
ï»¿

Internet Engineering Task Force (IETF) M. KÃ¼hlewind
Request for Comments: 9308 Ericsson
Category: Informational B. Trammell
ISSN: 2070-1721 Google Switzerland GmbH
 September 2022

 Applicability of the QUIC Transport Protocol

Abstract

 This document discusses the applicability of the QUIC transport
 protocol, focusing on caveats impacting application protocol
 development and deployment over QUIC. Its intended audience is
 designers of application protocol mappings to QUIC and implementors
 of these application protocols.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9308.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. The Necessity of Fallback
 3. 0-RTT
 3.1. Replay Attacks
 3.2. Session Resumption versus Keep-Alive
 4. Use of Streams
 4.1. Stream versus Flow Multiplexing
 4.2. Prioritization
 4.3. Ordered and Reliable Delivery
 4.4. Flow Control Deadlocks
 4.5. Stream Limit Commitments
 5. Packetization and Latency
 6. Error Handling
 7. Acknowledgment Efficiency
 8. Port Selection and Application Endpoint Discovery
 8.1. Source Port Selection
 9. Connection Migration

 10. Connection Termination
 11. Information Exposure and the Connection ID
 11.1. Server-Generated Connection ID
 11.2. Mitigating Timing Linkability with Connection ID Migration
 11.3. Using Server Retry for Redirection
 12. Quality of Service (QoS) and Diffserv Code Point (DSCP)
 13. Use of Versions and Cryptographic Handshake
 14. Enabling Deployment of New Versions
 15. Unreliable Datagram Service over QUIC
 16. IANA Considerations
 17. Security Considerations
 18. References
 18.1. Normative References
 18.2. Informative References
 Acknowledgments
 Contributors
 Authors’ Addresses

1. Introduction

 QUIC [QUIC] is a new transport protocol providing a number of
 advanced features. While initially designed for the HTTP use case,
 it provides capabilities that can be used with a much wider variety
 of applications. QUIC is encapsulated in UDP. QUIC version 1
 integrates TLS 1.3 [TLS13] to encrypt all payload data and most
 control information. The version of HTTP that uses QUIC is known as
 HTTP/3 [QUIC-HTTP].

 This document provides guidance for application developers who want
 to use the QUIC protocol without implementing it on their own. This
 includes general guidance for applications operating over HTTP/3 or
 directly over QUIC.

 In the following sections, we discuss specific caveats to QUIC’s
 applicability and issues that application developers must consider
 when using QUIC as a transport for their applications.

2. The Necessity of Fallback

 QUIC uses UDP as a substrate. This enables userspace implementation
 and permits traversal of network middleboxes (including NAT) without
 requiring updates to existing network infrastructure.

 Measurement studies have shown between 3% [Trammell16] and 5%
 [Swett16] of networks block all UDP traffic, though there is little
 evidence of other forms of systematic disadvantage to UDP traffic
 compared to TCP [Edeline16]. This blocking implies that all
 applications running on top of QUIC must either be prepared to accept
 connectivity failure on such networks or be engineered to fall back
 to some other transport protocol. In the case of HTTP, this fallback
 is TLS over TCP.

 The IETF Transport Services (TAPS) specifications [TAPS-ARCH]
 describe a system with a common API for multiple protocols. This is
 particularly relevant for QUIC as it addresses the implications of
 fallback among multiple protocols.

 Specifically, fallback to insecure protocols or to weaker versions of
 secure protocols needs to be avoided. In general, an application
 that implements fallback needs to consider the security consequences.
 A fallback to TCP and TLS exposes control information to modification
 and manipulation in the network. Additionally, downgrades to TLS
 versions older than 1.3, which is used in QUIC version 1, might
 result in significantly weaker cryptographic protection. For
 example, the results of protocol negotiation [RFC7301] only have
 confidentiality protection if TLS 1.3 is used.

 These applications must operate, perhaps with impaired functionality,
 in the absence of features provided by QUIC not present in the
 fallback protocol. For fallback to TLS over TCP, the most obvious
 difference is that TCP does not provide stream multiplexing, and

 therefore stream multiplexing would need to be implemented in the
 application layer if needed. Further, TCP implementations and
 network paths often do not support the TCP Fast Open (TFO) option
 [RFC7413], which enables sending of payload data together with the
 first control packet of a new connection as also provided by 0-RTT
 session resumption in QUIC. Note that there is some evidence of
 middleboxes blocking SYN data even if TFO was successfully negotiated
 (see [PaaschNanog]). And even if Fast Open successfully operates end
 to end, it is limited to a single packet of TLS handshake and
 application data, unlike QUIC 0-RTT.

 Moreover, while encryption (in this case TLS) is inseparably
 integrated with QUIC, TLS negotiation over TCP can be blocked. If
 TLS over TCP cannot be supported, the connection should be aborted,
 and the application then ought to present a suitable prompt to the
 user that secure communication is unavailable.

 In summary, any fallback mechanism is likely to impose a degradation
 of performance and can degrade security; however, fallback must not
 silently violate the application’s expectation of confidentiality or
 integrity of its payload data.

3. 0-RTT

 QUIC provides for 0-RTT connection establishment. Though the same
 facility exists in TLS 1.3 with TCP, 0-RTT presents opportunities and
 challenges for applications using QUIC.

 A transport protocol that provides 0-RTT connection establishment is
 qualitatively different from one that does not provide 0-RTT from the
 point of view of the application using it. Relative trade-offs
 between the cost of closing and reopening a connection and trying to
 keep it open are different; see Section 3.2.

 An application needs to deliberately choose to use 0-RTT, as 0-RTT
 carries a risk of replay attack. Application protocols that use
 0-RTT require a profile that describes the types of information that
 can be safely sent. For HTTP, this profile is described in
 [HTTP-REPLAY].

