Net wor k Wor ki ng Group Vi nton Cerf

Request for Comments: 675 Yogen Dal a
NIC 2 Carl Sunshi ne
I NWG: 72 Decenber 1974

SPECI FI CATI ON OF | NTERNET TRANSM SSI ON CONTROL PROGRAM

Decenmber 1974 Version

1. 1 NTRODUCTI ON

Thi s docunent describes the functions to be performed by the

i nternetwork Transm ssion Control Program [TCP] and its interface to
prograns or users that require its services. Several basic
assunptions are nmade about process to process comruni cation and these
are listed here without further justification. The interested reader
is referred to [CEKA74, TOWML74, BELS74, DALA74, SUNS74] for further

di scussi on.

The authors would |ike to acknow edge the contributions of R
Tom i nson (three way handshake and Initial Sequence Nunber

Sel ection), D. Belsnes, J. Burchfiel, M @Glland, R Kahn, D. LI oyd,
W Plunmer, and J. Postel all of whose good ideas and counsel have
had a beneficial effect (we hope) on this protocol design. 1In the
early phases of the design work, R Metcalfe, A MKenzie, H
Zimmerman, G LelLann, and M Elie were nost hel pful in explicating
the various issues to be resolved. O course, we renmin responsible
for the remaining errors and m sstatenents which no doubt lurk in the
nooks and cranni es of the text.

Processes are viewed as the active elenments of all HOST computers in
a network. Even termnals and files or other 1/O nedia are viewed as
conmuni cati ng through the use of processes. Thus, all network
conmuni cation is viewed as inter-process comruni cation

Since a process may need to distinguish anobng several conmunication
streans between itself and anot her process [or processes], we inagine
that each process may have a nunmber of PORTs through which it

conmuni cates with the ports of other processes.

Since port names are selected i ndependently by each operating system
TCP, or user, they may not be unique. To provide for unique names at
each TCP, we concatenate a NETWORK identifier, and a TCP identifier
with a port name to create a SOCKET nane which will be unique

t hroughout all networks connected together

Cerf, Dalal & Sunshine [Page 1]

RFC 675 Speci fication of Internet TCP Decenmber 1974

A pair of sockets forma CONNECTI ON which can be used to carry data
in either direction [i.e. full duplex]. The connection is uniquely
identified by the <local socket, foreign socket> address pair, and
the sanme | ocal socket can participate in multiple connections to
different foreign sockets [see Section 2.2].

Processes exchange finite I ength LETTERS as a way of commruni cati ng;
thus, letter boundaries are significant. However, the length of a
letter may be such that it rust be broken into FRAGVENTS before it
can be transmtted to its destination. W assune that the fragnents
will normally be reassenbled into a letter before being passed to the
recei ving process. Throughout this docunent, it is legitimte to
assune that a fragment contains all or a part of a letter, but that a
fragment never contains parts of nore than one letter.

We specifically assume that fragnents are transmtted from Host to
Host through neans of a PACKET SW TCHI NG NETWORK [PSN] [ROVE7O,
POUZ73]. This assunption is probably unnecessary, since a circuit
switched network coul d al so be used, but for concreteness, we
explicitly assune that the hosts are connected to one or nore PACKET
SW TCHES [PS] of a PSN [HEKA7O, PQUZ74, SCW 71].

Processes nake use of the TCP by handing it letters. The TCP breaks
these into fragments, if necessary, and then enbeds each fragnent in
an | NTERNETWORK PACKET. Each internetwork packet is in turn enbedded
in a LOCAL PACKET suitable for transm ssion fromthe host to one of
its serving PS. The packet switches nmay performfurther formatting or
ot her operations to achieve the delivery of the |ocal packet to the
destinati on Host.

The term LOCAL PACKET is used generically here to nean the fornmatted
bit string exchanged between a host and a packet switch. The format
of bit strings exchanged between the packet switches in a PSN will
generally not be of concern to us. If an internetwork packet is
destined for a TCP in a foreign PSN, the packet is routed to a
GATEWAY whi ch connects the origin PSN with an internediate or the
destinati on PSN. Routing of internetwork packets to the GATEWAY nay
be the responsibility of the source TCP or the |ocal PSN, depending
upon the PSN I npl enentati on

One nodel of TCP operation is to imagine that there is a basic
GATEWAY associ ated with each TCP which provides an interface to the
| ocal network. This basic GATEWAY perforns routing and packet
reformatti ng or enmbeddi ng, and nay al so i npl enment congestion and
error control between the TCP and GATEWAYS at or internediate to the
destination TCP

Cerf, Dalal & Sunshine [Page 2]

RFC 675 Speci fication of Internet TCP Decenmber 1974

2.

At a GATEWAY between networks, the internetwork packet is unw apped
fromits local packet format and examined to determine through which
network the internetwork packet should travel next. The internetwork
packet is then wapped in a |local packet format suitable to the next
networ k and passed on to a new packet swtch.

A GATEWAY is permitted to break up the fragnment carried by an

i nternetwork packet into snaller fragments if this is necessary for
transm ssi on through the next network. To do this, the GATEWAY
produces a set of internetwork packets, each carrying a new fragment.
The packet format is designed so that the destination TCP nmay treat
fragnents created by the source TCP or by internedi ate GATEWAYS
nearly identically.

The TCP is responsible for regulating the flow of internetwork
packets to and fromthe processes it serves, as a way of preventing
its host from becom ng saturated or overloaded with traffic. The TCP
is also responsible for retransm tting unacknow edged packets, and
for detecting duplicates. A consequence of this error
detection/retransmi ssion scheme is that the order of letters received
on a given connection is also maintai ned [CEKA74, SUNS74]. To perform
these functions, the TCP opens and cl oses connecti ons between ports
as described in Section 4.3. The TCP perforns retransm ssion
duplicate detection, sequencing, and flow control on al

conmuni cati on anong the processes it serves.

The TCP | NTERFACE to the USER

2.1 The TCP as a POST OFFI CE

The TCP acts in many ways |like a postal service since it provides a
way for processes to exchange letters with each other. It sonetines
happens that a process nmay of fer some service, but not know in
advance what its correspondents’ addresses are. The anal ogy can be
drawmn with a mail order house which opens a post office box which can
accept nmail fromany source. Unlike the post box, however, once a
letter froma particular correspondent arrives, a port becones
specific to the correspondent until the owner of the port declares

ot herw se.

In addition to acting |ike a postal service, the TCP insures end-to-
end acknow edgrment, error correction, duplicate detection
sequenci ng, and flow control

Cerf, Dalal & Sunshine [Page 3]

RFC 675 Speci fication of Internet TCP Decenmber 1974

2.2 Sockets and Addressing

We have borrowed the term SOCKET fromthe ARPANET terni nol ogy

[CACR70, MCKE73]. In general, a socket is the concatenation of a
NETWORK i dentifier, TCP identifier, and PORT identifier. A CONNECTI ON
is fully specified by the pair of SOCKETS at each end since the sane

| ocal socket nay participate in many connections to different foreign
socket s.

Once the connections is specified in the OPEN command [see section
2.3.2], the TCP supplies a [short] Local Connection Nane by which the
user refers to the connection in subsequent commands. In particul ar
this facilitates using connections with initially unspecified foreign
socket s.

TCP's are free to associate ports with processes however they choose.
However, several basic concepts seem necessary in an inplementation
There nmust be well known sockets [VWKS] which the TCP associ ates only
with the "appropriate" processes by sone neans. W envision that
processes may "own" sockets, and that processes can only initiate
connections on the sockets they own [nmeans for inplenmenting ownership
is a local issue, but we envision a Request Port user call, or a

met hod of uniquely allocating a group of ports to a given process,
e.g. by associating the high order bits of a port name with a given
process. |

Once initiated, a connection may be passed to another process that
does not own the |ocal socket [e.g. fromlogger to service process].
Strictly speaking this is a reconnection issue which mght be nore
el egantly handl ed by a general reconnection protocol as discussed in
section 3.3. To sinplify passing a connection within a single TCP
such "invisible" switches nmay be allowed as in TENEX systens.

O course, each connection is associated with exactly one process,
and any attenpt to reference that connection by another process wll
be signaled as an error by the TCP. This prevents stealing data from
or inserting data into another process’ data stream

A connection is initiated by the rendezvous of an arriving

i nternetwork packet and a waiting Transm ssion Control Bl ock [TCB]
created by a user OPEN, SEND, | NTERPUPT, or RECEIVE call [see section
2.3]. The matching of local and foreign socket identifiers determ nes
when a successful connection has been initiated. The connection
becones establ i shed when sequence nunbers have been synchronized in
both directions as described in section 4.3.2.

Cerf, Dalal & Sunshine [Page 4]

RFC 675 Speci fication of Internet TCP Decenmber 1974

It is possible to specify a socket only partially by setting the PORT
identifier to zero or setting both the TCP and PORT identifiers to
zero. A socket of all zero is called UNSPECI FI ED. The purpose behind
unspeci fied sockets is to provide a sort of "general delivery"
facility [useful for |ogger type processes with well known sockets].

There are bounds on the degree of unspecificity of socket
identifiers. TCB' s nust have fully specified | ocal sockets, although
the foreign socket may be fully or partly unspecified. Arriving
packets nmust have fully specified sockets.

We enpl oy the foll owing notation

x.y.z = fully specified socket with x=net, y=TCP, z=port
X.y.u = as above, but unspecified port

X.U.u = as above, but unspecified TCP and port

u.u.u = conpletely unspecified

with respect to inplenentation, u = 0 [zerQ]

We illustrate the principles of matching by giving all cases of

i ncom ng packets which match with existing TCB' s. Generally, both
the local (foreign) socket of the TCB and the foreign (local) socket
of the packet must match.

TCB | ocal TCB foreign Packet | ocal Packet foreign
(a) a.b.c e.f.g e.f.g a.b.c
(b) a.b.c e.f.u e.f.g a.b.c
(c) a.b.c e.u.u e.f.g a.b.c
(d) a.b.c u.u.u e.f.g a.b.c

There are no other |egal conbinations of socket identifiers which
match. Case (d) is typical of the ARPANET well known socket idea in
whi ch the well known socket (a.b.c) LISTENS for a connection from
any (u.u.u) socket. Cases (b) and (c) can be used to restrict
matching to a particular TCP or net.

Cerf, Dalal & Sunshine [Page 5]

RFC 675 Speci fication of Internet TCP Decenmber 1974

2.3 TCP USER CALLS
2.3.1 A Note on Style

The foll owi ng sections functionally define the USER/ TCP interface.

The notation used is simlar to nbst procedure or function calls in
hi gh | evel |anguages, but this usage is not neant to rule out trap

type service calls [e.g. SVCs, UWOs, EM's,...].

The user calls described bel ow specify the basic functions the TCP
will performto support interprocess conmunication. Individua

i mpl enent ati ons shoul d define their own exact format, and may
provi de conbi nati ons or subsets of the basic functions in single
calls. In particular, sonme inplenmentations nmay wi sh to autonatically
OPEN a connection on the first SEND, RECEIVE, or |NTERRUPT issued by
the user for a given connection.

In providing interprocess comunication facilities, the TCP nmust not
only accept comuands, but also return information to the processes
it serves. This conmunication consists of:

(a) general information about a connection [interrupts, renote
cl ose, binding of unspecified foreign socket].

(b) replies to specific user comrands indicating success or various
types of failure.

Al t hough the neans for signaling user processes and the exact fornat
of replies will vary fromone inplenmentation to another, it would
pronot e common understanding and testing if a common set of codes
were adopted. Such a set of Event Codes is described in section 2. 4.

Wth respect to error messages, references to "local" and "foreign"
are ambi guous unless it is known whether these refer to the world as
seen by the sender or receiver of the error message. The authors
attenpted several different approaches and finally settled on the
convention that these references would be as seen by the receiver of
t he nessage.

2.3.2 OPEN CONNECTI ON
Format: OPEN(|ocal port, foreign socket [, tinmeout])
We assune that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process to
use the connection specified. Depending upon the inplenentation of

the TCP, the source network and TCP identifiers will either be
supplied by the TCP or by the processes that serve it [e.g. the

Cerf, Dalal & Sunshine [Page 6]

RFC 675 Speci fication of Internet TCP Decenmber 1974

program which interfaces the TCP to its packet switch or the packet
switch itself]. These considerations are the result of concern about
security, to the extent that no TCP be able to masquerade as anot her
one, and so on. Simlarly, no process can masquerade as anot her

wi t hout the collusion of the TCP

If no foreign socket is specified [i.e. the foreign socket paraneter
is 0 or not present], then this constitutes a LI STENI NG | ocal socket
whi ch can accept conmunication fromany foreign socket. Provision is
al so made for partial specification of foreign sockets as described
in section 2.2.

If the specified connection is already OPEN, an error is returned,
otherwi se a full-duplex transm ssion control block [TCB] is created
and partially filled in with data fromthe OPEN command paraneters.
The TCB format is described in nore detail in section 4.2.2.

No network traffic is generated by the OPEN comand. The first SEND
or | NTERRUPT by the | ocal user or the foreign user will cause the TCP
to synchroni ze the connection

The tineout, if present, permts the caller to set up a tineout for
all letters transmtted on the connection. If a letter is not
successfully transmtted within the tinmeout period, the user is
notified and nay ignore the condition [TCP will continue trying to
transmt] or direct the TCP to close the connection. The present

gl obal default is 30 seconds, and connections which are set up

wi t hout specifying another tineout will retransmt every letter for
at | east 30 seconds before notifying the user. The retransm ssion
rate may vary, and is the responsibility of the TCP and not the user
Most likely, it will be related to the neasured time for responses to
return fromletters sent.

