I nt ernet Engi neering Task Force (1 ETF) E. Haleplidis

Request for Comments: 6369 O Kouf opavl ou
Cat egory: I nfornmational S. Denazis
| SSN: 2070-1721 Uni versity of Patras

Sept enber 2011

Forwar di ng and Control El enent Separation (ForCES)
| mpl enent ati on Experience

Abst ract

The Forwardi ng and Control El enent Separation (ForCES) protoco
defines a standard comuni cati on and control mechani smthrough which
a Control Element (CE) can control the behavior of a Forwarding

El ement (FE). This docunment captures the experience of inplenenting
the For CES protocol and nobdel. Its aimis to help others by
provi di ng exanpl es and possible strategies for inplenenting the

For CES pr ot ocol

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for infornmational purposes.

Thi s docunent is a product of the Internet Engineering Task Force
(ITETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the | ESG are a candidate for any |level of Internet

St andard; see Section 2 of RFC 5741.

I nformati on about the current status of this document, any errata,
and how to provide feedback on it nmay be obtained at
http://ww. rfc-editor.org/info/rfc6369.

Copyri ght Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunment nust

Hal eplidis, et al. | nf or mati onal [Page 1]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . . 2
1.1. Docunent GCoal .o 3
2. Term nol ogy and Conventions 3
3. ForCES Architecture e e e e e 4
3.1. Pre-Association Setup - Initial Configuration 5
3.2. TM . .o . 5
3.3. Model . . - 6
3.3.1. Conponents . 6
3.3.2. LFBs . e e s s s s
3.4. Protocol 010
3.4.1. TLVs00
3.4.2. Message Deserialization13
3.4.3. Message Serialization15

4. Devel opnent Platforms15
5. Acknow edgenents16
6. Security Considerations16
7. References 0 sy
7.1. Normative References17
7.2. Informative References17

1. Introduction

Forwar di ng and Control El enent Separation (ForCES) defines an
architectural franmework and associ ated protocols to standardi ze

i nformati on exchange between the control plane and the forwarding
plane in a ForCES Network El enment (ForCES NE). [RFC3654] defines the
For CES requirements, and [RFC3746] defines the For CES franeworKk.

The For CES protocol works in a master-slave node in which Forwarding
El ements (FEs) are slaves and Control Elenments (CEs) are nasters.

The protocol includes commands for transport of Logical Functiona

Bl ock (LFB) configuration information, association setup, status, and
event notifications, etc. The reader is encouraged to read the
Forwar di ng and Control El enent Separation Protocol [RFC5810] for
further informtion

[RFC5812] presents a formal way to define FE LFBs using XM.. LFB
configuration conmponents, capabilities, and associated events are
defined when LFBs are formally created. The LFBs within the
Forwardi ng El ement (FE) are accordingly controlled in a standardi zed
way by the For CES protocol

Hal eplidis, et al. I nf or mati onal [Page 2]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

The Transport Mapping Layer (TM.) transports the protocol nessages.
The TML is where the issues of how to achieve transport-|eve
reliability, congestion control, multicast, ordering, etc., are
handled. It is expected that nore than one TM. will be standardized.
The vari ous possible TM.s could vary their inplenentations based on
the capabilities of underlying nmedia and transport. However, since
each TML is standardized, interoperability is guaranteed as | ong as
bot h endpoints support the same TM.. All ForCES protocol |ayer

i mpl enent ati ons must be portable across all TM.s. Al though nore than
one TML may be standardi zed for the ForCES protocol, all ForCES

i mpl enent ati ons nust i npl enent the Stream Control Transm ssion
Protocol (SCTP) TM. [RFC5811].

The Forwardi ng and Control El enent Separation Applicability Statenent
[RFC6041] captures the applicable areas in which ForCES can be used.

1.1. Document GCoa

Thi s docunent captures the experience of inplenmenting the ForCES
protocol and nodel, and its main goal is to provide alternatives,

i deas, and proposals as how it can be inplemented, not to tell others
how to inplenment it.