3.1. Replay Attacks

 Retransmission or malicious replay of data contained in 0-RTT packets
 could cause the server side to receive multiple copies of the same
 data.

 Application data sent by the client in 0-RTT packets could be
 processed more than once if it is replayed. Applications need to be
 aware of what is safe to send in 0-RTT. Application protocols that
 seek to enable the use of 0-RTT need a careful analysis and a
 description of what can be sent in 0-RTT; see Section 5.6 of
 [QUIC-TLS].

 In some cases, it might be sufficient to limit application data sent
 in 0-RTT to data that does not cause actions with lasting effects at
 a server. Initiating data retrieval or establishing configuration
 are examples of actions that could be safe. Idempotent operations --
 those for which repetition has the same net effect as a single
 operation -- might be safe. However, it is also possible to combine
 individually idempotent operations into a non-idempotent sequence of
 operations.

 Once a server accepts 0-RTT data, there is no means of selectively
 discarding data that is received. However, protocols can define ways
 to reject individual actions that might be unsafe if replayed.

 Some TLS implementations and deployments might be able to provide
 partial or even complete replay protection, which could be used to
 manage replay risk.

3.2. Session Resumption versus Keep-Alive

 Because QUIC is encapsulated in UDP, applications using QUIC must
 deal with short network idle timeouts. Deployed stateful middleboxes
 will generally establish state for UDP flows on the first packet sent
 and keep state for much shorter idle periods than for TCP. [RFC5382]
 suggests a TCP idle period of at least 124 minutes, though there is
 no evidence of widespread implementation of this guideline in the
 literature. However, short network timeout for UDP is well-
 documented. According to a 2010 study ([Hatonen10]), UDP
 applications can assume that any NAT binding or other state entry can
 expire after just thirty seconds of inactivity. Section 3.5 of
 [RFC8085] further discusses keep-alive intervals for UDP: it requires
 that there is a minimum value of 15 seconds, but recommends larger
 values, or that keep-alive is omitted entirely.

 By using a connection ID, QUIC is designed to be robust to NAT
 rebinding after a timeout. However, this only helps if one endpoint
 maintains availability at the address its peer uses and the peer is
 the one to send after the timeout occurs.

 Some QUIC connections might not be robust to NAT rebinding because
 the routing infrastructure (in particular, load balancers) uses the
 address/port 4-tuple to direct traffic. Furthermore, middleboxes
 with functions other than address translation could still affect the
 path. In particular, some firewalls do not admit server traffic for
 which the firewall has no recent state for a corresponding packet
 sent from the client.

 QUIC applications can adjust idle periods to manage the risk of
 timeout. Idle periods and the network idle timeout are distinct from
 the connection idle timeout, which is defined as the minimum of
 either endpoint’s idle timeout parameter; see Section 10.1 of [QUIC].
 There are three options:

 * Ignore the issue if the application-layer protocol consists only
 of interactions with no or very short idle periods or if the
 protocol’s resistance to NAT rebinding is sufficient.

 * Ensure there are no long idle periods.

 * Resume the session after a long idle period, using 0-RTT
 resumption when appropriate.

 The first strategy is the easiest, but it only applies to certain
 applications.

 Either the server or the client in a QUIC application can send PING
 frames as keep-alives to prevent the connection and any on-path state
 from timing out. Recommendations for the use of keep-alives are
 application specific, mainly depending on the latency requirements
 and message frequency of the application. In this case, the
 application mapping must specify whether the client or server is
 responsible for keeping the application alive. While [Hatonen10]
 suggests that 30 seconds might be a suitable value for the public
 Internet when a NAT is on path, larger values are preferable if the
 deployment can consistently survive NAT rebinding or is known to be
 in a controlled environment (e.g., data centers) in order to lower
 network and computational load.

 Sending PING frames more frequently than every 30 seconds over long
 idle periods may result in excessive unproductive traffic in some
 situations and unacceptable power usage for power-constrained
 (mobile) devices. Additionally, timeouts shorter than 30 seconds can
 make it harder to handle transient network interruptions, such as
 Virtual Machine (VM) migration or coverage loss during mobility. See
 [RFC8085], especially Section 3.5.

 Alternatively, the client (but not the server) can use session
 resumption instead of sending keep-alive traffic. In this case, a
 client that wants to send data to a server over a connection that has
 been idle longer than the server’s idle timeout (available from the

 idle_timeout transport parameter) can simply reconnect. When
 possible, this reconnection can use 0-RTT session resumption,
 reducing the latency involved with restarting the connection. Of
 course, this approach is only valid in cases in which it is safe to
 use 0-RTT and when the client is the restarting peer.

 The trade-offs between resumption and keep-alives need to be
 evaluated on a per-application basis. In general, applications
 should use keep-alives only in circumstances where continued
 communication is highly likely; [QUIC-HTTP], for instance, recommends
 using keep-alives only when a request is outstanding.

4. Use of Streams

 QUIC’s stream multiplexing feature allows applications to run
 multiple streams over a single connection without head-of-line
 blocking between streams. Stream data is carried within frames where
 one QUIC packet on the wire can carry one or multiple stream frames.

 Streams can be unidirectional or bidirectional, and a stream may be
 initiated either by client or server. Only the initiator of a
 unidirectional stream can send data on it.

 Streams and connections can each carry a maximum of 2^62-1 bytes in
 each direction due to encoding limitations on stream offsets and
 connection flow control limits. In the presently unlikely event that
 this limit is reached by an application, a new connection would need
 to be established.