Dependi ng on the TCP inpl enentation, either a |ocal connection nane
will be returned to the user by the TCP, or the user will specify
this local connection nane (in which case another paraneter is needed
inthe call). The local connection name can then be used as a short
hand termfor the connection defined by the <local socket, foreign
socket> pair.

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4,

2.3.3 SEND LETTER

Format: SEND(I| ocal connection name, buffer address, byte count, EOL
flag [, timeout])

Cerf, Dalal & Sunshine [Page 7]

RFC 675 Speci fication of Internet TCP Decenmber 1974

This call causes the data contained in the indicated user buffer to
be sent on the indicated connection. |If the connection has not been
opened, the SEND i s considered an error. Sore inplenentations nay
allow users to SEND first, in which case an automati c OPEN woul d be
done. If the calling process is not authorized to use this
connection, an error is returned.

If the ECL flag is set, the data is the End O a Letter, and the EQOL
bit will be set in the |ast packet created fromthe buffer. If the
ECQL flag is not set, subsequent SEND' s will appear as part of the
same letter. This extended letter facility should be used sparingly
because sone TCP's nmy del ay processing packets until an entire
letter is received.

If no foreign socket was specified in the OPEN, but the connection is
established [e.g. because a |listening connection has becone specific
due to a foreign letter arriving for the local port] then the
designated letter is sent to the inplied foreign socket. In general
users who nake use of OPEN with an unspecified foreign socket can
make use of SEND wi t hout ever explicitly knowi ng the foreign socket
addr ess.

However, if a SEND is attenpted before the foreign socket becones
specified, an error will be returned. Users can use the STATUS cal
to determ ne the status of the connection. In sone inplenentations
the TCP may notify the user when an unspecified socket is bound.

If the timeout is specified, then the current default timeout for
this connection is changed to the new one. This can affect not only
all letters sent including and after this one, but also those which
have not yet been sent, since the tineout is kept in the TCB and not
associated with each letter sent. O course, a time is nmaintained for
each internetwork packet formed so as to determi ne how | ong each of
these has been on the retransni ssion queue.

In the sinplest inplenentation, SEND would not return control to the
sendi ng process until either the transm ssion was conplete or the

ti meout had been exceeded. This sinple nethod is highly subject to
deadl ocks and is not reconmended. [For exanple both sides of the
connection try to do SEND s before doing any RECEIVE s.] A nore
sophi sticated i nmplenentation would return inmediately to allow the
process to run concurrently with network I/O, and, furthernore, to
allow multiple SENDs to be in progress concurrently. Miltiple SENDs
are served in first cone, first served order, so the TCP will queue
those it cannot service inmediately.

Cerf, Dalal & Sunshine [Page 8]

RFC 675 Speci fication of Internet TCP Decenmber 1974

NOTA BENE: In order for the process to distinguish anbng error or
success indications for different letters, the buffer address should
be returned along with the coded response to the SEND request. W
will offer an exanple event code format in section 2.4, show ng the
i nformati on which should be returned to the calling process.

The senmantics of the INTERRUPT call are described later, but this
call can have an effect on letters which have been given to the TCP
but not yet sent. In particular, all such letters are flushed by the
source TCP. Thus one of the responses to a SEND nay be "flushed due
to interrupt.”

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4.

2.3.4 RECElIVE LETTER
Format : RECEI VE(| ocal connection nane, buffer address, byte count)

This command al |l ocates a receiving buffer associated with the

speci fied connection. If no OPEN precedes this command or the calling
process is not authorized to use this connection, an error is

ret urned.

In the sinplest inplenentation, control would not return to the
calling programuntil either a letter was received, or sone error
occurred, but this schene is highly subject to deadl ocks [see section
2.3.3]. A nobre sophisticated inplementation would pernmit severa

RECEI VE' s to be outstanding at once, These would be filled as letters
arrive. This strategy permts increased throughput, at the cost of a
nore el aborate schene [possibly asynchronous] to notify the calling
programthat a |etter has been received.

If insufficient buffer space is given to reassenble a conplete

letter, an indication that the buffer holds a partial letter will be
given; the buffer will be filled with as nuch data as it can hol d.
The remaining parts of a partly delivered letter will be placed in

buffers as they are made avail abl e via successive RECEIVES. If a
nunber of RECEI VES are outstanding, they may be filled with parts of
a single long letter or with at nost one |letter each. The event codes
associ ated with each RECEIVE will indicate what is contained in the
buf fer.

To di stingui sh anmong several outstandi ng RECEI VES, and to take care
of the case that a letter is smaller than the buffer supplied, the
event code is acconpani ed by both a buffer pointer and a byte count
i ndicating the actual length of the letter received.

Cerf, Dalal & Sunshine [Page 9]

RFC 675 Speci fication of Internet TCP Decenmber 1974

The senmantics of the | NTERRUPT systemcall are discussed |ater, but
this call can have an effect on outstandi ng RECEI VES. When the TCP
receives an INTERRUPT, it will flush all data currently queued up
awai ting receipt by the receiving process. If no data is waiting, but
several buffers have been made avail abl e by antici patory RECElIVE
conmands, these buffers are returned to the process with an error

i ndicating that any data that m ght have been placed in those buffers
has been flushed. This enables the receiving process to synchronize
its RECEIVES with the interrupt. That is, the process can distinguish
bet ween RECEI VES i ssued before the receipt of the I NTERRUPT and these
i ssued afterwards.

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4.

2.3.5 CLOSE CONNECTI ON
Format: CLOSE(| ocal connection nane)

Thi s command causes the connection specified to be closed. If the
connection is not open or the calling process is not authorized to
use this connection, an error is returned. Any unfilled receive
buf fers or pending send buffers will be returned to the user with
event codes indicating they were aborted due to the CLOSE. Users
should wait for event codes for each SEND before closing the
connection if they wish to be certain that all letters were
successful ly delivered.

The user may CLOSE the connection at any tine on his own initiative,
or in response to various pronpts fromthe TCP [renpte cl ose
executed, transmi ssion tineout exceeded, destination inaccessible].

Because cl osing a connection requires comunication with the foreign
TCP, connections may remain in the closing state for a short tine.
Attenpts to reopen the connection before the TCP replies to the CLOSE
command will result in errors.

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4.

2.3.6 | NTERRUPT
Format : | NTERRUPT(| ocal connection nane)
A special control signal is sent to the destination indicating an
interrupt condition. This facility can be used to sinulate "break"

signals fromtermnals or error or conpletion codes froml/O devices,
for exanple. The semantics of this signal to the receiving process

Cerf, Dalal & Sunshine [Page 10]

RFC 675 Speci fication of Internet TCP Decenmber 1974

are unspecified. The receiving TCP will signal the interrupt to the
recei ving process i nmedi ately upon receipt, and will also flush any
outstanding letters waiting to be delivered. Since it is possible to
tell where in the letter streamthis command was i nvoked, it is
possi ble for the receiving TCP to flush only precedi ng data. The
sending TCP will flush any letters pending transm ssion, returning a
special error code to indicate the flush.

If the connection is not open or the calling process is not
aut hori zed to use this connection, an error is returned.

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4,

2.3.7 STATUS
Format : STATUS(| ocal connection nane)

This command returns a data bl ock containing the follow ng
i nfornmation:

| ocal socket, foreign socket, |ocal connection nane, receive w ndow,
send w ndow, connection state, nunmber of letters awaiting

acknow edgnent, nunber of |letters pending receipt [including partia
ones], default transm ssion tineout

Dependi ng on the state of the connection, sone of this information
may not be avail able or meaningful. If the calling process is not
aut horized to use this connection, an error is returned. This
prevents unaut horized processes fromgaining i nformati on about a
connecti on.

Responses fromthe TCP which may occur as a result of this call are
detailed in section 2.4.

2.4 TCP TO USER MESSAGES
2.4.1 TYPE CCDES

Al'l messages include a type code which identifies the type of user
call to which the nmessage applies. Types are:

0 - General message, does not apply to a particular user cal
1 - Applies to OPEN

2 - Applies to CLOSE

Cerf, Dalal & Sunshine [Page 11]

RFC 675 Speci fication of Internet TCP Decenmber 1974

3 - Applies to | NTERRUPT

10 - Applies to SEND

20 - Applies to RECElIVE

30 - Applies to STATUS

2.4.2 MNESSAGE FORMAT [noti onal]

Al'l messages include the following three fields:
Type code
Local connection nane
Event code

For nmessage types 0-3 [General, Qpen, Cose, Interrupt] only these
three fields are necessary.

For message type 10 [Send] one additional field is necessary:
Buf f er address

For nmessage type 20 [Receive] three additional fields are necessary:
Buf f er address
Byt e count
End-of -l etter flag

For message type 30 [status] additional data m ght include;
Local socket, foreign socket
Send wi ndow [neasures buffer space at foreign TCP]
Recei ve wi ndow [measures buffer space at |ocal TCP]
Connection state [see section 4. 3. 6]
Nunber of letters awaiting acknow edgnent
Nunber of letters awaiting receipt

Retransm ssi on ti nmeout

Cerf, Dalal & Sunshine [Page 12]

RFC 675 Speci fication of Internet TCP Decenmber 1974

2. 4.3 EVENT CCDES

The event code specifies the particular event that the TCP wishes to
conmuni cate to the user

In addition to the event code, three flags may be useful to classify
the event into major categories and facilitate event processing by
the user:

E flag: set if event is an error

L/F flag: indicates whether event was generated by Local TCP, or
Foreign TCP or network

P/ T flag: indicates whether the event is Pernmanent or Tenporary
[retry may succeed]

Events are encoded into 8 bits with the high order bits set to
indicate the state of the E, L/F, and P/ T flags, respectively.

Events specified so far are listed belowwith their codes and fl ag
settings. A * neans a flag does not apply or can take both values for
this event. Additional events may be defined in the course of
experimentation.

0 O0** general success

1 ELP connection illegal for this process

2 OF* unspecified foreign socket has becone bound

3 ELP connection not open

4 ELT no roomfor TCB

5 ELT foreign socket unspecified

6 ELP connection already open

EFP unacceptable SYN [or SYN ACK] arrived at foreign

TCP. Note: This is not a misprint, the local nmeaning is different

fromforeign.

7 EFP connection does not exist at foreign TCP

8 EFT foreign TCP inaccessible [may have subcases]

9 ELT retransm ssion tineout

Cerf, Dalal & Sunshine [Page 13]

RFC 675 Speci fication of Internet TCP Decenmber 1974

10 E*P buffer flushed due to interrupt
11 OF* interrupt to user
12 **P connection cl osing
13 E** general error
14 E*P connection reset
Possi bl e events for each nmessage type are as foll ows:
Type O[general]: 2,11,12,14
Type 1[open]: 0,1,4,6, 13
Type 2[close]: 0,1, 3,13
Type 3[interrupt]: 0,1,3,5,7,8,9,12,13
Type 10[send]: 0,1,3,5,7,8,9,10,11, 12,13
Type 20[receive]: 0,1, 3,10,12, 13
Type 30[status]: 0,1, 13
Note that events 6(foreign), 7, 8 are generated at the foreign TCP or
in the network[s], and these sane codes are used in the error field
of the internet packet [see section 4.2.1].
3. H GHER LEVEL PROTOCOLS
3.1 | NTRODUCTI ON
It is envisioned that the TCP will be able to support higher |eve
protocols efficiently. It should be easy to interface existing
ARPANET protocols |like TELNET and FTP to the TCP
3.2 WELL KNOAN SOCKETS
At sonme point, a set of well known 24 bit port nunbers nust be
pi cked. The type of service associated with the well known ports
m ght i ncl ude:
(a) Logger

(b) FTP (File transfer protocol)

Cerf, Dalal & Sunshine [Page 14]

RFC 675 Speci fication of Internet TCP Decenmber 1974

(c) RIJE (Renpte job entry)

(d) Host status

(e) TTY Test

(f) HELP - descriptive, interactive system docunentation

WE RESERVE WELL KNOWN SOCKET 0 (24 bits of 0) for gl obal messages
destined for a particular TCP but not related to any particul ar
connection. W inmagine that this socket would be used for unusual TCP
synchroni zation (e.g. RESET ALL) or for testing purposes (e.g.
sending letters to TRASHCAN or ECHO). This does not conflict with the
usage that if a socket is 0, it is unspecified, since no user can
SEND, CLOSE, or | NTERRUPT on socket O.

3.3 RECONNECTI ON PROTOCOL (RCP)

Port identifiers fall into two categories: permanent and transient.
For exanple, a Logger process is generally assigned a port identifier
that is fixed and well known. Transient processes will in genera

have I D s which are dynam cally assigned.

In the distributed processing environnent of the network, two
processes that don’t have well known port identifiers may often w sh
to conmmunicate. This can be achieved with the help of a well known
process using a reconnection protocol. Such a protocol is briefly
outlined using the comunication facilities provided by the TCP. It
essentially provides a nechani sm by which port identifiers are
exchanged in order to establish a connection between a pair of
socket s.

Such a protocol can be used to achi eve the dynamic establishment of
new connections in order to have multiple processes solving a probl em
cooperatively, or to provide a user process access to a server
process via a | ogger, when the |ogger’s end of the connection can not
be invisibly passed to the server process.