Al so, this docurment nentions possible problens and potential choices
that can be nade, in an attenpt to help inplenentors develop their
own products.

Additionally, this docunment assunes that the reader has becone
famliar with the three main ForCES RFCs: the Forwarding and Contro
El ement Separation Protocol [RFC5810], the Forwarding and Contro

El ement Separation Forwardi ng El enent Mddel [RFC5812], and the SCTP-
Based Transport Mapping Layer (TM.) for the Forwardi ng and Contro

El ement Separation Protocol [RFC5811].

2. Term nol ogy and Conventi ons

The term nol ogy used in this docunent is the same as in the
Forwar di ng and Control El enent Separation Protocol [RFC5810]; sone of
the definitions below are copied fromthat docunent.

Control Elerment (CE): A logical entity that inplenents the ForCES
protocol and uses it to instruct one or nore FEs on how to process
packets. CEs handle functionality such as the execution of contro
and signaling protocols.

Hal eplidis, et al. I nf or mati onal [Page 3]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

Forwardi ng Elenent (FE): A logical entity that inplenents the ForCES
protocol. FEs use the underlying hardware to provi de per-packet
processi ng and handling as directed/controlled by one or nore CEs via
the For CES protocol .

LFB (Logi cal Functional Block): The basic building block that is
operated on by the ForCES protocol. The LFB is a well-defined,

| ogi cally separable functional block that resides in an FE and is
controlled by the CE via the ForCES protocol. The LFB may reside at
the FE's data path and process packets or nmay be purely an FE contro
or configuration entity that is operated on by the CE. Note that the
LFB is a functionally accurate abstraction of the FE s processing
capabilities but not a hardware-accurate representation of the FE

i mpl enent ati on.

LFB C ass and LFB Instance: LFBs are categorized by LFB cl asses. An
LFB i nstance represents an LFB class (or type) existence. There nmay
be multiple instances of the sane LFB class (or type) in an FE. An
LFB class is represented by an LFB class ID, and an LFB instance is
represented by an LFB instance ID. As a result, an LFB class ID
associ ated with an LFB instance |ID uniquely specifies an LFB
exi st ence.

LFB Conponent: Operational paraneters of the LFBs that nust be
visible to the CEs are conceptualized in the FE nodel as the LFB
conponents. The LFB conponents include, for example, flags, single
par armet er argunments, conplex argunents, and tables that the CE can
read and/or wite via the ForCES protocol

For CES Protocol: While there may be nmultiple protocols used within
the overall ForCES architecture, the terns "For CES protocol" and
"protocol" refer to the Fp reference points in the ForCES franework
[RFC3746]. This protocol does not apply to CE-to-CE comruni cation
FE-t o- FE communi cati on, or communi cati on between FE and CE Managers.
Basi cally, the ForCES protocol works in a master-slave node in which
FEs are slaves and CEs are masters. This docunment defines the
specifications for this ForCES protocol

3. ForCES Architecture

For CES has undergone two successful interoperability tests, where
very few i ssues were caught and resol ved.

Thi s section discusses the ForCES architecture, inplenentation
chal | enges, and ways to overcone these chall enges.

Hal eplidis, et al. I nf or mati onal [Page 4]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

3.1. Pre-Association Setup - Initial Configuration
The initial configuration of the FE and the CE is done by the FE
Manager and the CE Manager, respectively. These entities have not as
yet been standardi zed.

The sinplest solution is static configuration files, which play the
rol e of the Managers and are read by FEs and CEs.

For nmore dynanic solutions, however, it is expected that the Managers
will be entities that will talk to each other and exchange details
regardi ng the associations. Any devel oper can create any Manager

but they should at | east be able to exchange the details bel ow.

From the FE Manager side:

1. FE Identifiers (FElDs).

2. FE IP addresses, if the FEs and CEs will be comunicating via
net wor k.

3. TM.. The TML that will be used. If this is omtted, then SCTP
must be chosen as defaul t.

4. TM priority ports. If this is omtted as well, then the CE nust
use the default values fromthe respective TML RFC

From t he CE Manager si de:
1. CE ldentifiers (CElDs).