 Streams can be independently opened and closed, gracefully or
 abruptly. An application can gracefully close the egress direction
 of a stream by instructing QUIC to send a FIN bit in a STREAM frame.
 It cannot gracefully close the ingress direction without a peer-
 generated FIN, much like in TCP. However, an endpoint can abruptly
 close the egress direction or request that its peer abruptly close
 the ingress direction; these actions are fully independent of each
 other.

 QUIC does not provide an interface for exceptional handling of any
 stream. If a stream that is critical for an application is closed,
 the application can generate error messages on the application layer
 to inform the other end and/or the higher layer, which can eventually
 terminate the QUIC connection.

 Mapping of application data to streams is application specific and
 described for HTTP/3 in [QUIC-HTTP]. There are a few general
 principles to apply when designing an application’s use of streams:

 * A single stream provides ordering. If the application requires
 certain data to be received in order, that data should be sent on
 the same stream. There is no guarantee of transmission,
 reception, or delivery order across streams.

 * Multiple streams provide concurrency. Data that can be processed
 independently, and therefore would suffer from head-of-line
 blocking if forced to be received in order, should be transmitted
 over separate streams.

 * Streams can provide message orientation and allow messages to be
 canceled. If one message is mapped to a single stream, resetting
 the stream to expire an unacknowledged message can be used to
 emulate partial reliability for that message.

 If a QUIC receiver has opened the maximum allowed concurrent streams,
 and the sender indicates that more streams are needed, it does not
 automatically lead to an increase of the maximum number of streams by
 the receiver. Therefore, an application should consider the maximum
 number of allowed, currently open, and currently used streams when
 determining how to map data to streams.

 QUIC assigns a numerical identifier, called the stream ID, to each

 stream. While the relationship between these identifiers and stream
 types is clearly defined in version 1 of QUIC, future versions might
 change this relationship for various reasons. QUIC implementations
 should expose the properties of each stream (which endpoint initiated
 the stream, whether the stream is unidirectional or bidirectional,
 the stream ID used for the stream); applications should query for
 these properties rather than attempting to infer them from the stream
 ID.

 The method of allocating stream identifiers to streams opened by the
 application might vary between transport implementations. Therefore,
 an application should not assume a particular stream ID will be
 assigned to a stream that has not yet been allocated. For example,
 HTTP/3 uses stream IDs to refer to streams that have already been
 opened but makes no assumptions about future stream IDs or the way in
 which they are assigned (see Section 6 of [QUIC-HTTP]).

4.1. Stream versus Flow Multiplexing

 Streams are meaningful only to the application; since stream
 information is carried inside QUIC’s encryption boundary, a given
 packet exposes no information about which stream(s) are carried
 within the packet. Therefore, stream multiplexing is not intended to
 be used for differentiating streams in terms of network treatment.
 Application traffic requiring different network treatment should
 therefore be carried over different 5-tuples (i.e., multiple QUIC
 connections). Given QUIC’s ability to send application data in the
 first RTT of a connection (if a previous connection to the same host
 has been successfully established to provide the necessary
 credentials), the cost of establishing another connection is
 extremely low.

4.2. Prioritization

 Stream prioritization is not exposed to either the network or the
 receiver. Prioritization is managed by the sender, and the QUIC
 transport should provide an interface for applications to prioritize
 streams [QUIC]. Applications can implement their own prioritization
 scheme on top of QUIC: an application protocol that runs on top of
 QUIC can define explicit messages for signaling priority, such as
 those defined in [RFC9218] for HTTP. An application protocol can
 define rules that allow an endpoint to determine priority based on
 context or can provide a higher-level interface and leave the
 determination to the application on top.

 Priority handling of retransmissions can be implemented by the sender
 in the transport layer. [QUIC] recommends retransmitting lost data
 before new data, unless indicated differently by the application.
 When a QUIC endpoint uses fully reliable streams for transmission,
 prioritization of retransmissions will be beneficial in most cases,
 filling in gaps and freeing up the flow control window. For
 partially reliable or unreliable streams, priority scheduling of
 retransmissions over data of higher-priority streams might not be
 desirable. For such streams, QUIC could either provide an explicit
 interface to control prioritization or derive the prioritization
 decision from the reliability level of the stream.

4.3. Ordered and Reliable Delivery

 QUIC streams enable ordered and reliable delivery. Though it is
 possible for an implementation to provide options that use streams
 for partial reliability or out-of-order delivery, most
 implementations will assume that data is reliably delivered in order.

 Under this assumption, an endpoint that receives stream data might
 not make forward progress until data that is contiguous with the
 start of a stream is available. In particular, a receiver might
 withhold flow control credit until contiguous data is delivered to
 the application; see Section 2.2 of [QUIC]. To support this receive
 logic, an endpoint will send stream data until it is acknowledged,
 ensuring that data at the start of the stream is sent and

 acknowledged first.

 An endpoint that uses a different sending behavior and does not
 negotiate that change with its peer might encounter performance
 issues or deadlocks.

4.4. Flow Control Deadlocks

 QUIC flow control (Section 4 of [QUIC]) provides a means of managing
 access to the limited buffers that endpoints have for incoming data.
 This mechanism limits the amount of data that can be in buffers in
 endpoints or in transit on the network. However, there are several
 ways in which limits can produce conditions that can cause a
 connection to either perform suboptimally or become deadlocked.

 Deadlocks in flow control are possible for any protocol that uses
 QUIC, though whether they become a problem depends on how
 implementations consume data and provide flow control credit.
 Understanding what causes deadlocking might help implementations
 avoid deadlocks.

 The size and rate of updates to flow control credit can affect
 performance. Applications that use QUIC often have a data consumer
 that reads data from transport buffers. Some implementations might
 have independent receive buffers at the transport layer and
 application layer. Consuming data does not always imply it is
 immediately processed. However, a common implementation technique is
 to extend flow control credit to the sender by emitting MAX_DATA and/
 or MAX_STREAM_DATA frames as data is consumed. Delivery of these
 frames is affected by the latency of the back channel from the
 receiver to the data sender. If credit is not extended in a timely
 manner, the sending application can be blocked, effectively
 throttling the sender.