A paper on this subject by R Schantz [SCHA74] di scusses sone of the
i ssues associated with reconnection, and some of the ideas contained
therein went into the design of the protocol outlined bel ow

In the ARPANET, a protocol was inplenmented which would allow a
process to connect to a well known socket, thus naking an inplicit
request for service, and then be switched to another socket so that
the well known socket could be freed for use by others. Since sockets

Cerf, Dalal & Sunshine [Page 15]

RFC 675 Speci fication of Internet TCP Decenmber 1974

in our TCP are permtted to have connections with nore than one
foreign socket, this facility may not be explicitly needed (i.e.
connections <A B> and <A, C are distinguishable).

However. the well known socket nmay be in one network and the actual
service socket(s) may be in another network (or at |east in another
TCP). Thus, the invisible switching of a connection fromone port to
another within a TCP may not be sufficient as an "lInitial Connection
Protocol". W inmagine that a process w shes to use socket N1.T1.Qto
access well known socket N2.T2.P. However, the process associ ated
with socket N2. T2.P will actually start up a new process sonmewhere
which will use N3.T3.S as its server socket. The N(i) and T(i) may be
distinct or the same. The user will send to N2. T2. P the rel evant user
i nformati on such as user nanme, password, and account. The server wll
start up the server process and send to NL.T1.Q the actual service
socket ldentifler: N3.T3.S. The connection (NL.TI.Q N2.T2. P) can then
be cl osed, and the user can do a RECEIVE on (N1.T1. Q N3.T3.S). The
serving process can SEND on (N3.T3.S,NL. T1.Q . There are many
variations on this scheme, sone involving the user process doing a
RECEI VE on a different socket (e.g. (N1.T1. X, U U U) with the server
doing SEND on (N3.T3.S,NL. T1. X). Wthout showing all the detail of
synchroni zati on of sequence nunbers and the like, we can illustrate
the exchange as shown bel ow.

USER SERVER
1. RECEIVE(N2.T2.P, U U U
1. SEND (N1.T1.Q N2.T2.P)==>
<== 2. SEND(N2.T2.P,N1.T1. Q
Wth "N3.T3.S" as data
2. RECEIVE(NL. T1.Q N2. T2. P)
3. CLOSE(NL.T1.Q N2.T2.P)==>
<:= 3. CLOSE(N2.T2.P,NL.T1.Q
4. RECEI VE(NL. T1. Q N3.T3. 5)
<== 4. SEND(N3.T3.S,N1.T1. Q
At this point, a connection is open between N1.T1.Q and N3.T3.S. A
variation mght be to have the user do an extra RECElI VE on

(N1.T1. X, U . U. U and have the data "NL.T1l. X" be sent in the first user
SEND. Then, the server can start up the real serving process and do a

Cerf, Dalal & Sunshine [Page 16]

RFC 675 Speci fication of Internet TCP Decenmber 1974

4.

4.

4.

4.

SEND on (N3.T3.S,NL. T1. X) without having to send the "N3.T3.S" data
to the user. O perhaps both server and receiver exchange this data,
to assure security of the ultimte connection (i.e. some wild process
mght try to connect to N1.T1. X if it is nmerely RECEIVING on foreign
socket U. U U.).

We do not propose any specific reconnection protocol here, but |eave
this to further deliberation, since it is really a user |eve
prot ocol issue.
TCP | MPLEMENTATI ON
1 | NTRODUCTI ON
Conceptually, the TCP is nmade up of several processes. Sonme of these
deal with USER/ TCP commands, and others with packets arriving from
the network. The TCP al so has an internal neasurenent facility which
can be activated renotely.
Any particular TCP could be viewed in a nunber of ways. It could be
i mpl enented as an i ndependent process, servicing many user processes.
It could be viewed as a set of re-entrant |ibrary routines which
share a common interface to the |ocal PSN, and common buffer storage.
It could even be viewed as a set of processes, sone handling the
user, sone the input of packets fromthe net, and sone the output of
packets to the net.
2 TCP DATA STRUCTURES
2.1 | NTERNETWORK PACKET FONNVAT
8 bits: Internet infornmation
2 bits: Reserved for |ocal PSN use
2 bits: Header format (11 in binary)
4 bits: Protocol version numnber
8 bits: Header length in octets (32 is the current val ue)
16 bits: Length of text in octets
32 bits: Packet sequence nunber

32 bits: Acknow edgment number (i.e. sequence nunber of next octet
expect ed) .

Cerf, Dalal & Sunshine [Page 17]

RFC 675 Speci fication of Internet TCP Decenmber 1974

16 bits: Wndow size (in octets)
16 bits: Control Information
Listed fromhigh to | ow order:
SYN: Request to synchroni ze sendi ng sequence nunbers
ACK: There is a valid acknow edgnent in the 32 bit ACK field
FIN: Sender will stop SENDi ng and RECEI VEi ng on this connection

DSN: The sender has stopped using sequence nunbers and wants to
initiate a new sequence nunber for sending.

ECS: This packet is the end of a segnent and therefore has a
checksumin the 16 bit checksumfield. If this bit is not set, the
16 bit checksumfield is to be ignored. The bit is usually set,

but if fragmentation at a GATEWAY occurs, the packets preceding
the last one will not have checksums, and the |ast packet will
have the checksum for the entire original fragment (segnent) as it
was cal cul ated by the sending TCP

EQL: This packet contains the last fragnent of a letter. The ECS
bit will always be set in this case.

I NT: The sender wants to | NTERRUPT on this connection
XXX: six (6) unused control bits
QD: three (3) bits of control dispatch:
000: Null (the control octet contents should be ignored}

001: Event Code is present in the control octet. These were
defined in section 2.4.3.

010: Special Functions
011: Reject (codes as yet undefi ned)
1XX: Unused

8 bits: Control Data Cctet

If CDis 000 then this octet is to be ignored.

Cerf, Dalal & Sunshine [Page 18]

RFC 675 Speci fication of Internet TCP Decenmber 1974
If CDis 001, this octet contains event codes defined in section
2.4.3

If CDis 010, this octet contains a special function code as
defined bel ow

0: RESET all connections between Source and Destinati on TCPs
| : RESET the specific connection referenced in this packet

2: ECHO return packet to sender with the special function code
ECHOR (Echo Reply).

3: QUERY Query status of connection referenced in this packet
4: STATUS Reply to QUERY with requested status.
5: ECHOR Echo Reply
6: TRASH Di scard packet without acknow edgnent
>6: Unused
Not e: Special function packets not pertaining to a particular
connection [RESET all, ECHO ECHOR, and TRASH are nornally
sent using socket zero as described in section 3.2.

If CDis 01l, this octet contains an as yet undefi ned REJECT code.

If CDis 1XX, this octet is undefined.

4 bits: Length of destination network address in 4 bit units (current
value is 1)

4 bits: Destination network address

1010- 1111 are addresses of ARPANET, UCL, CYCLADES, NPL, CADC, and
EPSS respectively.

16 bits: Destination TCP address
8 bits: Padding

4 bits: length of source network address in 4 bit units (current
value is 1)

4 bits: source network address (as for destination address)

Cerf, Dalal & Sunshine [Page 19]

RFC 675 Speci fication of Internet TCP Decenmber 1974

16 bits: Source TCP address
24 bits: Destination port address
24 bits: Source port address

16 bits: Checksum (if ECS bit is set)

4.2.2 TRANSM SSI ON CONTROL BLOCK

It is highly likely that any inplenentation will include shared data
structures anong parts of the TCP and sone asynchronous neans of
signaling users when letters have been delivered.
One typical data structure is the Transmni ssion Control Bl ock (TCB)
which is created and maintained during the lifetinme of a given
connection. The TCB contains the following information (field sizes
are notional only and may vary fromone inplenmentation to another):

16 bits: Local connection nane

48 bits: Local socket

48 bits: Foreign socket

16 bits: Receive wi ndow size in octets

32 bits: Receive |eft wi ndow edge (next sequence nunber expected)

16 bits: Receive packet buffer size of TCB (nmay be |l ess than
wi ndow)

16 bits: Send wi ndow size in octets

32 bits: Send |l eft w ndow edge (earliest unacknow edged octet)

32 bits: Next packet sequence numnber

16 bits: Send packet buffer size of TCB (may be | ess than w ndow)

8 bits: Connection state
E/C- 1 if TCP has been synchroni zed at | east once (i.e. has
been established, else O neaning it is closed; this bit is
reset after FINS are exchanged and the user has done a CLOSE)

The bit is not reset if the connection is only desynchronized
on send or receive or both directions.

Cerf, Dalal & Sunshine [Page 20]

RFC 675 Speci fication of Internet TCP Decenmber 1974

SS - SYNCed on send side (if set) el se desynchronized
SR - SYNCed on receive side (if set, el se desynchronized)
16 bits: Special flags
S1 - SYN sent if set
S2 - SYNverified if set

R - SYN received if set

<

FIN sent if set

C - CLOSE fromlocal user received if set

U - Foreign socket unspecified if set

SDS - Send side DSN sent if set

SDV - Send side DSN verified if set

RDR - Receive side DSN received if set
Initially, all bits are off [no pun intended] (i.e. SS, SR, E/C Sl
S2, R F, C SDS, ShV, RDR =0). Wien Ris set, so is SR Wen S1 and
S2 are both set, so is SS. SRis reset when RDRis set. SS is reset
when both SDS and SDV are set. These bits are used to keep track of
connection state and to aid in arriving packet processing (e.g. Can
sequence nunber be validated? Only if SRis set.).

16 bits: Retransmi ssion tineout (in eighths of a second#]

16 bits: Head of Send buffer queue [buffers SENT fromuser to TCP
but not packetized]

16 bits: Tail of Send buffer queue

16 bits: Pointer to |last octet packetized in partially packetized
buffer (refers to the buffer at the head of the queue)

16 bits: Head of Send packet queue
16 bits: Tail of Send packet queue
16 bits: Head of Packetized buffer Queue

16 bits: Tail of Packetized buffer queue

Cerf, Dalal & Sunshine [Page 21]

RFC 675 Speci fication of Internet TCP Decenmber 1974

16 bits: Head of Retransmit packet queue
16 bits: Tail of Retransmit packet queue

16 bits: Head of Receive buffer queue [queue of buffers given by user
to RECEI VE |l etters, but unfilled]

16 bits: Tail of Receive buffer queue

16 bits: Head of Receive packet queue

16 bits: Tail of receive packet queue

16 bits: Pointer to |last contiguous receive packet

16 bits: Pointer to last octet filled in partly filled buffer

16 bits: Pointer to next octet to read frompartly enptied packet

[Note: The above two pointers refer to the head of the receive
buffer and receive packet queues respectively]

16 bits: Forward TCB pointer
16 bits: Backward TCB pointer
4.3 CONNECTI ON MANAGEMENT
4.3.1 |INTIAL SEQUENCE NUMBER SELECTI ON

The protocol places no restriction on a particular connection being
used over and over again. New instances of a connection will be
referred to as incarnations of the connection. The probl em that
arises owing to this is, "how does the TCP identify duplicate packets
from previous incarnations of the connection?". This probl em becones
harnful |y apparent if the connection is being opened and closed in
qui ck succession, or if the connection breaks with |oss of nenory and
i s then reestablished.

The essence of the solution [TOW74] is that the initial sequence
nunber [ISN] nust be chosen so that a particul ar sequence nunber can
never refer to an "old" octet, Once the connection is established the
sequenci ng nechani sm provi ded by the TCP filters out duplicates.

For an association to be established or initialized, the two TCP' s
must synchroni ze on each other’s initial sequence nunbers. Hence the
solution requires a suitable nmechanismfor picking an initia
sequence nunber [ISN], and a slightly involved handshake to exchange

Cerf, Dalal & Sunshine [Page 22]

RFC 675 Speci fication of Internet TCP Decenmber 1974

the ISN's. A "three way handshake" is necessary because sequence
nunbers are not tied to a global clock in the network, and TCP' s nay
have different nechani sns for picking the SN s. The receiver of the
first SYN has no way of know ng whether the packet was an old del ayed
one or not, unless it remenbers the | ast sequence number used on the
connection which is not always possible, and so it nust ask the
sender to verify this SYN

The "three way handshake" and the advantages of a "cl ock-driven"
schene are discussed in [TOML74]. Mre on the subject, and al gorithmns
for inplementing the clock-driven scheme can be found in [DALA74].

4.3.2 ESTABLI SHI NG A CONNECTI ON

The "three way handshake" is essentially a unidirectional attenpt to
establish the connection, i.e. there is an initiator and a responder
The TCP's shoul d however be able to establish the connection even if
a sinmultaneous attenpt is nmade by both TCP's to establish the
connection. Sinmultaneous attenpts are treated like "collisions" in
"Al oha" systens and these conflicts are resolved into unidirectiona
attenpts to establish the connection. This scheme was adopted because

(i) Connections will normally have a passive and an active end,
and so the mechani smshould in nost cases be as sinple as
possi bl e.

(ii) It is easy to inmplement as special cases do not have to be
accounted for.