2. CE IP addresses, if the FEs and CEs will be comunicating via
net wor k.

3. TM.. The TM.L that will be used. If this is omtted, then SCTP
must be chosen as default.

4. TM priority ports. |If this is onitted as well, then the FE nust
use the default values fromthe respective TML RFC

3.2. TM
Al'l For CES inpl enentati ons nust support the SCTP TM.. Even if

another TML will be chosen by the devel oper, SCTP is mandatory and
nmust be support ed.

Hal eplidis, et al. I nf or mati onal [Page 5]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

There are several issues that should concern a devel oper for the TM.:

1. Security. TM nust be secure according to the respective RFC
For SCTP, you have to use |Psec.

2. Renpte connection. Wile ForCES is nmeant to be used locally,
both interoperability tests have proven that ForCES can be
depl oyed everywhere that SCTP/IP is available. In both
interoperability tests, there were connections between G eece and
China, and the performance was very satisfactory. However, in
order for the FE and CE to work in a non-local environnent, an
i npl enentor must ensure that the SCTP-TM. ports are forwarded to
the CE and/or FE if they are behind NATs; if there is a firewall,
it will allow the SCTP ports through. These were identified
during the first ForCES interoperability test and docunented in
the I nplementati on Report for Forwarding and Control El enent
Separ ati on [RFC6053] .

3.3. Model
The For CES nodel is inherently very dynamic. Using the basic atomc
data types that are specified in the nodel, new atom c (single
val ued) and/or compound (structures and arrays) datatypes can be
built. Thus, developers are free to create their ow LFBs. One
ot her advantage that the ForCES nodel provides is inheritance. New
versi ons of existing LFBs can be created to suit any extra devel oper
requi renents.
The difficulty for a developer is to create an architecture that is
conpletely scalable so there is no need to wite the sanme code for
new LFBs, new conponents, etc. Developers can just create code for
the defined atom c val ues, and new conponents can then be built based
on already witten code, thus reusing it.
The nodel itself provides the key, which is inheritance.

3.3.1. Conponents

First, a basic component needs to be created as the nother of all the
conponents that has the basic parameters of all the conponents:

o The ID of the conponent.
0 The access rights of the component.
o If it is an optional component.

o If it is of variable size.

Hal eplidis, et al. I nf or mati onal [Page 6]

RFC 6369

o

o

If the data size of the conponent

For CES | npl ement ati on Experience

M ni mum dat a si ze.

Maxi mum data si ze

either the m ni mum or the maxi mum si ze,

A common constructor.

A commmon destructor.

Retri eve Component |D.

Retri eve

Query if it is an optiona

val ue.
Next ,

0

0

0

)

0

o GCet
o Set
o GCet
o Set
o De
o De
o GCet
o Set
o GCet
o Set
o De
o GCet
0

Ful | Data.
Ful | Dat a.
Spar se Dat a.
Spar se Dat a.
Ful | Dat a.
Spar se Dat a.
Property.
Property.
Val ue.

Val ue.

Val ue.

Dat a.

Cl one comnponent .

Hal eplidis, et al

sone basic functions are in order

access right property.

| nf or mat i ona

i's not vari abl e,

conponent .

Sept ember 2011

then the size is
as both should have the sane

[Page 7]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

The Get/Set/Del Full Data, Get/Set/Del Sparse Data, and Get/ Set
Property functions handl e the respective ForCES comrands and return
the respective TLV, for exanple, Set Full Data should return a
RESULT- TLV. The Get Value, Set Value, and Del Value functions are
called from Get Full/Sparse Data, Set Full/Sparse Data, and Del Full/
Sparse Data respectively and provide the interface to the actua

val ues in the hardware, separating the forces handling logic fromthe
interface to the actual val ues.

The Get Data function should return the value of the data only, not
in TLV format.

The Clone function seens out of place. This function nmust return a
new conmponent that has the exact sane values and attributes. This
function is useful in array components as described further bel ow.

