulties that make continued access to the current
 replica impossible or otherwise impractical. Provisioning and
 use of such alternate replicas is referred to as "replication"
 and is discussed in
 below.

 The network address(es) to be used to access the current file
	system instance or replicas of it. Client use of this information is
 discussed in below.

 Under some circumstances, multiple replicas
 may be used simultaneously to provide higher-performance
 access to the file system in question, although the lack of state
 sharing between servers may be an impediment to such use.

 When a file system is present but becomes absent, clients can be
 given the opportunity to have continued access to their data
 using a different replica. In this case, a continued attempt
 to use the data in the now-absent file system will result
 in an NFS4ERR_MOVED error, and then the successor
 replica or set of possible replica choices
 can be fetched and used to continue access. Transfer of access
 to the new replica location is referred to as
 "migration" and is discussed in
 below.

 When a file system is currently absent, specification
 of file system location provides a means by which file systems
 located on one server can be associated with a namespace
 defined by another server, thus allowing a general multi-server
 namespace facility. A designation of such a remote instance, in
 place of a file system not previously present, is called
 a "pure referral" and is discussed in
 below.

 Because client support for attributes related to file
 system location is
 OPTIONAL, a server may choose to take action
 to hide migration and referral events from such clients, by
 acting as a proxy, for example. The server can determine
 the presence of client support from the arguments of the
 EXCHANGE_ID operation (see
).

 Combining Multiple Uses in a Single Attribute

 A file system location attribute will sometimes contain information
 relating to the location of multiple replicas, which may
 be used in different ways:

 File system location entries that relate to the file system instance
	 currently in
 use provide trunking information, allowing the client to
 find additional network addresses by which the instance may be
 accessed.

 File system location entries that provide information about
 replicas to which access is to be transferred.

 Other file system location entries that relate to replicas
	 that are available to
 use in the event that access to the current replica becomes
 unsatisfactory.

 In order to simplify client handling and to allow the best choice
 of replicas to access, the server should adhere to the following
 guidelines:

 All file system location entries that relate to a
	 single file system instance should be adjacent.

 File system location entries that relate to the instance
	 currently in use should appear first.

 File system location entries that relate to replica(s)
	 to which migration
 is occurring should appear before replicas that are available
 for later use if the current replica should become inaccessible.

 File System Location Attributes and Trunking

 Trunking is the use of multiple connections between a client and
 server in order to increase the speed of data transfer.
 A client may determine the set of network addresses to use to
 access a given file system in a number of ways:

	 When the name of the server is known to the client, it may use
	 DNS to obtain a set of network addresses to use in
	 accessing the server.

	 The client may fetch the file system location attribute for the
	 file system. This will
	 provide either the name of the server (which can be turned
	 into a set of network addresses using DNS) or
	 a set of server-trunkable location entries. Using the latter
	 alternative, the server can
	 provide addresses it regards as desirable to use
	 to access the file system in question. Although these entries can
	 contain port numbers, these port numbers are not used in determining
	 trunking relationships. Once the candidate addresses have been
	 determined and EXCHANGE_ID done to the proper server, only the value
	 of the so_major_id field returned by the servers in question determines
	 whether a trunking relationship actually exists.

 When the client fetches a location attribute
 for a file system, it should be noted that the client may encounter multiple entries for a number of
 reasons, such that when it determines trunking information, it may
	 need
 to bypass addresses not trunkable with one already known.

 The server can provide location entries that include either
 names or network addresses. It might use the latter form
 because of DNS-related security concerns or because the set
 of addresses
 to be used might require active management by the server.

 Location entries used to discover candidate addresses for
 use in trunking are subject to change, as discussed in
 below.
 The client may respond to
 such changes by using additional addresses once they are
 verified or by ceasing to use
 existing ones. The server can force the client to cease using
 an address by returning NFS4ERR_MOVED when that address is used to
 access a file system. This allows a transfer of client access
	that is similar to migration, although the same file system instance
	is accessed throughout.

 File System Location Attributes and Connection Type Selection

	Because of the need to support multiple types of connections,
	clients face
	the issue of determining the proper connection type to use
	when establishing
	a connection to a given server network address. In some cases,
	this issue can be addressed through the use of the connection
	"step-up" facility described in
	 . However,
	because there are cases in which that facility is not available,
	the client may have to choose a connection type with no
	possibility of changing it within the scope of a single connection.

	The two file system location attributes differ as to the
	information made available in this regard. The fs_locations attribute provides no information
	to support connection type selection. As a result, clients
	supporting multiple connection types would need to attempt to
	establish connections using multiple connection types until
	the one preferred by the client is successfully established.

 The fs_locations_info attribute includes the FSLI4TF_RDMA flag,
 which is convenient for a client wishing to use RDMA. When this
 flag is set, it indicates that RPC-over-RDMA support is available
 using the specified location entry. A client can establish a TCP
 connection and then convert that connection to use RDMA by using
 the step-up facility.

	Irrespective of the particular attribute used, when there is
	no indication that a step-up operation can be performed,
	a client supporting RDMA operation can establish a new RDMA
	connection, and it can be bound to
	the session already established by the
	TCP connection, allowing the TCP connection to be dropped
	and the session converted to further use in RDMA mode, if
	the server supports that.

 File System Replication

 The fs_locations and fs_locations_info attributes provide
 alternative file system locations, to be used to access data in place
 of or in addition to
 the current file system instance. On first access to a
 file system, the client should obtain the set
 of alternate locations by interrogating the fs_locations or
 fs_locations_info attribute, with the latter being preferred.

 In the event that the occurrence of server failures, communications
	problems,
 or other difficulties make continued access to the current
 file system impossible or otherwise impractical, the client
 can use the alternate locations as a way to get continued
 access to its data.

 The alternate locations may be physical replicas of the
 (typically read-only) file system data supplemented by
	possible asynchronous propagation of updates. Alternatively,
	they may provide for the use of various forms of server
 clustering in which multiple servers provide alternate
 ways of accessing the same physical file system. How the
 difference between replicas affects file system transitions
	can be represented within the fs_locations and fs_locations_info
 attributes, and how the client deals with file system transition
 issues will be discussed in detail in later sections.

	Although the location attributes provide some information about
	the nature of the inter-replica transition, many aspects of the
	semantics of possible asynchronous updates are not currently described
	by the protocol, which makes it necessary for clients using replication
	to switch among replicas undergoing change to familiarize themselves
	with the semantics of the update approach used.
 Due to this lack of specificity, many applications may find the
 use of migration more appropriate because a server can propagate
 all updates made before an established point in time to the new
 replica as part of the migration event.

 File System Trunking Presented as Replication

	 In some situations, a file system location entry may indicate
	 a file system access path to be used as an alternate location,
	 where trunking, rather than replication, is to be used. The
	 situations in which this is appropriate are limited to those
	 in which both of the following are true:

	 The two file system locations (i.e., the one on which the
	 location attribute is obtained and the one specified in the
	 file system location entry) designate the same locations within
	 their respective single-server namespaces.
	

	 The two server network addresses (i.e., the one being used to
	 obtain the location attribute and the one specified in the file system
	 location entry) designate the same server (as indicated by the
	 same value of the so_major_id field of the eir_server_owner field
	 returned in response to EXCHANGE_ID).
	

	 When these conditions hold, operations using both access paths are
	 generally trunked, although trunking may be disallowed when the
 attribute fs_locations_info is used:

	 When the fs_locations_info attribute shows the two entries
	 as not having the same simultaneous-use class, trunking is
	 inhibited, and the two access paths cannot be used together.

 In this case, the two paths can be used serially with no
 transition activity required on the part of the client, and any
 transition between access paths is transparent. In transferring
 access from one to the other, the client acts as if communication
 were interrupted, establishing a new connection and possibly a
 new session to continue access to the same file system.

	 Note that for two such location entries, any information within
	 the fs_locations_info attribute that indicates the need for special
 transition activity, i.e., the appearance of the two file system
 location entries with different handle, fileid, write-verifier,
	 change, and readdir classes, indicates a serious problem. The
	 client, if it allows transition to the file system instance at
	 all, must not treat any transition as a transparent one.
 The server SHOULD NOT indicate that these two entries (for the
	 same file system on the same server) belong to
	 different handle, fileid, write-verifier, change, and readdir
	 classes, whether or not the two entries are shown belonging to
	 the same simultaneous-use class.
	

 These situations were recognized by ,
	 even though that document made no explicit mention of trunking:

 It treated the situation that we describe as trunking as one
	 of simultaneous use of two distinct file system instances,
	 even though, in the explanatory framework now used to
 describe the situation, the case is one in which a single file
 system is accessed by two different trunked addresses.
	

	 It treated the situation in which two paths are to be used
	 serially as a special sort of "transparent transition". However,
	 in the descriptive framework now used to categorize transition
	 situations, this is considered a case of a "network endpoint
	 transition" (see).
	

 File System Migration

 When a file system is present and becomes inaccessible using the
	current access path, the NFSv4.1 protocol provides a means by
 which clients can be given the opportunity to have continued access to their data.
 This may involve using a different access path to the existing replica or
	providing a path to a different replica. The new access path or
	the location of the new replica is specified by a file system
	location attribute. The ensuing migration of access includes
	the ability to retain locks across the transition. Depending on circumstances,
	this can involve:

	 The continued use of the existing clientid when accessing
	 the current replica using a new access path.
	

	 Use of lock reclaim, taking advantage of a per-fs grace period.
	

	 Use of Transparent State Migration.
	

 Typically, a client will be
 accessing the file system in question, get an NFS4ERR_MOVED
 error, and then use a file system location attribute
 to determine the new access path for the data. When
 fs_locations_info is used, additional information will be
 available that will define the nature of the client's
 handling of the transition to a new server.

 In most instances, servers will choose to migrate all clients using
	a particular file system to a successor replica at the same time
	to avoid cases in which different clients are updating different
	replicas. However, migration of an individual client can be helpful
	in providing load balancing, as long as the replicas in question
	are such that they represent the same data as described in
	 .

	 In the case in which there is no transition between replicas (i.e.,
	 only a change in access path), there are no special
	 difficulties in using of this mechanism to effect load balancing.

	 In the case in which the two replicas are sufficiently coordinated
	 as to allow a single client coherent, simultaneous access to both,
	 there is, in general, no obstacle to the use of migration of particular
	 clients to effect load balancing. Generally, such simultaneous use
	 involves cooperation between servers to ensure that locks granted
	 on two coordinated replicas cannot conflict and can remain effective
	 when transferred to a common replica.

	 In the case in which a large set of clients is accessing a
	 file system in a read-only fashion, it can be helpful to migrate
	 all clients with writable access simultaneously, while using
	 load balancing on the set of read-only copies, as long as the
	 rules in ,
 which are designed to prevent data reversion, are followed.

	In other cases, the client might not have sufficient guarantees
	of data similarity or coherence to function properly (e.g., the data
	in the two replicas is similar but not identical), and the
	possibility that different clients are updating different replicas
	can exacerbate the difficulties, making the use of load balancing in
	such situations a perilous enterprise.

	The protocol does not specify how the file system will be moved between
 servers or how updates to multiple replicas will be coordinated.
	It is anticipated that a number of different
 server-to-server coordination mechanisms might be used, with the
 choice left to the server implementer. The NFSv4.1 protocol
 specifies the method used to communicate the migration
 event between client and server.

 In the case of various forms of server clustering, the new location
 may be another server providing access to the same physical file system. The client's
 responsibilities in dealing with this transition will depend
 on whether a switch between replicas has occurred and
	the means the server has chosen to provide continuity of locking state.
 These issues will be discussed in detail below.

 Although a single successor location is typical, multiple
 locations may be provided. When multiple locations are
 provided, the client will typically use the first one provided.
	If that is inaccessible for some reason, later ones can be used. In such
 cases, the client might consider the transition to the new
 replica to be a migration event, even though some of the servers
	involved might not be aware of the use of the server that was
	inaccessible. In such a case, a client might lose access to
 locking state as a result of the access transfer.

 When an alternate location is designated as the target for
 migration, it must designate the same data
 (with metadata being the same to the degree indicated by the
 fs_locations_info attribute). Where file systems are writable,
 a change made on the original file system must be visible on
 all migration targets. Where a file system is not writable
 but represents a read-only copy (possibly periodically
 updated) of
 a writable file system, similar requirements apply to the
 propagation of updates. Any change visible in the original
 file system must already be effected on all migration targets,
 to avoid any possibility that a client, in effecting a transition to
 the migration target, will see any reversion in file system state.

 Referrals

 Referrals allow the server to associate a file system namespace
	entry located on one server with a file system located on another server.
 When this includes
 the use of pure referrals, servers are provided a way of
 placing a file system in a location within the namespace
 essentially without respect to its physical location on a
 particular server. This allows a single server or a set of servers
 to present a multi-server namespace that encompasses file systems
 located on a wider range of servers. Some likely uses of this facility include
 establishment of site-wide or organization-wide namespaces,
 with the eventual possibility of combining such
 together into a truly global namespace, such as the one
	provided by AFS (the Andrew File System) .

 Referrals occur when a client determines, upon first referencing
 a position in the current namespace, that it is part of a new
 file system and that the file system is absent. When this
 occurs, typically upon receiving the error NFS4ERR_MOVED, the
 actual location or locations of the file system can be
 determined by fetching a locations attribute.

 The file system location attribute may designate a single
 file system location or multiple file system locations, to
 be selected based on the needs of the client. The server,
 in the fs_locations_info attribute, may specify priorities to
 be associated with various file system location choices.
 The server may assign different priorities to different
 locations as reported to individual clients, in order to
 adapt to client physical location or to effect load balancing.
 When both read-only and read-write file systems are present,
 some of the read-only locations might not be absolutely up-to-date
 (as they would have to be in the case of replication and
 migration). Servers may also specify file system locations
 that include client-substituted variables so that different
 clients are referred to different file systems (with different
 data contents) based on client attributes such as CPU
 architecture.

 If the fs_locations_info attribute lists multiple possible targets,
 the relationships among them may be important to the client in
 selecting which one to use.
 The same rules specified in
 below regarding multiple migration targets
 apply to these multiple replicas as well. For example, the
 client might prefer a writable target on a server that has
 	additional writable
 replicas to which it subsequently might switch. Note that,
 as distinguished from the case of replication, there is no
 need to deal with the case of propagation of updates made by
 the current client, since the current client has not accessed
 the file system in question.

 Use of multi-server namespaces is enabled by NFSv4.1 but is not
 required. The use of multi-server namespaces and their scope
 will depend on the applications used and system administration
 preferences.

 Multi-server namespaces can be established by a single
 server providing a large set of pure referrals to all of the
 included file systems. Alternatively, a single multi-server
 namespace may be administratively segmented with separate
 referral file systems (on separate servers) for each
 separately administered portion of the namespace. The
 top-level referral file system or any segment may use
 replicated referral file systems for higher availability.

 Generally, multi-server namespaces are for the most part
 uniform, in that the same data made available to one client
 at a given location in the namespace is made available to
 all clients at that namespace location. However,
	there are facilities
 provided that allow different clients to be directed to
 different sets of data, for reasons such as enabling
 adaptation to such client
 characteristics as CPU architecture. These facilities are
	described in
	 .

	Note that it is possible, when providing a uniform namespace,
	to provide different location entries to different clients in
	order to provide each client with a copy of the data physically
	closest to it or otherwise optimize access (e.g., provide load
	balancing).

 Changes in a File System Location Attribute

 Although clients will typically fetch a file system location attribute
 when first accessing a file system and when NFS4ERR_MOVED
 is returned, a client can choose to fetch the attribute
 periodically, in which case, the value fetched may change over time.

 For clients not prepared to access multiple replicas simultaneously (see
),
 the handling of the various cases of location change are as follows:

	 Changes in the list of replicas or in the network addresses
	 associated with replicas do not require immediate action.
	 The client will typically update its list of replicas to
	 reflect the new information.

	 Additions to the list of network addresses for the
	 current file system instance need not be acted
	 on promptly. However, to prepare for a subsequent
 migration event, the client can choose
	 to take note of the new address and then use it
	 whenever it needs to switch access to a new replica.

	 Deletions from the list of network addresses for the
	 current file system instance do not require the client to immediately
	 cease use of existing access paths, although new connections
	 are not to be established on addresses that have been deleted.
	 However, clients can choose to act on such deletions
	 by preparing for an eventual shift in access, which
	 becomes unavoidable as soon as the server returns
 NFS4ERR_MOVED to indicate that a particular network access path is
 not usable to access the current file system.

 For clients that are prepared to access several replicas simultaneously,
 the following additional cases need to be addressed. As in
 the cases discussed above, changes in the set of replicas
 need not be acted upon promptly, although the client has
 the option of adjusting its access even in the absence of
 difficulties that would lead to the selection of a new replica.

 When a new replica is added, which may be accessed
 simultaneously with one currently in use, the client is free
 to use the new replica immediately.

 When a replica currently in use is deleted from the list, the
 client need not cease using it immediately. However, since
 the server may subsequently force such use to cease (by
 returning NFS4ERR_MOVED), clients might decide to limit the
 need for later state transfer. For example, new opens might
 be done on other replicas, rather than on one not present in
 the list.

 Trunking without File System Location Information

 In situations in which a file system is accessed using two
 server-trunkable addresses (as indicated by the same value of the
 so_major_id field of the eir_server_owner field returned in
 response to EXCHANGE_ID), trunked access is allowed even though
 there might not be any location entries specifically indicating
 the use of trunking for that file system.

 This situation was recognized by , although
 that document made no explicit mention of trunking and treated the
 situation as one of simultaneous use of two distinct file system
 instances. In the explanatory framework now used to
 describe the situation, the case is one in which a single file
 system is accessed by two different trunked addresses.

 Users and Groups in a Multi-Server Namespace

 As in the case of a single-server environment (see
),
 when an owner or group name of the form "id@domain" is assigned to
 a file, there is an implicit promise to return that same string when
 the corresponding attribute is interrogated subsequently. In the
 case of a multi-server namespace, that same promise applies even if
 server boundaries have been crossed. Similarly, when the owner
 attribute of a file is derived from the security principal that created
 the file, that attribute should have the same value even if the
 interrogation occurs on a different server from the file creation.

 Similarly, the set of security principals recognized by all the
 participating servers needs to be the same, with each such principal
 having the same credentials, regardless of the particular server
 being accessed.

 In order to meet these requirements, those setting up multi-server
 namespaces will need to limit the servers included so that:

	In all cases in which more than a single domain is supported,
	the requirements stated in RFC 8000
	are to be respected.

	All servers support a common set of domains that includes all of
	the domains clients use and expect to see returned as the domain
	portion of an owner or group in the form "id@domain". Note that,
	although this set most often consists of a single domain, it is
	possible for multiple domains to be supported.

	All servers, for each domain that they support, accept the same set
	of user and group ids as valid.

	All servers recognize the same set of security principals. For each
	principal, the same credential is required, independent of the
	server being accessed. In addition, the group membership for each such
	principal is to be the same, independent of the server accessed.

 Note that there is no requirement in general that the users
 corresponding to particular security principals have the same local
 representation on each server, even though it is most often the case that this is so.

 When AUTH_SYS is used, the following additional requirements must be met:

	Only a single NFSv4 domain can be supported through the use of AUTH_SYS.

	The "local" representation of all owners and groups must be the same
	on all servers. The word "local" is used here since that is the
	way that numeric user and group ids are described in
	 . However,
	when AUTH_SYS or stringified numeric owners or
	groups are used, these identifiers are not truly local, since they
	are known to the clients as well as to the server.

 Similarly, when stringified numeric user and group ids are used, the
 "local" representation of all owners and groups must be the same on
 all servers, even when AUTH_SYS is not used.

 Additional Client-Side Considerations

 When clients make use of servers that implement referrals,
 replication, and
 migration, care should be taken that a user who mounts a given
 file system that includes a referral or a relocated file system
 continues to see a coherent picture of that user-side file system
 despite the fact that it contains a number of server-side
 file systems that may be on different servers.

 One important issue is upward navigation from the root of a
 server-side file system to its parent (specified as ".." in UNIX),
 in the case in which it transitions to that file system as a
 result of referral, migration, or a transition as a result of
 replication. When the client is at such a point, and it needs to ascend to
 the parent, it must go back to the parent as seen within the
 multi-server namespace rather than sending a LOOKUPP operation to the
 server, which would result in the parent within that server's
 single-server namespace. In order to do this, the client
 needs to remember the filehandles that represent such
 file system roots and use these instead of sending a
 LOOKUPP operation to the current server. This will allow the client
 to present to applications a consistent namespace, where
 upward navigation and downward navigation are consistent.

 Another issue concerns refresh of referral locations. When
 referrals are used extensively, they may change as server
 configurations change. It is expected that clients will cache
 information related to traversing referrals so that future
 client-side requests are resolved locally without server
 communication.
 This is usually rooted in client-side name look up caching. Clients
 should periodically purge this data for referral points in order to
 detect changes in location information. When the change_policy
 attribute changes for directories that hold referral entries
 or for the referral entries themselves, clients should consider
 any associated
 cached referral information to be out of date.

 Overview of File Access Transitions

 File access transitions are of two types:

 Those that involve a transition from accessing the current
 replica to another one in connection with either replication or migration.
 How these are dealt with is discussed in
 .

 Those in which access to the current file system instance is retained, while
 the network path used to access that instance is changed. This case is
 discussed in .

 Effecting Network Endpoint Transitions

 The endpoints used to access a particular file system instance
 may change in a number of ways, as listed below. In each of these
 cases, the same fsid, client IDs, filehandles, and stateids are
 used to continue access, with a continuity of lock state. In
 many cases, the same sessions can also be used.

 The appropriate action depends on the set of replacement addresses
 that are available for use
 (i.e., server endpoints that are server-trunkable with one previously
 being used).

 When use of a particular address is to cease, and there is
 also another address
 currently in use that is server-trunkable with it, requests
 that would have been issued on the address whose use is to be
	discontinued can be issued on the remaining address(es). When an
	address is server-trunkable but not session-trunkable with the
	address whose use is to be discontinued, the request might need
	to be modified to reflect the fact that a different session will
	be used.

	When use of a particular connection is to cease, as indicated
	by receiving NFS4ERR_MOVED when using that connection, but
	that address is
	still indicated as accessible according to the appropriate
	file system location
	entries, it is likely that requests can be issued on a new
	connection of a different connection type once that connection
	is established.
 Since any two non-port-specific server endpoints that share a
 network address are inherently session-trunkable, the client
 can use BIND_CONN_TO_SESSION to access the existing session
 with the new connection.

 When there are no potential replacement addresses in use, but there
 are valid addresses session-trunkable with the one whose use is
 to be discontinued, the client can use BIND_CONN_TO_SESSION
 to access the existing session using the new address. Although
 the target session will generally be accessible, there may be
 rare situations in which that session is no longer accessible
	when an attempt is made to bind the new connection to it. In this
 case, the client can create a new session to enable continued
 access to the existing instance using the new connection,
	providing for the use of existing filehandles, stateids, and
 client ids while supplying continuity of locking state.

 When there is no potential replacement address in use, and there
 are no valid addresses session-trunkable with the one whose use is
 to be discontinued, other server-trunkable addresses may be
 used to provide continued access. Although the use of CREATE_SESSION
 is available to provide continued access to the existing instance,
 servers have the option of providing continued access to the
 existing session through the new network access path in a fashion
 similar to that provided by session migration (see
).
 To take advantage of this
 possibility, clients can perform an initial BIND_CONN_TO_SESSION,
 as in the previous case, and use CREATE_SESSION only if that fails.

 Effecting File System Transitions

 There are a range of situations in which there is a change to be
 effected in the set of replicas used to access a particular
 file system. Some of these may involve an expansion or
 contraction of the set of replicas used as discussed in
 below.

 For reasons explained in that section, most transitions will involve
 a transition from a single replica to a corresponding replacement
 replica. When effecting replica transition, some types of
 sharing between the replicas may affect handling of the
 transition as described in
 Sections
 through below.
 The attribute fs_locations_info provides helpful information
 to allow the client to determine the degree of inter-replica
 sharing.

 With regard to some types of state, the degree of continuity
 across the transition depends on the occasion prompting the
 transition, with transitions initiated by the servers
 (i.e., migration) offering much more scope for a nondisruptive
 transition than cases in which the client on its own
 shifts its access to another replica (i.e., replication).
 This issue potentially applies to locking state and to session
 state, which are dealt with below as follows:

 An introduction to the possible means of providing continuity in
 these areas appears in below.

 Transparent State Migration is introduced in
 .
 The possible transfer of
 session state is addressed there as well.

 The client handling of transitions, including determining how to
 deal with the various means that the server might take to
 supply effective continuity of locking state, is discussed in
	 .

 The source and destination servers' responsibilities
 in effecting Transparent State Migration
 of locking and session state are discussed in
 .

 File System Transitions and Simultaneous Access

 The fs_locations_info attribute (described in
)
	may indicate that two replicas
 may be used simultaneously, although some situations in which such
	simultaneous access is permitted are more appropriately described
	as instances of trunking (see).
	Although situations
 in which multiple replicas may be accessed simultaneously are
 somewhat similar to those in which a single replica is
 accessed by multiple network addresses, there are important
 differences since locking state is not shared among multiple
 replicas.

 Because of this difference in state handling, many clients will
 not have the ability to take advantage of the fact that such
 replicas represent the same data. Such clients will not be
 prepared to use multiple replicas simultaneously but will access
 each file system using only a single replica, although the
 replica selected might make multiple server-trunkable addresses
 available.

 Clients who are prepared to use multiple replicas simultaneously
 can divide opens among replicas however they choose. Once that
 choice is made, any subsequent transitions will treat the set of locking
 state associated with each replica as a single entity.

 For example, if one of the replicas become unavailable, access will be
 transferred to a different replica, which is also capable of
 simultaneous access with the one still in use.

 When there is no such replica, the transition may be to the
 replica already in use. At this point, the client has a
 choice between merging the locking state for the two replicas
 under the aegis of the sole replica in use or treating these
 separately until another replica capable of simultaneous
 access presents itself.

 Filehandles and File System Transitions

 There are a number of ways in which filehandles can be handled
 across a file system transition. These can be divided into
 two broad classes depending upon whether the two file systems
 across which the transition happens share sufficient state to
 effect some sort of continuity of file system handling.

 When there is no such cooperation in filehandle assignment,
 the two file systems are reported as being in different
 handle classes. In this case,
 all filehandles are assumed to expire as part of the
 file system transition. Note that this behavior does not
 depend on the fh_expire_type attribute and supersedes
	the specification
 of the FH4_VOL_MIGRATION bit, which only affects behavior when
 fs_locations_info is not available.

 When there is cooperation in filehandle assignment,
 the two file systems are reported as being in the same
 handle classes. In this case,
 persistent filehandles remain valid after the file system
 transition, while volatile filehandles (excluding those
 that are only volatile due to the FH4_VOL_MIGRATION bit) are
 subject to expiration on the target server.

 Fileids and File System Transitions

 In NFSv4.0, the issue of continuity of fileids in the event
 of a file system transition was not addressed. The general
 expectation had been that in situations in
 which the two file system instances are created by a single vendor
 using some sort of file system image copy, fileids would be
 consistent across the transition, while in the analogous
 multi-vendor transitions they would not. This poses difficulties,
 especially for the client without special knowledge
 of the transition mechanisms adopted by the server. Note
 that although fileid is not a REQUIRED attribute, many servers
 support fileids and many clients provide APIs that depend on fileids.

 It is important to note that while clients themselves may have no
 trouble with a fileid changing as a result of a file system
 transition event, applications do typically have access to the
 fileid (e.g., via stat). The result is that an
 application may work perfectly well if there is no file system
 instance transition or if any such transition is among instances
 created by a single vendor, yet be unable to deal with the
 situation in which a multi-vendor transition occurs at the wrong
 time.

 Providing the same fileids in a multi-vendor (multiple server
 vendors) environment has generally been held to be quite difficult.
 While there is work to be done, it needs to be pointed out that
 this difficulty is partly self-imposed. Servers have typically
 identified fileid with inode number, i.e. with a quantity used to
 find the file in question. This identification poses special
 difficulties for migration of a file system between vendors
 where assigning
 the same index to a given file may not be possible. Note here that
 a fileid is not required to be useful to find the file in
 question, only that it is unique within the given file system. Servers
 prepared to accept a fileid as a single piece of metadata and store
 it apart from the value used to index the file information can
 relatively easily maintain a fileid value across a migration event,
 allowing a truly transparent migration event.

 In any case, where servers can provide continuity of fileids, they
 should, and the client should be able to find out that such
 continuity is available and take appropriate action. Information
 about the continuity (or lack thereof) of fileids across a file
 system transition is represented by specifying whether the file systems
 in question are of the same fileid class.

 Note that when consistent fileids do not exist across a
 transition (either because there is no continuity of fileids
 or because fileid is not a supported attribute on one of
 instances involved), and there are
 no reliable filehandles across a transition event (either because
 there is no filehandle continuity or because the filehandles are
 volatile), the client is in a position where it cannot verify
 that files it was accessing before the transition are the
 same objects. It is forced to assume that no object has been
 renamed, and, unless there are guarantees that provide this
 (e.g., the file system is read-only), problems for applications
 may occur. Therefore, use of such configurations should be
 limited to situations where the problems that this may cause
 can be tolerated.

 Fsids and File System Transitions

 Since fsids are generally only unique on a per-server basis,
 it is likely that they will change during a file system
 transition.
 Clients should not make the fsids received
 from the server visible to applications since they may not be
 globally unique, and because they may change during a file
 system transition event. Applications are best served if they
 are isolated from such transitions to the extent possible.

 Although normally a single source file system will transition
 to a single target file system, there is a provision for splitting
 a single source file system into multiple target file systems, by
 specifying the FSLI4F_MULTI_FS flag.

 File System Splitting

 When a file system transition is made and the fs_locations_info
 indicates that the file system in question might be split into
 multiple file systems (via the FSLI4F_MULTI_FS flag), the client
 SHOULD do GETATTRs to determine the fsid attribute on all known
 objects within the file system undergoing transition to determine
 the new file system boundaries.

 Clients might choose to
	 maintain the fsids passed to existing applications
 by mapping all of the fsids for the descendant file systems to
 the common fsid used for the original file system.

 Splitting a file system can be done on a transition between
 file systems of the same fileid
 class, since the fact that fileids are unique within the
 source file system ensure they will be unique in each of the
 target file systems.

 The Change Attribute and File System Transitions

 Since the change attribute is defined as a server-specific one,
 change attributes fetched from one server are normally presumed to
 be invalid on another server. Such a presumption is troublesome
 since it would invalidate all cached change attributes, requiring
 refetching. Even more disruptive, the absence of any assured
 continuity for the change attribute means that even if the same
 value is retrieved on refetch, no conclusions can be drawn as to whether
 the object in question has changed. The identical change
 attribute could be merely an artifact of a modified file with
 a different change attribute construction algorithm, with that
 new algorithm just happening to result in an identical change
 value.

 When the two file systems have consistent change attribute formats,
 and this fact is communicated to the client by reporting
 in the same change class, the
 client may assume a continuity of change attribute construction
 and handle this situation just as it would be handled without
 any file system transition.

 Write Verifiers and File System Transitions

 In a file system transition, the two file systems might be
 cooperating in the handling of unstably written data.
 Clients can determine if this is the
 case by seeing if the two file systems belong to the same
 write-verifier class. When this is the case, write
 verifiers returned
 from one system may be compared to those returned by the
 other and superfluous writes can be avoided.

 When two file systems belong to different
 write-verifier classes, any verifier
 generated by one must not be compared to one provided by the
 other. Instead, the two verifiers should be treated as not
 equal even when the values are identical.

 READDIR Cookies and Verifiers and File System Transitions

 In a file system transition, the two file systems might be
 consistent in their handling of READDIR cookies and verifiers.
 Clients can determine if this is the
 case by seeing if the two file systems belong to the same
 readdir class. When this is the case, readdir class, READDIR
 cookies, and verifiers
 from one system will be recognized by the other, and
 READDIR operations started on one server can be validly
 continued on the other simply by presenting the
 cookie and verifier returned by a READDIR operation done
 on the first file system to the second.

 When two file systems belong to different
 readdir classes, any READDIR cookie and verifier
 generated by one is not valid on the second and must not
 be presented to that server by the client. The client
 should act as if the verifier were rejected.

 File System Data and File System Transitions

 When multiple replicas exist and are used simultaneously or in
 succession by a client, applications using them will normally expect
 that they contain either the same data or data that is consistent with
 the normal sorts of changes that are made by other clients
 updating the data of the file system
 (with metadata being the same to the degree indicated by the
 fs_locations_info attribute). However, when multiple file systems are
 presented as replicas of one another, the precise relationship
 between the data of one and the data of another is not, as a
 general matter, specified by the NFSv4.1 protocol. It is quite
 possible to present as replicas file systems where the data of
 those file systems is sufficiently different that some applications
 have problems dealing with the transition between replicas. The
 namespace will typically be constructed so that applications can
 choose an appropriate level of support, so that in one position in
 the namespace, a varied set of replicas might be listed, while in
 another, only those that are up-to-date would be considered replicas.
 The protocol does define three special cases of the relationship among
 replicas to be specified by the server and relied upon by clients:

 When multiple replicas exist and are used simultaneously
 by a client (see the FSLIB4_CLSIMUL definition within
 fs_locations_info), they must designate the same
 data. Where file systems are writable, a change made on
 one instance must be visible on all instances at the same
	 time, regardless of whether the interrogated instance is the
	 one on which the modification was done.
 This allows a client to use these replicas
 simultaneously without any special adaptation to the fact
 that there are multiple replicas, beyond adapting to the fact
 that locks obtained on one replica are maintained separately
 (i.e., under a different client ID).
 In this case, locks (whether share reservations or
 byte-range locks) and delegations obtained on one
 replica are immediately reflected on all replicas, in the
 sense that access from all other servers is prevented
	 regardless of the replica used. However, because the servers are
 not required to treat two associated client IDs as
 representing the same client, it is best to
 access each file using only a single client ID.

 When one replica is designated as the successor instance to another
 existing instance after the return of NFS4ERR_MOVED (i.e., the case of
 migration), the client may depend on the fact that all changes
 written to stable storage on the original instance
 are written to stable storage of the successor (uncommitted
 writes are dealt with in above).

 Where a file system is not writable but represents a read-only
 copy (possibly periodically updated) of a writable file system,
 clients have similar requirements with regard to the propagation
 of updates. They may need a guarantee that any change visible on
 the original file system instance must be immediately visible on
 any replica before the client transitions access to that replica,
 in order to avoid any possibility that a client, in effecting a transition to a
 replica, will see any reversion in file system state.
 The specific means of this guarantee varies based on the value of
 the fss_type field that is reported as part of the fs_status attribute
 (see).
 Since these file systems are presumed to be unsuitable for simultaneous use,
 there is no specification of how locking is handled; in general, locks obtained on one file
 system will be separate from those on others.
 Since these are expected to be read-only file systems,
 this is not likely to pose an issue for clients or applications.

 When none of these special situations applies, there is no basis
 within the protocol for the client to make assumptions about the
 contents of a replica file system or its relationship to previous
 file system instances. Thus, switching between nominally
 identical read-write file systems would not be possible because either the
 client does not use the fs_locations_info attribute, or the server does not support it.

 Lock State and File System Transitions

 While accessing a file system, clients obtain locks enforced
 by the server, which may prevent actions by other clients
 that are inconsistent with those locks.

 When access is transferred between replicas, clients need to
 be assured that the actions disallowed by holding these locks
 cannot have occurred during the transition. This can be ensured
 by the methods below. Unless at least one of these is implemented,
 clients will not be assured of continuity of lock
 possession across a migration event:

 Providing the client an opportunity to re-obtain his locks via a per-fs grace
 period on the destination server, denying all clients using the
	destination file system the
	opportunity to obtain new locks that conflict with those held
	by the transferred client as long as that client
	has not completed its per-fs grace period. Because the lock reclaim
 mechanism was originally defined to support server reboot, it
 implicitly assumes that filehandles will, upon reclaim,
 be the same as those at open. In the case of migration, this
 requires that source and destination servers use the same
 filehandles, as evidenced by using the same server scope
 (see)
 or by showing this agreement using fs_locations_info
 (see above).

 Note that such a grace period can be implemented without
 interfering with the ability of non-transferred clients to
	obtain new locks while it is going on. As long as the destination
	server is aware of the transferred locks, it can distinguish requests
	to obtain new locks that contrast with existing locks
	from those that do not, allowing it to treat such client requests
	without reference to the ongoing grace period.

 Locking state can be transferred as part of the transition
	by providing Transparent State Migration as
 described in .

 Of these, Transparent State Migration provides the smoother
 experience for clients in that there is no need to go through a
 reclaim process before new locks can be obtained; however, it requires
 a greater degree of inter-server coordination. In general, the
 servers taking part in migration are free to provide either
 facility. However, when the filehandles can differ across the
 migration event, Transparent State Migration is the only
 available means of providing the needed functionality.

 It should be noted that these two methods are not mutually
 exclusive and that a server might well provide both. In
 particular, if there is some circumstance preventing a
 specific lock from being transferred transparently,
 the destination server can allow it to be reclaimed by
 implementing a per-fs grace period for the migrated file system.

 Security Consideration Related to Reclaiming Lock State after File System Transitions

	 Although it is possible for a client reclaiming state to misrepresent
	 its state in the same fashion as described in
	 , most
	 implementations providing for such reclamation in the case of
	 file system transitions
	 will have the ability to detect such misrepresentations. This limits
	 the ability of unauthenticated clients to execute denial-of-service
	 attacks in these circumstances. Nevertheless, the rules stated in
	 regarding principal
	 verification for reclaim requests apply in this situation as well.

	 Typically, implementations that support file system transitions
	 will have extensive information about the locks
	 to be transferred. This is because of the following:

	 Since failure is not involved, there is no need to store locking
	 information in persistent storage.
	

	 There is no need, as there is in the failure case, to update
	 multiple repositories containing locking state to keep them in
	 sync. Instead, there is a one-time communication of locking
	 state from the source to the destination server.
	

	 Providing this information avoids potential interference with
	 existing clients using the destination file system by denying
	 them the ability to obtain new locks during the grace period.
	

	 When such detailed locking information, not necessarily including
	 the associated stateids, is available:

	 It is possible to detect reclaim requests that attempt to
	 reclaim locks that did not exist before the transfer, rejecting
	 them with NFS4ERR_RECLAIM_BAD ().
	

	 It is possible when dealing with non-reclaim requests, to determine
	 whether they conflict with existing locks, eliminating the need
	 to return NFS4ERR_GRACE () on
	 non-reclaim requests.
	

	 It is possible for implementations of grace periods in connection
	 with file system transitions not to have detailed locking
	 information available at the destination server, in which case,
	 the security situation is exactly as described in
	 .

 Leases and File System Transitions

 In the case of lease renewal, the client may not be
 submitting requests for a file system that has been transferred
 to another server. This can occur
 because of the lease renewal mechanism. The
 client renews the lease associated with all file systems
 when submitting
 a request on an associated session, regardless of the
 specific file system being referenced.

 In order for the client to schedule renewal of its lease
 where there is locking state that may have been relocated
 to the new server, the client
 must find out about lease relocation before that lease
 expire. To accomplish this, the SEQUENCE operation will
 return the status bit SEQ4_STATUS_LEASE_MOVED
 if responsibility for any of the renewed locking state
 has been transferred to a new server. This
 will continue until the client receives an
 NFS4ERR_MOVED error for each of the file systems for which
 there has been locking state relocation.

 When a client receives an SEQ4_STATUS_LEASE_MOVED indication from
 a server, for each file system of the server for which the client
 has locking state, the client should perform an operation.
 For simplicity, the client may choose to reference
 all file systems, but what is important
 is that it must reference all file systems for which there was
 locking state where that state has moved. Once the client
 receives an NFS4ERR_MOVED error for each such file system,
 the server will clear the SEQ4_STATUS_LEASE_MOVED indication.
 The client can terminate the process of checking file systems
 once this indication is cleared (but only if the client
 has received a reply for all outstanding SEQUENCE requests
 on all sessions it has with the server), since there are no others
 for which locking state has moved.

 A client may use GETATTR of the fs_status
 (or fs_locations_info) attribute on all of the file systems
 to get absence indications in a single (or a few) request(s),
 since absent file systems will not cause an error in this
 context. However, it still must do an operation that
 receives NFS4ERR_MOVED on each file system, in order to clear
 the SEQ4_STATUS_LEASE_MOVED indication.

 Once the set of file systems with transferred locking state
 has been determined, the client can follow the normal process
 to obtain the new server information (through the
 fs_locations and fs_locations_info attributes) and perform renewal
 of that lease on the new server, unless information in the
 fs_locations_info attribute shows that no state could have
 been transferred. If the server has not
 had state transferred to it transparently, the client
 will receive NFS4ERR_STALE_CLIENTID
 from the new server,
 as described above, and the client can then reclaim
 locks
 as is done in the event of server failure.

 Transitions and the Lease_time Attribute

 In order that the client may appropriately manage its lease
 in the case of a file system transition, the destination server must
 establish proper values for the lease_time attribute.

 When state is transferred transparently, that state
 should include the correct value of the lease_time
 attribute. The lease_time attribute on the destination
 server must never be less than that on the source, since
 this would result in premature expiration of a lease
 granted by the source server. Upon transitions in which
 state is transferred transparently, the client is under
 no obligation to refetch the lease_time attribute and
 may continue to use the value
 previously fetched (on the source server).

 If state has not been transferred transparently, either
 because the associated servers are shown as having different
 eir_server_scope strings or because the client ID
 is rejected when presented to the new server,
 the client should fetch the value
 of lease_time on the new (i.e., destination) server, and
 use it for subsequent locking requests. However, the server
 must respect a grace
 period of at least as long as the lease_time on the source
 server, in order to ensure that clients have ample time to
 reclaim their lock before potentially conflicting
 non-reclaimed locks are granted.

 Transferring State upon Migration

 When the transition is a result of a server-initiated decision
 to transition access, and the source and destination servers have
 implemented appropriate cooperation, it is possible to do the following:

 Transfer locking state from the source to the destination
 server in a fashion similar to that provided by Transparent State
 Migration in NFSv4.0, as described in .
 Server responsibilities are described in .

 Transfer session state from the source to the destination
 server. Server responsibilities in effecting such a
 transfer are described in .

 The means by which the client determines which of these transfer
 events has occurred are described in
 .

 Transparent State Migration and pNFS

 When pNFS is involved, the protocol is capable of supporting:

 Migration of the Metadata Server (MDS), leaving the Data
 Servers (DSs) in place.

 Migration of the file system as a whole, including the MDS
 and associated DSs.

 Replacement of one DS by another.

 Migration of a pNFS file system to one in which pNFS is not used.

 Migration of a file system not using pNFS to one in which
 layouts are available.

	Note that migration, per se, is only involved in the transfer of
	the MDS function. Although the servicing of a layout may be
	transferred from one data server to another, this not done using
	the file system location attributes. The MDS can effect such
	transfers by recalling or revoking existing layouts and granting new
	ones on a different data server.

 Migration of the MDS function is directly supported by
 Transparent State Migration. Layout state will normally be
 transparently transferred, just as other state is.
 As a result, Transparent State Migration provides a framework in
 which, given appropriate inter-MDS data transfer, one MDS can
 be substituted for another.

 Migration of the file system function as a whole can be accomplished by
 recalling all layouts as part of the initial phase of the
 migration process. As a result, I/O will be done through the
 MDS during the migration process, and new layouts can be granted
 once the client is interacting with the new MDS. An MDS can
 also effect this sort of transition by revoking all layouts
 as part of Transparent State Migration, as long as the client is
 notified about the loss of locking state.

 In order to allow migration to a file system on which pNFS is
 not supported, clients need to be prepared for a situation in
 which layouts are not available or supported on the destination file
 system and so direct I/O requests to the destination
 server, rather than depending on layouts being available.

 Replacement of one DS by another is not addressed by migration as
 such but can be effected by an MDS recalling layouts for the DS
 to be replaced and issuing new ones to be served by the
 successor DS.

 Migration may transfer a file system from a server that does
 not support pNFS to one that does. In order to properly adapt
 to this situation, clients that support pNFS, but function
 adequately in its absence, should check for pNFS support when
 a file system is migrated and be prepared to use pNFS when
 support is available on the destination.

 Client Responsibilities When Access Is Transitioned

 For a client to respond to an access transition, it must become
 aware of it. The ways in which this can happen are discussed
 in , which discusses indications
 that a specific file system access path has transitioned as well as
 situations in which additional activity is necessary to
 determine the set of file systems that have been migrated.
 goes on to complete the discussion
 of how the set of migrated file systems might be determined.
 Sections through

 discuss how the client should deal with
 each transition it becomes aware of, either directly or as a
 result of migration discovery.

 The following terms are used to describe client activities:

	"Transition recovery" refers to the process of restoring access
	to a file system on which NFS4ERR_MOVED was received.

	"Migration recovery" refers to that subset of transition recovery
	that applies when the file system has migrated to a different
	replica.

	"Migration discovery" refers to the process of determining which
	file system(s) have been migrated. It is necessary to avoid a situation in
	which leases could expire when a file system is not accessed for
	a long period of time, since a client unaware of the migration
	might be referencing an unmigrated file system and not renewing
	the lease associated with the migrated file system.

 Client Transition Notifications

 When there is a change in the network access
	path that a client is to use to access a file system, there
 are a number of related status indications with which clients
 need to deal:

 If an attempt is made to use or return a filehandle
 within a file system that is no longer accessible at the
 address previously used to access it, the
 error NFS4ERR_MOVED is returned.

 Exceptions are made to allow such filehandles to be used
 when interrogating a file system location attribute.
	 This enables a client to determine
 a new replica's location or a new network access path.

 This condition continues on subsequent attempts to access
 the file system in question. The only way the client
 can avoid the error is to cease accessing the file system in
 question at its old server location and access it instead
 using a different address at which it is now available.

Whenever a client sends a SEQUENCE operation to a server that
generated state held on that client and associated with a
file system no longer accessible on that server, the response will contain
the status bit SEQ4_STATUS_LEASE_MOVED, indicating that there has
been a lease migration.

 This condition continues until the client acknowledges
 the notification by fetching a file system location attribute for the
 file system whose network access path is being changed.
	 When there are multiple such file systems, a location attribute
 for each such file system needs to be fetched. The location
	 attribute for all migrated file systems needs to be fetched
	 in order to clear the condition. Even after the condition is cleared, the
 client needs to respond by using the location information
 to access the file system at its new location
 to ensure that leases are not needlessly expired.

 Unlike NFSv4.0, in which the corresponding
 conditions are both errors and thus mutually exclusive,
 in NFSv4.1 the client can,
 and often will, receive both indications on the same
 request. As a result, implementations need to address the
 question of how to coordinate
 the necessary recovery actions when both indications
 arrive in the response to the same request. It should be noted
	that when processing an NFSv4 COMPOUND, the server
	will normally decide
	whether SEQ4_STATUS_LEASE_MOVED is to be set before
 it determines which file system will be referenced or whether
 NFS4ERR_MOVED is to be returned.

 Since these indications are not mutually exclusive in NFSv4.1,
 the following combinations are possible results when a COMPOUND
 is issued:

 The COMPOUND status
 is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is asserted.

 In this case, transition recovery is required. While it is
 possible that migration discovery is needed in addition, it
 is likely that only the accessed file system has transitioned.
 In any case, because addressing NFS4ERR_MOVED is necessary to
 allow the rejected requests to be processed on the target,
 dealing with it will typically have priority over
 migration discovery.

 The COMPOUND status
 is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is clear.

 In this case, transition recovery is also required. It is
 clear that migration discovery is not needed to find
 file systems that have been migrated other than the one
 returning NFS4ERR_MOVED. Cases in which this
 result can arise include a referral or a migration for which
 there is no associated locking state. This can also arise in
 cases in which an access path transition
 other than migration occurs within the same server. In such a
 case, there is no need to set SEQ4_STATUS_LEASE_MOVED, since
 the lease remains associated with the current server even though
 the access path has changed.

 The COMPOUND status
 is not NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is asserted.

 In this case, no transition recovery activity is required on
 the file system(s) accessed by the request. However, to prevent avoidable
 lease expiration, migration discovery needs to be done.

 The COMPOUND status
 is not NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED is clear.

 In this case, neither transition-related activity nor migration
 discovery is required.

 Note that the specified actions only need to be taken if they are
 not already going on. For example, when NFS4ERR_MOVED is received
	while accessing a file system for which transition recovery is already occurring, the client
	merely waits for that recovery to be completed, while the receipt of
	the SEQ4_STATUS_LEASE_MOVED indication only
 needs to initiate migration discovery for a server if such
	discovery is not already underway for that server.

 The fact that a lease-migrated condition does not result in
 an error in NFSv4.1 has a number of important consequences.
 In addition to the fact that the two
 indications are not mutually exclusive, as discussed above, there are number of
 issues that are important in considering implementation of
 migration discovery, as discussed in
 .

 Because SEQ4_STATUS_LEASE_MOVED is not an error condition, it is possible
	for file systems whose access paths have not changed to be
	successfully accessed on a given server even though recovery
 is necessary for other file systems on the same server. As
 a result, access can take place while:

	 The migration discovery process is happening for that server.
	

	 The transition recovery process is happening for other
	 file systems connected to that server.
	

 Performing Migration Discovery

 Migration discovery can be performed in the same context as
 transition recovery, allowing recovery for each migrated file
 system to be invoked as it is discovered. Alternatively, it may
 be done in a separate migration discovery thread, allowing
 migration discovery to be done in parallel with
	one or more instances of transition recovery.

 In either case, because the lease-migrated indication
 does not result in an error, other access to file systems on the
 server can proceed normally, with the possibility that further
 such indications will be received, raising the issue of how
 such indications are to be dealt with. In general:

 No action needs to be taken for such indications received by any
 threads performing migration discovery, since continuation of that
 work will address the issue.

 In other cases in which migration discovery is currently being performed,
 nothing further needs to be done to respond to such lease
 migration indications, as long as one can be certain that the migration
	 discovery process would deal with those indications. See below for details.

 For such indications received in all other contexts, the
 appropriate response is to initiate or otherwise provide for the
 execution of migration discovery for file systems
 associated with the server IP address returning the indication.

 This leaves a potential difficulty in situations in which the
 migration discovery process is near to completion but is still
 operating. One should not ignore a SEQ4_STATUS_LEASE_MOVED indication if
 the migration discovery process is not able to respond to
 the discovery of additional migrating file
 systems without additional aid. A further complexity relevant in
 addressing such situations is that a lease-migrated indication may
 reflect the server's state at the time the SEQUENCE operation
 was processed, which may be different from that in effect at the
 time the response is received. Because new migration events
	may occur at any time, and because a SEQ4_STATUS_LEASE_MOVED indication may reflect
	the situation in effect a considerable time before the indication
	is received, special care needs to be taken to ensure that SEQ4_STATUS_LEASE_MOVED
	indications are not inappropriately ignored.

 A useful approach to this issue involves the use of separate
 externally-visible migration discovery states for each server.
	Separate values could represent the various possible states for
 the migration discovery process for a server:

 Non-operation, in which migration discovery is not being
	 performed.
	

	 Normal operation, in which there is an ongoing scan for
	 migrated file systems.
	

	 Completion/verification of migration discovery processing,
	 in which the possible completion of migration discovery
	 processing needs to be verified.
	

 Given that framework, migration discovery processing would proceed
 as follows:

 While in the normal-operation state, the thread performing
	 discovery would fetch, for
 successive file systems known to the client on the server being
 worked on, a file system location attribute plus the fs_status attribute.

 If the fs_status attribute indicates that the file system
	 is a migrated one (i.e., fss_absent is true, and
	 fss_type != STATUS4_REFERRAL), then a migrated file system has
	 been found. In this situation, it is likely
	 that the fetch of the file system location attribute has
 cleared one of the file systems contributing to the
	 lease-migrated indication.

	 In cases in which that happened, the thread cannot know whether
	 the lease-migrated indication has been cleared, and so it enters the
	 completion/verification state and proceeds to issue a COMPOUND
	 to see if the SEQ4_STATUS_LEASE_MOVED indication has been cleared.
	

	 When the discovery process is in the completion/verification state,
	 if other requests get a lease-migrated indication,
 they note that it was received. Later, the existence of such
	 indications is used when the request completes, as described below.
	

	When the request used in the completion/verification state completes:

	 If a lease-migrated indication is returned, the discovery
 continues normally. Note that this is so even if all file systems
	 have been traversed, since new migrations could have occurred
 while the process was going on.
	

	 Otherwise, if there is any record that other requests saw a
 lease-migrated indication while the request was occurring,
	 that record is cleared, and the verification request is retried. The discovery
	 process remains in the completion/verification state.
	

	 If there have been no lease-migrated indications, the work of
	 migration discovery is considered completed, and it enters the
	 non-operating state. Once it enters this state, subsequent
 lease-migrated indications will trigger a new migration discovery
 process.
	

	It should be noted that the process described above is not
	guaranteed to terminate, as a long series of new migration
	events might continually delay the clearing of the SEQ4_STATUS_LEASE_MOVED
	indication. To prevent unnecessary lease expiration, it is
	appropriate for clients
	to use the discovery of migrations to effect lease
	renewal immediately, rather than waiting for the clearing of the
	SEQ4_STATUS_LEASE_MOVED indication when the complete set of migrations is
	available.

 Lease discovery needs to be provided as described above. This
	ensures that the client discovers file system migrations soon
	enough to renew its leases on each destination server before they
	expire.	 Non-renewal of leases can lead to loss of locking state.
	While the consequences of such
	loss can be ameliorated through implementations of courtesy locks,
	servers are under no obligation to do so, and a conflicting lock request
	may mean that a lock is revoked unexpectedly. Clients should be aware
	of this possibility.

 Overview of Client Response to NFS4ERR_MOVED

 This section outlines a way in which a client that receives
 NFS4ERR_MOVED can effect transition recovery by using a new
	server or server endpoint
 if one is available. As part of that process, it will
 determine:

 Whether the NFS4ERR_MOVED indicates migration has occurred,
 or whether it indicates another sort of file system
 access transition as discussed
 in above.

 In the case of migration, whether Transparent State
 Migration has occurred.

 Whether any state has been lost during the process of
 Transparent State Migration.

 Whether sessions have been transferred as part of Transparent
 State Migration.

 During the first phase of this process, the client proceeds to
	examine file system location entries to find the initial
	network address
 it will use to continue access
 to the file system or its replacement.
	For each location entry that the client examines, the process
 consists of five steps:

 Performing an EXCHANGE_ID
 directed at the location address. This operation is used to
 register the client owner (in the form of a client_owner4)
	 with the server, to obtain a client ID
 to be used subsequently to communicate with it, to obtain that
 client ID's confirmation status, and to determine server_owner4
 and scope for the purpose of determining if the entry
 is trunkable with the address
 previously being used to access the file system (i.e., that
 it represents another network access path to the same
	 file system and can share locking state with it).

	 Making an initial determination of whether migration has
	 occurred. The initial determination will be based
	 on whether the EXCHANGE_ID results indicate that the
	 current location element is server-trunkable with that
 used to access the file system when access
 was terminated by receiving NFS4ERR_MOVED.
	 If it is, then migration has not occurred. In that case, the
	 transition is
	 dealt with, at least initially, as one involving continued
	 access to the same file system on the same server through
	 a new network address.

 Obtaining access to existing session state or creating new
 sessions. How this is done depends on the initial
 determination of whether migration has occurred and
 can be done as described in below
 in the case of migration or as described in
 below
	 in the case of a network address transfer without migration.

 Verifying the trunking relationship assumed in step
	 2 as discussed in .
 Although this step will generally confirm the initial
 determination, it is possible for verification to invalidate
 the initial determination of network address shift (without
 migration) and instead determine that migration had occurred.
	 There is no need to redo
	 step 3 above, since it will be possible to continue use of the
	 session established already.

 Obtaining access to existing locking state and/or
 re-obtaining it. How this is done depends on the final
 determination of whether migration has occurred and
 can be done as described below in
 in the case of migration or as described in

	 in the case of a network address transfer without migration.

	Once the initial address has been determined, clients are free
	to apply an abbreviated process to find additional addresses
	trunkable with it (clients may seek session-trunkable or
	server-trunkable addresses depending on whether they support
	client ID trunking). During this later phase of the process,
	further location entries are examined using the abbreviated
 procedure specified below:

	 Before the EXCHANGE_ID, the fs name of the location
	 entry is examined, and if it
	 does not match that currently being used, the entry is ignored.
	 Otherwise, one proceeds as specified by step 1 above.

	 In the case that the network address is session-trunkable with one
 used previously, a BIND_CONN_TO_SESSION is used to access that
 session using the new network address. Otherwise, or if the bind
 operation fails, a CREATE_SESSION is done.

	 The verification procedure referred to in step 4 above is
	 used. However, if it fails, the entry is ignored and the next
	 available entry is used.

 Obtaining Access to Sessions and State after Migration

 In the event that migration has occurred, migration recovery
	will involve determining whether Transparent State Migration has
 occurred. This decision is made based on the client ID returned
	by the EXCHANGE_ID and the reported confirmation status.

 If the client ID is an unconfirmed client ID not previously known
 to the client, then Transparent State Migration has not occurred.

 If the client ID is a confirmed client ID previously known
 to the client, then any transferred state would have been
 merged with an existing client ID representing the client to the
 destination server. In this state merger case, Transparent
 State Migration might
 or might not have occurred, and a determination as to whether
	 it has occurred is deferred until sessions are established
	 and the client is ready to begin state recovery.

 If the client ID is a confirmed client ID not previously known
 to the client, then the client can conclude that the
 client ID was transferred as part of Transparent State Migration.
 In this transferred client ID case, Transparent State Migration
 has occurred, although some state might have been lost.

	Once the client ID has been obtained, it is necessary to
	obtain access to sessions to continue communication with the
	new server.
 In any of the cases in which Transparent State Migration
 has occurred, it is possible that a session was transferred
 as well. To deal with that possibility, clients can, after
 doing the EXCHANGE_ID, issue a BIND_CONN_TO_SESSION to
 connect the transferred session to a connection to the new
 server. If that fails, it is an indication that the session
 was not transferred and that a new session needs to be created to
 take its place.

 In some situations, it is possible for a BIND_CONN_TO_SESSION
 to succeed without session migration having occurred. If
 state merger has taken place, then the associated client ID
 may have already had a set of existing sessions, with it
 being possible that the session ID of a given session is the
 same as one that might have been migrated. In that event,
 a BIND_CONN_TO_SESSION might succeed, even though there
 could have been no migration of the session with that session ID.
	In such cases, the client will receive sequence errors when the
	slot sequence values used are not appropriate on the new
	session. When this occurs, the client can create a new a
	session and cease using the existing one.

 Once the client has determined the initial migration status,
 and determined that there was a shift to a new server, it
 needs to re-establish its locking state, if possible. To enable
 this to happen without loss of the guarantees normally provided by
 locking, the destination server needs to implement a per-fs grace
 period in all cases in which lock state was lost, including
 those in which Transparent State Migration was not
 implemented. Each client for which there was a transfer of locking
	state to the new server will have the duration of the grace period
	to reclaim its locks, from the time its locks were transferred.

 Clients need to deal with the following cases:

 In the state merger case, it is possible that the server
 has not attempted Transparent State Migration,
 in which case state may have been
 lost without it being reflected in the SEQ4_STATUS bits.
 To determine whether this has happened, the client can use
 TEST_STATEID to check whether the stateids created on the
 source server are still accessible on the destination server.
 Once a single stateid is found to have been successfully
 transferred, the client can conclude that Transparent State
 Migration was begun, and any failure to transport all of the
 stateids will be reflected in the SEQ4_STATUS bits. Otherwise,
	 Transparent State Migration has not occurred.

 In a case in which Transparent State Migration has not
 occurred, the client can use the per-fs grace period provided
 by the destination server to reclaim locks that were held on
 the source server.

 In a case in which Transparent State Migration has
 occurred, and no lock state was lost (as shown by SEQ4_STATUS
 flags), no lock reclaim is necessary.

 In a case in which Transparent State Migration has
 occurred, and some lock state was lost (as shown by SEQ4_STATUS
 flags), existing stateids need to be checked for validity
 using TEST_STATEID, and reclaim used to re-establish any that
 were not transferred.

 For all of the cases above, RECLAIM_COMPLETE with an rca_one_fs
	value of TRUE needs to be done before
 normal use of the file system, including obtaining new locks for the
 file system. This applies even if no locks were lost and there
 was no need for any to be reclaimed.

 Obtaining Access to Sessions and State after Network Address Transfer

 The case in which there is a transfer to a new network
 address without migration is similar to that described
 in above in that there is a need to
 obtain access to needed sessions and locking state. However,
 the details are simpler and will vary depending on the
 type of trunking between the address receiving
 NFS4ERR_MOVED and that to which the transfer is to be made.

 To make a session available for use, a BIND_CONN_TO_SESSION
 should be used to obtain access to the session previously
 in use. Only if this fails, should a CREATE_SESSION be done.
 While this procedure mirrors that in
 above,
 there is an important difference in that preservation of the
 session is not purely optional but depends on the type of
 trunking.

 Access to appropriate locking state will generally need no actions
	beyond access to the session. However, the SEQ4_STATUS bits need to be
	checked for lost locking state, including the need to reclaim
	locks after a server reboot, since there is always a possibility
	of locking state being lost.

 Server Responsibilities Upon Migration

 In the event of file system migration, when the client connects
 to the destination server, that server needs to be able to provide the
 client continued access to the files it had open on the source server.
 There are two ways to provide this:

	By provision of an fs-specific grace period, allowing the client the
	ability to reclaim its locks, in a fashion similar to what would
	have been done in the case of recovery from a server restart. See
	 for a more complete
	discussion.

	By implementing Transparent State Migration possibly in
	connection with session migration, the server can provide
	the client immediate access to the state built up on the
	source server on the destination server.

 These features are discussed separately in Sections
 and
 ,
	which discuss Transparent State Migration and session
	migration, respectively.

 All the features described above can involve transfer of
 lock-related information between source and destination
 servers. In some cases, this transfer is a necessary part
 of the implementation, while in other cases, it is a helpful
 implementation aid, which servers might or might not use.
 The subsections below discuss the information that would be
 transferred but do not define the specifics of the transfer
 protocol. This is left as an implementation choice, although
 standards in this area could be developed at a later time.

 Server Responsibilities in Effecting State Reclaim after Migration

	In this case, the destination server needs no knowledge of
	the locks held
	on the source server. It relies on the clients to accurately report
	(via reclaim operations) the locks previously held, and does not allow
	new locks to be granted on migrated file systems until the grace
	period expires. Disallowing of new locks applies to
	all clients accessing these file systems, while grace period
	expiration occurs for each migrated client independently.

	During this grace period, clients have the opportunity to use
	reclaim operations to obtain locks for file system objects within
	the migrated file system, in the same way that they do when
	recovering from server restart, and the servers typically
	rely on clients to accurately report their locks, although they
	have the option of subjecting these requests to verification.
	If the clients only reclaim locks held on the source server, no
	conflict can arise. Once the client has reclaimed its locks,
	it indicates the completion of lock reclamation by performing a
	RECLAIM_COMPLETE specifying rca_one_fs as TRUE.

	While it is not necessary for source and destination servers
	to cooperate to transfer information about locks, implementations
	are well advised to consider transferring the following
	useful information:

	 If information about the set of clients that have
	 locking state for the transferred file system is made available,
	 the destination
	 server will be able to terminate the grace period once all
	 such clients have reclaimed their locks, allowing normal
	 locking activity to resume earlier than it would have otherwise.
	

	 Locking summary information for individual clients (at various
	 possible levels of detail) can detect
	 some instances in which clients do not accurately represent the
	 locks held on the source server.
	

 Server Responsibilities in Effecting Transparent State Migration

	The basic responsibility of the source server in effecting
	Transparent State Migration is to make available to the
	destination server a description of each piece of locking state
	associated with the file system being migrated. In addition to
 client id string and verifier, the source server needs to provide
 for each stateid:

	 The stateid including the current sequence value.

	 The associated client ID.

	 The handle of the associated file.

	 The type of the lock, such as open, byte-range lock, delegation,
	 or layout.

	 For locks such as opens and byte-range locks, there will be
	 information about the owner(s) of the lock.

	 For recallable/revocable lock types, the current recall status
	 needs to be included.

	 For each lock type, there will be associated type-specific
	 information. For opens, this will include share and deny mode
	 while for byte-range locks and layouts, there will be a type and
	 a byte-range.

	Such information will most probably be organized by client id string
	on the destination server
	so that it can be used to provide appropriate context to each client
	when it makes itself known to the client. Issues connected with a
	client impersonating another by presenting another client's client
	id string can be addressed using NFSv4.1 state protection features,
	as described in .
	

	A further server responsibility concerns locks that are revoked
	or otherwise lost during the process of file system migration.
	Because locks that appear to be lost during the process of
	migration will be reclaimed by the client, the servers have to
	take steps to ensure that locks revoked soon before or soon
	after migration are not inadvertently allowed to be reclaimed
	in situations in which the continuity of lock possession
	cannot be assured.

	 For locks lost on the source but whose loss has not yet been
	 acknowledged by the client (by using FREE_STATEID), the
	 destination must be aware of this loss so that it can deny
	 a request to reclaim them.
	

	 For locks lost on the destination after the state transfer
	 but before the client's RECLAIM_COMPLETE is done, the
	 destination server should note these and not allow them to
	 be reclaimed.
	

	An additional responsibility of the cooperating
	servers concerns situations
	in which a stateid cannot be transferred transparently because it
	conflicts with an existing stateid held by the client and
	associated with a different file system. In this case, there
	are two valid choices:

	 Treat the transfer, as in NFSv4.0, as one without Transparent
	 State Migration. In this case, conflicting locks cannot be
	 granted until the client does a RECLAIM_COMPLETE, after
	 reclaiming the locks it had, with the exception of reclaims
	 denied because they were attempts to reclaim locks that had
	 been lost.
	

	 Implement Transparent State Migration, except for the lock
	 with the conflicting stateid. In this case, the client will
	 be aware of a lost lock (through the SEQ4_STATUS flags) and be
	 allowed to reclaim it.
	

 When transferring state between the source and destination, the
 issues discussed in
 must still be attended to. In this case, the use of NFS4ERR_DELAY may still be
 necessary in NFSv4.1, as it was in NFSv4.0, to prevent locking
 state changing while it is being transferred. See
	 for information about
	appropriate client retry approaches in the event that NFS4ERR_DELAY
	is returned.

 There are a number of important differences in the NFS4.1
 context:

 The absence of RELEASE_LOCKOWNER means that the one case
 in which an operation could not be deferred by use of
 NFS4ERR_DELAY no longer exists.

 Sequencing of operations is no longer done using owner-based
 operation sequences numbers. Instead, sequencing is session-
 based.

 As a result, when sessions are not transferred, the techniques
 discussed in
 are adequate and will not be further discussed.

 Server Responsibilities in Effecting Session Transfer

	The basic responsibility of the source server in effecting
	session transfer is to make available to the
	destination server a description of the current state of each
	slot with the session, including the following:

	 The last sequence value received for that slot.

	 Whether there is cached reply data for the last request
	 executed and, if so, the cached reply.

 When sessions are transferred, there are a number of issues that
 pose challenges in terms of making the transferred state
	unmodifiable during the period it is gathered up and
	transferred to the destination server:

 A single session may be used to access multiple file systems,
 not all of which are being transferred.

 Requests made on a session may, even if rejected, affect
 the state of the session by advancing the sequence number
 associated with the slot used.

 As a result, when the file system state might otherwise be
 considered unmodifiable, the client might have any number of
 in-flight requests, each of which is capable of changing session
 state, which may be of a number of types:

 Those requests that were processed on the migrating file system
 before migration began.

 Those requests that received the error NFS4ERR_DELAY because the
 file system being accessed was in the process of being
 migrated.

 Those requests that received the error NFS4ERR_MOVED because the
 file system being accessed had been migrated.

 Those requests that accessed the migrating file system
 in order to obtain location or status information.

 Those requests that did not reference the migrating file system.

	It should be noted that the history of any particular slot is likely
	to include a number of these request classes. In the case in which
	a session that is migrated is used by file systems other than the
	one migrated, requests of class 5 may be common and may be the last
	request processed for many slots.

	Since session state can change even after the locking
	state has been fixed as part of the migration process,
	the session state known to the client could be different from that on
	the destination server, which necessarily reflects the session
	state on the source server at an earlier time.
 In deciding how to deal with this situation, it is helpful to
 distinguish between two sorts of behavioral consequences of
 the choice of initial sequence ID values:

 The error NFS4ERR_SEQ_MISORDERED is returned when the sequence ID
 in a request is neither equal to the last one seen for the
 current slot nor the next greater one.

 In view of the difficulty of arriving at a mutually acceptable
 value for the correct last sequence value at the point of migration,
 it may be necessary for the server to show some degree of
 forbearance when the sequence ID is one that would be
 considered unacceptable if session migration were not
 involved.

 Returning the cached reply for a previously executed
 request when the sequence ID
 in the request matches the last value recorded for the slot.

 In the cases in which an error is returned and there is no
 possibility of any non-idempotent operation having been executed,
 it may not be necessary to adhere to this as strictly as might
 be proper if session migration were not involved. For example,
 the fact that the error NFS4ERR_DELAY
 was returned may not assist the client in any material way, while
 the fact that NFS4ERR_MOVED was returned by the source server
 may not be relevant when the request was reissued and directed
 to the destination server.

 An important issue is that the specification needs to take note of
 all potential COMPOUNDs, even if they might be unlikely
 in practice. For example, a COMPOUND is allowed to access
 multiple file systems and might perform non-idempotent operations
 in some of them before accessing a file system being migrated.
 Also, a COMPOUND may return considerable data in the response
 before being rejected with NFS4ERR_DELAY or NFS4ERR_MOVED, and may
 in addition be marked as sa_cachethis. However, note that
	if the client and server adhere to rules in
	 , there is no possibility of
	non-idempotent operations being spuriously reissued after receiving
	NFS4ERR_DELAY response.

 To address these issues, a destination server MAY do any of
 the following when implementing session transfer:

 Avoid enforcing any sequencing semantics for a particular slot
 until the client has established the starting sequence for that
 slot on the destination server.

 For each slot, avoid
 returning a cached reply returning NFS4ERR_DELAY or NFS4ERR_MOVED
 until the client has established the starting sequence for that
 slot on the destination server.

 Until the client has established the starting sequence for a
 particular slot on the destination server, avoid reporting
 NFS4ERR_SEQ_MISORDERED or returning a cached reply that contains
 either NFS4ERR_DELAY or NFS4ERR_MOVED and consists solely of
 a series of operations where the response is NFS4_OK until the
 final error.

	Because of the considerations mentioned above, including the rules
	for the handling of NFS4ERR_DELAY included in
	 , the destination
	server can respond appropriately to SEQUENCE operations received
	from the client by adopting the three policies listed below:

 Not responding with NFS4ERR_SEQ_MISORDERED for the initial
	 request on a slot within a transferred session because the
	 destination server cannot be aware of requests made by the
	 client after the server handoff but before the client became
	 aware of the shift. In cases in which NFS4ERR_SEQ_MISORDERED
	 would normally have been reported, the request is to be processed
	 normally as a new request.
	

 Replying as it would for a retry whenever the sequence matches
	 that transferred by the source server, even though this would
	 not provide retry handling for requests issued after the server
	 handoff, under the assumption that, when such requests are issued,
	 they will never be responded to in a state-changing fashion,
	 making retry support for them unnecessary.
	

 Once a non-retry SEQUENCE is received for a given slot, using
	 that as the basis for further sequence checking, with no further
	 reference to the sequence value transferred by the source server.
	

 Effecting File System Referrals

 Referrals are effected when an absent file system is encountered
 and one or more alternate locations are made available by the
 fs_locations or fs_locations_info attributes. The client will
 typically get an NFS4ERR_MOVED error, fetch the appropriate
 location information, and proceed to access the file system on
 a different server, even though it retains its logical position
 within the original namespace. Referrals differ from migration
 events in that they happen only when the client has not
 previously referenced the file system in question (so there
 is nothing to transition). Referrals can only come into
 effect when an absent file system is encountered at its
 root.

 The examples given in the sections below are somewhat artificial in
 that an actual client will not typically do a multi-component
 look up, but will have cached information regarding the upper levels
 of the name hierarchy. However, these examples are chosen to make
 the required behavior clear and easy to put within the scope of a
 small number of requests, without getting into a discussion of the details of
 how specific clients might choose to cache things.

 Referral Example (LOOKUP)

 Let us suppose that the following COMPOUND is sent in an
 environment in which /this/is/the/path is absent from the
 target server. This may be for a number of reasons. It may
 be that the file system has moved, or it may be that
 the target server is functioning mainly, or solely, to refer
 clients to the servers on which various file systems are located.

 PUTROOTFH

 LOOKUP "this"

 LOOKUP "is"

 LOOKUP "the"

 LOOKUP "path"

 GETFH

 GETATTR (fsid, fileid, size, time_modify)

 Under the given circumstances, the following will be the result.

 PUTROOTFH --> NFS_OK. The current fh is now the root of
 the pseudo-fs.

 LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 LOOKUP "is" --> NFS_OK. The current fh is for /this/is
 and is within the pseudo-fs.

 LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the
 and is within the pseudo-fs.

 LOOKUP "path" --> NFS_OK. The current fh is for
 /this/is/the/path and is within a new, absent file system, but ...
 the client will never see the value of that fh.

 GETFH --> NFS4ERR_MOVED.
 Fails because current fh is in an absent file system at the start of
 the operation, and the specification makes no exception for GETFH.

 GETATTR (fsid, fileid, size, time_modify).
 Not executed because the failure of the GETFH stops processing
 of the COMPOUND.

 Given the failure of the GETFH, the client has the job of
 determining the root of the absent file system and where to find
 that file system, i.e., the server and path relative to that
 server's root fh. Note that in this example, the client did
 not obtain filehandles and attribute information (e.g., fsid) for
 the intermediate directories, so that it would not be sure where
 the absent file system starts. It could be the case, for example,
 that /this/is/the is the root of the moved file system and that
 the reason that the look up of "path" succeeded is that the
 file system was not absent on that operation but was moved between the last
 LOOKUP and the GETFH (since COMPOUND is not atomic). Even if we
 had the fsids for all of the intermediate directories, we could
 have no way of knowing that /this/is/the/path was the root of a
 new file system, since we don't yet have its fsid.

 In order to get the necessary information, let us re-send the
 chain of LOOKUPs with GETFHs and GETATTRs to at least get the
 fsids so we can be sure where the appropriate file system boundaries are.
 The client could choose to get fs_locations_info
 at the same time but in
 most cases the client will have a good guess as to where file system
 boundaries are (because of where NFS4ERR_MOVED was, and was not,
 received) making fetching of fs_locations_info unnecessary.

 OP01:

 PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 OP02:

 GETATTR(fsid) --> NFS_OK

 Just for completeness. Normally, clients will know the fsid
 of the pseudo-fs as soon as they establish communication with
 a server.

 OP03:
 LOOKUP "this" --> NFS_OK
 OP04:

 GETATTR(fsid) --> NFS_OK

	 Get current fsid to see where file system boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 OP05:

 GETFH --> NFS_OK

 Current fh is for /this and is within pseudo-fs.

 OP06:

 LOOKUP "is" --> NFS_OK

 Current fh is for /this/is and is within pseudo-fs.

 OP07:

 GETATTR(fsid) --> NFS_OK

 Get current fsid to see where file system boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 OP08:

 GETFH --> NFS_OK

 Current fh is for /this/is and is within pseudo-fs.

 OP09:

 LOOKUP "the" --> NFS_OK

 Current fh is for /this/is/the and is within pseudo-fs.

 OP10:

 GETATTR(fsid) --> NFS_OK

	 Get current fsid to see where file system boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 OP11:

 GETFH --> NFS_OK

 Current fh is for /this/is/the and is within pseudo-fs.

 OP12:

 LOOKUP "path" --> NFS_OK

 Current fh is for /this/is/the/path and is within a new,
 absent file system, but ...

 The client will never see the value of that fh.

 OP13:

 GETATTR(fsid, fs_locations_info) --> NFS_OK

 We are getting the fsid to know where the file system boundaries are.
 In this operation, the fsid will be different than that of the
 parent directory (which in turn was retrieved in OP10).
 Note that the fsid we are given will not necessarily be preserved at the new
 location. That fsid might be different, and in fact the fsid
 we have for this file system might be a valid fsid of a different
 file system on that new server.

 In this particular case, we are pretty sure anyway that what
 has moved is /this/is/the/path rather than /this/is/the
 since we have the fsid of the latter and it is that of the
 pseudo-fs, which presumably cannot move. However, in other
 examples, we might not have this kind of information to rely
 on (e.g., /this/is/the might be a non-pseudo file system
 separate from /this/is/the/path), so we need to have
 other reliable source information on the boundary of the file system
 that is moved. If, for example, the file system /this/is
 had moved, we would have a case of migration rather than
 referral, and once the boundaries of the migrated file system
 was clear we could fetch fs_locations_info.

 We are fetching fs_locations_info because the fact that we got an
 NFS4ERR_MOVED at this point means that it is most likely that
 this is a referral and we need the destination. Even if it is
 the case that /this/is/the is a file system that has
 migrated, we will still need the location information for that
 file system.

 OP14:

 GETFH --> NFS4ERR_MOVED

 Fails because current fh is in an absent file system at the start of
 the operation, and the specification makes no exception for GETFH. Note
 that this means the server will never send the client a
 filehandle from within an absent file system.

 Given the above, the client knows where the root of the absent file
 system is (/this/is/the/path) by noting where the change of
 fsid occurred (between "the" and "path"). The
 fs_locations_info attribute also gives the client the
 actual location of
 the absent file system, so that the referral can proceed. The
 server gives the client the bare minimum of information about the
 absent file system so that there will be very little scope for
 problems of conflict between information sent by the referring
 server and information of the file system's home. No filehandles
 and very few attributes are present on the referring server, and the
 client can treat those it receives as transient
 information with the function of enabling the referral.

 Referral Example (READDIR)

 Another context in which a client may encounter referrals is when
 it does a READDIR on a directory in which some of the sub-directories
 are the roots of absent file systems.

 Suppose such a directory is read as follows:

 PUTROOTFH

 LOOKUP "this"

 LOOKUP "is"

 LOOKUP "the"

 READDIR (fsid, size, time_modify, mounted_on_fileid)

 In this case, because rdattr_error is not requested,
 fs_locations_info
 is not requested, and some of the attributes cannot be provided, the
 result will be an NFS4ERR_MOVED error on the READDIR, with the
 detailed results as follows:

 PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 LOOKUP "is" --> NFS_OK. The current fh is for /this/is
 and is within the pseudo-fs.

 LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the
 and is within the pseudo-fs.

 READDIR (fsid, size, time_modify, mounted_on_fileid) -->
 NFS4ERR_MOVED. Note that the same error would have been
 returned if /this/is/the had migrated, but it is returned because the
 directory contains the root of an absent file system.

 So now suppose that we re-send with rdattr_error:

 PUTROOTFH

 LOOKUP "this"

 LOOKUP "is"

 LOOKUP "the"

 READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

 The results will be:

 PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 LOOKUP "is" --> NFS_OK. The current fh is for /this/is
 and is within the pseudo-fs.

 LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the
 and is within the pseudo-fs.

 READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)
 --> NFS_OK. The attributes for directory entry with the
 component named "path" will only contain
 rdattr_error
 with the value NFS4ERR_MOVED, together with an fsid
 value and a value for mounted_on_fileid.

 Suppose we do another READDIR to get fs_locations_info (although
 we could have used a GETATTR directly, as in
).

 PUTROOTFH

 LOOKUP "this"

 LOOKUP "is"

 LOOKUP "the"

 READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
 size, time_modify)

 The results would be:

 PUTROOTFH --> NFS_OK. The current fh is at the root of the
 pseudo-fs.

 LOOKUP "this" --> NFS_OK. The current fh is for /this and is
 within the pseudo-fs.

 LOOKUP "is" --> NFS_OK. The current fh is for /this/is
 and is within the pseudo-fs.

 LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the
 and is within the pseudo-fs.

 READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
 size, time_modify) --> NFS_OK. The attributes will be as shown below.

 The attributes for the directory entry with the
 component named "path" will only contain:

 rdattr_error (value: NFS_OK)

 fs_locations_info

 mounted_on_fileid (value: unique fileid within referring file system)

 fsid (value: unique value within referring server)

 The attributes for entry "path" will not contain size or
 time_modify because these attributes are not available within an
 absent file system.

 The Attribute fs_locations

 The fs_locations attribute is structured in the following way:

struct fs_location4 {
 utf8str_cis server<>;
 pathname4 rootpath;
};

struct fs_locations4 {
 pathname4 fs_root;
 fs_location4 locations<>;
};

 The fs_location4 data type is used to represent the location of a
 file system by providing a server name and the path to the root
 of the file system within that server's namespace.
 When a set of servers have corresponding file systems at the
 same path within their namespaces, an array of server names may
 be provided. An
 entry in the server array is a UTF-8 string and represents one
 of a
 traditional DNS host name, IPv4 address, IPv6 address, or a
 zero-length string.
 An IPv4 or IPv6 address is represented as a universal
 address (see and), minus the netid, and either with
 or without the trailing ".p1.p2" suffix that
 represents the port number. If the suffix is omitted,
 then the default port, 2049, SHOULD be assumed.

 A zero-length string SHOULD be used to indicate the current address
 being used for the RPC call. It is not
 a requirement that all servers that share the same rootpath
 be listed
 in one fs_location4 instance. The array of server names is provided for
 convenience. Servers that share the same rootpath may also be listed
 in separate fs_location4 entries in the fs_locations attribute.

 The fs_locations4 data type and the fs_locations attribute each
 contain an array of
 such locations. Since the namespace of each server may be
 constructed differently, the "fs_root" field is provided. The
 path represented
 by fs_root represents the location of the file system in the
 current server's namespace, i.e., that of the
 server from which the fs_locations attribute was obtained. The
 fs_root path is meant to aid the client by clearly referencing
 the root of the file system whose locations are being reported,
 no matter what object within the current file system the
 current filehandle designates. The fs_root is simply the
 pathname the client used to reach the object on the current server
 (i.e., the object to which the fs_locations attribute applies).

 When the fs_locations attribute
 is interrogated and there are no alternate file system locations,
 the server SHOULD return a zero-length array of fs_location4
 structures, together with a valid fs_root.

 As an example, suppose there is a replicated file system located
 at two
 servers (servA and servB). At servA, the file system is located at
 path /a/b/c. At, servB the file system is located at path /x/y/z.
 If the client were to obtain the fs_locations value for the
 directory at /a/b/c/d, it might not necessarily know
 that the file system's root is located in servA's namespace
 at /a/b/c. When the client switches to servB, it will need
 to determine that the directory it first referenced at servA is now
 represented by the path /x/y/z/d on servB. To facilitate this, the
 fs_locations attribute provided by servA would have an fs_root value
 of /a/b/c and two entries in fs_locations. One entry in fs_locations
 will be for itself (servA) and the other will be for servB with a
 path of /x/y/z. With this information, the client is able to
 substitute /x/y/z for the /a/b/c at the beginning of its access
 path and construct /x/y/z/d to use for the new server.

 Note that there is no requirement that the number
 of components in each rootpath be the same; there
 is no relation between the number of components in
 rootpath or fs_root, and none of the components
 in a rootpath and fs_root have to be the same. In
 the above example, we could have had a third element
 in the locations array, with server equal to "servC"
 and rootpath equal to "/I/II", and a fourth element in
 locations with server equal to "servD" and rootpath
 equal to "/aleph/beth/gimel/daleth/he".

 The relationship between fs_root to a rootpath is
 that the client replaces the pathname indicated in
 fs_root for the current server for the substitute
 indicated in rootpath for the new server.

 For an example of a referred or migrated file
 system, suppose there is a file system located
 at serv1. At serv1, the file system is located at
 /az/buky/vedi/glagoli. The client finds that object
 at glagoli has migrated (or is a referral). The
 client gets the fs_locations attribute, which contains
 an fs_root of /az/buky/vedi/glagoli, and one element
 in the locations array, with server equal to serv2,
 and rootpath equal to /izhitsa/fita. The client
 replaces /az/buky/vedi/glagoli with /izhitsa/fita,
 and uses the latter pathname on serv2.

 Thus, the server MUST return an fs_root that is equal
 to the path the client used to reach the object to which the
 fs_locations attribute applies. Otherwise, the
 client cannot determine the new path to use on the new server.

 Since the fs_locations attribute lacks information defining various
 attributes of the various file system choices presented, it SHOULD
 only be interrogated and used when fs_locations_info is not available.
 When fs_locations is used, information about the
 specific locations should be assumed based on the following rules.

 The following rules are general and apply irrespective of the
 context.

 All listed
 file system instances should be considered as of the
 same handle class, if and only if, the
 current fh_expire_type attribute does not include the
 FH4_VOL_MIGRATION
 bit. Note that in the case of referral, filehandle issues do
 not apply since there can be no filehandles known within the
 current file system, nor is there any access to the fh_expire_type
 attribute on the referring (absent) file system.

 All listed file system instances should be considered as of the
 same fileid class if and only if the
 fh_expire_type attribute indicates persistent filehandles and
 does not include the FH4_VOL_MIGRATION
 bit. Note that in the case of referral, fileid issues do
 not apply since there can be no fileids known within the
 referring (absent) file system, nor is there any access to
 the fh_expire_type attribute.

 All file system instances
 servers should be considered as of different
 change classes.

 For other class assignments, handling of file system
 transitions depends on the reasons for the transition:

 When the transition is due to migration, that is, the client was
 directed to a new file system after receiving an NFS4ERR_MOVED error,
 the target should be
 treated as being of the same
 write-verifier class as the source.

 When the transition is due to failover to another replica,
 that is, the client selected another replica without
 receiving an NFS4ERR_MOVED error, the target should be
 treated as being of a different
 write-verifier class from the source.

 The specific choices reflect typical implementation patterns for
 failover and controlled migration, respectively. Since other
 choices are possible and useful, this information is better
 obtained by using fs_locations_info. When a server implementation
 needs to communicate other choices, it MUST support the
 fs_locations_info attribute.

 See for a
 discussion on the recommendations for the security
 flavor to be used by any GETATTR operation that
 requests the fs_locations attribute.

 The Attribute fs_locations_info

 The fs_locations_info attribute is intended as a more functional
 replacement for the fs_locations attribute, which will continue to exist
 and be supported. Clients can use it to get a more complete set of
 data about alternative file system locations, including additional
 network paths to access replicas in use and additional replicas.
 When the server does not support
 fs_locations_info, fs_locations can be used to get a subset of the
 data. A server that supports fs_locations_info MUST support
 fs_locations as well.

 There is additional data present in
 fs_locations_info that is not available in fs_locations:

 Attribute continuity information. This information
 will allow a client to select a
 replica that meets the transparency requirements of the
 applications accessing the data and to leverage
 optimizations due to the server guarantees of attribute
 continuity (e.g., if the
 change attribute of a file of the file system is continuous
	between multiple replicas,
 the client does not have to invalidate the file's cache
	when switching to a different replica).

 File system identity information that indicates when multiple
 replicas, from the client's point of view, correspond to the
 same target file system, allowing them to be used
 interchangeably, without disruption, as distinct synchronized
	replicas of the same file data.

 Note that having two replicas with common identity information is
 distinct from the case of two (trunked) paths to the same
	replica.

 Information that will bear on the suitability of various
 replicas, depending on the use that the client intends. For
 example, many applications need an absolutely up-to-date copy
 (e.g., those that write), while others may only need access to
 the most up-to-date copy reasonably available.

 Server-derived preference information for replicas, which can
 be used to implement load-balancing while giving the client
 the entire file system list to be used in case the primary fails.

 The fs_locations_info attribute is structured similarly to the
 fs_locations attribute. A top-level structure
 (fs_locations_info4) contains the entire attribute including the root
 pathname of the file system and an array of lower-level structures that
 define replicas that share a common rootpath on their respective
 servers. The lower-level structure in turn
 (fs_locations_item4) contains a specific pathname and information on one
 or more individual network access paths. For that last, lowest level,
 fs_locations_info has an fs_locations_server4
 structure that contains per-server-replica information in addition
 to the file system
 location entry. This per-server-replica information includes a
 nominally opaque array, fls_info, within which specific pieces
 of information are located at the specific indices listed below.

 Two fs_location_server4 entries that are within different
 fs_location_item4 structures are never trunkable, while two entries
 within in the same fs_location_item4 structure might or might not be
 trunkable. Two entries that are trunkable will have identical
 identity information, although, as noted above, the converse is
 not the case.

 The attribute will always contain at least a single fs_locations_server
 entry. Typically, there will be an entry with the FS4LIGF_CUR_REQ
 flag set, although in the case of a referral there will be no
 entry with that flag set.