The exanpl e bel ow i ndi cates what a three way handshake between TCP' s
A and B | ooks |ike

A B

--> <SEQ x><SYN> —->
<-- <SEQ y><SYN, ACK x+l > <--
--> <SEQ x+1><ACK y+l ><DATA BYTES> -->

The receiver of a "SYN' is able to determ ne whether the "SYN' was
real (and not an old duplicate) when a positive "ACK" is returned for
the receiver’'s "SYN ACK"' in response to the "SYN'. The sender of a
"SYN' gets verification on receipt of a "SYN, ACK' whose "ACK" part
references the sequence nunber proposed in the original "SYN' [pun
intended]. If the TCP is in the state where it is waiting for a
response to its SYN, but gets a SYN instead, then it always thinks
this is a collision and goes into the state prior to having sent the

Cerf, Dalal & Sunshine [Page 23]

RFC 675 Speci fication of Internet TCP Decenmber 1974

SYN, i.e. it forgets that it had sent a SYN. The TCP will try to
establish the connection again after some tinme, unless it has to
respond to an arriving SYN. Even if the wait tines in the two TCPs
are the sanme, the varying delays in network transmission will usually
be adequate to avoid a collision on the next cycle of attenpts to
send SYN

When establishing a connection, the state of the TCP is represented
by 3 bits --

S1 S2 R

S1 1 -- SYN sent

S2 =1 -- My SYNverified
R =1 -- SYN received

Sone exanples of attenpts to establish the connection are now shown.
The state of the connection is indicated when a change occurs. W
specifically do not show the cases in which connection

synchroni zation is carried out with packets containing both SYN and
data. W do this to sinplify the explanation, but we do not rule out
an inplenentation which is capable of dealing with data arriving in
the first packet (it has to be stored tenporarily w thout

acknow edgnent or delivery to the user until the arriving SYN has
been verified).

The "three way handshake” now | ooks like --

A B

sLsRrR sl s2 R

0 00 0 00
--> <SEQ x><SYN> -->

1 00 0 01
<-- <SEQ y><SYN, ACK x+l > <--

1 11 1 01
--> <SEQ x+1><ACK y+1>(DATA OCTETS) o>

1 11 1 11

Cerf, Dalal & Sunshine [Page 24]

RFC 675 Speci fication of Internet TCP Decenmber 1974

The scenario for a sinmultaneous attenpt to establish the connection
wi thout the arrival of any del ayed duplicates is --

(ML) 1 0 0 --> <SEQ x><SYN>

(M) 0 0 0 <-- <SEQ y><SYN <-- 1 00
(ML) B returns no SYN sent --> 0 0O
(ML) 1 00 --> <SEQ z><SYN> * --> 0 01
(MB) 1 1 1 <-- <SEQ y+1><SYN, ACK z+1> <-- 1 01
(M) 1 11 --> <SEQ z+1><ACK y+1><DATA> --> 1 11
Note: "..." means that a nmessage does not arrive, but is del ayed

in the network. State changes are upon arrival or upon departure
of a given nessage, as the case may be. Packets containing the SYN
or INT or DSN bits inplicitly contain a "dumy" data octet which
is never delivered to the user, but which causes the packet
sequence nunbers to be incremented by 1 even if no real data is
sent. This permts the acknow edgnment of these controls w thout
acknow edgi ng recei pt of any data which m ght al so have been
carried in the packet. A packet containing a FIN bit has a dumy
octet following the |ast octet of data (if any) in the packet.

* Once in state 000 sender selects new I SN z when attenpting to
establish the connecti on again.

4. 3.3 HALF- OPEN CONNECTI ONS

An established connection is said to be a "hal f-open" connection if
one of the TCP's has closed the connection at its end without the
know edge of the other, or if the two ends of the connection have
beconme desynchronized owing to a crash that resulted in | oss of
menory. Such connections will autonatically becone reset if an
attenpt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
sonewhat invol ved

Cerf, Dalal & Sunshine [Page 25]

RFC 675 Speci fication of Internet TCP Decenmber 1974

If one end of the connection no | onger exists, then any attenpt by
the other user to send any data on it will result in the sender
receiving the event code "Connection does not exist at foreign TCP"
Such an error message should indicate to the user process that
something is wong and it is expected to CLOSE the connection

Assune that two user processes A and B are conmunicating with one
anot her when a crash occurs causing | oss of menory to B's TCP
Dependi ng on the operating system supporting B s TCP, it is likely
that some error recovery mechani smexists. Wen the TCP is up again B
islikely to start again fromthe beginning or froma recovery point.
As a result B wll probably try to OPEN the connection again or try
to SEND on the connection it believes open. In the latter case 1t
receives the error nmessage "connection not open" fromthe | ocal TCP
In an attenmpt to establish the connection B's TCP will send a packet
containing SYN. A's TCP thinks that the connection is already
established and so will respond with the error "unacceptable SYN (or
SYN ACK) arrived at foreign TCP'. B's TCP knows that this refers to
the SYNit just sent out, and so should reset the connection and

i nformthe user process of this fact.

It nmay happen that B is passive and only wants to receive data. In
this case A's data will not reach B because the TCP at B thinks the
connection is not established. As a result A°S TCP will tinmeout and
send a QRY to B's TCP. B's TCP will send STATUS sayi ng the connection
is not synched. A's TCP will treat this as if an inplicit CLOSE had
occurred and tell the user process, A, that the connection is
closing. Ais expected to respond with a CLOSE conmand to his TCP
However, A's TCP does not send a FINto B's TCP, since it would not
be accepted anyway on the unsynced connection. Eventually Awll try
to reopen the connection or B wll give up and CLOSE. |f B CLOSES
B's TCP will sinply delete the connection since it was not
established as far as B s TCP is concerned. No nessage will be sent
to AS TCP as a result.

4.3.4 RESYNCHRONI ZI NG A CONNECTI ON

Detail s of resynchroni zati on have not yet been specified since the
need for this should be infrequent in the initial testing stages.

4.3.5 CLOSING A CONNECTI ON
There are essentially three cases:
a) The user initiates by telling the TCP to CLOSE the connection

b) The renote TCP initiates by sending a FIN control signa

Cerf, Dalal & Sunshine [Page 26]

RFC 675 Speci fication of Internet TCP Decenmber 1974

c) Both users CLOSE sinultaneously

Two bits are used to maintain control over the closing of a
connection: these are called the "FIN sent" bit [F] and the "USER
Cl osed” bit, [C] respectively. The control procedure uses these two
bits to assure that the connection is properly closed.

Case 1: Local user initiates the close

In this case, both the F and C bits are initially zero, but the C
bit is set i mediately upon receipt of the user call "CLOSE." Wen
the FINis sent out by the TCP, the F bit is set. Al pending
RECEI VES are term nated and the user is told that they have been
prematurely term nated ("connection closing"} wthout data.
Simlarly, any pending SENDS are terminated with the sane
response, "connection closing."

Several responses may arrive as the result of sending a FIN. The
one which is generally expected is a matching FIN. When this is
received, the TCB CAN BE ELI M NATED. |f a "connection does not
exi st at foreign TCP" nessage comes in response to the FIN, then
the TCB can likewi se be elimnated. If no response is forthcom ng
or if "Foreign TCP inaccessible" arrives then the resolution is
noot. One mght sinply tinmeout and discard the TCB. Since the

| ocal user wants to CLOSE anyway, this is probably satisfactory,
although it will leave a potential "half-open" connection at the
ot her side. W deal with half open connections in section 4.3.3.

VWhen the acknow edging FIN arrives after the connection state bits
are set (F=1, C=1), then the TCB can be del et ed.

Case 2: TCP receives a FIN fromthe network

First of all, a FIN nmust have a sequence number which lies in the
valid receive window. If not, it is discarded and the |left w ndow
edge is sent as acknow edgnent. |If the FIN can be processed, it is
handl ed (possibly out of order, since it is taken as an inperative
to shut down the connection). Al pending RECElI VES and SENDS are
responded to by showi ng that they were termni nated by the other
side’s close request (i.e. "connection closing"). The user is also
told by an unsolicited event or signal that the connection has
been cl osed (in sone systens, the user nmight have to request
STATUS to get this information). Finally, the TCP sends FIN in
response.

Thus, because a FIN arrived, a FIN is sent back, so the F bit is

set. However, the TCB stays around until the |ocal user does a
CLCSE i n acknow edgrment of the unsolicited signal that the

Cerf, Dalal & Sunshine [Page 27]

RFC 675 Speci fication of Internet TCP Decenmber 1974

connection has been cl osed by the other side. Thus, the C bit
remai ns unset until this happens. If the Cand F bits go from (F=1
C0O to (F=lI, C=1), then the connection is closed and the TCB can
be renoved.

Case 3: both users close sinultaneously

I f this happens, both connections will be in the (F=1, C=1) state.
When the FINs arrive, the connections wlli be shut down. If one
FIN fails to arrive, we have two choices. One is to insist on
acknow edgnents for FINs, in which case the m ssing one will be
retransmtted. Another is nerely to permt the hal f-open
connection to remain (we prefer this solution}. It can tineout

i ndependently and go away after a while. If an attenpt is made to
reestablish the connection, the initiator will discover the

exi stence of the open connection since an "inappropriate SYN
recei ved" nessage will be sent by the TCP which holds the "half-
open" connection. The receiver of this nmessage can tell the other
TCP to reset the connection. W cannot permt the holder of the
hal f - open connection to reset autonmatically on recei pt of the SYN
since its receipt is not necessarily prinma facie evidence of a
hal f open connection. (The SYN could be a del ayed duplicate.)

4.3.6. CONNECTI ON STATE and its relation to USER and | NCOM NG CONTROL
REQUESTS

In order to formalize the action taken by the TCP when it receives
commands fromthe User, or Control information fromthe network, we
define a connection to be in one of 7 states at any instant. These
are known as the TCB Major States. Each Major State is sinply a
conveni ent nanme for a particular setting or group of settings of the
state bits, as foll ows:

S1S2 R U F C # nane

- - - - - 0 no TCB

0 0 00/10 O 1 unsync

1 0 0 0 0 O 2 SYN sent

1 0 1010 O 3 SYN recei ved

1 1 1 0 0 O 4 est abl i shed

1011011 1 5 FI'N wai t

1 1 1 0 1 O 6 FIN recei ved

Cerf, Dalal & Sunshine [Page 28]

RFC 675 Speci fication of Internet TCP Decenmber 1974
The connection nmoves fromstate to state as shown bel ow. The
transition fromone state to another will be represented as

[X, Y] <cause><action>
which neans that there is a transition fromstate X to state Y ow ng
to <cause>. The action taken by the TCP is specified as <action> W
use this notation to give the inportant state transitions, often
sinplifying the cause and action fields to take into account a nunber
of situations. Figure 1 illustrates these transitions in traditiona
state diagramform Section 4.4.6 and section 4.4.7 fully specify the
effect of all User commands and Control information arriving fromthe
net wor k.

[0,]] <OPEN> <create TCB>

[1,2] <SEND, | NTERRUPT, or collision tinmeout> <send SYN>

[1,3] <SYN arrives> <send SYN, ACK>

[1,0] <CLOSE> <rempbve TCB>

[2,1] <SYN arrives (collision)> <set tineout, forget SYNs>

[2,0] <CLCSE> <renove TCB>

[2,4] <appropriate SYN, ACK arrives> <send ACK>

[3,4] <appropriate ACK arrives> <none>

[3,1] <error arrives or tineout> <(forget SYN)>

[3,5] <CLOSE> <send FI N>

[4,5] <CLOSE> <send FI N>

[4,6] <appropriate FIN arrives> <send FIN, informuser>

[5,0] <FIN or error arrives, or tineout> <renove TCB>

[6,0] <CLOSE> <renove TCB>

4.4 STRUCTURE OF THE TCP
4.4.1 | NTRODUCTION [See figure 2.1]

There are many possible i nmpl enmentations of the TCP. W offer one
conceptual framework in which to view the various algorithnms that

Cerf, Dalal & Sunshine [Page 29]

RFC 675 Speci fication of Internet TCP Decenmber 1974

nake up the TCP design. In our concept, the TCP is witten in two
parts, an interrupt or signal driven part (consisting of four
processes), and a reentrant library of subroutines or systemcalls
whi ch interface the user process to the TCP. The subroutines

conmuni cate with the interrupt part through shared data structures
(TCB' s, shared buffer queues etc.). The four processes are the Qutput
Packet Handl er which sends packets to the packet switch; the
Packetizer which formats letters into internet packets; the Input
Packet Handl er which processes incom ng packets; and the Reassenbl er
which builds letters for users.

The ultimate bottleneck is the pipe through which arriving and
departing packets must travel. This is the Host/Packet Switch
interface. The interrupt driven TCP shares anobng all TCB's its
limted packet buffer resources for sending and receiving packets.
From t he standpoint of controlling buffer congestion, it appears
better to TREAT | NCOM NG PACKETS W TH H GHER PRI ORI TY THAN OUTGO NG
PACKETS. That is, packet buffers which can be rel eased by copying
their contents into user buffers clearly help to reduce congestion
Nei t her the packetizer nor the input packet handl er should be allowed
to take up all avail abl e packet buffer space; an anal ogous probl em
arises inthe IMP in the allocation of store and forward, and
reassenbly buffer space. One policy is to permt neither contender
nore than, say, two-thirds of the space. The buffer allocation
routines can enforce these limts and reject buffer requests as
needed. Conceptual ly, the schedul er can nonitor the ampounts of
storage dedicated to the input and output routines, and can force
either to sleep if its buffer allocation exceeds the limt.