The only requirenent is to inplenent the base atom c data types. Any
new atom ¢ datatype can be built as a child of a base data type

which will inherit all the functions and, if necessary, override

t hem

The struct conmponent can then be built. A struct component is a
conponent by itself but consists of a nunber of atom c conponents.
These atonic conponents create a static array within the struct. The
I D of each atom c conmponent is the array’s index. For a struct
conponent, the C one function nust create and return an exact copy of
the struct conponent with the sane static array.

The nost difficult conmponent to be built is the array. The
difficulty lies in the actual benefit of the nodel: you have absol ute
freedom over what you build. An array is an array of conponents. In
all rows, you have the exact same type of component, either a single
conponent or a struct. The struct can have multiple single
conponents or a conbination of single components, structs, arrays,
and so on. So, the difficulty lies in howto create a new row, a new
conponent by itself. This is where the Clone function is very
useful. For the array, a nother conponent that can spawn new
conponents exactly like itself is needed. Once a Set command is
recei ved, the nother conponent can spawn a new conponent if the
targeted row does not exist and add it into the array; with the Set
Ful |l Data function, the value is set in the recently spawned
conponent, as the spawned conponent knows how the data is created.

In order to distinguish these spawned conponents from each ot her and
their functionality, some kind of index is required that will also
refl ect how the actual data of the specific conponent is stored on
the hardware.

Hal eplidis, et al. I nf or mati onal [Page 8]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

Once the basic constructors of all possible conponents are created,
then a devel oper only has to create LFB conponents or datatypes as a
child of one of the already-created conmponents, and the only thing
the devel oper really needs to add is the three functions of GCet
Val ue, Set Value, and Del Value of each conponent, which is platform
dependent. The rest stays the sane.

3.3.2. LFBs
The sane architecture in the conponents can be used for the LFBs,
all owi ng a developer to wite LFB handling code only once. The
parent LFB has sonme basic attributes:
o The LFB Cass ID
o The LFB Instance ID.
0o An Array of Conponents.
0 An Array of Capabilities.
0o An Array of Events.
Fol | owi ng are some conmon functions:
o Handl e Configuration Comrand.
o Handl e Query Command.
0 Get dass ID
0 Get Instance ID.
Once these are created, each LFB can inherit all these fromthe
parent, and the only thing it has to do is add the conmponents that

have al ready been created.

An exanple can be seen in Figure 1. The follow ng code creates a
part of FEProtocol LFB

Hal eplidis, et al. I nf or mati onal [Page 9]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

/| FEI D
cui = new Conponent ul nt (FEPO FEI D, ACCESS READ ONLY, FE id);
Conponent s[cui - >get _Conponent 1 d()]=cui; //Add conponent to array |ist

/Il Current FEHB Policy Val ue
cub = new Conponent uByt e(FEPO FEHBPol i cy, ACCESS READ WRI TE, 0);
Conponent s[cub- >get _Conponent 1 d()]=cub; //Add conponent to array |ist

/1 FEI Ds for BackupCEs Array

cui = new Conponent _ul nt (0, ACCESS READ WRI TE, 0);

ca = new Conponent Array(FEPO BackupCEs, ACCESS READ VRl TE)

ca- >AddRow(cui, 1);

ca- >AddMot her Conponent (cui) ;

Conponent s[ca- >get _Conponentld()]=ca; //Add conponent to array |i st

Figure 1: Exanple Code for Creating Part of FEProtocol LFB

The sane concept can be applied to handling LFBs as one FE. An FE is
a collection of LFBs. Thus, all LFBs can be stored in an array based
on the LFB's class id, version, and instance. Then, what is required
is an LFBHandl er that will handle the array of LFBs. A specific LFB
for exanple, can be addressed using the foll owi ng schene:

LFBs[C assl D] [Ver si on] [| nst ancel D]

Note: Wiile an array can be used in conponents, capabilities, and
events, a hash table or a sinilar concept is better suited for
storing LFBs using the conponent ID as the hash key with linked lists
for collision handling, as the created array can have large gaps if
the values of LFB Cass ID vary greatly.