 Large application messages can produce deadlocking if the recipient
 does not read data from the transport incrementally. If the message
 is larger than the flow control credit available and the recipient
 does not release additional flow control credit until the entire
 message is received and delivered, a deadlock can occur. This is
 possible even where stream flow control limits are not reached
 because connection flow control limits can be consumed by other
 streams.

 A length-prefixed message format makes it easier for a data consumer
 to leave data unread in the transport buffer and thereby withhold
 flow control credit. If flow control limits prevent the remainder of
 a message from being sent, a deadlock will result. A length prefix
 might also enable the detection of this sort of deadlock. Where
 application protocols have messages that might be processed as a
 single unit, reserving flow control credit for the entire message
 atomically makes this style of deadlock less likely.

 A data consumer can eagerly read all data as it becomes available in
 order to make the receiver extend flow control credit and reduce the
 chances of a deadlock. However, such a data consumer might need
 other means for holding a peer accountable for the additional state
 it keeps for partially processed messages.

 Deadlocking can also occur if data on different streams is
 interdependent. Suppose that data on one stream arrives before the
 data on a second stream on which it depends. A deadlock can occur if
 the first stream is left unread, preventing the receiver from
 extending flow control credit for the second stream. To reduce the
 likelihood of deadlock for interdependent data, the sender should
 ensure that dependent data is not sent until the data it depends on
 has been accounted for in both stream- and connection-level flow
 control credit.

 Some deadlocking scenarios might be resolved by canceling affected
 streams with STOP_SENDING or RESET_STREAM. Canceling some streams
 results in the connection being terminated in some protocols.

4.5. Stream Limit Commitments

 QUIC endpoints are responsible for communicating the cumulative limit
 of streams they would allow to be opened by their peer. Initial
 limits are advertised using the initial_max_streams_bidi and
 initial_max_streams_uni transport parameters. As streams are opened
 and closed, they are consumed, and the cumulative total is
 incremented. Limits can be increased using the MAX_STREAMS frame,
 but there is no mechanism to reduce limits. Once stream limits are
 reached, no more streams can be opened, which prevents applications
 using QUIC from making further progress. At this stage, connections
 can be terminated via idle timeout or explicit close; see Section 10.

 An application that uses QUIC and communicates a cumulative stream
 limit might require the connection to be closed before the limit is
 reached, e.g., to stop the server in order to perform scheduled
 maintenance. Immediate connection close causes abrupt closure of
 actively used streams. Depending on how an application uses QUIC
 streams, this could be undesirable or detrimental to behavior or
 performance.

 A more graceful closure technique is to stop sending increases to
 stream limits and allow the connection to naturally terminate once
 remaining streams are consumed. However, the period of time it takes
 to do so is dependent on the peer, and an unpredictable closing
 period might not fit application or operational needs. Applications
 using QUIC can be conservative with open stream limits in order to
 reduce the commitment and indeterminism. However, being overly
 conservative with stream limits affects stream concurrency.
 Balancing these aspects can be specific to applications and their
 deployments.

 Instead of relying on stream limits to avoid abrupt closure, an
 application layer’s graceful close mechanism can be used to
 communicate the intention to explicitly close the connection at some
 future point. HTTP/3 provides such a mechanism using the GOAWAY
 frame. In HTTP/3, when the GOAWAY frame is received by a client, it
 stops opening new streams even if the cumulative stream limit would
 allow. Instead, the client would create a new connection on which to
 open further streams. Once all streams are closed on the old
 connection, it can be terminated safely by a connection close or
 after expiration of the idle timeout (see Section 10).

5. Packetization and Latency

 QUIC exposes an interface that provides multiple streams to the
 application; however, the application usually cannot control how data
 transmitted over those streams is mapped into frames or how those
 frames are bundled into packets.

 By default, many implementations will try to pack STREAM frames from
 one or more streams into each QUIC packet, in order to minimize
 bandwidth consumption and computational costs (see Section 13 of
 [QUIC]). If there is not enough data available to fill a packet, an
 implementation might wait for a short time to optimize bandwidth
 efficiency instead of latency. This delay can either be
 preconfigured or dynamically adjusted based on the observed sending
 pattern of the application.

 If the application requires low latency, with only small chunks of
 data to send, it may be valuable to indicate to QUIC that all data
 should be sent out immediately. Alternatively, if the application
 expects to use a specific sending pattern, it can also provide a
 suggested delay to QUIC for how long to wait before bundling frames
 into a packet.

 Similarly, an application usually has no control over the length of a
 QUIC packet on the wire. QUIC provides the ability to add a PADDING
 frame to arbitrarily increase the size of packets. Padding is used
 by QUIC to ensure that the path is capable of transferring datagrams

 of at least a certain size during the handshake (see Sections 8.1 and
 14.1 of [QUIC]) and for path validation after connection migration
 (see Section 8.2 of [QUIC]) as well as for Datagram Packetization
 Layer PMTU Discovery (DPLPMTUD) (see Section 14.3 of [QUIC]).

 Padding can also be used by an application to reduce leakage of
 information about the data that is sent. A QUIC implementation can
 expose an interface that allows an application layer to specify how
 to apply padding.

6. Error Handling

 QUIC recommends that endpoints signal any detected errors to the
 peer. Errors can occur at the transport layer and the application
 layer. Transport errors, such as a protocol violation, affect the
 entire connection. Applications that use QUIC can define their own
 error detection and signaling (see, for example, Section 8 of
 [QUIC-HTTP]). Application errors can affect an entire connection or
 a single stream.