As an exanpl e, we can consi der what happens when a user executes a
SEND call to the TCP service routines. The buffer containing the
letter is placed on a SEND buffer queue associated with the user’s
TCB. A 'packetizer’ process is awakened to | ook through all the TCB' s
for 'packetizing’ work. The packetizer will keep a roving pointer
through the TCB |ist which enables it to pick up new buffers fromthe
TCB queue and packetize theminto output buffers. The packetizer
takes no nore than one letter at a tine fromany single TCB. The
packetizer attenpts to naintain a non-enpty queue of output packets
so that the output handler will not fall idle waiting for the
packeti zi ng operation. However, since arriving packets conpete wth
departing packets, care nust be taken to prevent either class from
occupying all of the shared packet buffer space. Simlarly since the
TCB' s all conpete for space in service to their connections, neither

i nput nor output packet space shoul d be doni nated by any one TCB

VWhen a packet is created, it is placed on a FI FO SEND packet queue

associated with its origin TCB. The packetizer wakes the output
handl er and then continues to packetize a few nore buffers, perhaps,

Cerf, Dalal & Sunshine [Page 30]

RFC 675 Speci fication of Internet TCP Decenmber 1974

before going to sleep. The output handler is awakened either by a
"hungry’ packet switch or by the packetizer; in either case, it uses
a roving TCB pointer to select the next TCB for service. The send
packet queue can be used as a 'work queue’ for the output handl er
After a packet has been sent, but usually before an ACK is returned,
the out put handl er noves the packet to a retransm ssion queue

associ ated with each TCB

Retransm ssion timeouts can refer to specific packets and the
retransm ssion |list can be searched for the specific packet. If an
ACK i s received, the retransm ssion entry can be renoved fromthe
retransmt queue. The send packet queue contains only packets waiting
to be sent for the first time. |INTERRUPT requests can renove entries
in both the send packet queue and the retransmt packet queue.

Si nce packets are never in nore than one queue at a tine, it appears
possi ble for INT, FIN or RESET commands to renove packets fromthe
receive, send, or retransmt packet queues with the assurance that an
al ready issued signal to enter the reassenbler, the packetizer or the
out put handler will not be confusing.

Handl i ng the | NTERRUPT and CLOSE functions can however require sone
care to avoid confusing the schedul er, and the various processes. The
schedul er nust mmintain status information for the processes. This

i nformation includes the current TCB being serviced. Wen an

I NTERRUPT is issued by a | ocal process, the output queue of letters
associated with the local port reference is to be deleted. The
packetizer, for exanple, may however be working at that time on the
same queue. As usual, sinmultaneous reading and witing of the TCB
gueue pointers nust be inhibited through sone sort of semaphore or

| ockout nmechani sm Wen the packetizer wants to serve the next send
buf fer queue, it must lock out all other access to the queue, renove
the head of the queue (assum ng of course that there are enough

buf fers for packetization), advance the head of the queue, and then
unl ock access to the queue.

If the packetizer keeps only a TCB pointer in a global place called
CPTCB (current packetizer TCB address), and al ways uses the address
in CPTCB to find the TCB in which to examnmine the send buffer queue,
then renoval of the output buffer queue does not require changes to
any working storage bel onging to the packetizer. Even nore inportant,
the arrival and processing of a RESET or CLOSE, which clears the
system of a given TCB, can update the CPTCB pointer, as long as the
renoval does not occur while the packetizer is still working on the
TCB.

Cerf, Dalal & Sunshine [Page 31]

RFC 675 Speci fication of Internet TCP Decenmber 1974

I ncom ng packets are exam ned by the input packet handler. Here they
are checked for valid connection sockets, and acknow edgnents are
processed, causing packets to be renoved, possibly, fromthe SEND or
RETRANSM T packet queues as needed. As an exanple, consider the
receipt of a valid FIN request on a particular TCB. If a FIN had not
been sent before (i.e. F bit not set), then a FIN packet is
constructed and sent after having cleared out the SEND buffer and
SEND packet queues as well as the RETRANSM T queue. Qtherwi se, if the
F and C bits are both set, all queues are enptied and the TCB is
returned to free storage.

Packets whi ch shoul d be reassenbled into letters and sent to users
are queued by the input packet handler, on the receive packet queue,
for processing by the reassenbly process. The reassenbl er | ooks at
its FIFO work queue and tries to nove packets into user buffers which
are queued up in an input buffer queue on each TCB. If a packet has
arrived out of order, it can be queued for processing in the correct
sequence. Each tine a packet is noved into a user buffer, the left

wi ndow edge of the receiving TCB is noved to the right so that

out goi ng packets can carry the correct ACK information. If the SEND
buf fer queue is enpty, then the reassenbl er creates a packet to carry
the ACK

As packets are noved 1nto buffers and they are filled, the buffers
are dequeued fromthe RECEIVE buffer queue and passed to the user

The reassenbl er can al so be awakened by the RECEIVE user call should
it have a non-enpty receive packet queue with an enpty RECEI VE buffer
gueue. The awakened reassenbl er goes to work on each TCB, keeping a
roving pointer, and sleeping if a cycle is made of all TCB s w thout
finding any work.

4.4.2 | NPUT PACKET HANDLER [See figure 2.2]

The I nput Packet Handler is awakened when a packet arrives fromthe
network. It first verifies that the packet is for an existing TCB
(i.e. the local and foreign socket nunbers are matched with those of
existing TCB's). If this fails, an error nessage is constructed and
gueued on the send packet queue of a dummy TCB. A signal is also sent
to the output packet handler. Generally, things to be transnmitted
fromthe dunmy TCB have a default retransm ssion tinmeout of zero, and
will not be retransmitted. (W use the idea of a dummy TCB so that

al | packets containing errors, or RESET can be sent by the output
packet handl er, instead of having the originator of theminterface to
the net. These packets, it will be noticed, do not belong to any
TCB) .

Cerf, Dalal & Sunshine [Page 32]

RFC 675 Speci fication of Internet TCP Decenmber 1974

The i nput packet handl er | ooks out for control or error infornmation
and acts appropriately. Section 4.4.7 discusses this in greater
detail, but as an exanple, if the incom ng packet is a RESET request
of any kind (i.e. all connections from desi gnated TCP or given
connection), and is believable, then the input packet handler clears
out the related TCB(s), enpties the send and receive packet queues,
and prepares error returns for outstandi ng user SEND(s) and

RECEI VE(s) on each reset TCB. The TCB' s are narked unused and
returned to storage. If the RESET refers to an unknown connection, it
i s ignored.

Any ACK' s contained in incom ng packets are used to update the send

| eft wi ndow edge, and to renpve the ACK ed packets fromthe TCB
retransmt packet queue. |If the packet being renoved was the end of a
user buffer, then the buffer mnmust be dequeued from the packetized

buf fer queue, and the User informed. The packetizer is also signal ed.
Only one signal, or one for each packet, will have to be sent,
dependi ng on the scheduling schenme for the processes. See section
4.4.7 for a detailed discussion.

The packet sequence nunber, the current receive w ndow size, and the
receive left wi ndow edge determ ne whether the packet lies within the
wi ndow or outside of it.

Let W= wi ndow si ze

S = size of sequence nunber space
L = left w ndow edge

R =L+W1 = right wi ndow edge

X = sequence nunber to be tested

For any sequence nunber, x, if
(R-x) md S <= W
then x is within the w ndow

A packet should be rejected only if all of it |lies outside the

wi ndow. This is easily tested by letting x be, first the packet
sequence nunber, and then the sum of packet sequence nunber and
packet text length, less one. |If the packet |ies outside the w ndow,
and there are no packets waiting to be sent, then the input packet
handl er shoul d construct a dummry ACK and queue it for output on the

Cerf, Dalal & Sunshine [Page 33]

RFC 675 Speci fication of Internet TCP Decenmber 1974

send packet queue, and signal the output packet handler. Successfully
recei ved packets are placed on the receive packet queue in the
appropriate sequence order, and the reassenbl er signal ed.

The packet wi ndow check can not be nade if the associated TCB i s not
in the 'established” state, so care nust be taken to check for
control and TCB state before doing the w ndow check.

4.4.3 REASSEMBLER [See figure 2.3]

The Reassenbl er process is activated by both the I nput Packet Handl er
and the RECEI VE user call. While the reassenbler is asleep, if
nmultiple signals arrive, all but one can be discarded. This is

i mportant as the reassenbl er does not know the source of the signal
This is so in order that "dangling" signals fromwork in TCB s that
have subsequently been renmoved don’t confuse it. Each signal sinply
means that there may be work to be done. If the reassenbler is awake
when a signal arrives, it may be necessary to put 1t in a
"hyperawake" state so that even if the reassenbler tries to quit, the
scheduler will run it one nore tine.

When the reassenbl er is awakened it | ooks at the receive packet queue
for each TCB. If there are sone packets there then it sees whet her
the RECEI VE buffer queue is enpty. If it is then the reassenbler
gives up on this TCB and goes on to the next one, otherwise if the
first packet matches the |left w ndow edge, then the packet can be
noved into the User’s buffer. The reassenbl er keeps transferring
packets into the User’s buffer until the letter is completely
transferred, or something causes it to stop. Note that a buffer may
be partly filled and then a sequence 'hole’ is encountered in the
recei ve packet queue. The reassenbler must mark progress so that the
buffer can be filled up starting at the right place when the ’hole’
is filled. Simlarly a packet might be only partially enptied when a
buffer is filled, so progress in the packet nust be marked.

If aletter was successfully transferred to a User buffer then the
reassenbl er signals the User that a letter has arrived and dequeues
the buffer associated with it fromthe TCB RECElI VE buffer queue. If
the buffer is filled then the User is signaled and the buffer
dequeued as before. The event code indicates whether the buffer
contains all or part of a letter, as described in section 2.4.

In every case when a packet is delivered to a buffer, the receive

| eft wi ndow edge is updated, and the packetizer is signaled. This
updating rmust take account of the extra octet included in the
sequencing for certain control functions [SYN, INT, FIN, DSN]. If the
send packet queue is enpty then the reassenbler nust create a packet
to carry the ACK, and place it on the send packet queue.

Cerf, Dalal & Sunshine [Page 34]

RFC 675 Speci fication of Internet TCP Decenmber 1974

Note that the reassenbl er never works on a TCB for npbre than one User
buffer’s worth of tine, in order to give all TCB s equal service

Schedul ing of the reassenbler is a big issue, but perhaps running to
conpletion will be satisfactory, or else it can be tinme sliced. In
the latter case it will continue fromwhere it left off, but a new
signal may have arrived produci ng sone possible work. This work will
be processed as part of the old inconplete signal, and so sone
wast ef ul processing may occur when the reassenbl er wakes up again
This is the general problemof trying to inplenment a protocol that is
fundanental | y asynchronous, but at least it is immune to harnfu
race-conditions. E.g. if we were to have the reassenbler 'renove the
signal that caused it to wake up, just before it went to sleep (in
order that new arriving ones were discarded) then a new signal nay
arrive at a critical tine causing 1t not to be recognized; thus

| eavi ng sone work pending, and this may result in a deadl ock [see
previ ous comrents on "hyperawake" state].

4.4.4 PACKETI ZER [See figure 2.4]

The Packetizer process gets work fromboth the I nput Packet Handl er
and the SEND user call. The signal fromthe SEND user call indicates
that there is sonething new to send, while the one fromthe input
packet handl er indicates that nore TCP buffers nay be avail able from
del i vered packets. This latter signal is to prevent deadl ocks in
certain kind of scheduling schemes. W assune the sanme treatnment of
signals as discussed in section 4.4.3.

VWhen the packetizer is awakened it | ooks at the SEND buffer queue for
each TCB. If there is a new or partial letter awaiting packetization
it tries to packetize the letter, TCB buffer and wi ndow permtting.
It packetizes no nore than one letter for a TCB before servicing

anot her TCB. For every packet produced it signals the output packet
handl er (to prevent deadlock in a tine sliced scheduling schene). If
a’'run till conpletion’ schene is used then one signal only need be
produced, the first time a packet is produced since awakening. |f
packetization is not possible the packetizer goes on to the next TCB

If a partial buffer was transferred then the packetizer nust nmark
progress in the SEND buffer queue. Conpletely packetized buffers are
dequeued fromthe SEND buffer queue, and placed on a Packetized

buf fer queue, so that the buffer can be returned to the user when an
ACK for the last bit is received.

When the packetizer packetizes a letter it nust see whether it is the
first piece of data being sent on the connection, in which case it
must include the SYN bit. Sone inplenentations may not permt data to
be sent with SYN and others may di scard any data received with SYN

Cerf, Dalal & Sunshine [Page 35]

RFC 675 Speci fication of Internet TCP Decenmber 1974

The Packetizer goes to sleep if it finds no nore work at any TCB
4.4.5 QUTPUT PACKET HANDLER [see figure 2.5]

VWhen activated by the packetizer, or the input packet handler, or
sone of the user call routines, the Qutput Packet Handler attenpts to
transmt packets on the net (nay involve going through sone other
network interface progranm). It looks at the TCB's in turn
transmtting some packets fromthe send packet queue. These are
dequeued and put on the retransnmit queue along with the time when
they should be retransmtted.

Al data packets that are transmitted have the | atest receive |eft

wi ndow edge in the ACK field. Error and control nessages may have no
ACK [ACK bit off], or set the ACK field to refer to a received
packet’ s sequence nunber.

The RETRANSM T PROCESS:

Thi s process can either be viewed as a separate process, or as part

of the output packet handler. Its inplenentation can vary; it could
either performits function, by being woken up at regular intervals,
or when the retransm ssion time occurs for every packet put on the
retransmt queue. In the first case the retransnit queue for each TCB
is examined to see if there is anything to retransmt. If thereis, a
packet is placed on the send packet queue of the correspondi ng TCB
The out put packet handler is also signaled.