 It should be noted that fs_locations_info attributes returned by
 servers for various replicas may differ for various reasons.
 One server may know about a set of replicas that are not known to
 other servers. Further, compatibility attributes may differ.
 Filehandles might be of the same class going from replica A to
 replica B but not going in the reverse direction. This might happen
 because the filehandles are the same, but
 replica B's server implementation might not have provision to note
 and report that equivalence.

 The fs_locations_info attribute consists of a root
 pathname (fli_fs_root, just like fs_root in the
 fs_locations attribute), together with an array of
 fs_location_item4 structures. The fs_location_item4
 structures in turn consist of a root pathname
 (fli_rootpath) together with an array (fli_entries)
 of elements of data type fs_locations_server4,
 all defined as follows.

/*
 * Defines an individual server access path
 */
struct fs_locations_server4 {
 int32_t fls_currency;
 opaque fls_info<>;
 utf8str_cis fls_server;
};

/*
 * Byte indices of items within
 * fls_info: flag fields, class numbers,
 * bytes indicating ranks and orders.
 */
const FSLI4BX_GFLAGS = 0;
const FSLI4BX_TFLAGS = 1;

const FSLI4BX_CLSIMUL = 2;
const FSLI4BX_CLHANDLE = 3;
const FSLI4BX_CLFILEID = 4;
const FSLI4BX_CLWRITEVER = 5;
const FSLI4BX_CLCHANGE = 6;
const FSLI4BX_CLREADDIR = 7;

const FSLI4BX_READRANK = 8;
const FSLI4BX_WRITERANK = 9;
const FSLI4BX_READORDER = 10;
const FSLI4BX_WRITEORDER = 11;

/*
 * Bits defined within the general flag byte.
 */
const FSLI4GF_WRITABLE = 0x01;
const FSLI4GF_CUR_REQ = 0x02;
const FSLI4GF_ABSENT = 0x04;
const FSLI4GF_GOING = 0x08;
const FSLI4GF_SPLIT = 0x10;

/*
 * Bits defined within the transport flag byte.
 */
const FSLI4TF_RDMA = 0x01;

/*
 * Defines a set of replicas sharing
 * a common value of the rootpath
 * within the corresponding
 * single-server namespaces.
 */
struct fs_locations_item4 {
 fs_locations_server4 fli_entries<>;
 pathname4 fli_rootpath;
};

/*
 * Defines the overall structure of
 * the fs_locations_info attribute.
 */
struct fs_locations_info4 {
 uint32_t fli_flags;
 int32_t fli_valid_for;
 pathname4 fli_fs_root;
 fs_locations_item4 fli_items<>;
};

/*
 * Flag bits in fli_flags.
 */
const FSLI4IF_VAR_SUB = 0x00000001;

typedef fs_locations_info4 fattr4_fs_locations_info;

 As noted above, the fs_locations_info attribute, when supported, may
 be requested of absent file systems without causing NFS4ERR_MOVED to
 be returned. It is generally expected that it will be available for
 both present and absent file systems even if only a single
 fs_locations_server4 entry is present, designating the current (present)
 file system, or two fs_locations_server4 entries designating the
 previous location of an absent file system (the one just referenced) and its
 successor location. Servers are strongly urged to support this
 attribute on all file systems if they support it on any file system.

 The data presented in the fs_locations_info attribute may be obtained
 by the server in any number of ways, including specification by
 the administrator or by current protocols for transferring data
 among replicas and protocols not yet developed. NFSv4.1 only defines
 how this information is presented by the server to
 the client.

 The fs_locations_server4 Structure

 The fs_locations_server4 structure consists of the following items
	in addition to the fls_server field, which specifies a network
	address or set of addresses to be used to access the specified file
	system. Note that both of these items (i.e., fls_currency and
	fls_info)
	specify attributes of the
	file system replica and should not be different when there are
	multiple fs_locations_server4 structures, each
	specifying a network path to the chosen replica, for the same
 replica.

	When these values are different in two fs_locations_server4 structures,
	a client has no basis for choosing one over the other and is best off
	simply ignoring both entries, whether these entries apply to migration
	replication or referral. When there are more than two such entries,
	majority voting can be used to exclude a single erroneous entry from
	consideration. In the case in which trunking information is provided
	for a replica currently being accessed, the additional trunked addresses
	can be ignored while access continues on the address currently being
	used, even if the entry corresponding to that path might be considered
	invalid.

 An indication of how up-to-date the file system is (fls_currency) in
 seconds. This value
 is relative to the master copy. A negative
 value indicates that the server is unable to give any
 reasonably useful value here. A value of zero indicates that the
 file system is the actual writable data or a reliably coherent
 and fully up-to-date copy. Positive values indicate how
 out-of-date this copy can normally be before it is considered for
 update. Such a value is not a guarantee that such updates
 will always be performed on the required schedule but instead
 serves as a hint about how far the copy of the data would be
 expected to be behind the most up-to-date copy.

 A counted array of one-byte values (fls_info) containing
 information about the particular file system instance. This
 data includes general flags, transport capability flags,
 file system equivalence class information, and selection
 priority information. The encoding will be discussed below.

 The server string (fls_server). For the case of the
 replica currently
 being accessed (via GETATTR), a zero-length string MAY be used to
 indicate the current address being used for the RPC call.
 The fls_server field can also be an IPv4 or IPv6 address,
 formatted the same way as an IPv4 or IPv6 address in the "server"
 field of the fs_location4 data type (see
).

	With the exception of the transport-flag field (at offset
	FSLI4BX_TFLAGS with the fls_info array), all of this data defined
	in this specification applies to the replica specified by the entry,
 rather than the specific network path used to access it.
 The classification of data in extensions to this data is discussed below.

 Data within the fls_info array is in the form of 8-bit data items
 with constants giving the offsets within the array of various
 values describing this particular file system instance.
 This style of
 definition was chosen, in preference to explicit XDR
 structure definitions for these values, for a number of
 reasons.

 The kinds of data in the fls_info array, representing flags,
 file system classes, and priorities among sets of file systems
 representing the same data, are such that 8 bits provide
 a quite acceptable range of values. Even where there might
 be more than 256 such file system instances, having more than
 256 distinct classes or priorities is unlikely.

 Explicit definition of the various specific data items within
 XDR would limit expandability in that any extension within
 would require yet another attribute,
 leading to specification and implementation clumsiness.
	 In the context of the NFSv4 extension model in effect at the time
	 fs_locations_info was designed (i.e., that which is described in
	 RFC 5661), this would
 necessitate a new minor version
	 to effect any Standards Track extension to the data in fls_info.

 The set of fls_info data is subject to expansion in a future minor
 version or in a Standards Track RFC within the context of a single
 minor version. The server SHOULD NOT send and the
 client MUST NOT use indices within the fls_info array
 or flag bits that are not defined in Standards Track RFCs.

	In light of the new extension model defined in RFC 8178
	
	and the fact that the individual items within fls_info are not
	explicitly referenced in the XDR, the following practices should be
	followed when extending or otherwise changing the structure of
	the data returned in fls_info within the scope of a single minor
	version:

	 All extensions need to be described by Standards Track documents.
	 There is no need for such documents to be marked as updating
	 RFC 5661 or this document.

	 It needs to be made clear whether the information in any added data
	 items applies to the replica specified by the entry or to the specific
	 network paths specified in the entry.
	

	 There needs to be a reliable way defined to determine whether the
	 server is aware of the extension. This may be based on the
	 length field of the fls_info array, but it is more flexible to
	 provide fs-scope or server-scope attributes to indicate what
	 extensions are provided.

 This encoding scheme can be adapted to the specification of
 multi-byte numeric values, even though none are currently
 defined. If extensions are made via Standards Track RFCs,
 multi-byte quantities will be encoded as a range of bytes
 with a range of indices, with the byte interpreted in big-endian
 byte order. Further, any such index assignments will be constrained
 by the need for the relevant quantities not to
	cross XDR word boundaries.

 The fls_info array currently contains:

 Two 8-bit flag fields, one devoted to general file-system
 characteristics and a second reserved for transport-related
 capabilities.

 Six 8-bit class values that define various file system
 equivalence classes as explained below.

 Four 8-bit priority values that govern file system selection
 as explained below.

 The general file system characteristics flag (at byte index
 FSLI4BX_GFLAGS) has the following
 bits defined within it:

 FSLI4GF_WRITABLE indicates that this file system target is writable,
 allowing it to be selected by clients that may need to write
 on this file system. When the current file system instance
 is writable and is defined as of the same simultaneous use
 class (as specified by the value at index FSLI4BX_CLSIMUL)
 to which the client was previously writing, then it must
 incorporate within its data any committed
 write made on the source file system instance. See
 , which discusses
 the write-verifier class. While there is no harm in not setting
 this flag for a file system that turns out to be writable,
 turning the flag on for a read-only file system can cause
 problems for clients that select a migration or replication
 target based on the flag and then find themselves unable to write.

 FSLI4GF_CUR_REQ indicates that this replica is the one on which
 the request is being made. Only a single server entry may
 have this flag set and, in the case of a referral, no entry
 will have it set. Note that this flag might be set even if the
	 request was made on a network access path different from any of
	 those specified in the current entry.

 FSLI4GF_ABSENT indicates that this entry corresponds to an absent
 file system replica. It can only be set if FSLI4GF_CUR_REQ is set.
 When both such bits are set, it indicates that a file system
 instance is not usable but that the information in the entry
 can be used to determine the sorts of continuity available
 when switching from this replica to other possible replicas.
 Since this bit can only be true if FSLI4GF_CUR_REQ is true, the
 value could be determined using the fs_status attribute, but
 the information is also made available here for the
 convenience of the client. An entry with this bit, since it
 represents a true file system (albeit absent), does not appear
 in the event of a referral, but only when a file system has
 been accessed at this location and has subsequently been migrated.

 FSLI4GF_GOING indicates that a replica, while still available,
 should not be used further. The client, if using it, should
 make an orderly transfer to another file system instance as
 expeditiously as possible. It is expected that file systems
 going out of service will be announced as FSLI4GF_GOING some time
 before the actual loss of service. It is also expected that the
	 fli_valid_for value
 will be sufficiently small to allow clients to detect and act
 on scheduled events, while large enough that the cost of the
 requests to fetch the fs_locations_info values will not be
 excessive. Values on the order of ten minutes seem
 reasonable.

 When this flag is seen as part of a transition into a new
 file system, a client might choose to transfer immediately
 to another replica, or it may reference the current file system
 and only transition when a migration event occurs. Similarly,
 when this flag appears as a replica in the referral, clients
 would likely avoid being referred to this instance whenever
 there is another choice.

	 This flag, like the other items within fls_info, applies to the
	 replica rather than to a particular path to that replica. When
	 it appears, a transition to a new replica, rather than to a
	 different path to the same replica, is indicated.

 FSLI4GF_SPLIT indicates that when a transition occurs from
 the current file system instance to this one, the replacement
 may consist of multiple file systems. In this case, the
 client has to be prepared for the possibility that objects
 on the same file system before migration will be on different ones
 after. Note that FSLI4GF_SPLIT is not incompatible with the
 file systems belonging to the same fileid
 class
 since, if one has a set of fileids that are unique within
 a file system, each subset assigned to a smaller file system after migration
 would not have any conflicts internal to that file system.

 A client, in the case of a split file system, will interrogate
 existing files with which it has continuing connection (it
 is free to simply forget cached filehandles). If the client
 remembers the directory filehandle associated with each open
 file, it may proceed upward using LOOKUPP to find the new file system
 boundaries. Note that in the event of a referral, there will
 not be any such files and so these actions will not be performed.
	 Instead, a reference to a portion of the original
	 file system now split off into other file systems
	 will encounter an fsid change and possibly a
	 further referral.

 Once the client recognizes that one file system has been split
 into two, it can prevent the disruption of running applications
 by presenting the two file systems as a single
 one until a convenient point to recognize the transition,
 such as a restart. This would require a mapping
 from the server's fsids to fsids as seen by the client, but
 this is already necessary for other reasons. As noted
 above, existing fileids within the two descendant file systems
 will not conflict. Providing non-conflicting fileids for
 newly created files on the split file systems
 is the responsibility of the server (or servers working in
 concert). The server can encode filehandles such
 that filehandles generated before the split event can be discerned
 from those generated after the split,
 allowing the server to determine when the need
 for emulating two file systems as one is over.

 Although it is possible for this flag to be present in the
 event of referral, it would generally be of little interest
 to the client, since the client is not expected to have
 information regarding the current contents of the absent
 file system.

 The transport-flag field (at byte index FSLI4BX_TFLAGS) contains
 the following bits related to the transport
 capabilities of the specific network path(s) specified by the
	entry:

 FSLI4TF_RDMA indicates that any specified network paths
	 provide NFSv4.1 clients
 access using an RDMA-capable transport.

 Attribute continuity and file system identity information are
 expressed by defining equivalence relations on the sets of
 file systems presented to the client. Each such relation
 is expressed as a set of file system equivalence classes.
 For each relation, a file system has an 8-bit class number.
 Two file systems belong to the same class if both have
 identical non-zero class numbers. Zero is treated as
 non-matching. Most often,
 the relevant question for the client will be whether a
 given replica is identical to / continuous with the current one in a
 given respect, but the information should be available also as to
 whether two other replicas match in that respect as well.

 The following fields specify the file system's class numbers
 for the equivalence relations used in determining the nature of
 file system transitions. See Sections
	
	through
	and their various subsections
 for details about how
 this information is to be used. Servers may assign these values
 as they wish, so long as file system instances that share the
 same value have the specified relationship to one another;
 conversely, file systems that have the specified relationship
 to one another share a common class value. As each instance
 entry is added, the relationships of this instance to previously
 entered instances can be consulted, and if one is found that
 bears the specified relationship, that entry's class value can
 be copied to the new entry. When no such previous entry exists,
 a new value for that byte index (not previously used) can be
 selected, most likely by incrementing the value of the last class
 value assigned for that index.

 The field with byte index FSLI4BX_CLSIMUL defines the
 simultaneous-use class for the file system.

 The field with byte index FSLI4BX_CLHANDLE defines the handle
 class for the file system.

 The field with byte index FSLI4BX_CLFILEID defines the fileid
 class for the file system.

 The field with byte index FSLI4BX_CLWRITEVER defines the
 write-verifier class for the file system.

 The field with byte index FSLI4BX_CLCHANGE defines the change
 class for the file system.

 The field with byte index FSLI4BX_CLREADDIR defines the readdir
 class for the file system.

 Server-specified preference information is also provided via
 8-bit values within the fls_info array. The values provide a
 rank and an order (see below) to be used with separate values
 specifiable for the cases of read-only and writable file
 systems.
 These values are compared
 for different file systems to establish the server-specified
 preference, with lower values indicating "more preferred".

 Rank is used to express a strict server-imposed ordering on
 clients, with lower values indicating "more preferred". Clients
 should attempt to use all replicas with a given rank before they
 use one with a higher rank. Only if all of those file systems are
 unavailable should the client proceed to those of a higher rank.
 Because specifying a rank will override client preferences, servers
 should be conservative about using this mechanism, particularly
 when the environment is one in which client communication characteristics
 are neither tightly controlled nor visible to the server.

 Within a rank, the order value is used to specify the server's
 preference to guide the client's selection when the client's own
 preferences are not controlling, with lower values of order
 indicating "more preferred". If replicas are approximately equal
 in all respects, clients should defer to the order specified by the
 server. When clients look at server latency as part of their
 selection, they are free to use this criterion, but it is suggested
 that when latency differences are not significant, the
 server-specified order should guide selection.

 The field at byte index FSLI4BX_READRANK gives the rank value to
 be used for read-only access.

 The field at byte index FSLI4BX_READORDER gives the order value to
 be used for read-only access.

 The field at byte index FSLI4BX_WRITERANK gives the rank value to
 be used for writable access.

 The field at byte index FSLI4BX_WRITEORDER gives the order value to
 be used for writable access.

 Depending on the potential need for write access by a given client,
 one of the pairs of rank and order values is used.
 The read rank and order should only be used
 if the client knows that only reading will ever be done or if it is
 prepared to switch to a different replica in the event that any
 write access capability is required in the future.

 The fs_locations_info4 Structure

 The fs_locations_info4 structure, encoding the fs_locations_info
 attribute, contains the following:

 The fli_flags field, which contains general flags that affect
 the interpretation of this fs_locations_info4 structure and
 all fs_locations_item4 structures within it. The only flag
 currently defined is FSLI4IF_VAR_SUB. All bits in the
	 fli_flags field that are not defined should always be returned as zero.

 The fli_fs_root field, which contains the pathname of the root of
 the current file system on the current server, just as it does
 in the fs_locations4 structure.

 An array called fli_items of fs_locations4_item structures, which contain
 information about replicas of the current file system. Where
 the current file system is actually present, or has been
 present, i.e., this is not a referral situation, one of the
 fs_locations_item4 structures will contain an fs_locations_server4 for
 the current server. This structure will have FSLI4GF_ABSENT set
 if the current file system is absent, i.e., normal access to it
 will return NFS4ERR_MOVED.

 The fli_valid_for field specifies a time in seconds
 for which it is reasonable for a client to use the fs_locations_info attribute
 without refetch. The fli_valid_for value does not provide a
 guarantee of validity since servers can unexpectedly go out of
 service or become inaccessible for any number of reasons.
 Clients are well-advised to refetch this information for an
 actively accessed file system at every fli_valid_for seconds. This
 is particularly important when file system replicas may go out
 of service in a controlled way using the FSLI4GF_GOING flag to
 communicate an ongoing change. The server should set
 fli_valid_for to a value that allows well-behaved clients to
 notice the FSLI4GF_GOING flag and make an orderly switch before
 the loss of service becomes effective. If this value is zero,
 then no refetch interval is appropriate and the client need
 not refetch this data on any particular schedule.
 In the event of a transition to a new file system instance, a
 new value of the fs_locations_info attribute will be fetched at
 the destination. It is to be expected that this may have a
 different fli_valid_for value, which the client should then use
 in the same fashion as the previous value. Because a refetch
	 of the attribute causes information from all component entries to
	 be refetched, the server will typically provide a low value for
	 this field if any of the replicas are likely to go out of service
	 in a short time frame. Note that, because of the ability of the
	 server to return NFS4ERR_MOVED to trigger the use of different paths,
	 when alternate trunked paths are available, there is generally no
	 need to use low values of fli_valid_for in connection with the
	 management of alternate paths to the same replica.

 The FSLI4IF_VAR_SUB flag within fli_flags controls whether variable
 substitution is to be enabled. See
 for an explanation of variable substitution.

 The fs_locations_item4 Structure

 The fs_locations_item4 structure contains a pathname
 (in the field fli_rootpath) that encodes
 the path of the target file system replicas on the set of
 servers designated by the included fs_locations_server4 entries.
 The precise manner in which this target location
 is specified depends on the value of the FSLI4IF_VAR_SUB
 flag within the associated fs_locations_info4 structure.

 If this flag is not set, then fli_rootpath simply designates
 the location of the target file system within each server's
 single-server namespace just as it does for the rootpath
 within the fs_location4 structure. When this bit is set,
 however, component entries of a certain form are subject
 to client-specific variable substitution so as to allow
 a degree of namespace non-uniformity in order to accommodate
 the selection of client-specific file system targets to
 adapt to different client architectures or other
 characteristics.

 When such substitution is in effect, a variable beginning
 with the string "${" and ending with the string "}"
 and containing a colon is to be
 replaced by the client-specific value associated with
 that variable. The string "unknown" should be used
 by the client when it has no value for such a variable.
 The pathname resulting from such
 substitutions is used to designate the target file system,
 so that different clients may have different file systems,
 corresponding to that location in the multi-server namespace.

 As mentioned above, such substituted pathname variables
 contain a colon. The part before the colon is to be a
 DNS domain name, and the part after is to be a case-insensitive
 alphanumeric string.

 Where the domain is "ietf.org", only variable names defined
 in this document or subsequent Standards Track RFCs
 are subject to such substitution. Organizations are
 free to use their domain names to create their own sets
 of client-specific variables, to be subject to such
 substitution. In cases where such variables are intended
 to be used more broadly than a single organization,
 publication of an Informational RFC defining such variables
 is RECOMMENDED.

 The variable ${ietf.org:CPU_ARCH} is used to denote that the
 CPU architecture object files are compiled. This specification
 does not limit the acceptable values (except that they must be
 valid UTF-8 strings), but such values as "x86", "x86_64", and "sparc"
 would be expected to be used in line with industry practice.

 The variable ${ietf.org:OS_TYPE} is used to denote the
 operating system, and thus the kernel and library APIs,
 for which code might be compiled. This specification does
 not limit the acceptable values (except that they must be
 valid UTF-8 strings), but such values as "linux" and "freebsd"
 would be expected to be used in line with industry practice.

 The variable ${ietf.org:OS_VERSION} is used to denote the
 operating system version, and thus the specific details
 of versioned interfaces,
 for which code might be compiled. This specification does
 not limit the acceptable values (except that they must be
 valid UTF-8 strings). However, combinations of numbers and
 letters with interspersed dots would be expected to be used
 in line with industry practice, with the details of the
 version format depending on the specific value of
 the variable ${ietf.org:OS_TYPE} with which
 it is used.

 Use of these variables could result in the direction of different
 clients to different file systems on the same server, as
 appropriate to particular clients. In cases in which the
 target file systems are located on different servers, a single
 server could serve as a referral point so that each valid
 combination of variable values would designate a referral
 hosted on a single server, with the targets of those referrals on
 a number of different servers.

 Because namespace administration is affected by the values
 selected to substitute for various variables, clients should
 provide convenient means of determining what variable
 substitutions a client will implement, as well as, where
 appropriate, providing means to control the substitutions to
 be used. The exact means by which this will be done is
 outside the scope of this specification.

 Although variable substitution is most suitable for use
 in the context of referrals, it may be used in the context
 of replication and migration. If it is used in these contexts,
 the server must ensure that no matter what values the
 client presents for the substituted variables, the result
 is always a valid successor file system instance to that
 from which a transition is occurring, i.e., that the data is
 identical or represents a later image of a writable file
 system.

 Note that when fli_rootpath is a null pathname (that is, one
 with zero components), the file system designated is at the
 root of the specified server, whether or not the FSLI4IF_VAR_SUB
 flag within the associated fs_locations_info4 structure is
 set.

 The Attribute fs_status

 In an environment in which multiple copies of the same basic set of
 data are available, information regarding the particular source of
 such data and the relationships among different copies can be very
 helpful in providing consistent data to applications.

enum fs4_status_type {
 STATUS4_FIXED = 1,
 STATUS4_UPDATED = 2,
 STATUS4_VERSIONED = 3,
 STATUS4_WRITABLE = 4,
 STATUS4_REFERRAL = 5
};

struct fs4_status {
 bool fss_absent;
 fs4_status_type fss_type;
 utf8str_cs fss_source;
 utf8str_cs fss_current;
 int32_t fss_age;
 nfstime4 fss_version;
};

 The boolean fss_absent indicates whether the file system is
 currently absent. This value will be set if the file system was
 previously present and becomes absent, or if the file system has
 never been present and the type is STATUS4_REFERRAL. When this
 boolean is set and the type is not STATUS4_REFERRAL, the
 remaining information in the fs4_status reflects that last valid
 when the file system was present.

 The fss_type field indicates the kind of file system image represented.
 This is of particular importance when using the version values to
 determine appropriate succession of file system images.
 When fss_absent is set, and the file system was previously
 present, the value of fss_type reflected is that when the file was last present.
 Five values are distinguished:

 STATUS4_FIXED, which indicates a read-only image in the sense
 that it will never change. The possibility is allowed that, as
 a result of migration or switch to a different image, changed
 data can be accessed, but within the confines of this instance,
 no change is allowed. The client can use this fact to
 cache aggressively.

 STATUS4_VERSIONED, which indicates that the image, like the
 STATUS4_UPDATED case, is updated externally, but it provides
 a guarantee that the server will carefully update an
 associated version value so that the client can
 protect itself from a situation in which it reads
 data from one version of the file system and then later reads
 data from an earlier version of the same file system. See
 below for a discussion of how this can be done.

 STATUS4_UPDATED, which indicates an image that cannot be
 updated by the user writing to it but that may be changed
 externally, typically because it is a periodically updated
 copy of another writable file system somewhere else. In
 this case, version information is not provided, and the
 client does not have the responsibility of making sure
 that this version only advances upon a file system instance
 transition. In this case, it is the responsibility of the
 server to make sure that the data presented after a file
 system instance transition is a proper successor image and
 includes all changes seen by the client and any change made
 before all such changes.

 STATUS4_WRITABLE, which indicates that the file system is an
 actual writable one. The client need not, of course, actually
 write to the file system, but once it does, it should not
 accept a transition to anything other than a writable instance
 of that same file system.

 STATUS4_REFERRAL, which indicates that the file system in
 question is absent and has never been present on this
 server.

 Note that in the STATUS4_UPDATED and STATUS4_VERSIONED cases, the
 server is responsible for the appropriate handling of locks that
 are inconsistent with external changes to delegations.
 If a server gives out delegations, they SHOULD be recalled
 before an inconsistent change is made to the data, and MUST
 be revoked if this is not possible. Similarly, if an OPEN is
 inconsistent with data that is changed (the OPEN has
 OPEN4_SHARE_DENY_WRITE/OPEN4_SHARE_DENY_BOTH
 and the data is changed), that OPEN SHOULD be considered
 administratively revoked.

 The opaque strings fss_source and fss_current provide a way of presenting
 information about the source of the file system image being present.
 It is not intended that the client do anything with this information
 other than make it available to administrative tools. It is
 intended that this information be helpful when researching possible
 problems with a file system image that might arise when it is
 unclear if the correct image is being accessed and, if not, how that
 image came to be made. This kind of diagnostic information will be
 helpful, if, as seems likely, copies of file systems are made in
 many different ways (e.g., simple user-level copies,
 file-system-level point-in-time copies,
 clones of the underlying storage),
 under a variety of administrative arrangements. In such
 environments, determining how a given set of data was constructed
 can be very helpful in resolving problems.

 The opaque string fss_source is used to indicate the source of a
 given file system with the expectation that tools capable of
 creating a file system image propagate this information, when
 possible. It is understood that this may not always be possible
 since a user-level copy may be thought of as creating a new data
 set and the tools used may have no mechanism to propagate this
 data. When a file system is initially created, it is desirable
 to associate with it
 data regarding how the file system was created, where it was
 created, who created it, etc. Making this information available
 in this attribute in a human-readable
 string will be helpful for applications and
 system administrators and will also serve to make it available when
 the original file system is used to make subsequent copies.

 The opaque string fss_current should provide whatever information is
 available about the source of the current copy. Such
 information includes
 the tool creating it, any relevant parameters to that tool, the
 time at which the copy was done, the user making the change, the
 server on which the change was made, etc. All information should be
 in a human-readable string.

 The field fss_age provides an indication of how out-of-date the file system
 currently is with respect to its ultimate data source (in case of
 cascading data updates). This complements the fls_currency field of
 fs_locations_server4 (see) in the
 following way: the information in fls_currency
 gives a bound for how out of date the data in a file system might
 typically get, while the value in fss_age gives a bound on how out-of-date that
 data actually is. Negative values imply that no information is
 available. A zero means that this data is known to be current.
 A positive value means that this data is known to be no older than
 that number of seconds with respect to the ultimate data source.
 Using this value, the client may be able to decide that a data copy
 is too old, so that it may search for a newer version to use.

 The fss_version field provides a version identification, in the form of
 a time value, such that successive versions always have later time
 values. When the fs_type is anything other than
 STATUS4_VERSIONED, the server may provide such a value, but there is
 no guarantee as to its validity and clients will not use it except
 to provide additional information to add to fss_source and fss_current.

 When fss_type is STATUS4_VERSIONED, servers SHOULD provide a value
 of fss_version that progresses monotonically whenever any new version
 of the data is established. This allows the client, if reliable
 image progression is important to it, to fetch this attribute as
 part of each COMPOUND where data or metadata from the file system is
 used.

 When it is important to the client to make sure that only valid
 successor images are accepted, it must make sure that it does not
 read data or metadata from the file system without updating its
 sense of the current state of the image. This is to avoid the possibility
 that the fs_status that the client holds will be one for an
 earlier image, which would cause the client to accept a new file
 system instance that is later than that but still earlier than
 the updated data read by the client.

 In order to accept valid images reliably, the client must do a GETATTR of the fs_status
 attribute that follows any interrogation of data or metadata within the
 file system in question. Often this is most conveniently done by
 appending such a GETATTR after all other operations that reference
 a given file system. When errors occur between reading file system
 data and performing such a GETATTR, care must be exercised to make
 sure that the data in question is not used before obtaining the
 proper fs_status value. In this connection, when an OPEN is done
 within such a versioned file system and the associated GETATTR of
 fs_status is not successfully completed, the open file in question
 must not be accessed until that fs_status is fetched.

 The procedure above will ensure that before using any data from the
 file system the client has in hand a newly-fetched current version
 of the file system image. Multiple values for multiple requests in
 flight can be resolved by assembling them into the required partial
 order (and the elements should form a total order within the
 partial order) and
 using the last.
The client may then, when switching among
 file system instances, decline to use an instance that does not have
 an fss_type of STATUS4_VERSIONED or whose fss_version field is earlier than the
 last one obtained from the predecessor file system instance.

 Parallel NFS (pNFS)

 Introduction

 pNFS is an OPTIONAL feature within NFSv4.1; the pNFS feature
 set allows direct client access to the storage devices containing
 file data. When file data for a single NFSv4 server is stored on
 multiple and/or higher-throughput storage devices (by comparison to
 the server's throughput capability), the result can be significantly
 better file access performance. The relationship among multiple
 clients, a single server, and multiple storage devices for pNFS
 (server and clients have access to all storage devices) is shown in
 .

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol|
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

 In this model, the clients, server, and storage devices are
 responsible for managing file access. This is in contrast to NFSv4
 without pNFS, where it is primarily the server's responsibility; some
 of this responsibility may be delegated to the client under strictly
 specified conditions. See
 for a discussion of the Storage Protocol. See for a
 discussion of the Control Protocol.

 pNFS takes the form of OPTIONAL operations that manage protocol
 objects called 'layouts' () that
 contain a byte-range and storage location information. The layout
 is managed in a similar fashion
 as NFSv4.1 data delegations. For example, the layout is leased,
 recallable, and revocable. However, layouts are distinct abstractions
 and are manipulated with new operations. When a client holds a
 layout, it is granted the ability to directly access the byte-range
 at the storage location specified in the layout.

 There are interactions between layouts and other NFSv4.1
 abstractions such as data delegations and byte-range locking.
 Delegation issues are discussed in . Byte-range locking issues are
 discussed in Sections and .

 pNFS Definitions

 NFSv4.1's pNFS feature provides parallel data access to a
 file system that stripes its content across multiple
 storage servers. The first instantiation of pNFS, as
 part of NFSv4.1, separates the file system protocol
 processing into two parts: metadata processing and data
 processing. Data consist of the contents of regular
 files that are striped across storage servers. Data
 striping occurs in at least two ways: on a file-by-file
 basis and, within sufficiently large files, on a
 block-by-block basis. In contrast, striped access to
 metadata by pNFS clients is not provided in NFSv4.1, even
 though the file system back end of a pNFS server might
 stripe metadata. Metadata consist of everything else,
 including the contents of non-regular files (e.g.,
 directories); see . The
 metadata functionality is implemented by an NFSv4.1
 server that supports pNFS and the operations described in
 ; such a server is
 called a metadata server ().

 The data functionality is implemented by one or more storage devices, each of which
 are accessed by the client via a storage protocol. A subset (defined in) of NFSv4.1 is one such storage protocol. New terms are
 introduced to the NFSv4.1 nomenclature and existing terms are
 clarified to allow for the description of the pNFS feature.

 Metadata

 Information about a file system object, such as its name, location
 within the namespace, owner, ACL, and other attributes. Metadata may
 also include storage location information, and this will vary based
 on the underlying storage mechanism that is used.

 Metadata Server

 An NFSv4.1 server that supports the pNFS feature. A variety of
 architectural choices exist for the metadata server and its use of
 file system information held at the server. Some servers may
 contain metadata only for file objects residing at the
 metadata server, while the file data resides on associated storage
 devices. Other metadata servers may hold both metadata and a
 varying degree of file data.

 pNFS Client

 An NFSv4.1 client that supports pNFS operations and supports at
 least one storage protocol for performing I/O
 to storage devices.

 Storage Device

 A storage device stores a regular file's data, but leaves metadata
 management to the metadata server. A storage device could be
 another NFSv4.1 server, an object-based storage device (OSD),
a block
 device accessed over a System Area Network (SAN, e.g., either
 FiberChannel or iSCSI SAN), or some other entity.

 Storage Protocol

 As noted in ,
 the storage protocol is the method used by the client to
 store and retrieve data directly from the storage devices.

 The NFSv4.1 pNFS feature has been structured to allow for a variety
 of storage protocols to be defined and used.

 One example storage protocol is NFSv4.1 itself (as documented in
). Other options for the storage protocol
 are described elsewhere and include:

 Block/volume protocols such as Internet SCSI (iSCSI)
 and FCP . The block/volume
 protocol support can be independent of the addressing structure
 of the block/volume protocol used, allowing more than one
 protocol to access the same file data and enabling extensibility
 to other block/volume protocols. See
 for a layout
 specification that
 allows pNFS to use block/volume storage protocols.

 Object protocols such as OSD over iSCSI or Fibre Channel . See
 for a layout specification
 that allows pNFS to use object storage protocols.

 It is possible that various storage protocols are available to
 both client and server and it may be possible that a client and
 server do not have a matching storage protocol available to them.
 Because of this, the pNFS server MUST support normal NFSv4.1 access
 to any file accessible by the pNFS feature; this will allow for
 continued interoperability between an NFSv4.1 client and server.

 Control Protocol

 As noted in ,
 the control protocol is used by the exported file system between the
 metadata server and storage devices. Specification of such
 protocols is outside the scope of the NFSv4.1 protocol. Such
 control protocols would be used to control activities such as the
 allocation and deallocation of storage, the management of state
 required by the storage devices to perform client access control,
 and, depending on the storage protocol, the enforcement of
 authentication and authorization so that restrictions that
 would be enforced by the metadata server are also enforced by
 the storage device.

 A particular control protocol is not REQUIRED by NFSv4.1 but
 requirements are placed on the control protocol for maintaining
 attributes like modify time, the change attribute, and the end-of-file
 (EOF) position. Note that if pNFS is layered over a clustered, parallel
 file system (e.g., PVFS), the mechanisms that
 enable clustering and parallelism in that file system can be considered
 the control protocol.

 Layout Types

 A layout describes the mapping of a file's data to the storage
 devices that hold the data. A layout is said to belong to a
 specific layout type (data type layouttype4, see). The layout type allows for variants to
 handle different storage protocols, such as those associated with
 block/volume , object , and file () layout types. A metadata server, along with its control
 protocol, MUST support at least one layout type. A private
 sub-range of the layout type namespace is also defined. Values from
 the private layout type range MAY be used for internal testing or
 experimentation (see).

 As an example, the organization of the file layout type could be
 an array of tuples (e.g., device ID, filehandle), along with a
 definition of how the data is
 stored across the devices (e.g., striping). A block/volume layout
 might be an array of tuples that store <device ID, block number,
 block count>
along with information about block size and the
 associated file offset of the block number. An object layout might
 be an array of tuples <device ID, object ID> and an additional
 structure (i.e., the aggregation map) that defines how the logical
 byte sequence of the file data is serialized into the different
 objects. Note that the actual layouts are typically more complex
 than these simple expository examples.

 Requests for pNFS-related operations will often specify a layout
 type. Examples of such operations are GETDEVICEINFO and LAYOUTGET.
 The response for these operations will include structures such
 as a device_addr4 or a layout4, each of which includes a layout type within
 it. The layout type sent by the server MUST always be the same
 one requested by the client. When a server sends a response that
 includes a different layout type, the client SHOULD ignore the
 response and behave as if the server had returned an error response.

 Layout

 A layout defines how a file's data is organized on one or more
 storage devices. There are many potential layout types; each of the
 layout types are differentiated by the storage protocol used to
 access data and by the aggregation scheme that lays out the file
 data on the underlying storage devices. A layout is precisely
 identified by the tuple <client ID, filehandle, layout
 type, iomode, range>, where filehandle refers to the filehandle
 of the file on the metadata server.

 It is important to define when layouts overlap and/or conflict with
 each other. For two layouts with overlapping byte-ranges to
 actually overlap each other, both layouts must be of the same layout
 type, correspond to the same filehandle, and have the same iomode.
 Layouts conflict when they overlap and differ in the content of the
 layout (i.e., the storage device/file mapping parameters differ).
 Note that differing iomodes do not lead to conflicting layouts. It
 is permissible for layouts with different iomodes, pertaining to the
 same byte-range, to be held by the same client. An example of this
 would be copy-on-write functionality for a block/volume layout type.

 Layout Iomode

 The layout iomode (data type layoutiomode4, see) indicates to the metadata server the
 client's intent to perform either just READ operations
 or a mixture containing READ
 and WRITE operations. For certain layout
 types, it is useful for a client to specify this intent at the time it sends LAYOUTGET
 (). For example, for
 block/volume-based protocols, block allocation could occur when a
 LAYOUTIOMODE4_RW iomode is specified. A special LAYOUTIOMODE4_ANY iomode is defined
 and can only be used for LAYOUTRETURN and CB_LAYOUTRECALL, not for
 LAYOUTGET. It specifies that layouts pertaining to both LAYOUTIOMODE4_READ and
 LAYOUTIOMODE4_RW iomodes are being returned or recalled, respectively.

 A storage device may validate I/O with regard to the iomode; this
 is dependent upon storage device implementation and layout type.
 Thus, if the client's layout iomode is inconsistent with the I/O
 being performed, the storage device may reject the client's I/O with
 an error indicating that a new layout with the correct iomode should be
 obtained via LAYOUTGET. For example, if a client gets a layout with a LAYOUTIOMODE4_READ iomode and
 performs a WRITE to a storage device, the storage device is allowed
 to reject that WRITE.

 The use of the layout iomode does not conflict with OPEN share modes or byte-range LOCK operations;
 open share mode and byte-range lock conflicts are enforced as they are without the
 use of pNFS and are logically separate from the pNFS layout level.
 Open share modes and byte-range locks are the preferred method for
 restricting user access to data files. For example, an OPEN of
 OPEN4_SHARE_ACCESS_WRITE does not conflict with a LAYOUTGET containing an iomode
 of LAYOUTIOMODE4_RW performed by another client. Applications that depend
 on writing into the same file concurrently may use byte-range locking to
 serialize their accesses.

 Device IDs

 The device ID (data type deviceid4, see
) identifies a group of storage devices. The scope
 of a device ID is the pair <client ID, layout type>. In practice, a
 significant amount of information may be required to fully address
 a storage device. Rather than embedding all such information in a
 layout, layouts embed device IDs. The NFSv4.1 operation
 GETDEVICEINFO () is used to
 retrieve the complete address information (including
 all device addresses for the device ID) regarding the storage
 device according to its layout type and device ID. For example,
 the address of an NFSv4.1 data server or of an object-based storage
 device could be an IP address and port. The address of a block
 storage device could be a volume label.

 Clients cannot expect the mapping between a device ID and
 its storage device address(es) to persist across metadata server restart.
 See for a description of how
 recovery works in that situation.

 A device ID lives as long as there is a layout
 referring to the device ID. If there are no layouts
 referring to the device ID, the server is free to
 delete the device ID any time.
 Once a device ID is deleted by the server, the server MUST NOT
 reuse the device ID for the same layout type and client ID again.
 This requirement is feasible because the device ID is 16 bytes
 long, leaving sufficient room to store a generation number if the
 server's implementation requires most of the rest of the device ID's
 content to be reused. This requirement is necessary because
 otherwise the race conditions between asynchronous notification
 of device ID addition and deletion would be too difficult to
 sort out.

 Device ID to device address mappings are not leased,
 and can be changed at any time. (Note that while
 device ID to device address mappings are likely
 to change after the metadata server restarts, the
 server is not required to change the mappings.)
 A server has two
 choices for changing mappings. It can recall all
 layouts referring to the device ID or it can use a
 notification mechanism.

 The NFSv4.1 protocol has no optimal way to recall
 all layouts that referred to a particular device ID
 (unless the server associates a single device ID with
 a single fsid or a single client ID; in which case,
 CB_LAYOUTRECALL has options for recalling all layouts
 associated with the fsid, client ID pair, or just the
 client ID).

 Via a notification mechanism
 (see),
 device ID to device address mappings can change over the duration
 of server operation without recalling or revoking the layouts that
 refer to device ID. The notification mechanism can also delete
 a device ID, but only if the client has no layouts referring
 to the device ID.
 A notification of a change to a device ID to device address
 mapping will immediately or eventually invalidate some or all of
 the device ID's mappings.
 The server MUST support notifications and the client must
 request them before they can be used. For further information
 about the notification types, see .

 pNFS Operations

 NFSv4.1 has several operations that are needed for
 pNFS servers, regardless of layout type or storage
 protocol. These operations are all sent to a metadata
 server and summarized here. While pNFS is an OPTIONAL
 feature, if pNFS is implemented, some operations
 are REQUIRED in order to comply with pNFS. See .

 These are the fore channel pNFS operations:

 GETDEVICEINFO

 (), as noted previously
 (), returns the mapping of device ID to
 storage device address.

 GETDEVICELIST

 ()
 allows clients to fetch all device IDs
 for a specific file system.

 LAYOUTGET

 () is used by a client to get
 a layout for a file.

 LAYOUTCOMMIT

 () is used
 to inform the metadata server of the client's intent to commit data
 that has been written to the storage device (the storage device as
 originally indicated in the return value of LAYOUTGET).

 LAYOUTRETURN

 () is used
 to return layouts for a file, a file system ID (FSID), or a client ID.

 These are the backchannel pNFS operations:

 CB_LAYOUTRECALL

 () recalls
 a layout, all layouts belonging to a file system, or all
 layouts belonging to a client ID.

 CB_RECALL_ANY

 ()
 tells a client that it needs to return some number of recallable
 objects, including layouts, to the metadata server.

 CB_RECALLABLE_OBJ_AVAIL

 () tells a client
 that a recallable object that it was denied (in case of
 pNFS, a layout denied by LAYOUTGET) due to resource exhaustion
 is now available.

 CB_NOTIFY_DEVICEID

 () notifies the client of
 changes to device IDs.

 pNFS Attributes

 A number of attributes specific to pNFS are listed and described in
 .

 Layout Semantics

 Guarantees Provided by Layouts

 Layouts grant to the client the ability to access data located at
 a storage device with the appropriate storage protocol. The client
 is guaranteed the layout will be recalled when one of two things
 occur: either a conflicting layout is requested or the state
 encapsulated by the layout becomes invalid (this can happen when
 an event directly or indirectly modifies the layout). When a layout
 is recalled and returned by the client, the client continues with
 the ability to access file data with normal NFSv4.1 operations
 through the metadata server. Only the ability to access the storage
 devices is affected.

 The requirement of NFSv4.1 that all user access rights MUST be
 obtained through the appropriate OPEN, LOCK, and ACCESS operations
 is not modified with the existence of layouts. Layouts are provided
 to NFSv4.1 clients, and user access still follows the rules of the
 protocol as if they did not exist. It is a requirement that for a
 client to access a storage device, a layout must be held by the
 client. If a storage device receives an I/O request for a byte-range for
 which the client does not hold a layout, the storage device SHOULD
 reject that I/O request. Note that the act of modifying a file for
 which a layout is held does not necessarily conflict with the
 holding of the layout that describes the file being modified.
 Therefore, it is the requirement of the storage protocol or layout
 type that determines the necessary behavior. For example,
 block/volume layout types require that the layout's
 iomode agree with the type of I/O being performed.

 Depending upon the layout type and storage protocol in use, storage
 device access permissions may be granted by LAYOUTGET and may be
 encoded within the type-specific layout. For an example of storage
 device access permissions, see an object-based protocol such as . If access permissions are encoded within the
 layout, the metadata server SHOULD recall the layout when those
 permissions become invalid for any reason -- for example, when a file
 becomes unwritable or inaccessible to a client. Note, clients are
 still required to perform the appropriate
 OPEN, LOCK, and ACCESS operations as described above. The degree to which it is
 possible for the client to circumvent these operations and
 the consequences of doing so must be clearly specified by the
 individual layout type specifications. In addition, these
 specifications must be clear about the requirements and
 non-requirements for the checking performed by the server.

 In the presence of pNFS functionality, mandatory byte-range locks MUST
 behave as they would without pNFS. Therefore, if mandatory file
 locks and layouts are provided simultaneously, the storage device
 MUST be able to enforce the mandatory byte-range locks. For example, if
 one client obtains a mandatory byte-range lock and a second client accesses the
 storage device, the storage device MUST appropriately restrict I/O
 for the range of the mandatory byte-range lock. If the storage
 device is incapable of providing this check in the presence of
 mandatory byte-range locks, then the metadata server MUST NOT grant
 layouts and mandatory byte-range locks simultaneously.

 Getting a Layout

 A client obtains a layout with the
 LAYOUTGET operation. The metadata server
 will grant layouts of a particular type
 (e.g., block/volume, object, or file).
 The client selects an appropriate layout
 type that the server supports and the client
 is prepared to use. The layout returned to
 the client might not exactly match the
 requested byte-range as described in . As needed a client
 may send multiple LAYOUTGET operations; these might result
 in multiple overlapping, non-conflicting layouts (see
).

 In order to get a layout, the client must first have opened the file
 via the OPEN operation. When a client has no layout on a file, it
 MUST present an open stateid, a delegation stateid, or
 a byte-range lock stateid in the loga_stateid argument. A successful
 LAYOUTGET result includes a layout stateid. The first successful
 LAYOUTGET processed by the server using a non-layout stateid as an
 argument MUST have the "seqid" field of the layout stateid in the
 response set to one. Thereafter, the client MUST use a layout
 stateid (see) on future invocations
 of LAYOUTGET on the file, and the "seqid" MUST NOT be set to
 zero. Once the layout has been retrieved, it can be held across
 multiple OPEN and CLOSE sequences. Therefore, a client may hold a
 layout for a file that is not currently open by any user on the
 client. This allows for the caching of layouts beyond CLOSE.

 The storage protocol used by the client to access the data on the
 storage device is determined by the layout's type. The client is
 responsible for matching the layout type with an available method to
 interpret and use the layout. The method for this layout type
 selection is outside the scope of the pNFS functionality.

 Although the metadata server is in control
 of the layout for a file, the pNFS client
 can provide hints to the server when a file
 is opened or created about the preferred
 layout type and aggregation schemes.
 pNFS introduces a layout_hint attribute ()
 that the client can set at file creation
 time to provide a hint to the server for new
 files. Setting this attribute separately,
 after the file has been created might make
 it difficult, or impossible, for the server
 implementation to comply.

 Because the EXCLUSIVE4 createmode4 does not allow the
 setting of attributes at file creation time, NFSv4.1
 introduces the EXCLUSIVE4_1 createmode4, which does
 allow attributes to be set at file creation time. In
 addition, if the session is created with persistent
 reply caches, EXCLUSIVE4_1 is neither necessary
 nor allowed. Instead, GUARDED4 both works better and is
 prescribed. in summarizes how a client
 is allowed to send an exclusive create.

 Layout Stateid

 As with all other stateids, the layout stateid consists of a "seqid" and
 "other" field. Once a layout stateid is established, the "other" field
 will stay constant unless the stateid is revoked or the client
 returns all layouts on the file and the server disposes of the
 stateid. The "seqid" field is initially set to one, and is never
 zero on any NFSv4.1 operation that uses layout stateids, whether it
 is a fore channel or backchannel operation. After the layout stateid
 is established, the server increments by one the value of the
 "seqid" in each subsequent LAYOUTGET and LAYOUTRETURN response, and
 in each CB_LAYOUTRECALL request.

 Given the design goal of pNFS to provide parallelism, the layout
 stateid differs from other stateid types in that the client is
 expected to send LAYOUTGET and LAYOUTRETURN operations in parallel.
 The "seqid" value is used by the client to properly sort responses
 to LAYOUTGET and LAYOUTRETURN. The "seqid" is also used to prevent
 race conditions between LAYOUTGET and CB_LAYOUTRECALL. Given that the
 processing rules differ from layout stateids and other stateid
 types, only the pNFS sections of this document should be considered
 to determine proper layout stateid handling.

 Once the client receives a layout stateid, it MUST use the correct
 "seqid" for subsequent LAYOUTGET or LAYOUTRETURN operations. The
 correct "seqid" is defined as the highest "seqid" value from
 responses of fully processed LAYOUTGET or LAYOUTRETURN operations or
 arguments of a fully processed CB_LAYOUTRECALL operation. Since the
 server is incrementing the "seqid" value on each layout operation,
 the client may determine the order of operation processing by
 inspecting the "seqid" value. In the case of overlapping layout
 ranges, the ordering information will provide the client the
 knowledge of which layout ranges are held. Note that overlapping
 layout ranges may occur because of the client's specific requests or
 because the server is allowed to expand the range of a requested
 layout and notify the client in the LAYOUTRETURN results. Additional
 layout stateid sequencing requirements are provided in
 .

 The client's receipt of a "seqid" is not sufficient for subsequent
 use. The client must fully process the operations before the
 "seqid" can be used. For LAYOUTGET results, if
 the client is not using the forgetful model
 (), it MUST first update its
 record of what ranges of the file's layout it has before using the
 seqid. For LAYOUTRETURN results, the client MUST delete the range
 from its record of what ranges of the file's layout it had before
 using the seqid. For CB_LAYOUTRECALL arguments, the client MUST send
 a response to the recall before using the seqid.
 The fundamental requirement in client
 processing is that the "seqid" is used to provide the order of
 processing. LAYOUTGET results may be processed in parallel.
 LAYOUTRETURN results may be processed in parallel. LAYOUTGET and
 LAYOUTRETURN responses may be processed in parallel as long as the
 ranges do not overlap. CB_LAYOUTRECALL request processing MUST be
 processed in "seqid" order at all times.

 Once a client has no more layouts on a file, the layout stateid is
 no longer valid and MUST NOT be used. Any attempt to use such a
 layout stateid will result in NFS4ERR_BAD_STATEID.

 Committing a Layout

 Allowing for varying storage protocol capabilities, the pNFS
 protocol does not require the metadata server and storage devices to
 have a consistent view of file attributes and data location
 mappings. Data location mapping refers to aspects such as which offsets
 store data as opposed to storing holes (see for a discussion). Related issues arise
 for storage protocols where a layout may hold provisionally
 allocated blocks where the allocation of those blocks does not
 survive a complete restart of both the client and server. Because
 of this inconsistency, it is necessary to resynchronize the client
 with the metadata server and its storage devices and make any
 potential changes available to other clients. This is accomplished
 by use of the LAYOUTCOMMIT operation.

 The LAYOUTCOMMIT operation is responsible for committing a modified
 layout to the metadata server. The data should be written
 and committed to the appropriate storage devices before the
 LAYOUTCOMMIT occurs. The
 scope of the LAYOUTCOMMIT operation depends on the storage protocol
 in use. It is important to note that the level of
 synchronization is from the point of view of the client that sent
 the LAYOUTCOMMIT. The updated state on the metadata server need
 only reflect the state as of the client's last operation previous to
 the LAYOUTCOMMIT. The metadata server is not REQUIRED to maintain a global view
 that accounts for other clients' I/O that may have occurred within
 the same time frame.

 For block/volume-based layouts, LAYOUTCOMMIT may require
 updating the block list that comprises the file and committing this
 layout to stable storage. For file-based layouts, synchronization of
 attributes between the metadata and storage devices, primarily the
 size attribute, is required.

 The control protocol is free to synchronize the attributes before
 it receives a LAYOUTCOMMIT; however, upon successful completion of a
 LAYOUTCOMMIT, state that exists on the metadata server that
 describes the file MUST be synchronized with the state that exists on the
 storage devices that comprise that file as of the client's
 last sent operation. Thus, a client that queries the size of a file
 between a WRITE to a storage device and the LAYOUTCOMMIT might observe
 a size that does not reflect the actual data written.

 The client MUST have a layout in order to send a LAYOUTCOMMIT operation.

 LAYOUTCOMMIT and change/time_modify

 The change and time_modify attributes may be updated
 by the server when the LAYOUTCOMMIT operation is processed. The
 reason for this is that some layout types do not support the update
 of these attributes when the storage devices process I/O operations.
 If a client has a layout with the LAYOUTIOMODE4_RW iomode on the file,
 the client MAY provide a suggested value to the server for
 time_modify within the arguments to LAYOUTCOMMIT.
 Based on the layout type, the provided value may or may not be used.
 The server should sanity-check the client-provided values
 before they are used. For example, the server should ensure that
 time does not flow backwards. The client always has the option to
 set time_modify through an explicit SETATTR operation.

 For some layout protocols, the storage device is able to notify the
 metadata server of the occurrence of an I/O; as a result, the
 change and time_modify attributes may be updated at
 the metadata server. For a metadata server that is capable of
 monitoring updates to the change and time_modify
 attributes, LAYOUTCOMMIT processing is not required to update the
 change attribute. In this case, the metadata server must ensure that
 no further update to the data has occurred since the last update of
 the attributes; file-based protocols may have enough information to
 make this determination or may update the change attribute upon each
 file modification. This also applies for the time_modify
 attribute. If the server implementation is able to
 determine that the file has not been modified since the last
 time_modify update, the server need not update time_modify at
 LAYOUTCOMMIT. At LAYOUTCOMMIT completion, the updated attributes
 should be visible if that file was modified since the latest
 previous LAYOUTCOMMIT or LAYOUTGET.

 LAYOUTCOMMIT and size

 The size of a file may be updated when the LAYOUTCOMMIT operation is
 used by the client. One of the fields in the argument to
 LAYOUTCOMMIT is loca_last_write_offset; this field indicates the
 highest byte offset written but not yet committed with the
 LAYOUTCOMMIT operation. The data type of loca_last_write_offset is
 newoffset4 and is switched on a boolean value, no_newoffset, that
 indicates if a previous write occurred or not. If no_newoffset is
 FALSE, an offset is not given. If the client has a layout with
 LAYOUTIOMODE4_RW iomode on the file, with a byte-range (denoted by the values of lo_offset and lo_length)
 that overlaps loca_last_write_offset, then the client MAY
 set no_newoffset to TRUE and provide an offset that will
 update the file size. Keep in mind that offset is not the same
 as length, though they are related. For example, a loca_last_write_offset
 value of zero means that one byte was written at offset zero, and so
 the length of the file is at least one byte.

 The metadata server may do one of the following:

 Update the file's size using the last write offset provided by
 the client as either the true file size or as a hint of the file
 size. If the metadata server has a method available, any new
 value for file size should be sanity-checked. For example, the
 file must not be truncated if the client presents a last write
 offset less than the file's current size.

 Ignore the client-provided last write offset; the metadata
 server must have sufficient knowledge from other sources to
 determine the file's size. For example, the metadata server
 queries the storage devices with the control protocol.

 The method chosen to update the file's size will depend on the
 storage device's and/or the control protocol's capabilities. For
 example, if the storage devices are block devices with no knowledge
 of file size, the metadata server must rely on the client to set the
 last write offset appropriately.

 The results of LAYOUTCOMMIT contain a new size value in the form of
 a newsize4 union data type. If the file's size is set as a result
 of LAYOUTCOMMIT, the metadata server must reply with the new size;
 otherwise, the new size is not provided.
 If the file size is updated, the metadata server SHOULD update the
 storage devices such that the new file size is reflected when
 LAYOUTCOMMIT processing is complete. For example, the client should
 be able to read up to the new file size.

 The client can extend the length of a file
 or truncate a file by sending a SETATTR operation to the metadata server
 with the size attribute specified. If the size specified is larger than
 the current size of the file, the file is "zero extended", i.e., zeros are
 implicitly added between the file's previous EOF and the new EOF.
 (In many implementations, the zero-extended byte-range
 of the file consists of unallocated
 holes in the file.) When the client writes past EOF via WRITE,
 the SETATTR operation does not need to be used.

 LAYOUTCOMMIT and layoutupdate

 The LAYOUTCOMMIT argument contains a loca_layoutupdate field () of data type layoutupdate4
 (). This argument is a
 layout-type-specific structure. The structure can be used to pass
 arbitrary layout-type-specific information from the client to the
 metadata server at LAYOUTCOMMIT time. For example, if using a
 block/volume layout, the client can indicate to the metadata server
 which reserved or allocated blocks the client used or did not use.
 The content of loca_layoutupdate (field lou_body) need not be the
 same layout-type-specific content returned by LAYOUTGET () in the loc_body field of the
 lo_content field of the logr_layout field.
The content of
 loca_layoutupdate is defined by the layout type specification and is
 opaque to LAYOUTCOMMIT.

 Recalling a Layout

 Since a layout protects a client's access to a file via a direct
 client-storage-device path, a layout need only be recalled when it
 is semantically unable to serve this function. Typically, this
 occurs when the layout no longer encapsulates the true location of
 the file over the byte-range it represents. Any operation or
 action, such as server-driven restriping or load balancing, that
 changes the layout will result in a recall of the layout. A layout
 is recalled by the CB_LAYOUTRECALL callback operation (see) and returned with LAYOUTRETURN (see). The CB_LAYOUTRECALL operation may
 recall a layout identified by a byte-range, all layouts
 associated with a file system ID (FSID), or all layouts associated with
 a client ID.
 discusses sequencing issues
 surrounding the getting, returning, and recalling of layouts.

 An iomode is also specified when recalling a layout.
 Generally, the iomode in the recall request must match the layout
 being returned; for example, a recall with an iomode of
 LAYOUTIOMODE4_RW should cause the client to only return
 LAYOUTIOMODE4_RW layouts and not LAYOUTIOMODE4_READ layouts.
 However, a special LAYOUTIOMODE4_ANY enumeration is
 defined to enable recalling a layout of any iomode; in other words,
 the client must return both LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW layouts.

 A REMOVE operation SHOULD cause the metadata server to recall the
 layout to prevent the client from accessing a non-existent file and
 to reclaim state stored on the client. Since a REMOVE may be delayed
 until the last close of the file has occurred, the recall may also
 be delayed until this time. After the last reference on the file
 has been released and the file has been removed, the client should
 no longer be able to perform I/O using the layout. In the case of a
 file-based layout, the data server SHOULD return NFS4ERR_STALE in
 response to any operation on the removed file.

 Once a layout has been returned, the client MUST NOT send I/Os to
 the storage devices for the file, byte-range, and iomode
 represented by the returned layout. If a client does send an I/O to
 a storage device for which it does not hold a layout, the storage
 device SHOULD reject the I/O.

 Although pNFS does not alter the file data caching capabilities of
 clients, or their semantics, it recognizes that some clients may
 perform more aggressive write-behind caching to optimize the
 benefits provided by pNFS. However, write-behind caching may
 negatively affect the latency in returning a layout in response to a
 CB_LAYOUTRECALL; this is similar to file delegations and the impact
 that file data caching has on DELEGRETURN. Client implementations
 SHOULD limit the amount of unwritten data they have outstanding at
 any one time in order to prevent excessively long responses to
 CB_LAYOUTRECALL. Once a layout is recalled, a server MUST wait one
 lease period before taking further action. As soon as a lease
 period has passed, the server may choose to fence the client's access
 to the storage devices if the server perceives the client has taken
 too long to return a layout. However, just as in the case of data
 delegation and DELEGRETURN, the server may choose to wait, given that
 the client is showing forward progress on its way to returning the
 layout. This forward progress can take the form of successful
 interaction with the storage devices or of sub-portions of the layout
 being returned by the client. The server can also limit exposure to
 these problems by limiting the byte-ranges initially provided in
 the layouts and thus the amount of outstanding modified data.

 Layout Recall Callback Robustness

 It has been assumed thus far that pNFS client
 state
 (layout ranges and iomode)
 for a file exactly matches that of the pNFS server for that file.
 This assumption
 leads to the implication that any callback results in a
 LAYOUTRETURN or set of LAYOUTRETURNs that exactly match the range in
 the callback, since both client and server agree about the state
 being maintained. However, it can be useful if this assumption does
 not always hold. For example:

 If conflicts that require
 callbacks are very rare, and a server can use a multi-file callback
 to recover per-client resources (e.g., via an FSID recall or a
 multi-file recall within a single CB_COMPOUND), the result may be
 significantly less client-server pNFS traffic.

 It may be useful for servers to maintain information about
 what ranges are held by a client on a coarse-grained basis, leading
 to the server's layout ranges being beyond those actually held by
 the client.
 In the extreme, a server could manage conflicts on
 a per-file basis, only sending whole-file callbacks even though
 clients may request and be granted sub-file ranges.

 It may be useful for clients to "forget" details about
 what layouts and ranges the client actually has, leading
 to the server's layout ranges being beyond those that the
 client "thinks" it has. As long as the client does not
 assume it has layouts that are beyond what the server
 has granted, this is a safe practice. When a client
 forgets what ranges and layouts it has, and it receives
 a CB_LAYOUTRECALL operation, the client MUST follow up
 with a LAYOUTRETURN for what the server recalled, or
 alternatively return the NFS4ERR_NOMATCHING_LAYOUT error
 if it has no layout to return in the recalled range.

 In order to avoid errors, it is vital that a client not assign
 itself layout permissions beyond what the server has granted, and
 that the server not forget layout permissions that have been granted.
 On the other hand, if a
 server believes that a client holds a layout that the client
 does not know about, it is useful for the client to cleanly indicate
 completion of the requested recall either by sending a LAYOUTRETURN
 operation for the entire requested range or by returning an
 NFS4ERR_NOMATCHING_LAYOUT error to the CB_LAYOUTRECALL.

 Thus, in light of the above, it is useful for a server to be able to
 send callbacks for layout ranges it has not granted to a client,
 and for a client to return ranges it does not hold. A pNFS client
 MUST always return layouts that comprise the full range
 specified by the recall. Note, the full recalled layout range need
 not be returned as part of a single operation, but may be returned
 in portions. This allows the client to stage the flushing of dirty
 data and commits and returns of layouts.
Also, it indicates to the
 metadata server that the client is making progress.

 When a layout is returned, the client MUST NOT have any outstanding
 I/O requests to the storage devices involved in the layout.
 Rephrasing, the client MUST NOT return the layout while it has
 outstanding I/O requests to the storage device.

 Even with this requirement for the client, it is possible that I/O
 requests may be presented to a storage device no longer allowed to
 perform them. Since the server has no strict control as to when the
 client will return the layout, the server may later decide to
 unilaterally revoke the client's access to the storage devices
 as provided by the layout. In
 choosing to revoke access, the server must deal with the possibility
 of lingering I/O requests, i.e., I/O requests that are
 still in flight to
 storage devices identified by the revoked layout.

 All layout type specifications MUST define whether unilateral layout revocation by
 the metadata server is supported; if it is, the specification must
 also describe how lingering writes are processed. For example,
 storage devices identified by the revoked layout could be fenced off
 from the client that held the layout.

 In order to ensure client/server convergence with regard to layout state,
 the final LAYOUTRETURN operation in a sequence of LAYOUTRETURN
 operations for a particular recall MUST specify the entire range
 being recalled, echoing the recalled layout type, iomode,
 recall/return type (FILE, FSID, or ALL), and byte-range, even if
 layouts pertaining to partial ranges were previously
 returned. In addition, if the client holds no layouts that
 overlap the range being recalled, the client should return the
 NFS4ERR_NOMATCHING_LAYOUT error code to CB_LAYOUTRECALL. This
 allows the server to update its view of the client's layout state.

 Sequencing of Layout Operations

 As with other stateful operations, pNFS requires the correct
 sequencing of layout operations. pNFS uses the "seqid" in the
 layout stateid to provide the correct sequencing between regular
 operations and callbacks. It is the server's responsibility to
 avoid inconsistencies regarding the layouts provided and the
 client's responsibility to properly serialize its layout requests
 and layout returns.

 Layout Recall and Return Sequencing

 One critical issue with regard to layout operations sequencing
 concerns callbacks. The protocol must defend against
 races between the reply to a LAYOUTGET or LAYOUTRETURN
 operation and a subsequent CB_LAYOUTRECALL. A client
 MUST NOT process a CB_LAYOUTRECALL that implies one or
 more outstanding LAYOUTGET or LAYOUTRETURN operations to
 which the client has not yet received a reply. The client
 detects such a CB_LAYOUTRECALL by examining the "seqid"
 field of the recall's layout stateid. If the "seqid"
 is not exactly one higher than what the client currently has recorded, and the
 client has at least one LAYOUTGET and/or LAYOUTRETURN operation
 outstanding, the client knows the server sent the CB_LAYOUTRECALL
 after sending a response to an outstanding LAYOUTGET or LAYOUTRETURN.
 The client MUST wait before processing such a CB_LAYOUTRECALL
 until it processes all replies for outstanding LAYOUTGET and
 LAYOUTRETURN operations for the corresponding file
 with seqid less than the seqid given by CB_LAYOUTRECALL
 (lor_stateid; see .)

 In addition to the seqid-based mechanism,

 describes the sessions mechanism for allowing the
 client to detect callback race conditions and delay processing such a
 CB_LAYOUTRECALL. The server MAY reference conflicting operations
 in the CB_SEQUENCE that precedes the CB_LAYOUTRECALL.
 Because the server has already sent replies for these operations before
 sending the callback, the replies may race with the CB_LAYOUTRECALL.
 The client MUST wait for all the referenced calls to complete and update
 its view of the layout state before processing the CB_LAYOUTRECALL.

 Get/Return Sequencing

 The protocol allows the client to send concurrent
 LAYOUTGET and LAYOUTRETURN operations to the server. The
 protocol does not provide any means for the server to
 process the requests in the same order in which they
 were created. However, through the use of the "seqid"
 field in the layout stateid, the client can determine
 the order in which parallel outstanding operations were
 processed by the server. Thus, when a layout retrieved
 by an outstanding LAYOUTGET operation intersects with
 a layout returned by an outstanding LAYOUTRETURN on
 the same file, the order in which the two conflicting
 operations are processed determines the final state of
 the overlapping layout. The order is determined by
 the "seqid" returned in each operation: the operation with the
 higher seqid was executed later.

 It is permissible for the client to send multiple parallel
 LAYOUTGET operations for the same file or multiple parallel LAYOUTRETURN
 operations for the same file or a mix of both.

 It is permissible for the client to use the current stateid (see
) for LAYOUTGET operations, for
 example, when compounding LAYOUTGETs or compounding OPEN and
 LAYOUTGETs. It is also permissible to use the current stateid when
 compounding LAYOUTRETURNs.

 It is permissible for the client to use the current stateid when
 combining LAYOUTRETURN and LAYOUTGET operations for the same file in
 the same COMPOUND request since the server MUST process these in
 order. However, if a client does send such COMPOUND requests, it
 MUST NOT have more than one outstanding for the same file at the
 same time, and it MUST NOT have other LAYOUTGET or LAYOUTRETURN
 operations outstanding at the same time for that same file.

 Client Considerations

 Consider a pNFS client that has sent a LAYOUTGET, and before
 it receives the reply to LAYOUTGET, it receives
 a CB_LAYOUTRECALL for the same file with an overlapping range. There are two
 possibilities, which the client can distinguish
 via the layout stateid in the recall.

 The server processed the LAYOUTGET before sending the recall, so the
 LAYOUTGET must be waited for because it
 may be carrying layout information that will need to be returned to deal
 with the CB_LAYOUTRECALL.

 The
 server sent the callback before receiving the
 LAYOUTGET. The server will not respond to the LAYOUTGET
 until the CB_LAYOUTRECALL is processed.

 If these possibilities cannot be distinguished, a
 deadlock could result, as the client must wait for the
 LAYOUTGET response before processing the recall in the
 first case, but that response will not arrive until after
 the recall is processed in the second case. Note that
 in the first case, the "seqid" in the layout stateid
 of the recall is two greater than what the client has
 recorded; in the second case, the "seqid" is one greater than
 what the client has recorded. This allows the client
 to disambiguate between the two cases. The client thus
 knows precisely which possibility applies.

 In case 1, the client knows it needs to wait for
 the LAYOUTGET response before processing the recall
 (or the client can return NFS4ERR_DELAY).

 In case 2, the client will not wait for the LAYOUTGET
 response before processing the recall because waiting
 would cause deadlock. Therefore, the action at the
 client will only require waiting in the case that the
 client has not yet seen the server's earlier responses
 to the LAYOUTGET operation(s).

 The recall process can be considered completed when
 the final LAYOUTRETURN operation for the recalled range is completed.
 The LAYOUTRETURN uses the layout stateid (with seqid) specified in
 CB_LAYOUTRECALL. If the client uses multiple LAYOUTRETURNs in
 processing the recall, the first LAYOUTRETURN will use the layout
 stateid as specified in CB_LAYOUTRECALL. Subsequent LAYOUTRETURNs
 will use the highest seqid as is the usual case.

 Server Considerations

 Consider a race from the metadata server's point of
 view. The metadata server has sent a CB_LAYOUTRECALL and receives
 an overlapping LAYOUTGET for the same file before the
 LAYOUTRETURN(s) that respond to the CB_LAYOUTRECALL. There are
 three cases:

 The client sent the LAYOUTGET before processing the CB_LAYOUTRECALL.
 The "seqid" in the layout stateid of the arguments of LAYOUTGET is one less
 than the "seqid" in CB_LAYOUTRECALL. The server returns
 NFS4ERR_RECALLCONFLICT to the client, which indicates to the client
 that there is a pending recall.

 The client sent the LAYOUTGET after processing the
 CB_LAYOUTRECALL, but the LAYOUTGET arrived before the LAYOUTRETURN and
 the response to CB_LAYOUTRECALL that
 completed that processing.
 The "seqid" in the layout stateid
 of LAYOUTGET is equal to or greater than that of the "seqid" in
 CB_LAYOUTRECALL.
 The server has not received a response to the CB_LAYOUTRECALL,
 so it returns NFS4ERR_RECALLCONFLICT.

 The client sent the LAYOUTGET after processing the
 CB_LAYOUTRECALL; the server received the CB_LAYOUTRECALL
 response, but the LAYOUTGET arrived before the LAYOUTRETURN that
 completed that processing.
 The "seqid" in the layout stateid
 of LAYOUTGET is equal to that of the "seqid" in
 CB_LAYOUTRECALL.
 The server has received a response to the CB_LAYOUTRECALL,
 so it returns NFS4ERR_RETURNCONFLICT.

 Wraparound and Validation of Seqid

 The rules for layout stateid processing differ from other stateids
 in the protocol because the "seqid" value cannot be zero and the
 stateid's "seqid" value changes in a CB_LAYOUTRECALL operation. The
 non-zero requirement combined with the inherent parallelism of
 layout operations means that a set of LAYOUTGET and LAYOUTRETURN
 operations may contain the same value for "seqid".
 The server uses a slightly modified version of the modulo arithmetic
 as described in

 when incrementing the layout stateid's "seqid". The difference
 is that zero is not a valid value for "seqid"; when the value
 of a "seqid" is 0xFFFFFFFF, the next valid value will be 0x00000001.
 The modulo arithmetic is also used for the comparisons of
 "seqid" values in the processing of CB_LAYOUTRECALL events as
 described above in .

 Just as the server validates the "seqid" in the event of
 CB_LAYOUTRECALL usage, as described in
 , the server also validates
 the "seqid" value to ensure that it is within an appropriate range.
 This range represents the degree of parallelism the server supports
 for layout stateids. If the client is sending multiple layout
 operations to the server in parallel, by definition, the "seqid"
 value in the supplied stateid will not be the current "seqid" as
 held by the server. The range of parallelism spans from the highest
 or current "seqid" to a "seqid" value in the past. To assist in the
 discussion, the server's current "seqid" value for a layout stateid
 is defined as SERVER_CURRENT_SEQID. The lowest "seqid" value that
 is acceptable to the server is represented by PAST_SEQID. And the
 value for the range of valid "seqid"s or range of parallelism is
 VALID_SEQID_RANGE. Therefore, the following holds:
 VALID_SEQID_RANGE = SERVER_CURRENT_SEQID - PAST_SEQID. In the
 following, all arithmetic is the modulo arithmetic as described
 above.

 The server MUST support a minimum VALID_SEQID_RANGE. The minimum is
 defined as: VALID_SEQID_RANGE = summation over 1..N of
 (ca_maxoperations(i) - 1), where N is the number of session fore
 channels and ca_maxoperations(i) is the value of the ca_maxoperations returned from
 CREATE_SESSION of the i'th session. The reason for "- 1" is to allow for the required
 SEQUENCE operation. The server MAY support a VALID_SEQID_RANGE
 value larger than the minimum. The maximum VALID_SEQID_RANGE is (2 32 - 2) (accounting for zero not being a valid "seqid" value).

 If the server finds the "seqid" is zero, the NFS4ERR_BAD_STATEID
 error is returned to the client. The server further validates the
 "seqid" to ensure it is within the range of parallelism,
 VALID_SEQID_RANGE. If the "seqid" value is outside of that range,
 the error NFS4ERR_OLD_STATEID is returned to the client. Upon
 receipt of NFS4ERR_OLD_STATEID, the client updates the stateid in
 the layout request based on processing of other layout requests and
 re-sends the operation to the server.

 Bulk Recall and Return

 pNFS supports recalling and returning all layouts that
 are for files belonging to a particular fsid
 (LAYOUTRECALL4_FSID, LAYOUTRETURN4_FSID) or client ID
 (LAYOUTRECALL4_ALL, LAYOUTRETURN4_ALL).
 There are no "bulk" stateids, so detection of races
 via the seqid is not possible.
 The server MUST NOT initiate bulk recall while another
 recall is in progress, or the corresponding LAYOUTRETURN
 is in progress or pending.
 In the event the server sends a bulk recall
 while the client has a pending or in-progress LAYOUTRETURN,
 CB_LAYOUTRECALL, or LAYOUTGET, the client returns
 NFS4ERR_DELAY. In the event the client sends a LAYOUTGET
 or LAYOUTRETURN while a bulk recall is in progress, the
 server returns NFS4ERR_RECALLCONFLICT.

 If the client sends a LAYOUTGET or LAYOUTRETURN after
 the server receives NFS4ERR_DELAY from a bulk recall,
 then to ensure forward progress, the server MAY return
 NFS4ERR_RECALLCONFLICT.

 Once a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL is sent,
 the server MUST NOT allow the client to use any layout
 stateid except for LAYOUTCOMMIT operations. Once the client receives
 a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL, it MUST NOT use
 any layout stateid except for LAYOUTCOMMIT operations.

 Once a LAYOUTRETURN of LAYOUTRETURN4_ALL is sent, all
 layout stateids granted to the client ID are freed.
 The client MUST NOT use the layout stateids again. It
 MUST use LAYOUTGET to obtain new layout stateids.

 Once a CB_LAYOUTRECALL of LAYOUTRECALL4_FSID is sent, the
 server MUST NOT allow the client to use any layout stateid
 that refers to a file with the specified fsid except for
 LAYOUTCOMMIT operations. Once the client receives a CB_LAYOUTRECALL
 of LAYOUTRECALL4_ALL, it MUST NOT use any layout stateid
 that refers to a file with the specified fsid except
 for LAYOUTCOMMIT operations.

 Once a LAYOUTRETURN of LAYOUTRETURN4_FSID is sent, all
 layout stateids granted to the referenced fsid are freed.
 The client MUST NOT use those freed layout stateids for files
 with the referenced fsid again. Subsequently, for any file with
 the referenced fsid, to use a layout, the client MUST first
 send a LAYOUTGET operation in order to
 obtain a new layout stateid for that file.

 If the server has sent a bulk CB_LAYOUTRECALL and
 receives a LAYOUTGET, or a LAYOUTRETURN with a stateid,
 the server MUST return NFS4ERR_RECALLCONFLICT. If the
 server has sent a bulk CB_LAYOUTRECALL and receives a
 LAYOUTRETURN with an lr_returntype that is not equal to
 the lor_recalltype of the CB_LAYOUTRECALL, the server
 MUST return NFS4ERR_RECALLCONFLICT.

 Revoking Layouts

Parallel NFS permits servers to revoke layouts from clients
that fail to respond to recalls and/or fail to renew their
lease in time. Depending on the layout type,
the server might revoke the layout and might take certain actions
with respect to the client's I/O to data servers.

 Metadata Server Write Propagation

 Asynchronous writes written through the metadata server may be
 propagated lazily to the storage devices. For data written
 asynchronously through the metadata server, a client performing a
 read at the appropriate storage device is not guaranteed to see the
 newly written data until a COMMIT occurs at the metadata server.
 While the write is pending, reads to the storage device may give out
 either the old data, the new data, or a mixture of new and old.
 Upon completion of a synchronous WRITE or COMMIT (for asynchronously
 written data), the metadata server MUST ensure that storage devices
 give out the new data and that the data has been written to stable
 storage. If the server implements its storage in any way such that
 it cannot obey these constraints, then it MUST recall the layouts to
 prevent reads being done that cannot be handled correctly. Note
 that the layouts MUST be recalled prior to the server responding to
 the associated WRITE operations.

 pNFS Mechanics

 This section describes the operations flow taken by a pNFS client
 to a metadata server and storage device.

 When a pNFS client encounters a new FSID, it sends a GETATTR to the
 NFSv4.1 server for the fs_layout_type () attribute. If the attribute returns at least one layout type,
 and the layout types returned are among the set supported by
 the client, the client knows that pNFS is a possibility for the file
 system. If, from the server that returned the new FSID, the client
 does not have a client ID that came from an EXCHANGE_ID result that
 returned EXCHGID4_FLAG_USE_PNFS_MDS, it MUST send an EXCHANGE_ID to
 the server with the EXCHGID4_FLAG_USE_PNFS_MDS bit set. If the
 server's response does not have EXCHGID4_FLAG_USE_PNFS_MDS, then
 contrary to what the fs_layout_type attribute said, the server does
 not support pNFS, and the client will not be able use pNFS to that
 server; in this case, the server MUST return NFS4ERR_NOTSUPP in
 response to any pNFS operation.

 The client then creates a session, requesting a persistent session, so
 that exclusive creates can be done with single round trip via the
 createmode4 of GUARDED4. If the session ends up not being persistent,
 the client will use EXCLUSIVE4_1 for exclusive creates.

 If a file is to be created on a pNFS-enabled file
 system, the client uses the OPEN operation. With the
 normal set of attributes that may be provided upon OPEN
 used for creation, there is an OPTIONAL layout_hint
 attribute. The client's use of layout_hint allows the
 client to express its preference for a layout type and its
 associated layout details. The use of a createmode4 of
 UNCHECKED4, GUARDED4, or EXCLUSIVE4_1 will allow the
 client to provide the layout_hint attribute at create
 time. The client MUST NOT use EXCLUSIVE4 (see). The client is RECOMMENDED
 to combine a GETATTR operation after the OPEN within
 the same COMPOUND. The GETATTR may then retrieve
 the layout_type attribute for the newly created file.
 The client will then know what layout type the server has
 chosen for the file and therefore what storage protocol
 the client must use.

 If the client wants to open an existing file, then it also includes
 a GETATTR to determine what layout type the file supports.

 The GETATTR in either the file creation or plain file open case can
 also include the layout_blksize and layout_alignment attributes so
 that the client can determine optimal offsets and lengths for I/O on
 the file.

 Assuming the client supports the layout type returned by GETATTR and
 it chooses to use pNFS for data access, it then sends LAYOUTGET
 using the filehandle and stateid returned by OPEN, specifying the range it wants
 to do I/O on. The response is a layout, which may be a subset of the
 range for which the client asked. It also includes device IDs and a
 description of how data is organized (or in the case of writing, how
 data is to be organized) across the devices. The device IDs and
 data description are encoded in a format that is specific to the
 layout type, but the client is expected to understand.

 When the client wants to send an I/O, it determines to which device ID
 it needs to send the I/O command by examining the data
 description in the layout. It then sends a
 GETDEVICEINFO to find the device address(es) of the device ID. The
 client then sends the I/O request to one of device ID's device addresses, using the
 storage protocol defined for the layout type.
 Note that if a client has multiple I/Os to send,
 these I/O requests may be done in parallel.

 If the I/O was a WRITE, then at some point
 the client may want to use LAYOUTCOMMIT to
 commit the modification time and the new size
 of the file (if it believes it extended the file size) to the
 metadata server and the modified data to the file system.

 Recovery

 Recovery is complicated by the distributed nature of the pNFS
 protocol. In general, crash recovery for layouts is similar to
 crash recovery for delegations in the base NFSv4.1 protocol. However,
 the client's ability to perform I/O without contacting the metadata
 server introduces subtleties that must be handled correctly if
 the possibility of file system corruption is to be avoided.

 Recovery from Client Restart

 Client recovery for layouts is similar to client recovery for other
 lock and delegation state. When a pNFS client restarts, it will lose
 all information about the layouts that it previously owned. There
 are two methods by which the server can reclaim these resources and
 allow otherwise conflicting layouts to be provided to other
 clients.

 The first is through the expiry of the client's lease. If the
 client recovery time is longer than the lease period, the client's
 lease will expire and the server will know that state may be
 released. For layouts, the server may release the state immediately
 upon lease expiry or it may allow the layout to persist, awaiting
 possible lease revival, as long as no other layout conflicts.

 The second is through the client restarting in less time than it
 takes for the lease period to expire. In such a case, the client
 will contact the server through the standard EXCHANGE_ID protocol.
 The server will find that the client's co_ownerid matches the
 co_ownerid of the previous client invocation, but that the verifier
 is different. The server uses this as a signal to release all
 layout state associated with the client's previous invocation. In
 this scenario, the data written by the client but not covered by a
 successful LAYOUTCOMMIT is in an undefined state; it may have been
 written or it may now be lost. This is acceptable behavior and it
 is the client's responsibility to use LAYOUTCOMMIT to achieve the
 desired level of stability.

 Dealing with Lease Expiration on the Client

 If a client believes its lease has expired, it MUST NOT send I/O
 to the storage device until it has validated its lease. The client
 can send a SEQUENCE operation to the metadata server. If the
 SEQUENCE operation is successful, but sr_status_flag has
 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, or
 SEQ4_STATUS_ADMIN_STATE_REVOKED set, the client MUST NOT use
 currently held layouts. The client has two
 choices to recover from the lease expiration. First, for all
 modified but uncommitted data, the client writes it to the metadata server
 using the FILE_SYNC4 flag for the WRITEs, or WRITE and
 COMMIT. Second, the client re-establishes a client ID and session with
 the server and obtains new layouts and device-ID-to-device-address
 mappings for the modified data ranges and then writes the data to the
 storage devices with the newly obtained layouts.

 If sr_status_flags from the metadata server has
 SEQ4_STATUS_RESTART_RECLAIM_NEEDED set
 (or SEQUENCE returns NFS4ERR_BAD_SESSION and
 CREATE_SESSION returns NFS4ERR_STALE_CLIENTID), then the metadata
 server has restarted, and the client SHOULD recover using the
 methods described in .

 If sr_status_flags from the metadata server has
 SEQ4_STATUS_LEASE_MOVED set, then the client recovers by following
 the procedure described in . After that, the client may get an
 indication that the layout state was not moved with the file
 system. The client recovers as in the other
 applicable situations discussed in the first two paragraphs of this section.

 If sr_status_flags reports no loss of state, then the lease for the
 layouts that the client has are valid and
 renewed, and the client can once again send I/O requests to the
 storage devices.

 While clients SHOULD NOT send I/Os to storage devices that may
 extend past the lease expiration time period, this is not always
 possible, for example, an extended network partition that starts
 after the I/O is sent and does not heal until the I/O request is
 received by the storage device. Thus, the metadata server and/or
 storage devices are responsible for protecting themselves from I/Os
 that are both sent before the lease expires and arrive after the lease
 expires. See .

 Dealing with Loss of Layout State on the Metadata Server

 This is a description of the case where all of the following are
 true:

 the metadata server has not restarted

 a pNFS client's
 layouts have been discarded (usually because the client's lease
 expired) and are invalid

 an I/O from the pNFS client arrives at the storage device

 The metadata server and its storage devices MUST solve this by
 fencing the client. In other words, they MUST solve this by
 preventing the execution of I/O operations from the client to the
 storage devices after layout
 state loss. The details of how fencing is done are specific to the
 layout type. The solution for NFSv4.1 file-based layouts is
 described in (), and solutions for other
 layout types are in their respective external specification documents.

 Recovery from Metadata Server Restart

 The pNFS client will discover that the metadata server has
 restarted via the methods described in and discussed in a pNFS-specific
 context in . The client MUST stop using
 layouts and delete the device ID to device address mappings it
 previously received from the metadata server. Having done that,
 if the client wrote data to the storage device without committing
 the layouts via LAYOUTCOMMIT, then the client has
 additional work to do in order to have the client, metadata server,
 and storage device(s) all synchronized on the state of the data.

 If the client has data still modified
 and unwritten in the client's memory, the client has only two choices.

 The client can obtain a layout via LAYOUTGET after the
 server's grace period and write the data to the storage devices.

 The client can WRITE that data through the metadata server using the
 WRITE () operation, and then obtain
 layouts as desired.

 If the client asynchronously wrote data to the storage device, but
 still has a copy of the data in its memory, then it has available
 to it the recovery options listed above in the previous bullet
 point. If the metadata server is also in its grace period, the
 client has available to it the options below in the next bullet
 point.

 The client does not have a copy of the data in its memory and the
 metadata server is still in its grace period. The client cannot
 use LAYOUTGET (within or outside the grace period) to reclaim a
 layout because the contents of the response from LAYOUTGET
 may not match what it had previously. The range might be
 different or the client might get the same range but the content of the
 layout might be different. Even if the content of the layout
 appears to be the same, the device IDs may map to different
 device addresses, and even if the device addresses are the same,
 the device addresses could have been assigned to a different
 storage device. The option of retrieving the data from the
 storage device and writing it to the metadata server per the
 recovery scenario described above is
 not available because, again, the mappings of range to device ID,
 device ID to device address, and device address to physical device are
 stale, and new mappings via new LAYOUTGET do not solve the problem.

 The only recovery option for this scenario is to send a
 LAYOUTCOMMIT in reclaim mode, which the metadata server will
 accept as long as it is in its grace period. The use of
 LAYOUTCOMMIT in reclaim mode informs the metadata server that the
 layout has changed. It is critical that the metadata server
 receive this information before its grace period ends, and thus
 before it starts allowing updates to the file system.

 To send LAYOUTCOMMIT in reclaim mode, the client sets the
 loca_reclaim field of the operation's arguments () to TRUE. During the metadata
 server's recovery grace period (and only during the recovery grace
 period) the metadata server is prepared to accept LAYOUTCOMMIT
 requests with the loca_reclaim field set to TRUE.

 When loca_reclaim is TRUE, the client is attempting to commit
 changes to the layout that occurred prior to the restart
 of the metadata server. The metadata server applies some
 consistency checks on the loca_layoutupdate field of the arguments
 to determine whether the client can commit the data written to the
 storage device to the file system. The loca_layoutupdate field is of
 data type layoutupdate4 and contains layout-type-specific content
 (in the lou_body field of loca_layoutupdate). The
 layout-type-specific information that loca_layoutupdate might have
 is discussed in . If the
 metadata server's consistency checks on loca_layoutupdate succeed,
 then the metadata server MUST commit the data (as described by the
 loca_offset, loca_length, and loca_layoutupdate fields of the
 arguments) that was written to the storage device. If the metadata
 server's consistency checks on loca_layoutupdate fail, the
 metadata server rejects the LAYOUTCOMMIT operation and makes no
 changes to the file system. However, any time LAYOUTCOMMIT with
 loca_reclaim TRUE fails, the pNFS client has lost all the data in
 the range defined by <loca_offset, loca_length>. A client
 can defend against this risk by caching all data, whether written
 synchronously or asynchronously in its memory, and by not releasing the
 cached data until a successful LAYOUTCOMMIT. This condition
 does not hold true for all layout types; for example, file-based
 storage devices need not suffer from this limitation.

 The client does not have a copy of the data in its memory and the
 metadata server is no longer in its grace period; i.e., the metadata
 server returns NFS4ERR_NO_GRACE. As with the scenario in the above
 bullet point, the failure of LAYOUTCOMMIT means the data
 in the range <loca_offset, loca_length> lost. The
 defense against the risk is the same -- cache all written data
 on the client until a successful LAYOUTCOMMIT.

 Operations during Metadata Server Grace Period

 Some of the recovery scenarios thus far noted that some
 operations (namely, WRITE and LAYOUTGET) might be permitted during
 the metadata server's grace period. The metadata server may allow
 these operations during its grace period. For LAYOUTGET, the
 metadata server must reliably determine that servicing such a
 request will not conflict with an impending LAYOUTCOMMIT reclaim
 request. For WRITE, the metadata server
 must reliably determine that servicing the request
 will not conflict with an impending OPEN or with a LOCK where the
 file has mandatory byte-range locking enabled.