 QUIC defines an error code space that is used for error handling at
 the transport layer. QUIC encourages endpoints to use the most
 specific code, although any applicable code is permitted, including
 generic ones.

 Applications using QUIC define an error code space that is
 independent of QUIC or other applications (see, for example,
 Section 8.1 of [QUIC-HTTP]). The values in an application error code
 space can be reused across connection-level and stream-level errors.

 Connection errors lead to connection termination. They are signaled
 using a CONNECTION_CLOSE frame, which contains an error code and a
 reason field that can be zero length. Different types of
 CONNECTION_CLOSE frames are used to signal transport and application
 errors.

 Stream errors lead to stream termination. These are signaled using
 STOP_SENDING or RESET_STREAM frames, which contain only an error
 code.

7. Acknowledgment Efficiency

 QUIC version 1 without extensions uses an acknowledgment strategy
 adopted from TCP (see Section 13.2 of [QUIC]). That is, it
 recommends that every other packet is acknowledged. However,
 generating and processing QUIC acknowledgments consumes resources at
 a sender and receiver. Acknowledgments also incur forwarding costs
 and contribute to link utilization, which can impact performance over
 some types of network. Applications might be able to improve overall
 performance by using alternative strategies that reduce the rate of
 acknowledgments. [QUIC-ACK-FREQUENCY] describes an extension to
 signal the desired delay of acknowledgments and discusses use cases
 as well as implications for congestion control and recovery.

8. Port Selection and Application Endpoint Discovery

 In general, port numbers serve two purposes: "first, they provide a
 demultiplexing identifier to differentiate transport sessions between
 the same pair of endpoints, and second, they may also identify the
 application protocol and associated service to which processes
 connect" (Section 3 of [RFC6335]). The assumption that an
 application can be identified in the network based on the port number
 is less true today due to encapsulation and mechanisms for dynamic
 port assignments, as noted in [RFC6335].

 As QUIC is a general-purpose transport protocol, there are no
 requirements that servers use a particular UDP port for QUIC. For an
 application with a fallback to TCP that does not already have an
 alternate mapping to UDP, it is usually appropriate to register (if
 necessary) and use the UDP port number corresponding to the TCP port
 already registered for the application. For example, the default

 port for HTTP/3 [QUIC-HTTP] is UDP port 443, analogous to HTTP/1.1 or
 HTTP/2 over TLS over TCP.

 Given the prevalence of the assumption in network management practice
 that a port number maps unambiguously to an application, the use of
 ports that cannot easily be mapped to a registered service name might
 lead to blocking or other changes to the forwarding behavior by
 network elements such as firewalls that use the port number for
 application identification.

 Applications could define an alternate endpoint discovery mechanism
 to allow the usage of ports other than the default. For example,
 HTTP/3 (Sections 3.2 and 3.3 of [QUIC-HTTP]) specifies the use of
 HTTP Alternative Services [RFC7838] for an HTTP origin to advertise
 the availability of an equivalent HTTP/3 endpoint on a certain UDP
 port by using "h3" as the Application-Layer Protocol Negotiation
 (ALPN) [RFC7301] token.

 ALPN permits the client and server to negotiate which of several
 protocols will be used on a given connection. Therefore, multiple
 applications might be supported on a single UDP port based on the
 ALPN token offered. Applications using QUIC are required to register
 an ALPN token for use in the TLS handshake.

 As QUIC version 1 deferred defining a complete version negotiation
 mechanism, HTTP/3 requires QUIC version 1 and defines the ALPN token
 ("h3") to only apply to that version. So far, no single approach has
 been selected for managing the use of different QUIC versions,
 neither in HTTP/3 nor in general. Application protocols that use
 QUIC need to consider how the protocol will manage different QUIC
 versions. Decisions for those protocols might be informed by choices
 made by other protocols, like HTTP/3.

8.1. Source Port Selection

 Some UDP protocols are vulnerable to reflection attacks, where an
 attacker is able to direct traffic to a third party as a denial of
 service. For example, these source ports are associated with
 applications known to be vulnerable to reflection attacks, often due
 to server misconfiguration:

 * port 53 - DNS [RFC1034]

 * port 123 - NTP [RFC5905]

 * port 1900 - SSDP [SSDP]

 * port 5353 - mDNS [RFC6762]

 * port 11211 - memcache

 Services might block source ports associated with protocols known to
 be vulnerable to reflection attacks to avoid the overhead of
 processing large numbers of packets. However, this practice has
 negative effects on clients -- not only does it require establishment
 of a new connection but in some instances might cause the client to
 avoid using QUIC for that service for a period of time and downgrade
 to a non-UDP protocol (see Section 2).

 As a result, client implementations are encouraged to avoid using
 source ports associated with protocols known to be vulnerable to
 reflection attacks. Note that following the general guidance for
 client implementations given in [RFC6335], to use ephemeral ports in
 the range 49152-65535, has the effect of avoiding these ports. Note
 that other source ports might be reflection vectors as well.

9. Connection Migration

 QUIC supports connection migration by the client. If the client’s IP
 address changes, a QUIC endpoint can still associate packets with an
 existing transport connection using the Destination Connection ID

 field (see Section 11) in the QUIC header. This supports cases where
 the address information changes, such as NAT rebinding, the
 intentional change of the local interface, the expiration of a
 temporary IPv6 address [RFC8981], or the indication from the server
 of a preferred address (Section 9.6 of [QUIC]).

 Use of a non-zero-length connection ID for the server is strongly
 recommended if any clients are or could be behind a NAT. A non-zero-
 length connection ID is also strongly recommended when active
 migration is supported. If a connection is intentionally migrated to
 a new path, a new connection ID is used to minimize linkability by
 network observers. The other QUIC endpoint uses the connection ID to
 link different addresses to the same connection and entity if a non-
 zero-length connection ID is provided.