3.4. Protoco
3.4.1. TLVs

The goal for protocol handling is to create a general and scal abl e
architecture that handl es all protocol nessages instead of sonething
i mpl ement ation specific. There are certain difficulties that have to
be overcome first.

Since the nodel allows a devel oper to define any LFB required, the
protocol has been thus created to give the user the freedomto
configure and query any conponent, whatever the underlying nodel.
Wiile this is a strong point for the protocol itself, one difficulty
lies with the unknown underlying nmodel and the unlinited nunber of
types of messages that can be created, naking creating generic code a
daunti ng task.

Hal eplidis, et al. I nf or mati onal [Page 10]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

Additionally, the protocol also allows two different path approaches
to LFB components, and the CE or FE nmust handl e both or even a m x of
them making a generic decoding of the protocol message difficult.
Anot her difficulty also arises fromthe batching capabilities of the
protocol. You can have multiple Operations within a nessage; you can
sel ect nore than one LFB to conmand and nore than one conponent to
mani pul at e.

A possible solution is again provided by inheritance. There are two
basi ¢ conmponents in a protocol nessage:

1. The common header
2. The rest of the nessage.

The rest of the nessage is divided in Type-Length-Value (TLV) units
and, in one case, |ndex-Length-Value (ILV) units.

The TLV hierarchy can be seen in Figure 2:

Commbn Header

| | | |
REDI RECT- TLV LFBsel ect - TLV ASResul t - TLV ASTr eason- TLV
|

|
OPER- TLV

|
PATH DATA- TLV ---> Optional KEYI NFO TLV
|
o o o +

I I I I
SPARSEDATA- TLV RESULT- TLV FULLDATA- TLV PATH DATA- TLV
Figure 2: ForCES TLV Hierarchy

The above figure shows only the basic hierarchical |evel of TLVs and
does not show batching. Al so, this figure does not show the
recursion that can occur at the last level of the hierarchy. The
figure shows one kind of recursion with a PATH DATA-TLV within a
PATH DATA- TLV. A FULLDATA-TLV can be within a FULLDATA-TLV and a
SPARSEDATA- TLV. The possi bl e conbi nation of TLVs are described in
detail in the Forwardi ng and Control El ement Separation Protoco

[RFC5810] as well as the data-packing rul es.

Hal eplidis, et al. I nf or mati onal [Page 11]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

A TLV's main attributes are:

o Type.
o Length.
o Data.

o An array of TLVs.

The array of TLVs is the next hierarchical |evel of TLVs nested in
this TLV.

A TLV' s common function coul d be:

o A basic constructor.

o A constructor using data fromthe wre.
o0 Add a new TLV for next |evel.

0 GCet the next TLV of next |evel.

0 Get a specific TLV of next |evel.

o Replace a TLV of next |evel.

0 GCet the Data.

0 Get the Length.

0 Set the Data.

0 Set the Length.

o Set the Type.

o Serialize the header.

0o Serialize the TLV to be witten on the wre.

Al TLVs inherit these functions and attri butes and either override
themor create new where it is required.

Hal eplidis, et al. I nf or mati onal [Page 12]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

3.4.2.

Message Deserialization

Following is an algorithm for deserializing any protocol nessage:

1

2.

Get the nmessage header
Read the | ength.

Check the nessage type to understand what kind of nmessage this
is.

If the length is larger than the nessage header, then there is
data for this nessage

A check can be made here regardi ng the nessage type and the
| ength of the message.

If the nmessage is a Query or Config type, then there are LFBsel ect-
TLVs for this level:

1

The

The

Read the next 2 shorts(type-length). |If the type is an
LFBsel ect-TLV, then the message is valid.

Read the necessary length for this LFBsel ect-TLV, and create the
LFBsel ect-TLV fromthe data of the wire.

Add this LFBselect-TLV to the main header array of LFBsel ect-
TLVs.

Repeat all above steps until the rest of the nessage has
finished.

next | evel of TLVs is OPER-TLVs.