 As mentioned previously, for expediency,
 the metadata server might reject some
 operations (namely, WRITE and LAYOUTGET) during its
 grace period, because the simplest correct approach
 is to reject all non-reclaim pNFS requests and WRITE operations by
 returning the NFS4ERR_GRACE error. However, depending on the
 storage protocol (which is specific to the layout type) and
 metadata server implementation, the metadata server may be able to
 determine that a particular request is safe. For example, a
 metadata server may save provisional allocation mappings for each
 file to stable storage, as well as information about potentially
 conflicting OPEN share modes and mandatory byte-range locks that might
 have been in effect at the time of restart, and the metadata
 server may use this information during the recovery grace period to determine that a
 WRITE request is safe.

 Storage Device Recovery

 Recovery from storage device restart is mostly dependent upon the layout type
 in use. However, there are a few general techniques a client can
 use if it discovers a storage device has crashed while holding
 modified, uncommitted data that was asynchronously written.
 First and foremost, it
 is important to realize that the client is the only one that has the
 information necessary to recover non-committed data since
 it holds the modified data and probably nothing else does. Second,
 the best solution is for the client to err on the side of caution
 and attempt to rewrite the modified data through another path.

 The client SHOULD immediately WRITE the data to the metadata server,
 with the stable field in the WRITE4args set to FILE_SYNC4. Once it
 does this, there is no need to wait for the original storage device.

 Metadata and Storage Device Roles

 If the same physical hardware is used to implement both a
 metadata server and storage device, then the same hardware
 entity is to be understood to be implementing two
 distinct roles and it is important that it be clearly
 understood on behalf of which role the hardware is
 executing at any given time.

 Two sub-cases can be distinguished.

 The storage device uses NFSv4.1 as the storage protocol, i.e., the same
 physical hardware is used to implement both a metadata and data
 server. See
 for a description of how multiple roles are handled.

 The storage device does not use NFSv4.1 as the storage protocol,
 and the same physical hardware is used to implement both a
 metadata and storage device. Whether distinct network addresses
 are used to access the metadata server and storage device is
 immaterial. This is because it is always clear to the pNFS client and
 server, from the upper-layer protocol being used (NFSv4.1 or
 non-NFSv4.1), to which role the request to the common server network
 address is directed.

 Security Considerations for pNFS

 pNFS separates file system metadata and data and provides access to
 both. There are pNFS-specific operations (listed in
) that provide access to the metadata; all
 existing NFSv4.1 conventional (non-pNFS) security mechanisms and
 features apply to accessing the metadata. The combination of
 components in a pNFS system (see) is
 required to preserve the security properties of NFSv4.1 with respect
 to an entity that is accessing a storage device from a client, including
 security countermeasures to defend against threats for which NFSv4.1
 provides defenses in environments where these threats are
 considered significant.

 In some cases, the security countermeasures for connections
 to storage devices may take the form of physical isolation or a
 recommendation to avoid the use of pNFS in an environment. For example, it
 may be impractical to provide confidentiality protection for some
 storage protocols to protect against eavesdropping. In
 environments where eavesdropping on such protocols is of sufficient
 concern to require countermeasures, physical isolation of the
 communication channel (e.g., via direct connection from client(s)
 to storage device(s)) and/or a decision to forgo use of pNFS (e.g.,
 and fall back to conventional NFSv4.1) may be appropriate courses of action.

 Where communication with storage devices is subject to the same
 threats as client-to-metadata server communication, the protocols
 used for that communication need to provide security mechanisms as
 strong as or no weaker than those available via RPCSEC_GSS for
 NFSv4.1. Except for the storage protocol used for the LAYOUT4_NFSV4_1_FILES
 layout (see), i.e., except for NFSv4.1,
 it is beyond the scope of this document to specify the security mechanisms
 for storage access protocols.

 pNFS implementations MUST NOT remove NFSv4.1's access controls.
 The combination of clients, storage devices, and the metadata server
 are responsible for ensuring that all client-to-storage-device file
 data access respects NFSv4.1's ACLs and file open modes. This entails
 performing both of these checks on every access in the client, the
 storage device, or both (as applicable; when the storage device is
 an NFSv4.1 server, the storage device is ultimately responsible for
 controlling access as described in).
 If a pNFS configuration performs these checks only in the client,
 the risk of a misbehaving client obtaining unauthorized access is
 an important consideration in determining when it is appropriate to
 use such a pNFS configuration. Such layout types SHOULD NOT be used
 when client-only access checks do not provide sufficient assurance
 that NFSv4.1 access control is being applied correctly. (This
 is not a problem for the file layout type described in because the storage access protocol for
 LAYOUT4_NFSV4_1_FILES is NFSv4.1, and thus the security model for
 storage device access via LAYOUT4_NFSv4_1_FILES is the same as that
 of the metadata server.) For handling of access control specific to
 a layout, the reader should examine the layout specification, such as
 the NFSv4.1/file-based layout
 of this document, the blocks
 layout, and objects
 layout.

 NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type

 This section describes the semantics and format of NFSv4.1 file-based
 layouts for pNFS.
 NFSv4.1 file-based layouts use the LAYOUT4_NFSV4_1_FILES layout type.
 The LAYOUT4_NFSV4_1_FILES type defines
 striping data across multiple NFSv4.1 data servers.

 Client ID and Session Considerations

 Sessions are a REQUIRED feature of NFSv4.1, and this
 extends to both the metadata server and file-based (NFSv4.1-based)
 data servers.

 The role a server plays in pNFS is determined by the result it returns
 from EXCHANGE_ID.
 The roles are:

 Metadata server (EXCHGID4_FLAG_USE_PNFS_MDS is set in the result eir_flags).

 Data server (EXCHGID4_FLAG_USE_PNFS_DS).

 Non-metadata server (EXCHGID4_FLAG_USE_NON_PNFS). This is an NFSv4.1
 server that does not support operations (e.g.,
 LAYOUTGET) or attributes that pertain to pNFS.

 The client MAY request zero or more of
 EXCHGID4_FLAG_USE_NON_PNFS,
 EXCHGID4_FLAG_USE_PNFS_DS, or
 EXCHGID4_FLAG_USE_PNFS_MDS, even though some combinations
 (e.g., EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS) are
 contradictory. However, the server MUST only return the following
 acceptable combinations:

 Acceptable Results from EXCHANGE_ID

 EXCHGID4_FLAG_USE_PNFS_MDS

 EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS

 EXCHGID4_FLAG_USE_PNFS_DS

 EXCHGID4_FLAG_USE_NON_PNFS

 EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_NON_PNFS

 As the above table implies, a server can have one
 or two roles. A server can be both a metadata server
 and a data server, or it can be both a data server and
 non-metadata server. In addition to returning two roles
 in the EXCHANGE_ID's results, and thus serving both roles
 via a common client ID, a server can serve two roles
 by returning a unique client ID and server owner for
 each role in each of two EXCHANGE_ID results, with each
 result indicating each role.

 In the case of a server with concurrent pNFS roles that
 are served by a common client ID, if the EXCHANGE_ID
 request from the client has zero or a combination of the
 bits set in eia_flags, the server result should set bits
 that represent the higher of the acceptable combination
 of the server roles, with a preference to match the roles
 requested by the client. Thus, if a client request has
 (EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS
 | EXCHGID4_FLAG_USE_PNFS_DS) flags set, and the server
 is both a metadata server and a data server, serving
 both the roles by a common client ID, the server
 SHOULD return with (EXCHGID4_FLAG_USE_PNFS_MDS |
 EXCHGID4_FLAG_USE_PNFS_DS) set.

 In the case of a server that has multiple concurrent
 pNFS roles, each role served by a unique client ID,
 if the client specifies zero or a combination of roles
 in the request, the server results SHOULD return only
 one of the roles from the combination specified by the
 client request. If the role specified by the server
 result does not match the intended use by the client,
 the client should send the EXCHANGE_ID specifying just
 the interested pNFS role.

 If a pNFS metadata client gets a layout that refers it to an NFSv4.1
 data server, it needs a client ID on that data server. If it does not
 yet have a client ID from the server that had the EXCHGID4_FLAG_USE_PNFS_DS
 flag set in the EXCHANGE_ID results, then the client needs to
 send an EXCHANGE_ID to the data server, using
 the same co_ownerid as it sent to the metadata server, with the
 EXCHGID4_FLAG_USE_PNFS_DS flag set in the arguments.
 If the server's
 EXCHANGE_ID results have EXCHGID4_FLAG_USE_PNFS_DS set, then the
 client may use the client ID to create sessions that will
 exchange pNFS data operations.
 The client ID returned by the data server has no relationship with
 the client ID returned by a metadata server unless the client IDs
 are equal, and the server owners and server scopes of the data server
 and metadata server are equal.

 In NFSv4.1, the
 session ID in the SEQUENCE operation implies the
 client ID, which in turn might be used by the server to
 map the stateid to the right client/server pair.
 However, when a data server is presented with a READ or
 WRITE operation with a stateid, because the
 stateid is associated with a
 client ID on a metadata server, and because the session ID in
 the preceding SEQUENCE operation is tied to the
 client ID of the data server, the data server has no
 obvious way to determine the metadata server from the
 COMPOUND procedure, and thus has no way to validate the
 stateid. One RECOMMENDED approach is for pNFS servers to
 encode metadata server routing and/or identity
 information in the data server filehandles as returned
 in the layout.

 If metadata server routing and/or identity information is encoded
 in data server filehandles,
 when the metadata server identity or location
 changes, the data server filehandles it gave out will become
 invalid (stale), and so the metadata server MUST first
 recall the layouts.
 Invalidating a data server filehandle does not render
 the NFS client's data cache invalid. The client's cache should
 map a data server filehandle to a metadata server filehandle, and
 a metadata server filehandle to cached data.

 If a server is both a metadata server and a data server,
 the server might need to distinguish operations on
 files that are directed to the metadata server from
 those that are directed to the data server. It is
 RECOMMENDED that the values of the filehandles returned by
 the LAYOUTGET operation be different than the value
 of the filehandle returned by the OPEN of the same file.

 Another scenario is for the metadata server and the
 storage device to be distinct from one client's point of
 view, and the roles reversed from another client's point
 of view. For example, in the cluster file system model,
 a metadata server to one client might be a data server to
 another client. If NFSv4.1 is being used as the storage
 protocol, then pNFS servers need to encode the values
 of filehandles according to their specific roles.

 Sessions Considerations for Data Servers

 states
 that a client has to keep its lease renewed in
 order to prevent a session from being deleted by
 the server. If the reply to EXCHANGE_ID has just the
 EXCHGID4_FLAG_USE_PNFS_DS role set, then (as noted in
) the client will not be able
 to determine the data server's lease_time attribute
 because GETATTR will not be permitted. Instead, the
 rule is that any time a client receives a layout
 referring it to a data server that returns just
 the EXCHGID4_FLAG_USE_PNFS_DS role, the client MAY
 assume that the lease_time attribute from the metadata
 server that returned the layout applies to the data
 server. Thus, the data server MUST be aware of the values
 of all lease_time attributes of all metadata servers for which it
 is providing I/O, and it MUST use the maximum of all such
 lease_time values as the lease interval for all client
 IDs and sessions established on it.

 For example, if one metadata server has a lease_time
 attribute of 20 seconds, and a second metadata
 server has a lease_time attribute of 10 seconds,
 then if both servers return layouts that refer to an
 EXCHGID4_FLAG_USE_PNFS_DS-only data server, the data
 server MUST renew a client's lease if the interval
 between two SEQUENCE operations on different COMPOUND
 requests is less than 20 seconds.

 File Layout Definitions

 The following definitions apply to the LAYOUT4_NFSV4_1_FILES
 layout type and may be applicable to other layout types.

 Unit.

 A unit is a fixed-size quantity of data written to a data server.

 Pattern.

 A pattern is a method of distributing one or more
 equal sized units across a set of data servers.
 A pattern is iterated one or more times.

 Stripe.

 A stripe is a set of data distributed
 across a set of data servers in a
 pattern before that pattern repeats.

 Stripe Count.

 A stripe count is the number of units in a pattern.

 Stripe Width.

 A stripe width is the size of a stripe in bytes.
 The stripe width = the stripe count * the size of the stripe unit.

 Hereafter, this document will refer to a unit that is a written
 in a pattern as a "stripe unit".

 A pattern may have more stripe units than data servers.
 If so, some data servers will have more than one stripe unit
 per stripe. A data server that has multiple stripe
 units per stripe MAY store each unit in a different data file (and
 depending on the implementation, will possibly assign a unique data
 filehandle to each data file).

 File Layout Data Types

 The high level NFSv4.1 layout types are
 nfsv4_1_file_layouthint4,
 nfsv4_1_file_layout_ds_addr4,
 and nfsv4_1_file_layout4.

 The SETATTR operation supports a layout hint attribute
 ().
 When the client sets a layout hint (data type layouthint4) with
 a layout type of LAYOUT4_NFSV4_1_FILES (the loh_type field),
 the loh_body field contains a value of data type
 nfsv4_1_file_layouthint4.

const NFL4_UFLG_MASK = 0x0000003F;
const NFL4_UFLG_DENSE = 0x00000001;
const NFL4_UFLG_COMMIT_THRU_MDS = 0x00000002;
const NFL4_UFLG_STRIPE_UNIT_SIZE_MASK
 = 0xFFFFFFC0;

typedef uint32_t nfl_util4;

enum filelayout_hint_care4 {
 NFLH4_CARE_DENSE = NFL4_UFLG_DENSE,

 NFLH4_CARE_COMMIT_THRU_MDS
 = NFL4_UFLG_COMMIT_THRU_MDS,

 NFLH4_CARE_STRIPE_UNIT_SIZE
 = 0x00000040,

 NFLH4_CARE_STRIPE_COUNT = 0x00000080
};

/* Encoded in the loh_body field of data type layouthint4: */

struct nfsv4_1_file_layouthint4 {
 uint32_t nflh_care;
 nfl_util4 nflh_util;
 count4 nflh_stripe_count;
};

 The generic layout hint structure is described
 in . The client uses the
 layout hint in the layout_hint () attribute to indicate the preferred type
 of layout to be used for a newly created file. The
 LAYOUT4_NFSV4_1_FILES layout-type-specific content for the
 layout hint is composed of three fields. The first field,
 nflh_care, is a set of flags indicating which values of the hint the
 client cares about. If the NFLH4_CARE_DENSE flag is set, then
 the client indicates in the second field, nflh_util,
 a preference for how the data
 file is packed (), which is controlled
 by the value of the expression nflh_util & NFL4_UFLG_DENSE ("&" represents the bitwise AND operator). If the
 NFLH4_CARE_COMMIT_THRU_MDS flag is set, then the client indicates
 a preference for whether the client should send COMMIT operations
 to the metadata server or data server (),
 which is controlled by the value of nflh_util & NFL4_UFLG_COMMIT_THRU_MDS.
 If the NFLH4_CARE_STRIPE_UNIT_SIZE flag is set, the client indicates
 its preferred stripe unit size, which is indicated in
 nflh_util &
 NFL4_UFLG_STRIPE_UNIT_SIZE_MASK (thus, the stripe
 unit size MUST be a multiple of 64 bytes). The minimum stripe unit
 size is 64 bytes.
 If the NFLH4_CARE_STRIPE_COUNT flag is set, the client indicates
 in the third field,
 nflh_stripe_count, the stripe count. The stripe count multiplied
 by the stripe unit size is the stripe width.

 When LAYOUTGET returns a LAYOUT4_NFSV4_1_FILES layout
 (indicated in the loc_type field of the lo_content field),
 the loc_body field of the lo_content field
 contains a value of data type nfsv4_1_file_layout4.
 Among other content, nfsv4_1_file_layout4 has a storage
 device ID (field nfl_deviceid) of data type
 deviceid4.
 The GETDEVICEINFO operation maps a device ID to
 a storage device address (type device_addr4). When GETDEVICEINFO
 returns a device address with a layout type of LAYOUT4_NFSV4_1_FILES
 (the da_layout_type field), the da_addr_body field contains
 a value of data type nfsv4_1_file_layout_ds_addr4.

typedef netaddr4 multipath_list4<>;

/*
 * Encoded in the da_addr_body field of
 * data type device_addr4:
 */
struct nfsv4_1_file_layout_ds_addr4 {
 uint32_t nflda_stripe_indices<>;
 multipath_list4 nflda_multipath_ds_list<>;
};

 The nfsv4_1_file_layout_ds_addr4 data type represents the
 device address. It is composed of two fields:

 nflda_multipath_ds_list: An array of lists of data servers, where
 each list can be one or more elements, and each element represents
 a data server address that may serve equally as the target of I/O operations (see
).
 The length of this array might be different than the stripe count.

 nflda_stripe_indices: An array of indices used to index into
 nflda_multipath_ds_list. The value of each element of nflda_stripe_indices MUST
 be less than the number of elements in nflda_multipath_ds_list.
 Each element of nflda_multipath_ds_list SHOULD be referred to by one
 or more elements of nflda_stripe_indices.
 The number of elements in
 nflda_stripe_indices is always equal to the stripe count.

/*
 * Encoded in the loc_body field of
 * data type layout_content4:
 */
struct nfsv4_1_file_layout4 {
 deviceid4 nfl_deviceid;
 nfl_util4 nfl_util;
 uint32_t nfl_first_stripe_index;
 offset4 nfl_pattern_offset;
 nfs_fh4 nfl_fh_list<>;
};

 The nfsv4_1_file_layout4 data type represents the layout.
 It is composed of the following fields:

 nfl_deviceid: The device ID that maps to a value of type
 nfsv4_1_file_layout_ds_addr4.

 nfl_util: Like the nflh_util field of data type nfsv4_1_file_layouthint4,
 a compact representation of how the data on a file
 on each data server is packed, whether the client should send
 COMMIT operations to the metadata server or data server, and the
 stripe unit size. If a server returns two or
 more overlapping layouts, each stripe unit size in
 each overlapping layout MUST be the same.

 nfl_first_stripe_index: The index into the first element
 of the nflda_stripe_indices array to use.

 nfl_pattern_offset:
 This field is the logical offset into the file
 where the striping pattern starts. It is required for
 converting the client's logical I/O offset (e.g., the current
 offset in a POSIX file descriptor before the read() or write()
 system call is sent) into the stripe unit number (see
).

 If dense packing is used, then nfl_pattern_offset
 is also needed to convert the client's logical
 I/O offset to an offset on the file on the data
 server corresponding to the stripe unit number (see).

 Note that nfl_pattern_offset is not always the same as
 lo_offset. For example, via the LAYOUTGET operation,
 a client might request a layout starting at offset 1000 of a
 file that has its striping pattern start at offset zero.

 nfl_fh_list: An array of data server filehandles for each
 list of data servers in each element of the nflda_multipath_ds_list
 array. The number of elements in
 nfl_fh_list depends on whether sparse or dense packing
 is being used.

 If sparse packing is being used, the number of elements in
 nfl_fh_list MUST be one of three values:

	 Zero. This means that filehandles used
	 for each data server are the same as the
	 filehandle returned by the OPEN operation
	 from the metadata server.

	

	 One. This means that every data server uses
	 the same filehandle: what is specified in
	 nfl_fh_list[0].

	

	 The same number of elements in
	 nflda_multipath_ds_list. Thus, in this case,
	 when sending an I/O operation to any data server in
	 nflda_multipath_ds_list[X], the filehandle
	 in nfl_fh_list[X] MUST be used.

	

 See the discussion on sparse packing in .

 If dense packing is being used, the number of elements
 in nfl_fh_list MUST be the same as the number
 of elements in nflda_stripe_indices. Thus,
 when sending an I/O operation to any data server in
 nflda_multipath_ds_list[nflda_stripe_indices[Y]],
 the filehandle in nfl_fh_list[Y] MUST be
 used. In addition, any time there exists i
 and j, (i != j), such that the intersection of
 nflda_multipath_ds_list[nflda_stripe_indices[i]]
 and nflda_multipath_ds_list[nflda_stripe_indices[j]]
 is not empty, then nfl_fh_list[i] MUST NOT equal
 nfl_fh_list[j]. In other words, when dense packing
 is being used, if a data server appears in two or more
 units of a striping pattern, each reference to
 the data server MUST use a different filehandle.

 Indeed, if there are multiple striping patterns,
 as indicated by the presence of multiple objects of
 data type layout4 (either returned in one or multiple
 LAYOUTGET operations), and a data server is the target
 of a unit of one pattern and another unit of another
 pattern, then each reference to each data server MUST
 use a different filehandle.

 See the discussion on dense packing in .

 The details on the interpretation of the layout are in
 .

 Interpreting the File Layout

 Determining the Stripe Unit Number

 To find the stripe unit number that corresponds to the client's
 logical file offset, the pattern offset will also be used. The
 i'th stripe unit (SUi) is:

 relative_offset = file_offset - nfl_pattern_offset;
 SUi = floor(relative_offset / stripe_unit_size);

 Interpreting the File Layout Using Sparse Packing

 When sparse packing is used, the algorithm for determining the filehandle and set
 of data-server network addresses to write stripe unit i
 (SUi) to is:

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {
 case ds_count:
 fh = nfl_fh_list[idx];
 break;

 case 1:
 fh = nfl_fh_list[0];
 break;

 case 0:
 fh = filehandle returned by OPEN;
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

 The client would then select a data server from address_list, and
 send a READ or WRITE operation using the filehandle specified in fh.

 Consider the following example:

 Suppose we have a device address consisting of seven
 data servers, arranged in three equivalence () classes:

	 { A, B, C, D }, { E }, { F, G }

 where A through G are network addresses.

 Then

	 nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

	 i.e.,

	 nflda_multipath_ds_list[0] = { A, B, C, D }

	 nflda_multipath_ds_list[1] = { E }

	 nflda_multipath_ds_list[2] = { F, G }

 Suppose the striping index array is:

	 nflda_stripe_indices<> = { 2, 0, 1, 0 }

 Now suppose the client gets a layout that has a device ID
 that maps to the above device address. The initial index contains

 nfl_first_stripe_index = 2,

 and the filehandle list is

 nfl_fh_list = { 0x36, 0x87, 0x67 }.

 If the client wants to write to SU0, the
 set of valid { network address, filehandle } combinations
 for SUi are determined by:

	 nfl_first_stripe_index = 2

 So

	 idx = nflda_stripe_indices[(0 + 2) % 4]

		 = nflda_stripe_indices[2]

		 = 1

 So

	 nflda_multipath_ds_list[1] = { E }

 and

	 nfl_fh_list[1] = { 0x87 }

 The client can thus write SU0 to { 0x87, { E } }.

 The destinations of the first 13 storage units are:

 SUi
 filehandle
 data servers

 0
 87
 E

 1
 36
 A,B,C,D

 2
 67
 F,G

 3
 36
 A,B,C,D

 4
 87
 E

 5
 36
 A,B,C,D

 6
 67
 F,G

 7
 36
 A,B,C,D

 8
 87
 E

 9
 36
 A,B,C,D

 10
 67
 F,G

 11
 36
 A,B,C,D

 12
 87
 E

 Interpreting the File Layout Using Dense Packing

 When dense packing is used, the algorithm for determining the filehandle and set
 of data server network addresses to write stripe unit i (SUi) to is:

 stripe_count = number of elements in nflda_stripe_indices;

 j = (SUi + nfl_first_stripe_index) % stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in nfl_fh_list;
 ds_count = number of elements in nflda_multipath_ds_list;

 switch (fh_count) {
 case stripe_count:
 fh = nfl_fh_list[j];
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = nflda_multipath_ds_list[idx];

 The client would then select a data server from address_list, and
 send a READ or WRITE operation using the filehandle specified in fh.

 Consider the following example (which is the same
 as the sparse packing example, except for the
 filehandle list):

 Suppose we have a device address consisting of seven
 data servers, arranged in three equivalence () classes:

	 { A, B, C, D }, { E }, { F, G }

 where A through G are network addresses.

 Then

	 nflda_multipath_ds_list<> = { A, B, C, D }, { E }, { F, G }

	 i.e.,

	 nflda_multipath_ds_list[0] = { A, B, C, D }

	 nflda_multipath_ds_list[1] = { E }

	 nflda_multipath_ds_list[2] = { F, G }

 Suppose the striping index array is:

	 nflda_stripe_indices<> = { 2, 0, 1, 0 }

 Now suppose the client gets a layout that has a device ID
 that maps to the above device address. The initial index contains

 nfl_first_stripe_index = 2,

 and

 nfl_fh_list = { 0x67, 0x37, 0x87, 0x36 }.

 The interesting examples for dense packing are
 SU1 and SU3 because each stripe unit refers to the
 same data server list, yet each stripe unit MUST use a different filehandle.
 If the client wants to write to SU1, the
 set of valid { network address, filehandle } combinations
 for SUi are determined by:

 nfl_first_stripe_index = 2

 So

 j = (1 + 2) % 4 = 3

 idx = nflda_stripe_indices[j]
 = nflda_stripe_indices[3]
 = 0

 So

	 nflda_multipath_ds_list[0] = { A, B, C, D }

 and

	 nfl_fh_list[3] = { 0x36 }

 The client can thus write SU1 to { 0x36, { A, B, C, D } }.

 For SU3, j = (3 + 2) % 4 = 1, and nflda_stripe_indices[1] = 0.
 Then nflda_multipath_ds_list[0] = { A, B, C, D }, and
 nfl_fh_list[1] = 0x37. The client can thus write SU3 to
 { 0x37, { A, B, C, D } }.

 The destinations of the first 13 storage units are:

 SUi
 filehandle
 data servers

 0
 87
 E

 1
 36
 A,B,C,D

 2
 67
 F,G

 3
 37
 A,B,C,D

 4
 87
 E

 5
 36
 A,B,C,D

 6
 67
 F,G

 7
 37
 A,B,C,D

 8
 87
 E

 9
 36
 A,B,C,D

 10
 67
 F,G

 11
 37
 A,B,C,D

 12
 87
 E

 Sparse and Dense Stripe Unit Packing

 The flag NFL4_UFLG_DENSE of the nfl_util4 data type (field nflh_util of the
 data type nfsv4_1_file_layouthint4 and field nfl_util of
 data type nfsv4_1_file_layout_ds_addr4) specifies how the data
 is packed within the
 data file on a data server. It allows for two different data
 packings: sparse and dense. The packing type determines the
 calculation that will be made to map the client-visible file offset
 to the offset within the data file located on the data server.

 If nfl_util & NFL4_UFLG_DENSE is zero, this means that
 sparse packing is being used. Hence, the logical offsets of the
 file as viewed by a client
 sending READs and WRITEs directly to the metadata server
 are the same offsets each data server uses when storing
 a stripe unit. The effect then, for striping patterns
 consisting of at least two stripe units, is for each
 data server file to be sparse or "holey". So for example,
 suppose there is a pattern with three stripe units, the stripe unit
 size is 4096 bytes, and there are three data servers in
 the pattern. Then, the file in data server 1 will have
 stripe units 0, 3, 6, 9, ... filled; data server 2's
 file will have stripe units 1, 4, 7, 10, ... filled;
 and data server 3's file will have stripe units 2,
 5, 8, 11, ... filled. The unfilled stripe units of
 each file will be holes; hence, the files in each data
 server are sparse.

 If sparse packing is being used and a client attempts I/O to one of
 the holes, then an error MUST be
 returned by the data server. Using the above example, if data server 3 received a READ or WRITE operation for block 4, the data server
 would return NFS4ERR_PNFS_IO_HOLE. Thus,
 data servers need to understand the striping pattern in order
 to support sparse packing.

 If nfl_util & NFL4_UFLG_DENSE is one, this means that
 dense packing is being used, and the data server files have no holes.
 Dense packing might be selected because the data server does not
 (efficiently) support holey files or because the data server
 cannot recognize read-ahead unless there are no holes.
 If dense packing is indicated in the layout,
 the data files will be packed. Using the
 same striping pattern and stripe unit size that were used for
 the sparse packing example, the corresponding dense packing example would have
 all stripe units of all data files filled as follows:

 Logical stripe units 0, 3, 6, ... of the file would live on
 stripe units 0, 1, 2, ... of the file of data server 1.

 Logical stripe units 1, 4, 7, ... of the file would live on
 stripe units 0, 1, 2, ... of the file of data server 2.

 Logical stripe units 2, 5, 8, ... of the file would live on
 stripe units 0, 1, 2, ... of the file of data server 3.

 Because dense packing does not leave holes on the data servers,
 the pNFS client is allowed to write to any offset of any data file of
 any data server in the stripe. Thus, the data servers need not know
 the file's striping pattern.

 The calculation to determine the byte offset within the data file
 for dense data server layouts is:

 stripe_width = stripe_unit_size * N;
 where N = number of elements in nflda_stripe_indices.

 relative_offset = file_offset - nfl_pattern_offset;

 data_file_offset = floor(relative_offset / stripe_width)
 * stripe_unit_size
 + relative_offset % stripe_unit_size

 If dense packing is being used, and a data server appears
 more than once in a striping pattern, then to distinguish
 one stripe unit from another, the data server MUST use a
 different filehandle. Let's suppose there are two data
 servers. Logical stripe units 0, 3, 6 are served by
 data server 1; logical stripe units 1, 4, 7 are served
 by data server 2; and logical stripe units 2, 5, 8 are
 also served by data server 2. Unless data server 2 has
 two filehandles (each referring to a different data
 file), then, for example, a write to logical stripe
 unit 1 overwrites the write to logical stripe unit 2
 because both logical stripe units are located in the
 same stripe unit (0) of data server 2.

 Data Server Multipathing

 The NFSv4.1 file layout supports multipathing to
 multiple data server addresses.
 Data-server-level multipathing is used for
 bandwidth scaling via trunking () and for higher availability of use in the case of
 a data-server failure. Multipathing allows the client
 to switch to another data server address which may be that
 of another data server that is exporting the
 same data stripe unit, without having to contact the
 metadata server for a new layout.

 To support data server multipathing, each element of
 the nflda_multipath_ds_list contains an array of one
 more data server network addresses. This array (data
 type multipath_list4) represents a list of data servers
 (each identified by a network address), with the possibility
 that some data servers will appear in the list multiple times.

 The client is free to use any of the network addresses
 as a destination to send data server requests. If some
 network addresses are less optimal paths to the data than
 others, then the MDS SHOULD NOT include those network
 addresses in an element of nflda_multipath_ds_list. If
 less optimal network addresses exist to provide failover, the
 RECOMMENDED method to offer the addresses is
 to provide them in a replacement device-ID-to-device-address
 mapping, or a replacement device ID. When
 a client finds that no data server in an element of
 nflda_multipath_ds_list responds, it SHOULD send a
 GETDEVICEINFO to attempt to replace the existing
 device-ID-to-device-address mappings. If the MDS detects
 that all data servers represented by an element of
 nflda_multipath_ds_list are unavailable, the MDS SHOULD
 send a CB_NOTIFY_DEVICEID (if the client has indicated
 it wants device ID notifications for changed device IDs)
 to change the device-ID-to-device-address mappings to
 the available data servers. If the device ID itself will
 be replaced, the MDS SHOULD recall all layouts with the
 device ID, and thus force the client to get new layouts
 and device ID mappings via LAYOUTGET and GETDEVICEINFO.

 Generally, if two network addresses appear in an element
 of nflda_multipath_ds_list, they will designate the same
 data server, and the two data server addresses will
 support the implementation of
 client ID or session trunking (the latter is RECOMMENDED)
 as defined in . The two
 data server addresses will share the same server owner
 or major ID of the server owner. It is not always necessary for the
 two data server addresses to designate the same server
 with trunking being used. For example,
 the data could be read-only, and the data consist of
 exact replicas.

 Operations Sent to NFSv4.1 Data Servers

 Clients accessing data on an NFSv4.1 data server MUST send
 only the NULL procedure and COMPOUND procedures whose
 operations are taken only from two restricted
 subsets of the operations defined as valid NFSv4.1
 operations. Clients MUST use the filehandle specified
 by the layout when accessing data on NFSv4.1 data
 servers.

 The first of these operation subsets consists of management operations.
 This subset consists of the BACKCHANNEL_CTL, BIND_CONN_TO_SESSION, CREATE_SESSION,
 DESTROY_CLIENTID, DESTROY_SESSION, EXCHANGE_ID,
 SECINFO_NO_NAME, SET_SSV, and SEQUENCE operations.
 The client may use these operations in order to set
 up and maintain the appropriate client IDs,
 sessions, and security contexts involved in communication with the data
 server. Henceforth, these will be referred to as
 data-server housekeeping operations.

 The second subset consists of COMMIT, READ, WRITE, and PUTFH.
 These operations MUST be used with a current filehandle specified by the
 layout. In the case of PUTFH, the new current filehandle MUST be
 one taken from the layout. Henceforth, these will be referred to as data-server
 I/O operations. As described in ,
 a client MUST NOT send an I/O to a data server for which it does not hold a
 valid layout; the data server MUST reject such an I/O.

 Unless the server has a concurrent non-data-server
 personality -- i.e., EXCHANGE_ID results returned
 (EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_PNFS_MDS)
 or (EXCHGID4_FLAG_USE_PNFS_DS | EXCHGID4_FLAG_USE_NON_PNFS) see
 -- any attempted use of
 operations against a data server other than those specified in the two
 subsets above MUST return
 NFS4ERR_NOTSUPP to the client.

 When the server has concurrent data-server and
 non-data-server personalities, each COMPOUND sent by the
 client MUST be constructed
 so that it is appropriate to one of the two personalities, and it
 MUST NOT contain operations directed to a mix of those
 personalities. The server MUST enforce this. To understand
 the constraints, operations within a COMPOUND are divided into
 the following three classes:

 An operation that is ambiguous regarding its personality
 assignment. This includes all of the data-server
 housekeeping operations. Additionally, if the
 server has assigned filehandles so that the ones defined
 by the layout are the same as those used by the metadata
 server, all operations using such filehandles are within this
 class, with the following exception. The exception is
 that if the operation uses a stateid that is incompatible with a
 data-server personality (e.g., a special stateid or the
 stateid has a non-zero "seqid" field, see
), the operation is in class 3,
 as described below. A COMPOUND containing
 multiple class 1 operations (and operations of no other
 class) MAY be sent to a server with multiple concurrent data server
 and non-data-server personalities.

 An operation that is unambiguously referable to the data-server
 personality. This includes data-server I/O operations where the
 filehandle is one that can only be validly directed to the
 data-server personality.

 An operation that is unambiguously referable to the non-data-server
 personality. This includes all COMPOUND operations that are
 neither data-server housekeeping nor data-server I/O
 operations, plus data-server I/O operations where the
 current fh (or the one to be made the current fh in the
 case of PUTFH) is only valid on the metadata
 server or where a stateid is used that is incompatible
 with the data server, i.e., is a special stateid or has
 a non-zero seqid value.

 When a COMPOUND first executes an operation from class 3 above,
 it acts as a normal COMPOUND on any other server, and the
 data-server personality ceases to be relevant.
 There are no special restrictions on the
 operations in the COMPOUND to limit them to those for
 a data server. When a PUTFH is done, filehandles
 derived from the layout are not valid. If their format
 is not normally acceptable, then NFS4ERR_BADHANDLE MUST
 result. Similarly, current filehandles for other operations
 do not accept filehandles derived from layouts and are not
 normally usable on the metadata server. Using these
 will result in NFS4ERR_STALE.

 When a COMPOUND first executes an operation from class 2,
 which would be PUTFH where the filehandle
 is one from a layout, the COMPOUND henceforth is interpreted
 with respect to the data-server personality.
 Operations outside the two classes discussed
 above MUST result in NFS4ERR_NOTSUPP. Filehandles
 are validated using the rules of the data server,
 resulting in NFS4ERR_BADHANDLE and/or NFS4ERR_STALE
 even when they would not normally do so when addressed
 to the non-data-server personality. Stateids must obey
 the rules of the data server in that any use of special
 stateids or stateids with non-zero seqid values must
 result in NFS4ERR_BAD_STATEID.

 Until the server first executes an operation from class 2
 or class 3, the client MUST NOT depend on the operation
 being executed by either the data-server or the non-data-server
 personality. The server MUST pick one personality consistently
 for a given COMPOUND, with the only possible transition being
 a single one when the first operation from class 2 or class 3
 is executed.

 Because of the complexity induced by assigning filehandles so
 they can be used on both a data server and a metadata server, it
 is RECOMMENDED that where the same server can have both
 personalities, the server assign separate unique filehandles
 to both personalities. This makes it unambiguous for which server
 a given request is intended.

 GETATTR and SETATTR MUST be directed to the metadata
 server. In the case of a SETATTR of the size attribute,
 the control protocol is responsible for propagating size
 updates/truncations to the data servers. In the case of
 extending WRITEs to the data servers, the new size must
 be visible on the metadata server once a LAYOUTCOMMIT
 has completed (see). describes the
 mechanism by which the client is to handle data-server
 files that do not reflect the metadata server's size.

 COMMIT through Metadata Server

 The file layout provides two alternate means of providing for the
 commit of data written through data servers. The flag
 NFL4_UFLG_COMMIT_THRU_MDS in the field nfl_util of the file layout
 (data type nfsv4_1_file_layout4)
 is an indication
 from the metadata server to the client of the REQUIRED way of
 performing COMMIT, either by sending the COMMIT to the data server
 or the metadata server. These two methods of dealing with the issue
 correspond to broad styles of implementation for a pNFS server
 supporting the file layout type.

 When the flag is FALSE, COMMIT operations MUST to be sent
 to the data server to which the corresponding WRITE operations were
 sent. This approach
 is sometimes useful when file striping is implemented within the
 pNFS server (instead of the file system),
 with the individual data servers each implementing
 their own file systems.

 When the flag is TRUE, COMMIT operations MUST be sent to the
 metadata server, rather than to the individual data servers.
 This approach is sometimes useful when file striping
 is implemented within the clustered file system that is the backend
 to the pNFS server. In such
 an implementation, each COMMIT to each
 data server might result in repeated writes of metadata
 blocks to the
 detriment of write performance. Sending a single COMMIT
 to the metadata server can be more efficient
 when there exists a clustered file
 system capable of implementing such a coordinated COMMIT.

 If nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is TRUE,
 then in order to maintain the current NFSv4.1 commit and
 recovery model, the data servers MUST return a common
 writeverf verifier in all WRITE responses for a given file
 layout, and the metadata server's COMMIT implementation
 must return the same writeverf. The value of the
 writeverf verifier MUST be changed at the metadata server
 or any data server that is referenced in the layout,
 whenever there is a server event that can possibly lead to
 loss of uncommitted data. The scope of the verifier can
 be for a file or for the entire pNFS server. It might be
 more difficult for the server to maintain the verifier
 at the file level, but the benefit is that only events
 that impact a given file will require recovery action.

 Note that if the layout specified dense packing, then the
 offset used to a COMMIT to the MDS may differ than that of
 an offset used to a COMMIT to the data server.

 The single COMMIT to the metadata server will return a verifier, and
 the client should compare it to all the verifiers from the WRITEs and
 fail the COMMIT if there are any mismatched verifiers. If COMMIT to the
 metadata server fails, the client should re-send WRITEs for all the
 modified data in the file. The client should treat modified data with
 a mismatched verifier
 as a WRITE failure and try to recover by resending the WRITEs to the
 original data server or using another path to that data if the layout
 has not been recalled. Alternatively, the client can obtain
 a new layout or it could rewrite the data directly to the metadata server. If
 nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is FALSE, sending
 a COMMIT to the metadata server might have no effect. If
 nfl_util & NFL4_UFLG_COMMIT_THRU_MDS is FALSE, a COMMIT
 sent to the metadata server should be used only to commit data that
 was written to the metadata server. See
 for recovery options.

 The Layout Iomode

 The layout iomode need not be used by the metadata server when
 servicing NFSv4.1 file-based layouts, although in some circumstances
 it may be useful. For example, if the server implementation
 supports reading from read-only replicas or mirrors, it would be
 useful for the server to return a layout enabling the client to do
 so. As such, the client SHOULD set the iomode based on its intent
 to read or write the data. The client may default to an iomode of
 LAYOUTIOMODE4_RW. The iomode need not be checked by the
 data servers when clients perform I/O. However, the data servers
 SHOULD still validate that the client holds a valid layout
 and return an error if the client does not.

 Metadata and Data Server State Coordination

 Global Stateid Requirements

 When the client sends
 I/O to a data server, the stateid used MUST NOT be a layout stateid
 as returned by LAYOUTGET or sent by CB_LAYOUTRECALL.
 Permitted stateids are based on one of the following:
 an OPEN stateid
 (the stateid field of data type OPEN4resok as returned by OPEN),
 a delegation stateid (the stateid field of data types open_read_delegation4
 and open_write_delegation4 as returned by OPEN or WANT_DELEGATION,
 or as sent by CB_PUSH_DELEG), or a stateid returned by the LOCK or LOCKU
 operations. The stateid sent to the data server MUST be sent with
 the seqid set to zero, indicating the most current version of that
 stateid, rather than indicating a specific non-zero seqid value. In
 no case is the use of special stateid values allowed.

 The stateid used for I/O MUST have the same
 effect and be subject to the same validation on a data server as it
 would if the I/O was being performed on the metadata server itself
 in the absence of pNFS. This has the implication that stateids are
 globally valid on both the metadata and data servers. This
 requires the metadata server to propagate changes in LOCK and OPEN
 state to the data servers, so that the data servers can
 validate I/O accesses. This is discussed further in . Depending on when stateids are
 propagated, the existence of a valid stateid on the data server
 may act as proof of a valid layout.

 Clients performing I/O operations need to select an appropriate
 stateid based on the
 locks (including opens and delegations) held by the client and
 the various types of state-owners sending the I/O requests. The
 rules for doing so when referencing data servers are somewhat
 different from those discussed in ,
 which apply when accessing metadata servers.

 The following rules, applied in order of decreasing priority, govern
 the selection of the appropriate stateid:

 If the client holds a delegation for the file in question, the
 delegation stateid should be used.

 Otherwise, there must be an OPEN stateid for the current
 open-owner, and that
 OPEN stateid for the open file in question is used, unless
 mandatory locking prevents that. See below.

 If the data server had previously responded with NFS4ERR_LOCKED
 to use of the OPEN stateid, then the client should use the
 byte-range lock stateid whenever one exists for that open file
 with the current lock-owner.

 Special stateids should never be used. If they are used, the data
 server MUST reject the I/O with an NFS4ERR_BAD_STATEID error.

 Data Server State Propagation

 Since the metadata server, which handles byte-range lock and
 open-mode state changes as well as ACLs, might not be
 co-located with the data servers where I/O accesses
 are validated, the server implementation MUST take
 care of propagating changes of this state to the data
 servers. Once the propagation to the data servers is
 complete, the full effect of those changes MUST be in
 effect at the data servers. However, some state changes
 need not be propagated immediately, although all changes
 SHOULD be propagated promptly. These state propagations
 have an impact on the design of the control protocol,
 even though the control protocol is outside of the scope
 of this specification. Immediate propagation refers to
 the synchronous propagation of state from the metadata
 server to the data server(s); the propagation must be
 complete before returning to the client.

 Lock State Propagation

 If the pNFS server supports mandatory byte-range locking, any mandatory byte-range locks
 on a file MUST be made effective at the data servers before
 the request that establishes them returns to the caller. The
 effect MUST be the same as if the mandatory byte-range lock state were
 synchronously propagated to the data servers, even though the
 details of the control protocol may avoid actual transfer of the
 state under certain circumstances.

 On the other hand, since
 advisory byte-range lock state is not used for checking I/O accesses at
 the data servers, there is no semantic reason for propagating
 advisory byte-range lock state to the data servers.
 Since updates to advisory locks neither confer nor remove
 privileges, these changes need not be propagated immediately, and
 may not need to be propagated promptly. The updates to advisory
 locks need only be propagated when the data server needs to
 resolve a question about a stateid. In fact, if byte-range locking
 is not mandatory (i.e., is advisory) the clients are advised to avoid
 using the byte-range lock-based stateids for I/O. The stateids returned by
 OPEN are sufficient and eliminate overhead for this kind of state
 propagation.

 If a client gets back an NFS4ERR_LOCKED error from a
 data server, this is an indication that mandatory byte-range
 locking is in force. The client recovers from this by
 getting a byte-range lock that covers the affected range
 and re-sends the I/O with the stateid of the byte-range lock.

 Open and Deny Mode Validation

 Open and deny mode validation MUST be performed against
 the open and deny mode(s) held by the data servers. When
 access is reduced or a deny mode made more restrictive
 (because of CLOSE or OPEN_DOWNGRADE), the data server MUST
 prevent any I/Os that would be denied if performed on the
 metadata server. When access is expanded,
 the data server MUST make sure that no requests are
 subsequently rejected because of
 open or deny issues that no longer apply, given the
 previous relaxation.

 File Attributes

 Since the SETATTR operation has the ability to modify state that is
 visible on both the metadata and data servers (e.g., the size),
 care must be taken to ensure that the resultant state across the
 set of data servers is consistent, especially when truncating or
 growing the file.

 As described earlier, the LAYOUTCOMMIT operation is used to ensure
 that the metadata is synchronized with changes made to the data servers.
 For the NFSv4.1-based data storage protocol,
 it is necessary to re-synchronize
 state such as the size attribute, and the setting of mtime/change/atime.
 See for a full
 description of the semantics regarding LAYOUTCOMMIT and
 attribute synchronization. It should be noted that by
 using an NFSv4.1-based layout type, it is possible to
 synchronize this state before LAYOUTCOMMIT occurs. For
 example, the control protocol can be used to query the
 attributes present on the data servers.

 Any changes to file attributes that control authorization or
 access as reflected by ACCESS calls or READs and WRITEs on the
 metadata server, MUST be propagated to the data servers for
 enforcement on READ and WRITE I/O calls. If the changes made on the
 metadata server result in more restrictive access permissions for
 any user, those changes MUST be propagated to the data servers
 synchronously.

 The OPEN operation () does not impose any requirement that I/O operations
 on an open file have the same credentials as the OPEN
 itself (unless EXCHGID4_FLAG_BIND_PRINC_STATEID is
 set when EXCHANGE_ID creates the client ID), and so it
 requires the server's READ and WRITE operations to
 perform appropriate access checking. Changes to ACLs
 also require new access checking by READ and WRITE on
 the server. The propagation of access-right changes due
 to changes in ACLs may be asynchronous only if the server
 implementation is able to determine that the updated
 ACL is not more restrictive for any user specified in
 the old ACL. Due to the relative infrequency of ACL
 updates, it is suggested that all changes be propagated
 synchronously.

 Data Server Component File Size

 A potential problem exists when a component data file on a
 particular data server has grown past EOF; the problem exists for
 both dense and sparse layouts. Imagine the following scenario: a
 client creates a new file (size == 0) and writes to byte 131072; the
 client then seeks to the beginning of the file and reads byte 100.
 The client should receive zeroes back as a result of the READ. However,
 if the striping pattern directs the client to send the READ to
 a data server other than the one that received the
 client's original WRITE, the data server servicing the READ may
 believe that the file's size is still 0 bytes. In that event, the
 data server's READ response will contain zero bytes and an
 indication of EOF. The data server can only return zeroes if it knows that
 the file's size has been extended. This would require the immediate
 propagation of the file's size to all data servers, which is
 potentially very costly. Therefore, the client that has
 initiated the extension of the file's size MUST be prepared to deal
 with these EOF conditions.
 When the offset in the arguments to READ
 is less than the client's view of the file size, if the READ response
 indicates EOF and/or contains fewer bytes than requested, the client
 will interpret such a response as a hole in the file, and the
 NFS client will substitute zeroes for the data.

 The NFSv4.1 protocol only provides close-to-open file data cache
 semantics; meaning that when the file is closed, all modified data is
 written to the server. When a subsequent OPEN of the file is
 done, the change attribute is inspected for a difference from a
 cached value for the change attribute. For the case above, this means
 that a LAYOUTCOMMIT will be done at close (along with the data
 WRITEs) and will update the file's size and change attribute. Access
 from another client after that point will result in the appropriate
 size being returned.

 Layout Revocation and Fencing

 As described in , the
 layout-type-specific storage protocol is responsible
 for handling the effects of I/Os that started before
 lease expiration and extend through lease expiration.
 The LAYOUT4_NFSV4_1_FILES layout type
 can prevent all I/Os to data servers from
 being executed after lease expiration (this prevention is
 called "fencing"), without relying
 on a precise client lease timer and without requiring
 data servers to maintain lease timers. The
 LAYOUT4_NFSV4_1_FILES pNFS server has the flexibility to
 revoke individual layouts, and thus fence I/O on a per-file
 basis.

 In addition to lease expiration,
 the reasons a layout can be revoked include: client fails to respond to
 a CB_LAYOUTRECALL,
 the
 metadata server restarts, or administrative intervention. Regardless
 of the reason, once a client's layout has been revoked, the pNFS
 server MUST prevent the client from sending I/O for the affected file
 from and to all data servers; in other words, it MUST fence the
 client from the affected file on the data servers.

 Fencing works as follows. As described in , in COMPOUND procedure
 requests to the data server, the data filehandle provided
 by the PUTFH operation and the stateid in the READ or
 WRITE operation are used to ensure that the client has
 a valid layout for the I/O being performed; if it does
 not, the I/O is rejected with NFS4ERR_PNFS_NO_LAYOUT.
 The server can simply check the stateid and, additionally,
 make the data filehandle stale if the layout specified
 a data filehandle that is different from the metadata server's
 filehandle for the file (see the nfl_fh_list description in
).

 Before the metadata server takes any action to revoke
 layout state given out by a previous instance, it must make
 sure that all layout state from that previous instance are
 invalidated at the data servers. This has the following
 implications.

 The metadata server must not restripe a
 file until it has contacted all of the data servers
 to invalidate the layouts from the previous instance.

 The metadata server must not give out mandatory locks that conflict with
 layouts from the previous instance without either doing
 a specific layout invalidation (as it would have to do anyway)
 or doing a global data server invalidation.

 Security Considerations for the File Layout Type

 The NFSv4.1 file layout type MUST adhere to the security
 considerations outlined in . NFSv4.1 data servers MUST make all of the
 required access checks on each READ or WRITE I/O as determined by
 the NFSv4.1 protocol.
 If the metadata server would deny a READ or WRITE
 operation on a file due to its ACL, mode attribute, open
 access mode, open deny mode, mandatory byte-range lock state, or any other
 attributes and state, the data server MUST also deny the
 READ or WRITE operation. This impacts the control
 protocol and the propagation of state from the metadata
 server to the data servers; see for more details.

 The methods for authentication,
 integrity, and privacy for data servers based on the
 LAYOUT4_NFSV4_1_FILES layout type are the same as those used
 by metadata servers. Metadata and data servers
 use ONC RPC security flavors to
 authenticate, and SECINFO and SECINFO_NO_NAME
 to negotiate the security mechanism and services
 to be used. Thus, when using the LAYOUT4_NFSV4_1_FILES layout type,
 the impact on the RPC-based security
 model due to pNFS (as alluded to in Sections

 and) is zero.

 For a given file object, a metadata server
 MAY require different security parameters
 (secinfo4 value) than the data server.
 For a given file object with multiple data servers,
 the secinfo4 value SHOULD be the same across
 all data servers. If the secinfo4 values across a metadata server
 and its data servers differ for a specific file, the
 mapping of the principal to the server's internal user identifier
 MUST be the same in order for the access-control checks based on
 ACL, mode, open and deny mode, and mandatory locking to be
 consistent across on the pNFS server.

 If an NFSv4.1 implementation supports
 pNFS and supports NFSv4.1 file layouts, then the
 implementation MUST support the SECINFO_NO_NAME operation on both
 the metadata and data servers.

 Internationalization

The primary issue in which NFSv4.1 needs to deal with
internationalization, or I18N, is with respect to file names and other
strings as used within the protocol. The choice of string
representation must allow reasonable name/string access to clients
that use various languages. The UTF-8 encoding of the UCS (Universal
Multiple-Octet Coded Character Set) as defined
by ISO10646 allows for this type
of access and follows the policy described in "IETF Policy on
Character Sets and Languages", RFC 2277.

 RFC 3454, otherwise known as "stringprep", documents a
framework for using Unicode/UTF-8 in networking protocols so as "to
increase the likelihood that string input and string comparison work
in ways that make sense for typical users throughout the world". A
protocol must define a profile of stringprep "in order to fully
specify the processing options". The remainder of this
section defines the NFSv4.1 stringprep profiles. Much of the terminology
used for the remainder of this section comes from stringprep.

There are three UTF-8 string types defined for NFSv4.1:
utf8str_cs, utf8str_cis, and utf8str_mixed. Separate profiles are
defined for each. Each profile defines the following, as required by
stringprep:

The intended applicability of the profile.

The character repertoire that is the input and output to stringprep
(which is Unicode 3.2 for the referenced version of stringprep).
However, NFSv4.1 implementations are not limited to 3.2.

The mapping tables from stringprep used (as described in Section
 of stringprep).

Any additional mapping tables specific to the profile.

The Unicode normalization used, if any (as described in Section
 of stringprep).

The tables from the stringprep listing of characters that are prohibited
as output (as described in Section of stringprep).

The bidirectional string testing used, if any (as described in Section of stringprep).

Any additional characters that are prohibited as output specific to
the profile.

Stringprep discusses Unicode characters, whereas NFSv4.1 renders
UTF-8 characters. Since there is a one-to-one mapping from UTF-8 to
Unicode, when the remainder of this document refers to Unicode,
the reader should assume UTF-8.

Much of the text for the profiles comes from RFC 3491 .

 Stringprep Profile for the utf8str_cs Type

Every use of the utf8str_cs type definition in the NFSv4 protocol specification follows the profile named
nfs4_cs_prep.

 Intended Applicability of the nfs4_cs_prep Profile

The utf8str_cs type is a case-sensitive string of UTF-8 characters.
Its primary use in NFSv4.1 is for naming components and
pathnames. Components and pathnames are stored on the server's
file system. Two valid distinct UTF-8 strings might be the same after
processing via the utf8str_cs profile. If the strings are two names
inside a directory, the NFSv4.1 server will need to either:

disallow the creation of a second name if its post-processed form
collides with that of an existing name, or

allow the creation of the second name, but arrange so that after
post-processing, the second name is different than the post-processed
form of the first name.

 Character Repertoire of nfs4_cs_prep

The nfs4_cs_prep profile uses Unicode 3.2, as defined in stringprep's
Appendix A.1.
However, NFSv4.1 implementations are not limited to 3.2.

 Mapping Used by nfs4_cs_prep

The nfs4_cs_prep profile specifies mapping using the
following tables from stringprep:

	 Table B.1
	

Table B.2 is normally not part of the nfs4_cs_prep profile as it is
primarily for dealing with case-insensitive comparisons. However, if
the NFSv4.1 file server supports the case_insensitive file system
attribute, and if case_insensitive is TRUE, the NFSv4.1 server
 MUST use Table B.2 (in addition to Table B1) when processing
utf8str_cs strings, and the NFSv4.1 client MUST assume Table B.2
(in addition to Table B.1) is being used.

If the case_preserving attribute is present and set to FALSE, then the
NFSv4.1 server MUST use Table B.2 to map case when processing
utf8str_cs strings. Whether the server maps from lower to upper case
or from upper to lower case is an implementation dependency.

 Normalization used by nfs4_cs_prep

The nfs4_cs_prep profile does not specify a normalization form. A
later revision of this specification may specify a particular
normalization form. Therefore, the server and client can expect that
they may receive unnormalized characters within protocol requests and
responses. If the operating environment requires normalization, then
the implementation must normalize utf8str_cs strings within the
protocol before presenting the information to an application (at the
client) or local file system (at the server).

 Prohibited Output for nfs4_cs_prep

The nfs4_cs_prep profile RECOMMENDS prohibiting the use of the
following tables from stringprep:

 Table C.5
 Table C.6

 Bidirectional Output for nfs4_cs_prep

The nfs4_cs_prep profile does not specify any checking of
bidirectional strings.

 Stringprep Profile for the utf8str_cis Type

Every use of the utf8str_cis type definition in the NFSv4.1
protocol specification follows the profile named nfs4_cis_prep.

 Intended Applicability of the nfs4_cis_prep Profile

The utf8str_cis type is a case-insensitive string of
UTF-8 characters. Its primary use in NFSv4.1 is
for naming NFS servers.

 Character Repertoire of nfs4_cis_prep

The nfs4_cis_prep profile uses Unicode 3.2, as defined in stringprep's
Appendix A.1. However, NFSv4.1 implementations are not limited to 3.2.

 Mapping Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies mapping using the following tables from
stringprep:

 Table B.1
 Table B.2

 Normalization Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies using Unicode normalization form
KC, as described in stringprep.

 Prohibited Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies prohibiting using the following
tables from stringprep:

 Table C.1.2
 Table C.2.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6
 Table C.7
 Table C.8
 Table C.9

 Bidirectional Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies checking bidirectional strings as
described in stringprep's Section .

 Stringprep Profile for the utf8str_mixed Type

Every use of the utf8str_mixed type definition in the NFSv4.1
protocol specification follows the profile named nfs4_mixed_prep.

 Intended Applicability of the nfs4_mixed_prep Profile

The utf8str_mixed type is a string of UTF-8 characters, with a prefix
that is case sensitive, a separator equal to '@', and a suffix that is a
fully qualified domain name. Its primary use in NFSv4.1 is for
naming principals identified in an Access Control Entry.

 Character Repertoire of nfs4_mixed_prep

The nfs4_mixed_prep profile uses Unicode 3.2, as defined in
stringprep's Appendix A.1.
However, NFSv4.1 implementations are not limited to 3.2.

 Mapping Used by nfs4_cis_prep

For the prefix and the separator of a utf8str_mixed
string, the nfs4_mixed_prep profile specifies mapping
using the following table from stringprep:

 Table B.1

For the suffix of a utf8str_mixed string, the nfs4_mixed_prep
profile specifies mapping using the following tables from
stringprep:

 Table B.1
 Table B.2

 Normalization Used by nfs4_mixed_prep

The nfs4_mixed_prep profile specifies using Unicode normalization form
KC, as described in stringprep.

 Prohibited Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies prohibiting using the
following tables from stringprep:

 Table C.1.2
 Table C.2.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6
 Table C.7
 Table C.8
 Table C.9

 Bidirectional Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies checking bidirectional strings
as described in stringprep's Section .

 UTF-8 Capabilities

const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;
const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

typedef uint32_t fs_charset_cap4;

Because some operating environments and file systems do
not enforce character set encodings, NFSv4.1 supports the
fs_charset_cap attribute ()
that indicates to the client a file system's UTF-8 capabilities.
The attribute is an integer containing a pair of flags.
The first flag is FSCHARSET_CAP4_CONTAINS_NON_UTF8, which, if set
to one, tells the client that the file system contains non-UTF-8 characters,
and the server will not convert non-UTF characters to UTF-8 if the client
reads a symbolic link or directory, neither will operations with component
names or pathnames in the arguments convert the strings to UTF-8.
The second flag is FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set to
one, indicates that the server will accept (and generate) only
UTF-8 characters on the file system. If
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one,
FSCHARSET_CAP4_CONTAINS_NON_UTF8 MUST be set to zero.
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 SHOULD always be set to one.

 UTF-8 Related Errors

Where the client sends an invalid UTF-8 string, the server should
return NFS4ERR_INVAL (see).
This includes cases in which inappropriate prefixes are detected and
where the count includes trailing bytes that do not constitute a full
UCS character.

 Where the client-supplied string is valid UTF-8 but contains
 characters that are not supported by the server as a value for that
 string (e.g., names containing characters outside of Unicode plane 0 on
 file systems that fail to support such characters despite their
 presence in the Unicode standard), the server should return
 NFS4ERR_BADCHAR.

Where a UTF-8 string is used as a file name, and the file system (while
supporting all of the characters within the name) does not allow that
particular name to be used, the server should return the error NFS4ERR_BADNAME. This includes
situations in which the server file system imposes a normalization
constraint on name strings, but will also include such situations as
file system prohibitions of "." and ".." as file names for certain
operations, and other such constraints.

 Error Values

 NFS error numbers are assigned to failed operations within a
 Compound (COMPOUND or CB_COMPOUND) request. A Compound request
 contains a number of NFS operations that have their results
 encoded in sequence in a Compound reply. The results of successful
 operations will consist of an NFS4_OK status followed by the
 encoded results of the operation. If an NFS operation fails, an
 error status will be entered in the reply and the Compound
 request will be terminated.

 Error Definitions

 Protocol Error Definitions

 Error
 Number
 Description

 NFS4_OK
 0

 NFS4ERR_ACCESS
 13

 NFS4ERR_ATTRNOTSUPP
 10032

 NFS4ERR_ADMIN_REVOKED
 10047

 NFS4ERR_BACK_CHAN_BUSY
 10057

 NFS4ERR_BADCHAR
 10040

 NFS4ERR_BADHANDLE
 10001

 NFS4ERR_BADIOMODE
 10049

 NFS4ERR_BADLAYOUT
 10050

 NFS4ERR_BADNAME
 10041

 NFS4ERR_BADOWNER
 10039

 NFS4ERR_BADSESSION
 10052

 NFS4ERR_BADSLOT
 10053

 NFS4ERR_BADTYPE
 10007

 NFS4ERR_BADXDR
 10036

 NFS4ERR_BAD_COOKIE
 10003

 NFS4ERR_BAD_HIGH_SLOT
 10077

 NFS4ERR_BAD_RANGE
 10042

 NFS4ERR_BAD_SEQID
 10026

 NFS4ERR_BAD_SESSION_DIGEST
 10051

 NFS4ERR_BAD_STATEID
 10025

 NFS4ERR_CB_PATH_DOWN
 10048

 NFS4ERR_CLID_INUSE
 10017

 NFS4ERR_CLIENTID_BUSY
 10074

 NFS4ERR_COMPLETE_ALREADY
 10054

 NFS4ERR_CONN_NOT_BOUND_TO_SESSION
 10055

 NFS4ERR_DEADLOCK
 10045

 NFS4ERR_DEADSESSION
 10078

 NFS4ERR_DELAY
 10008

 NFS4ERR_DELEG_ALREADY_WANTED
 10056

 NFS4ERR_DELEG_REVOKED
 10087

 NFS4ERR_DENIED
 10010

 NFS4ERR_DIRDELEG_UNAVAIL
 10084

 NFS4ERR_DQUOT
 69

 NFS4ERR_ENCR_ALG_UNSUPP
 10079

 NFS4ERR_EXIST
 17

 NFS4ERR_EXPIRED
 10011

 NFS4ERR_FBIG
 27

 NFS4ERR_FHEXPIRED
 10014

 NFS4ERR_FILE_OPEN
 10046

 NFS4ERR_GRACE
 10013

 NFS4ERR_HASH_ALG_UNSUPP
 10072

 NFS4ERR_INVAL
 22

 NFS4ERR_IO
 5

 NFS4ERR_ISDIR
 21

 NFS4ERR_LAYOUTTRYLATER
 10058

 NFS4ERR_LAYOUTUNAVAILABLE
 10059

 NFS4ERR_LEASE_MOVED
 10031

 NFS4ERR_LOCKED
 10012

 NFS4ERR_LOCKS_HELD
 10037

 NFS4ERR_LOCK_NOTSUPP
 10043

 NFS4ERR_LOCK_RANGE
 10028

 NFS4ERR_MINOR_VERS_MISMATCH
 10021

 NFS4ERR_MLINK
 31

 NFS4ERR_MOVED
 10019

 NFS4ERR_NAMETOOLONG
 63

 NFS4ERR_NOENT
 2

 NFS4ERR_NOFILEHANDLE
 10020

 NFS4ERR_NOMATCHING_LAYOUT
 10060

 NFS4ERR_NOSPC
 28

 NFS4ERR_NOTDIR
 20

 NFS4ERR_NOTEMPTY
 66

 NFS4ERR_NOTSUPP
 10004

 NFS4ERR_NOT_ONLY_OP
 10081

 NFS4ERR_NOT_SAME
 10027

 NFS4ERR_NO_GRACE
 10033

 NFS4ERR_NXIO
 6

 NFS4ERR_OLD_STATEID
 10024

 NFS4ERR_OPENMODE
 10038

 NFS4ERR_OP_ILLEGAL
 10044

 NFS4ERR_OP_NOT_IN_SESSION
 10071

 NFS4ERR_PERM
 1

 NFS4ERR_PNFS_IO_HOLE
 10075

 NFS4ERR_PNFS_NO_LAYOUT
 10080

 NFS4ERR_RECALLCONFLICT
 10061

 NFS4ERR_RECLAIM_BAD
 10034

 NFS4ERR_RECLAIM_CONFLICT
 10035

 NFS4ERR_REJECT_DELEG
 10085

 NFS4ERR_REP_TOO_BIG
 10066

 NFS4ERR_REP_TOO_BIG_TO_CACHE
 10067

 NFS4ERR_REQ_TOO_BIG
 10065

 NFS4ERR_RESTOREFH
 10030

 NFS4ERR_RETRY_UNCACHED_REP
 10068

 NFS4ERR_RETURNCONFLICT
 10086

 NFS4ERR_ROFS
 30

 NFS4ERR_SAME
 10009

 NFS4ERR_SHARE_DENIED
 10015

 NFS4ERR_SEQUENCE_POS
 10064

 NFS4ERR_SEQ_FALSE_RETRY
 10076

 NFS4ERR_SEQ_MISORDERED
 10063

 NFS4ERR_SERVERFAULT
 10006

 NFS4ERR_STALE
 70

 NFS4ERR_STALE_CLIENTID
 10022

 NFS4ERR_STALE_STATEID
 10023

 NFS4ERR_SYMLINK
 10029

 NFS4ERR_TOOSMALL
 10005

 NFS4ERR_TOO_MANY_OPS
 10070

 NFS4ERR_UNKNOWN_LAYOUTTYPE
 10062

 NFS4ERR_UNSAFE_COMPOUND
 10069

 NFS4ERR_WRONGSEC
 10016

 NFS4ERR_WRONG_CRED
 10082

 NFS4ERR_WRONG_TYPE
 10083

 NFS4ERR_XDEV
 18

 General Errors

 This section deals with errors that are applicable to a broad
 set of different purposes.

 NFS4ERR_BADXDR (Error Code 10036)

 The arguments for this operation do not match those specified in
 the XDR definition. This includes situations in which the
 request ends before all the arguments have been seen. Note
 that this error applies when fixed enumerations (these include
 booleans) have a value within the input stream that is not
 valid for the enum. A replier may pre-parse all operations for
 a Compound procedure before doing any operation execution
 and return RPC-level XDR errors in that case.

 NFS4ERR_BAD_COOKIE (Error Code 10003)

 Used for operations that provide a set of information indexed by
 some quantity provided by the client or cookie sent by the
 server for an earlier invocation. Where the value cannot
 be used for its intended purpose, this error results.

 NFS4ERR_DELAY (Error Code 10008)

 For any of a number of reasons, the replier could not
 process this operation in what was deemed a reasonable
 time. The client should wait and then try the request
 with a new slot and sequence value.

 Some examples of scenarios that might lead to this situation:

 A server that supports hierarchical storage receives a
 request to process a file that had been migrated.

 An operation requires a delegation recall to proceed,
 but the need to wait for this delegation to be recalled
	 and returned makes processing this request in a timely fashion impossible.

	 A request is being performed on a session being migrated
	 from another server as described in ,
 and the lack of full information about the
	 state of the session on the source makes it impossible
	 to process the request immediately.

 In such cases, returning the error NFS4ERR_DELAY allows
 necessary preparatory operations to proceed without
 holding up requester resources such as a session slot.
 After delaying for period of time, the client can
 then re-send the operation in question, often as part
	of a nearly identical request. Because of the need to avoid
	spurious reissues of non-idempotent operations and to avoid
	acting in response to NFS4ERR_DELAY errors returned on responses
	returned from the replier's reply cache,
	integration with the session-provided reply cache is necessary.
	There are a number of cases to deal with, each of which requires
	different sorts of handling by the requester and replier:

	 If NFS4ERR_DELAY is returned on a SEQUENCE operation, the
	 request is retried in full with the SEQUENCE operation
	 containing the same slot and sequence values. In this case,
	 the replier MUST avoid returning a response
 containing NFS4ERR_DELAY as the response to SEQUENCE solely
 because an earlier instance of the same request returned that error
 and it was stored in the reply cache. If the replier did this,
	 the retries would not be effective as there would be no
	 opportunity for the replier to see whether the condition that
	 generated the NFS4ERR_DELAY had been rectified during the
	 interim between the original request and the retry.

	 If NFS4ERR_DELAY is returned on an operation other than SEQUENCE
	 that validly appears as the first operation of a request, the handling
	 is similar. The request can be retried in full without modification.
	 In this case as well,
	 the replier MUST avoid returning a response containing
	 NFS4ERR_DELAY as the response to an initial operation of a request
	 solely on the basis
	 of its presence in the reply cache. If the replier did this,
	 the retries would not be effective as there would be no
	 opportunity for the replier to see whether the condition that
	 generated the NFS4ERR_DELAY had been rectified during the
	 interim between the original request and the retry.
	

	 If NFS4ERR_DELAY is returned on an operation other than the first
	 in the request, the request when retried MUST contain a SEQUENCE
	 operation that is different than the original one, with either
 the slot ID or the sequence value different from that in the original
 request. Because requesters do this, there is no need for the
	 replier to take special care to avoid returning an
	 NFS4ERR_DELAY error obtained from the reply cache. When no non-idempotent
	 operations have been processed before the NFS4ERR_DELAY was returned,
	 the requester should retry the request in full, with the only
	 difference from the original request being the modification to the
	 slot ID or sequence value in the reissued SEQUENCE operation.

	 When NFS4ERR_DELAY is returned on an operation other than the first
	 within a request and there has been a non-idempotent operation
	 processed before the NFS4ERR_DELAY was returned, reissuing the request as is normally
	 done would incorrectly cause the re-execution of the non-idempotent operation.

	 To avoid this situation, the client should reissue the request without the
	 non-idempotent operation. The request still must use a SEQUENCE
	 operation with either a different slot ID or sequence value from
	 the SEQUENCE in the original request. Because this is done, there
	 is no way the replier could avoid spuriously re-executing the
	 non-idempotent operation since the different SEQUENCE parameters
	 prevent the requester from recognizing that the non-idempotent
	 operation is being retried.

 Note that without the ability to return NFS4ERR_DELAY and the
 requester's willingness to re-send when receiving it, deadlock might
 result. For example, if a recall is done, and if the delegation
	return or operations preparatory to delegation return are held up by
 other operations that need the delegation to be returned,
 session slots might not be available. The result could be
 deadlock.

 NFS4ERR_INVAL (Error Code 22)

 The arguments for this operation are not valid for some reason, even
 though they do match those specified in the XDR definition for
 the request.

 NFS4ERR_NOTSUPP (Error Code 10004)

 Operation not supported, either because the operation is
 an OPTIONAL one and is not supported by this server or
 because the operation MUST NOT be implemented in
 the current minor version.

 NFS4ERR_SERVERFAULT (Error Code 10006)

 An error occurred on the server that does not map to any of
 the specific legal NFSv4.1 protocol error values. The client
 should translate this into an appropriate error. UNIX clients
 may choose to translate this to EIO.

 NFS4ERR_TOOSMALL (Error Code 10005)

 Used where an operation returns a variable amount of data,
 with a limit specified by the client. Where the data
 returned cannot be fit within the limit specified by the
 client, this error results.

 Filehandle Errors

 These errors deal with the situation in which the current
 or saved filehandle, or the filehandle passed to PUTFH
 intended to become the current filehandle, is invalid
 in some way. This includes situations in which the
 filehandle is a valid filehandle in general but is not
 of the appropriate object type for the current operation.

 Where the error description indicates a problem with the
 current or saved filehandle, it is to be understood that
 filehandles are only checked for the condition if they
 are implicit arguments of the operation in question.

 NFS4ERR_BADHANDLE (Error Code 10001)

 Illegal NFS filehandle for the current server. The current
 filehandle failed internal consistency checks. Once accepted
 as valid (by PUTFH), no subsequent status change can cause the
 filehandle to generate this error.

 NFS4ERR_FHEXPIRED (Error Code 10014)

 A current or saved filehandle that is an argument to the
 current operation is volatile and has expired at the server.

 NFS4ERR_ISDIR (Error Code 21)

 The current or saved filehandle designates a directory
 when the current operation does not allow a directory to
 be accepted as the target of this operation.

 NFS4ERR_MOVED (Error Code 10019)

 The file system that contains the current filehandle object
 is not present at the server or is not accessible with the
	network address used. It may have been made accessible on a different
	set of network addresses, relocated or
 migrated to another server, or it may have never been present.
 The client may obtain the new file system location by obtaining
 the fs_locations or fs_locations_info attribute for the
 current filehandle. For further discussion, refer to
 .

	As with the case of NFS4ERR_DELAY, it is possible that one or
	more non-idempotent operations may have been successfully executed
	within a COMPOUND before NFS4ERR_MOVED is returned. Because of
	this, once the new location is determined, the original request
	that received the NFS4ERR_MOVED should not be re-executed in full.
	Instead, the client should send a new COMPOUND with any successfully
	executed non-idempotent
	operations removed. When the client uses the same session for the
	new COMPOUND, its SEQUENCE operation should use a different slot ID or sequence.

 NFS4ERR_NOFILEHANDLE (Error Code 10020)

 The logical current or saved filehandle value is required by
 the current operation and is not set.
 This may be a result of a malformed COMPOUND
 operation (i.e., no PUTFH or PUTROOTFH before an operation that
 requires the current filehandle be set).

 NFS4ERR_NOTDIR (Error Code 20)

 The current (or saved) filehandle designates an object that
 is not a directory for an operation in which a directory is
 required.

 NFS4ERR_STALE (Error Code 70)

 The current or saved filehandle value designating an argument
 to the current operation is invalid. The file referred to by
 that filehandle no longer exists or access to it has been
 revoked.

 NFS4ERR_SYMLINK (Error Code 10029)

 The current filehandle designates a symbolic link when the
 current operation does not allow a symbolic link as the
 target.

 NFS4ERR_WRONG_TYPE (Error Code 10083)

 The current (or saved) filehandle designates an object that
 is of an invalid type for the current operation, and there is no
 more specific error (such as NFS4ERR_ISDIR or NFS4ERR_SYMLINK)
 that applies. Note that in NFSv4.0, such situations generally
 resulted in the less-specific error NFS4ERR_INVAL.

 Compound Structure Errors

 This section deals with errors that relate to the overall structure
 of a Compound request (by which we mean to include both
 COMPOUND and CB_COMPOUND), rather than to particular operations.

 There are a number of basic constraints on the operations that
 may appear in a Compound request. Sessions add to these basic
 constraints by requiring a Sequence operation (either SEQUENCE
 or CB_SEQUENCE) at the start of the Compound.

 NFS_OK (Error code 0)

 Indicates the operation completed successfully, in that all
 of the constituent operations completed without error.

 NFS4ERR_MINOR_VERS_MISMATCH (Error code 10021)

 The minor version specified is not one that the current listener
 supports. This value is returned in the overall status for the
 Compound but is not associated with a specific operation since
 the results will specify a result count of zero.

 NFS4ERR_NOT_ONLY_OP (Error Code 10081)

 Certain operations, which are allowed to be executed outside
 of a session, MUST be the only operation within a Compound
 whenever the Compound does not start with a Sequence
 operation. This error results when that constraint is not met.

 NFS4ERR_OP_ILLEGAL (Error Code 10044)

 The operation code is not a valid one for the current
 Compound procedure. The opcode
 in the result stream matched with this error is the
 ILLEGAL value, although the value that appears in the
 request stream may be different. Where an illegal
 value appears and the replier pre-parses all operations for
 a Compound procedure before doing any operation execution,
 an RPC-level XDR error may be returned.

 NFS4ERR_OP_NOT_IN_SESSION (Error Code 10071)

 Most forward operations and all callback operations are only
 valid within the context of a session, so that the Compound
 request in question MUST begin with a Sequence operation.
 If an attempt is made to execute these operations outside
 the context of session, this error results.

 NFS4ERR_REP_TOO_BIG (Error Code 10066)

 The reply to a Compound would exceed the
 channel's negotiated maximum response size.

 NFS4ERR_REP_TOO_BIG_TO_CACHE (Error Code 10067)

 The reply to a Compound would exceed the
 channel's negotiated maximum size for replies cached in the
 reply cache when the Sequence for the current request specifies
 that this request is to be cached.

 NFS4ERR_REQ_TOO_BIG (Error Code 10065)

 The Compound request exceeds the
 channel's negotiated maximum size for requests.

 NFS4ERR_RETRY_UNCACHED_REP (Error Code 10068)

 The requester has attempted a retry of a Compound
 that it previously requested not
 be placed in the reply cache.

 NFS4ERR_SEQUENCE_POS (Error Code 10064)

 A Sequence operation appeared in a
 position other than the first operation of a
 Compound request.

 NFS4ERR_TOO_MANY_OPS (Error Code 10070)

 The Compound request has too many operations, exceeding the
 count negotiated when the session was created.

 NFS4ERR_UNSAFE_COMPOUND (Error Code 10068)

 The client has sent a COMPOUND request with an unsafe
 mix of operations -- specifically, with a non-idempotent
 operation that changes the current filehandle and that is not followed by a
 GETFH.

 File System Errors

 These errors describe situations that occurred in the underlying
 file system implementation rather than in the protocol or any
 NFSv4.x feature.

 NFS4ERR_BADTYPE (Error Code 10007)

 An attempt was made to create an object with an inappropriate
 type specified to CREATE. This may be because the type
 is undefined, because the type is not supported by the
 server, or because the type is not intended to be created by CREATE
 (such as a regular file or named attribute, for
 which OPEN is used to do the file creation).

 NFS4ERR_DQUOT (Error Code 69)

 Resource (quota) hard limit exceeded. The user's resource
 limit on the server has been exceeded.

 NFS4ERR_EXIST (Error Code 17)

 A file of the specified target name (when creating, renaming,
 or linking) already exists.

 NFS4ERR_FBIG (Error Code 27)

 The file is too large. The operation would have caused the file to
 grow beyond the server's limit.

 NFS4ERR_FILE_OPEN (Error Code 10046)

 The operation is not allowed because a
 file involved in the operation is currently open.
 Servers may, but are not required to, disallow linking-to,
 removing, or renaming open files.

 NFS4ERR_IO (Error Code 5)

 Indicates that an I/O error occurred for which the file system
 was unable to provide recovery.

 NFS4ERR_MLINK (Error Code 31)

 The request would have caused the server's limit for the
 number of hard links a file may have to be exceeded.

 NFS4ERR_NOENT (Error Code 2)

 Indicates no such file or directory. The file or directory name
 specified does not exist.

 NFS4ERR_NOSPC (Error Code 28)

 Indicates there is no space left on the device. The operation would have
 caused the server's file system to exceed its limit.

 NFS4ERR_NOTEMPTY (Error Code 66)

 An attempt was made to remove a directory that was not
 empty.

 NFS4ERR_ROFS (Error Code 30)

 Indicates a read-only file system. A modifying operation was
 attempted on a read-only file system.

 NFS4ERR_XDEV (Error Code 18)

 Indicates an attempt to do an operation, such as linking, that
 inappropriately crosses a boundary. This may be due to such
 boundaries as:

 that between file systems (where the fsids are different).

 that between different named attribute directories or
 between a named attribute directory and an ordinary
 directory.

 that between byte-ranges of a file system that the file system
 implementation treats as separate (for example, for space
 accounting purposes), and where cross-connection between
 the byte-ranges are not allowed.

 State Management Errors

 These errors indicate problems with the stateid (or one of
 the stateids) passed to a given operation.
 This includes
 situations in which the stateid is invalid as well as
 situations in which the stateid is valid but designates
 locking state that has been revoked.
Depending on the operation, the
 stateid when valid may designate opens, byte-range locks,
 file or directory delegations, layouts, or device maps.

 NFS4ERR_ADMIN_REVOKED (Error Code 10047)

 A stateid designates locking state of any type that has
 been revoked due to administrative interaction, possibly
 while the lease is valid.

 NFS4ERR_BAD_STATEID (Error Code 10026)

 A stateid does not properly designate any valid
 state. See Sections and

 for a discussion of how stateids are validated.

 NFS4ERR_DELEG_REVOKED (Error Code 10087)

	A stateid designates recallable locking state of
	any type (delegation or layout) that has been
	revoked due to the failure of the client to return
	the lock when it was recalled.

 NFS4ERR_EXPIRED (Error Code 10011)

 A stateid designates locking state of any type that has
 been revoked due to expiration of the client's lease,
 either immediately upon lease expiration, or following
 a later request for a conflicting lock.

 NFS4ERR_OLD_STATEID (Error Code 10024)

 A stateid with a non-zero seqid value does match
 the current seqid for the state designated by the
 user.

 Security Errors

 These are the various permission-related errors in NFSv4.1.

 NFS4ERR_ACCESS (Error Code 13)

 Indicates permission denied. The caller does
 not have the correct permission to perform
 the requested operation. Contrast this with
 NFS4ERR_PERM (), which
 restricts itself to owner or privileged-user
 permission failures, and NFS4ERR_WRONG_CRED
 (), which deals
 with appropriate permission to delete or modify
 transient objects based on the credentials of
 the user that created them.

 NFS4ERR_PERM (Error Code 1)

 Indicates requester is not the owner. The operation was not
 allowed because the caller is neither a privileged user
 (root) nor the owner of the target of the operation.

 NFS4ERR_WRONGSEC (Error Code 10016)

 Indicates that the security mechanism being used by the client
 for the operation does not match the server's security policy.
 The client should change the security mechanism being used and
 re-send the operation (but not with the same slot ID and
 sequence ID; one or both MUST be different on the re-send). SECINFO and SECINFO_NO_NAME can be used
 to determine the appropriate mechanism.

 NFS4ERR_WRONG_CRED (Error Code 10082)

 An operation that manipulates state was attempted by a principal
 that was not allowed to modify that piece of state.

 Name Errors

 Names in NFSv4 are UTF-8 strings. When the strings are not
 valid UTF-8 or are of length zero, the error NFS4ERR_INVAL
 results. Besides this, there are a number of other errors
 to indicate specific problems with names.

 NFS4ERR_BADCHAR (Error Code 10040)

 A UTF-8 string contains a character that is not supported
 by the server in the context in which it being used.

 NFS4ERR_BADNAME (Error Code 10041)

 A name string in a request consisted of valid UTF-8
 characters supported by the server, but the name is not
 supported by the server as a valid name for the current operation.
 An example might be creating a file or directory named ".."
 on a server whose file system uses that name for links to
 parent directories.

 NFS4ERR_NAMETOOLONG (Error Code 63)

 Returned when the filename in an operation exceeds the
 server's implementation limit.

 Locking Errors

 This section deals with errors related to locking, both as to
 share reservations and byte-range locking. It does not deal
 with errors specific to the process of reclaiming locks. Those
 are dealt with in .

 NFS4ERR_BAD_RANGE (Error Code 10042)

 The byte-range of a LOCK, LOCKT, or LOCKU operation is
 not allowed by the
 server. For example, this error results when a server
 that only supports 32-bit ranges receives a range that
 cannot be handled by that server. (See
 .)

 NFS4ERR_DEADLOCK (Error Code 10045)

 The server has been able to determine a byte-range locking
 deadlock condition for a READW_LT or WRITEW_LT LOCK operation.

 NFS4ERR_DENIED (Error Code 10010)

 An attempt to lock a file is denied. Since this may be a
 temporary condition, the client is encouraged to re-send the lock
 request (but not with the same slot ID and
 sequence ID; one or both MUST be different on the re-send) until the lock is accepted. See
 for a discussion of the re-send.

 NFS4ERR_LOCKED (Error Code 10012)

 A READ or WRITE operation was attempted on a file where there
 was a conflict between the I/O and an existing lock:

 There is a share reservation inconsistent with the I/O
 being done.

 The range to be read or written intersects an existing
 mandatory byte-range lock.

 NFS4ERR_LOCKS_HELD (Error Code 10037)

 An operation was prevented by the unexpected presence of locks.

 NFS4ERR_LOCK_NOTSUPP (Error Code 10043)

 A LOCK operation was attempted that would require the upgrade
 or downgrade of a byte-range lock range already held by the owner, and the
 server does not support atomic upgrade or downgrade of locks.

 NFS4ERR_LOCK_RANGE (Error Code 10028)

 A LOCK operation is operating on a range that overlaps in part a
 currently held byte-range lock for the current lock-owner and does not
 precisely match a single such byte-range lock where the server
 does not support this type of request, and thus does not
 implement POSIX locking semantics . See Sections
 ,
 , and
 for a discussion of
 how this applies to LOCK, LOCKT, and LOCKU respectively.

 NFS4ERR_OPENMODE (Error Code 10038)

 The client attempted a READ, WRITE, LOCK, or other operation
 not sanctioned by the stateid passed (e.g., writing to a file
 opened for read-only access).

 NFS4ERR_SHARE_DENIED (Error Code 10015)

 An attempt to OPEN a file with a share reservation has failed
 because of a share conflict.

 Reclaim Errors

 These errors relate to the process of reclaiming locks after a
 server restart.

 NFS4ERR_COMPLETE_ALREADY (Error Code 10054)

 The client previously sent a successful RECLAIM_COMPLETE
 operation specifying the same scope, whether that scope is global
	or for the same file system in the case of a per-fs RECLAIM_COMPLETE.
	An additional RECLAIM_COMPLETE operation is not necessary and results in this error.

 NFS4ERR_GRACE (Error Code 10013)

 This error is returned when the server is in its
	grace period with regard to the file system object for which
	the lock was requested. In this situation, a non-reclaim
	locking request cannot be granted. This can occur because either:

	 The server does not have sufficient information about locks that
	 might be potentially reclaimed to determine whether the lock could
	 be granted.
	

	 The request is made by a client responsible for reclaiming its
	 locks that has not yet done the appropriate RECLAIM_COMPLETE
	 operation, allowing it to proceed to obtain new locks.
	

	In the case of a per-fs grace period,
	there may be clients (i.e., those currently using the destination
	file system) who might be unaware of the circumstances resulting
	in the initiation of the grace period. Such clients need to
	periodically retry the request until the grace period is over, just as
	other clients do.

 NFS4ERR_NO_GRACE (Error Code 10033)

 A reclaim of client state was attempted in circumstances in
 which the server cannot guarantee that conflicting state has
 not been provided to another client. This occurs in any of the
	following situations:

	 There
	 is no active grace period applying to the file system object
	 for which the request was made.
	

	 The client making the
	 request has no current role in reclaiming locks.
	

 Previous operations have created a situation in which
 the server is not able to determine that a reclaim-interfering
 edge condition does not exist.
	

 NFS4ERR_RECLAIM_BAD (Error Code 10034)

	The server has determined that a reclaim attempted by the client
	is not valid, i.e., the lock specified as being reclaimed could
	not possibly have existed before the server restart or file
	system migration event. A server
	is not obliged to make this determination and will typically rely
	on the client to only reclaim locks that the client was granted prior
 to restart. However,
	when a server does have reliable information to enable it to make
	this determination, this error indicates that the reclaim has
	been rejected as invalid. This is as opposed to the error
	NFS4ERR_RECLAIM_CONFLICT (see)
 where the server can only determine that
	there has been an invalid reclaim, but cannot determine
	which request is invalid.

 NFS4ERR_RECLAIM_CONFLICT (Error Code 10035)

 The reclaim attempted by the client has encountered a conflict
 and cannot be satisfied. This potentially indicates a misbehaving
 client, although not necessarily the one receiving the error.
 The misbehavior might be on the part of the client that
 established the lock with which this client conflicted. See also
	 for the related error,
	NFS4ERR_RECLAIM_BAD.

 pNFS Errors

 This section deals with pNFS-related errors including those
 that are associated with using NFSv4.1 to communicate with a
 data server.

 NFS4ERR_BADIOMODE (Error Code 10049)

 An invalid or inappropriate layout iomode was specified.
 For example an inappropriate layout iomode, suppose
 a client's LAYOUTGET operation specified an iomode of
 LAYOUTIOMODE4_RW, and the server is neither able nor willing
 to let the client send write requests to data servers; the server
 can reply with NFS4ERR_BADIOMODE. The client would then
 send another LAYOUTGET with an iomode of LAYOUTIOMODE4_READ.

 NFS4ERR_BADLAYOUT (Error Code 10050)

 The layout specified is invalid in some way. For LAYOUTCOMMIT,
 this indicates that the specified layout is not held by the
 client or is not of mode LAYOUTIOMODE4_RW. For LAYOUTGET,
 it indicates that a layout matching the client's specification
 as to minimum length cannot be granted.

 NFS4ERR_LAYOUTTRYLATER (Error Code 10058)

 Layouts are temporarily unavailable for the file. The client
 should re-send later (but not with the same slot ID and
 sequence ID; one or both MUST be different on the re-send).

 NFS4ERR_LAYOUTUNAVAILABLE (Error Code 10059)

 Returned when layouts are not available for the current file
 system or the particular specified file.

 NFS4ERR_NOMATCHING_LAYOUT (Error Code 10060)

 Returned when layouts are recalled and the client has no layouts
 matching the specification of the layouts being recalled.