 The base specification of QUIC version 1 only supports the use of a
 single network path at a time, which enables failover use cases.
 Path validation is required so that endpoints validate paths before
 use to avoid address spoofing attacks. Path validation takes at
 least one RTT, and congestion control will also be reset after path
 migration. Therefore, migration usually has a performance impact.

 QUIC probing packets, which can be sent on multiple paths at once,
 are used to perform address validation as well as measure path
 characteristics. Probing packets cannot carry application data but
 likely contain padding frames. Endpoints can use information about
 their receipt as input to congestion control for that path.
 Applications could use information learned from probing to inform a
 decision to switch paths.

 Only the client can actively migrate in version 1 of QUIC. However,
 servers can indicate during the handshake that they prefer to
 transfer the connection to a different address after the handshake.
 For instance, this could be used to move from an address that is
 shared by multiple servers to an address that is unique to the server
 instance. The server can provide an IPv4 and an IPv6 address in a
 transport parameter during the TLS handshake, and the client can
 select between the two if both are provided. See Section 9.6 of
 [QUIC].

10. Connection Termination

 QUIC connections are terminated in one of three ways: implicit idle
 timeout, explicit immediate close, or explicit stateless reset.

 QUIC does not provide any mechanism for graceful connection
 termination; applications using QUIC can define their own graceful
 termination process (see, for example, Section 5.2 of [QUIC-HTTP]).

 QUIC idle timeout is enabled via transport parameters. The client
 and server announce a timeout period, and the effective value for the
 connection is the minimum of the two values. After the timeout
 period elapses, the connection is silently closed. An application
 therefore should be able to configure its own maximum value, as well
 as have access to the computed minimum value for this connection. An
 application may adjust the maximum idle timeout for new connections
 based on the number of open or expected connections since shorter
 timeout values may free up resources more quickly.

 Application data exchanged on streams or in datagrams defers the QUIC
 idle timeout. Applications that provide their own keep-alive
 mechanisms will therefore keep a QUIC connection alive. Applications
 that do not provide their own keep-alive can use transport-layer
 mechanisms (see Section 10.1.2 of [QUIC] and Section 3.2). However,
 QUIC implementation interfaces for controlling such transport
 behavior can vary, affecting the robustness of such approaches.

 An immediate close is signaled by a CONNECTION_CLOSE frame (see
 Section 6). Immediate close causes all streams to become immediately
 closed, which may affect applications; see Section 4.5.

 A stateless reset is an option of last resort for an endpoint that
 does not have access to connection state. Receiving a stateless
 reset is an indication of an unrecoverable error distinct from
 connection errors in that there is no application-layer information
 provided.

11. Information Exposure and the Connection ID

 QUIC exposes some information to the network in the unencrypted part
 of the header either before the encryption context is established or
 because the information is intended to be used by the network. For
 more information on manageability of QUIC, see [QUIC-MANAGEABILITY].
 QUIC has a long header that exposes some additional information (the
 version and the source connection ID), while the short header exposes
 only the destination connection ID. In QUIC version 1, the long
 header is used during connection establishment, while the short
 header is used for data transmission in an established connection.

 The connection ID can be zero length. Zero-length connection IDs can
 be chosen on each endpoint individually and on any packet except the
 first packets sent by clients during connection establishment.

 An endpoint that selects a zero-length connection ID will receive
 packets with a zero-length destination connection ID. The endpoint
 needs to use other information, such as the source and destination IP
 address and port number to identify which connection is referred to.
 This could mean that the endpoint is unable to match datagrams to
 connections successfully if these values change, making the
 connection effectively unable to survive NAT rebinding or migrate to
 a new path.

11.1. Server-Generated Connection ID

 QUIC supports a server-generated connection ID that is transmitted to
 the client during connection establishment (see Section 7.2 of
 [QUIC]). Servers behind load balancers may need to change the
 connection ID during the handshake, encoding the identity of the
 server or information about its load balancing pool, in order to
 support stateless load balancing.

 Server deployments with load balancers and other routing
 infrastructure need to ensure that this infrastructure consistently
 routes packets to the server instance that has the connection state,
 even if addresses, ports, or connection IDs change. This might
 require coordination between servers and infrastructure. One method
 of achieving this involves encoding routing information into the
 connection ID. For an example of this technique, see [QUIC-LB].

11.2. Mitigating Timing Linkability with Connection ID Migration

 If QUIC endpoints do not issue fresh connection IDs, then clients
 cannot reduce the linkability of address migration by using them.
 Choosing values that are unlinkable to an outside observer ensures
 that activity on different paths cannot be trivially correlated using
 the connection ID.

 While sufficiently robust connection ID generation schemes will
 mitigate linkability issues, they do not provide full protection.
 Analysis of the lifetimes of 6-tuples (source and destination
 addresses as well as the migrated Connection ID) may expose these
 links anyway.

 In the case where connection migration in a server pool is rare, it
 is trivial for an observer to associate two connection IDs.
 Conversely, where every server handles multiple simultaneous
 migrations, even an exposed server mapping may be insufficient
 information.

 The most efficient mitigations for these attacks are through network
 design and/or operational practices, by using a load-balancing
 architecture that loads more flows onto a single server-side address,

 by coordinating the timing of migrations in an attempt to increase
 the number of simultaneous migrations at a given time, or by using
 other means.

11.3. Using Server Retry for Redirection

 QUIC provides a Retry packet that can be sent by a server in response
 to the client Initial packet. The server may choose a new connection
 ID in that packet, and the client will retry by sending another
 client Initial packet with the server-selected connection ID. This
 mechanism can be used to redirect a connection to a different server,
 e.g., due to performance reasons or when servers in a server pool are
 upgraded gradually and therefore may support different versions of
 QUIC.