Anot her "denobn" process nonitors all user Send buffers and
retransmttabl e control messages sent on each connection, but not yet
acknow edged. |If the global retransm ssion tinmeout is exceeded for
any of these, the User is notified and he nay choose to continue or

cl ose the connection. A QUERY packet may al so be sent to ascertain
the state of the connection [this facilitates recovery from hal f open
connections as described in section 4.3.3].

4.4.6 USER CALL PROCESSI NG
OPEN [See figure 3.1]

1. If the process calling does not own the specified |ocal socket,
return with <type 1><ELP 1 "connection illegal for this process">.

2. If no foreign socket is specified, construct a new TCB and add
it tothe list of existing TCB' s. Select a new | ocal connection
nane and return it along with <type 1><OLP 0 "success">. If there
is no roomfor the TCB, respond with <type 1><ELT 4 "No room for
TCB" >,

Cerf, Dalal & Sunshine [Page 36]

RFC 675 Speci fication of Internet TCP Decenmber 1974

3. If a foreign socket is specified, verify that there is no

exi sting TCB with the same <l ocal socket, foreign socket> pair
(i.e. same connection), otherw se return <type | ><ELP 6
"connection already open">. If there is no TCB space, return as in
(2), otherwise, create the TCB and link it with the others,
returning a local connection nane with the success event code.

Note: if a TCB is created, be sure to copy the tineout paraneter
intoit, and set the "U" bit to O if a foreign socket is
specified, else set Uto 1 (to show unspecified foreign socket).

SEND [see figure 3.2]

1. Search for TCB with | ocal connection nanme specified. If none
found, return <type 10><ELP 3 "connection not open">

2. If TCB is found, check foreign socket specification. If not set
(i.e. U=1in TCB), return <type 10><ELT 5 "forei gn socket
unspecified">. If the connectionis in the "closing" state (i.e.
state 5 or 6), return <type 3><ELP 12 "connection closing"> and do
not process the buffer.

3. Put the buffer on the Send buffer queue and signal the
packetizer that there is work to do.

| NTERRUPT [see figure 3. 3]

1. Validate exi stence of the referenced connection, sending out
error messages of the form <type 3><ELP 3 "connection not open">
or <type 3><ELT 5 "foreign socket unspecified"> as appropriate. If
the | ocal connection refers to a connection not accessible to the
process interrupting, send <type 3><ELP 1 "connection illegal for
this process">.

2. If the connection is in the "closing” state (i.e. states 5 or
6), return <type 3><ELT 12 "connection closing"> and do not send
an | NT packet to the destination

3. Any pendi ng SEND buffers should be returned with <type 10><ELP
10 "buffer flushed due to interrupt”">. An INT packet should be
created and pl aced on the output packet queue, and the out put
packet handl er shoul d be signal ed.

RECEI VE [See figure 3.4]
1. If the caller does not have access to the referenced | oca

connection name, return <type 20><ELP 1 "connection illegal for
this process"> And if the connection is not open, return <type

Cerf, Dalal & Sunshine [Page 37]

RFC 675 Speci fication of Internet TCP Decenmber 1974

20><ELP 3 "connection not open"). |If the connection is in the
closing state (e.g. a FIN has been received or a user CLOSE is
bei ng processed), return <type 20><ELP 12 "connection cl osi ng">.

2. Oherw se, put the buffer on the receive buffer queue and
signal the reassenbler that buffer space is avail able.

CLOSE [See figure 3.5]

1. If the connection is not accessible to the caller, return <type

2><ELP 1 "connection illegal for this process"> |If there is no
such connection respond with <type 2><ELP 3 "connecti on not
open" >.

2. If the Rbit is O (i.e. connectionis in state 1 or 2), sinply
remove the TCB

3. If the Rbit is set and the F bit is set, then renpbve the TCB

4. Otherwise, if the Rbit is set, but Fis 0 (i.e. states 3 or
4), return all buffers to the User with <type x><ELP 12
"connection closing"> clear all output and input packet queues
for this connection, create a FIN packet, and signal the output
packet handler. Set the C and F bits to show this action.

STATUS [See figure 3.6]

1. If the connection is illegal for the caller to access, send
<type 30><ELP 1 "connection illegal for this process">.

2. |If the connection does not exist, return <type 30><ELP 3
"connection not open">.

3. Oherwi se set status information fromthe TCB and return it via
<type 30><0O-T O "status data...">.

4.4.7 NETWORK CONTRCOL PROCESSI NG

The | nput Packet Handl er exani nes the header to see if there is any
control information or error codes present. W do not discuss the
action taken for various special function codes, as it is often

i npl enent ati on dependent, but we describe those that affect the state
of the connection. After initial screening by the | PC [see section
4.4.2 and figure 2.2], control and error packets are processed as
shown in figures 4.1-4.7. [ACK and data processing is done within the
| PC.]

Cerf, Dalal & Sunshine [Page 38]

RFC 675 Speci fication of Internet TCP Decenmber 1974

4.4.8 TCP ERROR HANDLI NG

Error messages have CD=001 and do not carry user data. Depending on
the error, zero or nore octets of error information will be carried
in the packet text field. W explicitly assune that this data is
restricted in length so as to fall bel ow the GATEWAY fragnentation
threshold (probably 512 bits of data and header). Errors generally
refer to specific connections, so the source and destination socket
identifiers are relevant here. The ACK field of an error packet
contai ns the sequence nunber of the packet that caused the error, and
the ACK bit is off. [RESET and STATUS special functions may use the
ACK field in the sane way.] This allows the receiver of an error
nessage to determ ne which packet caused the error. Error packets are
not ACK ed or retransmtted.

4.5. BUFFER AND W NDOW ALLOCATI ON
4.5.1 | NTRODUCTI ON

The TCP manages buffer and wi ndow all ocati on on connections for two
mai n purposes: equitably sharing limted TCP buffer space anong al
connections (multiplexing function), and Iimting attenpts to send
packets, so that the receiver is not swanped (flow control function).
For further details on the operation and advantages of the w ndow
mechani sm see CEKA74.

CGood al | ocation schenes are one of the hardest problenms of TCP
design, and nuch experinmentation nust be done to devel op efficient
and effective algorithns. Hence the foll owi ng suggestions are nerely
initial thoughts. Different inplenentations are encouraged with the
hope that results can be conpared and better schenes devel oped.

Several of the measurenents discussed in a |ater section are ai med at
providing informati on on the performance of allocation mechani sns.
This should aid in determ ning significant paraneters and eval uating
al ternate schenes.

4.5.2 The SEND Side

The wi ndow i s determ ned by the receiver. Currently the sender has no
control over the SEND wi ndow size, and never transnmits beyond the

ri ght wi ndow edge. There exists the possibility of specifying two
nore special function codes so that the sender can request the
receiver to | NCREASE or DECREASE the wi ndow size, w thout specifying
by how much. The receiver, of course, needn’'t satisfy this request.

Cerf, Dalal & Sunshine [Page 39]

RFC 675 Speci fication of Internet TCP Decenmber 1974

Buf fers nust be allocated for outgoing packets froma TCP buffer
pool. The TCP nmay not be willing to allocate a full w ndow s worth of
buf fers, so buffer space for a connection may be | ess than what the
wi ndow woul d permit. No deadl ocks are possible even if there is
insufficient buffer or wi ndow space for one letter, since the
receiver will ACK parts of letters as they are put into the user’s
buf fer, thus advanci ng the wi ndow and freeing buffers for the

remai nder of the letter.

It is not mandatory that the TCP buffer outgoing packets unti
acknow edgnents for them are received, since it is possible to
reconstruct themfromthe actual letters sent by the user

However, for purposes of retransm ssion and processing efficiency it
is very convenient to do.

4.5.3 The RECEI VE Side
At the receiving side there are two requirenments for buffering:
(1) Rate Discrepancy:

If the sender produces data nmuch faster or much slower than the
recei ver consunes it, little buffering is needed to maintain the
receiver at near maxi numrate of operation. Sinple queuing

anal ysis indicates that when the producti on and consunption
(arrival and service) rates are simlar in magnitude, nore
buffering is needed to reduce the effect of stochastic or bursty
arrivals and to keep the receiver busy.

(2) Disorderly Arrivals:

When packets arrive out of order, they nust be buffered until the
m ssing packets arrive so that packets (or letters) are delivered
in sequence. W do not advocate the phil osophy that they be

di scarded, unless they have to be, otherwi se a poor effective
bandwi dth nay be observed. Path | ength, packet size, traffic
level, routing, tinmeouts, w ndow size, and other factors affect
the anmpbunt by which packets come out of order. This is expected to
be a nmmjor area of investigation

The consi derations for choosing an appropriate wi ndow are as foll ows:

Suppose that the receiver knows the sender’s retransmn ssion tineout,
al so, that the receiver’'s acceptance rate is 'U bits/sec, and the

wi ndow size is "W bits. Ignoring line errors and other traffic, the
sender transmts at a rate between WK and the maximumline rate (the
sender can send a window s worth of data each tineout period).

Cerf, Dalal & Sunshine [Page 40]

RFC 675 Speci fication of Internet TCP Decenmber 1974

If WK is greater than U, the difference nust be retransm ssions

whi ch i s undesirable, so the wi ndow should be reduced to W, such
that W/K is approximately equal to U This may nean that the entire
bandwi dt h of the transm ssion channel is not being used, but it is
the fastest rate at which the receiver is accepting data, and the
line capacity is free for other users. This is exactly the sane case
where the rates of the sender and receiver were al nbst equal, and so
nore buffering is needed. Thus we see that line utilization and
retransm ssions can be traded of f agai nst buffering.

If the receiver does not accept data fast enough (by not performng
sufficient RECEIVES) the sender may continue retransmtting since
unaccepted data will not be ACK ed. In this case the receiver should
reduce the wi ndow size to "throttle" the sender and inhibit usel ess
retransm ssi ons.

Recei ver wi ndow contr ol
If the user at the receiving side is not accepting data, the
wi ndow shoul d be reduced to zero. In particular, if all TCP
i ncom ng packet buffers for a connection are filled with received
packets, the wi ndow rmust go to zero to prevent retransm ssions
until the user accepts sonme packets.
Short term fl ow control
Let F = the nunber of user receive buffers filled

B

the total user receive buffers

w

the I ong-termor noninal w ndow size
W = the wi ndow size returned to the sender
then a possible value for W is

W = W[1-F/B]**a
The value of "a should be greater than one, in order to shut the
wi ndow faster as buffers run out. The values of W and F actually
used coul d be averages of recent values, in order to get snpoth
control. Note that W is constantly being reconputed, while the
val ue of W which sets the upper limt of W, only changes slowy
in response to other factors.

The value of Wcan be large (up to half the sequence nunber space)

to allow for good throughput on high delay channels. The sender
needn’'t allocate Wworth of buffer space anyway. The | ong-term

Cerf, Dalal & Sunshine [Page 41]

RFC 675 Speci fication of Internet TCP Decenmber 1974

5.

variation of Wto match flow requirenments nay be a separate
guestion

This short-term nmechanismfor flow control allows some buffering in
the two TCP's at either end, (as nmuch as they are willing), and the
rest in the user process at the send side where the data is being
created. Hence the cost of buffering to snpboth out bursty traffic is
borne partly by the TCP s, and partly by the user at the send side.
None of it is borne by the comruni cati on subnet.

NETWORK MEASUREMENT PLANS FOR TCP

5.1 USERLEVEL DI AGNOSTI CS

We have in nind a programwhich will exercise a given TCP, causing it
to cycle through a nunber of states; opening, closing, and
transmtting on a variety of connections. This programw |l collect
statistics and will generally try to detect deviation from TCP

functional specifications. Clearly there will have to be a copy of
this programboth at the | ocal site being tested and sone site which
has a certified TCP. So we will have to produce a specification for

this user level diagnostic program al so.

There needs to be a naster and a slave side to all this so the nmaster
can tell the slave what’'s going wong with the test.

5.2 SINGLE CONNECTI ON MEASUREMENTS

Round trip delay tines

Time from nonment the packet is sent by the TCP to the tine that
the ACK is received by the TCP

Time fromthe nonent the USER i ssues the SEND to the tine that the
USER gets the successful return code.

Not e: packet size should be used to distinguish fromone set of
round trip tines and another.

Net wor k destination, and current configuration and traffic |oad
may al so be issues of inportance that nmust be taken into
account .

What if the destination TCP decides to queue up ACKs and send a
single ACK after a while? How does this affect round trip
statistics?

Cerf, Dalal & Sunshine [Page 42]

RFC 675 Speci fication of Internet TCP Decenmber 1974

What about out of order arrivals and the bunched ACK for all of
t hent?

The hi stogram of round trip tines include retransm ssion tines
and these nust be taken into account in the analysis and

eval uation of the collected data.

Packet size statistics

Hi st ogram of packet length in both directions on the full duplex
connecti on.

Hi stogram of letter size in both directions.

Measure of disorderly arriva

Di stance fromthe first octet of arriving packet to the left

wi ndow edge. A histogramof this neasure gives an idea of the out
of order nature of packet arrivals. It will be 0 for packets
arriving in order.

Ret ransm ssi on Hi st ogram

Ef fective throughput

This is the effective rate at which the | eft edge of the w ndow
advances. The time interval over which the neasure is made is a
par amet er of the measurement experiment. The shorter the interval,
the nmore bursty we woul d expect the neasure to be.

It is possible to neasure effective data throughput in both
directions fromone TCP by observing the rate at which the |eft
wi ndow edge is noving on ACK sent and received for the two

Wi ndows.