 NFS4ERR_PNFS_IO_HOLE (Error Code 10075)

 The pNFS client has attempted to read from or write to an
 illegal hole of a file of a data server that is using
 sparse packing. See .

 NFS4ERR_PNFS_NO_LAYOUT (Error Code 10080)

 The pNFS client has attempted to read from or write to a file
 (using a request to a data server) without holding a valid
 layout. This includes the case where the client had a layout,
 but the iomode does not allow a WRITE.

 NFS4ERR_RETURNCONFLICT (Error Code 10086)

 A layout
 is unavailable due to an attempt to perform the LAYOUTGET
 before a pending LAYOUTRETURN on the file has been received.
 See .

 NFS4ERR_UNKNOWN_LAYOUTTYPE (Error Code 10062)

 The client has specified a layout type that is not supported by
 the server.

 Session Use Errors

 This section deals with errors encountered when using sessions,
 that is, errors encountered when a request uses a Sequence
 (i.e., either SEQUENCE or CB_SEQUENCE) operation.

 NFS4ERR_BADSESSION (Error Code 10052)

 The specified session ID is unknown to the server
 to which the operation is addressed.

 NFS4ERR_BADSLOT (Error Code 10053)

 The requester sent a Sequence operation
 that attempted to use a slot the replier
 does not have in its slot table. It is possible the
 slot may have been retired.

 NFS4ERR_BAD_HIGH_SLOT (Error Code 10077)

 The highest_slot argument in a Sequence operation
 exceeds the replier's enforced highest_slotid.

 NFS4ERR_CB_PATH_DOWN (Error Code 10048)

 There is a problem contacting the client via
 the callback path. The function of this error has
 been mostly superseded by the use of
 status flags in the reply to the SEQUENCE
 operation (see).

 NFS4ERR_DEADSESSION (Error Code 10078)

 The specified session is a persistent session that is
 dead and does not accept new
 requests or perform new operations on existing requests
 (in the case in which a request was partially executed
 before server restart).

 NFS4ERR_CONN_NOT_BOUND_TO_SESSION (Error Code 10055)

 A Sequence operation was sent on a connection that has not
 been associated with the specified session,
 where the client specified that connection association
 was to be enforced with SP4_MACH_CRED or SP4_SSV state protection.

 NFS4ERR_SEQ_FALSE_RETRY (Error Code 10076)

 The requester sent a Sequence operation with a
 slot ID and sequence ID that are in the reply cache, but
 the replier has detected that the retried request
 is not the same as the original request.
 See .

 NFS4ERR_SEQ_MISORDERED (Error Code 10063)

 The requester sent a Sequence operation
 with an invalid sequence ID.

 Session Management Errors

 This section deals with errors associated with requests used
 in session management.

 NFS4ERR_BACK_CHAN_BUSY (Error Code 10057)

 An attempt was made to destroy a session when the session
 cannot be destroyed because the server has
 callback requests outstanding.

 NFS4ERR_BAD_SESSION_DIGEST (Error Code 10051)

 The digest used in a SET_SSV request is not valid.

 Client Management Errors

 This section deals with errors associated with requests used
 to create and manage client IDs.

 NFS4ERR_CLIENTID_BUSY (Error Code 10074)

 The DESTROY_CLIENTID operation has found there are
 sessions and/or unexpired state associated with the
 client ID to be destroyed.

 NFS4ERR_CLID_INUSE (Error Code 10017)

 While processing an EXCHANGE_ID operation, the server was presented
 with a co_ownerid field that matches an existing client with
 valid leased state, but the principal sending the EXCHANGE_ID
 operation differs from the principal that established the existing
 client.
 This indicates a collision (most likely due to chance) between
 clients. The client should recover by changing the
 co_ownerid and re-sending EXCHANGE_ID (but not with the same slot ID and
 sequence ID; one or both MUST be different on the re-send).

 NFS4ERR_ENCR_ALG_UNSUPP (Error Code 10079)

 An EXCHANGE_ID was sent that specified state protection
 via SSV, and where the set of encryption algorithms presented
 by the client did not include any supported by the server.

 NFS4ERR_HASH_ALG_UNSUPP (Error Code 10072)

 An EXCHANGE_ID was sent that specified state protection
 via SSV, and where the set of hashing algorithms presented
 by the client did not include any supported by the server.

 NFS4ERR_STALE_CLIENTID (Error Code 10022)

 A client ID not recognized by the server was passed to an
 operation. Note that unlike the case of NFSv4.0, client IDs
 are not passed explicitly to the server in ordinary locking
 operations and cannot result in this error. Instead, when
 there is a server restart, it is first manifested through
 an error on the associated session, and the staleness of the
 client ID is detected when trying to associate a client ID
 with a new session.

 Delegation Errors

 This section deals with errors associated with requesting and
 returning delegations.

 NFS4ERR_DELEG_ALREADY_WANTED (Error Code 10056)

 The client has requested a delegation when it had already
 registered that it wants that same delegation.

 NFS4ERR_DIRDELEG_UNAVAIL (Error Code 10084)

 This error is returned when the server is unable or unwilling
 to provide a requested directory delegation.

 NFS4ERR_RECALLCONFLICT (Error Code 10061)

 A recallable object (i.e., a layout or delegation)
 is unavailable due to a conflicting recall operation that is
 currently in progress for that object.

 NFS4ERR_REJECT_DELEG (Error Code 10085)

 The callback operation invoked to deal with a new delegation has
 rejected it.

 Attribute Handling Errors

 This section deals with errors specific to attribute handling
 within NFSv4.

 NFS4ERR_ATTRNOTSUPP (Error Code 10032)

 An attribute specified is not supported by the server. This
 error MUST NOT be returned by the GETATTR operation.

 NFS4ERR_BADOWNER (Error Code 10039)

 This error is returned when an owner or owner_group attribute value or the who
 field of an ACE within an ACL attribute value cannot be
 translated to a local representation.

 NFS4ERR_NOT_SAME (Error Code 10027)

 This error is returned by the VERIFY operation to signify
 that the attributes compared were not the same as those provided
 in the client's request.

 NFS4ERR_SAME (Error Code 10009)

 This error is returned by the NVERIFY operation to signify
 that the attributes compared were the same as those provided
 in the client's request.

 Obsoleted Errors

 These errors MUST NOT be generated by any NFSv4.1 operation.
 This can be for a number of reasons.

 The function provided by the error has been superseded
 by one of the status bits returned by the SEQUENCE
 operation.

 The new session structure and associated change in
 locking have made the error unnecessary.

 There has been a restructuring of some errors for
 NFSv4.1 that resulted in the elimination of certain errors.

 NFS4ERR_BAD_SEQID (Error Code 10026)

 The sequence number (seqid) in a locking request is neither the
 next expected number or the last number processed. These
 seqids are ignored in NFSv4.1.

 NFS4ERR_LEASE_MOVED (Error Code 10031)

 A lease being renewed is associated with a file system
 that has been migrated to a new server. The error has
 been superseded by the SEQ4_STATUS_LEASE_MOVED status bit
 (see).

 NFS4ERR_NXIO (Error Code 5)

 I/O error. No such device or address. This error is
 for errors involving block and character device access,
 but because NFSv4.1 is not a device-access protocol, this
 error is not applicable.

 NFS4ERR_RESTOREFH (Error Code 10030)

 The RESTOREFH operation does not have a saved filehandle
 (identified by SAVEFH) to operate upon. In NFSv4.1, this error has
 been superseded by NFS4ERR_NOFILEHANDLE.

 NFS4ERR_STALE_STATEID (Error Code 10023)

 A stateid generated by an earlier server instance was
 used. This error is moot in NFSv4.1 because all operations that
 take a stateid MUST be preceded by the SEQUENCE operation,
 and the earlier server instance is detected by the session
 infrastructure that supports SEQUENCE.

 Operations and Their Valid Errors

 This section contains a table that gives the valid error returns
 for each protocol operation. The error code NFS4_OK (indicating
 no error) is not listed but should be understood to be returnable
 by all operations with two important exceptions:

 The operations that MUST NOT be implemented:
 OPEN_CONFIRM, RELEASE_LOCKOWNER, RENEW, SETCLIENTID, and
 SETCLIENTID_CONFIRM.

 The invalid operation: ILLEGAL.

 Valid Error Returns for Each Protocol Operation

 Operation
 Errors

 ACCESS

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 BACKCHANNEL_CTL

 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOENT,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_TOO_MANY_OPS

 BIND_CONN_TO_SESSION

 NFS4ERR_BADSESSION,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_SESSION_DIGEST,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOT_ONLY_OP,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CLOSE

 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_LOCKS_HELD,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 COMMIT

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_IO,
 NFS4ERR_ISDIR,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 CREATE

 NFS4ERR_ACCESS,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADOWNER,
 NFS4ERR_BADTYPE,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DQUOT,
 NFS4ERR_EXIST,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MLINK,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTDIR,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_PERM,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNSAFE_COMPOUND

 CREATE_SESSION

 NFS4ERR_BADXDR,
 NFS4ERR_CLID_INUSE,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOENT,
 NFS4ERR_NOT_ONLY_OP,
 NFS4ERR_NOSPC,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SEQ_MISORDERED,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE_CLIENTID,
 NFS4ERR_TOOSMALL,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 DELEGPURGE

 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 DELEGRETURN

 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 DESTROY_CLIENTID

 NFS4ERR_BADXDR,
 NFS4ERR_CLIENTID_BUSY,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_NOT_ONLY_OP,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE_CLIENTID,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 DESTROY_SESSION

 NFS4ERR_BACK_CHAN_BUSY,
 NFS4ERR_BADSESSION,
 NFS4ERR_BADXDR,
 NFS4ERR_CB_PATH_DOWN,
 NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_NOT_ONLY_OP,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE_CLIENTID,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 EXCHANGE_ID

 NFS4ERR_BADCHAR,
 NFS4ERR_BADXDR,
 NFS4ERR_CLID_INUSE,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_ENCR_ALG_UNSUPP,
 NFS4ERR_HASH_ALG_UNSUPP,
 NFS4ERR_INVAL,
 NFS4ERR_NOENT,
 NFS4ERR_NOT_ONLY_OP,
 NFS4ERR_NOT_SAME,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 FREE_STATEID

 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_LOCKS_HELD,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 GET_DIR_DELEGATION

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DIRDELEG_UNAVAIL,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 GETATTR

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 GETDEVICEINFO

 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOENT,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOOSMALL,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE

 GETDEVICELIST

 NFS4ERR_BADXDR,
 NFS4ERR_BAD_COOKIE,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_NOT_SAME,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE

 GETFH

 NFS4ERR_FHEXPIRED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_STALE

 ILLEGAL

 NFS4ERR_BADXDR,
 NFS4ERR_OP_ILLEGAL

 LAYOUTCOMMIT

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADIOMODE,
 NFS4ERR_BADLAYOUT,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FBIG,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_ISDIR
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_RECLAIM_BAD,
 NFS4ERR_RECLAIM_CONFLICT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_CRED

 LAYOUTGET

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADIOMODE,
 NFS4ERR_BADLAYOUT,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_DQUOT,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_LAYOUTTRYLATER,
 NFS4ERR_LAYOUTUNAVAILABLE,
 NFS4ERR_LOCKED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OPENMODE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_RECALLCONFLICT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOOSMALL,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_TYPE

 LAYOUTRETURN

 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_CRED,
 NFS4ERR_WRONG_TYPE

 LINK

 NFS4ERR_ACCESS,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DQUOT,
 NFS4ERR_EXIST,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_FILE_OPEN,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_IO,
 NFS4ERR_MLINK,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC,
 NFS4ERR_WRONG_TYPE,
 NFS4ERR_XDEV

 LOCK

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_RANGE,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADLOCK,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DENIED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_LOCK_NOTSUPP,
 NFS4ERR_LOCK_RANGE,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OPENMODE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_RECLAIM_BAD,
 NFS4ERR_RECLAIM_CONFLICT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED,
 NFS4ERR_WRONG_TYPE

 LOCKT

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_RANGE,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DENIED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_LOCK_RANGE,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED,
 NFS4ERR_WRONG_TYPE

 LOCKU

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_RANGE,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_LOCK_RANGE,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 LOOKUP

 NFS4ERR_ACCESS,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 LOOKUPP

 NFS4ERR_ACCESS,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 NVERIFY

 NFS4ERR_ACCESS,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SAME,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_TYPE

 OPEN

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADOWNER,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_ALREADY_WANTED,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_DQUOT,
 NFS4ERR_EXIST,
 NFS4ERR_EXPIRED,
 NFS4ERR_FBIG,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTDIR,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_PERM,
 NFS4ERR_RECLAIM_BAD,
 NFS4ERR_RECLAIM_CONFLICT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_SHARE_DENIED,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNSAFE_COMPOUND,
 NFS4ERR_WRONGSEC,
 NFS4ERR_WRONG_TYPE

 OPEN_CONFIRM

 NFS4ERR_NOTSUPP

 OPEN_DOWNGRADE

 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED

 OPENATTR

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DQUOT,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNSAFE_COMPOUND,
 NFS4ERR_WRONG_TYPE

 PUTFH

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_MOVED,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 PUTPUBFH

 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 PUTROOTFH

 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 READ

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_IO,
 NFS4ERR_LOCKED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OPENMODE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_PNFS_IO_HOLE,
 NFS4ERR_PNFS_NO_LAYOUT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 READDIR

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_COOKIE,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOT_SAME,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOOSMALL,
 NFS4ERR_TOO_MANY_OPS

 READLINK

 NFS4ERR_ACCESS,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 RECLAIM_COMPLETE

 NFS4ERR_BADXDR,
 NFS4ERR_COMPLETE_ALREADY,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_CRED,
 NFS4ERR_WRONG_TYPE

 RELEASE_LOCKOWNER

 NFS4ERR_NOTSUPP

 REMOVE

 NFS4ERR_ACCESS,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_FILE_OPEN,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOTEMPTY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 RENAME

 NFS4ERR_ACCESS,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DQUOT,
 NFS4ERR_EXIST,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_FILE_OPEN,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MLINK,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOTEMPTY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC,
 NFS4ERR_XDEV

 RENEW

 NFS4ERR_NOTSUPP

 RESTOREFH

 NFS4ERR_DEADSESSION,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONGSEC

 SAVEFH

 NFS4ERR_DEADSESSION,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 SECINFO

 NFS4ERR_ACCESS,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADNAME,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_MOVED,
 NFS4ERR_NAMETOOLONG,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 SECINFO_NO_NAME

 NFS4ERR_ACCESS,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_INVAL,
 NFS4ERR_MOVED,
 NFS4ERR_NOENT,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTDIR,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS

 SEQUENCE

 NFS4ERR_BADSESSION,
 NFS4ERR_BADSLOT,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_HIGH_SLOT,
 NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SEQUENCE_POS,
 NFS4ERR_SEQ_FALSE_RETRY,
 NFS4ERR_SEQ_MISORDERED,
 NFS4ERR_TOO_MANY_OPS

 SET_SSV

 NFS4ERR_BADXDR,
 NFS4ERR_BAD_SESSION_DIGEST,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_TOO_MANY_OPS

 SETATTR

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADOWNER,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_DQUOT,
 NFS4ERR_EXPIRED,
 NFS4ERR_FBIG,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_LOCKED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OPENMODE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_PERM,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_TYPE

 SETCLIENTID

 NFS4ERR_NOTSUPP

 SETCLIENTID_CONFIRM

 NFS4ERR_NOTSUPP

 TEST_STATEID

 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 VERIFY

 NFS4ERR_ACCESS,
 NFS4ERR_ATTRNOTSUPP,
 NFS4ERR_BADCHAR,
 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOT_SAME,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_TYPE

 WANT_DELEGATION

 NFS4ERR_BADXDR,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_ALREADY_WANTED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_RECALLCONFLICT,
 NFS4ERR_RECLAIM_BAD,
 NFS4ERR_RECLAIM_CONFLICT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 WRITE

 NFS4ERR_ACCESS,
 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_DQUOT,
 NFS4ERR_EXPIRED,
 NFS4ERR_FBIG,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_IO,
 NFS4ERR_ISDIR,
 NFS4ERR_LOCKED,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOSPC,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OPENMODE,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_PNFS_IO_HOLE,
 NFS4ERR_PNFS_NO_LAYOUT,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_ROFS,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_SYMLINK,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 Callback Operations and Their Valid Errors

 This section contains a table that gives the valid error returns
 for each callback operation. The error code NFS4_OK (indicating
 no error) is not listed but should be understood to be returnable
 by all callback operations with the exception of CB_ILLEGAL.

 Valid Error Returns for Each Protocol Callback Operation

 Callback Operation
 Errors

 CB_GETATTR

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,

 CB_ILLEGAL

 NFS4ERR_BADXDR,
 NFS4ERR_OP_ILLEGAL

 CB_LAYOUTRECALL

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADIOMODE,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOMATCHING_LAYOUT,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_TYPE

 CB_NOTIFY

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CB_NOTIFY_DEVICEID

 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CB_NOTIFY_LOCK

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DELAY,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CB_PUSH_DELEG

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REJECT_DELEG,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_WRONG_TYPE

 CB_RECALL

 NFS4ERR_BADHANDLE,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DELAY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CB_RECALL_ANY

 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_TOO_MANY_OPS

 CB_RECALLABLE_OBJ_AVAIL

 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_INVAL,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 CB_RECALL_SLOT

 NFS4ERR_BADXDR,
 NFS4ERR_BAD_HIGH_SLOT,
 NFS4ERR_DELAY,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_TOO_MANY_OPS

 CB_SEQUENCE

 NFS4ERR_BADSESSION,
 NFS4ERR_BADSLOT,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_HIGH_SLOT,
 NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
 NFS4ERR_DELAY,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SEQUENCE_POS,
 NFS4ERR_SEQ_FALSE_RETRY,
 NFS4ERR_SEQ_MISORDERED,
 NFS4ERR_TOO_MANY_OPS

 CB_WANTS_CANCELLED

 NFS4ERR_BADXDR,
 NFS4ERR_DELAY,
 NFS4ERR_NOTSUPP,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_TOO_MANY_OPS

 Errors and the Operations That Use Them

 Errors and the Operations That Use Them

 Error
 Operations

 NFS4ERR_ACCESS

	ACCESS,
	COMMIT,
	CREATE,
	GETATTR,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	READ,
	READDIR,
	READLINK,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	VERIFY,
	WRITE

 NFS4ERR_ADMIN_REVOKED

	CLOSE,
	DELEGRETURN,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LOCK,
	LOCKU,
	OPEN,
	OPEN_DOWNGRADE,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_ATTRNOTSUPP

	CREATE,
	LAYOUTCOMMIT,
	NVERIFY,
	OPEN,
	SETATTR,
	VERIFY

 NFS4ERR_BACK_CHAN_BUSY

	DESTROY_SESSION

 NFS4ERR_BADCHAR

	CREATE,
	EXCHANGE_ID,
	LINK,
	LOOKUP,
	NVERIFY,
	OPEN,
	REMOVE,
	RENAME,
	SECINFO,
	SETATTR,
	VERIFY

 NFS4ERR_BADHANDLE

	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	PUTFH

 NFS4ERR_BADIOMODE

	CB_LAYOUTRECALL,
	LAYOUTCOMMIT,
	LAYOUTGET

 NFS4ERR_BADLAYOUT

	LAYOUTCOMMIT,
	LAYOUTGET

 NFS4ERR_BADNAME

	CREATE,
	LINK,
	LOOKUP,
	OPEN,
	REMOVE,
	RENAME,
	SECINFO

 NFS4ERR_BADOWNER

	CREATE,
	OPEN,
	SETATTR

 NFS4ERR_BADSESSION

	BIND_CONN_TO_SESSION,
	CB_SEQUENCE,
	DESTROY_SESSION,
	SEQUENCE

 NFS4ERR_BADSLOT

	CB_SEQUENCE,
	SEQUENCE

 NFS4ERR_BADTYPE

	CREATE

 NFS4ERR_BADXDR

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_ILLEGAL,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	ILLEGAL,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	READ,
	READDIR,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_BAD_COOKIE

	GETDEVICELIST,
	READDIR

 NFS4ERR_BAD_HIGH_SLOT

	CB_RECALL_SLOT,
	CB_SEQUENCE,
	SEQUENCE

 NFS4ERR_BAD_RANGE

	LOCK,
	LOCKT,
	LOCKU

 NFS4ERR_BAD_SESSION_DIGEST

	BIND_CONN_TO_SESSION,
	SET_SSV

 NFS4ERR_BAD_STATEID

	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_LOCK,
	CB_RECALL,
	CLOSE,
	DELEGRETURN,
	FREE_STATEID,
	LAYOUTGET,
	LAYOUTRETURN,
	LOCK,
	LOCKU,
	OPEN,
	OPEN_DOWNGRADE,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_CB_PATH_DOWN

	DESTROY_SESSION

 NFS4ERR_CLID_INUSE

	CREATE_SESSION,
	EXCHANGE_ID

 NFS4ERR_CLIENTID_BUSY

	DESTROY_CLIENTID

 NFS4ERR_COMPLETE_ALREADY

	RECLAIM_COMPLETE

 NFS4ERR_CONN_NOT_BOUND_TO_SESSION

	CB_SEQUENCE,
	DESTROY_SESSION,
	SEQUENCE

 NFS4ERR_DEADLOCK

	LOCK

 NFS4ERR_DEADSESSION

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_DELAY

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_DELEG_ALREADY_WANTED

	OPEN,
	WANT_DELEGATION

 NFS4ERR_DELEG_REVOKED

	DELEGRETURN,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	OPEN,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_DENIED

	LOCK,
	LOCKT

 NFS4ERR_DIRDELEG_UNAVAIL

	GET_DIR_DELEGATION

 NFS4ERR_DQUOT

	CREATE,
	LAYOUTGET,
	LINK,
	OPEN,
	OPENATTR,
	RENAME,
	SETATTR,
	WRITE

 NFS4ERR_ENCR_ALG_UNSUPP

	EXCHANGE_ID

 NFS4ERR_EXIST

	CREATE,
	LINK,
	OPEN,
	RENAME

 NFS4ERR_EXPIRED

	CLOSE,
	DELEGRETURN,
	LAYOUTCOMMIT,
	LAYOUTRETURN,
	LOCK,
	LOCKU,
	OPEN,
	OPEN_DOWNGRADE,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_FBIG

	LAYOUTCOMMIT,
	OPEN,
	SETATTR,
	WRITE

 NFS4ERR_FHEXPIRED

	ACCESS,
	CLOSE,
	COMMIT,
	CREATE,
	DELEGRETURN,
	GETATTR,
	GETDEVICELIST,
	GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_FILE_OPEN

	LINK,
	REMOVE,
	RENAME

 NFS4ERR_GRACE

	GETATTR,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	NVERIFY,
	OPEN,
	READ,
	REMOVE,
	RENAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_HASH_ALG_UNSUPP

	EXCHANGE_ID

 NFS4ERR_INVAL

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_PUSH_DELEG,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CREATE,
	CREATE_SESSION,
	DELEGRETURN,
	EXCHANGE_ID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	NVERIFY,
	OPEN,
	OPEN_DOWNGRADE,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	SET_SSV,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_IO

	ACCESS,
	COMMIT,
	CREATE,
	GETATTR,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LINK,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	READ,
	READDIR,
	READLINK,
	REMOVE,
	RENAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_ISDIR

	COMMIT,
	LAYOUTCOMMIT,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	OPEN,
	READ,
	WRITE

 NFS4ERR_LAYOUTTRYLATER

	LAYOUTGET

 NFS4ERR_LAYOUTUNAVAILABLE

	LAYOUTGET

 NFS4ERR_LOCKED

	LAYOUTGET,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_LOCKS_HELD

	CLOSE,
	FREE_STATEID

 NFS4ERR_LOCK_NOTSUPP

	LOCK

 NFS4ERR_LOCK_RANGE

	LOCK,
	LOCKT,
	LOCKU

 NFS4ERR_MLINK

	CREATE,
	LINK,
	RENAME

 NFS4ERR_MOVED

	ACCESS,
	CLOSE,
	COMMIT,
	CREATE,
	DELEGRETURN,
	GETATTR,
	GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_NAMETOOLONG

	CREATE,
	LINK,
	LOOKUP,
	OPEN,
	REMOVE,
	RENAME,
	SECINFO

 NFS4ERR_NOENT

	BACKCHANNEL_CTL,
	CREATE_SESSION,
	EXCHANGE_ID,
	GETDEVICEINFO,
	LOOKUP,
	LOOKUPP,
	OPEN,
	OPENATTR,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME

 NFS4ERR_NOFILEHANDLE

	ACCESS,
	CLOSE,
	COMMIT,
	CREATE,
	DELEGRETURN,
	GETATTR,
	GETDEVICELIST,
	GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_NOMATCHING_LAYOUT

	CB_LAYOUTRECALL

 NFS4ERR_NOSPC

	CREATE,
	CREATE_SESSION,
	LAYOUTGET,
	LINK,
	OPEN,
	OPENATTR,
	RENAME,
	SETATTR,
	WRITE

 NFS4ERR_NOTDIR

	CREATE,
	GET_DIR_DELEGATION,
	LINK,
	LOOKUP,
	LOOKUPP,
	OPEN,
	READDIR,
	REMOVE,
	RENAME,
	SECINFO,
	SECINFO_NO_NAME

 NFS4ERR_NOTEMPTY

	REMOVE,
	RENAME

 NFS4ERR_NOTSUPP

	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_WANTS_CANCELLED,
	DELEGPURGE,
	DELEGRETURN,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	OPENATTR,
	OPEN_CONFIRM,
	RELEASE_LOCKOWNER,
	RENEW,
	SECINFO_NO_NAME,
	SETCLIENTID,
	SETCLIENTID_CONFIRM,
	WANT_DELEGATION

 NFS4ERR_NOT_ONLY_OP

	BIND_CONN_TO_SESSION,
	CREATE_SESSION,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID

 NFS4ERR_NOT_SAME

	EXCHANGE_ID,
	GETDEVICELIST,
	READDIR,
	VERIFY

 NFS4ERR_NO_GRACE

	LAYOUTCOMMIT,
	LAYOUTRETURN,
	LOCK,
	OPEN,
	WANT_DELEGATION

 NFS4ERR_OLD_STATEID

	CLOSE,
	DELEGRETURN,
	FREE_STATEID,
	LAYOUTGET,
	LAYOUTRETURN,
	LOCK,
	LOCKU,
	OPEN,
	OPEN_DOWNGRADE,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_OPENMODE

	LAYOUTGET,
	LOCK,
	READ,
	SETATTR,
	WRITE

 NFS4ERR_OP_ILLEGAL

	CB_ILLEGAL,
	ILLEGAL

 NFS4ERR_OP_NOT_IN_SESSION

	ACCESS,
	BACKCHANNEL_CTL,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	DELEGPURGE,
	DELEGRETURN,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_PERM

	CREATE,
	OPEN,
	SETATTR

 NFS4ERR_PNFS_IO_HOLE

	READ,
	WRITE

 NFS4ERR_PNFS_NO_LAYOUT

	READ,
	WRITE

 NFS4ERR_RECALLCONFLICT

	LAYOUTGET,
	WANT_DELEGATION

 NFS4ERR_RECLAIM_BAD

	LAYOUTCOMMIT,
	LOCK,
	OPEN,
	WANT_DELEGATION

 NFS4ERR_RECLAIM_CONFLICT

	LAYOUTCOMMIT,
	LOCK,
	OPEN,
	WANT_DELEGATION

 NFS4ERR_REJECT_DELEG

	CB_PUSH_DELEG

 NFS4ERR_REP_TOO_BIG

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_REP_TOO_BIG_TO_CACHE

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_REQ_TOO_BIG

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_RETRY_UNCACHED_REP

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_ROFS

	CREATE,
	LINK,
	LOCK,
	LOCKT,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	REMOVE,
	RENAME,
	SETATTR,
	WRITE

 NFS4ERR_SAME

	NVERIFY

 NFS4ERR_SEQUENCE_POS

	CB_SEQUENCE,
	SEQUENCE

 NFS4ERR_SEQ_FALSE_RETRY

	CB_SEQUENCE,
	SEQUENCE

 NFS4ERR_SEQ_MISORDERED

	CB_SEQUENCE,
	CREATE_SESSION,
	SEQUENCE

 NFS4ERR_SERVERFAULT

	ACCESS,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_SHARE_DENIED

	OPEN

 NFS4ERR_STALE

	ACCESS,
	CLOSE,
	COMMIT,
	CREATE,
	DELEGRETURN,
	GETATTR,
	GETFH,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_STALE_CLIENTID

	CREATE_SESSION,
	DESTROY_CLIENTID,
	DESTROY_SESSION

 NFS4ERR_SYMLINK

	COMMIT,
	LAYOUTCOMMIT,
	LINK,
	LOCK,
	LOCKT,
	LOOKUP,
	LOOKUPP,
	OPEN,
	READ,
	WRITE

 NFS4ERR_TOOSMALL

	CREATE_SESSION,
	GETDEVICEINFO,
	LAYOUTGET,
	READDIR

 NFS4ERR_TOO_MANY_OPS

	ACCESS,
	BACKCHANNEL_CTL,
	BIND_CONN_TO_SESSION,
	CB_GETATTR,
	CB_LAYOUTRECALL,
	CB_NOTIFY,
	CB_NOTIFY_DEVICEID,
	CB_NOTIFY_LOCK,
	CB_PUSH_DELEG,
	CB_RECALL,
	CB_RECALLABLE_OBJ_AVAIL,
	CB_RECALL_ANY,
	CB_RECALL_SLOT,
	CB_SEQUENCE,
	CB_WANTS_CANCELLED,
	CLOSE,
	COMMIT,
	CREATE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	EXCHANGE_ID,
	FREE_STATEID,
	GETATTR,
	GETDEVICEINFO,
	GETDEVICELIST,
	GET_DIR_DELEGATION,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	LOCKU,
	LOOKUP,
	LOOKUPP,
	NVERIFY,
	OPEN,
	OPENATTR,
	OPEN_DOWNGRADE,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	READ,
	READDIR,
	READLINK,
	RECLAIM_COMPLETE,
	REMOVE,
	RENAME,
	RESTOREFH,
	SAVEFH,
	SECINFO,
	SECINFO_NO_NAME,
	SEQUENCE,
	SETATTR,
	SET_SSV,
	TEST_STATEID,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_UNKNOWN_LAYOUTTYPE

	CB_LAYOUTRECALL,
	GETDEVICEINFO,
	GETDEVICELIST,
	LAYOUTCOMMIT,
	LAYOUTGET,
	LAYOUTRETURN,
	NVERIFY,
	SETATTR,
	VERIFY

 NFS4ERR_UNSAFE_COMPOUND

	CREATE,
	OPEN,
	OPENATTR

 NFS4ERR_WRONGSEC

	LINK,
	LOOKUP,
	LOOKUPP,
	OPEN,
	PUTFH,
	PUTPUBFH,
	PUTROOTFH,
	RENAME,
	RESTOREFH

 NFS4ERR_WRONG_CRED

	CLOSE,
	CREATE_SESSION,
	DELEGPURGE,
	DELEGRETURN,
	DESTROY_CLIENTID,
	DESTROY_SESSION,
	FREE_STATEID,
	LAYOUTCOMMIT,
	LAYOUTRETURN,
	LOCK,
	LOCKT,
	LOCKU,
	OPEN_DOWNGRADE,
	RECLAIM_COMPLETE

 NFS4ERR_WRONG_TYPE

	CB_LAYOUTRECALL,
	CB_PUSH_DELEG,
	COMMIT,
	GETATTR,
	LAYOUTGET,
	LAYOUTRETURN,
	LINK,
	LOCK,
	LOCKT,
	NVERIFY,
	OPEN,
	OPENATTR,
	READ,
	READLINK,
	RECLAIM_COMPLETE,
	SETATTR,
	VERIFY,
	WANT_DELEGATION,
	WRITE

 NFS4ERR_XDEV

	LINK,
	RENAME

 NFSv4.1 Procedures

 Both procedures, NULL and COMPOUND, MUST be implemented.

 Procedure 0: NULL - No Operation

 ARGUMENTS

void;

 RESULTS

void;

 DESCRIPTION

This is the standard NULL procedure with the standard void argument and
void response.
This procedure has no functionality associated with it. Because of
this, it is sometimes used to measure the overhead of processing a
service request. Therefore, the server SHOULD ensure that no
unnecessary work is done in servicing this procedure.

 ERRORS

None.
	

 Procedure 1: COMPOUND - Compound Operations

 ARGUMENTS

enum nfs_opnum4 {
 OP_ACCESS = 3,
 OP_CLOSE = 4,
 OP_COMMIT = 5,
 OP_CREATE = 6,
 OP_DELEGPURGE = 7,
 OP_DELEGRETURN = 8,
 OP_GETATTR = 9,
 OP_GETFH = 10,
 OP_LINK = 11,
 OP_LOCK = 12,
 OP_LOCKT = 13,
 OP_LOCKU = 14,
 OP_LOOKUP = 15,
 OP_LOOKUPP = 16,
 OP_NVERIFY = 17,
 OP_OPEN = 18,
 OP_OPENATTR = 19,
 OP_OPEN_CONFIRM = 20, /* Mandatory not-to-implement */
 OP_OPEN_DOWNGRADE = 21,
 OP_PUTFH = 22,
 OP_PUTPUBFH = 23,
 OP_PUTROOTFH = 24,
 OP_READ = 25,
 OP_READDIR = 26,
 OP_READLINK = 27,
 OP_REMOVE = 28,
 OP_RENAME = 29,
 OP_RENEW = 30, /* Mandatory not-to-implement */
 OP_RESTOREFH = 31,
 OP_SAVEFH = 32,
 OP_SECINFO = 33,
 OP_SETATTR = 34,
 OP_SETCLIENTID = 35, /* Mandatory not-to-implement */
 OP_SETCLIENTID_CONFIRM = 36, /* Mandatory not-to-implement */
 OP_VERIFY = 37,
 OP_WRITE = 38,
 OP_RELEASE_LOCKOWNER = 39, /* Mandatory not-to-implement */

/* new operations for NFSv4.1 */

 OP_BACKCHANNEL_CTL = 40,
 OP_BIND_CONN_TO_SESSION = 41,
 OP_EXCHANGE_ID = 42,
 OP_CREATE_SESSION = 43,
 OP_DESTROY_SESSION = 44,
 OP_FREE_STATEID = 45,
 OP_GET_DIR_DELEGATION = 46,
 OP_GETDEVICEINFO = 47,
 OP_GETDEVICELIST = 48,
 OP_LAYOUTCOMMIT = 49,
 OP_LAYOUTGET = 50,
 OP_LAYOUTRETURN = 51,
 OP_SECINFO_NO_NAME = 52,
 OP_SEQUENCE = 53,
 OP_SET_SSV = 54,
 OP_TEST_STATEID = 55,
 OP_WANT_DELEGATION = 56,
 OP_DESTROY_CLIENTID = 57,
 OP_RECLAIM_COMPLETE = 58,
 OP_ILLEGAL = 10044
};

union nfs_argop4 switch (nfs_opnum4 argop) {
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_CREATE: CREATE4args opcreate;
 case OP_DELEGPURGE: DELEGPURGE4args opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4args opdelegreturn;
 case OP_GETATTR: GETATTR4args opgetattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCKT4args oplockt;
 case OP_LOCKU: LOCKU4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_OPENATTR: OPENATTR4args opopenattr;

 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4args opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4args opopen_downgrade;

 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTPUBFH: void;
 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;

 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4args oprenew;

 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4args
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;

 /* Not for NFSv4.1 */
 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4args
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */
 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4args opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4args
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4args opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4args opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4args opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4args opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4args
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4args opgetdeviceinfo;
 case OP_GETDEVICELIST: GETDEVICELIST4args opgetdevicelist;
 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4args oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4args oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4args oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4args opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4args opsequence;
 case OP_SET_SSV: SET_SSV4args opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4args optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4args opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4args
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4args
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: void;
};

struct COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 nfs_argop4 argarray<>;
};

 RESULTS

union nfs_resop4 switch (nfs_opnum4 resop) {
 case OP_ACCESS: ACCESS4res opaccess;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_CREATE: CREATE4res opcreate;
 case OP_DELEGPURGE: DELEGPURGE4res opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4res opdelegreturn;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;
 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_OPENATTR: OPENATTR4res opopenattr;
 /* Not for NFSv4.1 */
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4res opopen_confirm;

 case OP_OPEN_DOWNGRADE:
 OPEN_DOWNGRADE4res
 opopen_downgrade;

 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTPUBFH: PUTPUBFH4res opputpubfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 /* Not for NFSv4.1 */
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 /* Not for NFSv4.1 */
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;

 /* Not for NFSv4.1 */
 case OP_SETCLIENTID_CONFIRM:
 SETCLIENTID_CONFIRM4res
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;

 /* Not for NFSv4.1 */
 case OP_RELEASE_LOCKOWNER:
 RELEASE_LOCKOWNER4res
 oprelease_lockowner;

 /* Operations new to NFSv4.1 */
 case OP_BACKCHANNEL_CTL:
 BACKCHANNEL_CTL4res
 opbackchannel_ctl;

 case OP_BIND_CONN_TO_SESSION:
 BIND_CONN_TO_SESSION4res
 opbind_conn_to_session;

 case OP_EXCHANGE_ID: EXCHANGE_ID4res opexchange_id;

 case OP_CREATE_SESSION:
 CREATE_SESSION4res
 opcreate_session;

 case OP_DESTROY_SESSION:
 DESTROY_SESSION4res
 opdestroy_session;

 case OP_FREE_STATEID: FREE_STATEID4res
 opfree_stateid;

 case OP_GET_DIR_DELEGATION:
 GET_DIR_DELEGATION4res
 opget_dir_delegation;

 case OP_GETDEVICEINFO: GETDEVICEINFO4res
 opgetdeviceinfo;

 case OP_GETDEVICELIST: GETDEVICELIST4res
 opgetdevicelist;

 case OP_LAYOUTCOMMIT: LAYOUTCOMMIT4res oplayoutcommit;
 case OP_LAYOUTGET: LAYOUTGET4res oplayoutget;
 case OP_LAYOUTRETURN: LAYOUTRETURN4res oplayoutreturn;

 case OP_SECINFO_NO_NAME:
 SECINFO_NO_NAME4res
 opsecinfo_no_name;

 case OP_SEQUENCE: SEQUENCE4res opsequence;
 case OP_SET_SSV: SET_SSV4res opset_ssv;
 case OP_TEST_STATEID: TEST_STATEID4res optest_stateid;

 case OP_WANT_DELEGATION:
 WANT_DELEGATION4res
 opwant_delegation;

 case OP_DESTROY_CLIENTID:
 DESTROY_CLIENTID4res
 opdestroy_clientid;

 case OP_RECLAIM_COMPLETE:
 RECLAIM_COMPLETE4res
 opreclaim_complete;

 /* Operations not new to NFSv4.1 */
 case OP_ILLEGAL: ILLEGAL4res opillegal;
};

struct COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_resop4 resarray<>;
};

 DESCRIPTION

 The COMPOUND procedure is used to combine one or more NFSv4
 operations into a
 single RPC request. The server interprets each of the operations in
 turn. If an operation is executed by the server and the status of that
 operation is NFS4_OK, then the next operation in the COMPOUND
 procedure is executed. The server continues this process until there
 are no more operations to be executed or until one of the operations has a
 status value other than NFS4_OK.

 In the processing of the COMPOUND procedure, the server may find that
 it does not have the available resources to execute any or all of the
 operations within the COMPOUND sequence. See
 for a more detailed discussion.

 The server will generally choose between two methods of decoding the
 client's request. The first would be the traditional one-pass XDR
 decode. If there is an XDR decoding error in this case, the RPC XDR
 decode error would be returned. The second method would be to make an
 initial pass to decode the basic COMPOUND request and then to XDR
 decode the individual operations; the most interesting is the decode
 of attributes. In this case, the server may encounter an XDR decode
 error during the second pass. If it does, the server would return
 the error NFS4ERR_BADXDR to signify the decode error.

 The COMPOUND arguments contain a "minorversion" field. For NFSv4.1,
 the value for this field is 1. If the server receives
 a COMPOUND procedure with a minorversion field value that it does not
 support, the server MUST return an error of
 NFS4ERR_MINOR_VERS_MISMATCH and a zero-length resultdata array.

 Contained within the COMPOUND results is a "status" field. If the
 results array length is non-zero, this status must be equivalent to
 the status of the last operation that was executed within the COMPOUND
 procedure. Therefore, if an operation incurred an error then the
 "status" value will be the same error value as is being returned for
 the operation that failed.

 Note that operations zero and one are not defined for the
 COMPOUND procedure. Operation 2 is not defined and is reserved for
 future definition and use with minor versioning. If the server
 receives an operation array that contains operation 2 and the
 minorversion field has a value of zero, an error of
 NFS4ERR_OP_ILLEGAL, as described in the next paragraph, is returned to
 the client. If an operation array contains an operation 2 and the
 minorversion field is non-zero and the server does not support the
 minor version, the server returns an error of
 NFS4ERR_MINOR_VERS_MISMATCH. Therefore, the
 NFS4ERR_MINOR_VERS_MISMATCH error takes precedence over all other
 errors.

 It is possible that the server receives a request that contains an
 operation that is less than the first legal operation (OP_ACCESS) or
 greater than the last legal operation (OP_RELEASE_LOCKOWNER). In this
 case, the server's response will encode the opcode OP_ILLEGAL rather
 than the illegal opcode of the request. The status field in the
 ILLEGAL return results will be set to NFS4ERR_OP_ILLEGAL. The COMPOUND
 procedure's return results will also be NFS4ERR_OP_ILLEGAL.

 The definition of the "tag" in the request is left to the implementor.
 It may be used to summarize the content of the Compound request for
 the benefit of packet-sniffers and engineers debugging
 implementations. However, the value of "tag" in the response SHOULD
 be the same value as provided in the request. This applies to the tag
 field of the CB_COMPOUND procedure as well.

 Current Filehandle and Stateid

 The COMPOUND procedure offers a simple environment for the
 execution of the operations specified by the client. The first
 two relate to the filehandle while the second two relate to the
 current stateid.

 Current Filehandle

 The current and saved filehandles are used throughout
 the protocol. Most operations implicitly use
 the current filehandle as an argument, and many set
 the current filehandle as part of the results.
 The combination of client-specified sequences
 of operations and current and saved filehandle
 arguments and results allows for greater protocol
 flexibility. The best or easiest example of current
 filehandle usage is a sequence like the following:

 PUTFH fh1 {fh1}
 LOOKUP "compA" {fh2}
 GETATTR {fh2}
 LOOKUP "compB" {fh3}
 GETATTR {fh3}
 LOOKUP "compC" {fh4}
 GETATTR {fh4}
 GETFH

 In this example, the PUTFH () operation explicitly sets the current
 filehandle value while the result of each LOOKUP operation sets
 the current filehandle value to the resultant file system
 object. Also, the client is able to insert GETATTR operations
 using the current filehandle as an argument.

 The PUTROOTFH () and
 PUTPUBFH () operations also set the
 current filehandle. The above example would replace "PUTFH fh1" with
 PUTROOTFH or PUTPUBFH with no filehandle argument in order to
 achieve the same effect (on the assumption that "compA" is directly
 below the root of the namespace).

 Along with the current filehandle, there is a saved filehandle.
 While the current filehandle is set as the result of
 operations like LOOKUP, the saved filehandle must be set
 directly with the use of the SAVEFH operation. The SAVEFH
 operation copies the current filehandle value to the saved
 value. The saved filehandle value is used in combination with
 the current filehandle value for the LINK and RENAME
 operations. The RESTOREFH operation will copy the saved filehandle value to the current filehandle value; as a result, the
 saved filehandle value may be used a sort of "scratch" area for
 the client's series of operations.

 Current Stateid

 With NFSv4.1, additions of a current stateid and a saved stateid
 have been made to the COMPOUND processing environment; this
 allows for the passing of stateids between operations. There
 are no changes to the syntax of the protocol, only changes to
 the semantics of a few operations.

 A "current stateid" is the stateid that is associated
 with the current filehandle. The current stateid
 may only be changed by an operation that modifies
 the current filehandle or returns a stateid. If an
 operation returns a stateid, it MUST set the current
 stateid to the returned value. If an operation sets
 the current filehandle but does not return a stateid,
 the current stateid MUST be set to the all-zeros
 special stateid, i.e., (seqid, other) = (0, 0).
 If an operation uses a stateid as an argument but does
 not return a stateid, the current stateid MUST NOT be
 changed.
 For example, PUTFH, PUTROOTFH, and PUTPUBFH
 will change the current server state from {ocfh,
 (osid)} to {cfh, (0, 0)}, while LOCK will change the current
 state from {cfh, (osid} to {cfh, (nsid)}. Operations like
 LOOKUP that transform a current filehandle and
 component name into a new current filehandle will also
 change the current state to {0, 0}. The SAVEFH
 and RESTOREFH operations will save and restore both
 the current filehandle and the current stateid as a set.

 The following example is the common case of a simple READ
 operation with a normal stateid showing that the PUTFH
 initializes the current stateid to (0, 0). The subsequent READ
 with stateid (sid1) leaves the current stateid unchanged.

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (sid1), 0, 1024 {fh1, (0, 0)} -> {fh1, (0, 0)}

 This next example performs an OPEN with the root
 filehandle and, as a result, generates stateid (sid1). The next
 operation specifies the READ with the argument stateid set such
 that (seqid, other) are equal to (1, 0),
 but the current stateid set by the previous operation is
 actually used when the operation is evaluated. This allows correct
 interaction with any existing, potentially conflicting,
 locks.

 PUTROOTFH - -> {fh1, (0, 0)}
 OPEN "compA" {fh1, (0, 0)} -> {fh2, (sid1)}
 READ (1, 0), 0, 1024 {fh2, (sid1)} -> {fh2, (sid1)}
 CLOSE (1, 0) {fh2, (sid1)} -> {fh2, (sid2)}

 This next example is similar to the second in how
 it passes the stateid sid2 generated by the LOCK
 operation to the next READ operation. This allows
 the client to explicitly surround a single I/O
 operation with a lock and its appropriate stateid to
 guarantee correctness with other client locks. The
 example also shows how SAVEFH and RESTOREFH can
 save and later reuse a filehandle and stateid, passing them as the
 current filehandle and stateid to a READ operation.

 PUTFH fh1 - -> {fh1, (0, 0)}
 LOCK 0, 1024, (sid1) {fh1, (sid1)} -> {fh1, (sid2)}
 READ (1, 0), 0, 1024 {fh1, (sid2)} -> {fh1, (sid2)}
 LOCKU 0, 1024, (1, 0) {fh1, (sid2)} -> {fh1, (sid3)}
 SAVEFH {fh1, (sid3)} -> {fh1, (sid3)}

 PUTFH fh2 {fh1, (sid3)} -> {fh2, (0, 0)}
 WRITE (1, 0), 0, 1024 {fh2, (0, 0)} -> {fh2, (0, 0)}

 RESTOREFH {fh2, (0, 0)} -> {fh1, (sid3)}
 READ (1, 0), 1024, 1024 {fh1, (sid3)} -> {fh1, (sid3)}

 The final example shows a disallowed use of
 the current stateid. The client is attempting
 to implicitly pass an anonymous special stateid, (0,0), to
 the READ operation. The server MUST return NFS4ERR_BAD_STATEID
 in the reply to the READ operation.

 PUTFH fh1 - -> {fh1, (0, 0)}
 READ (1, 0), 0, 1024 {fh1, (0, 0)} -> NFS4ERR_BAD_STATEID

 ERRORS

 COMPOUND will of course return every error that each operation on
 the fore channel can return (see).
 However, if COMPOUND returns zero operations, obviously the error
 returned by COMPOUND has nothing to do with an error returned by
 an operation. The list of errors COMPOUND will return if it processes
 zero operations include:

 COMPOUND Error Returns

 Error
 Notes

 NFS4ERR_BADCHAR
 The tag argument has a character the replier
 does not support.

 NFS4ERR_BADXDR

 NFS4ERR_DELAY

 NFS4ERR_INVAL
 The tag argument is not in UTF-8 encoding.

 NFS4ERR_MINOR_VERS_MISMATCH

 NFS4ERR_SERVERFAULT

 NFS4ERR_TOO_MANY_OPS

 NFS4ERR_REP_TOO_BIG

 NFS4ERR_REP_TOO_BIG_TO_CACHE

 NFS4ERR_REQ_TOO_BIG

 Operations: REQUIRED, RECOMMENDED, or OPTIONAL

 The following tables summarize the operations of the NFSv4.1
 protocol and the corresponding designation of REQUIRED,
 RECOMMENDED, and OPTIONAL to implement or MUST NOT implement. The
 designation of MUST NOT implement is reserved for those operations
 that were defined in NFSv4.0 and MUST NOT be implemented in NFSv4.1.

 For the most part, the REQUIRED, RECOMMENDED, or OPTIONAL designation for
 operations sent by the client is for
 the server implementation. The client is generally required to
 implement the operations needed for the operating environment for
 which it serves. For example, a read-only NFSv4.1 client would
 have no need to implement the WRITE operation and is not required
 to do so.

 The REQUIRED or OPTIONAL designation for
 callback operations sent by the server is for both the client
 and server. Generally, the client has the option of
 creating the backchannel and sending the operations on the
 fore channel that will be a catalyst for the server sending
 callback operations. A partial
 exception is CB_RECALL_SLOT; the only way the client can
 avoid supporting this operation is by not creating a backchannel.

 Since this is a summary of the operations and their designation,
 there are subtleties that are not presented here. Therefore, if
 there is a question of the requirements of implementation, the
 operation descriptions themselves must be consulted along with
 other relevant explanatory text within this specification.

 The abbreviations used in the second and third columns of the table
 are defined as follows.

 REQ

 REQUIRED to implement

 REC

	RECOMMEND to implement

 OPT

 OPTIONAL to implement

 MNI

 MUST NOT implement

 For the NFSv4.1 features that are OPTIONAL, the operations that
 support those features are OPTIONAL, and the server would return
 NFS4ERR_NOTSUPP in response to the client's use of those
 operations. If an OPTIONAL feature is supported, it is possible
 that a set of operations related to the feature become REQUIRED
 to implement. The third column of the table designates the
 feature(s) and if the operation is REQUIRED or OPTIONAL in the
 presence of support for the feature.

 The OPTIONAL features identified and their abbreviations are as
 follows:

 pNFS

	Parallel NFS

 FDELG

	File Delegations

 DDELG

	Directory Delegations

 Operations

 Operation
 REQ, REC, OPT, or MNI
 Feature (REQ, REC, or OPT)
 Definition

 ACCESS
 REQ

 BACKCHANNEL_CTL
 REQ

 BIND_CONN_TO_SESSION
 REQ

 CLOSE
 REQ

 COMMIT
 REQ

 CREATE
 REQ

 CREATE_SESSION
 REQ

 DELEGPURGE
 OPT
 FDELG (REQ)

 DELEGRETURN
 OPT
 FDELG, DDELG, pNFS (REQ)

 DESTROY_CLIENTID
 REQ

 DESTROY_SESSION
 REQ

 EXCHANGE_ID
 REQ

 FREE_STATEID
 REQ

 GETATTR
 REQ

 GETDEVICEINFO
 OPT
 pNFS (REQ)

 GETDEVICELIST
 OPT
 pNFS (OPT)

 GETFH
 REQ

 GET_DIR_DELEGATION
 OPT
 DDELG (REQ)

 LAYOUTCOMMIT
 OPT
 pNFS (REQ)

 LAYOUTGET
 OPT
 pNFS (REQ)

 LAYOUTRETURN
 OPT
 pNFS (REQ)

 LINK
 OPT

 LOCK
 REQ

 LOCKT
 REQ

 LOCKU
 REQ

 LOOKUP
 REQ

 LOOKUPP
 REQ

 NVERIFY
 REQ

 OPEN
 REQ

 OPENATTR
 OPT

 OPEN_CONFIRM
 MNI

 N/A

 OPEN_DOWNGRADE
 REQ

 PUTFH
 REQ

 PUTPUBFH
 REQ

 PUTROOTFH
 REQ

 READ
 REQ

 READDIR
 REQ

 READLINK
 OPT

 RECLAIM_COMPLETE
 REQ

 RELEASE_LOCKOWNER
 MNI

 N/A

 REMOVE
 REQ

 RENAME
 REQ

 RENEW
 MNI

 N/A

 RESTOREFH
 REQ

 SAVEFH
 REQ

 SECINFO
 REQ

 SECINFO_NO_NAME
 REC
 pNFS file layout (REQ)

 ,

 SEQUENCE
 REQ

 SETATTR
 REQ

 SETCLIENTID
 MNI

 N/A

 SETCLIENTID_CONFIRM
 MNI

 N/A

 SET_SSV
 REQ

 TEST_STATEID
 REQ

 VERIFY
 REQ

 WANT_DELEGATION
 OPT
 FDELG (OPT)

 WRITE
 REQ

 Callback Operations

 Operation
 REQ, REC, OPT, or MNI
 Feature (REQ, REC, or OPT)
 Definition

 CB_GETATTR
 OPT
 FDELG (REQ)

 CB_LAYOUTRECALL
 OPT
 pNFS (REQ)

 CB_NOTIFY
 OPT
 DDELG (REQ)

 CB_NOTIFY_DEVICEID
 OPT
 pNFS (OPT)

 CB_NOTIFY_LOCK
 OPT

 CB_PUSH_DELEG
 OPT
 FDELG (OPT)

 CB_RECALL
 OPT
 FDELG, DDELG, pNFS (REQ)

 CB_RECALL_ANY
 OPT
 FDELG, DDELG, pNFS (REQ)

 CB_RECALL_SLOT
 REQ

 CB_RECALLABLE_OBJ_AVAIL
 OPT
 DDELG, pNFS (REQ)

 CB_SEQUENCE
 OPT
 FDELG, DDELG, pNFS (REQ)

 CB_WANTS_CANCELLED
 OPT
 FDELG, DDELG, pNFS (REQ)

 NFSv4.1 Operations

 Operation 3: ACCESS - Check Access Rights

 ARGUMENTS

const ACCESS4_READ = 0x00000001;
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODIFY = 0x00000004;
const ACCESS4_EXTEND = 0x00000008;
const ACCESS4_DELETE = 0x00000010;
const ACCESS4_EXECUTE = 0x00000020;

struct ACCESS4args {
 /* CURRENT_FH: object */
 uint32_t access;
};

 RESULTS

struct ACCESS4resok {
 uint32_t supported;
 uint32_t access;
};

union ACCESS4res switch (nfsstat4 status) {
 case NFS4_OK:
 ACCESS4resok resok4;
 default:
 void;
};

 DESCRIPTION

ACCESS determines the access rights that a user, as identified by the
credentials in the RPC request, has with respect to the file system
object specified by the current filehandle. The client encodes the
set of access rights that are to be checked in the bit mask "access".
The server checks the permissions encoded in the bit mask. If a
status of NFS4_OK is returned, two bit masks are included in the
response. The first, "supported", represents the access rights for
which the server can verify reliably. The second, "access",
represents the access rights available to the user for the filehandle
provided. On success, the current filehandle retains its value.

Note that the reply's supported and access fields MUST NOT
contain more values than originally set in the request's
access field. For example, if the client sends an ACCESS
operation with just the ACCESS4_READ value set and the
server supports this value, the server MUST NOT set more
than ACCESS4_READ in the supported field even if it could
have reliably checked other values.

 The reply's access field MUST NOT contain more values than the
 supported field.

The results of this operation are necessarily advisory in nature. A
return status of NFS4_OK and the appropriate bit set in the bit mask
do not imply that such access will be allowed to the file system
object in the future. This is because access rights can be revoked by
the server at any time.

The following access permissions may be requested:

 ACCESS4_READ

Read data from file or read a directory.

 ACCESS4_LOOKUP

Look up a name in a directory (no meaning for non-directory objects).

 ACCESS4_MODIFY

Rewrite existing file data or modify existing directory entries.

 ACCESS4_EXTEND

Write new data or add directory entries.

 ACCESS4_DELETE

Delete an existing directory entry.

 ACCESS4_EXECUTE

Execute a regular file (no meaning for a directory).

On success, the current filehandle retains its value.

 ACCESS4_EXECUTE is a challenging semantic to implement because
 NFS provides remote file access, not remote
 execution. This leads to the following:

 Whether or not a regular file is executable ought to be
 the responsibility of the NFS client and not the server. And yet
 the ACCESS operation is specified to seemingly require a server to
 own that responsibility.

 When a client executes a regular file, it has to
 read the file from the server. Strictly speaking,
 the server should not allow the client to read a file
 being executed unless the user has read permissions
 on the file. Requiring
 explicit read permissions on executable files in order to
 access them over NFS is not going to be acceptable to
 some users and storage administrators. Historically, NFS servers have allowed
 a user to READ a file if the user has execute access
 to the file.

 As a practical example, the UNIX specification states that an implementation
 claiming conformance to UNIX may indicate in the
 access() programming interface's result that a
 privileged user has execute rights, even if no
 execute permission bits are set on the regular file's
 attributes. It is possible to claim conformance
 to the UNIX specification and instead not indicate
 execute rights in that situation, which is true for
 some operating environments. Suppose the operating
 environments of the client and server are implementing
 the access() semantics for privileged users differently,
 and the ACCESS operation implementations of the client
 and server follow their respective access() semantics.
 This can cause undesired behavior:

 Suppose the client's access() interface returns X_OK
 if the user is privileged and no execute permission
 bits are set on the regular file's attribute, and the
 server's access() interface does not return X_OK in
 that situation. Then the client will be unable to
 execute files stored on the NFS server that could be
 executed if stored on a non-NFS file system.

 Suppose the client's access() interface does
 not return X_OK if the user is privileged, and no
 execute permission bits are set on the regular file's
 attribute, and the server's access() interface does
 return X_OK in that situation. Then:

 The client will be able to execute files stored on
 the NFS server that could be executed if stored on
 a non-NFS file system, unless the client's execution
 subsystem also checks for execute permission bits.

 Even if the execution subsystem is checking for
 execute permission bits, there are more potential
 issues. For example, suppose the client is invoking access()
 to build a "path search table" of all executable
 files in the user's "search path", where the path
 is a list of directories each containing executable
 files. Suppose there are two files each in separate
 directories of the search path, such that files have
 the same component name. In the first directory
 the file has no execute permission bits set,
 and in the second directory the file has execute
 bits set. The path search table will indicate that
 the first directory has the executable file, but
 the execute subsystem will fail to execute it. The
 command shell might fail to try the second file in
 the second directory. And even if it did, this is
 a potential performance issue. Clearly, the desired
 outcome for the client is for the path search table
 to not contain the first file.

 To deal with the problems described above, the "smart client,
 stupid server" principle is used. The client owns overall
 responsibility for determining execute access and
 relies on the server to parse the execution permissions
 within the file's mode, acl, and dacl attributes. The
 rules for the client and server follow:

 If the client is sending ACCESS in order to determine
 if the user can read the file, the client SHOULD
 set ACCESS4_READ in the request's access field.

 If the client's operating environment only grants
 execution to the user if the user has execute access
 according to the execute permissions in the mode,
 acl, and dacl attributes, then if the client wants
 to determine execute access, the client SHOULD send
 an ACCESS request with ACCESS4_EXECUTE bit set in the
 request's access field.

 If the client's operating environment grants execution
 to the user even if the user does not have execute
 access according to the execute permissions in the
 mode, acl, and dacl attributes, then if the client
 wants to determine execute access, it SHOULD send
 an ACCESS request with both the ACCESS4_EXECUTE and
 ACCESS4_READ bits set in the request's access field. This
 way, if any read or execute permission grants the user
 read or execute access (or if the server interprets
 the user as privileged), as indicated by the presence
 of ACCESS4_EXECUTE and/or ACCESS4_READ in the reply's
 access field, the client will be able to grant the
 user execute access to the file.

 If the server supports execute permission bits, or some other
 method for denoting executability (e.g., the suffix of the name
 of the file might indicate execute), it MUST check
 only execute permissions, not read permissions, when determining
 whether or not the reply will have ACCESS4_EXECUTE set in the access
 field.
 The server MUST NOT also examine read permission bits when
 determining whether or not the reply will have ACCESS4_EXECUTE
 set in the access field. Even if the server's
 operating environment would grant execute access to the
 user (e.g., the user is privileged), the server MUST NOT reply with ACCESS4_EXECUTE set in reply's access
 field unless there is at least one execute permission
 bit set in the mode, acl, or dacl attributes. In the
 case of acl and dacl, the "one execute permission bit"
 MUST be an ACE4_EXECUTE bit set in an ALLOW ACE.

 If the server does not support execute permission
 bits or some other method for denoting executability, it MUST NOT set ACCESS4_EXECUTE in the
 reply's supported and access fields. If the client
 set ACCESS4_EXECUTE in the ACCESS request's access
 field, and ACCESS4_EXECUTE is not set in the reply's
 supported field, then the client will have to send
 an ACCESS request with the ACCESS4_READ bit set in
 the request's access field.

 If the server supports read permission bits, it MUST
 only check for read permissions in the mode, acl,
 and dacl attributes when it receives an ACCESS request
 with ACCESS4_READ set in the access field. The server
 MUST NOT also examine execute permission bits when
 determining whether the reply will have ACCESS4_READ
 set in the access field or not.

 Note that if the ACCESS reply has ACCESS4_READ
 or ACCESS_EXECUTE set, then the user also has
 permissions to OPEN () or
 READ () the file. In other words, if
 the client sends an ACCESS request with the ACCESS4_READ
 and ACCESS_EXECUTE set in the access field (or two
 separate requests, one with ACCESS4_READ set and the
 other with ACCESS4_EXECUTE set), and the reply has
 just ACCESS4_EXECUTE set in the access field (or just
 one reply has ACCESS4_EXECUTE set), then the user has
 authorization to OPEN or READ the file.

 IMPLEMENTATION

In general, it is not sufficient for the client to attempt to deduce
access permissions by inspecting the uid, gid, and mode fields in the
file attributes or by attempting to interpret the contents of the ACL
attribute. This is because the server may perform uid or gid mapping
or enforce additional access-control restrictions. It is also
possible that the server may not be in the same ID space as the
client. In these cases (and perhaps others), the client cannot
reliably perform an access check with only current file attributes.

In the NFSv2 protocol, the only reliable way to determine
whether an operation was allowed was to try it and see if it succeeded
or failed. Using the ACCESS operation in the NFSv4.1 protocol,
the client can ask the server to indicate whether or not one or more
classes of operations are permitted. The ACCESS operation is provided
to allow clients to check before doing a series of operations that
will result in an access failure. The OPEN operation provides a point
where the server can verify access to the file object and a method to
return that information to the client. The ACCESS operation is still
useful for directory operations or for use in the case that the UNIX interface
access() is used on the client.

The information returned by the server in response to an ACCESS call
is not permanent. It was correct at the exact time that the server
performed the checks, but not necessarily afterwards. The server can
revoke access permission at any time.

The client should use the effective credentials of the user to build
the authentication information in the ACCESS request used to determine
access rights. It is the effective user and group credentials that
are used in subsequent READ and WRITE operations.

Many implementations do not directly support the ACCESS4_DELETE
permission. Operating systems like UNIX will ignore the ACCESS4_DELETE
bit if set on an access request on a non-directory object. In these
systems, delete permission on a file is determined by the access
permissions on the directory in which the file resides, instead of
being determined by the permissions of the file itself. Therefore,
the mask returned enumerating which access rights can be determined
will have the ACCESS4_DELETE value set to 0. This indicates to the
client that the server was unable to check that particular access
right. The ACCESS4_DELETE bit in the access mask returned will then be
ignored by the client.

 Operation 4: CLOSE - Close File

 ARGUMENTS

struct CLOSE4args {
 /* CURRENT_FH: object */
 seqid4 seqid;
 stateid4 open_stateid;
};

 RESULTS

union CLOSE4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 open_stateid;
 default:
 void;
};

 DESCRIPTION

 The CLOSE operation releases share reservations for the regular or
 named attribute file as specified by the current filehandle. The
 share reservations and other state information released at the server
 as a result of this CLOSE are only those associated with the supplied
 stateid. State associated with other OPENs is not affected.

 If byte-range locks are held, the client SHOULD release all locks before
 sending a CLOSE. The server MAY free all outstanding locks on CLOSE,
 but some servers may not support the CLOSE of a file that still has
 byte-range locks held. The server MUST return failure if any locks would
 exist after the CLOSE.

 The argument seqid MAY have any value, and the server MUST ignore seqid.

 On success, the current filehandle retains its value.

 The server MAY require that the combination of principal, security
 flavor, and, if applicable, GSS mechanism
 that sent the OPEN request also be the one to CLOSE
 the file. This might not be possible if credentials
 for the principal are no longer available. The server
 MAY allow the machine credential or SSV credential
 (see) to send CLOSE.

 IMPLEMENTATION

 Even though CLOSE returns a stateid, this stateid is not useful to the
 client and should be treated as deprecated. CLOSE "shuts down" the
 state associated with all OPENs for the file by a single open-owner.
 As noted above, CLOSE will either release all file-locking state or
 return an error. Therefore, the stateid returned by CLOSE is not
 useful for operations that follow. To help find any uses of
 this stateid by clients, the server SHOULD return the invalid
 special stateid (the "other" value is zero and the "seqid" field
 is NFS4_UINT32_MAX, see).

 A CLOSE operation may make delegations grantable
 where they were not previously. Servers may choose to respond
 immediately if there are pending delegation want requests or may
 respond to the situation at a later time.

 Operation 5: COMMIT - Commit Cached Data

 ARGUMENTS

struct COMMIT4args {
 /* CURRENT_FH: file */
 offset4 offset;
 count4 count;
};

 RESULTS

struct COMMIT4resok {
 verifier4 writeverf;
};

union COMMIT4res switch (nfsstat4 status) {
 case NFS4_OK:
 COMMIT4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The COMMIT operation forces or flushes uncommitted, modified data to stable storage for the
 file specified by the current filehandle. The flushed data is that
 which was previously written with one or more WRITE operations that had the
 "committed" field of their results field set to UNSTABLE4.

 The offset specifies the position within the file where the flush is
 to begin. An offset value of zero means to flush data starting at
 the beginning of the file. The count specifies the number of bytes of
 data to flush. If the count is zero, a flush from the offset to the end
 of the file is done.

 The server returns a write verifier upon successful completion of the
 COMMIT. The write verifier is used by the client to determine if the
 server has restarted between the initial WRITE operations and the
 COMMIT. The client does this by comparing the write verifier returned
 from the initial WRITE operations and the verifier returned by the COMMIT
 operation. The server must vary the value of the write verifier at
 each server event or instantiation that may lead to a loss of
 uncommitted data. Most commonly this occurs when the server is
 restarted; however, other events at the server may result in
 uncommitted data loss as well.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 The COMMIT operation is similar in operation and semantics to the
 POSIX fsync() system interface that synchronizes a file's state with the
 disk (file data and metadata is flushed to disk or stable
 storage). COMMIT performs the same operation for a client, flushing
 any unsynchronized data and metadata on the server to the server's
 disk or stable storage for the specified file. Like fsync(), it may
 be that there is some modified data or no modified data to
 synchronize. The data may have been synchronized by the server's
 normal periodic buffer synchronization activity. COMMIT should return
 NFS4_OK, unless there has been an unexpected error.

 COMMIT differs from fsync() in that it is possible for the client to
 flush a range of the file (most likely triggered by a
 buffer-reclamation scheme on the client before the file has been
 completely written).

 The server implementation of COMMIT is reasonably simple. If the
 server receives a full file COMMIT request, that is, starting at offset
 zero and count zero, it should do the equivalent of applying fsync() to
 the entire file.
 Otherwise, it should arrange to have the modified data in the range
 specified by offset and count to be flushed to stable storage. In
 both cases, any metadata associated with the file must be flushed to
 stable storage before returning. It is not an error for there to be
 nothing to flush on the server. This means that the data and metadata
 that needed to be flushed have already been flushed or lost during the
 last server failure.

 The client implementation of COMMIT is a little more complex. There
 are two reasons for wanting to commit a client buffer to stable
 storage. The first is that the client wants to reuse a buffer. In
 this case, the offset and count of the buffer are sent to the server
 in the COMMIT request. The server then flushes any modified data based
 on the offset and count, and flushes any modified metadata associated with the
 file. It then returns the status of the flush and the write verifier.
 The second reason for the client to generate a COMMIT is for a full
 file flush, such as may be done at close. In this case, the client
 would gather all of the buffers for this file that contain uncommitted
 data, do the COMMIT operation with an offset of zero and count of zero, and
 then free all of those buffers. Any other dirty buffers would be sent
 to the server in the normal fashion.

 After a buffer is written (via the WRITE operation)
 by the client with the "committed" field in the result of WRITE
 set to UNSTABLE4, the buffer must be considered as modified by
 the client
 until the buffer has either been flushed via a COMMIT operation or
 written via a WRITE operation with the "committed" field in the
 result set to FILE_SYNC4
 or DATA_SYNC4. This is done to prevent the buffer from being freed and
 reused before the data can be flushed to stable storage on the server.

 When a response is returned from either a WRITE or a COMMIT operation
 and it contains a write verifier that differs from that previously
 returned by the server, the client will need to retransmit all of the
 buffers containing uncommitted data to the server. How this is
 to be done is up to the implementor. If there is only one buffer of
 interest, then it should be sent in a WRITE request
 with the FILE_SYNC4 stable parameter. If there is more than one
 buffer, it might be worthwhile retransmitting all of the buffers in
 WRITE operations with the stable parameter set to UNSTABLE4 and then
 retransmitting the COMMIT operation to flush all of the data on the
 server to stable storage. However, if the server repeatably
 returns from COMMIT a verifier that differs from that returned
 by WRITE, the only way to ensure progress is to retransmit all
 of the buffers with WRITE requests with the FILE_SYNC4 stable parameter.

 The above description applies to page-cache-based systems as well as
 buffer-cache-based systems. In the former systems, the virtual memory
 system will need to be modified instead of the buffer cache.

 Operation 6: CREATE - Create a Non-Regular File Object

 ARGUMENTS

union createtype4 switch (nfs_ftype4 type) {
 case NF4LNK:
 linktext4 linkdata;
 case NF4BLK:
 case NF4CHR:
 specdata4 devdata;
 case NF4SOCK:
 case NF4FIFO:
 case NF4DIR:
 void;
 default:
 void; /* server should return NFS4ERR_BADTYPE */
};

struct CREATE4args {
 /* CURRENT_FH: directory for creation */
 createtype4 objtype;
 component4 objname;
 fattr4 createattrs;
};

 RESULTS

struct CREATE4resok {
 change_info4 cinfo;
 bitmap4 attrset; /* attributes set */
};

union CREATE4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* new CURRENTFH: created object */
 CREATE4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The CREATE operation creates a file object other than an
 ordinary file in a directory with a given name.
 The OPEN operation MUST be used to create a
 regular file or a named attribute.

 The current filehandle must be a directory: an object of type NF4DIR. If the current
 filehandle is an attribute directory (type NF4ATTRDIR), the
 error NFS4ERR_WRONG_TYPE is returned. If the current filehandle
 designates any other type of object, the error NFS4ERR_NOTDIR
 results.

 The objname specifies the name for the new object.
 The objtype determines the type of object to be
 created: directory, symlink, etc. If the object
 type specified is that of an ordinary file, a
 named attribute, or a named attribute directory,
 the error NFS4ERR_BADTYPE results.

 If an object of the same name already exists in the directory, the
 server will return the error NFS4ERR_EXIST.

 For the directory where the new file object was created, the server
 returns change_info4 information in cinfo. With the atomic field of
 the change_info4 data type, the server will indicate if the before and
 after change attributes were obtained atomically with respect to the
 file object creation.

 If the objname has a length of zero, or if objname does not obey
 the UTF-8 definition, the error NFS4ERR_INVAL will be returned.

 The current filehandle is replaced by that of the new object.

 The createattrs specifies the initial set of attributes for the
 object. The set of attributes may include any writable attribute
 valid for the object type. When the operation is successful, the
 server will return to the client an attribute mask signifying which
 attributes were successfully set for the object.

 If createattrs includes neither the owner attribute nor an ACL with an
 ACE for the owner, and if the server's file system both supports and
 requires an owner attribute (or an owner ACE), then the server MUST
 derive the owner (or the owner ACE). This would typically be from the
 principal indicated in the RPC credentials of the call, but the
 server's operating environment or file system semantics may dictate
 other methods of derivation. Similarly, if createattrs includes
 neither the group attribute nor a group ACE, and if the server's
 file system both supports and requires the notion of a group attribute
 (or group ACE), the server MUST derive the group attribute (or the
 corresponding owner ACE) for the file. This could be from the RPC
 call's credentials, such as the group principal if the credentials
 include it (such as with AUTH_SYS), from the group identifier
 associated with the principal in the credentials (e.g., POSIX
 systems have a user database that has a group identifier for every
 user identifier), inherited from the directory in which the object is created,
 or whatever else the server's operating environment or file system
 semantics dictate. This applies to the OPEN operation too.

 Conversely, it is possible that the client will specify in createattrs an
 owner attribute, group attribute, or ACL that the principal indicated
 the RPC call's credentials does not have permissions to create files
 for. The error to be returned in this instance is NFS4ERR_PERM. This
 applies to the OPEN operation too.

 If the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the delegation
 is such that the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the CREATE operation MUST NOT proceed
 until the delegation is returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 When the current filehandle designates a directory for which
 one or more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_ADD_ENTRY will be generated
 as a result of this operation.

 If the capability FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set
 (),
 and a symbolic link is being created, then the content
 of the symbolic link MUST be in UTF-8 encoding.

 IMPLEMENTATION

 If the client desires to set attribute values after the create, a
 SETATTR operation can be added to the COMPOUND request so that the
 appropriate attributes will be set.

 Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery

 ARGUMENTS

struct DELEGPURGE4args {
 clientid4 clientid;
};

 RESULTS

struct DELEGPURGE4res {
 nfsstat4 status;
};

 DESCRIPTION

 This operation purges all of the delegations awaiting recovery for a given client.
 This is useful for clients that do not commit delegation information
 to stable storage to indicate that conflicting requests need not be
 delayed by the server awaiting recovery of delegation information.

 The client is NOT specified by the clientid field of
 the request. The client SHOULD set the client field
 to zero, and the server MUST ignore the clientid
 field. Instead, the server MUST derive the client ID
 from the value of the session ID in the arguments of
 the SEQUENCE operation that precedes DELEGPURGE in
 the COMPOUND request.

 The DELEGPURGE operation should be used by clients that record delegation
 information on stable storage on the client. In this case,
 after the client recovers all delegations it knows of,
 it should immediately send a DELEGPURGE operation.
 Doing so will notify the server that
 no additional delegations for the client will be recovered allowing it
 to free resources, and avoid delaying other clients which make requests
 that conflict with the unrecovered delegations. The set of
 delegations known to the server and the client might be different. The
 reason for this is that after sending a request that
 resulted in a delegation, the client might experience a failure
 before it both received the delegation and
 committed the delegation to the client's stable storage.

 The server MAY support DELEGPURGE, but if it does not, it MUST NOT
 support CLAIM_DELEGATE_PREV and MUST NOT support CLAIM_DELEG_PREV_FH.

 Operation 8: DELEGRETURN - Return Delegation

 ARGUMENTS

struct DELEGRETURN4args {
 /* CURRENT_FH: delegated object */
 stateid4 deleg_stateid;
};

 RESULTS

struct DELEGRETURN4res {
 nfsstat4 status;
};

 DESCRIPTION

 The DELEGRETURN operation returns the delegation represented by
 the current filehandle and stateid.

 Delegations may be returned voluntarily (i.e., before
 the server has recalled them) or when recalled. In either case, the client must
 properly propagate state changed under the context of the delegation to
 the server before returning the delegation.

 The server MAY require that the principal, security
 flavor, and if applicable, the GSS mechanism, combination
 that acquired the delegation also be the one to send
 DELEGRETURN on the file. This might not be possible
 if credentials for the principal are no longer
 available. The server MAY allow the machine credential
 or SSV credential (see) to send DELEGRETURN.

 Operation 9: GETATTR - Get Attributes

 ARGUMENTS

struct GETATTR4args {
 /* CURRENT_FH: object */
 bitmap4 attr_request;
};

 RESULTS

struct GETATTR4resok {
 fattr4 obj_attributes;
};

union GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETATTR4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The GETATTR operation will obtain attributes for the file system
 object specified by the current filehandle. The client sets a bit in
 the bitmap argument for each attribute value that it would like the
 server to return. The server returns an attribute bitmap that
 indicates the attribute values that it was able to return,
 which will include all attributes requested by the client that
 are attributes supported by the server for the target
 file system. This bitmap is followed by the attribute values ordered
 lowest attribute number first.

 The server MUST return a value for each attribute that the client
 requests if the attribute is supported by the server for the target
 file system. If the server does not support a particular attribute
 on the target file system, then it MUST NOT return the attribute value
 and MUST NOT set the attribute bit in the result bitmap. The server
 MUST return an error if it supports an attribute on the target
 but cannot obtain its value. In that case, no attribute values will
 be returned.

 File systems that are absent should be treated as having support for
 a very small set of attributes as described in
 ,
 even if previously, when the file system was present, more attributes
 were supported.

 All servers MUST support the REQUIRED attributes as specified in
 , for all file systems,
 with the exception of absent file systems.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 Suppose there is an OPEN_DELEGATE_WRITE delegation held by another client for
the file
 in question and size and/or change are among the set of attributes being interrogated. The server has two choices.
 First, the server can obtain the actual
 current value of these attributes from the client holding the delegation
 by using the CB_GETATTR callback. Second, the server, particularly when the
 delegated client is unresponsive, can recall the
 delegation in question. The GETATTR MUST NOT proceed
 until one of the following occurs:

 The requested attribute values are returned in the response to
 CB_GETATTR.

 The OPEN_DELEGATE_WRITE delegation is returned.

 The OPEN_DELEGATE_WRITE delegation is revoked.

 Unless one of the above happens very quickly,
 one or more NFS4ERR_DELAY errors will be returned
 while a delegation is outstanding.

 Operation 10: GETFH - Get Current Filehandle

 ARGUMENTS

/* CURRENT_FH: */
void;

 RESULTS

struct GETFH4resok {
 nfs_fh4 object;
};

union GETFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETFH4resok resok4;
 default:
 void;
};

 DESCRIPTION

 This operation returns the current filehandle value.

 On success, the current filehandle retains its value.

 As described in , GETFH
 is REQUIRED or RECOMMENDED to
 immediately follow certain operations, and servers
 are free to reject such operations if
 the client fails to insert
 GETFH in the request as REQUIRED or RECOMMENDED.
 provides additional
 justification for why GETFH MUST follow OPEN.

 IMPLEMENTATION

 Operations that change the current filehandle like LOOKUP or CREATE do
 not automatically return the new filehandle as a result. For
 instance, if a client needs to look up a directory entry and obtain its
 filehandle, then the following request is needed.

	 PUTFH (directory filehandle)
	

	 LOOKUP (entry name)
	

	 GETFH
	

 Operation 11: LINK - Create Link to a File

 ARGUMENTS

struct LINK4args {
 /* SAVED_FH: source object */
 /* CURRENT_FH: target directory */
 component4 newname;
};

 RESULTS

struct LINK4resok {
 change_info4 cinfo;
};

union LINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LINK4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The LINK operation creates an additional newname for the file
 represented by the saved filehandle, as set by the SAVEFH operation,
 in the directory represented by the current filehandle. The existing
 file and the target directory must reside within the same file system
 on the server. On success, the current filehandle will continue to be
 the target directory. If an object exists in the target directory
 with the same name as newname, the server must return NFS4ERR_EXIST.

 For the target directory, the server returns change_info4 information
 in cinfo. With the atomic field of the change_info4 data type, the
 server will indicate if the before and after change attributes were
 obtained atomically with respect to the link creation.

 If the newname has a length of zero, or if newname does not obey
 the UTF-8 definition, the error NFS4ERR_INVAL will be returned.

 IMPLEMENTATION

 The server MAY impose restrictions on the LINK operation such that
 LINK may not be done when the file is open or when that open is done
 by particular protocols, or with particular options or access modes.
 When LINK is rejected because of such restrictions, the error
 NFS4ERR_FILE_OPEN is returned.

 If a server does implement such restrictions and those restrictions
 include cases of NFSv4 opens preventing successful execution of
 a link, the server needs to recall any delegations that could
 hide the existence of opens relevant to that decision. The reason
 is that when a client holds a delegation, the server
 might not have an accurate account of the opens for that client, since
 the client may execute OPENs and CLOSEs locally. The LINK operation
 must be delayed only until a definitive result can be obtained.
 For example, suppose there are multiple delegations and one of them establishes
 an open whose presence would prevent the link. Given the server's
 semantics, NFS4ERR_FILE_OPEN may be returned to the caller as soon
 as that delegation is returned without waiting for other delegations
 to be returned. Similarly, if such opens are not associated with
 delegations, NFS4ERR_FILE_OPEN can be returned immediately with no
 delegation recall being done.

 If the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the delegation
 is such that the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the operation cannot be
 performed successfully until the delegation is returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 When the current filehandle designates a directory for which
 one or more directory delegations exist, then, when those delegations
 request such notifications, instead of a recall,
 NOTIFY4_ADD_ENTRY will be generated
 as a result of the LINK operation.

 If the current file system supports the numlinks attribute, and
 other clients have delegations to the file being linked, then those
 delegations MUST be recalled and the LINK operation MUST NOT proceed until
 all delegations are returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 Changes to any property of the "hard" linked files are reflected in
 all of the linked files. When a link is made to a file, the
 attributes for the file should have a value for numlinks that is one
 greater than the value before the LINK operation.

 The statement "file and the target directory must reside within the
 same file system on the server" means that the fsid fields in the
 attributes for the objects are the same. If they reside on
 different file systems, the error NFS4ERR_XDEV is returned.
 This error may be returned by some servers when there is an
 internal partitioning of a file system that the LINK operation
 would violate.

 On some
 servers, "." and ".." are illegal values for newname
 and the error NFS4ERR_BADNAME will be returned if they are specified.

 When the current filehandle designates a named attribute directory
 and the object to be linked (the saved filehandle) is not a named
 attribute for the same object, the error NFS4ERR_XDEV MUST be
 returned. When the saved filehandle designates a named attribute
 and the current filehandle is not the appropriate named attribute
 directory, the error NFS4ERR_XDEV MUST also be returned.

 When the current filehandle designates a named attribute directory
 and the object to be linked (the saved filehandle) is a named
 attribute within that directory, the server may return
 the error NFS4ERR_NOTSUPP.

 In the case that newname is already linked to the file represented by
 the saved filehandle, the server will return NFS4ERR_EXIST.

 Note that symbolic links are created with the CREATE operation.

 Operation 12: LOCK - Create Lock

 ARGUMENTS

/*
 * For LOCK, transition from open_stateid and lock_owner
 * to a lock stateid.
 */
struct open_to_lock_owner4 {
 seqid4 open_seqid;
 stateid4 open_stateid;
 seqid4 lock_seqid;
 lock_owner4 lock_owner;
};

/*
 * For LOCK, existing lock stateid continues to request new
 * file lock for the same lock_owner and open_stateid.
 */
struct exist_lock_owner4 {
 stateid4 lock_stateid;
 seqid4 lock_seqid;
};

union locker4 switch (bool new_lock_owner) {
 case TRUE:
 open_to_lock_owner4 open_owner;
 case FALSE:
 exist_lock_owner4 lock_owner;
};

/*
 * LOCK/LOCKT/LOCKU: Record lock management
 */
struct LOCK4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 bool reclaim;
 offset4 offset;
 length4 length;
 locker4 locker;
};

 RESULTS

struct LOCK4denied {
 offset4 offset;
 length4 length;
 nfs_lock_type4 locktype;
 lock_owner4 owner;
};

struct LOCK4resok {
 stateid4 lock_stateid;
};

union LOCK4res switch (nfsstat4 status) {
 case NFS4_OK:
 LOCK4resok resok4;
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 default:
 void;
};

 DESCRIPTION

 The LOCK operation requests a byte-range lock for the byte-range specified
 by the offset and length parameters, and lock type specified in
 the locktype parameter. If this is a reclaim request, the
 reclaim parameter will be TRUE.

 Bytes in a file may be locked even if those bytes are not currently
 allocated to the file. To lock the file from a specific offset
 through the end-of-file (no matter how long the file actually is) use
 a length field equal to NFS4_UINT64_MAX.
 The server MUST return NFS4ERR_INVAL under the following
 combinations of length and offset:

 Length is equal to zero.

 Length is not equal to NFS4_UINT64_MAX, and the sum of length
 and offset exceeds NFS4_UINT64_MAX.

 32-bit servers are servers that support locking for
 byte offsets that fit within 32 bits (i.e., less than
 or equal to NFS4_UINT32_MAX). If the client specifies a
 range that overlaps one or more bytes beyond offset
 NFS4_UINT32_MAX but does not end at offset
 NFS4_UINT64_MAX, then such a 32-bit server MUST return the
 error NFS4ERR_BAD_RANGE.

 If the server returns NFS4ERR_DENIED, the
 owner, offset, and length
 of a conflicting lock are returned.

 The locker argument specifies the lock-owner that is associated with
 the LOCK operation. The locker4 structure is a switched union that
 indicates whether the client has already created byte-range locking
 state associated with the current open file and lock-owner. In the
 case in which it has, the argument is just a stateid representing
 the set of
 locks associated with that open file and lock-owner, together with
 a lock_seqid value that MAY be any value and MUST be ignored
 by the server.
 In the case where no byte-range locking state has been established, or the client
 does not have the stateid available, the argument contains the
 stateid of the open file with which this lock is to be associated,
 together with the lock-owner with which the lock is to be associated.
 The open_to_lock_owner case covers the very first lock done by a
 lock-owner for a given open file and offers a method to use the
 established state of the open_stateid to transition to the use of
 a lock stateid.

 The following fields of the locker parameter MAY be
 set to any value by the client and MUST be ignored
 by the server:

 The clientid field of the lock_owner
 field of the open_owner field
 (locker.open_owner.lock_owner.clientid). The
 reason the server MUST ignore the clientid field
 is that the server MUST derive the client ID from
 the session ID from the SEQUENCE operation of the
 COMPOUND request.

 The open_seqid and lock_seqid fields of the
 open_owner field (locker.open_owner.open_seqid and
 locker.open_owner.lock_seqid).

 The lock_seqid field of the lock_owner field
 (locker.lock_owner.lock_seqid).

 Note that the client ID appearing in a LOCK4denied
 structure is the actual client associated with the
 conflicting lock, whether this is the client ID
 associated with the current session or a different
 one. Thus, if the server returns NFS4ERR_DENIED,
 it MUST set the clientid field of the owner field of the
 denied field.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned.
 If the current filehandle designates a symbolic link,
 NFS4ERR_SYMLINK is returned. In all other cases,
 NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 If the server is unable to determine the exact offset and length of
 the conflicting byte-range lock, the same offset and length that were provided in
 the arguments should be returned in the denied results.

 LOCK operations are subject to permission checks and to checks against
 the access type of the associated file. However, the specific right
 and modes required for various types of locks reflect the semantics of
 the server-exported file system, and are not specified by the protocol.
 For example, Windows 2000 allows a write lock of a file open for read access,
 while a POSIX-compliant system does not.

 When the client sends a LOCK operation that corresponds to a range that
 the lock-owner has locked already (with the same or different lock
 type), or to a sub-range of such a range, or to a byte-range that
 includes multiple locks already granted to that lock-owner, in whole or
 in part, and the server does not support such locking operations
 (i.e., does not support POSIX locking semantics), the server will
 return the error NFS4ERR_LOCK_RANGE. In that case, the client may
 return an error, or it may emulate the required operations, using only
 LOCK for ranges that do not include any bytes already locked by that
 lock-owner and LOCKU of locks held by that lock-owner (specifying an
 exactly matching range and type). Similarly, when the client sends a
 LOCK operation that amounts to upgrading (changing from a READ_LT lock to a
 WRITE_LT lock) or downgrading (changing from WRITE_LT lock to a READ_LT lock)
 an existing byte-range lock, and the server does not support such a lock,
 the server will return NFS4ERR_LOCK_NOTSUPP. Such operations may not
 perfectly reflect the required semantics in the face of conflicting
 LOCK operations from other clients.

 When a client holds an OPEN_DELEGATE_WRITE delegation, the client holding that
 delegation is assured that there are no opens by other clients.
 Thus, there can be no conflicting LOCK operations from such clients.
 Therefore, the client may be handling locking requests locally,
 without
 doing LOCK operations on the server. If it does that, it must be
 prepared to update the lock status on the server, by sending
 appropriate LOCK and LOCKU operations before returning
 the delegation.

 When one or more clients hold OPEN_DELEGATE_READ delegations, any LOCK operation
 where the server is implementing mandatory locking semantics MUST
 result in the recall of all such delegations. The LOCK operation may
 not be granted until all such delegations are returned or revoked.
 Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while the delegation remains outstanding.