 In this case, it is assumed that all servers belonging to a certain
 pool are served in cooperation with load balancers that forward the
 traffic based on the connection ID. A server can choose the
 connection ID in the Retry packet such that the load balancer will
 redirect the next Initial packet to a different server in that pool.
 Alternatively, the load balancer can directly offer a Retry offload
 as further described in [QUIC-RETRY].

 The approach described in Section 4 of [RFC5077] for constructing TLS
 resumption tickets provides an example that can be also applied to
 validation tokens. However, the use of more modern cryptographic
 algorithms is highly recommended.

12. Quality of Service (QoS) and Diffserv Code Point (DSCP)

 QUIC, as defined in [QUIC], has a single congestion controller and
 recovery handler. This design assumes that all packets of a QUIC
 connection, or at least with the same 5-tuple {dest addr, source
 addr, protocol, dest port, source port}, that have the same Diffserv
 Code Point (DSCP) [RFC2475] will receive similar network treatment
 since feedback about loss or delay of each packet is used as input to
 the congestion controller. Therefore, packets belonging to the same
 connection should use a single DSCP. Section 5.1 of [RFC7657]
 provides a discussion of Diffserv interactions with datagram
 transport protocols [RFC7657] (in this respect, the interactions with
 QUIC resemble those of Stream Control Transmission Protocol (SCTP)).

 When multiplexing multiple flows over a single QUIC connection, the
 selected DSCP value should be the one associated with the highest
 priority requested for all multiplexed flows.

 If differential network treatment is desired, e.g., by the use of
 different DSCPs, multiple QUIC connections to the same server may be
 used. In general, it is recommended to minimize the number of QUIC
 connections to the same server to avoid increased overhead and, more
 importantly, competing congestion control.

 As in other uses of Diffserv, when a packet enters a network segment
 that does not support the DSCP value, this could result in the
 connection not receiving the network treatment it expects. The DSCP
 value in this packet could also be remarked as the packet travels
 along the network path, changing the requested treatment.

13. Use of Versions and Cryptographic Handshake

 Versioning in QUIC may change the protocol’s behavior completely,
 except for the meaning of a few header fields that have been declared
 to be invariant [QUIC-INVARIANTS]. A version of QUIC with a higher
 version number will not necessarily provide a better service but
 might simply provide a different feature set. As such, an
 application needs to be able to select which versions of QUIC it
 wants to use.

 A new version could use an encryption scheme other than TLS 1.3 or
 higher. [QUIC] specifies requirements for the cryptographic
 handshake as currently realized by TLS 1.3 and described in a

 separate specification [QUIC-TLS]. This split is performed to enable
 lightweight versioning with different cryptographic handshakes.

 The "QUIC Versions" registry established in [QUIC] allows for
 provisional registrations for experimentation. Registration, also of
 experimental versions, is important to avoid collision. Experimental
 versions should not be used long-term or registered as permanent to
 minimize the risk of fingerprinting based on the version number.

14. Enabling Deployment of New Versions

 QUIC version 1 does not specify a version negotiation mechanism in
 the base specification, but [QUIC-VERSION-NEGOTIATION] proposes an
 extension that provides compatible version negotiation.

 This approach uses a three-stage deployment mechanism, enabling
 progressive rollout and experimentation with multiple versions across
 a large server deployment. In this approach, all servers in the
 deployment must accept connections using a new version (stage 1)
 before any server advertises it (stage 2), and authentication of the
 new version (stage 3) only proceeds after advertising of that version
 is completely deployed.

 See Section 5 of [QUIC-VERSION-NEGOTIATION] for details.

15. Unreliable Datagram Service over QUIC

 [RFC9221] specifies a QUIC extension to enable sending and receiving
 unreliable datagrams over QUIC. Unlike operating directly over UDP,
 applications that use the QUIC datagram service do not need to
 implement their own congestion control, per [RFC8085], as QUIC
 datagrams are congestion controlled.

 QUIC datagrams are not flow controlled, and as such data chunks may
 be dropped if the receiver is overloaded. While the reliable
 transmission service of QUIC provides a stream-based interface to
 send and receive data in order over multiple QUIC streams, the
 datagram service has an unordered message-based interface. If
 needed, an application-layer framing can be used on top to allow
 separate flows of unreliable datagrams to be multiplexed on one QUIC
 connection.

16. IANA Considerations

 This document has no actions for IANA; however, note that Section 8
 recommends that an application that has already registered a TCP port
 but wants to specify QUIC as a transport should register a UDP port
 analogous to their existing TCP registration.

17. Security Considerations

 See the security considerations in [QUIC] and [QUIC-TLS]; the
 security considerations for the underlying transport protocol are
 relevant for applications using QUIC. Considerations on linkability,
 replay attacks, and randomness discussed in [QUIC-TLS] should be
 taken into account when deploying and using QUIC.

 Further, migration to a new address exposes a linkage between client
 addresses to the server and may expose this linkage also to the path
 if the connection ID cannot be changed or flows can otherwise be
 correlated. When migration is supported, this needs to be considered
 with respective to user privacy.

 Application developers should note that any fallback they use when
 QUIC cannot be used due to network blocking of UDP should guarantee
 the same security properties as QUIC. If this is not possible, the
 connection should fail to allow the application to explicitly handle
 fallback to a less-secure alternative. See Section 2.

 Further, [QUIC-HTTP] provides security considerations specific to
 HTTP. However, discussions such as on cross-protocol attacks,

 traffic analysis and padding, or migration might be relevant for
 other applications using QUIC as well.