Since throughput is |argely dependent upon buffer allocation and
wi ndow si ze, we nust record these values al so. Varying w ndow for
a fixed file transm ssion nmight be a good way to di scover the
sensitivity of throughput to w ndow size.

Cut put nmeasur enent

Cerf,

The t hroughput neasurenent is for data only, but includes
retransm ssi on. The output rate should include all octets
transmtted and will give a nmeasure of retransm ssion overhead.

Qut put rate al so includes packet format overhead octets as well as
dat a.

Dal al & Sunshi ne [Page 43]

RFC 675 Speci fication of Internet TCP Decenmber 1974

Uilization

The effective throughput divided by the output rate gives a
measure of utilization of the comruni cati on connecti on

W ndow and buffer allocation neasurenents
Hi st ogram of |etters outstanding, neasured at the instant of SEND
recei pt by TCP fromuser or at instant of arrival of a letter for
a receiving user.
Buffers in use on the SEND si de upon packet departure into the
net; buffers in use on the RECElI VE side upon delivery of packet
into a USER Buffer.

5.3 MJLTI CONNECTI ON MEASUREMENTS
Statistics on User Commands sent to the |ocal TCP

Statistics of error or success codes returned [hi stogram of each type
of error or return response]

Statistics of control bit use

Counter for each control bit over all packets emtted by the TCP
and anot her for packets accepted

Count data carrying packets
Count ACK packets with no data

Error packets distribution by error type code received fromthe net
and sent out into the net

5.4 MEASUREMENT | MPLEMENTATI ON PHI LOSOPHY

We vi ew the neasurenent process as sonething which occurs internal to
the TCP but which is controllable fromoutside. A well known socket
owned by the TCP can be used to accept control which will select one
or nore measurenent classes to be collected. The data woul d be
periodically sent to a designated foreign socket which would absorb
the data for later processing, in the manner currently used in the
ARPANET | MPs. Each neasurenent class has its own data packet format
to nake the job of parsing and anal yzing the data easier

Cerf, Dalal & Sunshine [Page 44]

RFC 675 Speci fication of Internet TCP Decenmber 1974

We woul d restrict access to TCP neasurenment control to a few
designated sites [e.g. NMC, SU-DSL, BBN]. This is easily done by
setting up listening control connections on partially specified
forei gn sockets.

6. SCHEDULE OF | MPLEMENTATI ON
7. REFERENCES
1. CEKA74
V. Cerf and R Kahn, "A Protocol For Packet Network
I nt ercomruni cation," | EEE Transacti ons on Communi cation, vol. C
20, No. 5. May 1974, pp. 637-648.
2. CERF74
V. Cerf, "An Assessnent of ARPANET Protocols," in Proceedi ngs of
t he Jerusal em Conference on Information Technol ogy, July |974
[RFC#635, | NWG Note # ***].
3. CESu74

V. Cerf and C. Sunshine, "Protocols and Gateways for the

I nterconnecti on of Packet Switching Networks," Proc. of the
Subconference on Computer Nets, Seventh Hawaii |nternationa
Conf erence on Systens Science, January 1974.

4. HEKA70

F. Heart, R E Kahn, et al, "The Interface Message Processor for
the ARPA Conputer Network," AFIPS 1970 SJCC Proceedi ngs, vol. 36,
Atlantic Cty, AFIPS Press, New Jersey, pp. 551-567.

5. POUZ74
L. Pouzin, "ClGALE, the packet sw tching machi ne of the CYCLADES
conputer network," Proceedi ngs of the | FIP74 Congress, Stockholm
Sweden.

6. RONE74
L. Roberts and B. Wessler, "Computer Network Devel opnent to

achi eve resource sharing," AFIPS 1970, SJCC Proceedi ngs, vol. 36,
Atlantic City, AFIPS Press, New Jersey, pp. 543-549.

Cerf, Dalal & Sunshine [Page 45]

RFC 675 Speci fication of Internet TCP Decenmber 1974

10.

11.

12.

13.

PQUZ73

L. Pouzin, "Presentation and nmajor design aspects of the CYCLADES
Conput er Network," Data Networks: Analysis and Design, Third Data
Conmuni cati ons Synposium St. Petersburg, Florida, Novenmber 1973,
pp. 80-87.

SCW 71

R Scantlebury and P.T. WIkinson, "The Design of a Sw tching
Systemto allow rempte Access to Conmputer Services by other
conputers and Term nal Devices," Second Synposium on Problens in
the Optim zation of Data Commruni cati on Systens Proceedi ngs, Palo
Al'to, California, October 1971, pp. 160-167.

POST72
J. Postel, "Oficial Initial Connection Protocol,"” Current Network
Protocols, Network Information Center, Stanford Research
Institute, Menlo Park, California. January 1972 (NI C 7101).

CACR70

C.S. Carr, S.D. Crocker, and V.G Cerf, "Host-Host Conmmuni cati on

Protocol in the ARPA Network," AFIPS Conference Proceedings, vol.
36, 1970 SJCC, AFIPS Press, Mntvale, N. J.

ZI EL74

H Zinmerman and M Elie, "Transport Protocol. Standard Host - Host
Protocol for heterogeneous conputer networks," | NAG#61, Apri
1974.

CRHE72

S. D. Crocker, J. F. Heafner, R M Mtcalfe and J. B. Postel,
"Function-oriented protocols for the ARPA Conputer Network," AFIPS
Conf erence Proceedings, vol. 41, 1972 FJCC, AFIPS Press, Mntval e,
N. J.

DALA74

Y. Dalal, "Mdre on sel ecting sequence nunbers," | NWG Protocol Note
#4, Cctober 1974.

Dal al & Sunshi ne [Page 46]

RFC 675 Speci fication of Internet TCP Decenmber 1974

14.

SUNS74

C. Sunshine, "Issues in communication protocol design -- form
correctness.” INWG Protocol Note #5, Cctober 1974

BELS74

16.

17.

18.

19.

20.

21.

Cerf,

D. Bel snes, "Note on single nessage comunication,” | NAG Protoco
Not e #3. Septenber 1974.

TOWL74

R Tominson, "Selecting sequence nunbers,"” | NAG Protocol Note #2,
Sept enber 1974.

SCHA74

R Schantz, "Reconnection Protocol", private comrunication

avail abl e from Schantz at BBN

POQUZ74A

L. Pouzin, "A proposal for interconnecting packet switching
networ ks, | NWG Note #60, March 1974 [al so submtted to EUROCOWP
74] .

DLMG74

D. Lloyd, M Galland, and P. T. Kirstein, "Ainms and objectives of
i nternetwork experinents," to be published as an | NWG Experi nents
Not e.

MCKE73
A. McKenzie, "Host-Host Protocol for the ARPANET," N C # 8246,
Stanford Research Institute [al so in ARPANET Protocol s Not ebook
NI C 7104].

BELS74A

D. Bel snes, "Flow control in packet sw tching networks,” | NAG Note
#63, October 1974.

Dal al & Sunshi ne [Page 47]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FIGURE 1: TCB Major States

0-no TCB
\ /
OPEN | A CLCsE CLCSE A
---------- | - oo |
set up TCB | | renove TCB remove TCB |
| | |
| | collision retry, |
SYN arrives _V | SEND, | NTER |
------------- / S1=0 \ |
send SYN, ACK | S2=0 F=0 | send SYN |
| R0 C=0 | |
| | W=0/1 | ||
| | | SYN arrives [
| error,timeout | 1-OPEN | ----------- ||
I \ / col l'i sion; |
| clear TCB A A set tineout ||
| | | ||
V| B R
/ Sl=1 \ / Sl=1 \
S2=0 F=0		S2=0 F=0
R=1 C=0	SYN, ACK arrives	R0 C=0
UW=0/1	ACK arrives = s--eio-ao---	U=0
I send ACK		
3-SYN rcvd		2-SYN sent
\ /		\ /
_V V__		
/ Sl=1 \		
CLCSE	S2=1 F=0	
--------	R=1 C=0	FIN arrives
send FIN	U=0 R	
		tell user, send FIN
	4- est abl i shed]	
	CLCOSE \ /	
T P,		
V V send FIN V__		
/ Sl=1 \ / Sl=1 \		
S2=0/1 F=1	tineout or	S2=1 F=1
R=1 C=1	FIN, error, arrives CLCSE	R=1 C=0
U=0/1 [e	U=0	
	renove TCB renmove TCB	
5-FIN wait		6-FIN rcvd
\ /		\ /
\Y, \Y,
/ \
0-no TCB

Cerf, Dalal & Sunshine [Page 48]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FIGURE 2.1: Structure of the TCP

| | | |

| | | I NPUT PACKET |<---->
| REASSEMBLER | | HANDLER |
| | |

| |

| |

| |

| |

| | |

| | | |

| | | |

| | | |

| | | v Vv | NETWORK

| <=====| SYSTEM | | | | or

| | CALLS | <::::::::| TCB s | <::::::::| sone
USERS |=====>| or | | and NETWORK

| USER | ========>| ASSOC| ATED QUEUES| ========>| | NTERFACE
<---->| | NTERFACE] | | PROGRAM

|] A A

|

| PACKETI ZER
| HANDLER
|

| |
| OUTPUT PACKET |
| |
| |

=======> Logi cal or physical flow of data (packets/letters)
_______ > "|Interaction”

NOTE: The signalling of processes by others is not shown

Cerf, Dalal & Sunshine [Page 49]

RFC 675 Speci fication of Internet TCP Decenmber 1974
FI GURE 2. 2a: -
Addr ess Check / Begin \
\
|
Vv
' packet
’ foreign ’
' socket matches ’
| no '. a TCB local .’
| . socket .’
| . ? .
|]
| | yes
| _V_
| . .
| .’ packet . o
| ."local socket . / \
| " matches fully \| YES |
| '. specified TCB .’ [\
| ".fgn socket .’
| .7 ’
Vv]
.’ . | no
. SYN, . _V_
. FI'N, I NT, DSN, . .’ .
."or text length>0 ' ./ .’ matches ’
| no or QUERY N | . partly spec. ’
| . ’ | .’ or unspec. TCB’
| . ? ’ no '’ foreign ’
| L ’ socket ’
| | yes . ? J
|]
| | | | yes
| | Create error 7 | Vv
| | packet. Signal OPH | .’ .
| | | ' packet
| | ." has SYN set '.
| \% | no . .’
| | | | o7
| \| discard |/ | L
I I\ |
| _V_
V_ / \
/ \ | YES |
| NO | __
__ |/
Cerf, Dalal & Sunshine [Page 50]

RFC 675

FI GURE 2. 2b- 1:
| nput Packet Handl er

Speci fication

of

/ Begin \
\ /

I nternet TCP

Dece

nber 1974

.->ERR Fig 4.5, 4
.->SYN Fig 4.1,
9

to

(I'NT with data)

<———

"y

in Fig 2.2b-2

Cerf,

.2

.->SPECI AL FUNCT. Fig 4.7

to

yes

~
— ~

<

’ ’

3 3

i nput
.’ packet
.avail abl e.

1 . l) 1

| ye
V

. address’.
. check K
' 2

’ ’

| ye
V

’ ’

’ ’

error

or control

.’(estabj’.
. R=S1=82=1

<- -

|

|

|

\%

" Yu

yes

’ ?
1 1

’

’

Set S2=1, U=0
Notify user
wth event 2
if Uwas 1

in Fig 2.2b-2

Dal al & Sunshi ne

go to

sl eep

| d
1

iscard |

r queue) |

[Page 51]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 2. 2b-2: Input Packet Handl er (continued)

| Di scard packet with
| hi ghest seq. no from |
| Recei ve packet queue.
|

"y
|
L VvV
txt. L T
lgth>0 7. within 7. | Use ACK to advance send w ndow
,<----". or DSN .’<---", window .’'--->|Release ACK ed packets from |
| no .o no . ? .7 yes |retransmt or send queues. If |
| L L | any packet had EB bit set
| | yes | renove buffer from Packetized
| \Y/ | buf fer queue and i nform user
| |Create ACK packet. Put on | | (success). Signal Packetizer.
| <-| Send packet queue. Signal OPH| |
|| | |
| |
| |
| |
| |
| | "X
| | |
| _V_ _V_
| . . ."TCB'. | Put packet on
| Totext yes . Receive’. yes | Recei ve packet queue
| .’ length>0 " .-------- > ' buffer Tee---- >lin the right order.
| . or DSN .’ A ".available.’ | Si gnal Reassenbl er.
| L2 | L2 | |
| L | L
| | no | | no
| | | _V |
| \ | | - " |
/] | ' seq # .

| | ." of packet ’ yes | Discard | |

| | . highest so .’ ---->|packet |----- >

| | .o far | |

| | L7 |

| | L |

| | | no |

| | \Y |

| | |

| | |

| |

| |

| |

| |

|
Vv

to "Begin" in Fig 2.2b-1

Cerf, Dalal & Sunshine [Page 52]

RFC 675 Speci fication of Internet TCP December

Fl

to
in

Ce

GURE 2. 3-1: Reassenbl er

/ Begin \
\ /
|
|
I i
| | yes
\Y; J " |
| Get ready | .” Receive . yes . any’ .
| for next TCB|--------- >, ' Packet Queue '.-------- > ' nmore .
| | A . empty ? .7 A "owork?.’
| ’ ’ | SR
| | no | | no
"R'------ Seamaao-- ' VvV | \Y;
"is | | Goto |
' packet | | Sleep |
R SR R ".DSN with no.’ | | |
| yes ', data? .’ |
|] |
| | no |
| _V__ |
| . K |
| " Receive ’ yes |
| ."Buffer Queue ’'.--->|
I ' , enpty ? , ' I
| | Copy from packet | | no | <-------e----- " s
	to buffer until	Vv
	one is exhausted	First.
	Update receive	yes ' packet no
	wi ndow.	<----."matches Recv '.--->
		".left wi ndow.’
	. edge ?.’	
_V__ IR		
."Send .		
.' Packet . yes		
.7 Queue enpty '.---->	Create ACK packet containing	
. ? .’	new wi ndow. Si gnal OPH.	
e		
no		
B R >		
Y, Y,
T to "uU
Fig 2.3-2 in Fig 2.3-2

1974

rf, Dalal & Sunshine [Page 53]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 2. 3-2: Reassenbler (continued)

" "y
| |
| |

vV - vV | Mar k progress

| process | yes . . yes ."whole’. no |in packet.

| DSN | <----- .7 DSN ’.<----- ." packet ’'.--->|Return buffer|--->.