 Operation 13: LOCKT - Test for Lock

 ARGUMENTS

struct LOCKT4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 offset4 offset;
 length4 length;
 lock_owner4 owner;
};

 RESULTS

union LOCKT4res switch (nfsstat4 status) {
 case NFS4ERR_DENIED:
 LOCK4denied denied;
 case NFS4_OK:
 void;
 default:
 void;
};

 DESCRIPTION

 The LOCKT operation tests the lock as specified in the arguments. If
 a conflicting lock exists, the owner, offset, length, and type of the
 conflicting lock are returned.
 The owner field in the results includes the client ID of the owner of
 the conflicting lock, whether this is the client ID associated with the
 current session or a different client ID.
 If no lock is held, nothing other than
 NFS4_OK is returned. Lock types READ_LT and READW_LT are processed in
 the same way in that a conflicting lock test is done without regard to
 blocking or non-blocking. The same is true for WRITE_LT and WRITEW_LT.

 The ranges are specified as for LOCK. The NFS4ERR_INVAL and
 NFS4ERR_BAD_RANGE errors are returned under the same circumstances
 as for LOCK.

 The clientid field of the owner MAY be set to
 any value by the client and MUST be ignored by
 the server. The reason the server MUST ignore the
 clientid field is that the server MUST derive the
 client ID from the session ID from the SEQUENCE
 operation of the COMPOUND request.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned.
 If the current filehandle designates a symbolic link,
 NFS4ERR_SYMLINK is returned. In all other cases,
 NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 If the server is unable to determine the exact offset
 and length of the conflicting lock, the same offset
 and length that were provided in the arguments should
 be returned in the denied results.

 LOCKT uses a lock_owner4 rather a stateid4, as is used in
 LOCK to identify the owner. This is because the client does not
 have to open the file to test for the existence of a lock, so
 a stateid might not be available.

 As noted in , some
 servers may return NFS4ERR_LOCK_RANGE to certain (otherwise
 non-conflicting) LOCK operations that overlap ranges already
 granted to the current lock-owner.

 The LOCKT operation's test for conflicting locks SHOULD exclude
 locks for the current lock-owner, and thus should return NFS4_OK in
 such cases. Note that this means that a server might return
 NFS4_OK to a LOCKT request even though a LOCK operation for the
 same range and lock-owner would fail with NFS4ERR_LOCK_RANGE.

 When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose
 (see) to handle LOCK
 requests locally. In such a case, LOCKT requests will similarly
 be handled locally.

 Operation 14: LOCKU - Unlock File

 ARGUMENTS

struct LOCKU4args {
 /* CURRENT_FH: file */
 nfs_lock_type4 locktype;
 seqid4 seqid;
 stateid4 lock_stateid;
 offset4 offset;
 length4 length;
};

 RESULTS

union LOCKU4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 lock_stateid;
 default:
 void;
};

 DESCRIPTION

 The LOCKU operation unlocks the byte-range lock specified by the
 parameters. The client may set the locktype field to any value that is
 legal for the nfs_lock_type4 enumerated type, and the server MUST
 accept any legal value for locktype. Any legal value for locktype has
 no effect on the success or failure of the LOCKU operation.

 The ranges are specified as for LOCK. The NFS4ERR_INVAL and
 NFS4ERR_BAD_RANGE errors are returned under the same circumstances as
 for LOCK.

 The seqid parameter MAY be any value and the server MUST ignore it.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned.
 If the current filehandle designates a symbolic link,
 NFS4ERR_SYMLINK is returned. In all other cases,
 NFS4ERR_WRONG_TYPE is returned.

 On success, the current filehandle retains its value.

 The server MAY require that the principal, security
 flavor, and if applicable, the GSS mechanism, combination
 that sent a LOCK operation also be the one to send
 LOCKU on the file. This might not be possible
 if credentials for the principal are no longer
 available. The server MAY allow the machine credential
 or SSV credential (see) to send LOCKU.

 IMPLEMENTATION

 If the area to be unlocked does not correspond exactly to a lock
 actually held by the lock-owner, the server may return the error
 NFS4ERR_LOCK_RANGE. This includes the case in which the area is not
 locked, where the area is a sub-range of the area locked, where it
 overlaps the area locked without matching exactly, or the area
 specified includes multiple locks held by the lock-owner. In all of
 these cases, allowed by POSIX locking semantics, a client receiving
 this error should, if it desires support for such operations, simulate
 the operation using LOCKU on ranges corresponding to locks it actually
 holds, possibly followed by LOCK operations for the sub-ranges not being
 unlocked.

 When a client holds an OPEN_DELEGATE_WRITE delegation, it may choose
 (see) to handle LOCK
 requests locally. In such a case, LOCKU operations will similarly
 be handled locally.

 Operation 15: LOOKUP - Lookup Filename

 ARGUMENTS

struct LOOKUP4args {
 /* CURRENT_FH: directory */
 component4 objname;
};

 RESULTS

struct LOOKUP4res {
 /* New CURRENT_FH: object */
 nfsstat4 status;
};

 DESCRIPTION

 The LOOKUP operation looks up or finds a file system object using the
 directory specified by the current filehandle. LOOKUP evaluates the
 component and if the object exists, the current filehandle is replaced
 with the component's filehandle.

 If the component cannot be evaluated either because it does not exist
 or because the client does not have permission to evaluate the
 component, then an error will be returned and the current filehandle
 will be unchanged.

 If the component is a zero-length string or if any component does not
 obey the UTF-8 definition, the error NFS4ERR_INVAL will be returned.

 IMPLEMENTATION

 If the client wants to achieve the effect of a multi-component look up,
 it may construct a COMPOUND request such as (and obtain each
 filehandle):

 PUTFH (directory filehandle)
 LOOKUP "pub"
 GETFH
 LOOKUP "foo"
 GETFH
 LOOKUP "bar"
 GETFH

 Unlike NFSv3, NFSv4.1 allows LOOKUP requests to cross mountpoints on the
 server. The client can detect a mountpoint crossing by comparing the
 fsid attribute of the directory with the fsid attribute of the
 directory looked up. If the fsids are different, then the new
 directory is a server mountpoint. UNIX clients that detect a
 mountpoint crossing will need to mount the server's file system. This
 needs to be done to maintain the file object identity checking
 mechanisms common to UNIX clients.

 Servers that limit NFS access to "shared" or "exported" file systems
 should provide a pseudo file system into which the exported file systems
 can be integrated, so that clients can browse the server's namespace.
 The clients view of a pseudo file system will be limited to paths that
 lead to exported file systems.

 Note: previous versions of the protocol assigned special semantics to
 the names "." and "..". NFSv4.1 assigns no special semantics to
 these names. The LOOKUPP operator must be used to look up a parent
 directory.

 Note that this operation does not follow symbolic links. The client
 is responsible for all parsing of filenames including filenames that
 are modified by symbolic links encountered during the look up process.

 If the current filehandle supplied is not a directory but a symbolic
 link, the error NFS4ERR_SYMLINK is returned as the error. For all
 other non-directory file types, the error NFS4ERR_NOTDIR is returned.

 Operation 16: LOOKUPP - Lookup Parent Directory

 ARGUMENTS

/* CURRENT_FH: object */
void;

 RESULTS

struct LOOKUPP4res {
 /* new CURRENT_FH: parent directory */
 nfsstat4 status;
};

 DESCRIPTION

 The current filehandle is assumed to refer to a regular
 directory or a named attribute directory. LOOKUPP assigns the
 filehandle for its parent directory to be the current
 filehandle. If there is no parent directory, an NFS4ERR_NOENT
 error must be returned. Therefore, NFS4ERR_NOENT will be
 returned by the server when the current filehandle is at the
 root or top of the server's file tree.

 As is the case with LOOKUP, LOOKUPP will also cross mountpoints.

 If the current filehandle is not a directory or named attribute
 directory, the error NFS4ERR_NOTDIR is returned.

 If the requester's security flavor does not match that
 configured for the parent directory, then the server SHOULD
 return NFS4ERR_WRONGSEC (a future minor revision of NFSv4 may
 upgrade this to MUST) in the LOOKUPP response. However, if the
 server does so, it MUST support the SECINFO_NO_NAME
 operation (), so that the client can gracefully determine the
 correct security flavor.

 If the current filehandle is a named attribute directory that is
 associated with a file system object via OPENATTR (i.e., not a
 sub-directory of a named attribute directory), LOOKUPP SHOULD
 return the filehandle of the associated file system object.

 IMPLEMENTATION

 An issue to note is upward navigation from named attribute
 directories. The named attribute directories are essentially
 detached from the namespace, and this property should be safely
 represented in the client operating environment. LOOKUPP on a
 named attribute directory may return the filehandle of the
 associated file, and conveying this to applications might be
 unsafe as many applications expect the parent of an object to
 always be a directory. Therefore, the client may want to hide
 the parent of named attribute directories (represented as ".."
 in UNIX) or represent the named attribute directory as its own
 parent (as is typically done for the file system root directory in
 UNIX).

 Operation 17: NVERIFY - Verify Difference in Attributes

 ARGUMENTS

struct NVERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
};

 RESULTS

struct NVERIFY4res {
 nfsstat4 status;
};

 DESCRIPTION

 This operation is used to prefix a sequence of operations to be
 performed if one or more attributes have changed on some file system
 object. If all the attributes match, then the error NFS4ERR_SAME MUST
 be returned.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 This operation is useful as a cache validation operator. If the
 object to which the attributes belong has changed, then the following
 operations may obtain new data associated with that object, for
 instance, to check if a file has been changed and obtain new data if
 it has:

 SEQUENCE
 PUTFH fh
 NVERIFY attrbits attrs
 READ 0 32767

 Contrast this with NFSv3, which would first send a GETATTR in
 one request/reply round trip, and then if attributes indicated that
 the client's cache was stale, then send a READ in another request/reply
 round trip.

 In the case that a RECOMMENDED attribute is specified in the NVERIFY
 operation and the server does not support that attribute for the
 file system object, the error NFS4ERR_ATTRNOTSUPP is returned to the
 client.

 When the attribute rdattr_error or any set-only attribute (e.g.,
 time_modify_set) is specified, the error NFS4ERR_INVAL is returned to
 the client.

 Operation 18: OPEN - Open a Regular File

 ARGUMENTS

/*
 * Various definitions for OPEN
 */
enum createmode4 {
 UNCHECKED4 = 0,
 GUARDED4 = 1,
 /* Deprecated in NFSv4.1. */
 EXCLUSIVE4 = 2,
 /*
 * New to NFSv4.1. If session is persistent,
 * GUARDED4 MUST be used. Otherwise, use
 * EXCLUSIVE4_1 instead of EXCLUSIVE4.
 */
 EXCLUSIVE4_1 = 3
};

struct creatverfattr {
 verifier4 cva_verf;
 fattr4 cva_attrs;
};

union createhow4 switch (createmode4 mode) {
 case UNCHECKED4:
 case GUARDED4:
 fattr4 createattrs;
 case EXCLUSIVE4:
 verifier4 createverf;
 case EXCLUSIVE4_1:
 creatverfattr ch_createboth;
};

enum opentype4 {
 OPEN4_NOCREATE = 0,
 OPEN4_CREATE = 1
};

union openflag4 switch (opentype4 opentype) {
 case OPEN4_CREATE:
 createhow4 how;
 default:
 void;
};

/* Next definitions used for OPEN delegation */
enum limit_by4 {
 NFS_LIMIT_SIZE = 1,
 NFS_LIMIT_BLOCKS = 2
 /* others as needed */
};

struct nfs_modified_limit4 {
 uint32_t num_blocks;
 uint32_t bytes_per_block;
};

union nfs_space_limit4 switch (limit_by4 limitby) {
 /* limit specified as file size */
 case NFS_LIMIT_SIZE:
 uint64_t filesize;
 /* limit specified by number of blocks */
 case NFS_LIMIT_BLOCKS:
 nfs_modified_limit4 mod_blocks;
} ;

/*
 * Share Access and Deny constants for open argument
 */
const OPEN4_SHARE_ACCESS_READ = 0x00000001;
const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;

const OPEN4_SHARE_DENY_NONE = 0x00000000;
const OPEN4_SHARE_DENY_READ = 0x00000001;
const OPEN4_SHARE_DENY_WRITE = 0x00000002;
const OPEN4_SHARE_DENY_BOTH = 0x00000003;

/* new flags for share_access field of OPEN4args */
const OPEN4_SHARE_ACCESS_WANT_DELEG_MASK = 0xFF00;
const OPEN4_SHARE_ACCESS_WANT_NO_PREFERENCE = 0x0000;
const OPEN4_SHARE_ACCESS_WANT_READ_DELEG = 0x0100;
const OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG = 0x0200;
const OPEN4_SHARE_ACCESS_WANT_ANY_DELEG = 0x0300;
const OPEN4_SHARE_ACCESS_WANT_NO_DELEG = 0x0400;
const OPEN4_SHARE_ACCESS_WANT_CANCEL = 0x0500;

const
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL
 = 0x10000;

const
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED
 = 0x20000;

enum open_delegation_type4 {
 OPEN_DELEGATE_NONE = 0,
 OPEN_DELEGATE_READ = 1,
 OPEN_DELEGATE_WRITE = 2,
 OPEN_DELEGATE_NONE_EXT = 3 /* new to v4.1 */
};

enum open_claim_type4 {
 /*
 * Not a reclaim.
 */
 CLAIM_NULL = 0,

 CLAIM_PREVIOUS = 1,
 CLAIM_DELEGATE_CUR = 2,
 CLAIM_DELEGATE_PREV = 3,

 /*
 * Not a reclaim.
 *
 * Like CLAIM_NULL, but object identified
 * by the current filehandle.
 */
 CLAIM_FH = 4, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_CUR, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_CUR_FH = 5, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_PREV, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_PREV_FH = 6 /* new to v4.1 */
};

struct open_claim_delegate_cur4 {
 stateid4 delegate_stateid;
 component4 file;
};

union open_claim4 switch (open_claim_type4 claim) {
 /*
 * No special rights to file.
 * Ordinary OPEN of the specified file.
 */
 case CLAIM_NULL:
 /* CURRENT_FH: directory */
 component4 file;
 /*
 * Right to the file established by an
 * open previous to server reboot. File
 * identified by filehandle obtained at
 * that time rather than by name.
 */
 case CLAIM_PREVIOUS:
 /* CURRENT_FH: file being reclaimed */
 open_delegation_type4 delegate_type;

 /*
 * Right to file based on a delegation
 * granted by the server. File is
 * specified by name.
 */
 case CLAIM_DELEGATE_CUR:
 /* CURRENT_FH: directory */
 open_claim_delegate_cur4 delegate_cur_info;

 /*
 * Right to file based on a delegation
 * granted to a previous boot instance
 * of the client. File is specified by name.
 */
 case CLAIM_DELEGATE_PREV:
 /* CURRENT_FH: directory */
 component4 file_delegate_prev;

 /*
 * Like CLAIM_NULL. No special rights
 * to file. Ordinary OPEN of the
 * specified file by current filehandle.
 */
 case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: regular file to open */
 void;

 /*
 * Like CLAIM_DELEGATE_PREV. Right to file based on a
 * delegation granted to a previous boot
 * instance of the client. File is identified
 * by filehandle.
 */
 case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 void;

 /*
 * Like CLAIM_DELEGATE_CUR. Right to file based on
 * a delegation granted by the server.
 * File is identified by filehandle.
 */
 case CLAIM_DELEG_CUR_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 stateid4 oc_delegate_stateid;

};

/*
 * OPEN: Open a file, potentially receiving an OPEN delegation
 */
struct OPEN4args {
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
 open_owner4 owner;
 openflag4 openhow;
 open_claim4 claim;
};

 RESULTS

struct open_read_delegation4 {
 stateid4 stateid; /* Stateid for delegation*/
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim (CLAIM_PREVIOUS) */

 nfsace4 permissions; /* Defines users who don't
 need an ACCESS call to
 open for read */
};

struct open_write_delegation4 {
 stateid4 stateid; /* Stateid for delegation */
 bool recall; /* Pre-recalled flag for
 delegations obtained
 by reclaim
 (CLAIM_PREVIOUS) */

 nfs_space_limit4
 space_limit; /* Defines condition that
 the client must check to
 determine whether the
 file needs to be flushed
 to the server on close. */

 nfsace4 permissions; /* Defines users who don't
 need an ACCESS call as
 part of a delegated
 open. */
};

enum why_no_delegation4 { /* new to v4.1 */
 WND4_NOT_WANTED = 0,
 WND4_CONTENTION = 1,
 WND4_RESOURCE = 2,
 WND4_NOT_SUPP_FTYPE = 3,
 WND4_WRITE_DELEG_NOT_SUPP_FTYPE = 4,
 WND4_NOT_SUPP_UPGRADE = 5,
 WND4_NOT_SUPP_DOWNGRADE = 6,
 WND4_CANCELLED = 7,
 WND4_IS_DIR = 8
};

union open_none_delegation4 /* new to v4.1 */
switch (why_no_delegation4 ond_why) {
 case WND4_CONTENTION:
 bool ond_server_will_push_deleg;
 case WND4_RESOURCE:
 bool ond_server_will_signal_avail;
 default:
 void;
};

union open_delegation4
switch (open_delegation_type4 delegation_type) {
 case OPEN_DELEGATE_NONE:
 void;
 case OPEN_DELEGATE_READ:
 open_read_delegation4 read;
 case OPEN_DELEGATE_WRITE:
 open_write_delegation4 write;
 case OPEN_DELEGATE_NONE_EXT: /* new to v4.1 */
 open_none_delegation4 od_whynone;
};

/*
 * Result flags
 */

/* Client must confirm open */
const OPEN4_RESULT_CONFIRM = 0x00000002;
/* Type of file locking behavior at the server */
const OPEN4_RESULT_LOCKTYPE_POSIX = 0x00000004;
/* Server will preserve file if removed while open */
const OPEN4_RESULT_PRESERVE_UNLINKED = 0x00000008;

/*
 * Server may use CB_NOTIFY_LOCK on locks
 * derived from this open
 */
const OPEN4_RESULT_MAY_NOTIFY_LOCK = 0x00000020;

struct OPEN4resok {
 stateid4 stateid; /* Stateid for open */
 change_info4 cinfo; /* Directory Change Info */
 uint32_t rflags; /* Result flags */
 bitmap4 attrset; /* attribute set for create*/
 open_delegation4 delegation; /* Info on any open
 delegation */
};

union OPEN4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* New CURRENT_FH: opened file */
 OPEN4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The OPEN operation opens a regular file in a
 directory with the provided name or filehandle.
 OPEN can also create a file if a name is provided,
 and the client specifies it wants to create a file.
 Specification of whether or not a file is to be created,
 and the method of creation is via the openhow
 parameter. The openhow parameter consists of
 a switched union (data type opengflag4), which
 switches on the value of opentype (OPEN4_NOCREATE
 or OPEN4_CREATE). If OPEN4_CREATE is specified,
 this leads to another switched union (data type
 createhow4) that supports four cases of creation
 methods: UNCHECKED4, GUARDED4, EXCLUSIVE4,
 or EXCLUSIVE4_1. If opentype is OPEN4_CREATE,
 then the claim field of the claim field
 MUST be one of CLAIM_NULL, CLAIM_DELEGATE_CUR, or
 CLAIM_DELEGATE_PREV, because these claim methods
 include a component of a file name.

 Upon success (which might entail creation of a new
 file), the current filehandle is replaced by that
 of the created or existing object.

 If the current filehandle is a named attribute
 directory, OPEN will then create or open a named
 attribute file. Note that exclusive create
 of a named attribute is not supported. If the
 createmode is EXCLUSIVE4 or EXCLUSIVE4_1 and the
 current filehandle is a named attribute directory,
 the server will return EINVAL.

 UNCHECKED4 means that the file should be created if a
 file of that name does not exist and encountering an
 existing regular file of that name is not an error.
 For this type of create, createattrs specifies the
 initial set of attributes for the file. The set
 of attributes may include any writable attribute
 valid for regular files. When an UNCHECKED4
 create encounters an existing file, the attributes
 specified by createattrs are not used, except that
 when createattrs specifies the size attribute
 with a size of zero, the existing file is truncated.

 If GUARDED4 is specified, the server checks for
 the presence of a duplicate object by name before
 performing the create. If a duplicate exists,
 NFS4ERR_EXIST is returned.
 If the object does not exist, the request is
 performed as described for UNCHECKED4.

 For the UNCHECKED4 and GUARDED4 cases, where the
 operation is successful, the server will return
 to the client an attribute mask signifying which
 attributes were successfully set for the object.

 EXCLUSIVE4_1 and EXCLUSIVE4
 specify that the server is to follow exclusive
 creation semantics, using the verifier to ensure
 exclusive creation of the target. The server should
 check for the presence of a duplicate object by name.
 If the object does not exist, the server creates
 the object and stores the verifier with the object.
 If the object does exist and the stored verifier
 matches the client provided verifier, the server
 uses the existing object as the newly created object.
 If the stored verifier does not match, then an error
 of NFS4ERR_EXIST is returned.

 If using EXCLUSIVE4, and if the server uses attributes to
 store the exclusive create verifier, the server will signify
 which attributes it used by setting the appropriate bits in
 the attribute mask that is returned in the results.
 Unlike UNCHECKED4, GUARDED4, and EXCLUSIVE4_1, EXCLUSIVE4 does
 not support the setting of attributes at file creation, and
 after a successful OPEN via EXCLUSIVE4, the client MUST
 send a SETATTR to set attributes to a known state.

 In NFSv4.1, EXCLUSIVE4 has been deprecated in favor
 of EXCLUSIVE4_1.
 Unlike EXCLUSIVE4, attributes may be provided
 in the EXCLUSIVE4_1 case, but because the server
 may use attributes of the target object to store
 the verifier, the set of allowable attributes
 may be fewer than the set of attributes SETATTR
 allows. The allowable attributes for EXCLUSIVE4_1
 are indicated in the suppattr_exclcreat () attribute. If the client
 attempts to set in cva_attrs an attribute that is not in
 suppattr_exclcreat, the server MUST return NFS4ERR_INVAL.
 The response field, attrset, indicates both which attributes
 the server set from cva_attrs and which attributes the
 server used to store the verifier. As described
 in , the client can compare
 cva_attrs.attrmask with attrset to determine which attributes
 were used to store the verifier.

 With the addition of persistent sessions and
 pNFS, under some conditions EXCLUSIVE4 MUST NOT
 be used by the client or supported by the server.
 The following table summarizes the appropriate and
 mandated exclusive create methods for implementations
 of NFSv4.1:

 Required Methods for Exclusive Create

 Persistent Reply Cache Enabled
 Server Supports pNFS
 Server REQUIRED
 Client Allowed

 no
 no
 EXCLUSIVE4_1 and EXCLUSIVE4
 EXCLUSIVE4_1 (SHOULD) or EXCLUSIVE4 (SHOULD NOT)

 no
 yes
 EXCLUSIVE4_1
 EXCLUSIVE4_1

 yes
 no
 GUARDED4
 GUARDED4

 yes
 yes
 GUARDED4
 GUARDED4

 If CREATE_SESSION4_FLAG_PERSIST is set in the results
 of CREATE_SESSION, the reply cache is persistent (see).
 If the EXCHGID4_FLAG_USE_PNFS_MDS flag is set in the
 results from EXCHANGE_ID, the server is a pNFS server (see).
 If the client attempts to use EXCLUSIVE4 on a persistent session,
 or a session derived from an
 EXCHGID4_FLAG_USE_PNFS_MDS client ID, the server MUST return
 NFS4ERR_INVAL.

 With persistent sessions, exclusive create semantics
 are fully achievable via GUARDED4, and so EXCLUSIVE4
 or EXCLUSIVE4_1 MUST NOT be used. When pNFS is
 being used, the layout_hint attribute might
 not be supported after the file is created. Only the
 EXCLUSIVE4_1 and GUARDED methods of exclusive file
 creation allow the atomic setting of attributes.

 For the target directory, the server returns change_info4 information
 in cinfo. With the atomic field of the change_info4 data type, the
 server will indicate if the before and after change attributes were
 obtained atomically with respect to the link creation.

 The OPEN operation provides for Windows share
 reservation capability with the use of the
 share_access and share_deny fields of the OPEN
 arguments. The client specifies at OPEN the required
 share_access and share_deny modes. For clients
 that do not directly support SHAREs (i.e., UNIX), the
 expected deny value is OPEN4_SHARE_DENY_NONE. In the case that
 there is an existing SHARE reservation that conflicts
 with the OPEN request, the server returns the error
 NFS4ERR_SHARE_DENIED. For additional discussion of
 SHARE semantics, see .

 For each OPEN, the client provides a value for
 the owner field of the OPEN argument. The owner
 field is of data type open_owner4, and contains a
 field called clientid and a field called owner. The
 client can set the clientid field to any value and
 the server MUST ignore it. Instead, the server MUST
 derive the client ID from the session ID of the
 SEQUENCE operation of the COMPOUND request.

 The "seqid" field of the request is not used in
 NFSv4.1, but it MAY be any value and the server MUST
 ignore it.

 In the case that the client is recovering state from a server failure,
 the claim field of the OPEN argument is used to signify that the
 request is meant to reclaim state previously held.

 The "claim" field of the OPEN argument is used to specify the file to
 be opened and the state information that the client claims to
 possess. There are seven claim types as follows:

 open type
 description

 CLAIM_NULL,
 CLAIM_FH

 For the client, this is a new OPEN request and there is no
 previous state associated with the file for the client. With
 CLAIM_NULL, the file is identified by the current filehandle
 and the specified component name. With CLAIM_FH (new to NFSv4.1),
 the file is identified by just the current filehandle.

 CLAIM_PREVIOUS

 The client is claiming basic OPEN state for a file that was held
 previous to a server restart. Generally used when a server is
 returning persistent filehandles; the client may not have the file
 name to reclaim the OPEN.

 CLAIM_DELEGATE_CUR,
 CLAIM_DELEG_CUR_FH

 The client is claiming a delegation for OPEN
 as granted by the server. Generally, this
 is done as part of recalling a delegation. With
 CLAIM_DELEGATE_CUR, the file is identified by
 the current filehandle and the specified component
 name. With CLAIM_DELEG_CUR_FH (new to NFSv4.1), the
 file is identified by just the current filehandle.

 CLAIM_DELEGATE_PREV,
 CLAIM_DELEG_PREV_FH

 The client is claiming a delegation granted to a
 previous client instance; used after the client
 restarts. The server MAY support CLAIM_DELEGATE_PREV
 and/or CLAIM_DELEG_PREV_FH (new to NFSv4.1). If it
 does support either claim type, CREATE_SESSION MUST NOT remove the client's delegation state, and the
 server MUST support the DELEGPURGE operation.

 For OPEN requests that reach the server during
 the grace period, the server returns an error
 of NFS4ERR_GRACE. The following claim types are
 exceptions:

 OPEN requests specifying the claim type CLAIM_PREVIOUS are devoted to
 reclaiming opens after a server restart and are typically only
 valid during the grace period.

 OPEN requests specifying the claim types CLAIM_DELEGATE_CUR and
 CLAIM_DELEG_CUR_FH are valid both during and after the grace period.
 Since the granting of the delegation that they are subordinate
 to assures that there is no conflict with locks to be reclaimed
 by other clients, the server need not return NFS4ERR_GRACE when
 these are received during the grace period.

 For any OPEN request, the server may return an OPEN delegation, which
 allows further opens and closes to be handled locally on the client as
 described in . Note that delegation is
 up to the server to decide. The client should never assume that
 delegation will or will not be granted in a particular instance. It
 should always be prepared for either case. A partial exception is the
 reclaim (CLAIM_PREVIOUS) case, in which a delegation type is claimed.
 In this case, delegation will always be granted, although the server
 may specify an immediate recall in the delegation structure.

 The rflags returned by a successful OPEN allow the server to return
 information governing how the open file is to be handled.

 OPEN4_RESULT_CONFIRM is deprecated and MUST NOT be returned
 by an NFSv4.1 server.

 OPEN4_RESULT_LOCKTYPE_POSIX indicates that the server's byte-range locking
 behavior supports the complete set of POSIX locking techniques . From
 this, the client can choose to manage byte-range locking state in a way to
 handle a mismatch of byte-range locking management.

 OPEN4_RESULT_PRESERVE_UNLINKED indicates that the server will
 preserve the open file if the client (or any other client)
 removes the file as long as it is open. Furthermore, the
 server promises to preserve the file through the
 grace period after server restart, thereby giving the client
 the opportunity to reclaim its open.

 OPEN4_RESULT_MAY_NOTIFY_LOCK indicates that the server may attempt
 CB_NOTIFY_LOCK callbacks for locks on this file. This flag is a hint
 only, and may be safely ignored by the client.

 If the component is of zero length, NFS4ERR_INVAL will be returned.
 The component is also subject to the normal UTF-8, character support,
 and name checks. See for
 further discussion.

 When an OPEN is done and the specified open-owner already has the
 resulting filehandle open, the result is to "OR" together the new
 share and deny status together with the existing status. In this
 case, only a single CLOSE need be done, even though multiple OPENs
 were completed. When such an OPEN is done, checking of share
 reservations for the new OPEN proceeds normally, with no exception for
 the existing OPEN held by the same open-owner. In this case, the
 stateid returned as an "other" field that matches that of the previous
 open while the "seqid" field is incremented to reflect the change
 status due to the new open.

 If the underlying file system at the server is only accessible in a
 read-only mode and the OPEN request has specified ACCESS_WRITE or
 ACCESS_BOTH, the server will return NFS4ERR_ROFS to indicate a
 read-only file system.

 As with the CREATE operation, the server MUST derive
 the owner, owner ACE, group, or group ACE if any
 of the four attributes are required and supported
 by the server's file system. For an OPEN with the
 EXCLUSIVE4 createmode, the server has no choice,
 since such OPEN calls do not include the createattrs
 field. Conversely, if createattrs (UNCHECKED4 or
 GUARDED4) or cva_attrs (EXCLUSIVE4_1) is specified,
 and includes an owner, owner_group, or ACE that
 the principal in the RPC call's credentials does
 not have authorization to create files for, then
 the server may return NFS4ERR_PERM.

 In the case of an OPEN that specifies a size of zero (e.g., truncation)
 and the file has named attributes, the named attributes are left as
 is and are not removed.

 NFSv4.1 gives more precise control to clients over
 acquisition of delegations via the following new
 flags for the share_access field of OPEN4args:

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG
 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG
 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG
 OPEN4_SHARE_ACCESS_WANT_NO_DELEG
 OPEN4_SHARE_ACCESS_WANT_CANCEL
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

 If (share_access & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) is
 not zero, then the client will have specified one and only one of:

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG
 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG
 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG
 OPEN4_SHARE_ACCESS_WANT_NO_DELEG
 OPEN4_SHARE_ACCESS_WANT_CANCEL

 Otherwise, the client is neither indicating a desire nor a non-desire
 for a delegation, and the server MAY or
 MAY not return a delegation
 in the OPEN response.

 If the server supports the new _WANT_ flags and the
 client sends one or more of the new flags,
 then in the event the server does not return a
 delegation, it MUST return a delegation type of
 OPEN_DELEGATE_NONE_EXT. The field ond_why in the reply
 indicates why
 no delegation was returned and will be one of:

 WND4_NOT_WANTED

 The client specified OPEN4_SHARE_ACCESS_WANT_NO_DELEG.

 WND4_CONTENTION

 There is a conflicting delegation or open on the file.

 WND4_RESOURCE

 Resource limitations prevent the server from granting a
 delegation.

 WND4_NOT_SUPP_FTYPE

 The server does not support delegations on this file type.

 WND4_WRITE_DELEG_NOT_SUPP_FTYPE

 The server does not support OPEN_DELEGATE_WRITE delegations on this file
 type.

 WND4_NOT_SUPP_UPGRADE

 The server does not support atomic upgrade of an OPEN_DELEGATE_READ delegation to an OPEN_DELEGATE_WRITE delegation.

 WND4_NOT_SUPP_DOWNGRADE

 The server does not support atomic downgrade of an OPEN_DELEGATE_WRITE delegation to an OPEN_DELEGATE_READ delegation.

 WND4_CANCELED

 The client specified OPEN4_SHARE_ACCESS_WANT_CANCEL and now
 any "want" for this file object is cancelled.

 WND4_IS_DIR

 The specified file object is a directory, and the operation
 is OPEN or WANT_DELEGATION, which do not support delegations
 on directories.

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG,
 OPEN_SHARE_ACCESS_WANT_WRITE_DELEG, or
 OPEN_SHARE_ACCESS_WANT_ANY_DELEG mean, respectively, the
 client wants an OPEN_DELEGATE_READ, OPEN_DELEGATE_WRITE, or any delegation regardless which
 of OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
 OPEN4_SHARE_ACCESS_BOTH is set. If the client has an OPEN_DELEGATE_READ delegation on a file and requests an OPEN_DELEGATE_WRITE delegation, then
 the client is requesting atomic upgrade of its OPEN_DELEGATE_READ delegation
 to an OPEN_DELEGATE_WRITE delegation. If the client has an OPEN_DELEGATE_WRITE delegation on
 a file and requests an OPEN_DELEGATE_READ delegation, then the client is
 requesting atomic downgrade to an OPEN_DELEGATE_READ delegation. A server MAY
 support atomic upgrade or downgrade. If it does, then the
	returned delegation_type of OPEN_DELEGATE_READ
 or OPEN_DELEGATE_WRITE that is different from the delegation
 type the client currently has, indicates successful upgrade
 or downgrade. If the server does not support atomic delegation upgrade or
 downgrade, then ond_why will be set to WND4_NOT_SUPP_UPGRADE or
 WND4_NOT_SUPP_DOWNGRADE.

 OPEN4_SHARE_ACCESS_WANT_NO_DELEG means that the client wants no
 delegation.

 OPEN4_SHARE_ACCESS_WANT_CANCEL means that the client wants no
 delegation and wants to cancel any previously registered
 "want" for a delegation.

 The client may set one or both of
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL and
 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED.
 However, they will have no effect unless one of following is set:

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG
 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG
 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 If the client specifies
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL, then it
 wishes to register a "want" for a delegation, in the event the
 OPEN results do not include a delegation. If so and the
 server denies the delegation due to insufficient resources,
 the server MAY later inform the client, via the
 CB_RECALLABLE_OBJ_AVAIL operation, that the resource
 limitation condition has eased. The server will tell the
 client that it intends to send a future
 CB_RECALLABLE_OBJ_AVAIL operation by setting delegation_type
 in the results to OPEN_DELEGATE_NONE_EXT, ond_why
 to WND4_RESOURCE, and ond_server_will_signal_avail set to
 TRUE. If
 ond_server_will_signal_avail is set to TRUE, the server MUST
 later send a CB_RECALLABLE_OBJ_AVAIL operation.

 If the client specifies
 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_UNCONTENDED, then it
 wishes to register a "want" for a delegation, in the event the
 OPEN results do not include a delegation. If so and the server
 denies the delegation due to contention, the
 server MAY later inform the client, via the CB_PUSH_DELEG
 operation, that the contention condition
 has eased. The server will tell the client that it intends to
 send a future CB_PUSH_DELEG operation by setting
 delegation_type in the results to OPEN_DELEGATE_NONE_EXT,
 ond_why to WND4_CONTENTION, and
 ond_server_will_push_deleg to TRUE. If
 ond_server_will_push_deleg is TRUE, the server MUST later
 send a CB_PUSH_DELEG operation.

 If the client has previously registered a want for a
 delegation on a file, and then sends a request to register a
 want for a delegation on the same file, the server MUST return
 a new error: NFS4ERR_DELEG_ALREADY_WANTED. If the client
 wishes to register a different type of delegation want for the
 same file, it MUST cancel the existing delegation WANT.

 IMPLEMENTATION

 In absence of a persistent session, the client
 invokes exclusive create by setting the how parameter
 to EXCLUSIVE4 or EXCLUSIVE4_1. In these cases, the
 client provides a verifier that can reasonably be
 expected to be unique. A combination of a client
 identifier, perhaps the client network address,
 and a unique number generated by the client, perhaps
 the RPC transaction identifier, may be appropriate.

 If the object does not exist, the server creates the object and stores the
 verifier in stable storage. For file systems that do not provide a
 mechanism for the storage of arbitrary file attributes, the server may
 use one or more elements of the object's metadata to store the
 verifier. The verifier MUST be stored in stable storage to prevent
 erroneous failure on retransmission of the request. It is assumed that
 an exclusive create is being performed because exclusive semantics are
 critical to the application. Because of the expected usage, exclusive
 CREATE does not rely solely on the server's reply cache
 for storage of the verifier. A nonpersistent reply cache
 does not survive a crash and the session and reply cache
 may be deleted after a network partition that exceeds the
 lease time, thus opening failure windows.

 An NFSv4.1 server SHOULD NOT store the verifier in
 any of the file's RECOMMENDED or REQUIRED attributes.
 If it does, the server SHOULD use time_modify_set or
 time_access_set to store the verifier.
 The server SHOULD NOT store the verifier in the
 following attributes:

 acl (it is desirable for access control to
	be established at creation),
 dacl (ditto),
 mode (ditto),
 owner (ditto),
 owner_group (ditto),
 retentevt_set (it may be desired to
	establish retention at creation)
 retention_hold (ditto),
 retention_set (ditto),
 sacl (it is desirable for auditing control
	to be established at creation),
 size (on some servers, size may have a
	limited range of values),

 mode_set_masked (as with mode),

 and

 time_creation (a meaningful file creation
	should be set when the file is created).

 Another alternative for the server is to use a named attribute
 to store the verifier.

 Because the EXCLUSIVE4 create method does not specify
 initial attributes when processing an EXCLUSIVE4 create,
 the server

 SHOULD set the
 owner of the file to that corresponding to the credential of
 request's RPC header.

 SHOULD NOT leave the file's access control to anyone
 but the owner of the file.

 If the server cannot support exclusive create
 semantics, possibly because of the requirement to
 commit the verifier to stable storage, it should fail
 the OPEN request with the error NFS4ERR_NOTSUPP.

 During an exclusive CREATE request, if the object
 already exists, the server reconstructs the object's
 verifier and compares it with the verifier in
 the request. If they match, the server treats the
 request as a success. The request is presumed to
 be a duplicate of an earlier, successful request
 for which the reply was lost and that the server
 duplicate request cache mechanism did not detect. If
 the verifiers do not match, the request is rejected
 with the status NFS4ERR_EXIST.

 After the client has performed a successful
 exclusive create, the attrset response indicates
 which attributes were used to store the verifier.
 If EXCLUSIVE4 was used, the attributes set in
 attrset were used for the verifier. If EXCLUSIVE4_1
 was used, the client determines the attributes
 used for the verifier by comparing attrset with
 cva_attrs.attrmask; any bits set in the former but
 not the latter identify the attributes used to store
 the verifier. The client MUST immediately send a
 SETATTR to set attributes used to store the verifier.
 Until it does so, the attributes used to store the
 verifier cannot be relied upon. The subsequent
 SETATTR MUST NOT occur in the same COMPOUND request
 as the OPEN.

 Unless a persistent session is used, use of the
 GUARDED4 attribute does not provide exactly once
 semantics. In particular, if a reply is lost and
 the server does not detect the retransmission of the
 request, the operation can fail with NFS4ERR_EXIST,
 even though the create was performed successfully.
 The client would use this behavior in the case that
 the application has not requested an exclusive create
 but has asked to have the file truncated when the
 file is opened. In the case of the client timing
 out and retransmitting the create request, the client
 can use GUARDED4 to prevent against a sequence like
 create, write, create (retransmitted) from occurring.

 For SHARE reservations, the value of the expression
 (share_access & ~OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) MUST be
 one of OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE,
 or OPEN4_SHARE_ACCESS_BOTH. If not, the server MUST
 return NFS4ERR_INVAL. The value of share_deny MUST
 be one of OPEN4_SHARE_DENY_NONE, OPEN4_SHARE_DENY_READ,
 OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH. If not, the
 server MUST return NFS4ERR_INVAL.

 Based on the share_access value (OPEN4_SHARE_ACCESS_READ,
 OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH), the client
 should check that the requester has the proper access rights
 to perform the specified operation. This would generally be
 the results of applying the ACL access rules to the file for the
 current requester. However, just as with the ACCESS operation, the
 client should not attempt to second-guess the server's decisions, as
 access rights may change and may be subject to server administrative
 controls outside the ACL framework. If the requester's READ or
 WRITE operation is not authorized (depending on the share_access
 value), the server MUST return NFS4ERR_ACCESS.

 Note that if the client ID was not created
 with the EXCHGID4_FLAG_BIND_PRINC_STATEID capability set in
 the reply to EXCHANGE_ID, then the server MUST NOT impose any requirement that READs and WRITEs
 sent for an open file have the same credentials
 as the OPEN itself, and the server is REQUIRED to
 perform access checking on the READs and WRITEs
 themselves. Otherwise, if the reply to EXCHANGE_ID
 did have EXCHGID4_FLAG_BIND_PRINC_STATEID set,
 then with one exception, the credentials used in the OPEN request MUST
 match those used in the READs and WRITEs, and the
 stateids in the READs and WRITEs MUST match, or be
 derived from the stateid from the reply to OPEN.
 The exception is if SP4_SSV or SP4_MACH_CRED state
 protection is used, and the spo_must_allow
 result of EXCHANGE_ID includes the READ and/or WRITE
 operations. In that case, the machine or SSV
 credential will be allowed to send READ and/or WRITE.
 See .

 If the component provided to OPEN is a symbolic link, the error
 NFS4ERR_SYMLINK will be returned to the client, while if it is
 a directory the error NFS4ERR_ISDIR will be returned.
If the component is neither
 of those but not an ordinary file, the error NFS4ERR_WRONG_TYPE
 is returned. If the current
 filehandle is not a directory, the error NFS4ERR_NOTDIR will be
 returned.

 The use of the OPEN4_RESULT_PRESERVE_UNLINKED result flag allows
 a client to avoid the common implementation practice of renaming
 an open file to ".nfs<unique value>" after it removes the file.
 After the server returns OPEN4_RESULT_PRESERVE_UNLINKED, if a client
 sends a REMOVE operation that would reduce the file's link count to
 zero, the server SHOULD report a value
 of zero for the numlinks attribute on the file.

 If another client has a delegation of the file being opened that
 conflicts with open being done (sometimes depending on the
 share_access or share_deny value specified),
 the delegation(s) MUST be recalled, and the
 operation cannot proceed until each such delegation is returned
 or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.
 In the case of an OPEN_DELEGATE_WRITE delegation, any open by a different client
 will conflict, while for an OPEN_DELEGATE_READ delegation, only opens with one
 of the following characteristics will be considered conflicting:

 The value of share_access includes the bit
 OPEN4_SHARE_ACCESS_WRITE.

 The value of share_deny specifies OPEN4_SHARE_DENY_READ or
 OPEN4_SHARE_DENY_BOTH.

 OPEN4_CREATE is specified together with UNCHECKED4, the
 size attribute is specified as zero (for truncation), and
 an existing file is truncated.

 If OPEN4_CREATE is specified and the file does not exist and
 the current filehandle designates a directory for which another
 client holds a directory delegation, then, unless the delegation
 is such that the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the operation cannot proceed
 until the delegation is returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 If OPEN4_CREATE is specified and the file does not exist and
 the current filehandle designates a directory for which
 one or more directory delegations exist, then, when those delegations
 request such notifications, NOTIFY4_ADD_ENTRY will be generated
 as a result of this operation.

 Warning to Client Implementors

 OPEN resembles LOOKUP in that it generates a filehandle for the client
 to use. Unlike LOOKUP though, OPEN creates server state on the
 filehandle. In normal circumstances, the client can only release this
 state with a CLOSE operation. CLOSE uses the current filehandle to
 determine which file to close. Therefore, the client MUST follow every
 OPEN operation with a GETFH operation in the same COMPOUND procedure.
 This will supply the client with the filehandle such that CLOSE can be
 used appropriately.

 Simply waiting for the lease on the file to expire is insufficient
 because the server may maintain the state indefinitely as long as
 another client does not attempt to make a conflicting access to the
 same file.

 See also .

 Operation 19: OPENATTR - Open Named Attribute Directory

 ARGUMENTS

struct OPENATTR4args {
 /* CURRENT_FH: object */
 bool createdir;
};

 RESULTS

struct OPENATTR4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: named attribute
 * directory
 */
 nfsstat4 status;
};

 DESCRIPTION

 The OPENATTR operation is used to obtain the filehandle of the named
 attribute directory associated with the current filehandle. The
 result of the OPENATTR will be a filehandle to an object of type
 NF4ATTRDIR. From this filehandle, READDIR and LOOKUP operations can
 be used to obtain filehandles for the various named attributes
 associated with the original file system object. Filehandles returned
 within the named attribute directory will designate objects of
 type of NF4NAMEDATTR.

 The createdir argument allows the client to signify if a named
 attribute directory should be created as a result of the OPENATTR
 operation. Some clients may use the OPENATTR operation with a value
 of FALSE for createdir to determine if any named attributes exist for
 the object. If none exist, then NFS4ERR_NOENT will be returned. If
 createdir has a value of TRUE and no named attribute directory exists,
 one is created and its filehandle becomes the current filehandle.
 On the other hand, if createdir has a value of TRUE and the named
 attribute directory already exists, no error results and the filehandle
 of the existing directory becomes the current filehandle. The
 creation of a named attribute directory assumes
 that the server has implemented named attribute support in this
 fashion and is not required to do so by this definition.

 If the current filehandle designates an object of type
 NF4NAMEDATTR (a named attribute) or NF4ATTRDIR (a named attribute
 directory), an error of NFS4ERR_WRONG_TYPE is returned to the
 client. Named attributes or a named attribute directory MUST NOT
 have their own named attributes.

 IMPLEMENTATION

 If the server does not support named attributes for the current
 filehandle, an error of NFS4ERR_NOTSUPP will be returned to the
 client.

 Operation 21: OPEN_DOWNGRADE - Reduce Open File Access

 ARGUMENTS

struct OPEN_DOWNGRADE4args {
 /* CURRENT_FH: opened file */
 stateid4 open_stateid;
 seqid4 seqid;
 uint32_t share_access;
 uint32_t share_deny;
};

 RESULTS

struct OPEN_DOWNGRADE4resok {
 stateid4 open_stateid;
};

union OPEN_DOWNGRADE4res switch(nfsstat4 status) {
 case NFS4_OK:
 OPEN_DOWNGRADE4resok resok4;
 default:
 void;
};

 DESCRIPTION

 This operation is used to adjust the access and deny states
 for a given open. This is necessary when a given open-owner opens the
 same file multiple times with different access and deny
 values. In this situation, a close of one of the opens may change the
 appropriate share_access and share_deny flags to remove bits
 associated with opens no longer in effect.

 Valid values for the expression (share_access &
 ~OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) are OPEN4_SHARE_ACCESS_READ,
 OPEN4_SHARE_ACCESS_WRITE, or OPEN4_SHARE_ACCESS_BOTH. If the client
 specifies other values, the server MUST reply with NFS4ERR_INVAL.

 Valid values for the share_deny field are
 OPEN4_SHARE_DENY_NONE, OPEN4_SHARE_DENY_READ,
 OPEN4_SHARE_DENY_WRITE, or OPEN4_SHARE_DENY_BOTH. If
 the client specifies other values, the server MUST
 reply with NFS4ERR_INVAL.

 After checking for valid values of share_access and
 share_deny, the server replaces the current access
 and deny modes on the file with share_access and
 share_deny subject to the following constraints:

 The bits in share_access SHOULD equal the union of the share_access
 bits (not including OPEN4_SHARE_WANT_* bits)
 specified for some subset of the OPENs
 in effect for the current open-owner on the current
 file.

 The bits in share_deny SHOULD equal the union of the
 share_deny bits specified for some subset
 of the OPENs in effect for the current open-owner
 on the current file.

 If the above constraints are not respected,
 the server SHOULD return the error NFS4ERR_INVAL.
 Since share_access and share_deny bits should be
 subsets of those already granted, short of a defect
 in the client or server implementation, it is not
 possible for the OPEN_DOWNGRADE request to be denied
 because of conflicting share reservations.

 The seqid argument is not used in NFSv4.1, MAY be any value, and
 MUST be ignored by the server.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 An OPEN_DOWNGRADE operation may make OPEN_DELEGATE_READ delegations grantable
 where they were not previously. Servers may choose to respond
 immediately if there are pending delegation want requests or may
 respond to the situation at a later time.

 Operation 22: PUTFH - Set Current Filehandle

 ARGUMENTS

struct PUTFH4args {
 nfs_fh4 object;
};

 RESULTS

struct PUTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: argument to PUTFH
 */
 nfsstat4 status;
};

 DESCRIPTION

 This operation replaces the current filehandle with the filehandle provided as an
 argument. It clears the current stateid.

 If the security mechanism used by the requester does not meet the
 requirements of the filehandle provided to this operation, the server
 MUST return NFS4ERR_WRONGSEC.

 See for more details on the
 current filehandle.

 See for more details on the current
 stateid.

 IMPLEMENTATION

 This operation is used
 in an NFS request to set the context for file accessing operations that
 follow in the same COMPOUND request.

 Operation 23: PUTPUBFH - Set Public Filehandle

 ARGUMENT

void;

 RESULT

struct PUTPUBFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: public fh
 */
 nfsstat4 status;
};

 DESCRIPTION

 This operation replaces the current filehandle with the filehandle that
 represents the public filehandle of the server's namespace.
 This filehandle may be different from the "root" filehandle
 that may be associated with some other directory on the server.

 PUTPUBFH also clears the current stateid.

 The public filehandle represents the concepts embodied in RFC 2054, RFC 2055, and RFC 2224. The intent for NFSv4.1
 is that the public filehandle (represented by the PUTPUBFH
 operation) be used as a method of providing WebNFS server
 compatibility with NFSv3.

 The public filehandle and the root filehandle (represented by the
 PUTROOTFH operation) SHOULD be equivalent. If the public and root
 filehandles are not equivalent, then the directory corresponding to the public filehandle MUST be a
 descendant of the directory corresponding to the root filehandle.

 See for more details on the
 current filehandle.

 See for more details on the current
 stateid.

 IMPLEMENTATION

 This operation is used
 in an NFS request to set the context for file accessing operations that
 follow in the same COMPOUND request.

 With the NFSv3 public filehandle, the client is
 able to specify whether the pathname provided in the LOOKUP
 should be evaluated as either an absolute path relative to the
 server's root or relative to the public filehandle. RFC 2224 contains further discussion of
 the functionality. With NFSv4.1, that type of
 specification is not directly available in the LOOKUP operation.
 The reason for this is because the component separators needed
 to specify absolute vs. relative are not allowed in NFSv4. Therefore, the client is responsible for constructing its
 request such that the use of either PUTROOTFH or PUTPUBFH
 signifies absolute or relative evaluation of an NFS URL,
 respectively.

 Note that there are warnings mentioned in RFC 2224 with respect to the use of
 absolute evaluation and the restrictions the server may place on
 that evaluation with respect to how much of its namespace has
 been made available. These same warnings apply to NFSv4.1. It is likely, therefore, that because of server
 implementation details, an NFSv3 absolute public
 filehandle look up may behave differently than an NFSv4.1
 absolute resolution.

 There is a form of security negotiation as described
 in RFC 2755 that uses
 the public filehandle and an overloading of the pathname.
 This method is not available with NFSv4.1 as
 filehandles are not overloaded with special
 meaning and therefore do not provide the same
 framework as NFSv3. Clients should therefore use
 the security negotiation mechanisms described in
 .

 Operation 24: PUTROOTFH - Set Root Filehandle

 ARGUMENTS

void;

 RESULTS

struct PUTROOTFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: root fh
 */
 nfsstat4 status;
};

 DESCRIPTION

 This operation replaces the current filehandle with the filehandle that represents
 the root of the server's namespace. From this filehandle, a LOOKUP
 operation can locate any other filehandle on the server. This
 filehandle may be different from the "public" filehandle that may be
 associated with some other directory on the server.

 PUTROOTFH also clears the current stateid.

 See for more details on the
 current filehandle.

 See for more details on the current
 stateid.

 IMPLEMENTATION

 This operation is used
 in an NFS request to set the context for file accessing operations that
 follow in the same COMPOUND request.

 Operation 25: READ - Read from File

 ARGUMENTS

struct READ4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 count4 count;
};

 RESULTS

struct READ4resok {
 bool eof;
 opaque data<>;
};

union READ4res switch (nfsstat4 status) {
 case NFS4_OK:
 READ4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The READ operation reads data from the regular file identified by the
 current filehandle.

 The client provides an offset of where the READ is to start and a
 count of how many bytes are to be read. An offset of zero means
 to read data starting at the beginning of the file. If offset is
 greater than or equal to the size of the file, the status NFS4_OK is
 returned with a data length set to zero and eof is set to TRUE.
 The READ is subject to access permissions checking.

 If the client specifies a count value of zero, the READ succeeds
 and returns zero bytes of data again subject to access permissions
 checking. The server may choose to return fewer bytes than specified
 by the client. The client needs to check for this condition and
 handle the condition appropriately.

 Except when special stateids are used, the
 stateid value for a READ request represents a value returned from
 a previous byte-range lock or share reservation request or the stateid
 associated with a delegation. The stateid identifies the associated
 owners if any and is
 used by the server to verify that the associated locks are still
 valid (e.g., have not been revoked).

 If the read ended at the end-of-file (formally, in a correctly formed
 READ operation, if offset + count is equal to the size of the file), or
 the READ operation extends beyond the size of the file (if offset +
 count is greater than the size of the file), eof is returned as TRUE;
 otherwise, it is FALSE. A successful READ of an empty file will always
 return eof as TRUE.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned.
 If the current filehandle designates a symbolic link,
 NFS4ERR_SYMLINK is returned. In all other cases,
 NFS4ERR_WRONG_TYPE is returned.

 For a READ with a stateid value of all bits equal to zero, the server MAY allow
 the READ to be serviced subject to mandatory byte-range locks or the current
 share deny modes for the file. For a READ with a stateid value of all
 bits equal to one, the server MAY allow READ operations to bypass locking checks
 at the server.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 If the server returns a "short read" (i.e., fewer data than requested and eof is set to FALSE), the client should send another READ to get the
 remaining data. A server may return less data than requested under
 several circumstances. The file may have been truncated by another
 client or perhaps on the server itself, changing the file size from
 what the requesting client believes to be the case. This would reduce
 the actual amount of data available to the client. It is possible
 that the server reduce the transfer size and so return a short
 read result. Server resource exhaustion may also occur in a
 short read.

 If mandatory byte-range locking is in effect for the file, and if the byte-range
 corresponding to the data to be read from the file is WRITE_LT locked by an
 owner not associated with the stateid, the server will return the
 NFS4ERR_LOCKED error. The client should try to get the appropriate
 READ_LT via the LOCK operation before re-attempting the
 READ. When the READ completes, the client should release the byte-range
 lock via LOCKU.

 If another client has an OPEN_DELEGATE_WRITE delegation for the file being read,
 the delegation must be recalled, and the
 operation cannot proceed until that delegation is returned
 or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while the delegation remains outstanding.
 Normally, delegations will not be recalled as a result of a READ
 operation since the recall will occur as a result of an earlier
 OPEN. However, since it is possible for a READ to be done with
 a special stateid, the server needs to check for this case even
 though the client should have done an OPEN previously.

 Operation 26: READDIR - Read Directory

 ARGUMENTS

struct READDIR4args {
 /* CURRENT_FH: directory */
 nfs_cookie4 cookie;
 verifier4 cookieverf;
 count4 dircount;
 count4 maxcount;
 bitmap4 attr_request;
};

 RESULTS

struct entry4 {
 nfs_cookie4 cookie;
 component4 name;
 fattr4 attrs;
 entry4 *nextentry;
};

struct dirlist4 {
 entry4 *entries;
 bool eof;
};

struct READDIR4resok {
 verifier4 cookieverf;
 dirlist4 reply;
};

union READDIR4res switch (nfsstat4 status) {
 case NFS4_OK:
 READDIR4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The READDIR operation retrieves a variable number of entries from a
 file system directory and returns client-requested attributes for each
 entry along with information to allow the client to request additional
 directory entries in a subsequent READDIR.

 The arguments contain a cookie value that represents where the READDIR
 should start within the directory. A value of zero for the cookie
 is used to start reading at the beginning of the directory. For
 subsequent READDIR requests, the client specifies a cookie value that
 is provided by the server on a previous READDIR request.

 The request's cookieverf field should be set to 0
 zero) when the request's cookie field is zero
 (first read of the directory). On subsequent requests, the
 cookieverf field must match the cookieverf returned
 by the READDIR in which the cookie was acquired.
 If the server determines that the cookieverf
 is no longer valid for the directory, the error
 NFS4ERR_NOT_SAME must be returned.

 The dircount field of the request is a hint of the maximum number
 of bytes of directory information that should be returned. This value
 represents the total length of the names of the directory entries and the
 cookie value for these entries. This length represents the XDR
 encoding of the data (names and cookies) and not the length in the
 native format of the server.

 The maxcount field of the request represents the maximum
 total size of all of the data being returned within
 the READDIR4resok structure and includes the XDR
 overhead. The server MAY return less data. If the
 server is unable to return a single directory entry
 within the maxcount limit, the error NFS4ERR_TOOSMALL
 MUST be returned to the client.

 Finally, the request's attr_request field represents
 the list of attributes to be returned for each
 directory entry supplied by the server.

 A successful reply consists of a list of
 directory entries. Each of these entries contains the name of the
 directory entry, a cookie value for that entry, and the associated
 attributes as requested. The "eof" flag has a value of TRUE if there
 are no more entries in the directory.

 The cookie value is only meaningful to the server and is used
 as a cursor for the directory entry. As mentioned, this cookie
 is used by the client for subsequent READDIR operations so that it may
 continue reading a directory. The cookie is similar in concept to a
 READ offset but MUST NOT be interpreted as such by the client.
 Ideally, the cookie value SHOULD NOT change if the directory is
 modified since the client may be caching these values.

 In some cases, the server may encounter an error while obtaining the
 attributes for a directory entry. Instead of returning an error for
 the entire READDIR operation, the server can instead return the
 attribute rdattr_error (). With this, the server is able to
 communicate the failure to the client and not fail the entire
 operation in the instance of what might be a transient failure.
 Obviously, the client must request the fattr4_rdattr_error attribute
 for this method to work properly. If the client does not request the
 attribute, the server has no choice but to return failure for the
 entire READDIR operation.

 For some file system environments, the directory entries "." and ".."
 have special meaning, and in other environments, they do not. If the
 server supports these special entries within a directory, they SHOULD NOT be returned to the client as part of the READDIR response. To
 enable some client environments, the cookie values of zero, 1, and 2 are
 to be considered reserved. Note that the UNIX client will use these
 values when combining the server's response and local representations
 to enable a fully formed UNIX directory presentation to the
 application.

 For READDIR arguments, cookie values of one and two SHOULD NOT be used, and
 for READDIR results, cookie values of zero, one, and two SHOULD NOT be
 returned.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 The server's file system directory representations
 can differ greatly. A client's programming
 interfaces may also be bound to the local operating
 environment in a way that does not translate well
 into the NFS protocol. Therefore, the use of the
 dircount and maxcount fields are provided to enable
 the client to provide hints to the server. If the
 client is aggressive about attribute collection
 during a READDIR, the server has an idea of how to
 limit the encoded response.

 If dircount is zero, the server bounds the reply's
 size based on the request's maxcount field.

 The cookieverf may be used by the server to help manage cookie values
 that may become stale. It should be a rare occurrence that a server is
 unable to continue properly reading a directory with the provided
 cookie/cookieverf pair. The server SHOULD make every effort to avoid
 this condition since the application at the client might be unable to
 properly handle this type of failure.

 The use of the cookieverf will also protect the client from using
 READDIR cookie values that might be stale. For example, if the file
 system has been migrated, the server might or might not be able to use the
 same cookie values to service READDIR as the previous server used.
 With the client providing the cookieverf, the server is able to
 provide the appropriate response to the client. This prevents the
 case where the server accepts a cookie value but the underlying
 directory has changed and the response is invalid from the client's
 context of its previous READDIR.

 Since some servers will not be returning "." and ".." entries as has
 been done with previous versions of the NFS protocol, the client that
 requires these entries be present in READDIR responses must fabricate
 them.

 Operation 27: READLINK - Read Symbolic Link

 ARGUMENTS

/* CURRENT_FH: symlink */
void;

 RESULTS

struct READLINK4resok {
 linktext4 link;
};

union READLINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 READLINK4resok resok4;
 default:
 void;
};

 DESCRIPTION

 READLINK reads the data associated with a symbolic
 link. Depending on the value of the UTF-8 capability
 attribute (), the data is encoded
 in UTF-8.
 Whether created by an NFS client or created locally
 on the server, the data in a symbolic link is not
 interpreted (except possibly to check for proper UTF-8
 encoding) when created, but is simply stored.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 A symbolic link is nominally a pointer to another file. The data is
 not necessarily interpreted by the server, just stored in the file.
 It is possible for a client implementation to store a pathname that
 is not meaningful to the server operating system in a symbolic link.
 A READLINK operation returns the data to the client for
 interpretation. If different implementations want to share access to
 symbolic links, then they must agree on the interpretation of the data
 in the symbolic link.

 The READLINK operation is only allowed on objects of type NF4LNK.
 The server should return the error NFS4ERR_WRONG_TYPE if the
 object is not of type NF4LNK.

 Operation 28: REMOVE - Remove File System Object

 ARGUMENTS

struct REMOVE4args {
 /* CURRENT_FH: directory */
 component4 target;
};

 RESULTS

struct REMOVE4resok {
 change_info4 cinfo;
};

union REMOVE4res switch (nfsstat4 status) {
 case NFS4_OK:
 REMOVE4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The REMOVE operation removes (deletes) a directory entry named by
 filename from the directory corresponding to the current filehandle.
 If the entry in the directory was the last reference to the
 corresponding file system object, the object may be destroyed.
 The directory may be either of type NF4DIR or NF4ATTRDIR.

 For the directory where the filename was removed, the server
 returns change_info4 information in cinfo. With the atomic field of
 the change_info4 data type, the server will indicate if the before and
 after change attributes were obtained atomically with respect to the
 removal.

 If the target has a length of zero, or if
 the target does not obey the UTF-8 definition (and
 the server is enforcing UTF-8 encoding; see), the error NFS4ERR_INVAL will
 be returned.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 NFSv3 required a different operator RMDIR for directory
 removal and REMOVE for non-directory removal. This allowed clients to
 skip checking the file type when being passed a non-directory delete
 system call (e.g., unlink() in POSIX) to remove a directory, as well as
 the converse (e.g., a rmdir() on a non-directory) because they knew the
 server would check the file type. NFSv4.1 REMOVE can be used to
 delete any directory entry independent of its file type. The
 implementor of an NFSv4.1 client's entry points from the
 unlink() and rmdir() system calls should first check the file type
 against the types the system call is allowed to remove before sending
 a REMOVE operation. Alternatively, the implementor can produce a COMPOUND call
 that includes a LOOKUP/VERIFY sequence of operations to verify the file type before
 a REMOVE operation in the same COMPOUND call.

 The concept of last reference is server
 specific. However, if the numlinks field in the
 previous attributes of the object had the value 1,
 the client should not rely on referring to the
 object via a filehandle. Likewise, the client
 should not rely on the resources (disk space,
 directory entry, and so on) formerly associated
 with the object becoming immediately available.
 Thus, if a client needs to be able to continue to
 access a file after using REMOVE to remove it, the
 client should take steps to make sure that the file
 will still be accessible. While the traditional
 mechanism used is to RENAME the file from its old
 name to a new hidden name, the NFSv4.1 OPEN operation
 MAY return a result flag, OPEN4_RESULT_PRESERVE_UNLINKED,
 which indicates to the client that the file will be
 preserved if the file has an outstanding open (see).

 If the server finds that the file is still open when the REMOVE
 arrives:

 The server SHOULD NOT delete the file's directory entry if the
 file was opened with OPEN4_SHARE_DENY_WRITE or
 OPEN4_SHARE_DENY_BOTH.

 If the file was not opened with OPEN4_SHARE_DENY_WRITE or
 OPEN4_SHARE_DENY_BOTH, the server SHOULD delete the file's
 directory entry. However, until last CLOSE of the file,
 the server MAY continue to allow access to the file via
 its filehandle.

 The server MUST NOT delete the directory
 entry if the reply from OPEN had the flag
 OPEN4_RESULT_PRESERVE_UNLINKED set.

 The server MAY implement its own restrictions on removal
 of a file while it is open. The server might disallow
 such a REMOVE (or a removal that occurs
 as part of RENAME). The conditions that influence the restrictions
 on removal of a file while it is still open include:

 Whether certain access protocols (i.e., not just
 NFS) are holding the file open.

 Whether particular options, access modes, or policies on the
 server are enabled.

 If a file has an outstanding OPEN and this prevents the
 removal of the file's directory entry,
 the error NFS4ERR_FILE_OPEN is returned.

 Where the determination above cannot be made
 definitively because delegations are being held,
 they MUST be recalled to allow processing of the
 REMOVE to continue. When a delegation is held,
 the server has no reliable knowledge of the status of OPENs for
 that client, so unless
 there are files opened with the particular deny modes
 by clients without delegations, the determination
 cannot be made until delegations are recalled, and
 the operation cannot proceed until each sufficient
 delegation has been returned or revoked to allow
 the server to make a correct determination.

 In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while
 delegations remain outstanding.

 If the current filehandle designates a directory for
 which another client holds a directory delegation,
 then, unless the situation can be resolved by sending
 a notification, the directory delegation MUST be
 recalled, and the operation MUST NOT proceed until
 the delegation is returned or revoked. Except where
 this happens very quickly, one or more NFS4ERR_DELAY
 errors will be returned to requests made while
 delegation remains outstanding.

 When the current filehandle designates a directory
 for which one or more directory delegations
 exist, then, when those delegations request
 such notifications, NOTIFY4_REMOVE_ENTRY will be
 generated as a result of this operation.

 Note that when a remove occurs as a result of a
 RENAME, NOTIFY4_REMOVE_ENTRY will only be generated
 if the removal happens as a separate operation.
 In the case in which the removal is integrated and
 atomic with RENAME, the notification of the removal
 is integrated with notification for the RENAME. See
 the discussion of the NOTIFY4_RENAME_ENTRY
 notification in .

 Operation 29: RENAME - Rename Directory Entry

 ARGUMENTS

struct RENAME4args {
 /* SAVED_FH: source directory */
 component4 oldname;
 /* CURRENT_FH: target directory */
 component4 newname;
};

 RESULTS

struct RENAME4resok {
 change_info4 source_cinfo;
 change_info4 target_cinfo;
};

union RENAME4res switch (nfsstat4 status) {
 case NFS4_OK:
 RENAME4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The RENAME operation renames the object identified by oldname in the
 source directory corresponding to the saved filehandle, as set by the
 SAVEFH operation, to newname in the target directory corresponding to
 the current filehandle. The operation is required to be atomic to the
 client. Source and target directories MUST reside on the same
 file system on the server. On success, the current filehandle will
 continue to be the target directory.

 If the target directory already contains an entry with the name
 newname, the source object MUST be compatible with the target: either
 both are non-directories or both are directories and the target MUST
 be empty.
 If compatible, the existing target is removed before the
 rename occurs or, preferably, the target is removed atomically as
 part of the rename.
 See
 for client and server actions whenever a target is removed.
 Note however that when the removal is performed atomically with the
 rename, certain parts of the removal described there are integrated
 with the rename. For example, notification of the removal will not
 be via a NOTIFY4_REMOVE_ENTRY but will be indicated as part of the
 NOTIFY4_ADD_ENTRY or NOTIFY4_RENAME_ENTRY generated by the rename.

 If the source object and the target are not
 compatible or if the target is a directory but not empty, the server
 will return the error NFS4ERR_EXIST.

 If oldname and newname both refer to the same
 file (e.g., they might be hard links of each
 other), then unless the file is open (see), RENAME MUST
 perform no action and return NFS4_OK.

 For both directories involved in the RENAME, the server returns
 change_info4 information. With the atomic field of the change_info4
 data type, the server will indicate if the before and after change
 attributes were obtained atomically with respect to the rename.

 If oldname refers to a named attribute and the saved and current
 filehandles refer to different file system objects, the server will
 return NFS4ERR_XDEV just as if the saved and current filehandles
 represented directories on different file systems.

 If oldname or newname has a length of zero, or if oldname or
 newname does not obey the UTF-8 definition, the error NFS4ERR_INVAL
 will be returned.

 IMPLEMENTATION

 The server MAY impose restrictions on the RENAME
 operation such that RENAME may not be done when the
 file being renamed is open or when that open is done
 by particular protocols, or with particular options
 or access modes. Similar restrictions may be applied
 when a file exists with the target name and is open.
 When RENAME is rejected because of such restrictions,
 the error NFS4ERR_FILE_OPEN is returned.

 When oldname and rename refer to the same file and
 that file is open in a fashion such that RENAME
 would normally be rejected with NFS4ERR_FILE_OPEN
 if oldname and newname were different files, then
 RENAME SHOULD be rejected with NFS4ERR_FILE_OPEN.

 If a server does implement such restrictions and those restrictions
 include cases of NFSv4 opens preventing successful execution of
 a rename, the server needs to recall any delegations that could
 hide the existence of opens relevant to that decision. This is
 because when a client holds a delegation, the server
 might not have an accurate account of the opens for that client, since
 the client may execute OPENs and CLOSEs locally. The RENAME operation
 need only be delayed until a definitive result can be obtained. For
 example, if there are multiple delegations and one of them establishes
 an open whose presence would prevent the rename, given the server's
 semantics, NFS4ERR_FILE_OPEN may be returned to the caller as soon
 as that delegation is returned without waiting for other delegations
 to be returned. Similarly, if such opens are not associated with
 delegations, NFS4ERR_FILE_OPEN can be returned immediately with no
 delegation recall being done.

 If the current filehandle or the saved filehandle designates a
 directory for which another client holds a directory delegation,
 then, unless the situation can be resolved by sending a notification,
 the delegation MUST be recalled, and the operation cannot proceed
 until the delegation is returned or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while delegation remains outstanding.

 When the current and saved filehandles are the
 same and they designate a directory for which one
 or more directory delegations exist, then, when
 those delegations request such notifications,
 a notification of type NOTIFY4_RENAME_ENTRY
 will be generated as a result of this operation.
 When oldname and rename refer to the same file,
 no notification is generated (because, as states, the server
 MUST take no action). When a file is removed
 because it has the same name as the target, if
 that removal is done atomically with the rename,
 a NOTIFY4_REMOVE_ENTRY notification will not be
 generated. Instead, the deletion of the file will
 be reported as part of the NOTIFY4_RENAME_ENTRY
 notification.

 When the current and saved filehandles are not the same:

 If the current filehandle designates a directory for which
 one or more directory delegations exist, then, when those
 delegations request such notifications, NOTIFY4_ADD_ENTRY
 will be generated as a result of this operation. When a file
 is removed because it has the same name as the target, if that
 removal is done atomically with the rename, a
 NOTIFY4_REMOVE_ENTRY notification will not be generated.
 Instead, the deletion of the file will be reported as part
 of the NOTIFY4_ADD_ENTRY notification.

 If the saved filehandle designates a directory for which
 one or more directory delegations exist, then, when those
 delegations request such notifications, NOTIFY4_REMOVE_ENTRY
 will be generated as a result of this operation.

 If the object being renamed has file delegations
 held by clients other than the one doing the RENAME,
 the delegations MUST be recalled, and the
 operation cannot proceed
 until each such delegation is returned
 or revoked. Note that in the case of multiply linked files,
 the delegation recall requirement applies even if the
 delegation was obtained through a different name than the
 one being renamed.
 In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while the
 delegation(s) remains outstanding, although it might not do that if the
 delegations are returned quickly.

 The RENAME operation must be atomic to the client. The statement
 "source and target directories MUST reside on the same file system
 on the server"
 means that the fsid fields in the attributes for the
 directories are the same. If they reside on different file systems,
 the error NFS4ERR_XDEV is returned.

 Based on the value of the fh_expire_type attribute for the object, the
 filehandle may or may not expire on a RENAME. However, server
 implementors are strongly encouraged to attempt to keep filehandles
 from expiring in this fashion.

 On some servers, the file names "." and ".." are illegal as either
 oldname or newname, and will result in the error NFS4ERR_BADNAME.
 In addition, on many servers the case of oldname or newname being
 an alias for the source directory will be checked for. Such servers
 will return the error NFS4ERR_INVAL in these cases.

 If either of the source or target filehandles are not directories, the
 server will return NFS4ERR_NOTDIR.

 Operation 31: RESTOREFH - Restore Saved Filehandle

 ARGUMENTS

/* SAVED_FH: */
void;

 RESULTS

struct RESTOREFH4res {
 /*
 * If status is NFS4_OK,
 * new CURRENT_FH: value of saved fh
 */
 nfsstat4 status;
};

 DESCRIPTION

 The RESTOREFH operation sets the current filehandle and stateid to the values in the
 saved filehandle and stateid. If
 there is no saved filehandle, then the server will
 return the error NFS4ERR_NOFILEHANDLE.

 See for more details on the
 current filehandle.

 See for more details on the current
 stateid.

 IMPLEMENTATION

 Operations like OPEN and LOOKUP use the current filehandle
 to represent a directory and replace it with a new filehandle.
 Assuming that the previous filehandle was saved with a SAVEFH operator,
 the previous filehandle can be restored as the current filehandle.
 This is commonly used to obtain post-operation attributes for
 the directory, e.g.,

 PUTFH (directory filehandle)
 SAVEFH
 GETATTR attrbits (pre-op dir attrs)
 CREATE optbits "foo" attrs
 GETATTR attrbits (file attributes)
 RESTOREFH
 GETATTR attrbits (post-op dir attrs)

 Operation 32: SAVEFH - Save Current Filehandle

 ARGUMENTS

/* CURRENT_FH: */
void;

 RESULTS

struct SAVEFH4res {
 /*
 * If status is NFS4_OK,
 * new SAVED_FH: value of current fh
 */
 nfsstat4 status;
};

 DESCRIPTION

 The SAVEFH operation saves the current filehandle and stateid.
 If a previous filehandle was saved, then
 it is no longer accessible. The saved filehandle can be restored as
 the current filehandle with the RESTOREFH operator.

 On success, the current filehandle retains its value.

 See for more details on the
 current filehandle.

 See for more details on the current
 stateid.

 IMPLEMENTATION

 Operation 33: SECINFO - Obtain Available Security

 ARGUMENTS

struct SECINFO4args {
 /* CURRENT_FH: directory */
 component4 name;
};

 RESULTS

/*
 * From RFC 2203
 */
enum rpc_gss_svc_t {
 RPC_GSS_SVC_NONE = 1,
 RPC_GSS_SVC_INTEGRITY = 2,
 RPC_GSS_SVC_PRIVACY = 3
};

struct rpcsec_gss_info {
 sec_oid4 oid;
 qop4 qop;
 rpc_gss_svc_t service;
};

/* RPCSEC_GSS has a value of '6' - See RFC 2203 */
union secinfo4 switch (uint32_t flavor) {
 case RPCSEC_GSS:
 rpcsec_gss_info flavor_info;
 default:
 void;
};

typedef secinfo4 SECINFO4resok<>;

union SECINFO4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENTFH: consumed */
 SECINFO4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The SECINFO operation is used by the client to obtain a list of
 valid RPC authentication flavors for a specific directory
 filehandle, file name pair. SECINFO should apply the same
 access methodology used for LOOKUP when evaluating the name.
 Therefore, if the requester does not have the appropriate access
 to LOOKUP the name, then SECINFO MUST behave the same way and
 return NFS4ERR_ACCESS.

 The result will contain an array that represents the security
 mechanisms available, with an order corresponding to the
 server's preferences, the most preferred being first in the
 array. The client is free to pick whatever security mechanism it
 both desires and supports, or to pick in the server's preference
 order the first one it supports. The array entries are
 represented by the secinfo4 structure. The field 'flavor' will
 contain a value of AUTH_NONE, AUTH_SYS (as defined in RFC 5531), or RPCSEC_GSS (as defined in
 RFC 2203). The field flavor can
 also be any other security flavor registered with IANA.

 For the flavors AUTH_NONE and AUTH_SYS, no additional security
 information is returned. The same is true of many (if not most)
 other security flavors, including AUTH_DH. For a return value of
 RPCSEC_GSS, a security triple is returned that contains the
 mechanism object identifier (OID, as defined in RFC 2743), the quality of protection (as
 defined in RFC 2743), and the
 service type (as defined in RFC 2203). It is possible for SECINFO to
 return multiple entries with flavor equal to RPCSEC_GSS with
 different security triple values.

 On success, the current filehandle is consumed (see
), and if the
 next operation after SECINFO tries to use the current filehandle,
 that operation will fail with the status NFS4ERR_NOFILEHANDLE.

 If the name has a length of zero, or if the name does not obey
 the UTF-8 definition (assuming UTF-8 capabilities are enabled; see
), the error NFS4ERR_INVAL will be returned.

 See
 for additional information on the use of SECINFO.

 IMPLEMENTATION

 The SECINFO operation is expected to be used by the NFS client
 when the error value of NFS4ERR_WRONGSEC is returned from
 another NFS operation. This signifies to the client that the
 server's security policy is different from what the client is
 currently using. At this point, the client is expected to
 obtain a list of possible security flavors and choose what best
 suits its policies.

 As mentioned, the server's security
 policies will determine when a client
 request receives NFS4ERR_WRONGSEC. See for a list of operations
 that can return NFS4ERR_WRONGSEC. In addition,
 when READDIR returns attributes, the rdattr_error
 ()
 can contain NFS4ERR_WRONGSEC. Note that CREATE and
 REMOVE MUST NOT return NFS4ERR_WRONGSEC. The
 rationale for CREATE is that unless the
 target name exists, it cannot have a separate
 security policy from the parent directory,
 and the security policy of the parent was
 checked when its filehandle was injected into
 the COMPOUND request's operations stream (for
 similar reasons, an OPEN operation that creates
 the target MUST NOT return NFS4ERR_WRONGSEC). If
 the target name exists, while it might have a
 separate security policy, that is irrelevant
 because CREATE MUST return NFS4ERR_EXIST.
 The rationale for REMOVE is that while that
 target might have a separate security policy, the
 target is going to be removed, and so the
 security policy of the parent trumps that of the
 object being removed. RENAME and LINK MAY return
 NFS4ERR_WRONGSEC, but the NFS4ERR_WRONGSEC error
 applies only to the saved filehandle (see). Any NFS4ERR_WRONGSEC
 error on the current filehandle used by LINK and
 RENAME MUST be returned by the PUTFH, PUTPUBFH,
 PUTROOTFH, or RESTOREFH operation that injected
 the current filehandle.

 With the exception of LINK and RENAME,
 the set of operations that can return NFS4ERR_WRONGSEC
 represents the point at which the client can inject a
 filehandle into the "current filehandle" at the server. The
 filehandle is either provided by the client (PUTFH, PUTPUBFH,
 PUTROOTFH), generated as a result of a name-to-filehandle
 translation (LOOKUP and OPEN), or generated from the saved filehandle
 via RESTOREFH. As states,
 a put filehandle operation followed by SAVEFH MUST NOT
 return NFS4ERR_WRONGSEC. Thus, the RESTOREFH operation, under
 certain conditions (see), is
 permitted to return NFS4ERR_WRONGSEC so that security policies
 can be honored.

 The READDIR operation will not directly return the
 NFS4ERR_WRONGSEC error. However, if the READDIR request
 included a request for attributes, it is possible that the
 READDIR request's security triple did not match that of a
 directory entry. If this is the case and the client has
 requested the rdattr_error attribute, the server will return the
 NFS4ERR_WRONGSEC error in rdattr_error for the entry.

 To resolve an error return of
 NFS4ERR_WRONGSEC, the client does the following:

 For LOOKUP and OPEN, the client will use SECINFO with the
 same current filehandle and name as provided in the
 original LOOKUP or OPEN to enumerate the available security
 triples.

 For the rdattr_error, the client will use
 SECINFO with the same current filehandle
 as provided in the original READDIR. The
 name passed to SECINFO will be that of the
 directory entry (as returned from READDIR)
 that had the NFS4ERR_WRONGSEC error in the
 rdattr_error attribute.

 For PUTFH, PUTROOTFH, PUTPUBFH,
 RESTOREFH, LINK, and RENAME, the client will
 use SECINFO_NO_NAME { style =
 SECINFO_STYLE4_CURRENT_FH }. The client
 will prefix the SECINFO_NO_NAME operation
 with the appropriate PUTFH, PUTPUBFH,
 or PUTROOTFH operation that provides the
 filehandle originally provided by the PUTFH,
 PUTPUBFH, PUTROOTFH, or RESTOREFH operation.

 NOTE: In NFSv4.0, the client was required
 to use SECINFO, and had to reconstruct the
 parent of the original filehandle and the
 component name of the original filehandle. The
 introduction in NFSv4.1 of SECINFO_NO_NAME
 obviates the need for reconstruction.

 For LOOKUPP, the client will
 use SECINFO_NO_NAME { style =
 SECINFO_STYLE4_PARENT } and provide the
 filehandle that equals the filehandle
 originally provided to LOOKUPP.

 See for a discussion on
 the recommendations for the security flavor used by SECINFO and
 SECINFO_NO_NAME.

 Operation 34: SETATTR - Set Attributes

 ARGUMENTS

struct SETATTR4args {
 /* CURRENT_FH: target object */
 stateid4 stateid;
 fattr4 obj_attributes;
};

 RESULTS

struct SETATTR4res {
 nfsstat4 status;
 bitmap4 attrsset;
};

 DESCRIPTION

 The SETATTR operation changes one or more of the attributes of a
 file system object. The new attributes are specified with a bitmap and
 the attributes that follow the bitmap in bit order.

 The stateid argument for SETATTR is used to provide byte-range locking
 context that is necessary for SETATTR requests that set the size
 attribute. Since setting the size attribute modifies the file's data,
 it has the same locking requirements as a corresponding WRITE. Any
 SETATTR that sets the size attribute is incompatible with a share
 reservation that specifies OPEN4_SHARE_DENY_WRITE. The area between the old
 end-of-file and the new end-of-file is considered to be modified just
 as would have been the case had the area in question been specified as
 the target of WRITE, for the purpose of checking conflicts with byte-range
 locks, for those cases in which a server is implementing mandatory
 byte-range locking behavior. A valid stateid SHOULD always be specified.
 When the file size attribute is not set, the special stateid
 consisting of all bits equal to zero MAY be passed.

 On either success or failure of the operation, the server will return
 the attrsset bitmask to represent what (if any) attributes were
 successfully set. The attrsset in the response is a subset of the
 attrmask field of the obj_attributes field in the argument.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 If the request specifies the owner attribute to be set, the server
 SHOULD allow the operation to succeed if the current owner of the
 object matches the value specified in the request. Some servers may
 be implemented in a way as to prohibit the setting of the owner
 attribute unless the requester has privilege to do so. If the server
 is lenient in this one case of matching owner values, the client
 implementation may be simplified in cases of creation of an object
 (e.g., an exclusive create via OPEN)
 followed by a SETATTR.

 The file size attribute is used to request changes
 to the size of a file. A value of zero causes the
 file to be truncated, a value less than the current
 size of the file causes data from new size to the
 end of the file to be discarded, and a size greater
 than the current size of the file causes logically
 zeroed data bytes to be added to the end of the
 file. Servers are free to implement this using
 unallocated bytes (holes) or allocated data bytes
 set to zero. Clients should not make any assumptions
 regarding a server's implementation of this feature,
 beyond that the bytes in the affected byte-range returned by
 READ will be zeroed. Servers MUST support extending
 the file size via SETATTR.

 SETATTR is not guaranteed to be atomic. A failed SETATTR may partially
 change a file's attributes, hence the reason why the reply always
 includes the status and the list of attributes that were set.

 If the object whose attributes are being changed has a file delegation
 that is held by a client other than the one doing the SETATTR,
 the delegation(s) must be recalled, and the
 operation cannot proceed to actually change an attribute
 until each such delegation is returned
 or revoked.
 In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while the
 delegation(s) remains outstanding, although it might not do that if the
 delegations are returned quickly.

 If the object whose attributes are being set is a directory
 and another client holds a directory delegation for that
 directory, then if enabled, asynchronous notifications will be generated
 when the set of attributes changed has a non-null intersection
 with the set of attributes for which notification is requested.
 Notifications of type NOTIFY4_CHANGE_DIR_ATTRS will be sent to
 the appropriate client(s), but the SETATTR is not delayed by
 waiting for these notifications to be sent.

 If the object whose attributes are being set is a member of
 the directory for which another client holds a directory delegation,
 then asynchronous notifications will be generated
 when the set of attributes changed has a non-null intersection
 with the set of attributes for which notification is requested.
 Notifications of type NOTIFY4_CHANGE_CHILD_ATTRS will be sent to
 the appropriate clients, but the SETATTR is not delayed by
 waiting for these notifications to be sent.

 Changing the size of a file with SETATTR indirectly
 changes the time_modify and change attributes.
 A client must account for this as size changes can
 result in data deletion.

 The attributes time_access_set and time_modify_set are write-only
 attributes constructed as a switched union so the client can direct
 the server in setting the time values. If the switched union
 specifies SET_TO_CLIENT_TIME4, the client has provided an nfstime4 to
 be used for the operation. If the switch union does not specify
 SET_TO_CLIENT_TIME4, the server is to use its current time for the
 SETATTR operation.

 If server and client times differ, programs that compare client time
 to file times can break. A time synchronization protocol should be used to
 limit client/server time skew.

 Use of a COMPOUND containing a VERIFY operation specifying only the
 change attribute, immediately followed by a SETATTR, provides a means
 whereby a client may specify a request that emulates the functionality
 of the SETATTR guard mechanism of NFSv3. Since the function
 of the guard mechanism is to avoid changes to the file attributes
 based on stale information, delays between checking of the guard
 condition and the setting of the attributes have the potential to
 compromise this function, as would the corresponding delay in the
 NFSv4 emulation. Therefore, NFSv4.1 servers SHOULD take
 care to avoid such delays, to the degree possible, when executing such
 a request.

 If the server does not support an attribute as requested by the
 client, the server SHOULD return NFS4ERR_ATTRNOTSUPP.

 A mask of the attributes actually set is returned by SETATTR in all
 cases. That mask MUST NOT include attribute bits not requested to be
 set by the client.
If the attribute masks in the request and
 reply are equal, the status field in the reply MUST be NFS4_OK.

 Operation 37: VERIFY - Verify Same Attributes

 ARGUMENTS

struct VERIFY4args {
 /* CURRENT_FH: object */
 fattr4 obj_attributes;
};

 RESULTS

struct VERIFY4res {
 nfsstat4 status;
};

 DESCRIPTION

 The VERIFY operation is used to verify that attributes have the value
 assumed by the client before proceeding with the following operations in
 the COMPOUND request. If any of the attributes do not match, then the
 error NFS4ERR_NOT_SAME must be returned. The current filehandle
 retains its value after successful completion of the operation.

 IMPLEMENTATION

 One possible use of the VERIFY operation is the following series
 of operations. With this, the client is attempting to verify that the file
 being removed will match what the client expects to be removed. This
 series can help prevent the unintended deletion of a file.

 PUTFH (directory filehandle)
 LOOKUP (file name)
 VERIFY (filehandle == fh)
 PUTFH (directory filehandle)
 REMOVE (file name)

 This series does not prevent a second client from removing and
 creating a new file in the middle of this sequence, but it does help
 avoid the unintended result.

 In the case that a RECOMMENDED attribute is specified in the VERIFY
 operation and the server does not support that attribute for the
 file system object, the error NFS4ERR_ATTRNOTSUPP is returned to the
 client.

 When the attribute rdattr_error or any set-only attribute (e.g.,
 time_modify_set) is specified, the error NFS4ERR_INVAL is returned to
 the client.

 Operation 38: WRITE - Write to File

 ARGUMENTS

enum stable_how4 {
 UNSTABLE4 = 0,
 DATA_SYNC4 = 1,
 FILE_SYNC4 = 2
};

struct WRITE4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 stable_how4 stable;
 opaque data<>;
};

 RESULTS

struct WRITE4resok {
 count4 count;
 stable_how4 committed;
 verifier4 writeverf;
};

union WRITE4res switch (nfsstat4 status) {
 case NFS4_OK:
 WRITE4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The WRITE operation is used to write data to a regular file. The
 target file is specified by the current filehandle. The offset
 specifies the offset where the data should be written. An offset of zero
 specifies that the write should start at the beginning of the
 file. The count, as encoded as part of the opaque data parameter,
 represents the number of bytes of data that are to be written. If the
 count is zero, the WRITE will succeed and return a count of zero subject to permissions checking. The server MAY
 write fewer bytes than requested by the client.