Read the next 2 shorts(type-length). |If the type is an OPER-TLV,
then the nessage is valid.

Read t he necessary length for this OPER-TLV, and create the OPER-
TLV fromthe data of the wire.

Add this OPER-TLV to the LFBsel ect-TLV array of TLVs.
Do this until the rest of the LFBsel ect-TLV has fi ni shed.
next | evel of TLVs is PATH DATA- TLVs.

Read the next 2 shorts(type-length). |If the type is a PATH DATA-
TLV, then the nessage is valid.

Hal eplidis, et al. I nf or mati onal [Page 13]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011
2. Read the necessary length for this PATH DATA-TLV, and create the
PATH DATA-TLV from the data of the wire.
3. Add this PATH DATA-TLV to the OPER-TLV' s array of TLVs.
4. Do this until the rest of the OPER-TLV is finished.

Here it gets interesting, as the next |level of PATH DATA-TLVs can be
one of the follow ng:

0 PATH DATA- TLVs.
0 FULLDATA-TLV.
0 SPARSEDATA- TLV.
0 RESULT- TLV.
The solution to this difficulty is recursion. |If the next TLVis a
PATH DATA- TLV, then the PATH DATA-TLV that is created uses the sane
ki nd of deserialization until it reaches a FULLDATA-TLV or
SPARSEDATA- TLV. There can be only one FULLDATA-TLV or SPARSEDATA- TLV
within a PATH DATA- TLV.
1. Read the next 2 shorts(type-length).
2. If the Type is a PATH DATA-TLV, then repeat the previous
al gorithm but add the PATH DATA-TLV to this PATH DATA-TLV' s array
of TLVs.
3. Do this until the rest of the PATH DATA-TLV is finished.

4. |If the Type is a FULLDATA-TLV, then create the FULLDATA-TLV from
the message and add this to the PATH DATA-TLV' s array of TLVs.

5. If the Type is a SPARSEDATA-TLV, then create the SPARSEDATA- TLV
fromthe nmessage and add this to the PATH DATA-TLV' s array of
TLVs.

6. If the Type is a RESULT-TLV, then create the RESULT-TLV fromthe
message and add this to the PATH DATA-TLV' s array of TLVs.

If the nmessage is a Query, it must not have any kind of data inside
t he PATH- DATA- TLV.

If the message is a Query Response, then it nust have either a
RESULT- TLV or a FULLDATA- TLV.

Hal eplidis, et al. I nf or mati onal [Page 14]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

If the nmessage is a Config, it nmust contain either a FULLDATA-TLV or
a SPARSEDATA- TLV.

If the message is a Config Response, it nmust contain a RESULT-TLV.

More details regardi ng nessage validation can be read in Section 7 of
the Forwardi ng and Control Elenment Separation Protocol [RFC5810].

Not e: When deserializing, inplenentors nust take care to ignore
paddi ng of TLVs as all nust be 32-bit aligned. The length value in
TLVs includes the Type and Length (4 bytes) but does not include
paddi ng.

3.4.3. Message Serialization

The sane concept can be applied in the message creation process.
Havi ng the TLVs ready, a devel oper can go bottomup. Al that is
required is the serialization function that will transformthe TLV
into bytes ready to be transferred on the network.

For exanple, for the creation of a sinple query fromthe CE to the
FE, all the PATH DATA-TLVs are created. Then they will be serialized
and inserted into an OPER-TLV, which in turn will be serialized and
inserted into an LFBsel ect-TLV. The LFBselect-TLV will then be
serialized and entered into the Cormobn Header, which will be passed
to the TML to be transported to the FE

Havi ng an array of TLVs inside a TLV that is next in the TLV
hi erarchy allows the devel oper to insert any nunber of next-I|eve
TLVs, thus creating any kind of nessage.
Note: Wien the TLV is serialized to be witten on the wre,
i mpl enentors nust take care to include padding to TLVs as all nust be
32-bit aligned.