	. oset?.’ . copi ed?.’	to user.
L e		
	no	
B >| |

| |
_V__ |
.7 EQL ', yes | Return buffer to user. | |
’ set? .l--------- >| Return packet to free | --->|

L | storage. Signal Packetizer|

no | | | |
| A |

_V__ | |

ofull” |

. buffer.’-------------- ’

L yes |
| no |
| |
\Y |

| Mark progress in buffer. Return packet| |
|to free storage. Signal Packetizer. | ymmmmmm-- ’
| | |
| |
| |
\Y \Y
to "R' in Fig 2.3-1 to "S" in Fig 2.3-1

Cerf, Dalal & Sunshine [Page 54]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 2. 4: Packeti zer

/ Begin \ \| Get ready for next TCB |/
_ /] [\ |
I I
V I
"Send ’ ' any ’ |
no " Buffer yes ' nore ’ yes |
------------- ’ Queue e wor k T
| "Lenpty? .’ A ’ ? ’
\Y, L | L
| Pi ck packet size depend- | | | no
-->ling on send buffer, TCB | | V
| buf f er space, w ndow, etc| | | go to sleep
I I | I
I I
V I
."Send .
" window ’ no
".has room? . ------iai o >
1 . 1 |
| yes |
_V__ I
.7TCB . |
.' buffer . no |
.'space avail- T -mm i ’
. able ? L A
7 . 7 |
\Y,
| Copy from Send buffer to | Move buffer from| | Set EOL bit
| packet until packet full

I
I
| header |
I

| Send queue to | <--]in packet
| Put packet on Send packet | packeti zed queue
| queue. Signal OPH. | |
| A A
I | no I
_V__ S I
."whol e’ . OEQL . |
.’ Send . yes " set in yes |
. buffer A LR T >, Send A LR T ’
. copied?.’ " buffer?.’
| no
\Y,

I
I
I
|
I
I
I
I
I
|
I
I
I
I
| .
| | yes |
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I

| Note in TCB where in
--| Send buffer we stopped.
| |

Cerf, Dalal & Sunshine [Page 55]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 2. 5a:
Qut put Packet Handl er

| Get ready for next TCB |
| |

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

A

| S/es

| Move packet to retransmit queue; |
| set new retrans. time for it. |

| _V__

| . Send ’ ' any ’

| yes .’ ACK . no .’ Buffer '. vyes .’ nore ’ yes
| s m- - ".bit set.’<------ . Queue B wor k e
| | L "Lenpty? .’ A . ?)

| | no | L | L

| | |\ | | no

| \Y | | |

| |Put latest receive left| \% | \Y

	w ndow edge in ACK.	->	Transmt packet			go to sleep
			R			

| _V__ |

| | Return packet to] . pckt . |

| | buf fer pool as | no .'seq # to’

| |it has been | <------ 'rgt of Send .

| | ACKed | ".left wi ndow.’

| | | ’ edge .’

| 1 1

|

|

|

|

|

|

|

|

|

.TCB s? .7

Cerf, Dalal & Sunshine [Page 56]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 2. 5b:
Retransmt Process

| Get ready for next TCB
I I

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:

N

| Move packet to | | |
———————————————————————— | Send Packet |
| queue. Signal OPH

I VvV

| O Any .

| ." packet’'s . ' any ’

| retrans. tine’. no .’ more . yes
| . has occurred .'----- > . work R
| . for this .’ . ? ’

| . TCB ? .’ " '

| L |

| | yes | no

| | V.

| \Y | go to sleep

I

Cerf, Dalal & Sunshine [Page 57]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3. 1:
OPEN
/ Begin \
\ /
|
_V__
. User .
permitted . no | |
' access to ' .---->|error 1|------------)
".this local .’ | | |
'.socket?.’ |
co |
| yes I
" fgn . |
yes .’ socket . no |
Smm- - ". specified ."----. |
| . ? .’ | |
vV Lo vV |
' conn-’ ."space’. no | | |
| | yes .’ ection . " for TCB.'---->|error 4|-->|
,-|lerror 6|<----". already .’ L | | |
] "L exists?.’	yes			
	no V			
V	Create TCB. Set			
		no .’'space’.	S1=S2=R=F=C=1	
<-	error 4	<----- ".for TCB.’	Set U=1	
[]				
	yes			
\				
	Create TCB. Set U=0			
	Set S1=S2=R=F=C=1			
(L EEEERPERES R AEERRREEEE !				
V.				
' |

/ Return \
\ /

Cerf, Dalal & Sunshine [Page 58]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3. 2:
SEND

/ Begin \
\ /
|
_V__
.'conn-".
ection

| egal for

. this process .’'---------- > error 1 |----------- .
’ ?

’ ’

’ ’

3 3

| yeé

.’ conn-".
.’ ection . no

’

I
. open R R > error 3 |---------- >
. ? ! |
| yes
__V__
ofagn
socket
. specified ."------------ >| error 5 |---------- >
L (U=0)? | |

’ ’

| yes

.’ conn-" .
ection

. closing ? ."------------ > error 12| ---------- >
’.gF,Chl?.’ | |

’ ’

| ho
\Y,
| Put buffer on Send Buffer queue and signal Packeti zer

/ Return \
\ /

Cerf, Dalal & Sunshine [Page 59]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3. 3:
| NTERRUPT

/ Begin \
\ /
|

|
Vv

Sane as SEND

|
Vv

| Return any pending Send buffers with code 10. |
| Create | NT packet on outgoi ng packet queue. |
| Si gnal Qutput Packet Handl er. |

|

/ Return \
\ /

Cerf, Dalal & Sunshine [Page 60]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3. 4:
RECEI VE
/ Begin \
\
|
_V__
.'conn-".
' ection
" legal for no |
. this process .’'---------- > error 1 |----------- .
’ ? ’ | | |
1 . 1 |
| yes |
V |
' ' |
) . |
.’ connection ’ |
’ state ’ |
|
| | | | | |
1-4 | 5,6 | [0 > error 3 |-->|
| R : | | |
\Y | |
Put buffer on Receive			
Buf f er queue. Signal			
Reassenbl er	Tee--- > error 12	-->	
!

/ Return \
\ /

Cerf, Dalal & Sunshine [Page 61]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3.5:
CLCSE
/ Begin \
\
|
_V__
.'conn-".
' ection
" legal for no |
. this process .’'---------- > error 1 |----------- .
’ ? ’ | | |
1 —'1 |
| yes |
V |
' ' |
) . |
.’ connection ’ |
L state ’ |
: |
5] [3,4]1,2,6 |O | | |
| | | B > error 3 |-->|
R ' | IR R : | | |
\Y					
	Return all buffers to user with error		-		
	12; clear all packet queues, create			Renove TCB	
	FIN packet, signal Qutput Packet	'"--->Return	--->]		
	Handl er, set C=F=1		Success		
--------------------- b e
vV
/ Return \
\ /

Cerf, Dalal & Sunshine [Page 62]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 3. 6:
STATUS

/ Begin \
\ /
|
_V__
.'conn-".
ection

| egal for

. this process .’'---------- > error 1 |----------- .
’ ?

’ ’

’ ’

3 3

| yeé

.’ conn-". | Return |
.’ ection . no | stat e=0 or|
open ? .l ------------ >l error 3 | --------- >
e |]
| yes
\Y,
|Fill in reply from TCB. |
|
|

Return Success to user.|

/| Return \
\ /

Cerf, Dalal & Sunshine [Page 63]

RFC 675
FI GURE 4. 1:
SYN (no ACK)

| Treat as a|

| Retransm t|
| SYN, ACK

I I I
1,0,1 | | | ,
| duplicate.|<----------- , | |
| | 1.0,0
| 0,0,0 | | (Syn sent)
| (listening) | e ememe--
I
\%
| Set R=S1=1. If U=1 set foreign socket |

Cerf,

3

Speci fication of

I nternet TCP

1,1,1

|[in TCB to match packet |ocal socket.
| Send SYN, ACK. Signal OPH. Fill in TCB|
| with send wi ndow,

recei ve sequence #.

Dal al

& Sunshi ne

Decenber 1974

| (states 4-6) | |
------------- > error 6 |-->.

>| Col l'ision: O ear|

| S1,

| rerove SYN from|-->
| retransmt queue|

set tineout, |

[Page 64]

RFC 675

FI GURE 4. 2:

SYN, ACK

Cerf,

Dal al

Speci fication of Internet

." State 2 . no

’

’ ’

[yes

TCP

" S1=1; S2=R=0." - - mmmmm e - _
2

.’ correct ".-------- >| send error 6

& Sunshi ne

’

Decenber 1974

[Page 65]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 4. 3:
INT (from net)

/ Begin \ \'| Process ACK |
\ / /] (may set S2)|------ .
| | |
|
_V__
i) In i)
| Discard | no ' state 4 .
L - | (or queue) |<------- . S1=S2=R-=1 .’
| | . F=0 ? .’
| yes
| ACK and | no "within
<o | discard | <------- ". W ndow '
| | o7
| yes

| Move Receive Left wi ndow edge to sequence |
| number of INT. Return event 10 with any |
| pendi ng Receive buffers. Ruturn event 11 to |
| user. Send ACK for |NT. |

|

_V__

see yes .’ data .
Figure<---------- .in this
2.2 ' . packet ?.”’

| no

------------------------------------ >|
__VvV_
Done

Cerf, Dalal & Sunshine [Page 66]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 4. 4:
FI'N
/ Begin \ \'| Process ACK |
\ / /] (may set S2)|------ .
| |
|
_V__
no .’'S1=S2=R=1'.
R LR . (estab- .’
| ".lished).’
| L
I | yes
\Y L T
| | no . within ’.
R LR | discard | <------- . wi ndow ’
| | | ' ? '
| 1 . 1
| | yes
| _V__
| (state 4) O "F bit’ 1 (state 5)
I . value .M ------------ .
| | e |
| \Y |
| |Return all user buffers (event 12)] s
	G ear all packet queues. Send FIN		Return success to User’s
	packet. Set F=1. Informuser		CLOSE. Renpbve TCB.
	"connection closing" (event 12)		
e e eeeaeaaa D R e !
_VvV__
/| Done \
\ /

Cerf, Dalal & Sunshine [Page 67]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 4.5:
Error 6 (bad SYN)

/ Begin \
\ /
|
|
_V__
."refers to'.

.current pckt?’.
." (ACK mat ches seq no | |

of packet on .- >| discard [-----------)
".retrans or send.’ | |
. queues?) .’

| yeé

R 1 (state 3)

|
| O (state 2)
| bad SYN
\Y \Y
&t her side is established. Send RESET]		ear S1, R
(put error packet’s seq. # in ACK		Renbve SYN, ACK
field. Return all user buffers with		fromretrans
code 14. Informuser with event 14		queue.
\Y		
ISR i
_ Vv
/ Done \
\ /

Cerf, Dalal & Sunshine [Page 68]

RFC 675 Speci fication of Internet TCP Decenmber 1974

FI GURE 4. 6:
Error 7,8
/ Begin \
\ /
|
_V__
'refers to’. -
’ current ’ no | |
'. packet (check .’ ---------------- > discard |----------- .
. ACK) ? ! A |] |
e | |
| yes | |
V | |
L . | |
L . | |
.’ connection '’ | |
’ state . | |
: : | |
4 5| 3| 2| 6| | |
------- ’ | | | |
		B R :	
	IR		
vV \Y \Y \Y			
Pass to]	Renove TCB.		G ear S1, R
user		Return	
		success to	
	user’ s CLOSE]	qgueue (go to	
			state 1).
\Y	\Y		
e e e e e e o - R e e ’
___V__
/ Done \
\ /

Cerf, Dalal & Sunshine [Page 69]

RFC 675 Speci fication of Internet TCP Decenmber 1974

| Gl ear all queues for this TCB. |
| Return event 14 for user buffers.|
| Inform User with event 14. |
| |

FI GURE 4. 7:
RESET
/ Begin \
\ /
|
no " Reset’ yes
............ .\ [R 2
| L |
| \Y
| | Clear all TCB s for|
| | foreign TCP. Inforni
| | users with event 14|
| | |
V |
ols . |
. RESET . no | | |
."believable ? " .------- >| discard |------------- >|
".(check ACK .’ | | |
ofield) .’ |
L |
| yes |
v |
|
|
|
|
g

[This RFC was put into nachine readable formfor entry]
[into the online RFC archives by Al ex MKenzie with]
[support from GIE, fornerly BBN Corp. 2/ 2000]

Cerf, Dalal & Sunshine [Page 70]