 The client specifies with the stable parameter the method
 of how the data is to be processed by the server. If stable is
 FILE_SYNC4, the server MUST commit the data written plus all
 file system metadata to stable storage before returning results. This
 corresponds to the NFSv2 protocol semantics. Any other
 behavior constitutes a protocol violation. If stable is DATA_SYNC4,
 then the server MUST commit all of the data to stable storage and
 enough of the metadata to retrieve the data before returning. The
 server implementor is free to implement DATA_SYNC4 in the same fashion
 as FILE_SYNC4, but with a possible performance drop. If stable is
 UNSTABLE4, the server is free to commit any part of the data and the
 metadata to stable storage, including all or none, before returning a
 reply to the client. There is no guarantee whether or when any
 uncommitted data will subsequently be committed to stable storage. The
 only guarantees made by the server are that it will not destroy any
 data without changing the value of writeverf and that it will not commit
 the data and metadata at a level less than that requested by the
 client.

 Except when special stateids are used, the
 stateid value for a WRITE request represents a value returned from
 a previous byte-range LOCK or OPEN request or the stateid
 associated with a delegation. The stateid identifies the associated
 owners if any and is
 used by the server to verify that the associated locks are still
 valid (e.g., have not been revoked).

 Upon successful completion, the following results are returned. The
 count result is the number of bytes of data written to the file. The
 server may write fewer bytes than requested. If so, the actual number
 of bytes written starting at location, offset, is returned.

 The server also returns an indication of the level of commitment of
 the data and metadata via committed.
 Per ,

 The server MAY commit the data at a stronger level
 than requested.

 The server MUST commit the data at a level at
 least as high as that committed.

 Valid Combinations of the Fields Stable in the Request and Committed in the Reply

 stable
 committed

 UNSTABLE4
 FILE_SYNC4, DATA_SYNC4, UNSTABLE4

 DATA_SYNC4
 FILE_SYNC4, DATA_SYNC4

 FILE_SYNC4
 FILE_SYNC4

 The final portion of the result is the field
 writeverf. This field is the write verifier and is a
 cookie that the client can use to determine whether
 a server has changed instance state (e.g., server
 restart) between a call to WRITE and a subsequent
 call to either WRITE or COMMIT. This cookie MUST be
 unchanged during a single instance of the NFSv4.1
 server and MUST be unique between instances of the
 NFSv4.1 server. If the cookie changes, then the
 client MUST assume that any data written with an
 UNSTABLE4 value for committed and an old writeverf in the reply
 has been lost and will need to be recovered.

 If a client writes data to the server with the stable argument set to
 UNSTABLE4 and the reply yields a committed response of DATA_SYNC4 or
 UNSTABLE4, the client will follow up some time in the future with a
 COMMIT operation to synchronize outstanding asynchronous data and
 metadata with the server's stable storage, barring client error. It is
 possible that due to client crash or other error that a subsequent
 COMMIT will not be received by the server.

 For a WRITE with a stateid value of all bits equal to zero, the server MAY allow
 the WRITE to be serviced subject to mandatory byte-range locks or the
 current share deny modes for the file. For a WRITE with a stateid
 value of all bits equal to 1, the server MUST NOT allow the WRITE operation to
 bypass locking checks at the server and otherwise is
 treated as if a stateid of all bits equal to zero were used.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 It is possible for the server to write fewer bytes of data than
 requested by the client. In this case, the server SHOULD NOT return
 an error unless no data was written at all. If the server writes less
 than the number of bytes specified, the client will need to send another
 WRITE to write the remaining data.

 It is assumed that the act of writing data to
 a file will cause the time_modified and change
 attributes of the file to be updated. However,
 these attributes SHOULD NOT be changed
 unless the contents of the file are changed. Thus,
 a WRITE request with count set to zero SHOULD NOT cause
 the time_modified and change attributes of the file to be updated.

 Stable storage is persistent storage that survives:

	 Repeated power failures.
	

	 Hardware failures (of any board, power supply, etc.).
	

	 Repeated software crashes and restarts.
	

 This definition does not address failure of the stable storage module
 itself.

 The verifier is defined to allow a client to detect
 different instances of an NFSv4.1 protocol server
 over which cached, uncommitted data may be lost. In
 the most likely case, the verifier allows the client
 to detect server restarts. This information is
 required so that the client can safely determine
 whether the server could have lost cached data.
 If the server fails unexpectedly and the client has
 uncommitted data from previous WRITE requests (done
 with the stable argument set to UNSTABLE4 and in
 which the result committed was returned as UNSTABLE4
 as well), the server might not have flushed cached
 data to stable storage. The burden of recovery is
 on the client, and the client will need to retransmit
 the data to the server.

 A suggested verifier would be to use the time that
 the server was last started (if restarting the server
 results in lost buffers).

 The reply's committed field allows the client to do more
 effective caching. If the server is committing all WRITE requests to
 stable storage, then it SHOULD return with committed set to FILE_SYNC4,
 regardless of the value of the stable field in the arguments. A server
 that uses an NVRAM accelerator may choose to implement this policy.
 The client can use this to increase the effectiveness of the cache by
 discarding cached data that has already been committed on the server.

 Some implementations may return NFS4ERR_NOSPC instead
 of NFS4ERR_DQUOT when a user's quota is exceeded.

 In the case that the current filehandle is of
 type NF4DIR, the server will return NFS4ERR_ISDIR.
 If the current file is a symbolic link, the error
 NFS4ERR_SYMLINK will be returned. Otherwise, if the
 current filehandle does not designate an ordinary
 file, the server will return NFS4ERR_WRONG_TYPE.

 If mandatory byte-range locking is in effect for the file,
 and the corresponding byte-range of the data to
 be written to the file is READ_LT or WRITE_LT locked by
 an owner that is not associated with the stateid,
 the server MUST return NFS4ERR_LOCKED. If so,
 the client MUST check if the owner corresponding
 to the stateid used with the WRITE operation has a
 conflicting READ_LT lock that overlaps with the byte-range
 that was to be written. If the stateid's owner has
 no conflicting READ_LT lock, then the client SHOULD try
 to get the appropriate write byte-range lock via the
 LOCK operation before re-attempting the WRITE. When
 the WRITE completes, the client SHOULD release the
 byte-range lock via LOCKU.

 If the stateid's owner had a conflicting READ_LT lock, then the client
 has no choice but to return an error to the application that attempted
 the WRITE. The reason is that since the stateid's owner had a READ_LT
 lock, either the server attempted to temporarily effectively upgrade
 this READ_LT lock to a WRITE_LT lock or the server has no upgrade
 capability. If the server attempted to upgrade the READ_LT lock and
 failed, it is pointless for the client to re-attempt the upgrade via
 the LOCK operation, because there might be another client also trying
 to upgrade. If two clients are blocked trying to upgrade the same lock,
 the clients deadlock. If the server has no upgrade capability, then
 it is pointless to try a LOCK operation to upgrade.

 If one or more other clients have delegations for the file being
 written, those delegations MUST be recalled, and the
 operation cannot proceed until those delegations are returned
 or revoked. Except where this
 happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while the delegation remains outstanding.
 Normally, delegations will not be recalled as a result of a WRITE
 operation since the recall will occur as a result of an earlier
 OPEN. However, since it is possible for a WRITE to be done with
 a special stateid, the server needs to check for this case even
 though the client should have done an OPEN previously.

 Operation 40: BACKCHANNEL_CTL - Backchannel Control

 ARGUMENT

typedef opaque gsshandle4_t<>;

struct gss_cb_handles4 {
 rpc_gss_svc_t gcbp_service; /* RFC 2203 */
 gsshandle4_t gcbp_handle_from_server;
 gsshandle4_t gcbp_handle_from_client;
};

union callback_sec_parms4 switch (uint32_t cb_secflavor) {
case AUTH_NONE:
 void;
case AUTH_SYS:
 authsys_parms cbsp_sys_cred; /* RFC 5531 */
case RPCSEC_GSS:
 gss_cb_handles4 cbsp_gss_handles;
};

struct BACKCHANNEL_CTL4args {
 uint32_t bca_cb_program;
 callback_sec_parms4 bca_sec_parms<>;
};

 RESULT

struct BACKCHANNEL_CTL4res {
 nfsstat4 bcr_status;
};

 DESCRIPTION

 The BACKCHANNEL_CTL operation replaces the
 backchannel's callback program number and adds
 (not replaces) RPCSEC_GSS handles for use by the
 backchannel.

 The arguments of the BACKCHANNEL_CTL call are
 a subset of the CREATE_SESSION parameters.
 In the arguments of BACKCHANNEL_CTL, the
 bca_cb_program field and bca_sec_parms fields
 correspond respectively to the csa_cb_program and
 csa_sec_parms fields of the arguments of CREATE_SESSION
 ().

 BACKCHANNEL_CTL MUST appear in a COMPOUND that starts
 with SEQUENCE.

 If the RPCSEC_GSS handle identified by
 gcbp_handle_from_server does not exist on the server,
 the server MUST return NFS4ERR_NOENT.

 If an RPCSEC_GSS handle is using the SSV context (see), then because each SSV RPCSEC_GSS
 handle shares a common SSV GSS context, there are security
 considerations specific to this situation discussed in .

 Operation 41: BIND_CONN_TO_SESSION - Associate Connection with Session

 ARGUMENT

enum channel_dir_from_client4 {
 CDFC4_FORE = 0x1,
 CDFC4_BACK = 0x2,
 CDFC4_FORE_OR_BOTH = 0x3,
 CDFC4_BACK_OR_BOTH = 0x7
};

struct BIND_CONN_TO_SESSION4args {
 sessionid4 bctsa_sessid;

 channel_dir_from_client4
 bctsa_dir;

 bool bctsa_use_conn_in_rdma_mode;
};

 RESULT

enum channel_dir_from_server4 {
 CDFS4_FORE = 0x1,
 CDFS4_BACK = 0x2,
 CDFS4_BOTH = 0x3
};

struct BIND_CONN_TO_SESSION4resok {
 sessionid4 bctsr_sessid;

 channel_dir_from_server4
 bctsr_dir;

 bool bctsr_use_conn_in_rdma_mode;
};

union BIND_CONN_TO_SESSION4res
 switch (nfsstat4 bctsr_status) {

 case NFS4_OK:
 BIND_CONN_TO_SESSION4resok
 bctsr_resok4;

 default: void;
};

 DESCRIPTION

 BIND_CONN_TO_SESSION is used to associate additional connections with a
 session. It MUST be used on the connection being associated with the session. It MUST
 be the only operation in the COMPOUND procedure. If
 SP4_NONE () state protection
 is used, any principal,
 security flavor, or RPCSEC_GSS context MAY be used to invoke the operation.
 If SP4_MACH_CRED is used, RPCSEC_GSS MUST be used with the
 integrity or privacy services, using the principal that
 created the client ID. If SP4_SSV is used, RPCSEC_GSS with
 the SSV GSS mechanism () and integrity or
 privacy MUST be used.

 If, when the client ID was created, the client opted for SP4_NONE
 state protection,
 the client is not required to use BIND_CONN_TO_SESSION to associate the
 connection with the session, unless
 the client wishes to associate the connection with the backchannel.
 When SP4_NONE protection is used, simply sending a COMPOUND
 request with a SEQUENCE operation is sufficient to associate the
 connection with the session specified in SEQUENCE.

 The field bctsa_dir indicates whether the client
 wants to associate the connection with the fore
 channel or the backchannel or both channels. The value
 CDFC4_FORE_OR_BOTH indicates that the client wants to
 associate the connection with both the fore channel and backchannel,
 but will accept the connection being associated to
 just the fore channel. The value CDFC4_BACK_OR_BOTH
 indicates that the client wants to associate with both
 the fore channel and backchannel, but will accept the
 connection being associated with just the backchannel.
 The server replies in bctsr_dir which channel(s)
 the connection is associated with.
 If the client specified CDFC4_FORE, the server
 MUST return CDFS4_FORE. If the client specified
 CDFC4_BACK, the server MUST return CDFS4_BACK. If the
 client specified CDFC4_FORE_OR_BOTH, the server MUST return
 CDFS4_FORE or CDFS4_BOTH. If the client specified
 CDFC4_BACK_OR_BOTH, the server MUST return CDFS4_BACK
 or CDFS4_BOTH.

 See the CREATE_SESSION operation (),
 and the description of the argument
 csa_use_conn_in_rdma_mode to understand
 bctsa_use_conn_in_rdma_mode, and the description of
 csr_use_conn_in_rdma_mode to understand bctsr_use_conn_in_rdma_mode.

 Invoking BIND_CONN_TO_SESSION on a connection already associated
 with the specified session has no effect, and the server MUST
 respond with NFS4_OK, unless the client is demanding changes
 to the set of channels the connection is associated with. If
 so, the server MUST return NFS4ERR_INVAL.

 IMPLEMENTATION

 If a session's channel loses all connections, depending on
 the client ID's state protection and type of channel,
 the client might need to use
 BIND_CONN_TO_SESSION to associate a new connection. If the
 server restarted and does not keep the reply cache in stable
 storage, the server will not recognize the session ID.
 The client will ultimately have to invoke EXCHANGE_ID to
 create a new client ID and session.

 Suppose SP4_SSV state protection is being used,
 and BIND_CONN_TO_SESSION is among the operations
 included in the spo_must_enforce set when the
 client ID was created ().
 If so, there is an issue if SET_SSV is sent, no response
 is returned, and the last connection associated
 with the client ID drops. The client, per
 the sessions model, MUST retry the SET_SSV. But
 it needs a new connection to do so, and MUST
 associate that connection with the session via a
 BIND_CONN_TO_SESSION authenticated with the SSV
 GSS mechanism. The problem is that the RPCSEC_GSS
 message integrity codes use a subkey derived from the SSV as the
 key and the
 SSV may have changed. While there are multiple
 recovery strategies, a single, general strategy
 is described here.

 The client reconnects.

 The client assumes that the SET_SSV was executed,
 and so sends BIND_CONN_TO_SESSION with the subkey (derived from
 the new SSV, i.e., what SET_SSV would have set the SSV to)
 used as the key for the RPCSEC_GSS credential message integrity codes.

 If the request succeeds, this means that the original attempted SET_SSV
 did execute successfully. The client re-sends the original
 SET_SSV, which the server will reply to via the
 reply cache.

 If the server returns an RPC authentication error,
 this means that the server's current SSV was not changed
 (and the SET_SSV was likely not executed). The client then
 tries BIND_CONN_TO_SESSION with the subkey derived from the
 old SSV as the
 key for the RPCSEC_GSS message integrity codes.

 The attempted BIND_CONN_TO_SESSION with the old SSV
 should succeed. If so, the client re-sends the original
 SET_SSV. If the original SET_SSV was not executed, then the
 server executes it. If the original SET_SSV was executed but
 failed, the server will return the SET_SSV from the reply
 cache.

 Operation 42: EXCHANGE_ID - Instantiate Client ID

 The EXCHANGE_ID operation exchanges long-hand client and server identifiers
 (owners) and provides access to a client ID, creating one
 if necessary. This client ID becomes associated with the connection
 on which the operation is done, so that it is available when a
 CREATE_SESSION is done or when the connection is used to issue
 a request
 on an existing session associated with the current client.

 ARGUMENT

const EXCHGID4_FLAG_SUPP_MOVED_REFER = 0x00000001;
const EXCHGID4_FLAG_SUPP_MOVED_MIGR = 0x00000002;

const EXCHGID4_FLAG_BIND_PRINC_STATEID = 0x00000100;

const EXCHGID4_FLAG_USE_NON_PNFS = 0x00010000;
const EXCHGID4_FLAG_USE_PNFS_MDS = 0x00020000;
const EXCHGID4_FLAG_USE_PNFS_DS = 0x00040000;

const EXCHGID4_FLAG_MASK_PNFS = 0x00070000;

const EXCHGID4_FLAG_UPD_CONFIRMED_REC_A = 0x40000000;
const EXCHGID4_FLAG_CONFIRMED_R = 0x80000000;

struct state_protect_ops4 {
 bitmap4 spo_must_enforce;
 bitmap4 spo_must_allow;
};

struct ssv_sp_parms4 {
 state_protect_ops4 ssp_ops;
 sec_oid4 ssp_hash_algs<>;
 sec_oid4 ssp_encr_algs<>;
 uint32_t ssp_window;
 uint32_t ssp_num_gss_handles;
};

enum state_protect_how4 {
 SP4_NONE = 0,
 SP4_MACH_CRED = 1,
 SP4_SSV = 2
};

union state_protect4_a switch(state_protect_how4 spa_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spa_mach_ops;
 case SP4_SSV:
 ssv_sp_parms4 spa_ssv_parms;
};

struct EXCHANGE_ID4args {
 client_owner4 eia_clientowner;
 uint32_t eia_flags;
 state_protect4_a eia_state_protect;
 nfs_impl_id4 eia_client_impl_id<1>;
};

 RESULT

struct ssv_prot_info4 {
 state_protect_ops4 spi_ops;
 uint32_t spi_hash_alg;
 uint32_t spi_encr_alg;
 uint32_t spi_ssv_len;
 uint32_t spi_window;
 gsshandle4_t spi_handles<>;
};

union state_protect4_r switch(state_protect_how4 spr_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spr_mach_ops;
 case SP4_SSV:
 ssv_prot_info4 spr_ssv_info;
};

struct EXCHANGE_ID4resok {
 clientid4 eir_clientid;
 sequenceid4 eir_sequenceid;
 uint32_t eir_flags;
 state_protect4_r eir_state_protect;
 server_owner4 eir_server_owner;
 opaque eir_server_scope<NFS4_OPAQUE_LIMIT>;
 nfs_impl_id4 eir_server_impl_id<1>;
};

union EXCHANGE_ID4res switch (nfsstat4 eir_status) {
case NFS4_OK:
 EXCHANGE_ID4resok eir_resok4;

default:
 void;
};

 DESCRIPTION

 The client uses the EXCHANGE_ID operation to register
 a particular instance of that client with the server,
 as represented by a client_owner4. However,
 when the client_owner4 has already been registered
 by other means (e.g., Transparent State Migration), the
 client may still use EXCHANGE_ID to obtain the client ID
 assigned previously.

 The client ID returned from this
 operation will be associated with the connection
 on which the EXCHANGE_ID is received and
	 will serve as a parent object for
 sessions created by the client on this connection or
 to which the connection is bound. As a result of using
 those sessions to make requests involving the creation
 of state, that state will become associated with the
 client ID returned.

 In situations in which the registration of the
	 client_owner has not occurred previously,
 the client ID must first be used, along with
 the returned eir_sequenceid, in creating an
 associated session using
 CREATE_SESSION.

 If the flag EXCHGID4_FLAG_CONFIRMED_R is set in the
 result, eir_flags, then it is an indication that the
	 registration of the client_owner has already occurred
 and that a further CREATE_SESSION is not needed to
 confirm it. Of course, subsequent CREATE_SESSION
 operations may
	 be needed for other reasons.

 The value eir_sequenceid is used to establish an initial
 sequence value associated with the client ID returned. In
	 cases in which a CREATE_SESSION has already been done,
	 there is no need for this value, since sequencing of
	 such request has already been established, and the client
	 has no need for this value and will ignore it.

 EXCHANGE_ID MAY be sent in a COMPOUND procedure that starts with
 SEQUENCE. However, when a client communicates with a server
 for the first time, it will not have a session, so using
 SEQUENCE will not be possible.
 If EXCHANGE_ID is sent without a preceding SEQUENCE, then it
 MUST be the only operation in the COMPOUND procedure's request. If
 it is not, the server MUST return NFS4ERR_NOT_ONLY_OP.

 The eia_clientowner field is composed of a co_verifier
 field and a co_ownerid string. As noted in
 , the co_ownerid
 identifies the client, and the co_verifier specifies a particular
 incarnation of that client. An EXCHANGE_ID
 sent with a new incarnation of the client will
 lead to the server removing lock state of the old
 incarnation. On the other hand, when an EXCHANGE_ID sent with the current
 incarnation and co_ownerid does not result in an unrelated error,
 it will potentially update an existing client ID's properties or
 simply return information about the existing client_id. The latter
 would happen when this operation is done to the same server
 using different network addresses as part of creating trunked
 connections.

 A server MUST NOT provide the same client ID to two different
 incarnations of an eia_clientowner.

 In addition to the client ID and sequence ID, the server
 returns a server owner (eir_server_owner) and
 server scope (eir_server_scope). The former field is used
 in connection with
 network trunking as described in . The latter field is used to
 allow clients to determine when client IDs sent by
 one server may be recognized by another in the event
 of file system migration (see of the current document).

 The client ID returned by EXCHANGE_ID is only unique
 relative to the combination of eir_server_owner.so_major_id
 and eir_server_scope. Thus, if two servers return the
 same client ID, the onus is on the client to
 distinguish the client IDs on the basis of eir_server_owner.so_major_id
 and eir_server_scope. In the event two different servers
 claim matching server_owner.so_major_id and eir_server_scope,
 the client can use the verification techniques discussed
 in to determine if the servers
 are distinct. If they are distinct, then the client
 will need to note the destination network addresses
 of the connections used with each server and use
 the network address as the final discriminator.

 The server, as defined by the unique identity expressed
 in the so_major_id of the server owner and the server scope,
 needs to track several properties of each client ID it
 hands out. The properties apply to the client ID and all
 sessions associated with the client ID.
 The properties are derived from the
 arguments and results of EXCHANGE_ID.
 The client ID properties include:

 The capabilities expressed by the following bits, which
 come from the results of EXCHANGE_ID:

 EXCHGID4_FLAG_SUPP_MOVED_REFER
 EXCHGID4_FLAG_SUPP_MOVED_MIGR
 EXCHGID4_FLAG_BIND_PRINC_STATEID
 EXCHGID4_FLAG_USE_NON_PNFS
 EXCHGID4_FLAG_USE_PNFS_MDS
 EXCHGID4_FLAG_USE_PNFS_DS

 These properties may be updated by subsequent
 EXCHANGE_ID operations on confirmed client IDs though the server MAY
 refuse to change them.

 The state protection method used, one of SP4_NONE,
 SP4_MACH_CRED, or SP4_SSV, as set by the spa_how
 field of the arguments to EXCHANGE_ID. Once the
 client ID is confirmed, this property cannot be
 updated by subsequent EXCHANGE_ID operations.

 For SP4_MACH_CRED or SP4_SSV state protection:

	 The list of operations (spo_must_enforce) that MUST use the specified
	 state protection. This list comes
	 from the results of EXCHANGE_ID.

	 The list of operations (spo_must_allow) that MAY use the specified
	 state protection. This list comes
	 from the results of EXCHANGE_ID.

 Once the client ID is confirmed, these properties
 cannot be updated by subsequent EXCHANGE_ID
 requests.

 For SP4_SSV protection:

 The OID of the hash algorithm. This property is
 represented by one of the algorithms in the
 ssp_hash_algs field of the EXCHANGE_ID arguments.
 Once the client ID is confirmed, this property
 cannot be updated by subsequent EXCHANGE_ID
 requests.

 The OID of the encryption algorithm. This property
 is represented by one of the algorithms in the
 ssp_encr_algs field of the EXCHANGE_ID arguments.
 Once the client ID is confirmed, this property
 cannot be updated by subsequent EXCHANGE_ID
 requests.

 The length of the SSV. This property is
 represented by the spi_ssv_len field in the EXCHANGE_ID
 results.

 Once the client ID is confirmed,
 this property cannot be updated by
 subsequent EXCHANGE_ID operations.

 There are REQUIRED and RECOMMENDED relationships among the
 length of the key of the encryption algorithm ("key length"), the length of the
 output of hash algorithm ("hash length"), and the length of the SSV ("SSV length").

 key length MUST be <= hash length. This is because the keys used for
 the encryption algorithm are actually subkeys derived from the SSV,
 and the derivation is via the hash algorithm. The selection of an
 encryption algorithm with a key length that exceeded the length of
 the output of the hash algorithm would require padding, and thus
 weaken the use of the encryption algorithm.

 hash length SHOULD be <= SSV length. This is because the
 SSV is a key used to derive subkeys via an HMAC, and
 it is recommended that the key used as input to an HMAC be
 at least as long as the length of the HMAC's hash algorithm's
 output (see).

 key length SHOULD be <= SSV length. This is a transitive result of the
 above two invariants.

 key length SHOULD be >= hash length / 2. This is because the subkey
 derivation is via
 an HMAC and it is recommended that if the HMAC has to be truncated,
 it should not be truncated to less than half the hash length
 (see Section
 of RFC 2104).

 Number of concurrent versions of the SSV the client
 and server will support (see).
 This property is represented by spi_window
 in the EXCHANGE_ID results. The property may be
 updated by subsequent EXCHANGE_ID operations.

 The client's implementation ID as represented by
 the eia_client_impl_id field of the arguments.
 The property may be updated by subsequent EXCHANGE_ID
 requests.

 The server's implementation ID as represented by
 the eir_server_impl_id field of the reply.
 The property may be updated by replies to subsequent EXCHANGE_ID
 requests.

 The eia_flags passed as part of the arguments and
 the eir_flags results allow the client and server
 to inform each other of their capabilities as well
 as indicate how the client ID will be used. Whether
 a bit is set or cleared on the arguments' flags
 does not force the server to set or clear the same
 bit on the results' side. Bits not defined above
 cannot be set in the eia_flags field. If they
 are, the server MUST reject the operation with
 NFS4ERR_INVAL.

 The EXCHGID4_FLAG_UPD_CONFIRMED_REC_A bit can only be set
 in eia_flags; it is always off in eir_flags.
 The EXCHGID4_FLAG_CONFIRMED_R bit can only be set in
 eir_flags; it is always off in eia_flags. If the
 server recognizes the co_ownerid and co_verifier
 as mapping to a confirmed client ID, it sets
 EXCHGID4_FLAG_CONFIRMED_R in eir_flags.
 The EXCHGID4_FLAG_CONFIRMED_R flag allows a client
 to tell if the client ID it is trying to create
 already exists and is confirmed.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set in eia_flags,
 this means that the client is attempting to update properties
 of an existing confirmed client ID (if the client wants to
 update properties of an unconfirmed client ID, it MUST NOT
 set EXCHGID4_FLAG_UPD_CONFIRMED_REC_A).
 If so, it is
 RECOMMENDED that the client send the update EXCHANGE_ID
 operation in the same COMPOUND as a SEQUENCE so that
 the EXCHANGE_ID is executed exactly once. Whether
 the client can update the properties of client ID
 depends on the state protection it selected when the
 client ID was created, and the principal and security
 flavor it used when sending the EXCHANGE_ID operation.
 The situations described in items

 ,

 ,

 ,

 or

 of the second numbered list of below will apply.
 Note that if the operation succeeds
 and returns a client ID that is already
 confirmed, the server MUST set the
 EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in eia_flags,
 this means that the client is trying to establish a new
 client ID; it is
 attempting to trunk data communication to
 the server (See); or it
 is attempting to update properties of an unconfirmed
 client ID. The
 situations described in
 items
	 ,
	 ,
	 ,
	 , or
	

 of the second numbered list of below will apply.
 Note that if the operation succeeds
 and returns a client ID that was previously
 confirmed, the server MUST set the
 EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_REFER flag bit
 is set, the client indicates that it is capable
 of dealing with an NFS4ERR_MOVED error as part of
 a referral sequence. When this bit is not set, it
 is still legal for the server to perform a referral
 sequence. However, a server may use the fact that
 the client is incapable of correctly responding
 to a referral, by avoiding it for that particular
 client. It may, for instance, act as a proxy
 for that particular file system, at some cost in
 performance, although it is not obligated to do so.
 If the server will potentially perform a referral, it
 MUST set EXCHGID4_FLAG_SUPP_MOVED_REFER in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_MIGR is set,
 the client indicates that it is capable of dealing
 with an NFS4ERR_MOVED error as part of a file system
 migration sequence. When this bit is not set, it
 is still legal for the server to indicate that a
 file system has moved, when this in fact happens.
 However, a server may use the fact that the client
 is incapable of correctly responding to a migration
 in its scheduling of file systems to migrate so as to
 avoid migration of file systems being actively used.
 It may also hide actual migrations from clients
 unable to deal with them by acting as a proxy for a
 migrated file system for particular clients, at some
 cost in performance, although it is not obligated
 to do so. If the server will potentially perform a
 migration, it MUST set EXCHGID4_FLAG_SUPP_MOVED_MIGR
 in eir_flags.

 When EXCHGID4_FLAG_BIND_PRINC_STATEID is set, the
 client indicates that it wants the server to bind the
 stateid to the principal. This means that when a
 principal creates a stateid, it has to be the one to
 use the stateid. If the server will perform binding,
 it will return EXCHGID4_FLAG_BIND_PRINC_STATEID. The
 server MAY return EXCHGID4_FLAG_BIND_PRINC_STATEID
 even if the client does not request it. If
 an update to the client ID changes the value
 of EXCHGID4_FLAG_BIND_PRINC_STATEID's client
 ID property, the effect applies only to new
 stateids. Existing stateids (and all stateids with
 the same "other" field) that were created with
 stateid to principal binding in force will continue
 to have binding in force. Existing stateids (and all
 stateids with the same "other" field) that were created
 with stateid to principal not in force will continue
 to have binding not in force.

 The EXCHGID4_FLAG_USE_NON_PNFS,
 EXCHGID4_FLAG_USE_PNFS_MDS, and
 EXCHGID4_FLAG_USE_PNFS_DS bits are described in

 and convey roles the
 client ID is to be used for in a pNFS environment.
 The server MUST set one of the acceptable combinations
 of these bits (roles) in eir_flags, as specified in that
 section.
 Note that the same client owner/server owner pair can
 have multiple roles. Multiple roles can be associated
 with the same client ID or with different client
 IDs. Thus, if a client sends EXCHANGE_ID from the
 same client owner to the same server owner multiple
 times, but specifies different pNFS roles each time,
 the server might return different client IDs. Given
 that different pNFS roles might have different client
 IDs, the client may ask for different properties for
 each role/client ID.

 The spa_how field of the eia_state_protect field
 specifies how the client wants to protect its client,
 locking, and session states from unauthorized changes
 ():

 SP4_NONE. The client does not request the NFSv4.1 server
 to enforce state protection. The NFSv4.1 server MUST NOT
 enforce state protection for the returned client ID.

 SP4_MACH_CRED. If spa_how is SP4_MACH_CRED, then
 the client MUST send the EXCHANGE_ID operation with RPCSEC_GSS
 as the security flavor, and with a service of
 RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY. If SP4_MACH_CRED
 is specified, then the
 client wants to use an RPCSEC_GSS-based machine
 credential to protect its state. The server MUST note
 the principal the EXCHANGE_ID operation was sent
 with, and the GSS mechanism used. These notes
 collectively comprise the machine credential.

 After the client ID is confirmed, as long as the lease associated with
 the client ID is unexpired, a subsequent EXCHANGE_ID
 operation that uses the same eia_clientowner.co_owner
 as the first EXCHANGE_ID MUST also use the same
 machine credential as the first EXCHANGE_ID. The
 server returns the same client ID for
 the subsequent EXCHANGE_ID as that returned from
 the first EXCHANGE_ID.

 SP4_SSV. If spa_how is SP4_SSV, then
 the client MUST send the EXCHANGE_ID operation with RPCSEC_GSS
 as the security flavor, and with a service of
 RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY.
 If SP4_SSV is specified, then
 the client wants to use the SSV to protect its state.
 The server records the credential used in the request
 as the machine credential (as defined above) for
 the eia_clientowner.co_owner.
 The CREATE_SESSION operation that
 confirms the client ID MUST use the same machine
 credential.

 When a client specifies SP4_MACH_CRED or SP4_SSV,
 it also provides two lists of operations (each
 expressed as a bitmap). The first list
 is spo_must_enforce and consists of those operations
 the client MUST send (subject to the server confirming the
 list of operations in the result of EXCHANGE_ID) with the
 machine credential (if SP4_MACH_CRED protection is
 specified) or the SSV-based credential (if SP4_SSV
 protection is used). The client MUST send the
 operations with RPCSEC_GSS credentials that specify
 the RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY
 security service. Typically, the first list of
 operations includes EXCHANGE_ID, CREATE_SESSION,
 DELEGPURGE, DESTROY_SESSION, BIND_CONN_TO_SESSION,
 and DESTROY_CLIENTID. The client SHOULD NOT specify
 in this list any operations that require a filehandle
 because the server's access policies MAY conflict with
 the client's choice, and thus the client would then be
 unable to access a subset of the server's namespace.

 Note that if SP4_SSV protection is specified, and
 the client indicates that CREATE_SESSION must be
 protected with SP4_SSV, because the SSV cannot exist
 without a confirmed client ID, the first CREATE_SESSION
 MUST instead be sent using the machine credential,
 and the server MUST accept the machine credential.

 There is a corresponding result, also called spo_must_enforce,
 of the operations for which the server will require SP4_MACH_CRED or
 SP4_SSV protection. Normally, the server's result
 equals the client's argument, but the result MAY be different.
 If the client requests one or more operations in
 the set { EXCHANGE_ID, CREATE_SESSION,
 DELEGPURGE, DESTROY_SESSION, BIND_CONN_TO_SESSION,
 DESTROY_CLIENTID }, then the result spo_must_enforce
 MUST include the operations the client requested from that set.

 If spo_must_enforce in the results has BIND_CONN_TO_SESSION
 set, then connection binding enforcement is enabled, and
 the client MUST use the machine (if SP4_MACH_CRED protection is used)
 or SSV (if SP4_SSV protection is used) credential on calls
 to BIND_CONN_TO_SESSION.

 The second list is spo_must_allow and consists of those
 operations
 the client wants to have the option of sending with the machine credential or
 the SSV-based credential, even if the object the
 operations are performed on is not owned by the
 machine or SSV credential.

 The corresponding result, also called
 spo_must_allow, consists of the operations the server
 will allow the client to use SP4_SSV or SP4_MACH_CRED
 credentials with.
 Normally, the server's result
 equals the client's argument, but the result MAY be different.

 The purpose of spo_must_allow is to allow clients to
 solve the following conundrum. Suppose the client ID
 is confirmed with EXCHGID4_FLAG_BIND_PRINC_STATEID,
 and it calls OPEN with the RPCSEC_GSS credentials of
 a normal user. Now suppose the user's credentials expire,
 and cannot be renewed (e.g., a Kerberos ticket granting ticket
 expires, and the user has logged off and will not be
 acquiring a new ticket granting ticket). The client will be
 unable to send CLOSE without the user's credentials, which is to
 say the client has to either leave the state on the server
 or re-send EXCHANGE_ID with a new verifier to
 clear all state, that is, unless the client includes
 CLOSE on the list of operations in spo_must_allow and the
 server agrees.

 The SP4_SSV protection parameters also have:

 ssp_hash_algs:

 This is the set of algorithms the client supports
 for the purpose of computing the digests needed for
 the internal SSV GSS mechanism and for the SET_SSV
 operation. Each algorithm is specified as an object
 identifier (OID). The REQUIRED algorithms for a
 server are id-sha1, id-sha224, id-sha256, id-sha384,
 and id-sha512 .

 Due to known weaknesses in id-sha1, it is RECOMMENDED
 that the client specify at least one
 algorithm within ssp_hash_algs other than id-sha1.

 The algorithm the server selects among the
 set is indicated in spi_hash_alg, a field of
 spr_ssv_prot_info. The field spi_hash_alg is an
 index into the array ssp_hash_algs. Because of
 known the weaknesses in id-sha1, it is RECOMMENDED that
 it not be selected by the server as long as ssp_hash_algs
 contains any other supported algorithm.

 If the server
 does not support any of the offered algorithms,
 it returns NFS4ERR_HASH_ALG_UNSUPP.
 If ssp_hash_algs is empty, the server MUST return
 NFS4ERR_INVAL.

 ssp_encr_algs:

 This is the set of algorithms the client supports for the
 purpose of providing privacy protection for the internal
 SSV GSS mechanism. Each algorithm is
 specified as an OID.
 The REQUIRED algorithm for a server is id-aes256-CBC.
 The RECOMMENDED algorithms are id-aes192-CBC and id-aes128-CBC
 . The selected algorithm is
 returned in spi_encr_alg, an index into ssp_encr_algs.

 If the server
 does not support any of the offered algorithms,
 it returns NFS4ERR_ENCR_ALG_UNSUPP.

 If ssp_encr_algs is empty, the server MUST return NFS4ERR_INVAL.

 Note that due to previously stated requirements and recommendations
 on the relationships between key length and hash length, some
 combinations of RECOMMENDED and REQUIRED encryption algorithm and
 hash algorithm either SHOULD NOT or MUST NOT be used.
 summarizes the illegal and discouraged
 combinations.

 ssp_window:

 This is the number of SSV versions the client wants
 the server to maintain (i.e., each successful call to SET_SSV
 produces a new version of the SSV). If ssp_window is zero, the
 server MUST return NFS4ERR_INVAL. The server responds
 with spi_window, which MUST NOT exceed ssp_window and MUST
 be at least one.
 Any requests on the backchannel or fore channel that
 are using a version of the SSV that is outside the window will fail with
 an ONC RPC authentication error, and the requester
 will have to retry them with the same slot ID and
 sequence ID.

 ssp_num_gss_handles:

 This is the number of RPCSEC_GSS handles the
 server should create that are based on the GSS
 SSV mechanism (see
).
 It is not the total number of RPCSEC_GSS handles for
 the client ID. Indeed, subsequent calls to EXCHANGE_ID
 will add RPCSEC_GSS handles.
 The server responds with a list of handles in
 spi_handles. If the client asks for at least
 one handle and the server cannot create it,
 the server MUST return an error. The handles in
 spi_handles are not available for use until the
 client ID is confirmed, which could be immediately
 if EXCHANGE_ID returns EXCHGID4_FLAG_CONFIRMED_R,
 or upon successful confirmation from CREATE_SESSION.

 While a client ID can span all the connections
 that are connected to a server sharing the same
 eir_server_owner.so_major_id, the RPCSEC_GSS
 handles returned in spi_handles can only be used
 on connections connected to a server that returns
 the same the eir_server_owner.so_major_id and
 eir_server_owner.so_minor_id on each connection.
 It is permissible for the client to set
 ssp_num_gss_handles to zero; the client can
 create more handles with another EXCHANGE_ID call.

 Because each SSV RPCSEC_GSS handle shares a common SSV GSS context,
 there are security considerations specific to this situation
 discussed in .

 The seq_window (see Section of RFC 2203
)
 of each RPCSEC_GSS handle in spi_handle
 MUST be the same as the seq_window of
 the RPCSEC_GSS handle used for the credential of the RPC request
 of which the EXCHANGE_ID operation was sent as a part.

 Encryption Algorithm

 MUST NOT be combined with

 SHOULD NOT be combined with

 id-aes128-CBC

 id-sha384, id-sha512

 id-aes192-CBC
 id-sha1
 id-sha512

 id-aes256-CBC
 id-sha1, id-sha224

 The arguments include an array of up to one
 element in length called eia_client_impl_id. If
 eia_client_impl_id is present, it contains the
 information identifying the implementation of the
 client. Similarly, the results include an array of up
 to one element in length called eir_server_impl_id
 that identifies the implementation of the server.
 Servers MUST accept a zero-length eia_client_impl_id
 array, and clients MUST accept a zero-length
 eir_server_impl_id array.

 A possible use for implementation identifiers
 would be in diagnostic software that extracts
 this information in an attempt to identify
 interoperability problems, performance workload
 behaviors, or general usage statistics. Since the
 intent of having access to this information is for
 planning or general diagnosis only, the client and
 server MUST NOT interpret this implementation
 identity information in a way that affects
 how the implementation interacts with
 its peer. The client and server are not
 allowed to depend on the peer's manifesting a particular
 allowed behavior based on an implementation identifier
 but are required to interoperate as specified elsewhere
 in the protocol specification.

 Because it is possible that some implementations might
 violate the protocol specification and interpret
 the identity information, implementations MUST
 provide facilities to allow the NFSv4 client and server
 to be configured to set the contents of the nfs_impl_id structures sent
 to any specified value.

 IMPLEMENTATION

 A server's client record is a 5-tuple:

 co_ownerid:

 The client identifier string, from the eia_clientowner
	 structure of the EXCHANGE_ID4args structure.

 co_verifier:

 A client-specific value used to indicate incarnations (where a client restart represents a new incarnation), from the
	 eia_clientowner structure of the EXCHANGE_ID4args
	 structure.

 principal:

 The principal that was defined in the RPC header's credential
 and/or verifier at the time the client record was
 established.

 client ID:

 The shorthand client identifier, generated by the server and
	 returned via the eir_clientid field in the EXCHANGE_ID4resok
	 structure.

 confirmed:

 A private field on the server indicating whether or not a
	 client record has been confirmed. A client record is
	 confirmed if there has been a successful CREATE_SESSION
	 operation to confirm it. Otherwise, it is unconfirmed. An
	 unconfirmed record is established by an EXCHANGE_ID call.
	 Any unconfirmed record that is not confirmed within a lease
	 period SHOULD be removed.

 The following identifiers represent special values for the fields
 in the records.

 ownerid_arg:

	 The value of the eia_clientowner.co_ownerid subfield of the
	 EXCHANGE_ID4args structure of the current request.
	
 verifier_arg:

	 The value of the eia_clientowner.co_verifier subfield of the
	 EXCHANGE_ID4args structure of the current request.
	
 old_verifier_arg:

	 A value of the eia_clientowner.co_verifier field of a client record
	 received in a previous request; this is distinct from
	 verifier_arg.
	
 principal_arg:

	 The value of the RPCSEC_GSS principal for the current request.
	
 old_principal_arg:

	 A value of the principal of a client record as defined by the
 RPC header's credential or verifier of a previous request.
	 This is distinct from principal_arg.
	
 clientid_ret:

	 The value of the eir_clientid field the server will return in the
	 EXCHANGE_ID4resok structure for the current request.
	
 old_clientid_ret:

	 The value of the eir_clientid field the server returned in the
	 EXCHANGE_ID4resok structure for a previous request. This
	 is distinct from clientid_ret.
	
 confirmed:

 The client ID has been confirmed.
	
 unconfirmed:

 The client ID has not been confirmed.
	

 Since EXCHANGE_ID is a non-idempotent operation, we must
 consider the possibility that retries occur as a result of a
 client restart, network partition, malfunctioning router, etc.
 Retries are identified by the value of the eia_clientowner field of
 EXCHANGE_ID4args, and the method for dealing with them is
 outlined in the scenarios below.

 The scenarios are described in terms of the
 client record(s) a server has for a given
 co_ownerid. Note that if the client ID
 was created specifying SP4_SSV state protection and
 EXCHANGE_ID as the one of the operations in spo_must_allow,
 then the server MUST authorize EXCHANGE_IDs with the SSV
 principal in addition to the principal that created the
 client ID.

 New Owner ID

	 If the server has no client records
	 with eia_clientowner.co_ownerid matching
	 ownerid_arg, and EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not
	 set in the EXCHANGE_ID, then a new shorthand
	 client ID (let us call it clientid_ret)
	 is generated, and the following unconfirmed
	 record is added to the server's state.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

	 Subsequently, the server returns clientid_ret.

 Non-Update on Existing Client ID

	 If the server has the following confirmed record, and
 the request does not have
	 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A set,
	 then the request is the result of a retried request due to a
	 faulty router or lost connection, or
 the client is trying to determine if it can perform
 trunking.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, confirmed }

	 Since the record has been confirmed, the client
	 must have received the server's reply from
	 the initial EXCHANGE_ID request. Since the
	 server has a confirmed record, and since
	 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, with the
 possible exception of eir_server_owner.so_minor_id, the
	 server returns the same result it did when
	 the client ID's properties were last updated
	 (or if never updated, the result when the
	 client ID was created). The confirmed record
 is unchanged.

 Client Collision

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and
	 if the server has the following confirmed
	 record, then this request is likely the result
	 of a chance collision between the values of
	 the eia_clientowner.co_ownerid subfield of
	 EXCHANGE_ID4args for two different clients.

	 { ownerid_arg, *, old_principal_arg, old_clientid_ret, confirmed }

 If there is currently no state associated with old_clientid_ret,
 or if there is state but the lease has expired, then
 this case is effectively equivalent to the
 New Owner ID case of .
 The confirmed record is deleted, the old_clientid_ret and its
 lock state are deleted,
	 a new shorthand client ID
	 is generated, and the following unconfirmed
	 record is added to the server's state.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

	 Subsequently, the server returns clientid_ret.

 If old_clientid_ret has an unexpired lease with state, then
	 no state of old_clientid_ret is changed or deleted.
 The server returns NFS4ERR_CLID_INUSE
	 to indicate that the client should
	 retry with a different value for the
	 eia_clientowner.co_ownerid subfield of
	 EXCHANGE_ID4args. The client record is not changed.

 Replacement of Unconfirmed Record

 If the EXCHGID4_FLAG_UPD_CONFIRMED_REC_A flag is not set,
	 and the server has the following unconfirmed record, then
 the client is attempting EXCHANGE_ID again on an
 unconfirmed client ID, perhaps due to a retry, a client
 restart before client ID confirmation (i.e.,
 before CREATE_SESSION was called), or
 some other reason.

	 { ownerid_arg, *, *, old_clientid_ret, unconfirmed }

 It is possible that
 the properties of old_clientid_ret are
 different than those specified in the current
 EXCHANGE_ID. Whether or not the properties are being updated,
 to eliminate ambiguity, the server
 deletes the unconfirmed record, generates a
 new client ID (clientid_ret), and establishes
 the following unconfirmed record:

	 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

 Client Restart

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and
	 if the server has the following confirmed client record, then
	 this request is likely from a previously confirmed client
	 that has restarted.

	 { ownerid_arg, old_verifier_arg, principal_arg, old_clientid_ret, confirmed }

	 Since the previous incarnation of the same
	 client will no longer be making requests,
	 once the new client ID is confirmed by
	 CREATE_SESSION, byte-range locks and share reservations
	 should be released immediately rather than
	 forcing the new incarnation to wait for
	 the lease time on the previous incarnation
	 to expire.	Furthermore, session state should
	 be removed since if the client had maintained
	 that information across restart, this request
	 would not have been sent. If the server
	 supports neither the CLAIM_DELEGATE_PREV
 nor CLAIM_DELEG_PREV_FH
	 claim types, associated delegations should be
	 purged as well; otherwise, delegations are
	 retained and recovery proceeds according to
	 .

	 After processing, clientid_ret is returned to the client and
	 this client record is added:

	 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, unconfirmed }

	 The previously described confirmed record
	 continues to exist, and thus the same
	 ownerid_arg exists in both a confirmed and
	 unconfirmed state at the same time. The number
	 of states can collapse to one once the server
	 receives an applicable CREATE_SESSION or
	 EXCHANGE_ID.

	 If the server subsequently receives a successful
	 CREATE_SESSION that confirms clientid_ret,
	 then the server atomically destroys the
	 confirmed record and makes the unconfirmed
	 record confirmed as described in
	 .

	 If the server instead subsequently receives
	 an EXCHANGE_ID with the client owner equal
	 to ownerid_arg, one strategy is to simply
	 delete the unconfirmed record, and process the
	 EXCHANGE_ID as described in the entirety of
	 .

 Update

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the
	 server has the following confirmed record,
	 then this request is an attempt at an update.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret, confirmed }

	 Since the record has been confirmed, the client must have
	 received the server's reply from the initial EXCHANGE_ID
	 request. The server allows the update, and the client record
 is left intact.

 Update but No Confirmed Record

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the
 server has no confirmed record corresponding ownerid_arg,
 then the server returns NFS4ERR_NOENT and leaves any unconfirmed
 record intact.

 Update but Wrong Verifier

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the
	 server has the following confirmed record,
	 then this request is an illegal attempt at an
	 update, perhaps because of a retry from a previous client
 incarnation.

 { ownerid_arg, old_verifier_arg, *, clientid_ret, confirmed }

	 The server returns NFS4ERR_NOT_SAME and leaves the client record
 intact.

 Update but Wrong Principal

	 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the
	 server has the following confirmed record,
	 then this request is an illegal attempt at an
	 update by an unauthorized principal.

 { ownerid_arg, verifier_arg, old_principal_arg, clientid_ret, confirmed }

	 The server returns NFS4ERR_PERM and leaves the client record
 intact.

 Operation 43: CREATE_SESSION - Create New Session and Confirm Client ID

 ARGUMENT

struct channel_attrs4 {
 count4 ca_headerpadsize;
 count4 ca_maxrequestsize;
 count4 ca_maxresponsesize;
 count4 ca_maxresponsesize_cached;
 count4 ca_maxoperations;
 count4 ca_maxrequests;
 uint32_t ca_rdma_ird<1>;
};

const CREATE_SESSION4_FLAG_PERSIST = 0x00000001;
const CREATE_SESSION4_FLAG_CONN_BACK_CHAN = 0x00000002;
const CREATE_SESSION4_FLAG_CONN_RDMA = 0x00000004;

struct CREATE_SESSION4args {
 clientid4 csa_clientid;
 sequenceid4 csa_sequence;

 uint32_t csa_flags;

 channel_attrs4 csa_fore_chan_attrs;
 channel_attrs4 csa_back_chan_attrs;

 uint32_t csa_cb_program;
 callback_sec_parms4 csa_sec_parms<>;
};

 RESULT

struct CREATE_SESSION4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequence;

 uint32_t csr_flags;

 channel_attrs4 csr_fore_chan_attrs;
 channel_attrs4 csr_back_chan_attrs;
};

union CREATE_SESSION4res switch (nfsstat4 csr_status) {
case NFS4_OK:
 CREATE_SESSION4resok csr_resok4;
default:
 void;
};

 DESCRIPTION

 This operation is used by the client to create new session objects
 on the server.

 CREATE_SESSION can be sent with or without a preceding SEQUENCE
 operation in the same COMPOUND procedure.
 If CREATE_SESSION is sent with a preceding SEQUENCE
 operation,
 any session created by CREATE_SESSION has no direct
 relation to the session specified in the SEQUENCE operation, although
 the two sessions might be associated with the same client ID.
 If CREATE_SESSION is sent without a preceding SEQUENCE, then it
 MUST be the only operation in the COMPOUND procedure's request. If
 it is not, the server MUST return NFS4ERR_NOT_ONLY_OP.

 In addition to creating a session, CREATE_SESSION has the following
 effects:

 The first session created with a new
 client ID serves to confirm the
 creation of that
 client's state on the server. The server returns the parameter
 values for the new session.

 The connection CREATE_SESSION that is sent over is associated with the
 session's fore channel.

 The arguments and results of CREATE_SESSION are described as follows:

 csa_clientid:

 This is the client ID with which the new session will be associated.
 The corresponding result is csr_sessionid, the session ID
 of the new session.

 csa_sequence:

 Each client ID serializes CREATE_SESSION via a per-client ID
 sequence number (see
).
 The corresponding result is csr_sequence, which MUST be equal to
 csa_sequence.

 In the next three arguments, the client offers a value
 that is to be a property of the session. Except where
 stated otherwise, it is RECOMMENDED that
 the server accept the value.
 If it is not acceptable, the server MAY use a different value.
 Regardless, the server MUST return the value the session will
 use (which will be either what the client offered, or what
 the server is insisting on) to the client.

 csa_flags:

 The csa_flags field contains a list of the following flag
 bits:

 CREATE_SESSION4_FLAG_PERSIST:

	 If CREATE_SESSION4_FLAG_PERSIST is set, the client
	 wants the server to provide a persistent reply cache.
	 For sessions in which only idempotent operations
	 will be used (e.g., a read-only session), clients
	 SHOULD NOT set CREATE_SESSION4_FLAG_PERSIST. If
	 the server does not or cannot provide a persistent reply cache,
	 the server MUST NOT set CREATE_SESSION4_FLAG_PERSIST in
 the field csr_flags.

 If the server is a pNFS metadata server, for
 reasons described in
 it SHOULD support CREATE_SESSION4_FLAG_PERSIST if it
 supports the layout_hint ()
 attribute.

 CREATE_SESSION4_FLAG_CONN_BACK_CHAN:

	 If CREATE_SESSION4_FLAG_CONN_BACK_CHAN is set in csa_flags,
	 the client is requesting that the connection over which the
	 CREATE_SESSION operation arrived be associated with the session's
	 backchannel in addition to its fore channel.
	 If the server agrees, it
	 sets CREATE_SESSION4_FLAG_CONN_BACK_CHAN
	 in the result field csr_flags. If
	 CREATE_SESSION4_FLAG_CONN_BACK_CHAN is not set in csa_flags,
	 then CREATE_SESSION4_FLAG_CONN_BACK_CHAN MUST NOT be set
	 in csr_flags.
	
 CREATE_SESSION4_FLAG_CONN_RDMA:

	 If CREATE_SESSION4_FLAG_CONN_RDMA is set in csa_flags,
 and if the connection over which the CREATE_SESSION operation
 arrived
	 is currently in non-RDMA mode but
	 has the capability to operate in RDMA mode, then the client
	 is requesting that the server "step up" to RDMA mode
	 on the connection.
	 If the server agrees, it sets
 CREATE_SESSION4_FLAG_CONN_RDMA in the result
 field csr_flags. If CREATE_SESSION4_FLAG_CONN_RDMA is
	 not set in csa_flags, then CREATE_SESSION4_FLAG_CONN_RDMA MUST NOT be set in csr_flags.
	 Note that once the server agrees to step up, it and the client
	 MUST exchange all future traffic on the connection with RPC RDMA
	 framing and not Record Marking ().
	

 csa_fore_chan_attrs, csa_back_chan_attrs:

 The csa_fore_chan_attrs and csa_back_chan_attrs
 fields apply to attributes of the
 fore channel (which conveys
 requests originating from the client to the server),
 and the backchannel (the channel that conveys
 callback requests originating from the
 server to the client), respectively. The results are in corresponding structures
 called csr_fore_chan_attrs and csr_back_chan_attrs.
 The results establish attributes for each channel, and
 on all subsequent use of each channel of the session.

 Each structure has the following fields:

 ca_headerpadsize:

	 The maximum amount of padding the requester is willing to apply
	 to ensure that write payloads are aligned on some boundary at
	 the replier. For each channel, the server

 will reply in ca_headerpadsize with
	 its preferred value,
	 or zero if padding is not in use, and

 MAY decrease this value but MUST NOT increase it.

 ca_maxrequestsize:

 The maximum size of a COMPOUND or CB_COMPOUND request that
 will be sent. This size represents the XDR encoded size of
 the request, including the RPC headers (including
 security flavor credentials and verifiers)
 but excludes any RPC transport framing headers.
 Imagine a request coming over a non-RDMA TCP/IP connection, and
 that it has a single Record Marking header preceding
 it. The maximum allowable
 count encoded in the header will be
 ca_maxrequestsize. If a requester sends
 a request that exceeds ca_maxrequestsize, the error
 NFS4ERR_REQ_TOO_BIG will be returned per the description in
 .

 For each channel,
 the server MAY decrease this value but MUST NOT increase it.

 ca_maxresponsesize:

 The maximum size of a COMPOUND or CB_COMPOUND reply that
 the requester will
 accept from the replier including RPC headers (see
 the ca_maxrequestsize definition).

 For each channel, the server MAY decrease this value, but MUST NOT increase it.

 However, if the client selects a value for
 ca_maxresponsesize such that a replier on a channel could
 never send a response, the server SHOULD return
 NFS4ERR_TOOSMALL in the CREATE_SESSION reply.
 After the session is created, if a requester sends a
 request for which the size of the reply would exceed
 this value, the replier will return NFS4ERR_REP_TOO_BIG,
 per the description in
 .

 ca_maxresponsesize_cached:

 Like ca_maxresponsesize, but the maximum size of a reply
 that will be stored in the reply cache
 ().

 For each channel, the server MAY decrease this
	 value, but MUST NOT increase it.

 If, in the reply to CREATE_SESSION, the value of
 ca_maxresponsesize_cached of a channel is less than the value
 of ca_maxresponsesize of the same channel, then this is an
 indication to the requester that it needs to be selective
 about which replies it directs the replier to cache; for
 example, large replies from non-idempotent operations (e.g.,
 COMPOUND requests with a READ operation) should not be
 cached. The requester decides which replies to cache via an
 argument to the SEQUENCE (the sa_cachethis field, see) or CB_SEQUENCE (the csa_cachethis
 field, see) operations.

 After the session is created, if a requester sends a
 request for which the size of the reply would exceed
 ca_maxresponsesize_cached, the replier will return
 NFS4ERR_REP_TOO_BIG_TO_CACHE, per the description in .

 ca_maxoperations:

 The maximum number of operations the replier
 will accept in a COMPOUND or CB_COMPOUND.

 For the backchannel, the server MUST NOT change the value the
 client offers. For the fore channel, the server
 MAY change the requested value.

 After the session is created, if a requester sends a
 COMPOUND or CB_COMPOUND
 with more operations than ca_maxoperations,
 the replier MUST return NFS4ERR_TOO_MANY_OPS.

 ca_maxrequests:

 The maximum number of concurrent COMPOUND or CB_COMPOUND
 requests the requester will send on the session. Subsequent
 requests will each be assigned a slot identifier by the requester
 within the range zero to ca_maxrequests - 1 inclusive.

 For the backchannel, the server MUST NOT change the value the
 client offers. For the fore channel, the server
 MAY change the requested value.

 ca_rdma_ird:

 This array has a maximum of one element.
 If this array has one element, then the element contains the
 inbound RDMA read queue depth (IRD).
 For each channel, the server MAY decrease this value, but MUST NOT increase it.

 csa_cb_program

 This is the ONC RPC program number the server MUST use in
 any callbacks sent through the backchannel to the client.
 The server MUST specify an ONC RPC program number equal to
 csa_cb_program and an ONC RPC version number equal to 4 in
 callbacks sent to the client. If a CB_COMPOUND is
 sent to the client, the server MUST use a minor version
 number of 1.
 There is no corresponding result.

 csa_sec_parms

 The field csa_sec_parms is an array of acceptable
 security credentials the server can use on
 the session's backchannel. Three security
 flavors are supported: AUTH_NONE, AUTH_SYS,
 and RPCSEC_GSS. If AUTH_NONE is specified for
 a credential, then this says the client is
 authorizing the server to use AUTH_NONE on
 all callbacks for the session. If AUTH_SYS
 is specified, then the client is authorizing
 the server to use AUTH_SYS on all callbacks,
 using the credential specified cbsp_sys_cred. If
 RPCSEC_GSS is specified, then the server is
 allowed to use the RPCSEC_GSS context specified
 in cbsp_gss_parms as the RPCSEC_GSS context in
 the credential of the RPC header of callbacks
 to the client.

 There is no corresponding result.

 The RPCSEC_GSS context for the backchannel is specified via
 a pair of values of data type
 gsshandle4_t. The data type gsshandle4_t represents an
 RPCSEC_GSS handle, and is
 precisely the same as the data type of the "handle" field of
 the rpc_gss_init_res data type defined in "Context Creation Response
	 - Successful Acceptance", .

 The first RPCSEC_GSS handle, gcbp_handle_from_server,
 is the fore handle the server returned to
 the client (either in the handle field of data type
 rpc_gss_init_res or as one of the elements of the spi_handles
 field returned in the reply to EXCHANGE_ID) when the RPCSEC_GSS context
 was created on the server. The second handle,
 gcbp_handle_from_client, is the back handle to which the
 client will map the RPCSEC_GSS context. The
 server can immediately use the value of
 gcbp_handle_from_client in the RPCSEC_GSS credential
 in callback RPCs. That is, the value in
 gcbp_handle_from_client can be used as the
 value of the field "handle" in data type
 rpc_gss_cred_t (see "Elements of
 the RPCSEC_GSS Security Protocol",) in callback RPCs.
 The server MUST use the RPCSEC_GSS security service
 specified in gcbp_service, i.e., it MUST set the
 "service" field of the rpc_gss_cred_t data type in
 RPCSEC_GSS credential to the value of gcbp_service (see
 "RPC Request Header",).

 If the RPCSEC_GSS handle identified by
 gcbp_handle_from_server does not exist on the server,
 the server will return NFS4ERR_NOENT.

 Within each element of csa_sec_parms, the fore and back RPCSEC_GSS contexts MUST
 share the same GSS context
 and MUST have the same seq_window
 (see Section
 of RFC 2203).
 The fore and back RPCSEC_GSS context state
 are independent of each other as far as the
 RPCSEC_GSS sequence number (see the seq_num
 field in the rpc_gss_cred_t data type of Sections
 and
 of
).

 If an RPCSEC_GSS handle is using the SSV context (see), then because each SSV RPCSEC_GSS
 handle shares a common SSV GSS context, there are security
 considerations specific to this situation discussed in .

 Once the session is created, the first SEQUENCE or
 CB_SEQUENCE received on a slot MUST have a sequence
 ID equal to 1; if not, the replier MUST return
 NFS4ERR_SEQ_MISORDERED.

 IMPLEMENTATION

 To describe a possible implementation, the same notation for client
 records introduced in the description of EXCHANGE_ID is used
 with the following addition:

 clientid_arg:
 The value of the csa_clientid field of the CREATE_SESSION4args
 structure of the current request.

 Since CREATE_SESSION is a non-idempotent operation, we
 need to consider the possibility that retries may occur
 as a result of a client restart, network partition,
 malfunctioning router, etc. For each client ID
 created by EXCHANGE_ID, the server maintains a
 separate reply cache (called the CREATE_SESSION reply cache)
 similar to the session reply
 cache used for SEQUENCE operations, with two
 distinctions.

 First, this is a reply cache just for
 detecting and processing CREATE_SESSION requests for a
 given client ID.

 Second, the size of the client ID
 reply cache is of one slot (and as a result, the
 CREATE_SESSION request does not carry a slot number).
 This means that at most one CREATE_SESSION request for
 a given client ID can be outstanding.

 As previously stated, CREATE_SESSION can be sent with
 or without a preceding SEQUENCE operation. Even if a
 SEQUENCE precedes CREATE_SESSION, the server MUST
 maintain the CREATE_SESSION reply cache, which
 is separate from the reply cache for the session
 associated with a SEQUENCE. If CREATE_SESSION was
 originally sent by itself, the client MAY send
 a retry of the CREATE_SESSION operation within a
 COMPOUND preceded by a SEQUENCE. If CREATE_SESSION
 was originally sent in a COMPOUND that started with a
 SEQUENCE, then the client SHOULD send a retry in
 a COMPOUND that starts with a SEQUENCE that has the
 same session ID as the SEQUENCE of the original
 request. However, the client MAY send a retry in a
 COMPOUND that either has no preceding SEQUENCE, or
 has a preceding SEQUENCE that refers to a different
 session than the original CREATE_SESSION. This might
 be necessary if the client sends a CREATE_SESSION
 in a COMPOUND preceded by a SEQUENCE with session
 ID X, and session X no longer exists. Regardless, any
 retry of CREATE_SESSION, with or without a preceding
 SEQUENCE, MUST use the same value of csa_sequence
 as the original.

 After the client received a reply to an EXCHANGE_ID operation that contains
 a new, unconfirmed client ID,
 the server expects the client to follow
 with a CREATE_SESSION operation to confirm the client ID. The
 server expects value of csa_sequenceid in the arguments to
 that CREATE_SESSION to be
 to equal the value of the field eir_sequenceid that was returned in
 results of the EXCHANGE_ID that returned the unconfirmed
 client ID.
 Before the server replies to that EXCHANGE_ID operation,
 it initializes the client ID slot to be equal
 to eir_sequenceid - 1 (accounting for underflow),
 and records a contrived CREATE_SESSION result
 with a "cached" result of NFS4ERR_SEQ_MISORDERED.
 With the client ID slot thus initialized, the processing of the
 CREATE_SESSION operation is divided into four phases:

 Client record look up. The server looks up the client ID
 in its client record table.
 If the server contains no records
 with client ID equal to clientid_arg, then most
 likely the client's state has been purged during a
 period of inactivity, possibly due to a loss of
 connectivity. NFS4ERR_STALE_CLIENTID is returned,
 and no changes are made to any client records on
 the server. Otherwise, the server goes to phase 2.

 Sequence ID processing. If csa_sequenceid is equal to the
 sequence ID in the client ID's slot, then this is a replay
 of the previous CREATE_SESSION request, and the server
 returns the cached result.
 If csa_sequenceid is not equal to the sequence ID in the slot,
 and is more than one greater (accounting for wraparound),
 then the server returns the error NFS4ERR_SEQ_MISORDERED,
 and does not change the slot. If csa_sequenceid is
 equal to the slot's sequence ID + 1 (accounting for
 wraparound), then the slot's sequence ID is set to
 csa_sequenceid, and the CREATE_SESSION processing goes to
 the next phase. A subsequent new CREATE_SESSION call
 over the same client ID MUST
 use a csa_sequenceid that is one greater than the
 sequence ID in the slot.

 Client ID confirmation. If this would be the first session for the
 client ID, the CREATE_SESSION operation serves to confirm the
 client ID.
 Otherwise,
 the client ID confirmation phase is skipped and only
 the session creation phase occurs.
 Any case in which there is more than one
 record with identical values for client ID represents
 a server implementation error.
 Operation in the
 potential valid cases is summarized as follows.

 Successful Confirmation

 If the server has the following unconfirmed record, then this
 is the expected confirmation of an unconfirmed record.

 { ownerid, verifier, principal_arg, clientid_arg, unconfirmed }

 As noted in ,
 the server might also have the following confirmed record.

 { ownerid, old_verifier, principal_arg, old_clientid, confirmed }

 The server schedules the replacement of both records with:

 { ownerid, verifier, principal_arg, clientid_arg, confirmed }

 The processing of CREATE_SESSION continues on to session creation.
 Once the session is successfully created, the scheduled client
 record replacement is committed. If the session is not
 successfully created, then no changes are made to any client
 records on the server.

 Unsuccessful Confirmation

 If the server has the following record, then the client has
 changed principals after the previous EXCHANGE_ID request,
 or there has been a chance collision between shorthand client
 identifiers.

 { *, *, old_principal_arg, clientid_arg, * }

 Neither of these cases is permissible. Processing stops and
 NFS4ERR_CLID_INUSE is returned to the client. No changes are
 made to any client records on the server.

 Session creation.
 The server confirmed the client ID, either in this
 CREATE_SESSION operation, or a previous CREATE_SESSION
 operation.
 The server examines the remaining fields of the arguments.

 The server creates the session by recording the
 parameter values used (including whether the
 CREATE_SESSION4_FLAG_PERSIST flag is set and has
 been accepted by the server) and allocating space
 for the session reply cache (if there is not enough
 space, the server returns NFS4ERR_NOSPC). For each slot in the
 reply cache, the server sets the sequence ID to zero,
 and records an entry containing a COMPOUND
 reply with zero operations and the error
 NFS4ERR_SEQ_MISORDERED. This way, if the first
 SEQUENCE request sent has a sequence ID equal to
 zero, the server can simply return what is in the
 reply cache: NFS4ERR_SEQ_MISORDERED. The client
 initializes its reply cache for receiving callbacks
 in the same way, and similarly, the first CB_SEQUENCE
 operation on a slot after session creation MUST have
 a sequence ID of one.

 If the session state is created successfully, the server associates
 the session with the client ID provided by the client.

 When a request that had CREATE_SESSION4_FLAG_CONN_RDMA set
 needs to be retried, the retry
 MUST be done on a new connection that is in non-RDMA mode.
 If properties of the new connection are different enough
 that the arguments to CREATE_SESSION need to change, then
 a non-retry MUST be sent. The server will eventually dispose
 of any session that was created on the original connection.

 On the backchannel, the client and server might wish to
 have many slots, in some cases perhaps more that the fore channel, in
 order to deal with the situations where the
 network link has high latency and is the primary
 bottleneck for response to recalls. If so, and if the
 client provides too few slots to the backchannel,
 the server might limit the number of recallable
 objects it gives to the client.

 Implementing RPCSEC_GSS callback support requires
 changes to both the client and server implementations of
 RPCSEC_GSS. One possible set of changes includes:

 Adding a data structure that wraps the GSS-API
 context with a reference count.

 New functions to increment and decrement the reference
 count. If the reference count is decremented to zero,
 the wrapper data structure and the GSS-API context it
 refers to would be freed.

 Change RPCSEC_GSS to create the wrapper data
 structure upon receiving GSS-API context from
 gss_accept_sec_context() and gss_init_sec_context().
 The reference count would be initialized to 1.

 Adding a function to map an existing
 RPCSEC_GSS handle to a pointer to the wrapper data
 structure. The reference count would be incremented.

 Adding a function to create a new RPCSEC_GSS
 handle from a pointer to the wrapper data structure.
 The reference count would be incremented.

 Replacing calls from RPCSEC_GSS that free GSS-API
 contexts, with calls to decrement the reference count
 on the wrapper data structure.

 Operation 44: DESTROY_SESSION - Destroy a Session

 ARGUMENT

struct DESTROY_SESSION4args {
 sessionid4 dsa_sessionid;
};

 RESULT

struct DESTROY_SESSION4res {
 nfsstat4 dsr_status;
};

 DESCRIPTION

 The DESTROY_SESSION operation closes the session and discards
 the session's reply cache, if any.
 Any remaining connections associated with the session are
 immediately disassociated. If the connection has no remaining
 associated sessions, the connection
 MAY be closed by the server.
 Locks, delegations, layouts, wants, and the lease, which are all
 tied to the client ID, are not affected by DESTROY_SESSION.

 DESTROY_SESSION MUST be invoked on a connection that
 is associated with the session being destroyed.
 In addition, if SP4_MACH_CRED state protection
 was specified when the client ID was created,
 the RPCSEC_GSS principal that created the session MUST be
 the one that destroys the session, using RPCSEC_GSS
 privacy or integrity. If SP4_SSV state protection was
 specified when the client ID was created, RPCSEC_GSS
 using the SSV mechanism ()
 MUST be used, with integrity or privacy.

 If the COMPOUND request starts with SEQUENCE, and
 if the sessionids specified in SEQUENCE and DESTROY_SESSION
 are the same, then

 DESTROY_SESSION MUST be the final operation in the COMPOUND
 request.

 It is advisable to avoid placing DESTROY_SESSION in a
 COMPOUND request with other state-modifying
 operations, because the DESTROY_SESSION will destroy
 the reply cache.

	Because the session and its reply cache are destroyed, a client that
	retries the request may receive an error in
	reply to the retry, even though the original request was
	successful.

 If the COMPOUND request starts with SEQUENCE, and
 if the sessionids specified in SEQUENCE and DESTROY_SESSION
 are different, then DESTROY_SESSION can appear in any position
 of the COMPOUND request (except for the first position). The
 two sessionids can belong to different client IDs.

 If the COMPOUND request does not start with
 SEQUENCE, and if DESTROY_SESSION is not the
 sole operation, then server MUST return
 NFS4ERR_NOT_ONLY_OP.

 If there is a backchannel on the session and the
 server has outstanding CB_COMPOUND operations for the
 session which have not been replied to, then the server
 MAY refuse to destroy the session and return an error.
 If so, then
 in the event the backchannel is down, the server
 SHOULD return NFS4ERR_CB_PATH_DOWN to inform the
 client that the backchannel needs to be repaired before
 the server will allow the session to be destroyed.
 Otherwise, the error CB_BACK_CHAN_BUSY SHOULD be
 returned to indicate that there are CB_COMPOUNDs
 that need to be replied to. The client SHOULD reply
 to all outstanding CB_COMPOUNDs before re-sending
 DESTROY_SESSION.

 Operation 45: FREE_STATEID - Free Stateid with No Locks

 ARGUMENT

struct FREE_STATEID4args {
 stateid4 fsa_stateid;
};

 RESULT

struct FREE_STATEID4res {
 nfsstat4 fsr_status;
};

 DESCRIPTION

 The FREE_STATEID operation is used to free a stateid that no longer
 has any associated locks (including opens, byte-range locks, delegations,
 and layouts). This may be because of client LOCKU operations or because
 of server revocation. If there are valid locks (of any kind)
 associated with the stateid in question, the error NFS4ERR_LOCKS_HELD
 will be returned, and the associated stateid will not be freed.

 When a stateid is freed that had been associated with revoked locks,
 by sending the FREE_STATEID operation, the client acknowledges the loss of those
 locks. This allows the server, once all such revoked state is
 acknowledged,
 to allow that client again to reclaim locks, without encountering
 the edge conditions discussed in .

 Once a successful FREE_STATEID is done for a given stateid, any
 subsequent use of that stateid will result in an NFS4ERR_BAD_STATEID
 error.

 Operation 46: GET_DIR_DELEGATION - Get a Directory Delegation

 ARGUMENT

typedef nfstime4 attr_notice4;

struct GET_DIR_DELEGATION4args {
 /* CURRENT_FH: delegated directory */
 bool gdda_signal_deleg_avail;
 bitmap4 gdda_notification_types;
 attr_notice4 gdda_child_attr_delay;
 attr_notice4 gdda_dir_attr_delay;
 bitmap4 gdda_child_attributes;
 bitmap4 gdda_dir_attributes;
};

 RESULT

struct GET_DIR_DELEGATION4resok {
 verifier4 gddr_cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 gddr_stateid;
 /* Which notifications can the server support */
 bitmap4 gddr_notification;
 bitmap4 gddr_child_attributes;
 bitmap4 gddr_dir_attributes;
};

enum gddrnf4_status {
 GDD4_OK = 0,
 GDD4_UNAVAIL = 1
};

union GET_DIR_DELEGATION4res_non_fatal
 switch (gddrnf4_status gddrnf_status) {
 case GDD4_OK:
 GET_DIR_DELEGATION4resok gddrnf_resok4;
 case GDD4_UNAVAIL:
 bool gddrnf_will_signal_deleg_avail;
};

union GET_DIR_DELEGATION4res
 switch (nfsstat4 gddr_status) {
 case NFS4_OK:
 GET_DIR_DELEGATION4res_non_fatal gddr_res_non_fatal4;
 default:
 void;
};

 DESCRIPTION

 The GET_DIR_DELEGATION operation is used by a client to request
 a directory delegation. The directory is represented by the
 current filehandle. The client also specifies whether it wants
 the server to notify it when the directory changes in certain
 ways by setting one or more bits in a bitmap. The server may
 refuse to grant the delegation. In that case, the server
 will return NFS4ERR_DIRDELEG_UNAVAIL. If the server decides to
 hand out the delegation, it will return a cookie verifier for
 that directory. If the cookie verifier changes when the client
 is holding the delegation, the delegation will be recalled
 unless the client has asked for notification for this event.

 The server will also return a directory delegation stateid,
 gddr_stateid, as a result of the
 GET_DIR_DELEGATION operation. This stateid will appear in
 callback messages related to the delegation, such as
 notifications and delegation recalls. The client will use this
 stateid to return the delegation voluntarily or upon recall. A
 delegation is returned by calling the DELEGRETURN operation.

 The server might not be able to support notifications of certain
 events. If the client asks for such notifications, the server
 MUST inform the client of its inability to do so as part of the
 GET_DIR_DELEGATION reply by not setting the appropriate bits in
 the supported notifications bitmask, gddr_notification, contained
 in the reply. The server MUST NOT add bits to gddr_notification
 that the client did not request.

 The GET_DIR_DELEGATION operation can be used for both normal and
 named attribute directories.

 If client sets gdda_signal_deleg_avail to TRUE, then it is
 registering with the client a "want" for a directory
 delegation. If the delegation is not available, and the server
 supports and will honor the "want",
 the results will have gddrnf_will_signal_deleg_avail set to TRUE
 and no error will be indicated on return.
 If so, the client should expect a future CB_RECALLABLE_OBJ_AVAIL
 operation to indicate that a directory delegation is available.
 If the server does not wish to honor the "want" or is not able
 to do so, it returns the error NFS4ERR_DIRDELEG_UNAVAIL. If the
 delegation is immediately available, the server SHOULD return it with
 the response to the operation, rather than via a callback.

 When a client makes a request for a
 directory delegation while it already holds
 a directory delegation for that directory
 (including the case where it has been
 recalled but not yet returned by the client
 or revoked by the server), the server MUST
 reply with the value of gddr_status set to
 NFS4_OK, the value of gddrnf_status set to
 GDD4_UNAVAIL, and the value of
 gddrnf_will_signal_deleg_avail set to
 FALSE. The delegation the client held
 before the request remains intact, and its
 state is unchanged. The current stateid is
 not changed (see for a description
 of the current stateid).

 IMPLEMENTATION

 Directory delegations provide the benefit of improving cache
 consistency of namespace information. This is done through
 synchronous callbacks. A server must support synchronous
 callbacks in order to support directory delegations. In addition
 to that, asynchronous notifications provide a way to reduce
 network traffic as well as improve client performance in certain
 conditions.

 Notifications are specified in terms of potential
 changes to the directory. A client can ask to be
 notified of events by setting one or more
 bits in gdda_notification_types.
 The client can ask for notifications on addition of entries
 to a directory (by setting the
 NOTIFY4_ADD_ENTRY in gdda_notification_types),
 notifications on entry removal
 (NOTIFY4_REMOVE_ENTRY), renames
 (NOTIFY4_RENAME_ENTRY), directory attribute
 changes (NOTIFY4_CHANGE_DIR_ATTRIBUTES),
 and cookie verifier changes
 (NOTIFY4_CHANGE_COOKIE_VERIFIER) by setting
 one or more corresponding bits in the
 gdda_notification_types field.

 The client can also ask for
 notifications of changes to
 attributes of directory entries
 (NOTIFY4_CHANGE_CHILD_ATTRIBUTES)
 in order to keep its attribute cache up to date. However, any
 changes made to child attributes do not cause the delegation to
 be recalled. If a client is interested in directory entry
 caching or negative name caching, it can set the
 gdda_notification_types appropriately to its particular need
 and the server will notify it of
 all changes that would otherwise invalidate its name cache. The
 kind of notification a client asks for may depend on the
 directory size, its rate of change, and the applications being
 used to access that directory. The enumeration of the conditions under
 which a client might ask for a notification is out of the scope
 of this specification.

 For attribute notifications, the client
 will set bits in the gdda_dir_attributes
 bitmap to indicate which attributes
 it wants to be notified of. If the server does not support
 notifications for changes to a certain attribute, it SHOULD NOT
 set that attribute in the supported attribute bitmap
 specified in the reply (gddr_dir_attributes). The client will
 also set in the gdda_child_attributes bitmap the attributes
 of directory entries it wants to be notified of, and
 the server will indicate in gddr_child_attributes which
 attributes of directory entries it will notify the client of.

 The client will also let the server know if
 it wants to get the notification as soon as the attribute change
 occurs or after a certain delay by setting a delay factor;
 gdda_child_attr_delay is for attribute changes to directory entries and
 gdda_dir_attr_delay is for attribute changes to the directory. If this
 delay factor is set to zero, that indicates to the server that
 the client wants to be notified of any attribute changes as soon
 as they occur. If the delay factor is set to N seconds, the server will
 make a best-effort guarantee that attribute updates are
 synchronized within N seconds.
 If the client asks
 for a delay factor that the server does not support or that may
 cause significant resource consumption on the server by causing
 the server to send a lot of notifications, the server should not
 commit to sending out notifications for attributes and
 therefore must not set the appropriate bit in the
 gddr_child_attributes and gddr_dir_attributes bitmaps in the response.

 The client MUST use a security tuple () that the
 directory or its applicable ancestor () is
 exported with. If not, the server MUST return
 NFS4ERR_WRONGSEC to the operation that both precedes
 GET_DIR_DELEGATION and sets the current filehandle
 (see).

 The directory delegation covers all the entries in the
 directory except the parent entry. That means if a directory and
 its parent both hold directory delegations, any changes to the
 parent will not cause a notification to be sent for the child
 even though the child's parent entry points to the parent
 directory.

 Operation 47: GETDEVICEINFO - Get Device Information

 ARGUMENT

struct GETDEVICEINFO4args {
 deviceid4 gdia_device_id;
 layouttype4 gdia_layout_type;
 count4 gdia_maxcount;
 bitmap4 gdia_notify_types;
};

 RESULT

struct GETDEVICEINFO4resok {
 device_addr4 gdir_device_addr;
 bitmap4 gdir_notification;
};

union GETDEVICEINFO4res switch (nfsstat4 gdir_status) {
case NFS4_OK:
 GETDEVICEINFO4resok gdir_resok4;
case NFS4ERR_TOOSMALL:
 count4 gdir_mincount;
default:
 void;
};

 DESCRIPTION

 The GETDEVICEINFO operation returns pNFS storage device address
 information for the specified device ID.
 The client identifies the device information to be returned by
 providing the gdia_device_id and gdia_layout_type that uniquely
 identify the device. The client provides gdia_maxcount
 to limit the number of bytes for the result. This maximum size
 represents all of the data being returned within the
 GETDEVICEINFO4resok structure and includes the XDR overhead.
 The server may return less data. If the server is unable to
 return any information within the gdia_maxcount limit, the error
 NFS4ERR_TOOSMALL will be returned. However, if gdia_maxcount is
 zero, NFS4ERR_TOOSMALL MUST NOT be returned.

 The da_layout_type field of the gdir_device_addr returned
 by the server MUST be equal to the gdia_layout_type specified
 by the client. If it is not equal, the client SHOULD ignore
 the response as invalid and behave as if the server returned
 an error, even if the client does have support for the
 layout type returned.

 The client also provides a notification bitmap,
 gdia_notify_types, for the device ID mapping
 notification for which it is interested in receiving;
 the server must support device ID notifications
 for the notification request to have affect.
 The notification mask is composed in the same
 manner as the bitmap for file attributes (). The numbers of bit positions
 are listed in the notify_device_type4 enumeration type
 (). Only
 two enumerated values of notify_device_type4 currently
 apply to GETDEVICEINFO:
 NOTIFY_DEVICEID4_CHANGE
 and NOTIFY_DEVICEID4_DELETE (see).

 The notification bitmap applies only to the specified device ID.
 If a client sends a GETDEVICEINFO operation on a deviceID multiple times,
 the last notification bitmap is used by the server for
 subsequent notifications. If the bitmap is zero or empty,
 then the device ID's notifications are turned off.

 If the client wants to just update or turn off notifications,
 it MAY send a GETDEVICEINFO operation with gdia_maxcount set to zero.
 In that event, if the device ID is valid, the reply's da_addr_body
 field of the gdir_device_addr field will be of zero length.

 If an unknown device ID is given in gdia_device_id,
 the server returns NFS4ERR_NOENT.

 Otherwise, the device address
 information is returned in gdir_device_addr.
 Finally, if the server supports
 notifications for device ID mappings, the gdir_notification
 result will contain a bitmap of which notifications
 it will actually send to the client (via CB_NOTIFY_DEVICEID,
 see).

 If NFS4ERR_TOOSMALL is returned, the results also contain
 gdir_mincount. The value of gdir_mincount represents the
 minimum size necessary to obtain the device information.

 IMPLEMENTATION

 Aside from updating or turning off notifications, another
 use case for gdia_maxcount being set to zero is to validate
 a device ID.

 The client SHOULD request a notification for changes or
 deletion of a device ID to device address mapping so
 that the server can allow the client gracefully use a
 new mapping, without having pending I/O fail abruptly,
 or force layouts using the device ID to be recalled
 or revoked.

 It is possible that GETDEVICEINFO (and
 GETDEVICELIST) will race with CB_NOTIFY_DEVICEID,
 i.e., CB_NOTIFY_DEVICEID arrives before the client
 gets and processes the response to GETDEVICEINFO or
 GETDEVICELIST. The analysis of the race leverages the
 fact that the server MUST NOT delete a device ID that
 is referred to by a layout the client has.

 CB_NOTIFY_DEVICEID deletes a device ID.
 If the client believes it has layouts that refer to the
 device ID, then it is possible that layouts referring to
 the deleted device ID have been revoked.
 The client should send a TEST_STATEID request using the
 stateid for each layout that might have been revoked. If
 TEST_STATEID indicates that any layouts have been revoked, the
 client must recover from layout revocation as described in
 . If TEST_STATEID indicates that at least
 one layout has not been revoked, the client should send
 a GETDEVICEINFO operation on the supposedly deleted
 device ID to verify that the device ID
 has been deleted.

 If GETDEVICEINFO indicates that the device ID
 does not exist, then the client assumes the server is faulty
 and recovers by sending an EXCHANGE_ID operation. If GETDEVICEINFO
 indicates that the device ID does exist, then while the server is
 faulty for sending an erroneous device ID deletion notification,
 the degree to which it is faulty does not require the client to
 create a new client ID.

 If the client does not have layouts that refer to the
 device ID, no harm is done.
 The client should mark the device ID as deleted, and when
 GETDEVICEINFO or GETDEVICELIST results are
 received that indicate that the device ID has been
 in fact deleted, the device ID should be removed from the
 client's cache.

 CB_NOTIFY_DEVICEID indicates that a device ID's device
 addressing mappings have changed. The client should assume
 that the results from the in-progress GETDEVICEINFO
 will be stale for the device ID
 once received, and so it should send another GETDEVICEINFO
 on the device ID.

 Operation 48: GETDEVICELIST - Get All Device Mappings for a File System

 ARGUMENT

struct GETDEVICELIST4args {
 /* CURRENT_FH: object belonging to the file system */
 layouttype4 gdla_layout_type;

 /* number of deviceIDs to return */
 count4 gdla_maxdevices;

 nfs_cookie4 gdla_cookie;
 verifier4 gdla_cookieverf;
};

 RESULT

struct GETDEVICELIST4resok {
 nfs_cookie4 gdlr_cookie;
 verifier4 gdlr_cookieverf;
 deviceid4 gdlr_deviceid_list<>;
 bool gdlr_eof;
};

union GETDEVICELIST4res switch (nfsstat4 gdlr_status) {
case NFS4_OK:
 GETDEVICELIST4resok gdlr_resok4;
default:
 void;
};

 DESCRIPTION

 This operation is used by the client to enumerate all of the
 device IDs that a server's file system uses.

 The client provides a current filehandle of a file object that
 belongs to the file system (i.e., all file objects sharing the same
 fsid as that of the current filehandle) and the layout type
 in gdia_layout_type. Since
 this operation might require multiple calls to enumerate all the
 device IDs (and is thus
 similar to the
 READDIR operation), the client also provides gdia_cookie
 and gdia_cookieverf to specify the current cursor position in the
 list. When the client wants to read from the beginning of the
 file system's device mappings, it sets gdla_cookie to zero. The
 field gdla_cookieverf MUST be ignored by the server when
 gdla_cookie is zero.
 The client provides gdla_maxdevices to limit the number of device IDs
 in the result. If gdla_maxdevices is zero, the server MUST return
 NFS4ERR_INVAL.
 The server MAY return fewer device IDs.

 The successful response to the operation will contain the
 cookie, gdlr_cookie, and the cookie verifier, gdlr_cookieverf, to be
 used on the subsequent GETDEVICELIST. A gdlr_eof value of TRUE
 signifies that there are no remaining entries in the server's
 device list. Each element of gdlr_deviceid_list contains
 a device ID.

 IMPLEMENTATION

 An example of the use of this operation is for pNFS
 clients and servers that use LAYOUT4_BLOCK_VOLUME
 layouts. In these environments it may be helpful
 for a client to determine device accessibility upon
 first file system access.

 Operation 49: LAYOUTCOMMIT - Commit Writes Made Using a Layout

 ARGUMENT

union newtime4 switch (bool nt_timechanged) {
case TRUE:
 nfstime4 nt_time;
case FALSE:
 void;
};

union newoffset4 switch (bool no_newoffset) {
case TRUE:
 offset4 no_offset;
case FALSE:
 void;
};

struct LAYOUTCOMMIT4args {
 /* CURRENT_FH: file */
 offset4 loca_offset;
 length4 loca_length;
 bool loca_reclaim;
 stateid4 loca_stateid;
 newoffset4 loca_last_write_offset;
 newtime4 loca_time_modify;
 layoutupdate4 loca_layoutupdate;
};

 RESULT

union newsize4 switch (bool ns_sizechanged) {
case TRUE:
 length4 ns_size;
case FALSE:
 void;
};

struct LAYOUTCOMMIT4resok {
 newsize4 locr_newsize;
};

union LAYOUTCOMMIT4res switch (nfsstat4 locr_status) {
case NFS4_OK:
 LAYOUTCOMMIT4resok locr_resok4;
default:
 void;
};

 DESCRIPTION

 The LAYOUTCOMMIT operation commits changes in the layout represented by the current
 filehandle, client ID (derived from the session ID in the
 preceding SEQUENCE operation), byte-range, and stateid. Since
 layouts are sub-dividable, a smaller portion of a layout,
 retrieved via LAYOUTGET, can be committed. The byte-range being
 committed is specified through the byte-range (loca_offset and
 loca_length). This byte-range MUST overlap with one or more existing layouts
 previously granted via LAYOUTGET (),
 each with an iomode of LAYOUTIOMODE4_RW. In the
 case where the iomode of any held layout segment is not
 LAYOUTIOMODE4_RW, the server should return the error
 NFS4ERR_BAD_IOMODE. For the case where the client
 does not hold matching layout segment(s) for the
 defined byte-range, the server should return the error
 NFS4ERR_BAD_LAYOUT.