18. References

18.1. Normative References

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC",
 RFC 8999, DOI 10.17487/RFC8999, May 2021,
 <https://www.rfc-editor.org/info/rfc8999>.

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,
 <https://www.rfc-editor.org/info/rfc9001>.

18.2. Informative References

 [Edeline16]
 Edeline, K., KÃ¼hlewind, M., Trammell, B., Aben, E., and B.
 Donnet, "Using UDP for Internet Transport Evolution",
 DOI 10.48550/arXiv.1612.07816, 22 December 2016,
 <https://arxiv.org/abs/1612.07816>.

 [Hatonen10]
 HÃ¤tÃ¶nen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
 Sarolahti, P., and M. Kojo, "An Experimental Study of Home
 Gateway Characteristics", Proc. ACM IMC 2010, November
 2010, <https://conferences.sigcomm.org/imc/2010/papers/
 p260.pdf>.

 [HTTP-REPLAY]
 Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September
 2018, <https://www.rfc-editor.org/info/rfc8470>.

 [PaaschNanog]
 Paasch, C., "Network support for TCP Fast Open", NANOG 67
 Presentation, 13 June 2016,
 <https://www.nanog.org/sites/default/files/
 Paasch_Network_Support.pdf>.

 [QUIC-ACK-FREQUENCY]
 Iyengar, J. and I. Swett, "QUIC Acknowledgement
 Frequency", Work in Progress, Internet-Draft, draft-ietf-
 quic-ack-frequency-02, 11 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 ack-frequency-02>.

 [QUIC-HTTP]
 Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
 June 2022, <https://www.rfc-editor.org/info/rfc9114>.

 [QUIC-LB] Duke, M., Banks, N., and C. Huitema, "QUIC-LB: Generating
 Routable QUIC Connection IDs", Work in Progress, Internet-
 Draft, draft-ietf-quic-load-balancers-14, 11 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 load-balancers-14>.

 [QUIC-MANAGEABILITY]
 KÃ¼hlewind, M. and B. Trammell, "Manageability of the QUIC
 Transport Protocol", RFC 9312, DOI 10.17487/RFC9312,
 September 2022, <https://www.rfc-editor.org/info/rfc9312>.

 [QUIC-RETRY]
 Duke, M. and N. Banks, "QUIC Retry Offload", Work in

 Progress, Internet-Draft, draft-ietf-quic-retry-offload-
 00, 25 May 2022, <https://datatracker.ietf.org/doc/html/
 draft-ietf-quic-retry-offload-00>.

 [QUIC-VERSION-NEGOTIATION]
 Schinazi, D. and E. Rescorla, "Compatible Version
 Negotiation for QUIC", Work in Progress, Internet-Draft,
 draft-ietf-quic-version-negotiation-10, 27 September 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 version-negotiation-10>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8981] Gont, F., Krishnan, S., Narten, T., and R. Draves,
 "Temporary Address Extensions for Stateless Address
 Autoconfiguration in IPv6", RFC 8981,

 DOI 10.17487/RFC8981, February 2021,
 <https://www.rfc-editor.org/info/rfc8981>.

 [RFC9218] Oku, K. and L. Pardue, "Extensible Prioritization Scheme
 for HTTP", RFC 9218, DOI 10.17487/RFC9218, June 2022,
 <https://www.rfc-editor.org/info/rfc9218>.

 [RFC9221] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", RFC 9221,
 DOI 10.17487/RFC9221, March 2022,
 <https://www.rfc-editor.org/info/rfc9221>.

 [SSDP] Donoho, A., Roe, B., Bodlaender, M., Gildred, J., Messer,
 A., Kim, Y., Fairman, B., and J. Tourzan, "UPnP Device
 Architecture 2.0", 17 April 2020,
 <https://openconnectivity.org/upnp-specs/UPnP-arch-
 DeviceArchitecture-v2.0-20200417.pdf>.

 [Swett16] Swett, I., "QUIC Deployment Experience @Google", IETF96
 QUIC BoF Presentation, 20 July 2016,
 <https://www.ietf.org/proceedings/96/slides/slides-96-
 quic-3.pdf>.

 [TAPS-ARCH]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., and
 C. Perkins, "An Architecture for Transport Services", Work
 in Progress, Internet-Draft, draft-ietf-taps-arch-14, 27
 September 2022, <https://datatracker.ietf.org/doc/html/
 draft-ietf-taps-arch-14>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [Trammell16]
 Trammell, B. and M. KÃ¼hlewind, "Internet Path Transparency
 Measurements using RIPE Atlas", RIPE 72 MAT Presentation,
 25 May 2016, <https://ripe72.ripe.net/wp-content/uploads/
 presentations/86-atlas-udpdiff.pdf>.

Acknowledgments

 Special thanks to Last Call reviewers Chris Lonvick and Ines Robles.

 This work was partially supported by the European Commission under
 Horizon 2020 grant agreement no. 688421 Measurement and Architecture
 for a Middleboxed Internet (MAMI) and by the Swiss State Secretariat
 for Education, Research, and Innovation under contract no. 15.0268.
 This support does not imply endorsement.

Contributors

 The following people have contributed significant text to or feedback
 on this document:

 Gorry Fairhurst

 Ian Swett

 Igor Lubashev

 Lucas Pardue

 Mike Bishop

 Mark Nottingham

 Martin Duke

 Martin Thomson

 Sean Turner

 Tommy Pauly

Authors’ Addresses

 Mirja KÃ¼hlewind
 Ericsson
 Email: mirja.kuehlewind@ericsson.com

 Brian Trammell
 Google Switzerland GmbH
 Gustav-Gull-Platz 1
 CH-8004 Zurich
 Switzerland
 Email: ietf@trammell.ch