 The LAYOUTCOMMIT operation indicates that the client has
 completed writes using a layout obtained by a previous
 LAYOUTGET. The client may have only written a subset of the
 data range it previously requested. LAYOUTCOMMIT allows it to
 commit or discard provisionally allocated space and to update
 the server with a new end-of-file. The layout referenced by
 LAYOUTCOMMIT is still valid after the operation completes and
 can be continued to be referenced by the client ID, filehandle,
 byte-range, layout type, and stateid.

 If the loca_reclaim field is set to TRUE, this indicates that
 the client is attempting to commit changes to a layout after the
 restart of the metadata server during the metadata server's
 recovery grace period (see). This type of request may be necessary
 when the client has uncommitted writes to provisionally
 allocated byte-ranges of a file that were sent to the storage
 devices before the restart of the metadata server. In this case,
 the layout provided by the client MUST be a subset of a writable
 layout that the client held immediately before the restart of the
 metadata server. The value of the field loca_stateid MUST
 be a value that the metadata server returned before it restarted.
 The metadata server is free to accept or
 reject this request based on its own internal metadata
 consistency checks. If the metadata server finds that the
 layout provided by the client does not pass its consistency
 checks, it MUST reject the request with the status
 NFS4ERR_RECLAIM_BAD. The successful completion of the
 LAYOUTCOMMIT request with loca_reclaim set to TRUE does NOT
 provide the client with a layout for the file. It simply
 commits the changes to the layout specified in the
 loca_layoutupdate field. To obtain a layout for the file, the
 client must send a LAYOUTGET request to the server after the
 server's grace period has expired. If the metadata server
 receives a LAYOUTCOMMIT request with loca_reclaim set to TRUE
 when the metadata server is not in its recovery grace period, it
 MUST reject the request with the status NFS4ERR_NO_GRACE.

 Setting the loca_reclaim field to TRUE is required if and only
 if the committed layout was acquired before the metadata server
 restart. If the client is committing a layout that was acquired
 during the metadata server's grace period, it MUST set the
 "reclaim" field to FALSE.

 The loca_stateid is a layout stateid value as
 returned by previously successful layout operations
 (see).

 The loca_last_write_offset field specifies the offset of the
 last byte written by the client previous to the LAYOUTCOMMIT.
 Note that this value is never equal to the file's size (at most
 it is one byte less than the file's size) and MUST be less than
 or equal to NFS4_MAXFILEOFF. Also, loca_last_write_offset MUST
 overlap the range described by loca_offset and loca_length.
 The metadata server
 may use this information to determine whether the file's size
 needs to be updated. If the metadata server updates the file's
 size as the result of the LAYOUTCOMMIT operation, it must return
 the new size (locr_newsize.ns_size) as part of the results.

 The loca_time_modify field
 allows the client to suggest a modification time it would like the metadata
 server to set. The metadata server may use the suggestion or
 it may use the time of the LAYOUTCOMMIT operation to set the modification
 time. If the metadata server uses the client-provided
 modification time, it should ensure that time does not flow backwards. If the
 client wants to force the metadata server to set an exact time,
 the client should use a SETATTR operation in a COMPOUND right
 after LAYOUTCOMMIT. See for
 more details. If the client desires the resultant modification time,
 it should construct the COMPOUND so that a GETATTR
 follows the LAYOUTCOMMIT.

 The loca_layoutupdate argument to LAYOUTCOMMIT provides a mechanism
 for a client to provide layout-specific updates to the metadata
 server. For example, the layout update can describe what byte-ranges
 of the original layout have been used and what byte-ranges can be
 deallocated. There is no NFSv4.1 file layout-specific layoutupdate4
 structure.

 The layout information is more verbose for block devices than for
 objects and files because the latter two hide the details of block
 allocation behind their storage protocols. At the minimum, the
 client needs to communicate changes to the end-of-file location back
 to the server, and, if desired, its view of the file's modification
 time. For block/volume layouts, it needs to specify precisely
 which blocks have been used.

 If the layout identified in the arguments does not exist, the
 error NFS4ERR_BADLAYOUT is returned. The layout being committed
 may also be rejected if it does not correspond to an existing
 layout with an iomode of LAYOUTIOMODE4_RW.

 On success, the current filehandle retains its value and the
 current stateid retains its value.

 IMPLEMENTATION

 The client MAY also use LAYOUTCOMMIT with the
 loca_reclaim field set to TRUE to convey hints to modified file
 attributes or to report layout-type specific information such as
 I/O errors for object-based storage layouts, as normally done
 during normal operation. Doing so may help the metadata server
 to recover files more efficiently after restart. For example,
 some file system implementations may require expansive recovery
 of file system objects if the metadata server does not get a
 positive indication from all clients holding a LAYOUTIOMODE4_RW layout that
 they have successfully completed all their writes. Sending a
 LAYOUTCOMMIT (if required) and then following with LAYOUTRETURN
 can provide such an indication and allow for graceful and
 efficient recovery.

 If loca_reclaim is TRUE, the metadata server is free to
 either examine or ignore the value in the field loca_stateid.
 The metadata server implementation might or might not
 encode in its layout
 stateid information that allows the metadata server to
 perform a consistency check on the LAYOUTCOMMIT request.

 Operation 50: LAYOUTGET - Get Layout Information

 ARGUMENT

struct LAYOUTGET4args {
 /* CURRENT_FH: file */
 bool loga_signal_layout_avail;
 layouttype4 loga_layout_type;
 layoutiomode4 loga_iomode;
 offset4 loga_offset;
 length4 loga_length;
 length4 loga_minlength;
 stateid4 loga_stateid;
 count4 loga_maxcount;
};

 RESULT

struct LAYOUTGET4resok {
 bool logr_return_on_close;
 stateid4 logr_stateid;
 layout4 logr_layout<>;
};

union LAYOUTGET4res switch (nfsstat4 logr_status) {
case NFS4_OK:
 LAYOUTGET4resok logr_resok4;
case NFS4ERR_LAYOUTTRYLATER:
 bool logr_will_signal_layout_avail;
default:
 void;
};

 DESCRIPTION

 The LAYOUTGET operation requests a layout from the metadata server for reading or
 writing the file given by the filehandle at the
 byte-range specified by offset and length. Layouts are
 identified by the client ID (derived from the session ID in the
 preceding SEQUENCE operation), current filehandle, layout type
 (loga_layout_type), and the layout stateid (loga_stateid). The
 use of the loga_iomode field depends upon the layout type, but should
 reflect the client's data access intent.

 If the metadata server is in a grace period, and does not
 persist layouts and device ID to device address mappings, then
 it MUST return NFS4ERR_GRACE (see).

 The LAYOUTGET operation returns layout information
 for the specified byte-range: a layout.
 The client actually specifies two ranges, both starting
 at the offset in the loga_offset field. The first
 range is between loga_offset and loga_offset + loga_length - 1
 inclusive. This range indicates the desired range the client
 wants the layout to cover. The second range is between
 loga_offset and loga_offset + loga_minlength - 1 inclusive. This
 range indicates the required range the client needs the layout
 to cover. Thus, loga_minlength MUST be less than or equal to
 loga_length.

 When a length field is set to NFS4_UINT64_MAX,
 this indicates a desire (when loga_length is NFS4_UINT64_MAX)
 or requirement (when loga_minlength is NFS4_UINT64_MAX)
 to get a layout from loga_offset through the
 end-of-file, regardless of the file's length.

 The following rules govern the relationships among,
 and the minima of,
 loga_length, loga_minlength, and loga_offset.

 If loga_length is less than loga_minlength, the metadata server
 MUST return NFS4ERR_INVAL.

 If loga_minlength is zero, this is an indication
 to the metadata server that the client desires any layout
 at offset loga_offset or less that the metadata server has
 "readily available". Readily is subjective, and depends on
 the layout type and the pNFS server implementation. For example,
 some metadata servers might have to pre-allocate stable
 storage when they receive a request for a range of a
 file that goes beyond the file's current length.
 If loga_minlength is zero and
 loga_length is greater than zero, this tells the
 metadata server what range of the layout the client would
 prefer to have. If loga_length and loga_minlength
 are both zero, then the client is indicating that it desires
 a layout of any length with the ending offset of the range
 no less than the value specified loga_offset, and the starting offset at or
 below loga_offset. If the metadata server does not have
 a layout that is readily available, then it MUST return
 NFS4ERR_LAYOUTTRYLATER.

 If the sum of loga_offset and loga_minlength exceeds
 NFS4_UINT64_MAX, and loga_minlength is not NFS4_UINT64_MAX,
 the error NFS4ERR_INVAL MUST result.

 If the sum of loga_offset and loga_length exceeds
 NFS4_UINT64_MAX, and loga_length is not NFS4_UINT64_MAX,
 the error NFS4ERR_INVAL MUST result.

 After the metadata server has performed the above checks on loga_offset,
 loga_minlength, and loga_offset, the metadata server MUST return a
 layout according to the rules in .

 Acceptable layouts based on loga_minlength.
 Note: u64m = NFS4_UINT64_MAX; a_off = loga_offset;
 a_minlen = loga_minlength.

 Layout iomode of request
 Layout a_minlen of request
 Layout iomode of reply
 Layout offset of reply
 Layout length of reply

 _READ
 u64m

 MAY be _READ

 MUST be <= a_off

 MUST be >= file length - layout offset

 _READ
 u64m

 MAY be _RW

 MUST be <= a_off

 MUST be u64m

 _READ
 > 0 and < u64m

 MAY be _READ

 MUST be <= a_off

 MUST be >= MIN(file length, a_minlen + a_off) - layout offset

 _READ
 > 0 and < u64m

 MAY be _RW

 MUST be <= a_off

 MUST be >= a_off - layout offset + a_minlen

 _READ
 0

 MAY be _READ

 MUST be <= a_off

 MUST be > 0

 _READ
 0

 MAY be _RW

 MUST be <= a_off

 MUST be > 0

 _RW
 u64m

 MUST be _RW

 MUST be <= a_off

 MUST be u64m

 _RW
 > 0 and < u64m

 MUST be _RW

 MUST be <= a_off

 MUST be >= a_off - layout offset + a_minlen

 _RW
 0

 MUST be _RW

 MUST be <= a_off

 MUST be > 0

 If loga_minlength is not zero and the metadata server cannot return a layout according
 to the rules in ,
 then the metadata server MUST return the error
 NFS4ERR_BADLAYOUT. If loga_minlength is zero and the metadata server
 cannot or will not return a layout according
 to the rules in ,
 then the metadata server MUST return the error
 NFS4ERR_LAYOUTTRYLATER.

 Assuming that loga_length is greater
 than loga_minlength or equal to zero, the metadata server SHOULD
 return a layout according to the rules in .

 Desired layouts based on loga_length.
 The rules of MUST be applied first.
 Note: u64m = NFS4_UINT64_MAX; a_off = loga_offset;
 a_len = loga_length.

 Layout iomode of request
 Layout a_len of request
 Layout iomode of reply
 Layout offset of reply
 Layout length of reply

 _READ
 u64m

 MAY be _READ

 MUST be <= a_off

 SHOULD be u64m

 _READ
 u64m

 MAY be _RW

 MUST be <= a_off

 SHOULD be u64m

 _READ
 > 0 and < u64m

 MAY be _READ

 MUST be <= a_off

 SHOULD be >= a_off - layout offset + a_len

 _READ
 > 0 and < u64m

 MAY be _RW

 MUST be <= a_off

 SHOULD be >= a_off - layout offset + a_len

 _READ
 0

 MAY be _READ

 MUST be <= a_off

 SHOULD be > a_off - layout offset

 _READ
 0

 MAY be _READ

 MUST be <= a_off

 SHOULD be > a_off - layout offset

 _RW
 u64m

 MUST be _RW

 MUST be <= a_off

 SHOULD be u64m

 _RW
 > 0 and < u64m

 MUST be _RW

 MUST be <= a_off

 SHOULD be >= a_off - layout offset + a_len

 _RW
 0

 MUST be _RW

 MUST be <= a_off

 SHOULD be > a_off - layout offset

 The loga_stateid field specifies a valid stateid.
 If a layout is not currently held by the client,
 the loga_stateid field represents a stateid
 reflecting the correspondingly valid open,
 byte-range lock, or delegation stateid. Once a
 layout is held on the file by the client, the
 loga_stateid field MUST be a stateid as returned from
 a previous LAYOUTGET or LAYOUTRETURN operation or
 provided by a CB_LAYOUTRECALL operation (see).

 The loga_maxcount field specifies the maximum layout size (in bytes)
 that the client can handle. If the size of the layout structure
 exceeds the size specified by maxcount, the metadata server will
 return the NFS4ERR_TOOSMALL error.

 The returned layout is expressed as an array,
 logr_layout, with each element of type layout4. If a
 file has a single striping pattern, then logr_layout
 SHOULD contain just one entry. Otherwise, if the
 requested range overlaps more than one striping
 pattern, logr_layout will contain the required number
 of entries. The elements of logr_layout MUST be sorted
 in ascending order of the value of the lo_offset field
 of each element. There MUST be no gaps or overlaps
 in the range between two successive elements of
 logr_layout. The lo_iomode field in each element of
 logr_layout MUST be the same.

 and

 both refer to a returned layout iomode, offset, and length.
 Because the returned layout is encoded in the logr_layout array,
 more description is required.

 iomode

 The value of the returned layout iomode listed in

 and

 is equal to the value of the lo_iomode field in each
 element of logr_layout.

 As shown in
 and ,
 the metadata server MAY return a layout with an lo_iomode
 different from the requested iomode (field loga_iomode of the request).
 If it does so, it MUST
 ensure that the lo_iomode is more permissive than the
 loga_iomode requested. For example, this behavior allows an
 implementation to upgrade LAYOUTIOMODE4_READ requests to LAYOUTIOMODE4_RW
 requests at its discretion, within the limits of the layout type
 specific protocol. A lo_iomode of either LAYOUTIOMODE4_READ or
 LAYOUTIOMODE4_RW MUST be returned.

 offset

 The value of the returned layout offset listed in

 and

 is always equal to the lo_offset field of the first
 element logr_layout.

 length

 When setting the value of the returned layout
 length, the situation is complicated by the
 possibility that the special layout length value
 NFS4_UINT64_MAX is involved. For a logr_layout
 array of N elements, the lo_length field in the
 first N-1 elements MUST NOT be NFS4_UINT64_MAX. The
 lo_length field of the last element of logr_layout
 can be NFS4_UINT64_MAX under some conditions as
 described in the following list.

	If an applicable rule of
	states that the metadata server MUST return a layout of length
	NFS4_UINT64_MAX, then the lo_length field of the last
	element of logr_layout MUST be NFS4_UINT64_MAX.

	If an applicable rule of
	states that the metadata server MUST NOT return a layout of length
	NFS4_UINT64_MAX, then the lo_length field of the last
	element of logr_layout MUST NOT be NFS4_UINT64_MAX.

	If an applicable rule of
	states that the metadata server SHOULD return a layout of length
	NFS4_UINT64_MAX, then the lo_length field of the last
	element of logr_layout SHOULD be NFS4_UINT64_MAX.

	When the value of the returned layout length of
	
	and
	 is not NFS4_UINT64_MAX, then
	the returned layout length is equal to the sum of the
	lo_length fields of each element of logr_layout.

 The logr_return_on_close result field is a directive to return
 the layout before closing the file. When the metadata server sets this
 return value to TRUE, it MUST be prepared to recall the layout
 in the case in which the client fails to return the layout before close.
 For the metadata server that knows a layout must be returned before a
 close of the file, this return value can be used to communicate
 the desired behavior to the client and thus remove one extra
 step from the client's and metadata server's interaction.

 The logr_stateid stateid is returned to
 the client for use in subsequent layout related operations. See Sections
 , , and
 for a further
 discussion and requirements.

 The format of the returned layout (lo_content)
 is specific to the layout type.
 The value of the layout type (lo_content.loc_type) for each of
 the elements of the array of layouts returned by the metadata server
 (logr_layout) MUST be equal to the loga_layout_type specified
 by the client. If it is not equal, the client SHOULD ignore
 the response as invalid and behave as if the metadata server returned
 an error, even if the client does have support for the
 layout type returned.

 If neither the requested file nor its
 containing file system support layouts, the metadata server MUST return
 NFS4ERR_LAYOUTUNAVAILABLE. If the layout type is not supported,
 the metadata server MUST return NFS4ERR_UNKNOWN_LAYOUTTYPE.
 If layouts are supported but no layout matches the client
 provided layout identification, the metadata server MUST return
 NFS4ERR_BADLAYOUT. If an invalid loga_iomode is specified, or a
 loga_iomode of LAYOUTIOMODE4_ANY is specified, the metadata server MUST
 return NFS4ERR_BADIOMODE.

 If the layout for the file is unavailable due to transient
 conditions, e.g., file sharing prohibits layouts, the metadata server MUST
 return NFS4ERR_LAYOUTTRYLATER.

 If the layout request is rejected due to an overlapping layout
 recall, the metadata server MUST return NFS4ERR_RECALLCONFLICT. See for details.

 If the layout conflicts with a mandatory byte-range lock held on the
 file, and if the storage devices have no method of enforcing
 mandatory locks, other than through the restriction of layouts, the
 metadata server SHOULD return NFS4ERR_LOCKED.

 If client sets loga_signal_layout_avail to TRUE, then it is
 registering with the client a "want" for a layout in the event
 the layout cannot be obtained due to resource exhaustion.
 If the metadata server supports and will honor the "want",
 the results will have logr_will_signal_layout_avail
 set to TRUE.
 If so, the client should expect a CB_RECALLABLE_OBJ_AVAIL
 operation to indicate that a layout is available.

 On success, the current filehandle retains its value and the
 current stateid is updated to match the value as returned in the
 results.

 IMPLEMENTATION

 Typically, LAYOUTGET will be called as part of a
 COMPOUND request after an OPEN operation and results
 in the client having location information for the
 file. This requires that loga_stateid be set to the
 special stateid that tells the metadata server to use the
 current stateid, which is set by OPEN (see). A client may also hold
 a layout across multiple OPENs. The client specifies
 a layout type that limits what kind of layout the
 metadata server will return. This prevents metadata servers from
 granting layouts that are unusable by the client.

 As indicated by and
 , the specification of
 LAYOUTGET allows a pNFS client and server considerable
 flexibility.

 A pNFS client can take several strategies for sending
 LAYOUTGET. Some examples are as follows.

 If LAYOUTGET is preceded by OPEN in the same
 COMPOUND request and the OPEN requests OPEN4_SHARE_ACCESS_READ access,
 the client might opt to request a _READ layout
 with loga_offset set to zero, loga_minlength set to
 zero, and loga_length set to NFS4_UINT64_MAX. If
 the file has space allocated to it, that space is
 striped over one or more storage devices, and there
 is either no conflicting layout or the concept of
 a conflicting layout does not apply to the pNFS
 server's layout type or implementation, then the
 metadata server might return a layout with a starting offset
 of zero, and a length equal to the length of the
 file, if not NFS4_UINT64_MAX. If the length of the
 file is not a multiple of the
 pNFS server's stripe
 width (see
 for a formal definition), the metadata server might round up
 the returned layout's length.

 If LAYOUTGET is preceded by OPEN in the same
 COMPOUND request, and the OPEN requests OPEN4_SHARE_ACCESS_WRITE access and does
 not truncate the file, the client might
 opt to request a _RW layout with loga_offset set
 to zero, loga_minlength set to zero, and loga_length
 set to the file's current length (if known), or
 NFS4_UINT64_MAX. As with the previous case, under
 some conditions the metadata server might return a layout
 that covers the entire length of the file or beyond.

 This strategy is as above, but the OPEN truncates the file. In this case,
 the client might anticipate it will be writing to the
 file from offset zero, and so loga_offset and loga_minlength
 are set to zero, and loga_length is set to the value of
 threshold4_write_iosize. The metadata server might return a layout
 from offset zero with a length at least as long as
 threshold4_write_iosize.

 A process on the client invokes a request to read
 from offset 10000 for length 50000. The client
 is using buffered I/O, and has buffer sizes of
 4096 bytes. The client intends to map the request
 of the process into a series of READ requests
 starting at offset 8192. The end offset needs to be higher
 than 10000 + 50000 = 60000, and the next offset that is
 a multiple of 4096 is 61440. The difference between 61440 and
 that starting offset of the layout is 53248 (which is
 the product of 4096 and 15).
 The value
 of threshold4_read_iosize is less than 53248,
 so the client sends a LAYOUTGET request with
 loga_offset set to 8192, loga_minlength set to
 53248, and loga_length set to the file's length
 (if known) minus 8192 or NFS4_UINT64_MAX (if the
 file's length is not known). Since this LAYOUTGET
 request exceeds the metadata server's threshold, it grants
 the layout, possibly with an initial offset of
 zero, with an end offset of at least 8192 + 53248 -
 1 = 61439, but preferably a layout with an offset
 aligned on the stripe width and a length that is
 a multiple of the stripe width.

 This strategy is as above, but the client is not using buffered I/O, and
 instead all internal I/O requests are sent directly to
 the server. The LAYOUTGET request has loga_offset equal to
 10000 and loga_minlength set to 50000. The value of loga_length
 is set to the length of the file. The metadata server is free to
 return a layout that fully overlaps the requested range, with
 a starting offset and length aligned on the stripe width.

 Again, a process on the client invokes a request
 to read from offset 10000 for length 50000 (i.e. a
 range with a starting offset of 10000 and an ending
 offset of 69999), and
 buffered I/O is in use. The client is expecting
 that the server might not be able to return the
 layout for the full I/O range.

 The client intends to map the request of the
 process into a series of thirteen READ requests starting at
 offset 8192, each with length 4096, with a total
 length of 53248 (which equals 13 * 4096), which
 fully contains the range that client's process wants to read.

 Because the value of threshold4_read_iosize is equal to
 4096, it is practical and reasonable for the client to
 use several LAYOUTGET operations to complete the series
 of READs.

 The client sends a LAYOUTGET request with
 loga_offset set to 8192, loga_minlength set to 4096,
 and loga_length set to 53248 or higher. The server
 will grant a layout possibly with an initial offset
 of zero, with an end offset of at least 8192 + 4096 -
 1 = 12287, but preferably a layout with an offset
 aligned on the stripe width and a length that is a
 multiple of the stripe width. This will allow the
 client to make forward progress, possibly
 sending more LAYOUTGET operations for the remainder
 of the range.

 An NFS client detects a sequential read pattern,
 and so sends a LAYOUTGET operation that goes well beyond any
 current or pending read requests to the server. The
 server might likewise detect this pattern, and
 grant the LAYOUTGET request. Once the client
 reads from an offset of the file that represents
 50% of the way through the range of the last layout
 it received, in order to avoid stalling I/O that would wait
 for a layout, the client sends more operations
 from an offset of the file that represents 50%
 of the way through the last layout it received. The client
 continues to request layouts with byte-ranges that are
 well in advance of the byte-ranges of
 recent and/or read requests of processes running on the client.

 This strategy is as above, but the client fails to detect the
 pattern, but the server does. The next time the
 metadata server gets a LAYOUTGET, it returns a layout with
 a length that is well beyond loga_minlength.

 A client is using buffered I/O, and has a long
 queue of write-behinds to process and also detects
 a sequential write pattern. It sends a LAYOUTGET
 for a layout that spans the range of the queued
 write-behinds and well beyond, including ranges
 beyond the filer's current length. The client
 continues to send LAYOUTGET operations once the write-behind
 queue reaches 50% of the maximum queue length.

 Once the client has obtained a layout referring to a
 particular device ID, the metadata server MUST NOT
 delete the device ID until the layout is returned
 or revoked.

 CB_NOTIFY_DEVICEID can race with LAYOUTGET. One race
 scenario is that LAYOUTGET returns a device ID for which the
 client does not have device address mappings,
 and the metadata server sends a CB_NOTIFY_DEVICEID
 to add the device ID to the client's awareness
 and meanwhile the client sends GETDEVICEINFO on
 the device ID. This scenario is discussed in
 .
 Another scenario is that the CB_NOTIFY_DEVICEID
 is processed by the client before it processes
 the results from LAYOUTGET. The client will send
 a GETDEVICEINFO on the device ID. If the results
 from GETDEVICEINFO are received before the client
 gets results from LAYOUTGET, then there is no
 longer a race. If the results from LAYOUTGET are
 received before the results from GETDEVICEINFO, the
 client can either wait for results of GETDEVICEINFO
 or send another one to get possibly more up-to-date
 device address mappings for the device ID.

 Operation 51: LAYOUTRETURN - Release Layout Information

 ARGUMENT

/* Constants used for LAYOUTRETURN and CB_LAYOUTRECALL */
const LAYOUT4_RET_REC_FILE = 1;
const LAYOUT4_RET_REC_FSID = 2;
const LAYOUT4_RET_REC_ALL = 3;

enum layoutreturn_type4 {
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL
};

struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
};

union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
};

struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
};

 RESULT

union layoutreturn_stateid switch (bool lrs_present) {
case TRUE:
 stateid4 lrs_stateid;
case FALSE:
 void;
};

union LAYOUTRETURN4res switch (nfsstat4 lorr_status) {
case NFS4_OK:
 layoutreturn_stateid lorr_stateid;
default:
 void;
};

 DESCRIPTION

 This operation returns from the client to the server
 one or more layouts represented by the client ID
 (derived from the session ID in the preceding SEQUENCE
 operation), lora_layout_type, and lora_iomode.
 When lr_returntype is LAYOUTRETURN4_FILE, the
 returned layout is further identified by the current
 filehandle, lrf_offset, lrf_length, and lrf_stateid.
 If the lrf_length field is NFS4_UINT64_MAX, all bytes
 of the layout, starting at lrf_offset, are returned.
 When lr_returntype is LAYOUTRETURN4_FSID, the
 current filehandle is used to identify the file
 system and all layouts matching the client ID,
 the fsid of the file system, lora_layout_type, and
 lora_iomode are returned. When lr_returntype is
 LAYOUTRETURN4_ALL, all layouts matching the client
 ID, lora_layout_type, and lora_iomode are returned
 and the current filehandle is not used. After this
 call, the client MUST NOT use the returned layout(s)
 and the associated storage protocol to access the
 file data.

 If the set of layouts designated in the case of
 LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL is empty, then no error
 results. In the case of LAYOUTRETURN4_FILE, the byte-range
 specified is returned even if it is a subdivision of a layout
 previously obtained with LAYOUTGET, a combination of multiple
 layouts previously obtained with LAYOUTGET, or a combination
 including some layouts previously obtained with LAYOUTGET,
 and one or more subdivisions of such layouts. When the
 byte-range does not designate any bytes for which a layout
 is held for the specified file, client ID, layout type and
 mode, no error results.
 See for considerations with
 "bulk" return of layouts.

 The layout being returned may be a subset
 or superset of a layout specified by CB_LAYOUTRECALL. However,
 if it is a subset, the recall is not complete until the full
 recalled scope has been returned. Recalled scope refers to the
 byte-range in the case of LAYOUTRETURN4_FILE, the use of
 LAYOUTRETURN4_FSID, or the use of LAYOUTRETURN4_ALL. There must
 be a LAYOUTRETURN with a matching scope to complete the return
 even if all current layout ranges have been previously individually
 returned.

 For all lr_returntype values, an iomode of LAYOUTIOMODE4_ANY
 specifies that all layouts that match the other arguments to
 LAYOUTRETURN (i.e., client ID, lora_layout_type, and one of
 current filehandle and range; fsid derived from current
 filehandle; or LAYOUTRETURN4_ALL) are being returned.

 In the case that lr_returntype is LAYOUTRETURN4_FILE, the
 lrf_stateid provided by the client is a layout stateid as
 returned from previous layout operations. Note that the "seqid"
 field of lrf_stateid MUST NOT be zero. See Sections
 , , and
 for a further
 discussion and requirements.

 Return of a layout or all layouts does not invalidate the
 mapping of storage device ID to a storage device address. The
 mapping remains in effect until specifically changed or deleted via
 device ID notification callbacks.
 Of course if there are no remaining
 layouts that refer to a previously used device ID, the server is
 free to delete a device ID without a notification callback, which
 will be the case when notifications are not in effect.

 If the lora_reclaim field is set to TRUE, the
 client is attempting to return a layout that
 was acquired before the restart of the metadata
 server during the metadata server's grace period.
 When returning layouts that were acquired during
 the metadata server's grace period, the client MUST set the
 lora_reclaim field to FALSE. The lora_reclaim field
 MUST be set to FALSE also when lr_layoutreturn is
 LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL. See LAYOUTCOMMIT for
 more details.

 Layouts may be returned when recalled or voluntarily (i.e.,
 before the server has recalled them). In either case, the client
 must properly propagate state changed under the context of the
 layout to the storage device(s) or to the metadata server before
 returning the layout.

 If the client returns the layout in response to a
 CB_LAYOUTRECALL where the lor_recalltype field of the
 clora_recall field was LAYOUTRECALL4_FILE, the client
 should use the lor_stateid value from CB_LAYOUTRECALL
 as the value for lrf_stateid. Otherwise, it should
 use logr_stateid (from a previous LAYOUTGET result)
 or lorr_stateid (from a previous LAYRETURN result).
 This is done to indicate the point in time (in terms
 of layout stateid transitions) when the recall was
 sent. The client uses the precise lora_recallstateid
 value and MUST NOT set the stateid's seqid to
 zero; otherwise, NFS4ERR_BAD_STATEID MUST be
 returned. NFS4ERR_OLD_STATEID can be returned if
 the client is using an old seqid, and the server
 knows the client should not be using the old
 seqid. For example, the client uses the seqid on slot 1 of
 the session, receives the response with the new
 seqid, and uses the slot to send another request
 with the old seqid.

 If a client fails to return a layout
 in a timely manner, then the metadata server SHOULD use its
 control protocol with the storage devices to fence the client
 from accessing the data referenced by the layout. See
 for more details.

 If the LAYOUTRETURN request sets the lora_reclaim field to TRUE after
 the metadata server's grace period, NFS4ERR_NO_GRACE is returned.

 If the LAYOUTRETURN request sets the lora_reclaim field to TRUE
 and lr_returntype is set to LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL,
 NFS4ERR_INVAL is returned.

 If the client sets the lr_returntype field to
 LAYOUTRETURN4_FILE, then the lrs_stateid field
 will represent the layout stateid as updated for
 this operation's processing; the current stateid
 will also be updated to match the returned value.
 If the last byte of any layout for the current
 file, client ID, and layout type is being returned
 and there are no remaining pending CB_LAYOUTRECALL
 operations for which a LAYOUTRETURN operation must be
 done, lrs_present MUST be FALSE, and no stateid
 will be returned. In addition, the COMPOUND request's current
 stateid will be set to the all-zeroes special stateid
 (see). The server
 MUST reject with NFS4ERR_BAD_STATEID any further
 use of the current stateid in that COMPOUND until
 the current stateid is re-established by a later
 stateid-returning operation.

 On success, the current filehandle retains its value.

 If the EXCHGID4_FLAG_BIND_PRINC_STATEID
 capability is set on the client ID (see), the server will
 require that the principal, security flavor,
 and if applicable, the GSS mechanism, combination
 that acquired the layout also be the one to send
 LAYOUTRETURN. This might not be possible
 if credentials for the principal are no
 longer available. The server will allow the
 machine credential or SSV credential (see) to send LAYOUTRETURN
 if LAYOUTRETURN's operation code was set in the
 spo_must_allow result of EXCHANGE_ID.

 IMPLEMENTATION

 The final LAYOUTRETURN operation in response to a CB_LAYOUTRECALL
 callback MUST be serialized with any outstanding, intersecting
 LAYOUTRETURN operations. Note that it is possible that while a
 client is returning the layout for some recalled range, the server
 may recall a superset of that range (e.g., LAYOUTRECALL4_ALL); the final
 return operation for the latter must block until the former layout
 recall is done.

 Returning all layouts in a file system using LAYOUTRETURN4_FSID is
 typically done in response to a CB_LAYOUTRECALL for that file system
 as the final return operation. Similarly, LAYOUTRETURN4_ALL
 is used in response to a recall callback for all layouts. It is
 possible that the client already returned some outstanding layouts
 via individual LAYOUTRETURN calls and the call for
 LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL marks the end of the
 LAYOUTRETURN sequence. See
 for more details.

 Once the client has returned all layouts referring to a particular
 device ID, the server MAY delete the device ID.

 Operation 52: SECINFO_NO_NAME - Get Security on Unnamed Object

 ARGUMENT

enum secinfo_style4 {
 SECINFO_STYLE4_CURRENT_FH = 0,
 SECINFO_STYLE4_PARENT = 1
};

/* CURRENT_FH: object or child directory */
typedef secinfo_style4 SECINFO_NO_NAME4args;

 RESULT

/* CURRENTFH: consumed if status is NFS4_OK */
typedef SECINFO4res SECINFO_NO_NAME4res;

 DESCRIPTION

 Like the SECINFO operation, SECINFO_NO_NAME is used by the
 client to obtain a list of valid RPC authentication flavors for
 a specific file object. Unlike SECINFO, SECINFO_NO_NAME only
 works with objects that are accessed by filehandle.

 There are two styles of SECINFO_NO_NAME, as determined by the
 value of the secinfo_style4 enumeration. If SECINFO_STYLE4_CURRENT_FH is
 passed, then SECINFO_NO_NAME is querying for the required
 security for the current filehandle. If SECINFO_STYLE4_PARENT is passed, then
 SECINFO_NO_NAME is querying for the required security of the
 current filehandle's parent. If the style selected is SECINFO_STYLE4_PARENT,
 then SECINFO should apply the same access methodology used for
 LOOKUPP when evaluating the traversal to the parent directory.
 Therefore, if the requester does not have the appropriate access
 to LOOKUPP the parent, then SECINFO_NO_NAME must behave the same
 way and return NFS4ERR_ACCESS.

 If PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH returns
 NFS4ERR_WRONGSEC, then the client resolves the
 situation by sending a COMPOUND request that consists of
 PUTFH, PUTPUBFH, or PUTROOTFH immediately followed by
 SECINFO_NO_NAME, style SECINFO_STYLE4_CURRENT_FH.
 See
 for instructions on dealing with NFS4ERR_WRONGSEC error
 returns from PUTFH, PUTROOTFH, PUTPUBFH, or RESTOREFH.

 If SECINFO_STYLE4_PARENT is specified and there is no parent
 directory, SECINFO_NO_NAME MUST return NFS4ERR_NOENT.

 On success, the current filehandle is consumed
 (see), and if the
 next operation after SECINFO_NO_NAME tries to use
 the current filehandle, that operation will fail
 with the status NFS4ERR_NOFILEHANDLE.

 Everything else about SECINFO_NO_NAME is the same as SECINFO.
 See the discussion on SECINFO ().

 IMPLEMENTATION

 See the discussion on SECINFO ().

 Operation 53: SEQUENCE - Supply Per-Procedure Sequencing and Control

 ARGUMENT

struct SEQUENCE4args {
 sessionid4 sa_sessionid;
 sequenceid4 sa_sequenceid;
 slotid4 sa_slotid;
 slotid4 sa_highest_slotid;
 bool sa_cachethis;
};

 RESULT

const SEQ4_STATUS_CB_PATH_DOWN = 0x00000001;
const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING = 0x00000002;
const SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED = 0x00000004;
const SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED = 0x00000008;
const SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED = 0x00000010;
const SEQ4_STATUS_ADMIN_STATE_REVOKED = 0x00000020;
const SEQ4_STATUS_RECALLABLE_STATE_REVOKED = 0x00000040;
const SEQ4_STATUS_LEASE_MOVED = 0x00000080;
const SEQ4_STATUS_RESTART_RECLAIM_NEEDED = 0x00000100;
const SEQ4_STATUS_CB_PATH_DOWN_SESSION = 0x00000200;
const SEQ4_STATUS_BACKCHANNEL_FAULT = 0x00000400;
const SEQ4_STATUS_DEVID_CHANGED = 0x00000800;
const SEQ4_STATUS_DEVID_DELETED = 0x00001000;

struct SEQUENCE4resok {
 sessionid4 sr_sessionid;
 sequenceid4 sr_sequenceid;
 slotid4 sr_slotid;
 slotid4 sr_highest_slotid;
 slotid4 sr_target_highest_slotid;
 uint32_t sr_status_flags;
};

union SEQUENCE4res switch (nfsstat4 sr_status) {
case NFS4_OK:
 SEQUENCE4resok sr_resok4;
default:
 void;
};

 DESCRIPTION

 The SEQUENCE operation is
 used by the server to implement session request control
 and the reply cache semantics.

 SEQUENCE MUST appear as the first operation of any COMPOUND
 in which it appears. The error NFS4ERR_SEQUENCE_POS will be
 returned when it is found in any position in a COMPOUND
 beyond the first. Operations other than SEQUENCE, BIND_CONN_TO_SESSION,
 EXCHANGE_ID, CREATE_SESSION, and DESTROY_SESSION,
 MUST NOT appear as the first operation in a
 COMPOUND. Such operations MUST yield the error NFS4ERR_OP_NOT_IN_SESSION
 if they do appear at the start of a COMPOUND.

 If SEQUENCE is received on a connection not associated with the
 session via CREATE_SESSION or BIND_CONN_TO_SESSION, and
 connection association enforcement is enabled
 (see), then
 the server returns NFS4ERR_CONN_NOT_BOUND_TO_SESSION.

 The sa_sessionid argument identifies the session to which this
 request applies. The sr_sessionid result MUST equal
 sa_sessionid.

 The sa_slotid argument is the index in the reply cache
 for the request. The sa_sequenceid field is the sequence
 number of the request for the reply cache entry (slot).
 The sr_slotid result MUST equal sa_slotid. The sr_sequenceid
 result MUST equal sa_sequenceid.

 The sa_highest_slotid argument is the highest slot ID
 for which the client has a request outstanding; it could be
 equal to sa_slotid.
 The server returns two "highest_slotid" values: sr_highest_slotid
 and sr_target_highest_slotid. The former is the highest slot ID
 the server will accept in future SEQUENCE operation, and
 SHOULD NOT be less than the value of sa_highest_slotid
 (but see

 for an exception).
 The latter is the highest slot ID the server would prefer the
 client use on a future SEQUENCE operation.

 If sa_cachethis is TRUE, then the client is requesting that
 the server cache the entire
 reply in the server's reply cache; therefore, the server MUST
 cache the reply (see).
 The server MAY cache the reply if sa_cachethis is FALSE.
 If the server does not cache the entire reply, it
 MUST still record that it executed the request at
 the specified slot and sequence ID.

 The response to the SEQUENCE operation contains a
 word of status flags (sr_status_flags) that can
 provide to the client information related to the
 status of the client's lock state and communications
 paths. Note that any status bits relating to lock
 state MAY be reset when lock state is lost due to a
 server restart (even if the session is persistent across
 restarts; session persistence does not imply
 lock state persistence)
 or the establishment of a new client
 instance.

 SEQ4_STATUS_CB_PATH_DOWN

 When set, indicates that the client has no
 operational backchannel path for any session
 associated with the client ID, making it
 necessary for the client to re-establish one.
 This bit
 remains set on all SEQUENCE responses on all sessions
 associated with the client ID
 until at least one backchannel is
 available on any session associated with the client ID.
 If the client fails to re-establish a
 backchannel for the client ID, it is subject to
 having recallable state revoked.

 SEQ4_STATUS_CB_PATH_DOWN_SESSION

 When set, indicates that the session has
 no operational backchannel. There are two reasons
 why SEQ4_STATUS_CB_PATH_DOWN_SESSION may be set and not
 SEQ4_STATUS_CB_PATH_DOWN. First is that a callback operation
 that applies specifically to the
 session (e.g., CB_RECALL_SLOT, see) needs to be sent.
 Second is that the server did send a callback operation,
 but the connection was lost before the reply. The
 server cannot be sure whether or not the client received the
 callback operation, and so, per rules on
 request retry, the server MUST retry the callback
 operation over the same session. The
 SEQ4_STATUS_CB_PATH_DOWN_SESSION bit is the indication
 to the client that it needs to associate a connection
 to the session's backchannel.
 This bit remains set on all SEQUENCE responses of the
 session until a connection is associated with the
 session's a backchannel.
 If the client fails to re-establish a
 backchannel for the session, it is subject to
 having recallable state revoked.

 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING

 When set, indicates that all GSS contexts or RPCSEC_GSS handles
 assigned to the session's backchannel will expire within a
 period equal to the lease time. This bit remains set on all
 SEQUENCE replies until at least one of the following are true:

 All SSV RPCSEC_GSS handles on the session's backchannel
 have been destroyed and all non-SSV GSS contexts have expired.

 At least one more SSV RPCSEC_GSS handle has been added to
 the backchannel.

 The expiration time of at least one non-SSV GSS context
 of an RPCSEC_GSS handle
 is beyond the lease period from the current
 time (relative to the time of when a SEQUENCE
 response was sent)

 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED

 When set, indicates all non-SSV GSS contexts and all
 SSV RPCSEC_GSS handles assigned
 to the session's backchannel have expired or have been
 destroyed.
 This bit remains set on all SEQUENCE replies
 until at least one non-expired non-SSV GSS context for the
 session's backchannel has been established or at least one
 SSV RPCSEC_GSS handle has been assigned to the backchannel.

 SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED

 When set, indicates that the lease has expired
 and as a result the server released all of the
 client's locking state. This status bit remains
 set on all SEQUENCE replies until the loss of
 all such locks has been acknowledged by use of
 FREE_STATEID (see), or by establishing a new client instance by
 destroying all sessions (via DESTROY_SESSION),
 the client ID (via DESTROY_CLIENTID), and then
 invoking EXCHANGE_ID and CREATE_SESSION to
 establish a new client ID.

 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED

 When set, indicates that some subset of the client's locks
 have been revoked due to expiration of the lease period
 followed by another client's conflicting LOCK operation.
 This status bit remains set on all SEQUENCE replies
 until the loss of all
 such locks has been acknowledged by use of FREE_STATEID.

 SEQ4_STATUS_ADMIN_STATE_REVOKED

 When set, indicates that one or more locks have been revoked
 without expiration of the lease period, due to administrative
 action. This status bit remains set on all SEQUENCE replies
 until the loss of all
 such locks has been acknowledged by use of FREE_STATEID.

 SEQ4_STATUS_RECALLABLE_STATE_REVOKED

	 When set, indicates that one or more recallable
	 objects have been revoked without expiration
	 of the lease period, due to the client's
	 failure to return them when recalled, which
	 may be a consequence of there being no working
	 backchannel and the client failing to re-establish
	 a backchannel per the SEQ4_STATUS_CB_PATH_DOWN,
	 SEQ4_STATUS_CB_PATH_DOWN_SESSION, or
	 SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED status flags.
	 This status bit remains set on all SEQUENCE
	 replies until the loss of all such locks has
	 been acknowledged by use of FREE_STATEID.

 SEQ4_STATUS_LEASE_MOVED

	 When set, indicates that responsibility for lease renewal has
 been transferred to one or more new servers. This condition
 will continue until the client receives an NFS4ERR_MOVED
 error and the server receives the subsequent GETATTR for the
 fs_locations or fs_locations_info attribute for an access to
 each file system for which a lease has been moved to a new
 server. See .

 SEQ4_STATUS_RESTART_RECLAIM_NEEDED

	 When set, indicates that due to server
	 restart, the client must reclaim locking state.
	 Until the client sends a global RECLAIM_COMPLETE
	 (), every
	 SEQUENCE operation will return
	 SEQ4_STATUS_RESTART_RECLAIM_NEEDED.

 SEQ4_STATUS_BACKCHANNEL_FAULT

 The server has encountered an unrecoverable fault
 with the backchannel (e.g., it has lost track of the
 sequence ID for a slot in the backchannel). The
 client MUST stop sending more requests on the
 session's fore channel, wait for all outstanding requests to
 complete on the fore and back channel, and then
 destroy the session.

 SEQ4_STATUS_DEVID_CHANGED

	 The client is using device ID notifications and the server
	 has changed a device ID mapping held by the client. This
	 flag will stay present until the client has obtained the new
	 mapping with GETDEVICEINFO.
	
 SEQ4_STATUS_DEVID_DELETED

	 The client is using device ID notifications and the server
	 has deleted a device ID mapping held by the client.
 This flag will stay in effect until the client sends a GETDEVICEINFO
 on the device ID with a null value in the argument gdia_notify_types.
	

 The value of the sa_sequenceid argument relative to
 the cached sequence ID on the slot falls into one
 of three cases.

 If the difference between sa_sequenceid and
 the server's cached sequence ID at the slot ID
 is two (2) or more,
 or if sa_sequenceid is less
 than the cached sequence ID (accounting
 for wraparound of the unsigned sequence ID value),
 then the server MUST return NFS4ERR_SEQ_MISORDERED.

 If sa_sequenceid and the cached sequence ID are
 the same, this is a retry, and the server replies
 with what is recorded in the reply
 cache.
The lease is possibly renewed as described below.

 If sa_sequenceid is one greater (accounting for
 wraparound) than the cached sequence ID, then
 this is a new request, and the slot's sequence
 ID is incremented. The operations subsequent to
 SEQUENCE, if any, are processed. If there are no
 other operations, the only other effects are to
 cache the SEQUENCE reply in the slot, maintain the
 session's activity, and possibly renew the lease.

 If the client reuses a slot ID and sequence ID for
 a completely different request, the server MAY treat
 the request as if it is a retry of what it has already
 executed. The server MAY however detect the client's
 illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

 If SEQUENCE returns an error, then the state of the
 slot (sequence ID, cached reply) MUST NOT change,
 and the associated lease MUST NOT be renewed.

 If SEQUENCE returns NFS4_OK, then the associated
 lease MUST be renewed (see),
 except if SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED is
 returned in sr_status_flags.

 IMPLEMENTATION

 The server MUST maintain a mapping of session ID to client ID
 in order to validate any operations that follow SEQUENCE
 that take a stateid as an argument and/or result.

 If the client establishes a persistent session, then
 a SEQUENCE received after a server restart might encounter
 requests performed and recorded in a persistent reply
 cache before the server restart. In this case, SEQUENCE
 will be processed successfully, while requests that
 were not previously performed and recorded are rejected with
 NFS4ERR_DEADSESSION.

 Depending on which of the operations within the COMPOUND were
 successfully
 performed before the server restart, these operations will
 also have replies sent from the server reply cache.
 Note that when these operations establish locking state, it
 is locking state that applies to the previous server instance
 and to the previous client ID, even though the
 server restart, which logically happened after these
 operations, eliminated that state. In the
 case of a partially executed COMPOUND, processing may reach
 an operation not processed during the earlier server instance,
 making this operation a new one and not performable on the
 existing session. In this case, NFS4ERR_DEADSESSION will be
 returned from that operation.

 Operation 54: SET_SSV - Update SSV for a Client ID

 ARGUMENT

struct ssa_digest_input4 {
 SEQUENCE4args sdi_seqargs;
};

struct SET_SSV4args {
 opaque ssa_ssv<>;
 opaque ssa_digest<>;
};

 RESULT

struct ssr_digest_input4 {
 SEQUENCE4res sdi_seqres;
};

struct SET_SSV4resok {
 opaque ssr_digest<>;
};

union SET_SSV4res switch (nfsstat4 ssr_status) {
case NFS4_OK:
 SET_SSV4resok ssr_resok4;
default:
 void;
};

 DESCRIPTION

 This operation is used to update the
 SSV for a client ID. Before SET_SSV is called the
 first time on a client ID, the SSV is zero.
 The SSV is the key used for the SSV GSS mechanism
 ()

 SET_SSV MUST be preceded by a
 SEQUENCE operation in the same COMPOUND.
 It MUST NOT be used if the client
 did not opt for SP4_SSV state protection when the
 client ID was created
 (see);
 the server returns NFS4ERR_INVAL in that case.

 The field ssa_digest is computed as the output of
 the HMAC (RFC 2104) using the subkey derived
 from the SSV4_SUBKEY_MIC_I2T and current SSV
 as the key (see for a
 description of subkeys), and an XDR encoded value of data type ssa_digest_input4.
 The field sdi_seqargs is equal to the
 arguments of the SEQUENCE operation
 for the COMPOUND procedure that
 SET_SSV is within.

 The argument ssa_ssv
 is XORed with the current SSV to produce
 the new SSV. The argument ssa_ssv SHOULD be generated randomly.

 In the response, ssr_digest is the output of the HMAC using the
 subkey derived from SSV4_SUBKEY_MIC_T2I and new SSV as the key,
 and an XDR encoded value of data type ssr_digest_input4. The
 field sdi_seqres is equal to the results of the SEQUENCE
 operation for the COMPOUND procedure that SET_SSV is within.

 As noted in , the client and
 server can maintain multiple concurrent versions of the SSV.
 The client and server each MUST maintain an internal
 SSV version number, which is set to one the first time
 SET_SSV executes on the server and the client
 receives the first SET_SSV reply. Each subsequent
 SET_SSV increases the internal SSV version number by one. The
 value of this version number corresponds to the smpt_ssv_seq,
 smt_ssv_seq, sspt_ssv_seq, and ssct_ssv_seq fields of the
 SSV GSS mechanism tokens (see).

 IMPLEMENTATION

 When the server receives ssa_digest, it MUST verify the digest
 by computing the digest the same way the client did and
 comparing it with ssa_digest. If the server gets a different
 result, this is an error, NFS4ERR_BAD_SESSION_DIGEST.
 This error might be the result of another SET_SSV from the
 same client ID changing the SSV. If so, the client recovers
 by sending a SET_SSV operation again with a recomputed digest based on
 the subkey of the new SSV. If the transport connection is dropped after
 the SET_SSV request is sent, but before the
 SET_SSV reply is received, then there are special considerations
 for recovery if the client has no more connections associated
 with sessions associated with the client ID of the SSV. See
 .

 Clients SHOULD NOT send an ssa_ssv that is equal to a previous
 ssa_ssv, nor equal to a previous or current SSV (including an ssa_ssv equal to zero
 since the SSV is initialized to zero when the client ID is created).

 Clients SHOULD send SET_SSV with RPCSEC_GSS privacy. Servers
 MUST support RPCSEC_GSS with privacy for any COMPOUND that has {
 SEQUENCE, SET_SSV }.

 A client SHOULD NOT send SET_SSV with the SSV GSS
 mechanism's credential because the purpose of SET_SSV
 is to seed the SSV from non-SSV credentials. Instead,
 SET_SSV SHOULD be sent with the credential of
 a user that is accessing the client ID for the
 first time

 ().

 However, if the client does send SET_SSV with SSV
 credentials, the digest protecting the arguments
 uses the value of the SSV before ssa_ssv is XORed in,
 and the digest protecting the results uses the value
 of the SSV after the ssa_ssv is XORed in.

 Operation 55: TEST_STATEID - Test Stateids for Validity

 ARGUMENT

struct TEST_STATEID4args {
 stateid4 ts_stateids<>;
};

 RESULT

struct TEST_STATEID4resok {
 nfsstat4 tsr_status_codes<>;
};

union TEST_STATEID4res switch (nfsstat4 tsr_status) {
 case NFS4_OK:
 TEST_STATEID4resok tsr_resok4;
 default:
 void;
};

 DESCRIPTION

 The TEST_STATEID operation is used to check the validity of
 a set of stateids. It can be used at any time, but the client
 should definitely use it when it
 receives an indication that one or more of its stateids have been
 invalidated due to lock revocation. This occurs when the SEQUENCE
 operation returns with one of the following sr_status_flags set:

 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED

 SEQ4_STATUS_EXPIRED_ADMIN_STATE_REVOKED

 SEQ4_STATUS_EXPIRED_RECALLABLE_STATE_REVOKED

 The client can use TEST_STATEID one or more times to test the
 validity of its stateids. Each use of TEST_STATEID allows a large
 set of such stateids to be tested and avoids problems with earlier
 stateids in a COMPOUND request from interfering with the checking of
 subsequent stateids, as would happen if individual stateids were
 tested by a series of corresponding by operations in a COMPOUND
 request.

 For each stateid, the server returns the status code that
 would be returned if that stateid were to be used in normal
 operation. Returning such a status indication is not an
 error and does not cause COMPOUND processing to terminate. Checks
 for the validity of the stateid proceed as they would for
 normal operations with a number of exceptions:

 There is no check for the type of stateid object, as would be
 the case for normal use of a stateid.

 There is no reference to the current filehandle.

 Special stateids are always considered invalid (they result
 in the error code NFS4ERR_BAD_STATEID).

 All stateids are interpreted as being associated with the client
 for the current session. Any possible association with a previous
 instance of the client (as stale stateids) is not considered.

 The valid status values in the returned status_code array
 are NFS4ERR_OK, NFS4ERR_BAD_STATEID, NFS4ERR_OLD_STATEID,
 NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, and NFS4ERR_DELEG_REVOKED.

 IMPLEMENTATION

 See Sections and

 for a discussion of stateid structure, lifetime, and validation.

 Operation 56: WANT_DELEGATION - Request Delegation

 ARGUMENT

union deleg_claim4 switch (open_claim_type4 dc_claim) {
/*
 * No special rights to object. Ordinary delegation
 * request of the specified object. Object identified
 * by filehandle.
 */
case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

/*
 * Right to file based on a delegation granted
 * to a previous boot instance of the client.
 * File is specified by filehandle.
 */
case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: object being delegated */
 void;

/*
 * Right to the file established by an open previous
 * to server reboot. File identified by filehandle.
 * Used during server reclaim grace period.
 */
case CLAIM_PREVIOUS:
 /* CURRENT_FH: object being reclaimed */
 open_delegation_type4 dc_delegate_type;
};

struct WANT_DELEGATION4args {
 uint32_t wda_want;
 deleg_claim4 wda_claim;
};

 RESULT

union WANT_DELEGATION4res switch (nfsstat4 wdr_status) {
case NFS4_OK:
 open_delegation4 wdr_resok4;
default:
 void;
};

 DESCRIPTION

 Where this description mandates the return of a specific error
 code for a specific condition, and where multiple conditions
 apply, the server MAY return any of the mandated error codes.

 This operation allows a client to:

 Get a delegation on all types
 of files except directories.

 Register a "want" for a delegation for the
 specified file object, and be notified via a
 callback when the delegation is available. The
 server MAY support notifications of availability
 via callbacks. If the server does not support
 registration of wants, it MUST NOT return
 an error to indicate that, and instead MUST
 return with ond_why set to WND4_CONTENTION or
 WND4_RESOURCE and ond_server_will_push_deleg or
 ond_server_will_signal_avail set to FALSE. When the
 server indicates that it will notify the client
 by means of a callback, it will either provide
 the delegation using a CB_PUSH_DELEG operation or
 cancel its promise by sending a CB_WANTS_CANCELLED
 operation.

 Cancel a want for a delegation.

 The client SHOULD NOT set OPEN4_SHARE_ACCESS_READ and SHOULD NOT
 set OPEN4_SHARE_ACCESS_WRITE in wda_want. If it does, the server
 MUST ignore them.

 The meanings of the following flags in wda_want are the same as
 they are in OPEN, except as noted below.

 OPEN4_SHARE_ACCESS_WANT_READ_DELEG

 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG

 OPEN4_SHARE_ACCESS_WANT_ANY_DELEG

 OPEN4_SHARE_ACCESS_WANT_NO_DELEG. Unlike the OPEN operation,
 this flag SHOULD NOT be set by the client in the arguments to
 WANT_DELEGATION, and MUST be ignored by the server.

 OPEN4_SHARE_ACCESS_WANT_CANCEL

 OPEN4_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL

 OPEN4_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

 The handling of the above flags in WANT_DELEGATION is the same
 as in OPEN. Information about the delegation and/or the
 promises the server is making regarding future callbacks are
 the same as those described in the open_delegation4 structure.

 The successful results of WANT_DELEGATION are of data type
 open_delegation4, which is the same data type as the "delegation"
 field in the results of the OPEN operation
 (see).
 The server constructs wdr_resok4 the same way it constructs
 OPEN's "delegation" with one difference:
 WANT_DELEGATION MUST NOT return a delegation type of
 OPEN_DELEGATE_NONE.

 If ((wda_want & OPEN4_SHARE_ACCESS_WANT_DELEG_MASK) &
 ~OPEN4_SHARE_ACCESS_WANT_NO_DELEG) is zero,
 then the client is indicating no
 explicit desire or non-desire for a delegation and the server MUST return
 NFS4ERR_INVAL.

 The client uses the
 OPEN4_SHARE_ACCESS_WANT_CANCEL
 flag in the WANT_DELEGATION
 operation to cancel a previously requested want for a delegation.
 Note that if the server is in the process of sending the
 delegation (via CB_PUSH_DELEG) at the time the client sends
 a cancellation of the want, the delegation might still be pushed
 to the client.

 If WANT_DELEGATION fails to return a delegation, and
 the server returns NFS4_OK, the server MUST set the
 delegation type to OPEN4_DELEGATE_NONE_EXT, and set
 od_whynone, as described in . Write delegations are not available for
 file types that are not writable. This includes
 file objects of types NF4BLK, NF4CHR, NF4LNK,
 NF4SOCK, and NF4FIFO. If the client requests
 OPEN4_SHARE_ACCESS_WANT_WRITE_DELEG without
 OPEN4_SHARE_ACCESS_WANT_READ_DELEG on an object with
 one of the aforementioned file types, the server must
 set wdr_resok4.od_whynone.ond_why to
 WND4_WRITE_DELEG_NOT_SUPP_FTYPE.

 IMPLEMENTATION

 A request for a conflicting delegation is not normally intended to trigger
 the recall of the existing delegation. Servers may choose to treat
 some clients as having higher priority such that their wants will
 trigger recall of an existing delegation, although that is expected
 to be an unusual situation.

 Servers will generally recall delegations assigned by WANT_DELEGATION
 on the same basis as those assigned by OPEN. CB_RECALL will generally
 be done only when other clients perform operations inconsistent with
 the delegation. The normal response to aging of delegations is to use
 CB_RECALL_ANY, in order to give the client the opportunity to keep
 the delegations most useful from its point of view.

 Operation 57: DESTROY_CLIENTID - Destroy a Client ID

 ARGUMENT

struct DESTROY_CLIENTID4args {
 clientid4 dca_clientid;
};

 RESULT

struct DESTROY_CLIENTID4res {
 nfsstat4 dcr_status;
};

 DESCRIPTION

 The DESTROY_CLIENTID operation destroys the
 client ID. If there are sessions (both idle and
 non-idle), opens, locks, delegations, layouts,
 and/or wants ()
 associated with the unexpired lease of the client
 ID, the server MUST return NFS4ERR_CLIENTID_BUSY.
 DESTROY_CLIENTID MAY be preceded with a SEQUENCE
 operation as long as the client ID derived from the
 session ID of SEQUENCE is not the same as the client
 ID to be destroyed. If the client IDs are the same,
 then the server MUST return NFS4ERR_CLIENTID_BUSY.

 If DESTROY_CLIENTID is not prefixed by SEQUENCE,
 it MUST be the only operation in the COMPOUND
 request (otherwise, the server MUST return
 NFS4ERR_NOT_ONLY_OP). If the operation is sent
 without a SEQUENCE preceding it, a client that
 retransmits the request may receive an error in
 response, because the original request might have
 been successfully executed.

 IMPLEMENTATION

 DESTROY_CLIENTID allows a server to immediately
 reclaim the resources consumed by an unused client
 ID, and also to forget that it ever generated the
 client ID. By forgetting that it ever generated the client
 ID, the server can safely reuse the client ID on a
 future EXCHANGE_ID operation.

 Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished

 ARGUMENT

struct RECLAIM_COMPLETE4args {
 /*
 * If rca_one_fs TRUE,
 *
 * CURRENT_FH: object in
 * file system reclaim is
 * complete for.
 */
 bool rca_one_fs;
};

 RESULTS

struct RECLAIM_COMPLETE4res {
 nfsstat4 rcr_status;
};

 DESCRIPTION

 A RECLAIM_COMPLETE operation is used to indicate that the client
 has reclaimed all of the locking state that it will recover using
 reclaim,
 when it is recovering state due to either a server restart or the
 migration of a file system to another server. There are two types
 of RECLAIM_COMPLETE operations:

 When rca_one_fs is FALSE, a global RECLAIM_COMPLETE is being
 done. This indicates that recovery of all
 locks that the client held on the previous server instance
 has been completed. The current filehandle need not be set in
	 this case.

 When rca_one_fs is TRUE, a file system-specific RECLAIM_COMPLETE
 is being done. This indicates that recovery of locks
 for a single fs (the one designated by the current filehandle)
 due to the migration of the file system has been completed. Presence
 of a current filehandle is required when rca_one_fs is set to TRUE.
	 When the current filehandle designates a filehandle in a file system
	 not in the process of migration, the operation returns NFS4_OK and
	 is otherwise ignored.

 Once a RECLAIM_COMPLETE is done, there can be no further
 reclaim operations for locks whose scope is defined as having
 completed recovery. Once the client sends RECLAIM_COMPLETE,
 the server will not allow the client to do
 subsequent reclaims of locking state for that scope
 and, if these are attempted, will return NFS4ERR_NO_GRACE.

 Whenever a client establishes a new client ID and before it does
 the first non-reclaim operation that obtains a lock, it MUST send a
 RECLAIM_COMPLETE with rca_one_fs set to FALSE, even if there
 are no locks to
 reclaim. If non-reclaim
 locking operations are done before the RECLAIM_COMPLETE, an NFS4ERR_GRACE
 error will be returned.

 Similarly, when the client accesses a migrated file system on a new
 server, before it sends the first non-reclaim operation that
 obtains a lock on this new server, it MUST send a RECLAIM_COMPLETE
 with rca_one_fs set to TRUE and current filehandle within that file system,
 even if there are no locks to reclaim. If non-reclaim locking
 operations are done on that file system before the
 RECLAIM_COMPLETE, an NFS4ERR_GRACE error will be returned.

 It should be noted that there are situations in which a client needs
 to issue both forms of RECLAIM_COMPLETE. An example is an instance
 of file system migration in which the file system is migrated to a
 server for which the client has no clientid. As a result, the client
 needs to obtain a clientid from the server (incurring the responsibility
 to do RECLAIM_COMPLETE with rca_one_fs set to FALSE) as well as
 RECLAIM_COMPLETE with rca_one_fs set to TRUE to complete the per-fs
 grace period associated with the file system migration. These two
 may be done in any order as long as all necessary lock reclaims
 have been done before
 issuing either of them.

 Any locks not reclaimed at the point at which RECLAIM_COMPLETE
 is done become non-reclaimable. The client MUST NOT attempt
 to reclaim them, either during
 the current server instance or in any subsequent
 server instance, or on another server to which responsibility
 for that file system is transferred. If the client were to do so,
 it would be
 violating the protocol by representing itself as owning locks
 that it does not own, and so has no right to reclaim. See
 for a
 discussion of edge conditions related to lock reclaim.

 By sending a RECLAIM_COMPLETE, the client indicates readiness
 to proceed to do normal non-reclaim locking operations. The client
 should be aware that such operations may temporarily result in
 NFS4ERR_GRACE errors until the server is ready to terminate its
 grace period.

 IMPLEMENTATION

 Servers will typically use the information as to when reclaim
 activity is complete to reduce the length of the grace period.
 When the server maintains in persistent storage
 a list of clients that might have had locks,
 it is able to use the fact that
 all such clients have done a RECLAIM_COMPLETE to terminate the
 grace period and begin normal operations (i.e., grant requests
 for new locks) sooner than it might otherwise.

 Latency can be minimized by doing a RECLAIM_COMPLETE as part of
 the COMPOUND request in which the last lock-reclaiming operation
 is done. When there are no reclaims to be done, RECLAIM_COMPLETE
 should be done immediately in order to allow the grace period
 to end as soon as possible.

 RECLAIM_COMPLETE should only be done once for each server instance
 or occasion of the transition of a file system.
 If it is done a second time, the error NFS4ERR_COMPLETE_ALREADY will
 result. Note that because of the session feature's retry protection,
 retries of COMPOUND
 requests containing RECLAIM_COMPLETE operation will not result
 in this error.

 When a RECLAIM_COMPLETE is sent, the client effectively acknowledges
 any locks not yet reclaimed as lost. This allows the server to
 re-enable the client to recover locks if the occurrence of edge
 conditions, as described in
 ,
 had caused the server to disable the client's ability to
 recover locks.

 Because previous descriptions of RECLAIM_COMPLETE were not
 sufficiently explicit about the circumstances in which use of
 RECLAIM_COMPLETE with rca_one_fs set to TRUE was appropriate,
 there have been cases in which it has been misused by clients who
 have issued RECLAIM_COMPLETE with rca_one_fs set to TRUE when it
 should have not been. There have also been
 cases in which servers have, in various ways, not responded to
 such misuse as described above, either ignoring the rca_one_fs
 setting (treating the operation as a global RECLAIM_COMPLETE) or
 ignoring the entire operation.

 While clients SHOULD NOT misuse
 this feature, and servers SHOULD respond to such misuse as described
 above, implementors need to be aware of the following considerations
 as they make necessary trade-offs between interoperability with
 existing implementations and proper support for facilities to
 allow lock recovery in the event of file system migration.

	When servers have no support for becoming the destination server
	of a file system subject to migration, there is no possibility of
	a per-fs RECLAIM_COMPLETE being done legitimately, and occurrences of it
	 SHOULD be ignored. However, the negative consequences of accepting
	such mistaken use are quite limited as long as the client does
	not issue it
	before all necessary reclaims are done.

	When a server might become the destination for a file system being
	migrated, inappropriate use of per-fs RECLAIM_COMPLETE is more
	concerning. In the case in which the file system designated is not
	within a per-fs grace period, the per-fs RECLAIM_COMPLETE SHOULD
	be ignored, with the
	negative consequences of accepting it being limited, as in the
	case in which migration is not supported. However, if the server
	encounters a file system undergoing migration, the operation
	cannot be accepted
	as if it were a global RECLAIM_COMPLETE without invalidating its
	intended use.

 Operation 10044: ILLEGAL - Illegal Operation

 ARGUMENTS

void;

 RESULTS

struct ILLEGAL4res {
 nfsstat4 status;
};

 DESCRIPTION

 This operation is a placeholder for encoding a result to handle the
 case of the client sending an operation code within COMPOUND that is
 not supported. See the COMPOUND procedure description for more
 details.

 The status field of ILLEGAL4res MUST be set to NFS4ERR_OP_ILLEGAL.

 IMPLEMENTATION

 A client will probably not send an operation with code OP_ILLEGAL but
 if it does, the response will be ILLEGAL4res just as it would be with
 any other invalid operation code. Note that if the server gets an
 illegal operation code that is not OP_ILLEGAL, and if the server
 checks for legal operation codes during the XDR decode phase, then the
 ILLEGAL4res would not be returned.

 NFSv4.1 Callback Procedures

The procedures used for callbacks are defined in the following
sections. In the interest of clarity, the terms "client" and "server"
refer to NFS clients and servers, despite the fact that for an
individual callback RPC, the sense of these terms would be precisely
the opposite.

 Both procedures, CB_NULL and CB_COMPOUND, MUST be implemented.

 Procedure 0: CB_NULL - No Operation

 ARGUMENTS

void;

 RESULTS

void;

 DESCRIPTION

 CB_NULL is the standard ONC RPC NULL procedure, with the standard void argument and void response. Even though
 there is no direct functionality associated with this procedure, the
 server will use CB_NULL to confirm the existence of a path for RPCs
 from the server to client.

 ERRORS

 None.

 Procedure 1: CB_COMPOUND - Compound Operations

 ARGUMENTS

enum nfs_cb_opnum4 {
 OP_CB_GETATTR = 3,
 OP_CB_RECALL = 4,
/* Callback operations new to NFSv4.1 */
 OP_CB_LAYOUTRECALL = 5,
 OP_CB_NOTIFY = 6,
 OP_CB_PUSH_DELEG = 7,
 OP_CB_RECALL_ANY = 8,
 OP_CB_RECALLABLE_OBJ_AVAIL = 9,
 OP_CB_RECALL_SLOT = 10,
 OP_CB_SEQUENCE = 11,
 OP_CB_WANTS_CANCELLED = 12,
 OP_CB_NOTIFY_LOCK = 13,
 OP_CB_NOTIFY_DEVICEID = 14,

 OP_CB_ILLEGAL = 10044
};

union nfs_cb_argop4 switch (unsigned argop) {
 case OP_CB_GETATTR:
 CB_GETATTR4args opcbgetattr;
 case OP_CB_RECALL:
 CB_RECALL4args opcbrecall;
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4args opcblayoutrecall;
 case OP_CB_NOTIFY:
 CB_NOTIFY4args opcbnotify;
 case OP_CB_PUSH_DELEG:
 CB_PUSH_DELEG4args opcbpush_deleg;
 case OP_CB_RECALL_ANY:
 CB_RECALL_ANY4args opcbrecall_any;
 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4args opcbrecallable_obj_avail;
 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4args opcbrecall_slot;
 case OP_CB_SEQUENCE:
 CB_SEQUENCE4args opcbsequence;
 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4args opcbwants_cancelled;
 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4args opcbnotify_lock;
 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4args opcbnotify_deviceid;
 case OP_CB_ILLEGAL: void;
};

struct CB_COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 uint32_t callback_ident;
 nfs_cb_argop4 argarray<>;
};

 RESULTS

union nfs_cb_resop4 switch (unsigned resop) {
 case OP_CB_GETATTR: CB_GETATTR4res opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4res opcbrecall;

 /* new NFSv4.1 operations */
 case OP_CB_LAYOUTRECALL:
 CB_LAYOUTRECALL4res
 opcblayoutrecall;

 case OP_CB_NOTIFY: CB_NOTIFY4res opcbnotify;

 case OP_CB_PUSH_DELEG: CB_PUSH_DELEG4res
 opcbpush_deleg;

 case OP_CB_RECALL_ANY: CB_RECALL_ANY4res
 opcbrecall_any;

 case OP_CB_RECALLABLE_OBJ_AVAIL:
 CB_RECALLABLE_OBJ_AVAIL4res
 opcbrecallable_obj_avail;

 case OP_CB_RECALL_SLOT:
 CB_RECALL_SLOT4res
 opcbrecall_slot;

 case OP_CB_SEQUENCE: CB_SEQUENCE4res opcbsequence;

 case OP_CB_WANTS_CANCELLED:
 CB_WANTS_CANCELLED4res
 opcbwants_cancelled;

 case OP_CB_NOTIFY_LOCK:
 CB_NOTIFY_LOCK4res
 opcbnotify_lock;

 case OP_CB_NOTIFY_DEVICEID:
 CB_NOTIFY_DEVICEID4res
 opcbnotify_deviceid;

 /* Not new operation */
 case OP_CB_ILLEGAL: CB_ILLEGAL4res opcbillegal;
};

struct CB_COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_cb_resop4 resarray<>;
};

 DESCRIPTION

 The CB_COMPOUND procedure is used to combine one or more of the
 callback procedures into a single RPC request. The main callback RPC
 program has two main procedures: CB_NULL and CB_COMPOUND. All other
 operations use the CB_COMPOUND procedure as a wrapper.

 During the processing of the CB_COMPOUND procedure, the client may find
 that it does not have the available resources to execute any or all of
 the operations within the CB_COMPOUND sequence.
 Refer to for details.

 The minorversion field of the arguments MUST be the same as the
 minorversion of the COMPOUND procedure used to create the client ID
 and session. For NFSv4.1, minorversion MUST be set to 1.

 Contained within the CB_COMPOUND results is a "status" field. This
 status MUST be equal to the status of the last operation that was
 executed within the CB_COMPOUND procedure. Therefore, if an operation
 incurred an error, then the "status" value will be the same error value
 as is being returned for the operation that failed.

 The "tag" field is handled the same way as that of the COMPOUND
 procedure (see).

 Illegal operation codes are handled in the same way as they are
 handled for the COMPOUND procedure.

 IMPLEMENTATION

 The CB_COMPOUND procedure is used to combine individual operations
 into a single RPC request. The client interprets each of the
 operations in turn. If an operation is executed by the client and
 the status of that operation is NFS4_OK, then the next operation in
 the CB_COMPOUND procedure is executed. The client continues this
 process until there are no more operations to be executed or one of
 the operations has a status value other than NFS4_OK.

 ERRORS

 CB_COMPOUND will of course return every error that each operation on
 the backchannel can return (see).
 However, if CB_COMPOUND returns zero operations, obviously the error
 returned by COMPOUND has nothing to do with an error returned by
 an operation. The list of errors CB_COMPOUND will return if it processes
 zero operations includes:

 CB_COMPOUND Error Returns

 Error
 Notes

 NFS4ERR_BADCHAR
 The tag argument has a character the replier
 does not support.

 NFS4ERR_BADXDR

 NFS4ERR_DELAY

 NFS4ERR_INVAL
 The tag argument is not in UTF-8 encoding.

 NFS4ERR_MINOR_VERS_MISMATCH

 NFS4ERR_SERVERFAULT

 NFS4ERR_TOO_MANY_OPS

 NFS4ERR_REP_TOO_BIG

 NFS4ERR_REP_TOO_BIG_TO_CACHE

 NFS4ERR_REQ_TOO_BIG

 NFSv4.1 Callback Operations

 Operation 3: CB_GETATTR - Get Attributes

 ARGUMENT

struct CB_GETATTR4args {
 nfs_fh4 fh;
 bitmap4 attr_request;
};

 RESULT

struct CB_GETATTR4resok {
 fattr4 obj_attributes;
};

union CB_GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 CB_GETATTR4resok resok4;
 default:
 void;
};

 DESCRIPTION

 The CB_GETATTR operation is used by the server to obtain the
 current modified state of a file that has been OPEN_DELEGATE_WRITE delegated.
 The size and change attributes are the only ones guaranteed to be
 serviced by the client. See for a full description
 of how the client and server are to interact with
 the use of CB_GETATTR.

 If the filehandle specified is not one for which the client holds an
 OPEN_DELEGATE_WRITE delegation, an NFS4ERR_BADHANDLE error is returned.

 IMPLEMENTATION

 The client returns attrmask bits and the associated attribute
 values only for the change attribute, and attributes that it may
 change (time_modify, and size).

 Operation 4: CB_RECALL - Recall a Delegation

 ARGUMENT

struct CB_RECALL4args {
 stateid4 stateid;
 bool truncate;
 nfs_fh4 fh;
};

 RESULT

struct CB_RECALL4res {
 nfsstat4 status;
};

 DESCRIPTION

 The CB_RECALL operation is used to begin the process of recalling
 a delegation and returning it to the server.

 The truncate flag is used to optimize recall for a file object that
 is a regular file and is
 about to be truncated to zero. When it is TRUE, the client is freed
 of the obligation to propagate modified data for the file to the
 server, since this data is irrelevant.

 If the handle specified is not one for which the client holds a
 delegation, an NFS4ERR_BADHANDLE error is returned.

 If the stateid specified is not one corresponding to an OPEN
 delegation for the file specified by the filehandle, an
 NFS4ERR_BAD_STATEID is returned.

 IMPLEMENTATION

 The client SHOULD reply to the callback immediately.
 Replying does not complete the recall except when
 the value of the reply's status field is neither
 NFS4ERR_DELAY nor NFS4_OK. The recall is not complete
 until the delegation is returned using a DELEGRETURN
 operation.

 Operation 5: CB_LAYOUTRECALL - Recall Layout from Client

 ARGUMENT

/*
 * NFSv4.1 callback arguments and results
 */

enum layoutrecall_type4 {
 LAYOUTRECALL4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRECALL4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRECALL4_ALL = LAYOUT4_RET_REC_ALL
};

struct layoutrecall_file4 {
 nfs_fh4 lor_fh;
 offset4 lor_offset;
 length4 lor_length;
 stateid4 lor_stateid;
};

union layoutrecall4 switch(layoutrecall_type4 lor_recalltype) {
case LAYOUTRECALL4_FILE:
 layoutrecall_file4 lor_layout;
case LAYOUTRECALL4_FSID:
 fsid4 lor_fsid;
case LAYOUTRECALL4_ALL:
 void;
};

struct CB_LAYOUTRECALL4args {
 layouttype4 clora_type;
 layoutiomode4 clora_iomode;
 bool clora_changed;
 layoutrecall4 clora_recall;
};

 RESULT

struct CB_LAYOUTRECALL4res {
 nfsstat4 clorr_status;
};

 DESCRIPTION

 The CB_LAYOUTRECALL operation is used by the server to recall
 layouts from the client; as a result, the client will begin the
 process of returning layouts via LAYOUTRETURN. The
 CB_LAYOUTRECALL operation specifies one of three forms of recall
 processing with the value of layoutrecall_type4. The recall is
 for one of the following: a specific layout of a specific file
 (LAYOUTRECALL4_FILE), an entire file system ID
 (LAYOUTRECALL4_FSID), or all file systems (LAYOUTRECALL4_ALL).

 The behavior of the operation varies based on the value of the
 layoutrecall_type4. The value and behaviors are:

 LAYOUTRECALL4_FILE

 For a layout to match the recall request, the values of the following fields
 must match those of the layout: clora_type, clora_iomode,
 lor_fh, and the byte-range specified by lor_offset and
 lor_length. The clora_iomode field may have a special value
 of LAYOUTIOMODE4_ANY. The special value LAYOUTIOMODE4_ANY will match any
 iomode originally returned in a layout; therefore, it acts as a
 wild card. The other special value used is for
 lor_length. If lor_length has a value of NFS4_UINT64_MAX, the
 lor_length field means the maximum possible file size. If a
 matching layout is found, it MUST be returned using the
 LAYOUTRETURN operation (see).
 An example of the field's special value use is if clora_iomode
 is LAYOUTIOMODE4_ANY, lor_offset is zero, and lor_length is
	NFS4_UINT64_MAX, then the entire layout is to be returned.

 The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the
 client does not hold layouts for the file or if the client
 does not have any overlapping layouts for the specification in
	the layout recall.

 LAYOUTRECALL4_FSID and LAYOUTRECALL4_ALL

 If LAYOUTRECALL4_FSID is specified, the fsid specifies the
 file system for which any outstanding layouts MUST be
 returned. If LAYOUTRECALL4_ALL is specified, all outstanding
 layouts MUST be returned. In addition, LAYOUTRECALL4_FSID and
 LAYOUTRECALL4_ALL specify that all the storage device ID to
 storage device address mappings in the affected file system(s)
 are also recalled. The respective LAYOUTRETURN with either
 LAYOUTRETURN4_FSID or LAYOUTRETURN4_ALL acknowledges to the
 server that the client invalidated the said device mappings.
 See for considerations with
 "bulk" recall of layouts.

 The NFS4ERR_NOMATCHING_LAYOUT error is only returned when the
 client does not hold layouts and does not have valid deviceid
	mappings.

 In processing the layout recall request, the client also varies
 its behavior based on the value of the clora_changed field. This
 field is used by the server to provide additional context for
 the reason why the layout is being recalled. A FALSE value for
 clora_changed indicates that no change in the layout is expected
 and the client may write modified data to the storage devices
 involved; this must be done prior to returning the layout via
 LAYOUTRETURN. A TRUE value for clora_changed indicates that the
 server is changing the layout. Examples of layout changes and
 reasons for a TRUE indication are the following: the metadata server is restriping
 the file or a permanent error has occurred on a storage device
 and the metadata server would like to provide a new layout for
 the file. Therefore, a clora_changed value of TRUE indicates
 some level of change for the layout and the client SHOULD NOT
 write and commit modified data to the storage devices. In this
 case, the client writes and commits data through the metadata
 server.

 See for a description of how the
 lor_stateid field in the arguments is to be constructed. Note
 that the "seqid" field of lor_stateid MUST NOT be zero. See Sections
 , , and
 for a further
 discussion and requirements.

 IMPLEMENTATION

 The client's processing for CB_LAYOUTRECALL is similar to
 CB_RECALL (recall of file delegations) in that
 the client responds to
 the request before actually returning layouts via the
 LAYOUTRETURN operation. While the client responds to the
 CB_LAYOUTRECALL immediately, the operation is not considered
 complete (i.e., considered pending) until all affected layouts are returned to the server
 via the LAYOUTRETURN operation.

 Before returning the layout to the server via LAYOUTRETURN, the
 client should wait for the response from in-process or in-flight
 READ, WRITE, or COMMIT operations that use the recalled layout.

 If the client is holding modified data that is affected by a
 recalled layout, the client has various options for writing the
 data to the server. As always, the client may write the data
 through the metadata server. In fact, the client may not have a
 choice other than writing to the metadata server when the
 clora_changed argument is TRUE and a new layout is unavailable
 from the server. However, the client may be able to write the
 modified data to the storage device if the clora_changed
 argument is FALSE; this needs to be done before returning the
 layout via LAYOUTRETURN. If the client were to obtain a new
 layout covering the modified data's byte-range, then writing to the
 storage devices is an available alternative. Note that before
 obtaining a new layout, the client must first return the
 original layout.

 In the case of modified data being written while the layout is
 held, the client must use LAYOUTCOMMIT operations at the
 appropriate time; as required LAYOUTCOMMIT must be done before
 the LAYOUTRETURN. If a large amount of modified data is
 outstanding, the client may send LAYOUTRETURNs for portions of
 the recalled layout; this allows the server to monitor the
 client's progress and adherence to the original recall request.
 However, the last LAYOUTRETURN in a sequence of returns MUST
 specify the full range being recalled (see for details).

 If a server needs to delete a device ID and there are layouts
 referring to the device ID, CB_LAYOUTRECALL MUST be invoked to
 cause the client to return all layouts referring to the device ID
 before the server can delete the device ID. If the client
 does not return the affected layouts, the server MAY revoke
 the layouts.

 Operation 6: CB_NOTIFY - Notify Client of Directory Changes

 ARGUMENT

/*
 * Directory notification types.
 */
enum notify_type4 {
 NOTIFY4_CHANGE_CHILD_ATTRS = 0,
 NOTIFY4_CHANGE_DIR_ATTRS = 1,
 NOTIFY4_REMOVE_ENTRY = 2,
 NOTIFY4_ADD_ENTRY = 3,
 NOTIFY4_RENAME_ENTRY = 4,
 NOTIFY4_CHANGE_COOKIE_VERIFIER = 5
};

/* Changed entry information. */
struct notify_entry4 {
 component4 ne_file;
 fattr4 ne_attrs;
};

/* Previous entry information */
struct prev_entry4 {
 notify_entry4 pe_prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 pe_prev_entry_cookie;
};

struct notify_remove4 {
 notify_entry4 nrm_old_entry;
 nfs_cookie4 nrm_old_entry_cookie;
};

struct notify_add4 {
 /*
 * Information on object
 * possibly renamed over.
 */
 notify_remove4 nad_old_entry<1>;
 notify_entry4 nad_new_entry;
 /* what READDIR would have returned for this entry */
 nfs_cookie4 nad_new_entry_cookie<1>;
 prev_entry4 nad_prev_entry<1>;
 bool nad_last_entry;
};

struct notify_attr4 {
 notify_entry4 na_changed_entry;
};

struct notify_rename4 {
 notify_remove4 nrn_old_entry;
 notify_add4 nrn_new_entry;
};

struct notify_verifier4 {
 verifier4 nv_old_cookieverf;
 verifier4 nv_new_cookieverf;
};

/*
 * Objects of type notify_<>4 and
 * notify_device_<>4 are encoded in this.
 */
typedef opaque notifylist4<>;

struct notify4 {
 /* composed from notify_type4 or notify_deviceid_type4 */
 bitmap4 notify_mask;
 notifylist4 notify_vals;
};

struct CB_NOTIFY4args {
 stateid4 cna_stateid;
 nfs_fh4 cna_fh;
 notify4 cna_changes<>;
};

 RESULT

struct CB_NOTIFY4res {
 nfsstat4 cnr_status;
};

 DESCRIPTION

 The CB_NOTIFY operation is used by the server to
 send notifications to clients about changes to
 delegated directories.
 The registration of notifications for the directories
 occurs when the delegation is established using
 GET_DIR_DELEGATION.
 These notifications are sent over the backchannel. The
 notification is sent once the original request has been
 processed on the server. The server will send an array of
 notifications for changes that might have occurred in the
 directory. The notifications are sent as list of pairs of
 bitmaps and values.
 See
 for a description of how NFSv4.1 bitmaps work.

 If the server has more notifications than can fit in
 the CB_COMPOUND request, it SHOULD send a sequence of
 serial CB_COMPOUND requests so that the client's view
 of the directory does not become confused. For example, if the
 server indicates that a file named "foo" is added and that the
 file "foo" is removed, the order in which the client receives
 these notifications needs to be the same as the
 order in which the corresponding operations occurred on the server.

 If the client holding the delegation makes any
 changes in the directory that cause files or sub-directories to
 be added or removed, the server will
 notify that client of the resulting change(s). If the
 client holding the delegation is making attribute
 or cookie verifier changes only, the server does
 not need to send notifications to that client.
 The server will send the following information for
 each operation:

 NOTIFY4_ADD_ENTRY

	 The server will send
	 information about the new directory entry being created along with the
	 cookie for that entry. The entry information (data type
	 notify_add4) includes the component name of the entry and
	 attributes. The server will send this type of entry when a
	 file is actually being created, when an entry is being added
	 to a directory as a result of a rename across directories
	 (see below), and when a hard link is being created to an
	 existing file. If this entry is added to the end of the
	 directory, the server will set the nad_last_entry flag to
	 TRUE. If the file is added such that there is at least one
	 entry before it, the server will also return the previous
	 entry information (nad_prev_entry, a variable-length array
	 of up to one element. If the array is of zero length, there
	 is no previous entry), along with its cookie. This is to
	 help clients find the right location in their file name caches and
	 directory caches where this entry should be cached. If the
	 new entry's cookie is available, it will be in
	 the nad_new_entry_cookie (another variable-length array of up to
	 one element) field. If the addition of the entry causes another
 entry to be deleted (which can only happen in the rename
 case) atomically with the addition, then information on
 this entry is reported in nad_old_entry.
	
 NOTIFY4_REMOVE_ENTRY

	 The server will send information about the directory entry
	 being deleted. The server will also send the cookie value
	 for the deleted entry so that clients can get to the cached
	 information for this entry.
	
 NOTIFY4_RENAME_ENTRY

	 The server will send information about both
	 the old entry and the new entry. This includes the name and
	 attributes for each entry. In addition, if the rename
 causes the deletion of an entry (i.e., the case of a file
 renamed over), then this is reported in
 nrn_new_new_entry.nad_old_entry.
 This notification is only sent if
	 both entries are in the same directory. If the rename is
	 across directories, the server will send a remove
	 notification to one directory and an add notification to the
	 other directory, assuming both have a directory delegation.
	
 NOTIFY4_CHANGE_CHILD_ATTRS/NOTIFY4_CHANGE_DIR_ATTRS

	 The client will use the attribute
	 mask to inform the server of attributes for which it wants to
	 receive notifications. This change notification can be
	 requested for changes to the attributes of the directory
	 as well as changes to any file's attributes in the directory by
	 using two separate attribute masks. The client cannot ask
	 for change attribute notification for a specific file. One attribute
	 mask covers all the files in the directory. Upon any
	 attribute change, the server will send back the values of
	 changed attributes. Notifications might not make sense for
	 some file system-wide attributes, and it is up to the server to
	 decide which subset it wants to support. The client can
	 negotiate the frequency of attribute notifications by letting
	 the server know how often it wants to be notified of an
	 attribute change. The server will return supported
	 notification frequencies or an indication that no
	 notification is permitted for directory or child attributes
	 by setting the dir_notif_delay and
	 dir_entry_notif_delay attributes, respectively.
	
 NOTIFY4_CHANGE_COOKIE_VERIFIER

	 If the cookie verifier changes while
	 a client is holding a delegation, the server will notify the
	 client so that it can invalidate its cookies and re-send a
	 READDIR to get the new set of cookies.
	

 Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation to Client

 ARGUMENT

struct CB_PUSH_DELEG4args {
 nfs_fh4 cpda_fh;
 open_delegation4 cpda_delegation;

};

 RESULT

struct CB_PUSH_DELEG4res {
 nfsstat4 cpdr_status;
};

 DESCRIPTION

	CB_PUSH_DELEG is used by the server both to signal to the
	client that the delegation it wants (previously indicated
 via a want established from an
 OPEN or WANT_DELEGATION operation) is available and to
	simultaneously offer the delegation to the client. The client
	has the choice of accepting the delegation by returning
	NFS4_OK to the server, delaying the decision to accept the
	offered delegation by returning NFS4ERR_DELAY,
	or permanently rejecting the offer of the
	delegation by returning NFS4ERR_REJECT_DELEG.
 When a delegation is rejected in this fashion, the want
 previously established is permanently deleted and the delegation
 is subject to acquisition by another client.

 IMPLEMENTATION

	If the client does return NFS4ERR_DELAY
	and there is a conflicting delegation request, the server MAY
	process it at the expense of the client that returned
	NFS4ERR_DELAY. The client's want will not be cancelled, but
	 MAY be processed behind other delegation requests or registered
	wants.

 When a client returns a status other than NFS4_OK, NFS4ERR_DELAY,
 or NFS4ERR_REJECT_DELAY, the want remains pending, although
 servers may decide to cancel the want by sending a CB_WANTS_CANCELLED.

 Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects

 ARGUMENT

const RCA4_TYPE_MASK_RDATA_DLG = 0;
const RCA4_TYPE_MASK_WDATA_DLG = 1;
const RCA4_TYPE_MASK_DIR_DLG = 2;
const RCA4_TYPE_MASK_FILE_LAYOUT = 3;
const RCA4_TYPE_MASK_BLK_LAYOUT = 4;
const RCA4_TYPE_MASK_OBJ_LAYOUT_MIN = 8;
const RCA4_TYPE_MASK_OBJ_LAYOUT_MAX = 9;
const RCA4_TYPE_MASK_OTHER_LAYOUT_MIN = 12;
const RCA4_TYPE_MASK_OTHER_LAYOUT_MAX = 15;

struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
};

 RESULT

struct CB_RECALL_ANY4res {
 nfsstat4 crar_status;
};

 DESCRIPTION

 The server may decide that it cannot hold all of the state for
 recallable objects, such as delegations and layouts, without
 running out of resources. In such a case, while not optimal,
 the server is free to recall individual objects to reduce the load.

 Because the general purpose of such recallable objects as
 delegations is to eliminate client interaction with the server,
 the server cannot interpret lack of recent use as indicating
 that the object is no longer useful. The absence of visible
 use is consistent with a delegation keeping potential operations
 from being sent to the server. In the case of layouts, while it
 is true that the usefulness of a layout
 is indicated by the use of the layout when storage devices receive
 I/O requests, because there is no mandate that a storage
 device indicate to the metadata server any past or
 present use of a layout, the metadata server is not likely to know
 which layouts are good candidates to recall in response to
 low resources.

 In order to implement an effective reclaim scheme for such
 objects, the server's knowledge of available resources must be
 used to determine when objects must be recalled with the
 clients selecting the actual objects to be returned.

 Server implementations may differ in their resource allocation
 requirements. For example, one server may share resources among
 all classes of recallable objects, whereas another may use
 separate resource pools for layouts and for delegations, or
 further separate resources by types of delegations.

 When a given resource pool is over-utilized, the server can
 send a CB_RECALL_ANY to clients holding recallable objects of
 the types involved, allowing it to keep a certain number of
 such objects and return any excess. A mask specifies which
 types of objects are to be limited. The client chooses, based
 on its own knowledge of current usefulness, which of the objects
 in that class should be returned.

 A number of bits are defined. For some of these, ranges
 are defined and it is up to the definition of the storage
 protocol to specify how these are to be used. There are ranges
 reserved for object-based storage
 protocols and for other experimental storage
 protocols. An RFC defining such a storage protocol needs to
 specify how particular bits within its range are to be used.
 For example, it may specify a mapping between attributes of
 the layout (read vs. write, size of area) and the bit to be
 used, or it may define a field in the layout where the associated
 bit position is made available by the server to the client.

 RCA4_TYPE_MASK_RDATA_DLG

 The client is to return OPEN_DELEGATE_READ delegations on
 non-directory file objects.

 RCA4_TYPE_MASK_WDATA_DLG

 The client is to return OPEN_DELEGATE_WRITE delegations on
 regular file objects.

 RCA4_TYPE_MASK_DIR_DLG

 The client is to return directory delegations.

 RCA4_TYPE_MASK_FILE_LAYOUT

 The client is to return layouts of type LAYOUT4_NFSV4_1_FILES.

 RCA4_TYPE_MASK_BLK_LAYOUT

 See for a description.

 RCA4_TYPE_MASK_OBJ_LAYOUT_MIN to RCA4_TYPE_MASK_OBJ_LAYOUT_MAX

 See for a description.

 RCA4_TYPE_MASK_OTHER_LAYOUT_MIN to RCA4_TYPE_MASK_OTHER_LAYOUT_MAX

 This range is reserved for telling the client to recall
 layouts of experimental
 or site-specific layout types (see).

 When a bit is set in the type mask that corresponds
 to an undefined type of recallable object,
 NFS4ERR_INVAL MUST be returned. When a bit is set
 that corresponds to a defined type of object but
 the client does not support an object of the type,
 NFS4ERR_INVAL MUST NOT be returned. Future minor
 versions of NFSv4 may expand the set of valid type
 mask bits.

 CB_RECALL_ANY specifies a count of objects that the client may
 keep as opposed to a count that the client must return. This
 is to avoid a potential race between a CB_RECALL_ANY that had a
 count of objects to free with a set of client-originated
 operations to return layouts or delegations. As a result of the
 race, the client and server would have differing ideas as to how
 many objects to return. Hence, the client could mistakenly free
 too many.

 If resource demands prompt it, the server may send another
 CB_RECALL_ANY with a lower count, even if it has not yet received
 an acknowledgment from the client for a previous CB_RECALL_ANY
 with the same type mask. Although the possibility exists that
 these will be received by the client in an order different from
 the order in which they were sent, any such permutation of
 the callback stream is harmless. It is the job of the client
 to bring down the size of the recallable object set in line
 with each CB_RECALL_ANY received, and until that obligation is
 met, it cannot be cancelled or modified by any subsequent
 CB_RECALL_ANY for the same type mask. Thus, if the server
 sends two CB_RECALL_ANYs, the effect will be the same as
 if the lower count was sent, whatever the order of recall
 receipt. Note that this means that a server may not cancel
 the effect of a CB_RECALL_ANY by sending another recall with
 a higher count. When a CB_RECALL_ANY is received and the
 count is already within the limit set or is above a limit
 that the client is working to get down to, that callback has no
 effect.

 Servers are generally free to deny recallable objects
 when insufficient resources are available. Note that the
 effect of such a policy is implicitly to give precedence to
 existing objects relative to requested ones, with the result
 that resources might not be optimally used. To prevent this,
 servers are well advised to make the point at which they start
 sending CB_RECALL_ANY callbacks somewhat below that at which they
 cease to give out new delegations and layouts. This allows the
 client to purge its less-used objects whenever appropriate and
 so continue to have its subsequent requests given new resources
 freed up by object returns.

 IMPLEMENTATION

 The client can choose to return any type of object specified
 by the mask. If a server wishes to limit the use of objects of a
 specific type, it should only specify that type in the mask
 it sends. Should the client fail to return requested objects, it is
 up to the server to handle this situation, typically by sending
 specific recalls (i.e., sending CB_RECALL operations)
 to properly limit resource usage. The server
 should give the client enough time to return objects before
 proceeding to specific recalls. This time should not be less
 than the lease period.

 Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources for Recallable Objects

 ARGUMENT

typedef CB_RECALL_ANY4args CB_RECALLABLE_OBJ_AVAIL4args;

 RESULT

struct CB_RECALLABLE_OBJ_AVAIL4res {
 nfsstat4 croa_status;
};

 DESCRIPTION

 CB_RECALLABLE_OBJ_AVAIL is used by the server to signal the
 client that the server has resources to grant recallable
 objects that might previously have been denied by OPEN,
 WANT_DELEGATION, GET_DIR_DELEG, or LAYOUTGET.

 The argument craa_objects_to_keep means the total number of
 recallable objects of the types indicated in the argument
 type_mask that the server believes it can allow the client to
 have, including the number of such objects the client already
 has. A client that tries to acquire more recallable objects
 than the server informs it can have runs the risk of having
 objects recalled.

 The server is not obligated to reserve the
 difference between the number of the objects
 the client currently has and the value of
 craa_objects_to_keep, nor does delaying the reply
 to CB_RECALLABLE_OBJ_AVAIL prevent the server
 from using the resources of the recallable objects
 for another purpose. Indeed, if a client responds
 slowly to CB_RECALLABLE_OBJ_AVAIL, the server might
 interpret the client as having reduced capability
 to manage recallable objects, and so cancel
 or reduce any reservation it is maintaining on behalf
 of the client.
 Thus, if the client desires to acquire more
 recallable objects, it needs to reply quickly
 to CB_RECALLABLE_OBJ_AVAIL, and then send the
 appropriate operations to acquire recallable
 objects.

 Operation 10: CB_RECALL_SLOT - Change Flow Control Limits

 ARGUMENT

struct CB_RECALL_SLOT4args {
 slotid4 rsa_target_highest_slotid;
};

 RESULT

struct CB_RECALL_SLOT4res {
 nfsstat4 rsr_status;
};

 DESCRIPTION

 The CB_RECALL_SLOT operation requests the client to
 return session slots, and if applicable, transport
 credits (e.g., RDMA credits for connections associated with
 the operations channel) of the session's fore channel.
 CB_RECALL_SLOT specifies
 rsa_target_highest_slotid, the value of the target highest slot ID the server wants
 for the session. The client MUST then progress toward reducing
 the session's highest slot ID to the target value.

 If the session has only non-RDMA connections associated with its
 operations channel, then the client need only wait
 for all outstanding requests with a slot ID >
 rsa_target_highest_slotid to complete, then send
 a single COMPOUND consisting of a single SEQUENCE operation,
 with the sa_highestslot field set to rsa_target_highest_slotid.
 If there are RDMA-based connections associated with
 operation channel, then the client needs to also
 send enough zero-length "RDMA Send" messages to take the total
 RDMA credit count to rsa_target_highest_slotid + 1 or below.

 IMPLEMENTATION

 If the client fails to reduce highest slot it has on the fore channel
 to what the server requests, the server can force the issue
 by asserting flow control on the receive side of
 all connections bound to the fore channel, and then
 finish servicing all outstanding requests that are
 in slots greater than rsa_target_highest_slotid. Once that
 is done, the server can then open the flow control, and any time
 the client sends a new request on a slot greater than
 rsa_target_highest_slotid, the server can return NFS4ERR_BADSLOT.

 Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and Control

 ARGUMENT

struct referring_call4 {
 sequenceid4 rc_sequenceid;
 slotid4 rc_slotid;
};

struct referring_call_list4 {
 sessionid4 rcl_sessionid;
 referring_call4 rcl_referring_calls<>;
};

struct CB_SEQUENCE4args {
 sessionid4 csa_sessionid;
 sequenceid4 csa_sequenceid;
 slotid4 csa_slotid;
 slotid4 csa_highest_slotid;
 bool csa_cachethis;
 referring_call_list4 csa_referring_call_lists<>;
};

 RESULT

struct CB_SEQUENCE4resok {
 sessionid4 csr_sessionid;
 sequenceid4 csr_sequenceid;
 slotid4 csr_slotid;
 slotid4 csr_highest_slotid;
 slotid4 csr_target_highest_slotid;
};

union CB_SEQUENCE4res switch (nfsstat4 csr_status) {
case NFS4_OK:
 CB_SEQUENCE4resok csr_resok4;
default:
 void;
};

 DESCRIPTION

 The CB_SEQUENCE operation is used to manage operational accounting
 for the backchannel of the session on which a request is
 sent. The contents include the session ID to which this
 request belongs, the slot ID and sequence ID used by the server to
 implement session request control and exactly once
 semantics, and exchanged slot ID maxima that are used to adjust the
 size of the reply cache. In each CB_COMPOUND request, CB_SEQUENCE
 MUST appear once and MUST be the first operation. The error
 NFS4ERR_SEQUENCE_POS MUST be returned when CB_SEQUENCE is found in
 any position in a CB_COMPOUND beyond the first. If any
 other operation is in the first position of CB_COMPOUND,
 NFS4ERR_OP_NOT_IN_SESSION MUST be returned.

 See for a description of
 how slots are processed.

 If csa_cachethis is TRUE, then the server is requesting that
 the client cache the reply in the callback reply cache. The client MUST
 cache the reply (see).

 The csa_referring_call_lists array is the list of COMPOUND
 requests, identified by session ID, slot ID, and sequence ID. These
 are requests that the client previously sent to the server.
 These previous requests created state that some operation(s)
 in the same CB_COMPOUND as the csa_referring_call_lists are
 identifying.
 A session ID is included because
 leased state is tied to a client ID, and a client ID can have
 multiple sessions. See
 .

 The value of the csa_sequenceid argument relative to
 the cached sequence ID on the slot falls into one
 of three cases.

 If the difference between csa_sequenceid and
 the client's cached sequence ID at the slot ID
 is two (2) or more,
 or if csa_sequenceid is less
 than the cached sequence ID (accounting
 for wraparound of the unsigned sequence ID value),
 then the client MUST return NFS4ERR_SEQ_MISORDERED.

 If csa_sequenceid and the cached sequence ID are the
 same, this is a retry, and the client returns the
 CB_COMPOUND request's cached reply.

 If csa_sequenceid is one greater (accounting for
 wraparound) than the cached sequence ID, then
 this is a new request, and the slot's sequence
 ID is incremented. The operations subsequent to
 CB_SEQUENCE, if any, are processed. If there are no
 other operations, the only other effects are to
 cache the CB_SEQUENCE reply in the slot, maintain the
 session's activity, and when the server receives the
 CB_SEQUENCE reply, renew the lease of state
 related to the client ID.

 If the server reuses a slot ID and sequence ID for
 a completely different request, the client MAY
 treat the request as if it is a retry
 of what it has already executed. The client MAY however
 detect the server's illegal reuse and return NFS4ERR_SEQ_FALSE_RETRY.

 If CB_SEQUENCE returns an error, then the state of the slot (sequence ID,
 cached reply) MUST NOT change.
 See for the conditions when the
 error NFS4ERR_RETRY_UNCACHED_REP might be returned.

 The client returns two "highest_slotid" values:
 csr_highest_slotid and csr_target_highest_slotid. The
 former is the highest slot ID the client will accept
 in a future CB_SEQUENCE operation, and SHOULD NOT be
 less than the value of csa_highest_slotid (but see
 for an exception). The latter is the highest slot
 ID the client would prefer the server use on a future
 CB_SEQUENCE operation.

 Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation Wants

 ARGUMENT

struct CB_WANTS_CANCELLED4args {
 bool cwca_contended_wants_cancelled;
 bool cwca_resourced_wants_cancelled;
};

 RESULT

struct CB_WANTS_CANCELLED4res {
 nfsstat4 cwcr_status;
};

 DESCRIPTION

 The CB_WANTS_CANCELLED operation is used to notify the client that
 some or all of the wants it registered for recallable delegations and layouts
 have been cancelled.

	If cwca_contended_wants_cancelled is TRUE, this indicates that
 the server will not be pushing to the client any delegations
 that become available after contention passes.

	If cwca_resourced_wants_cancelled is TRUE, this indicates that
 the server will not notify the client when there are resources
 on the server to grant delegations or layouts.

 After receiving a CB_WANTS_CANCELLED operation, the
 client is free to attempt to acquire the delegations or
 layouts it was waiting for, and possibly re-register wants.

 IMPLEMENTATION

 When a client has an OPEN, WANT_DELEGATION, or GET_DIR_DELEGATION request
 outstanding, when a CB_WANTS_CANCELLED is sent, the server may need to
 make clear to the client whether a promise to signal delegation availability
 happened before the CB_WANTS_CANCELLED and is thus covered by it, or after
 the CB_WANTS_CANCELLED in which case it was not covered by it. The server
 can make this distinction by putting the appropriate requests into the
 list of referring calls in the associated CB_SEQUENCE.

 Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock Availability

 ARGUMENT

struct CB_NOTIFY_LOCK4args {
 nfs_fh4 cnla_fh;
 lock_owner4 cnla_lock_owner;
};

 RESULT

struct CB_NOTIFY_LOCK4res {
 nfsstat4 cnlr_status;
};

 DESCRIPTION

 The server can use this operation to indicate that a byte-range lock for the given
 file and lock-owner, previously requested by the client via an unsuccessful
 LOCK operation, might be available.

 This callback is meant to be used by servers to help reduce the latency of
 blocking locks in the case where they recognize that a client that has
 been polling for a blocking byte-range lock may now be able to acquire the lock.
 If the server supports this callback for a given file, it MUST set the
 OPEN4_RESULT_MAY_NOTIFY_LOCK flag when responding to successful opens
 for that file. This does not commit the server to the use of CB_NOTIFY_LOCK,
 but the client may use this as a hint to decide how frequently to poll
 for locks derived from that open.

 If an OPEN operation results in an upgrade, in which the stateid returned
 has an "other" value matching that of a stateid already allocated, with a
 new "seqid" indicating a change in the lock being represented, then the
 value of the OPEN4_RESULT_MAY_NOTIFY_LOCK flag when responding to that new
 OPEN controls handling from that point going forward. When parallel OPENs
 are done on the same file and open-owner, the ordering of the "seqid" fields
 of the returned stateids (subject to wraparound) are to be used to select
 the controlling value of the OPEN4_RESULT_MAY_NOTIFY_LOCK flag.

 IMPLEMENTATION

 The server MUST NOT grant the byte-range lock to the client unless and until it
 receives a LOCK operation from the client. Similarly, the client
 receiving this callback cannot assume that it now has the lock or that a
 subsequent LOCK operation for the lock will be successful.

 The server is not required to implement this callback, and even if it
 does, it is not required to use it in any particular case. Therefore, the
 client must still rely on polling for blocking locks, as described in
 .

 Similarly, the client is not required to implement this callback, and even
 it does, is still free to ignore it. Therefore, the server MUST NOT assume
 that the client will act based on the callback.

 Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID Changes

 ARGUMENT

/*
 * Device notification types.
 */
enum notify_deviceid_type4 {
 NOTIFY_DEVICEID4_CHANGE = 1,
 NOTIFY_DEVICEID4_DELETE = 2
};

/* For NOTIFY4_DEVICEID4_DELETE */
struct notify_deviceid_delete4 {
 layouttype4 ndd_layouttype;
 deviceid4 ndd_deviceid;
};

/* For NOTIFY4_DEVICEID4_CHANGE */
struct notify_deviceid_change4 {
 layouttype4 ndc_layouttype;
 deviceid4 ndc_deviceid;
 bool ndc_immediate;
};

struct CB_NOTIFY_DEVICEID4args {
 notify4 cnda_changes<>;
};

 RESULT

struct CB_NOTIFY_DEVICEID4res {
 nfsstat4 cndr_status;
};

 DESCRIPTION

 The CB_NOTIFY_DEVICEID operation is used by the
 server to send notifications to clients about
 changes to pNFS device IDs. The registration of
 device ID notifications is optional and is done via
 GETDEVICEINFO. These notifications are sent
 over the backchannel
 once the original request has been processed
 on the server. The server will send an array of
 notifications, cnda_changes, as a list of pairs of
 bitmaps and values. See
 for a description of how NFSv4.1 bitmaps work.

 As with CB_NOTIFY (), it is
 possible the server has more notifications than
 can fit in a CB_COMPOUND, thus requiring multiple
 CB_COMPOUNDs. Unlike CB_NOTIFY, serialization is not
 an issue because unlike directory entries, device
 IDs cannot be re-used after being deleted ().

 All device ID notifications contain a device ID and a
 layout type. The layout type is necessary because two
 different layout types can share the same device ID,
 and the common device ID can have completely different
 mappings for each layout type.

 The server will send the following notifications:

 NOTIFY_DEVICEID4_CHANGE

	 A previously provided device-ID-to-device-address
 mapping has changed and the client uses
	 GETDEVICEINFO to obtain the
	 updated mapping.

 The notification is encoded in a value of data
 type notify_deviceid_change4. This data type
 also contains a boolean field, ndc_immediate,
 which if TRUE indicates that the change will be
 enforced immediately, and so the client might not
 be able to complete any pending I/O to the device
 ID. If ndc_immediate is FALSE, then for an
 indefinite time, the client can complete pending
 I/O. After pending I/O is complete, the client
 SHOULD get the new device-ID-to-device-address
 mappings before sending new I/O requests to the
 storage devices addressed by the device ID.

	
 NOTIFY4_DEVICEID_DELETE

	 Deletes a device ID from the mappings. This
	 notification MUST NOT be sent if the client has
	 a layout that refers to the device ID. In other
	 words, if the server is sending a delete device ID
 notification, one of the following is true for layouts
	 associated with the layout type:

 The client never had a layout referring to that device ID.

 The client has returned all layouts referring to that device ID.

 The server has revoked all layouts referring to that device ID.

	 The notification is encoded in a value of data
	 type notify_deviceid_delete4.

 After a server deletes a device ID, it MUST NOT
 reuse that device ID for the same layout type until the
 client ID is deleted.

 Operation 10044: CB_ILLEGAL - Illegal Callback Operation

 ARGUMENT

 void;

 RESULT

/*
 * CB_ILLEGAL: Response for illegal operation numbers
 */
struct CB_ILLEGAL4res {
 nfsstat4 status;
};

 DESCRIPTION

 This operation is a placeholder for encoding a
 result to handle the case of the server sending
 an operation code within CB_COMPOUND that is not
 defined in the NFSv4.1 specification. See for more details.

 The status field of CB_ILLEGAL4res MUST be set to
 NFS4ERR_OP_ILLEGAL.

 IMPLEMENTATION

 A server will probably not send an operation with code
 OP_CB_ILLEGAL, but if it does, the response will be CB_ILLEGAL4res
 just as it would be with any other invalid operation code. Note
 that if the client gets an illegal operation code that is not
 OP_ILLEGAL, and if the client checks for legal operation codes
 during the XDR decode phase, then an instance of
 data type CB_ILLEGAL4res will not be returned.

 Security Considerations

 Historically, the authentication model of NFS
 was based on the entire machine being the NFS client, with the
 NFS server trusting the NFS client
 to authenticate the end-user.
 The NFS server in turn shared its files only to
 specific clients, as identified by the client's source
 network address. Given this model, the AUTH_SYS
 RPC security flavor simply identified the end-user
 using the client to the NFS server. When processing
 NFS responses, the client ensured that the responses
 came from the same network address and port number
 to which the request was sent. While such a model is
 easy to implement and simple to deploy and use, it is
 unsafe. Thus, NFSv4.1
 implementations are REQUIRED to support a security model that uses
 end-to-end authentication, where an end-user on a client
 mutually authenticates (via cryptographic schemes that
 do not expose passwords or keys in the clear on the
 network) to a principal on an NFS server. Consideration
 is also given to the integrity and privacy of
 NFS requests and responses. The issues of end-to-end
 mutual authentication, integrity, and privacy are
 discussed in .
 There are specific considerations when using Kerberos V5 as described
 in .

 Note that being REQUIRED to implement does not mean REQUIRED to
 use; AUTH_SYS can be used by NFSv4.1 clients and servers.
 However, AUTH_SYS is merely an OPTIONAL security flavor in NFSv4.1,
 and so interoperability via AUTH_SYS is not assured.

 For reasons of reduced administration overhead, better
 performance, and/or reduction of CPU utilization,
 users of NFSv4.1 implementations might decline to use
 security mechanisms that enable integrity protection
 on each remote procedure call and response. The
 use of mechanisms without integrity leaves the user
 vulnerable to a man-in-the-middle of the NFS
 client and server that modifies the RPC request and/or
 the response. While implementations are free to provide
 the option to use weaker security mechanisms, there
 are three operations in particular that warrant the
 implementation overriding user choices.

 The first two such operations are SECINFO and
 SECINFO_NO_NAME. It is RECOMMENDED that the client send
 both operations such that they are protected with a
 security flavor that has integrity protection, such
 as RPCSEC_GSS with either the rpc_gss_svc_integrity
 or rpc_gss_svc_privacy service. Without integrity
 protection encapsulating SECINFO and SECINFO_NO_NAME
 and their results, a man-in-the-middle could
 modify results such that the client might select a
 weaker algorithm in the set allowed by the server, making
 the client and/or server vulnerable to further attacks.

 The third operation that SHOULD use integrity protection
 is any GETATTR for the fs_locations and fs_locations_info attributes,
 in order to mitigate the severity of a man-in-the-middle attack.
 The attack has two
 steps. First the attacker modifies the unprotected results of some
 operation to return NFS4ERR_MOVED. Second, when the client follows up
 with a GETATTR for the fs_locations or fs_locations_info attributes,
 the attacker modifies
 the results to cause the client to migrate its traffic to a server
 controlled by the attacker. With integrity protection, this attack is mitigated.

 Relative to previous NFS versions, NFSv4.1 has additional security
 considerations for pNFS (see Sections
and), locking
 and session state (see),
 and state recovery during grace period (see).
 With respect to locking and session state, if SP4_SSV state protection
 is being used, has specific
 security considerations for the NFSv4.1 client and server.

 Security considerations for lock reclaim differ between the two different
 situations in which state reclaim is to be done.
 The server failure situation is discussed in
 , while the per-fs state
 reclaim done in support of migration/replication is discussed in
 .

 The use of the multi-server namespace features described in
 raises
 the possibility that requests to determine the set of network
 addresses corresponding to a given server might be interfered
 with or have their responses modified in flight.
 In light of this possibility, the following considerations
 should be noted:

 When DNS is used to convert server names to addresses and
 DNSSEC is not available, the validity of
 the network addresses returned generally cannot be relied upon.
 However, when combined with a trusted resolver, DNS over TLS
 and DNS over HTTPS
 can be relied upon to provide
 valid address resolutions.

 In situations in which the validity of the provided addresses
 cannot be relied upon and the client uses RPCSEC_GSS to access the
 designated server, it is possible for mutual authentication to
 discover invalid server addresses as long as the RPCSEC_GSS
 implementation used does not use insecure DNS queries to canonicalize
 the hostname components of the service principal names, as
 explained in .

 The fetching of attributes containing file system location
 information SHOULD be
 performed using integrity protection. It is important to note here that
 a client making a request of this sort without using
 integrity protection needs be aware of
 the negative consequences of doing so, which can lead to
 invalid hostnames or network addresses being returned. These
 include cases in which the
 client is directed to a server under the control of an
 attacker, who might get access to data written or provide
 incorrect values for data read. In light of
 this, the client needs to recognize that using such returned
 location information to access an NFSv4 server
 without use of RPCSEC_GSS (i.e.,
 by using AUTH_SYS) poses dangers as it can result in the client
 interacting with such an attacker-controlled server without
 any authentication facilities to verify the server's identity.

 Despite the fact that it is a requirement that implementations provide
 "support" for use of RPCSEC_GSS, it cannot be assumed that
 use of RPCSEC_GSS is always available between any particular
 client-server pair.

 When a client has the network addresses of a server but not the
 associated hostnames, that would interfere with its ability
 to use RPCSEC_GSS.

 In light of the above, a server SHOULD present file system location
 entries that correspond to file systems on other servers using a
 hostname. This would allow the client to interrogate the
 fs_locations on the destination server to obtain trunking information
 (as well as replica information) using integrity protection,
 validating the name provided while assuring that the response has
 not been modified in flight.

 When RPCSEC_GSS is not available on a server, the client needs
 to be aware of the fact that the location entries are subject to
 modification in flight and so cannot be relied upon.
 In the case of a client being directed to another server after NFS4ERR_MOVED,
 this could vitiate the
 authentication provided by the use of RPCSEC_GSS on the designated
 destination server. Even when RPCSEC_GSS authentication is available
 on the destination, the server might still properly authenticate as the
 server to which the client was erroneously directed.
 Without a way to decide whether
 the server is a valid one, the client can only determine, using
 RPCSEC_GSS, that the server corresponds to the name provided, with
 no basis for trusting that server. As a result, the client SHOULD NOT use such unverified location entries as a basis for migration,
 even though RPCSEC_GSS might be available on the destination.

 When a file system location attribute is fetched upon connecting with an
 NFS server, it SHOULD, as stated above, be done with integrity protection.
 When this not possible, it is generally
 best for the client to ignore trunking and replica information or
 simply not fetch the location information for these purposes.

 When location information cannot be verified, it can be subjected
 to additional filtering to prevent the client from being
 inappropriately directed. For example, if a range of network
 addresses can be determined that assure that the servers and
 clients using AUTH_SYS are subject to the appropriate set of
 constraints (e.g., physical network isolation, administrative
 controls on the operating systems used), then network addresses
 in the appropriate range can be used with others discarded
 or restricted in their use of AUTH_SYS.

 To summarize considerations regarding the use of RPCSEC_GSS in
 fetching location information, we need to consider the following
 possibilities for requests to interrogate location information, with
 interrogation approaches on the referring and destination servers
 arrived at separately:

 The use of integrity protection is RECOMMENDED
 in all cases, since the absence of integrity protection exposes
 the client to the possibility of the results being modified in transit.

 The use of requests issued without RPCSEC_GSS
 (i.e., using AUTH_SYS, which has no provision to avoid
 modification of data in flight),
 while undesirable and a potential security exposure,
 may not be avoidable in all cases. Where the use
 of the returned information cannot be avoided, it is made
 subject to filtering as described above to
 eliminate the possibility that the client would
 treat an invalid address as if it were a NFSv4 server. The
 specifics will vary depending on the degree of network isolation
 and whether the request is to the referring or destination servers.

 Even if such requests are not interfered with in flight, it is possible
 for a compromised server to direct the client to use inappropriate servers,
 such as those under the control of the attacker. It is not clear that being
 directed to such servers represents a greater threat to the client than the
 damage that could be done by the compromised server itself. However, it
 is possible that some sorts of transient server compromises might be
 exploited to direct a client to a server capable of doing greater
 damage over a longer time. One useful step to guard against this
 possibility is to issue requests to fetch location data using RPCSEC_GSS,
 even if no mapping to an RPCSEC_GSS principal is available. In this case,
 RPCSEC_GSS would not be used, as it typically is, to identify the client
 principal to the server, but rather to make sure (via RPCSEC_GSS mutual
 authentication) that the server being contacted is the one intended.

 Similar considerations apply if the threat to be avoided is the redirection
 of client traffic to inappropriate (i.e., poorly performing) servers. In
 both cases, there is no reason for the information returned to depend on
 the identity of the client principal requesting it, while the validity of the
 server information, which has the capability to affect all client principals,
 is of considerable importance.

 IANA Considerations

 This section uses terms that are defined in .

 IANA Actions

 This update does not require any modification of, or additions to, registry
 entries or registry rules associated with NFSv4.1. However, since
 this document obsoletes RFC 5661, IANA has updated all registry entries and registry rules references
 that point to RFC 5661 to point to this document instead.

 Previous actions by IANA related to NFSv4.1 are listed in the remaining
 subsections of .

 Named Attribute Definitions

 IANA created a registry called the "NFSv4 Named Attribute Definitions Registry".

 The NFSv4.1 protocol supports the association of a file with zero or
 more named attributes. The namespace identifiers for these attributes
 are defined as string names. The protocol does not define the
 specific assignment of the namespace for these file attributes.
 The IANA registry promotes interoperability where common interests exist.
 While application developers are allowed to define and use
 attributes as needed, they are encouraged to register the
 attributes with IANA.

 Such registered named attributes are presumed to apply to all minor
 versions of NFSv4, including those defined subsequently to the
 registration. If the named attribute is intended to be
 limited to specific minor versions, this will be clearly stated in
 the registry's assignment.

 All assignments to the registry are made on a First Come First Served basis,
 per .

 The policy for each assignment is Specification Required,
 per .

 Under the NFSv4.1 specification, the name of a named
 attribute can in theory be up to 2 32 - 1 bytes in
 length, but in practice NFSv4.1 clients and servers
 will be unable to handle a string that long. IANA
 should reject any assignment request with a named
 attribute that exceeds 128 UTF-8 characters. To give the
 IESG the flexibility to set up bases of assignment of
 Experimental Use and Standards Action,
 the prefixes of "EXPE" and "STDS" are Reserved.
 The named attribute with a zero-length name is Reserved.

 The prefix "PRIV" is designated for Private Use. A
 site that wants to make use of unregistered named
 attributes without risk of conflicting with an
 assignment in IANA's registry should use the prefix
 "PRIV" in all of its named attributes.

 Because some NFSv4.1 clients and servers have case-insensitive
 semantics, the fifteen additional lower case and mixed case
 permutations of each of "EXPE", "PRIV", and "STDS" are Reserved (e.g.,
 "expe", "expE", "exPe", etc. are Reserved).
 Similarly, IANA must not allow two assignments that would conflict
 if both named attributes were converted to a common case.

 The registry of named attributes is a list of assignments, each
 containing three fields for each assignment.

	 A US-ASCII string name that is the actual name of
	 the attribute. This name must be unique. This
	 string name can be 1 to 128 UTF-8 characters
	 long.

	

	 A reference to the specification of the named attribute.
 The reference can consume up to 256 bytes (or more if IANA
 permits).
	

	 The point of contact of the registrant. The point
	 of contact can consume up to 256 bytes (or more if IANA
	 permits).

	

 Initial Registry

 There is no initial registry.

 Updating Registrations

 The registrant is always permitted to update the point of contact
 field. Any other change will require Expert Review or IESG
 Approval.

 Device ID Notifications

 IANA created a registry called the "NFSv4 Device ID
Notifications Registry".

 The potential exists for new notification types to be
 added to the CB_NOTIFY_DEVICEID operation (see). This can be done
 via changes to the operations that register
 notifications, or by adding new operations to NFSv4.
 This requires a new minor version of NFSv4, and
 requires a Standards Track document from the IETF.
 Another way to add a notification is to specify a new
 layout type (see).

 Hence, all assignments to the registry are made on a Standards Action
 basis per , with
 Expert Review required.

 The registry is a list of assignments, each containing
 five fields per assignment.

 The name of the notification type. This name must have the
 prefix "NOTIFY_DEVICEID4_". This name must be unique.

	 The value of the notification. IANA will assign
	 this number, and the request from the registrant
	 will use TBD1 instead of an actual value. IANA
	 MUST use a whole number that can be no higher
	 than 2 32-1, and should be the next available
	 value. The value assigned must be unique.
	 A Designated Expert must be used to
	 ensure that when the name of the notification
	 type and its value are added to the NFSv4.1
	 notify_deviceid_type4 enumerated data type in the
	 NFSv4.1 XDR description , the result continues to
	 be a valid XDR description.

	 The Standards Track RFC(s) that describe the
	 notification. If the RFC(s) have not yet been
	 published, the registrant will use RFCTBD2, RFCTBD3, etc. instead
	 of an actual RFC number.

	 How the RFC introduces the notification. This is
	 indicated by a single US-ASCII value. If the
	 value is N, it means a minor revision to the
	 NFSv4 protocol. If the value is L, it means a new
	 pNFS layout type. Other values can be used with
	 IESG Approval.

	 The minor versions of NFSv4 that are allowed to
	 use the notification. While these are numeric
	 values, IANA will not allocate and assign them;
	 the author of the relevant RFCs with IESG
	 Approval assigns these numbers. Each time there is a
 new minor version of NFSv4 approved, a Designated
 Expert should review the registry to make recommended
 updates as needed.

 Initial Registry

 The initial registry is in . Note that the
 next available value is zero.

 Initial Device ID Notification Assignments

 Notification Name
 Value
 RFC
 How
 Minor Versions

 NOTIFY_DEVICEID4_CHANGE
 1
 RFC 8881
 N
 1

 NOTIFY_DEVICEID4_DELETE
 2
 RFC 8881
 N
 1

 Updating Registrations

 The update of a registration will require IESG
 Approval on the advice of a Designated Expert.

 Object Recall Types

 IANA created a registry called the "NFSv4 Recallable Object Types Registry".

 The potential exists for new object types to be added to the CB_RECALL_ANY operation (see
). This can be done via changes to
 the operations that add recallable types, or by adding new operations
 to NFSv4. This requires a new minor version of NFSv4, and requires
 a Standards Track document from IETF. Another way to
 add a new recallable object is to specify a new layout type (see).

 All assignments to the registry are made on a Standards Action
 basis per , with
 Expert Review required.

 Recallable object types are 32-bit unsigned numbers. There are no Reserved
 values. Values in the range 12 through 15, inclusive, are designated for Private
 Use.

 The registry is a list of assignments, each containing
 five fields per assignment.

 The name of the recallable object type. This name must have the
 prefix "RCA4_TYPE_MASK_". The name must be unique.

	 The value of the recallable object type. IANA
	 will assign this number, and the request from the
	 registrant will use TBD1 instead of an actual
	 value. IANA MUST use a whole number that can be
	 no higher than 2 32-1, and should be the next
	 available value. The value must be unique. A
	 Designated Expert must be used to ensure that
	 when the name of the recallable type and its
	 value are added to the NFSv4 XDR description
	 ,
	 the result continues to be a valid XDR
	 description.

	 The Standards Track RFC(s) that describe the
	 recallable object type. If the RFC(s) have not yet been
	 published, the registrant will use RFCTBD2, RFCTBD3, etc. instead
	 of an actual RFC number.

	 How the RFC introduces the recallable object type. This is
	 indicated by a single US-ASCII value. If the
	 value is N, it means a minor revision to the
	 NFSv4 protocol. If the value is L, it means a new
	 pNFS layout type. Other values can be used with
	 IESG Approval.

	 The minor versions of NFSv4 that are allowed to
	 use the recallable object type. While these
	 are numeric values, IANA will not allocate and
	 assign them; the author of the relevant RFCs with
	 IESG Approval assigns these numbers. Each time
	 there is a new minor version of NFSv4 approved, a
	 Designated Expert should review the registry to
	 make recommended updates as needed.

 Initial Registry

 The initial registry is in . Note that
 the next available value is five.

 Initial Recallable Object Type Assignments

 Recallable Object Type Name
 Value
 RFC
 How
 Minor Versions

 RCA4_TYPE_MASK_RDATA_DLG
 0
 RFC 8881
 N
 1

 RCA4_TYPE_MASK_WDATA_DLG
 1
 RFC 8881
 N
 1

 RCA4_TYPE_MASK_DIR_DLG
 2
 RFC 8881
 N
 1

 RCA4_TYPE_MASK_FILE_LAYOUT
 3
 RFC 8881
 N
 1

 RCA4_TYPE_MASK_BLK_LAYOUT
 4
 RFC 8881
 L
 1

 RCA4_TYPE_MASK_OBJ_LAYOUT_MIN
 8
 RFC 8881
 L
 1

 RCA4_TYPE_MASK_OBJ_LAYOUT_MAX
 9
 RFC 8881
 L
 1

 Updating Registrations

 The update of a registration will require IESG
 Approval on the advice of a Designated Expert.

 Layout Types

 IANA created a registry called the "pNFS Layout Types Registry".

 All assignments to the registry are made on a Standards Action basis,
 with Expert Review required.

 Layout types are 32-bit numbers. The value zero is Reserved.
 Values in the range 0x80000000 to 0xFFFFFFFF inclusive are designated for Private Use.
 IANA will assign numbers from the range
 0x00000001 to 0x7FFFFFFF inclusive.

 The registry is a list of assignments, each
 containing five fields.

 The name of the layout type. This name must have the
 prefix "LAYOUT4_". The name must be unique.

	 The value of the layout type. IANA will assign
 this number, and the request from the registrant
 will use TBD1 instead of an actual value. The value
 assigned must be unique.
 A Designated Expert must be used to ensure
 that when the name of the layout type and
	 its value are added to the NFSv4.1 layouttype4
	 enumerated data type in the NFSv4.1 XDR
	 description ,
	 the result continues to be a valid XDR
	 description.

 The Standards Track RFC(s) that describe the
 notification. If the RFC(s) have not yet been
 published, the registrant will use RFCTBD2, RFCTBD3, etc. instead
 of an actual RFC number. Collectively, the RFC(s) must adhere to
 the guidelines listed in .

 How the RFC introduces the layout type. This is
 indicated by a single US-ASCII value. If the
 value is N, it means a minor revision to the
 NFSv4 protocol. If the value is L, it means a new
 pNFS layout type. Other values can be used with
 IESG Approval.

 The minor versions of NFSv4 that are allowed to
 use the notification. While these are numeric
 values, IANA will not allocate and assign them;
 the author of the relevant RFCs with IESG
 Approval assigns these numbers. Each time there is
 a new minor version of NFSv4 approved, a Designated
 Expert should review the registry to make recommended
 updates as needed.

 Initial Registry

 The initial registry is in .

 Initial Layout Type Assignments

 Layout Type Name
 Value
 RFC
 How
 Minor Versions

 LAYOUT4_NFSV4_1_FILES
 0x1
 RFC 8881
 N
 1

 LAYOUT4_OSD2_OBJECTS
 0x2
 RFC 5664
 L
 1

 LAYOUT4_BLOCK_VOLUME
 0x3
 RFC 5663
 L
 1

 Updating Registrations

 The update of a registration will require IESG
 Approval on the advice of a Designated Expert.

 Guidelines for Writing Layout Type Specifications

 The author of a new pNFS layout specification must follow these
 steps to obtain acceptance of the layout type as a Standards Track RFC:

	 The author devises the new layout specification.
	

	 The new layout type specification MUST, at a minimum:

	 Define the contents of the layout-type-specific fields of the
	 following data types:

		 the da_addr_body field of the device_addr4
		 data type;
		

		 the loh_body field of the layouthint4
		 data type;
		

		 the loc_body field of layout_content4
		 data type (which in turn is the lo_content field of the
		 layout4 data type);
		

		 the lou_body field of the layoutupdate4
		 data type;
		

	 Describe or define the storage access protocol used to access
	 the storage devices.
	

	 Describe whether revocation of layouts is supported.
	

	 At a minimum, describe the methods of recovery from:

 Failure and restart for client, server, storage device.
		
 Lease expiration from perspective of the active client,
		 server, storage device.
		
 Loss of layout state resulting in fencing of client
		 access to storage devices (for an example, see
).
		

	 Include an IANA considerations section, which will
	 in turn include:

		A request to IANA
		for a new layout type per .
	

		A list of requests to IANA for
		any new recallable object types for
		CB_RECALL_ANY; each entry is to be presented in the form described
		in .
	

		A list of requests to IANA for
		any new notification values for
		CB_NOTIFY_DEVICEID; each entry is to be presented in the form
		described in .
	

	 Include a security considerations section. This section MUST
 explain how the NFSv4.1 authentication, authorization, and
 access-control models are preserved. That is, if a metadata server
 would restrict a READ or WRITE operation, how would pNFS via
 the layout similarly restrict a corresponding input or
 output operation?
	

	 The author documents the new layout specification as an Internet-Draft.
	

	 The author submits the Internet-Draft for review through the
	 IETF standards process as defined in "The Internet Standards
	 Process--Revision 3" (BCP 9).
 The new layout specification will be
	 submitted for eventual publication as a Standards Track RFC.
	

	 The layout specification progresses through the IETF standards
	 process.
	

 Path Variable Definitions

 This section deals with the IANA considerations associated with
 the variable substitution feature for location names as
 described in . As
 described there, variables subject to substitution consist
 of a domain name and a specific name within that domain, with the
 two separated by a colon. There are two sets of IANA considerations
 here:

 The list of variable names.

 For each variable name, the list of possible values.

 Thus, there will be one registry for the list of variable names, and
 possibly one registry for listing the values of each variable name.

 Path Variables Registry

 IANA created a registry called the "NFSv4 Path Variables Registry".

 Path Variable Values

 Variable names are of the form "${", followed by a
 domain name, followed by a colon (":"), followed by
 a domain-specific portion of the variable name,
 followed by "}". When the domain name is "ietf.org",
 all variables names must be registered with IANA on
 a Standards Action basis, with Expert Review
 required. Path variables with registered domain
 names neither part of nor equal to ietf.org are
 assigned on a Hierarchical Allocation basis
 (delegating to the domain owner) and thus of no
 concern to IANA, unless the domain owner chooses to
 register a variable name from his domain. If the
 domain owner chooses to do so, IANA will do so on a
 First Come First Serve basis. To accommodate
 registrants who do not have their own domain, IANA
 will accept requests to register variables with the
 prefix "${FCFS.ietf.org:" on a First Come First
 Served basis. Assignments on a First Come First Basis
 do not require Expert Review, unless the registrant also
 wants IANA to establish a registry for the values of the
 registered variable.

 The registry is a list of assignments, each
 containing three fields.

	 The name of the variable. The name of this
	 variable must start with a "${" followed by a
	 registered domain name, followed by ":", or it
	 must start with "${FCFS.ietf.org". The name must
	 be no more than 64 UTF-8 characters long. The
	 name must be unique.

 For assignments made on Standards Action basis,
	 the Standards Track RFC(s) that describe the
	 variable. If the RFC(s) have not yet been
	 published, the registrant will use RFCTBD1,
	 RFCTBD2, etc. instead of an actual RFC number.
 Note that the RFCs do not have to be a part of an NFS minor version.
 For assignments made on a First Come First Serve basis, an explanation
 (consuming no more than 1024 bytes, or more if IANA permits)
 of the purpose of the variable. A reference to the explanation can
 be substituted.

 The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).
 For assignments made on a Standards Action basis, the point of
 contact is always IESG.

 Initial Registry

 The initial registry is in .

 Initial List of Path Variables

 Variable Name
 RFC
 Point of Contact

 ${ietf.org:CPU_ARCH}
 RFC 8881
 IESG

 ${ietf.org:OS_TYPE}
 RFC 8881
 IESG

 ${ietf.org:OS_VERSION}
 RFC 8881
 IESG

	IANA has created registries for the values
	of the variable names ${ietf.org:CPU_ARCH} and
	${ietf.org:OS_TYPE}. See Sections
	and .

	For the values of the variable
	${ietf.org:OS_VERSION}, no registry is needed as
	the specifics of the values of the variable will
	vary with the value of ${ietf.org:OS_TYPE}. Thus,
	values for ${ietf.org:OS_VERSION} are on a
	Hierarchical Allocation basis and are of no concern
	to IANA.

 Updating Registrations

	The update of an assignment made on a Standards Action basis
 will require IESG Approval on the advice of a Designated Expert.

 The registrant can always update the point of contact of an assignment
 made on a First Come First Serve basis. Any other update will require
 Expert Review.

 Values for the ${ietf.org:CPU_ARCH} Variable

 IANA created a registry called the "NFSv4 ${ietf.org:CPU_ARCH} Value Registry".

 Assignments to the registry are made on a First Come First Serve
 basis. The zero-length value of ${ietf.org:CPU_ARCH} is Reserved.
 Values with a prefix of "PRIV" are designated for Private Use.

 The registry is a list of assignments, each
 containing three fields.

	 A value of the ${ietf.org:CPU_ARCH} variable. The value
	 must be 1 to 32 UTF-8 characters long. The value must be unique.

	 An explanation (consuming no more than 1024
	 bytes, or more if IANA permits) of what CPU
	 architecture the value denotes. A reference to
	 the explanation can be substituted.

 The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).

 Initial Registry

 There is no initial registry.

 Updating Registrations

 The registrant is free to update the assignment, i.e., change the
 explanation and/or point-of-contact fields.

 Values for the ${ietf.org:OS_TYPE} Variable

 IANA created a registry called the "NFSv4 ${ietf.org:OS_TYPE} Value Registry".

 Assignments to the registry are made on a First Come First Serve
 basis. The zero-length value of ${ietf.org:OS_TYPE} is Reserved.
 Values with a prefix of "PRIV" are designated for Private Use.

 The registry is a list of assignments, each
 containing three fields.

	 A value of the ${ietf.org:OS_TYPE} variable. The value
	 must be 1 to 32 UTF-8 characters long. The value must be unique.

	 An explanation (consuming no more than 1024
	 bytes, or more if IANA permits) of what CPU
	 architecture the value denotes. A reference to
	 the explanation can be substituted.

 The point of contact, including an email address. The point of
 contact can consume up to 256 bytes (or more if IANA permits).

 Initial Registry

 There is no initial registry.

 Updating Registrations

 The registrant is free to update the assignment, i.e., change the
 explanation and/or point of contact fields.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 XDR: External Data Representation Standard

 This document describes the External Data Representation Standard (XDR) protocol as it is currently deployed and accepted. This document obsoletes RFC 1832. [STANDARDS-TRACK]

 RPC: Remote Procedure Call Protocol Specification Version 2

 This document describes the Open Network Computing (ONC) Remote Procedure Call (RPC) version 2 protocol as it is currently deployed and accepted. This document obsoletes RFC 1831. [STANDARDS-TRACK]

 RPCSEC_GSS Protocol Specification

 This memo describes an ONC/RPC security flavor that allows RPC protocols to access the Generic Security Services Application Programming Interface (referred to henceforth as GSS-API). [STANDARDS-TRACK]

 The Kerberos Version 5 Generic Security Service Application Program Interface (GSS-API) Mechanism: Version 2

 This document defines protocols, procedures, and conventions to be employed by peers implementing the Generic Security Service Application Program Interface (GSS-API) when using the Kerberos Version 5 mechanism.
 RFC 1964 is updated and incremental changes are proposed in response to recent developments such as the introduction of Kerberos cryptosystem framework. These changes support the inclusion of new cryptosystems, by defining new per-message tokens along with their encryption and checksum algorithms based on the cryptosystem profiles. [STANDARDS-TRACK]

 Section 3.191 of Chapter 3 of Base Definitions of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Generic Security Service Application Program Interface Version 2, Update 1

 This memo obsoletes [STANDARDS-TRACK]

 A Remote Direct Memory Access Protocol Specification

 This document defines a Remote Direct Memory Access Protocol (RDMAP) that operates over the Direct Data Placement Protocol (DDP protocol). RDMAP provides read and write services directly to applications and enables data to be transferred directly into Upper Layer Protocol (ULP) Buffers without intermediate data copies. It also enables a kernel bypass implementation. [STANDARDS-TRACK]

 RPCSEC_GSS Version 2

 This document describes version 2 of the RPCSEC_GSS protocol. Version 2 is the same as version 1 (specified in RFC 2203) except that support for channel bindings has been added. RPCSEC_GSS allows remote procedure call (RPC) protocols to access the Generic Security Services Application Programming Interface (GSS-API). [STANDARDS-TRACK]

 Network File System (NFS) Version 4 Minor Version 1 External Data Representation Standard (XDR) Description

 This document provides the External Data Representation Standard (XDR) description for Network File System version 4 (NFSv4) minor version 1. [STANDARDS-TRACK]

 Section 3.372 of Chapter 3 of Base Definitions of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 IANA Considerations for Remote Procedure Call (RPC) Network Identifiers and Universal Address Formats

 This document lists IANA Considerations for Remote Procedure Call (RPC) Network Identifiers (netids) and RPC Universal Network Addresses (uaddrs). This document updates, but does not replace, RFC 1833. [STANDARDS-TRACK]

 Section 'read()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Section 'readdir()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Section 'write()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Preparation of Internationalized Strings ("stringprep")

 This document describes a framework for preparing Unicode text strings in order to increase the likelihood that string input and string comparison work in ways that make sense for typical users throughout the world. The stringprep protocol is useful for protocol identifier values, company and personal names, internationalized domain names, and other text strings. This document does not specify how protocols should prepare text strings. Protocols must create profiles of stringprep in order to fully specify the processing options. [STANDARDS-TRACK]

 Section 'chmod()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Information Technology - Universal Multiple-octet coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane

 International Organization for Standardization

 IETF Policy on Character Sets and Languages

 This document is the current policies being applied by the Internet Engineering Steering Group (IESG) towards the standardization efforts in the Internet Engineering Task Force (IETF) in order to help Internet protocols fulfill these requirements. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)

 This document describes how to prepare internationalized domain name (IDN) labels in order to increase the likelihood that name input and name comparison work in ways that make sense for typical users throughout the world. This profile of the stringprep protocol is used as part of a suite of on-the-wire protocols for internationalizing the Domain Name System (DNS). [STANDARDS-TRACK]

 Section 'fcntl()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Section 'fsync()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Section 'getpwnam()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Section 'unlink()' of System Interfaces of The Open Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition, HTML Version

 The Open Group

 Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This document supplements RFC 3279. It describes the conventions for using the RSA Probabilistic Signature Scheme (RSASSA-PSS) signature algorithm, the RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES-OAEP) key transport algorithm and additional one-way hash functions with the Public-Key Cryptography Standards (PKCS) #1 version 1.5 signature algorithm in the Internet X.509 Public Key Infrastructure (PKI). Encoding formats, algorithm identifiers, and parameter formats are specified. [STANDARDS-TRACK]

 Computer Security Objects Register

 National Institute of Standards and Technology

 Remote Procedure Call (RPC) Security Version 3

 This document specifies version 3 of the Remote Procedure Call (RPC) security protocol (RPCSEC_GSS). This protocol provides support for multi-principal authentication of client hosts and user principals to a server (constructed by generic composition), security label assertions for multi-level security and type enforcement, structured privilege assertions, and channel bindings. This document updates RFC 5403.

 The Kerberos Network Authentication Service (V5)

 This document provides an overview and specification of Version 5 of the Kerberos protocol, and it obsoletes RFC 1510 to clarify aspects of the protocol and its intended use that require more detailed or clearer explanation than was provided in RFC 1510. This document is intended to provide a detailed description of the protocol, suitable for implementation, together with descriptions of the appropriate use of protocol messages and fields within those messages. [STANDARDS-TRACK]

 DNS Security Introduction and Requirements

 The Domain Name System Security Extensions (DNSSEC) add data origin authentication and data integrity to the Domain Name System. This document introduces these extensions and describes their capabilities and limitations. This document also discusses the services that the DNS security extensions do and do not provide. Last, this document describes the interrelationships between the documents that collectively describe DNSSEC. [STANDARDS-TRACK]

 Specification for DNS over Transport Layer Security (TLS)

 This document describes the use of Transport Layer Security (TLS) to provide privacy for DNS. Encryption provided by TLS eliminates opportunities for eavesdropping and on-path tampering with DNS queries in the network, such as discussed in RFC 7626. In addition, this document specifies two usage profiles for DNS over TLS and provides advice on performance considerations to minimize overhead from using TCP and TLS with DNS.
 This document focuses on securing stub-to-recursive traffic, as per the charter of the DPRIVE Working Group. It does not prevent future applications of the protocol to recursive-to-authoritative traffic.

 Requirements for NFSv4 Multi-Domain Namespace Deployment

 This document presents requirements for the deployment of the NFSv4 protocols for the construction of an NFSv4 file namespace in environments with multiple NFSv4 Domains. To participate in an NFSv4 multi-domain file namespace, the server must offer a multi-domain-capable file system and support RPCSEC_GSS for user authentication. In most instances, the server must also support identity-mapping services.

 Remote Direct Memory Access Transport for Remote Procedure Call Version 1

 This document specifies a protocol for conveying Remote Procedure Call (RPC) messages on physical transports capable of Remote Direct Memory Access (RDMA). This protocol is referred to as the RPC-over- RDMA version 1 protocol in this document. It requires no revision to application RPC protocols or the RPC protocol itself. This document obsoletes RFC 5666.

 Network File System (NFS) Upper-Layer Binding to RPC-over-RDMA Version 1

 This document specifies Upper-Layer Bindings of Network File System (NFS) protocol versions to RPC-over-RDMA version 1, thus enabling the use of Direct Data Placement. This document obsoletes RFC 5667.

 DNS Queries over HTTPS (DoH)

 This document defines a protocol for sending DNS queries and getting DNS responses over HTTPS. Each DNS query-response pair is mapped into an HTTP exchange.

 The Internet Standards Process -- Revision 3

 This memo documents the process used by the Internet community for the standardization of protocols and procedures. It defines the stages in the standardization process, the requirements for moving a document between stages and the types of documents used during this process. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Characterization of Proposed Standards

 RFC 2026 describes the review performed by the Internet Engineering Steering Group (IESG) on IETF Proposed Standard RFCs and characterizes the maturity level of those documents. This document updates RFC 2026 by providing a current and more accurate characterization of Proposed Standards.

 Guidance on Interoperation and Implementation Reports for Advancement to Draft Standard

 Advancing a protocol to Draft Standard requires documentation of the interoperation and implementation of the protocol. Historic reports have varied widely in form and level of content and there is little guidance available to new report preparers. This document updates the existing processes and provides more detail on what is appropriate in an interoperability and implementation report. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Reducing the Standards Track to Two Maturity Levels

 This document updates the Internet Engineering Task Force (IETF) Standards Process defined in RFC 2026. Primarily, it reduces the Standards Process from three Standards Track maturity levels to two. This memo documents an Internet Best Current Practice.

 Retirement of the "Internet Official Protocol Standards" Summary Document

 This document updates RFC 2026 to no longer use STD 1 as a summary of "Internet Official Protocol Standards". It obsoletes RFC 5000 and requests the IESG to move RFC 5000 (and therefore STD 1) to Historic status.

 Increasing the Number of Area Directors in an IETF Area

 This document removes a limit on the number of Area Directors who manage an Area in the definition of "IETF Area". This document updates RFC 2026 (BCP 9) and RFC 2418 (BCP 25).

 Informative References

 Process for Handling Non-Major Revisions to Existing RFCs

 This document discusses mechanisms the IETF has historically used for updating RFCs subsequent to their publication, and outlines an updated procedure for publishing newer versions (colloquially known as "bis versions") that is appropriate in certain circumstances. This procedure is expected to be easier for both authors and consumers of RFCs.

 Work in Progress

 Network File System (NFS) version 4 Protocol

 The Network File System (NFS) version 4 is a distributed filesystem protocol which owes heritage to NFS protocol version 2, RFC 1094, and version 3, RFC 1813. Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the mount protocol. In addition, support for strong security (and its negotiation), compound operations, client caching, and internationalization have been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment. This document replaces RFC 3010 as the definition of the NFS version 4 protocol. [STANDARDS-TRACK]

 NFS Version 3 Protocol Specification

 This paper describes the NFS version 3 protocol. This paper is provided so that people can write compatible implementations. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.

 LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM

 This memorandum describes a method whereby one can use GSS-API (Generic Security Service Application Program Interface) to supply a secure channel between a client and server, authenticating the client with a password, and a server with a public key certificate. [STANDARDS-TRACK]

 NFS Version 2 and Version 3 Security Issues and the NFS Protocol's Use of RPCSEC_GSS and Kerberos V5

 This memorandum clarifies various security issues involving the NFS protocol (Version 2 and Version 3 only) and then describes how the Version 2 and Version 3 of the NFS protocol use the RPCSEC_GSS security flavor protocol and Kerberos V5. [STANDARDS-TRACK]

 Improving the Performance and Correctness of an NFS Server

 Digital Equipment Corporation

		Describes reply cache implementation that
		avoids work in the server by handling
		duplicate requests. More important, though
		listed as a side-effect, the reply cache
		aids in the avoidance of destructive non-
		idempotent operation re-application --
		improving correctness.

 USENIX Conference Proceedings

 Assigned Numbers: RFC 1700 is Replaced by an On-line Database

 This memo obsoletes RFC 1700 (STD 2) "Assigned Numbers", which contained an October 1994 snapshot of assigned Internet protocol parameters. This memo provides information for the Internet community.

 Binding Protocols for ONC RPC Version 2

 This document describes the binding protocols used in conjunction with the ONC Remote Procedure Call (ONC RPC Version 2) protocols. [STANDARDS-TRACK]

 RPC XID Issues

 Digital Equipment Corporation

 The presentation provides implementation advice for
 ONC RPC transaction identifier (xid) generation.

 USENIX Conference Proceedings

 NFS: Network File System Protocol specification

 This RFC describes a protocol that Sun Microsystems, Inc., and others are using. A new version of the protocol is under development, but others may benefit from the descriptions of the current protocol, and discussion of some of the design issues.

 A Highly Available Network Server

 IBM T.J. Watson Research Center

 IBM T.J. Watson Research Center

 IBM T.J. Watson Research Center

	 This paper presents the design and implementation
	 of a Highly Available Network File Server
	 (HA-NFS). We separate the problem of network
	 file server reliability into three different subproblems:
	 server reliability, disk reliability, and network
	 reliability. HA-NFS offers a different solution
	 for each: dual-ported disks and impersonation
	 are used to provide server reliability, disk mirroring
	 can be used to provide disk reliability, and optional
	 network replication can be used to provide
	 network reliability. The implementation shows
	 that HA-NFS provides high availability without
	 the excessive resource overhead or the performance
	 degradation that characterize traditional replication
	 methods. Ongoing operations are not aborted
	 during fail-over and recovery is completely transparent
	 to applications. HA-NFS adheres to the
	 NFS protocol standard and can be used by existing
	 NFS clients without modification.

 USENIX Conference Proceedings

 Object-Based Parallel NFS (pNFS) Operations

 Parallel NFS (pNFS) extends Network File System version 4 (NFSv4) to allow clients to directly access file data on the storage used by the NFSv4 server. This ability to bypass the server for data access can increase both performance and parallelism, but requires additional client functionality for data access, some of which is dependent on the class of storage used, a.k.a. the Layout Type. The main pNFS operations and data types in NFSv4 Minor version 1 specify a layout- type-independent layer; layout-type-specific information is conveyed using opaque data structures whose internal structure is further defined by the particular layout type specification. This document specifies the NFSv4.1 Object-Based pNFS Layout Type as a companion to the main NFSv4 Minor version 1 specification. [STANDARDS-TRACK]

 Parallel NFS (pNFS) Block/Volume Layout

 Parallel NFS (pNFS) extends Network File Sharing version 4 (NFSv4) to allow clients to directly access file data on the storage used by the NFSv4 server. This ability to bypass the server for data access can increase both performance and parallelism, but requires additional client functionality for data access, some of which is dependent on the class of storage used. The main pNFS operations document specifies storage-class-independent extensions to NFS; this document specifies the additional extensions (primarily data structures) for use of pNFS with block- and volume-based storage. [STANDARDS-TRACK]

 WebNFS Client Specification

 This document describes a lightweight binding mechanism that allows NFS clients to obtain service from WebNFS-enabled servers with a minimum of protocol overhead. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.

 WebNFS Server Specification

 This document describes the specifications for a server of WebNFS clients. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.

 IESG Processing of RFC Errata for the IETF Stream

 IESG

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 NFS Version 4 Design Considerations

 This design considerations document is meant to present more detail than the working group charter. Specifically, it presents the areas that the working group will investigate and consider while developing a protocol specification for NFS version 4. This memo provides information for the Internet community.

 Protocols for Interworking: XNFS, Version 3W

 The Open Group

 The Synchronization of Periodic Routing Messages

 IEEE/ACM Transactions on Networking, 2(2), pp. 122-136

 Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)

 This document describes a transport protocol for SCSI that works on top of TCP. The iSCSI protocol aims to be fully compliant with the standardized SCSI Architecture Model (SAM-2). RFC 3720 defined the original iSCSI protocol. RFC 3721 discusses iSCSI naming examples and discovery techniques. Subsequently, RFC 3980 added an additional naming format to the iSCSI protocol. RFC 4850 followed up by adding a new public extension key to iSCSI. RFC 5048 offered a number of clarifications as well as a few improvements and corrections to the original iSCSI protocol.
 This document obsoletes RFCs 3720, 3980, 4850, and 5048 by consolidating them into a single document and making additional updates to the consolidated specification. This document also updates RFC 3721. The text in this document thus supersedes the text in all the noted RFCs wherever there is a difference in semantics.

 Fibre Channel Protocol for SCSI, 2nd Version (FCP-2)

 Brocade Communication Systems, Inc.

 ANSI/INCITS, 350-2003

 Object-Based Storage Device Commands (OSD)

 ENDL Texas

 ANSI/INCITS, 400-2004

 PVFS: A Parallel File System for Linux Clusters.

 Parallel Architecture Research Laboratory, Clemson University, Clemson, SC 29634

 Parallel Architecture Research Laboratory, Clemson University, Clemson, SC 29634

 Parallel Architecture Research Laboratory, Clemson University, Clemson, SC 29634

 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

 Proceedings of the 4th Annual Linux Showcase and Conference

 The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition

 The Open Group

 The description of the access() function states: "If the process has appropriate privileges, an implementation may indicate success for X_OK even if none of the execute file permission bits are set."

 NFS URL Scheme

 A new URL scheme, 'nfs' is defined. It is used to refer to files and directories on NFS servers using the general URL syntax defined in RFC 1738, "Uniform Resource Locators (URL)". This memo provides information for the Internet community. It does not specify an Internet standard of any kind.

 Security Negotiation for WebNFS

 This document describes a protocol for a WebNFS client (RFC2054) to negotiate the desired security mechanism with a WebNFS server (RFC2055) before the WebNFS client falls back to the MOUNT v3 protocol (RFC1813). This document is provided so that people can write compatible implementations. This memo provides information for the Internet community.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Erratum ID 2006

 RFC Errata

 RFC 5661

 An Empirical Study of a Wide-Area Distributed File System

	

	

 ACM Transactions on Computer Systems
 Vol. 14
 No. 2
 pp. 200-222

 Network File System (NFS) Version 4 Minor Version 1 Protocol

 This document describes the Network File System (NFS) version 4 minor version 1, including features retained from the base protocol (NFS version 4 minor version 0, which is specified in RFC 3530) and protocol extensions made subsequently. Major extensions introduced in NFS version 4 minor version 1 include Sessions, Directory Delegations, and parallel NFS (pNFS). NFS version 4 minor version 1 has no dependencies on NFS version 4 minor version 0, and it is considered a separate protocol. Thus, this document neither updates nor obsoletes RFC 3530. NFS minor version 1 is deemed superior to NFS minor version 0 with no loss of functionality, and its use is preferred over version 0. Both NFS minor versions 0 and 1 can be used simultaneously on the same network, between the same client and server. [STANDARDS-TRACK]

 Rules for NFSv4 Extensions and Minor Versions

 This document describes the rules relating to the extension of the NFSv4 family of protocols. It covers the creation of minor versions, the addition of optional features to existing minor versions, and the correction of flaws in features already published as Proposed Standards. The rules relating to the construction of minor versions and the interaction of minor version implementations that appear in this document supersede the minor versioning rules in RFC 5661 and other RFCs defining minor versions.

 Network File System (NFS) Version 4 Protocol

 The Network File System (NFS) version 4 protocol is a distributed file system protocol that builds on the heritage of NFS protocol version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the MOUNT protocol. In addition, support for strong security (and its negotiation), COMPOUND operations, client caching, and internationalization has been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment.
 This document, together with the companion External Data Representation (XDR) description document, RFC 7531, obsoletes RFC 3530 as the definition of the NFS version 4 protocol.

 NFSv4.0 Migration: Specification Update

 The migration feature of NFSv4 allows the transfer of responsibility for a single file system from one server to another without disruption to clients. Recent implementation experience has shown problems in the existing specification for this feature in NFSv4.0. This document identifies the problem areas and provides revised specification text that updates the NFSv4.0 specification in RFC 7530.

 Requirements for Parallel NFS (pNFS) Layout Types

 This document defines the requirements that individual Parallel NFS (pNFS) layout types need to meet in order to work within the pNFS framework as defined in RFC 5661. In so doing, this document aims to clearly distinguish between requirements for pNFS as a whole and those specifically directed to the pNFS file layout. The lack of a clear separation between the two sets of requirements has been troublesome for those specifying and evaluating new layout types. In this regard, this document updates RFC 5661.

 Pervasive Monitoring Is an Attack

 Pervasive monitoring is a technical attack that should be mitigated in the design of IETF protocols, where possible.

 Guidelines for Writing RFC Text on Security Considerations

 All RFCs are required to have a Security Considerations section. Historically, such sections have been relatively weak. This document provides guidelines to RFC authors on how to write a good Security Considerations section. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Need for This Update

 This document includes an explanation of how clients and servers
 are to determine the particular network access paths to be used to access a
 file system. This includes descriptions of
 how to handle changes to the specific replica to be used or to
 the set of addresses to be used to access it,
 and how to deal transparently with transfers of responsibility that need to be
 made. This includes cases in which
 there is a shift between one replica and another and those in
 which different network access paths are used to access the
 same replica.

 As a result of the following problems in RFC 5661
 , it
 was necessary to provide the specific updates that are made by this
 document. These updates are described in .

 	RFC 5661 , while it dealt with situations in
 	which various forms of clustering allowed coordination
 	of the state assigned by cooperating servers to be used,
 	made no provisions for Transparent State Migration. Within NFSv4.0,
 Transparent State Migration was first explained clearly in
 	RFC 7530 and corrected and
 	clarified by RFC 7931 . No corresponding
	explanation for NFSv4.1 had been provided.

 	 Although NFSv4.1 provided a clear definition of how
 	 trunking detection was to be done, there was no clear specification
 	 of how trunking discovery was to be done, despite the fact that
 the specification clearly indicated that this information
 could be made available via the file system location attributes.

 Because the existence of multiple network access paths to the same
 	 file system was dealt with as if there were multiple replicas, issues relating to
 transitions between replicas could never be clearly distinguished
 from trunking-related transitions between the addresses used to
 access a particular file system instance. As a result, in situations in
 which both migration and trunking configuration changes
 were involved, neither of these could be clearly dealt with, and the relationship between
 these two features was not seriously addressed.

 	Because use of two network access paths to the same file system
 	instance (i.e., trunking) was often treated as if two replicas were
	involved, it was considered that two replicas were being used simultaneously.
 As a result, the treatment of replicas being used simultaneously
 	in RFC 5661 was not clear, as it covered the
 	two distinct cases of a single file system instance being accessed by
 	two different network access paths and two
 	replicas being accessed simultaneously, with the limitations
 	of the latter case not being clearly laid out.

 The majority of the consequences of these issues are dealt with
 by presenting in a replacement
 for Section
 of RFC 5661 . This replacement
 modifies existing subsections within that section and adds new
 ones as described in . Also, some existing
 sections were deleted. These changes were made in order to do the
 following:

 Reorganize the description so that the case of two network access paths to
 the same file system instance is distinguished clearly from the case of
	two different replicas since, in the former case, locking state is shared and there also
	can be sharing of session state.

 Provide a clear statement regarding the desirability of
 transparent transfer of state between replicas together with a recommendation
 that either transparent transfer or a single-fs grace period be provided.

 Specifically delineate how a client is to handle such transfers,
 taking into account the differences from the treatment
 in made necessary by the major protocol
 changes to NFSv4.1.

 Discuss the relationship between transparent
 state transfer and Parallel NFS (pNFS).

	Clarify the fs_locations_info attribute in order to specify
	which portions of the provided information apply to a specific
	network access path and which apply to the replica that the path
	is used to access.

 In addition, other sections of RFC 5661
 were updated to correct the consequences of the
 incorrect assumptions underlying the treatment of multi-server namespace
 issues. These are described in Appendices through
 .

 A revised introductory section regarding multi-server namespace
 facilities is provided.

 A more realistic treatment of server scope is provided. This treatment
 reflects the more limited coordination of locking state
 adopted by servers actually sharing a common server scope.

 Some confusing text regarding changes in server_owner has
 been clarified.

 The description of some existing errors has been modified
	to more clearly explain certain error situations to reflect
	the existence of trunking and the possible use of fs-specific grace
	periods. For details, see .

 New descriptions of certain existing operations are
	provided, either because the existing treatment did not
	account for situations that would arise in dealing with
	Transparent State Migration, or because some types of reclaim
	issues were not adequately dealt with in the context of fs-specific
	grace periods. For details, see .

 Changes in This Update

 Revisions Made to Section 11 of RFC 5661

 A number of areas have been revised or extended, in many cases
 replacing subsections within Section
 of RFC 5661 :

	New introductory material, including a terminology section,
	replaces the material in RFC 5661 ,
	ranging from the start of the original Section
 up to and including
 Section .
 The new material starts at the beginning of
	 and continues
	through .

	A significant reorganization of the material in Sections
 and
 of RFC 5661
	 was necessary. The reasons for the reorganization of
	these sections into a single section with multiple subsections
 are discussed in below.
	This replacement appears as .

 New material relating to the handling of the file system location
 attributes is contained in Sections and
	 .

	A new section describing requirements for user and group
	handling within a multi-server namespace has been added as
	 .

	A major replacement for Section
 of RFC 5661 ,
 entitled "Effecting File System Transitions", appears as Sections
	 through
 .
	The reasons for the reorganization of
	this section into multiple sections are discussed in
	 .

	A replacement for Section
 of RFC 5661 ,
 entitled "The Attribute fs_locations_info", appears as
	 , with
	 describing the differences
	between the new section and the treatment within
	 .
	A revised treatment was necessary because the original treatment
	did not make clear how the added attribute information relates
	to the case of trunked paths to the same replica. These issues
	were not addressed in RFC 5661 where the
	concepts of a replica and a network path used to access a replica
	were not clearly distinguished.

 Reorganization of Sections 11.4 and 11.5 of RFC 5661

 Previously, issues related to the fact that multiple location
 entries directed the client to the same file system instance
	were dealt with in Section of RFC 5661 .
 Because of the new treatment of trunking, these issues now belong
 within .

 In this new section, trunking is covered in
 together with the other uses
 of file system location information described in Sections
 through
 .

	As a result, , which replaces
	Section
	of RFC 5661 , is substantially
	different than the section it replaces in that some original
	sections have been replaced by corresponding sections as described below, while
	new sections have been added:

	 The material in ,
	 exclusive of subsections, replaces the material
	 in Section of RFC 5661 exclusive of
	 subsections.
	

	 is the new first subsection of the overall section.
	

	 is the new second subsection of the overall section.
	

	 Each of the Sections
	 ,
	 , and
	
	 replaces (in order) one of the corresponding Sections
 ,
 , and
 of RFC 5661
	 .
	

	 is the new final subsection of the overall section.
	

 Reorganization of Material Dealing with File System Transitions

	The material relating to file system transition, previously contained
	in Section of RFC 5661 has
	been reorganized and augmented as described below:

	 Because there can be a shift of the network access paths used to
	 access a file system instance without any shift between replicas,
	 a new distinguishes
	 between those cases in which there is a shift between
 distinct replicas and those involving a shift in network
	 access paths with no shift between replicas.

 As a result, the new deals with network
 address transitions, while the bulk of the original Section
	 of RFC
	 5661 has been extensively modified as reflected in
	 , which is now limited to cases
	 in which there is a shift between two different sets of replicas.

	 The additional discusses the
	 case in which a shift to a different replica is made and state
	 is transferred to allow the client the ability to have continued
	 access to its accumulated locking state on the new server.
 	

	 The additional discusses
	 the client's response to access transitions, how it determines
	 whether migration has occurred, and how it gets access to any
 transferred locking and session state.
 	

	 The additional discusses the
	 responsibilities of the source and destination servers when
	 transferring locking and session state.
 	

	This reorganization has caused a renumbering of the sections
	within as described below:

	 The new Sections
	 and have resulted
	 in the renumbering of existing sections with these numbers.
 	

 has been substantially
	 modified and appears as . The necessary
	 modifications reflect the fact that this section only deals
	 with transitions between replicas, while transitions between
	 network addresses are dealt with in other sections. Details
	 of the reorganization are described later in this section.
 	

	 Sections
	 ,
	 , and
	 have been
	 added.
 	

	 Consequently, Sections ,
 ,
 , and
 in
	 now appear
	 as Sections ,
	 ,
 , and
 ,
	 respectively.

 	

	As part of this general reorganization,
 Section of RFC 5661
 has been modified as described below:

	 Sections and
 of RFC 5661
 have been replaced by Sections
 and
 , respectively.
 	

	 Section
 of RFC 5661 (and included subsections) has been deleted.
 	

	 Sections ,
 ,
 ,
 , and
 of RFC 5661
 have been replaced by Sections
	 ,
	 ,
	 ,
	 , and
	
	 respectively in this document.
	

	 Section
 of RFC 5661 has been replaced by
 . This subsection has been
	 moved to the end of the section dealing with file system transitions.
	

	 Sections ,
 , and
 of RFC 5661
 have been replaced by Sections
	 ,
	 , and
	
	 respectively in this document.
 	

 Updates to the Treatment of fs_locations_info

	Various elements of the fs_locations_info attribute contain
	information that applies to either a specific file system replica
	or to a network path or set of network paths used to access such a replica.
	The original treatment of fs_locations_info (Section of RFC 5661)
 did not clearly distinguish these cases, in
	part because the document did not clearly distinguish replicas from
	the paths used to access them.

	In addition, special clarification has been provided with regard
	to the following fields:

	 With regard to the handling of FSLI4GF_GOING, it was
	 clarified that this only applies to the unavailability of a
	 replica rather than to a path to access a replica.
	

	 In describing the appropriate value for a server to use for
	 fli_valid_for, it was clarified that there is no
	 need for the client to frequently fetch the fs_locations_info
	 value to be prepared for shifts in trunking patterns.
	

	 Clarification of the rules for extensions to the fls_info has
	 been provided. The original treatment reflected the extension
	 model that was in effect at the time RFC 5661
	 was written, but has been updated in accordance with the extension model
	 described in RFC 8178 .
	

 Revisions Made to Operations in RFC 5661

 Descriptions have been revised to address issues that arose in
 effecting necessary changes to multi-server namespace features.

 The treatment of EXCHANGE_ID (Section of RFC 5661) assumed that client IDs
	cannot be created/confirmed other than by the EXCHANGE_ID and CREATE_SESSION
 	operations. Also, the necessary use of EXCHANGE_ID in recovery
 	from migration and related situations was not clearly addressed.
 	A revised treatment of EXCHANGE_ID was necessary, and it appears in
 , while the specific differences
 	between it and the treatment within
 	are explained in below.

 	The treatment of RECLAIM_COMPLETE in Section of RFC 5661 was not sufficiently clear about the
	purpose and use of the rca_one_fs and how the server was to deal
	with inappropriate values of this argument. Because the
	resulting confusion raised interoperability issues, a new treatment
	of RECLAIM_COMPLETE was necessary, and it appears in
	 , while the specific differences
	between it and the treatment within RFC 5661
	are discussed in below. In addition, the
	definitions of the reclaim-related errors have received an updated
	treatment in to reflect the fact
	that there are multiple contexts for lock reclaim operations.

 Revision of Treatment of EXCHANGE_ID

	There was a number of issues in the original treatment of
	EXCHANGE_ID in RFC 5661 that caused problems
	for Transparent State Migration and for the transfer of access
	between different network access paths to the same file system instance.

 These issues arose from the fact that this treatment was written:

 Assuming that a client ID can only become known to a server
 by having been created by executing an EXCHANGE_ID, with
 confirmation of the ID only possible by execution of a
 CREATE_SESSION.

 Considering the interactions between a client and a server only
 occurring on a single network address.

 As these assumptions have become invalid in the context of
 Transparent State Migration and active use of trunking,
 the treatment has been modified in several respects:

 It had been assumed that an EXCHANGE_ID executed when the server
 was already aware that a given client instance was either updating
 associated parameters (e.g., with respect to callbacks) or dealing
 with a previously lost reply by retransmitting. As a
 result, any slot sequence returned by that operation
	 would be of no use. The original treatment
 went so far as to say that it " MUST NOT" be used, although
 this usage was not in accord with .
 This created a difficulty when an EXCHANGE_ID is done after Transparent State
 Migration since that slot sequence would need to be used in a
 subsequent CREATE_SESSION.

 In the updated treatment, CREATE_SESSION is a way that client
 IDs are confirmed, but it is understood that other ways are
 possible. The slot sequence can be used as needed, and cases
 in which it would be of no use are appropriately noted.

 It had been assumed that the only functions of EXCHANGE_ID were to
 inform the server of the client, to create the client ID,
 and to communicate it to the client. When multiple
 simultaneous connections are involved, as often happens when
 trunking, that treatment was inadequate in that it ignored the
 role of EXCHANGE_ID in associating the client ID with the
 connection on which it was done, so that it could be used
 by a subsequent CREATE_SESSION whose parameters do not
 include an explicit client ID.

 The new treatment explicitly discusses the role of EXCHANGE_ID
 in associating the client ID with the connection so it
	 can be used by CREATE_SESSION and in associating a connection with an
 existing session.

 The new treatment can be found in
	above. It supersedes the treatment in Section
 of RFC 5661 .

 Revision of Treatment of RECLAIM_COMPLETE

	The following changes were made to the treatment of
	RECLAIM_COMPLETE in RFC 5661 to arrive at the
	treatment in :

	 In a number of places, the text was made more explicit about the
	 purpose of rca_one_fs and its connection to file system
	 migration.
	

	 There is a discussion of situations in which particular forms of
	 RECLAIM_COMPLETE would need to be done.
	

	 There is a discussion of interoperability issues between
	 implementations that may have arisen due to the lack of
	 clarity of the previous treatment of RECLAIM_COMPLETE.
	

 Revisions Made to Error Definitions in RFC 5661

 The new handling of various situations required revisions to
 some existing error definitions:

	Because of the need to appropriately address trunking-related
	issues, some uses of the term "replica" in RFC 5661
	
	became problematic because a shift in network access paths was
	considered to be a shift to a different replica. As a result,
 the original definition of NFS4ERR_MOVED (in Section of RFC 5661) was updated to reflect the
 different handling of unavailability of a particular fs via a
 specific network address.

 Since such a situation is no longer
 considered to constitute unavailability of a file system
 instance, the description has been changed, even though the set of circumstances in
 which it is to be returned remains the same.
	The new paragraph explicitly recognizes that a different network
	address might be used, while the previous description, misleadingly,
	treated this as a shift between two replicas while only a single
	file system instance might be involved. The updated description
 appears in .

	Because of the need to accommodate the use of fs-specific grace periods,
	it was necessary to clarify some of the definitions of
	reclaim-related errors in Section
	 of RFC 5661
	
	so that the text applies properly to reclaims for all types of grace
	periods. The updated descriptions
 appear within .

	Because of the need to provide the clarifications in errata
	report 2006
	and to adapt these to properly explain the interaction of
	NFS4ERR_DELAY with the reply cache, a revised description
	of NFS4ERR_DELAY appears in . This
	errata report, unlike many other RFC 5661 errata reports, is
	addressed in this
	document because of the extensive use of NFS4ERR_DELAY
	in connection with state migration and session migration.

 Other Revisions Made to RFC 5661

 Besides the major reworking of Section of RFC 5661 and the associated revisions to
 existing operations and errors, there were a number of related changes that were necessary:

 The summary in Section
 of RFC 5661 was revised to reflect the changes made to
 above. The updated summary appears as
 above.

 The discussion of server scope in Section
 of RFC 5661
	 was replaced since it
 appeared to require a level of inter-server coordination
 incompatible with its basic function of avoiding the need for
 a globally uniform means of assigning server_owner values.
 A revised treatment appears in .

	The discussion of trunking in Section
 of RFC 5661
 was revised to more clearly
	explain the multiple types of trunking support and how the
	client can be made aware of the existing trunking configuration.
 In addition, while the last paragraph (exclusive of subsections) of
 that section dealing with server_owner changes was literally true,
 it had been a source of confusion. Since the original paragraph could be read as
 suggesting that such changes be handled nondisruptively, the
 issue was clarified in the revised .

 Security Issues That Need to Be Addressed

 The following issues in the treatment of security within the NFSv4.1
 specification need to be addressed:

	The Security Considerations Section of RFC 5661
	was not written in accordance with RFC 3552 (BCP 72) .
	Of particular concern was the fact that the section
	did not contain a threat analysis.

	Initial analysis of the existing security issues with NFSv4.1 has made
	it likely that a revised Security Considerations section for the
	existing protocol (one containing a threat analysis) would be likely
	to conclude that NFSv4.1 does not meet the goal of secure use on the
	Internet.

 The Security Considerations section of
 this document () has not been thoroughly
 revised to correct the difficulties mentioned above. Instead, it has been
 modified to take proper account of issues related to the multi-server
 namespace features discussed in , leaving the
 incomplete discussion and security weaknesses pretty much as they were.

 The following major security issues need to be addressed in a
 satisfactory fashion before an updated Security Considerations section
 can be published as part of a bis document for NFSv4.1:

	The continued use of AUTH_SYS and the security exposures it creates
	need to be addressed. Addressing this issue must not be limited to
	the questions of whether the designation of this as OPTIONAL was
	justified and whether it should be changed.

	In any event, it may not be possible at this point to correct the
	security problems created by continued use of AUTH_SYS simply by
	revising this designation.

	The lack of attention within the protocol to the possibility of
	pervasive monitoring attacks such as those described in RFC 7258
	 (also BCP 188).

	In that connection, the use of CREATE_SESSION without privacy protection needs to be addressed
	as it exposes the session ID to view by an attacker. This is worrisome as this is precisely the type
	of protocol artifact alluded to in RFC 7258,
	which can enable further mischief on the part of
	the attacker as it enables denial-of-service attacks that can be
	executed effectively with only a single, normally low-value,
	credential, even when RPCSEC_GSS authentication is in use.

 The lack of effective use of privacy and integrity, even where the
	infrastructure to support use of RPCSEC_GSS is present,
	needs to be addressed.

	In light of the security exposures that
	this situation creates, it is not enough to define a protocol that
	could address this problem with the provision of sufficient resources.
	Instead, what is needed is a way to provide the necessary security
	with very limited performance costs and without requiring
	security infrastructure, which experience has shown is difficult for
	many clients and servers to provide.

 In trying to provide a major security upgrade for a deployed protocol
 such as NFSv4.1, the working group and the Internet community are likely
 to find themselves dealing with a number of considerations such as the
 following:

	The need to accommodate existing deployments of protocols
	specified previously in existing Proposed Standards.

	The difficulty of effecting changes to existing, interoperating
	implementations.

	The difficulty of making changes to NFSv4 protocols other than those in
	the form of OPTIONAL extensions.

	The tendency of those responsible for existing NFSv4 deployments to
	ignore security flaws in the context of local area networks under
	the mistaken impression that network isolation provides, in and of itself, isolation from
	all potential attackers.

 Given that the above-mentioned difficulties apply to minor
 version zero as well, it may make sense to deal with these security issues
 in a common document that applies to all NFSv4 minor versions. If
 that approach is taken, the Security Considerations section of an eventual NFv4.1 bis
 document would reference that common document, and the defining
 RFCs for other minor versions might do so as well.

 Acknowledgments

 Acknowledgments for This Update

 The authors wish to acknowledge the important role
 of of Netapp
 in clarifying the need for trunking discovery functionality, and
 exploring the role of the file system location attributes in
	providing the
 necessary support.

	The authors wish to thank of Hammerspace for drawing our
	attention to the fact that internationalization and security might
	best be handled in documents dealing with such protocol issues as they
	apply to all NFSv4 minor versions.

 The authors also wish to acknowledge the work of of Oracle
 with NFSv4.1 client and server prototypes of Transparent State
 Migration functionality.

 The authors wish to thank others that brought attention to important
	issues. The comments of of Primary Data related
	to trunking helped to clarify the role of DNS in
 trunking discovery. 's comments brought attention to
	problems in the handling of the per-fs version of
	RECLAIM_COMPLETE.

 The authors wish to thank of Netapp for her helpful
 review comments.

 Acknowledgments for RFC 5661

 The initial text for the SECINFO extensions were edited by
 with contributions from , , and
 .

 The initial text for the SESSIONS extensions were edited by
 , ,
 with contributions from
 , , , , , , , , , and .

 Initial text relating to multi-server namespace features,
 including the concept of referrals, were contributed by
 , ,
 and with contributions
 from , , and .

 The initial text for the Directory Delegations support were
 contributed by with input from
 , ,
 , ,
 and .

 The initial text for the ACL explanations were contributed by
 and .

 The pNFS work was inspired by the NASD and OSD
 work done by . has also
 been a champion of high-performance parallel I/O.
 and started the pNFS
 effort with a problem statement document for the IETF
 that formed the basis for the pNFS work in NFSv4.1.

 The initial text for the parallel NFS support was edited by
 and . Additional authors for those
 documents were , , and .
 Additional input came from the informal group that contributed
 to the construction of the initial pNFS drafts; specific
 acknowledgment goes to , , ,
 , and .

 found several errors in draft versions of the
 ONC RPC XDR description of the NFSv4.1 protocol.

 provided, in numerous ways, essential
 coordination and management of the process of editing the
 specification documents.

 gave feedback on the file layout's striping
 pattern design.

 Several formal inspection teams were formed to review various
 areas of the protocol. All the inspections found significant
 errors and room for improvement. NFSv4.1's inspection teams
 were:

 ACLs, with the following inspectors:

 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
		and
	 .

 Sessions, with the following inspectors:

 	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
	 ,
		and
	 .

 Initial pNFS inspection, with the following inspectors:

 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
		and
 .

 Global namespace, with the following inspectors:

 ,
 ,
 ,
 ,
 ,
	 ,
 ,
 ,
 ,
 and
 .

 NFSv4.1 file layout type, with the following inspectors:

	 ,
	 ,
	 ,
	 ,
	 ,
	 ,

		and

	 .

 NFSv4.1 locking and directory delegations, with the following inspectors:

 ,
 ,
	 ,
 ,
 ,
 ,
 ,

		and

 .

 EXCHANGE_ID and DESTROY_CLIENTID, with the following inspectors:

 ,
 ,
	 ,
 ,
 ,
 ,
	 ,
 ,
	 ,
 ,
		and
 .

 Final pNFS inspection, with the following inspectors:

 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and
 .

 A review team worked together to generate the tables of assignments of
 error sets to operations and make sure that each such assignment had
 two or more people validating it. Participating in the process were

 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,

 and

 .

 , ,
 , , , , and provided valuable review and guidance.

 found several errors in the SSV specification.

 found several places where the use of RPCSEC_GSS
 was underspecified.

 Those who provided miscellaneous comments include:

 , ,
 , ,
 , , , , , , , , , , , , , , and .

 Authors' Addresses

 NetApp

 1601 Trapelo Road, Suite 16
 Waltham
 MA
 02451
 United States of America

 +1-781-768-5347
 dnoveck@netapp.com

 Oracle Corporation

 1015 Granger Avenue
 Ann Arbor
 MI
 48104
 United States of America

 +1-248-614-5091
 chuck.lever@oracle.com