4. Devel opnent Pl atforns

Any devel opnent platformthat can support the SCTP TML and the TM. of
the devel oper’s choosing is available for use.

Figure 3 provides an initial survey of SCTP support for C C++ and
Java at the present tine.

Hal eplidis, et al. I nf or mati onal [Page 15]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

Jommm e s B B B \

|\ Platform | | | |

| ---------- \ W ndows | Li nux | Sol ari s

| Language \| | | |

S S S S +
| |

| Cl C++ | Supported | Supported | Supported

!0- ------------- I !0- ------------- I +

| | Limted | | |

| Java | Third Party | Supported | Supported

| | Not from SUN| | |

| RS B B B /

Figure 3: SCTP Support on Operating Systens

A devel oper should be aware of sone limtations regardi ng Java
i npl enent ati ons.

Java inherently does not support unsigned types. A workaround can be
found in the creation of classes that do the transl ation of unsigned

types to Java types. The problemis that the unsigned | ong cannot be
used as-is in the Java platform The proposed set of classes can be

found in [JavaUnsi gnedTypes].

5. Acknow edgenents

The authors would like to thank Adrian Farrel for sponsoring this
docunment and Jamal Hadi Salim for discussions that nade this docunent
better.

6. Security Considerations

Devel opers of ForCES FEs and CEs must take the Security

Consi derations of the Forwardi ng and Control El enment Separation
Framewor k [RFC3746] and the Forwardi ng and Control El enment Separation
Prot ocol [RFC5810] into account.

Al so, as specified in the Security Considerations section of the
SCTP- Based Transport Mapping Layer (TM.) for the Forwardi ng and
Control El ement Separation Protocol [RFC5811], transport-|eve
security has to be ensured by IPsec.

Hal eplidis, et al. I nf or mati onal [Page 16]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

7. References
7.1. Nornmtive References

[RFC5810] Doria, A, Hadi Salim J., Haas, R, Khosravi, H, Wang,
W, Dong, L., Gopal, R, and J. Hal pern, "Forwardi ng and
Control El ement Separation (ForCES) Protoco
Speci fication", RFC 5810, March 2010.

[RFC5811] Hadi Salim J. and K. Ogawa, "SCTP-Based Transport Mapping
Layer (TM.) for the Forwardi ng and Control El enent
Separation (ForCES) Protocol", RFC 5811, March 2010.

[RFC5812] Halpern, J. and J. Hadi Salim "Forwarding and Contro
El ement Separation (ForCES) Forwardi ng El ement Model "
RFC 5812, March 2010.

[RFC6041] Crouch, A., Khosravi, H, Doria, A, Wang, X., and K
Qgawa, "Forwardi ng and Control El enent Separation (ForCES)
Applicability Statenent", RFC 6041, Cctober 2010.

[RFC6053] Haleplidis, E., Ogawa, K, Wang, W, and J. Hadi Salim
"I npl erent ati on Report for Forwardi ng and Control El enent
Separation (ForCES)", RFC 6053, Novenber 2010.

7.2. Informative References
[JavaUnsi gnedTypes]
"Java Unsi gned Types",
<http://nam ece. upatras. gr/i ndex. php?g=node/ 44>.

[RFC3654] Khosravi, H and T. Anderson, "Requirenents for Separation
of I P Control and Forwarding", RFC 3654, Novenber 2003.

[RFC3746] Yang, L., Dantu, R, Anderson, T., and R Copal

"Forwardi ng and Control El ement Separation (ForCES)
Framewor k", RFC 3746, April 2004.

Hal eplidis, et al. I nf or mati onal [Page 17]

RFC 6369 For CES | npl ement ati on Experience Sept ember 2011

Aut hors’ Addr esses

Evangel os Hal eplidis

Uni versity of Patras

Department of Electrical & Conputer Engineering
Patras 26500

G eece

EMai | : ehal ep@ce. upatras. gr

Qdysseas Kouf opavl ou

University of Patras

Departnent of El ectrical & Conputer Engi neering
Patras 26500

G eece

EMai | : odysseas@ce. upatras. gr

Spyros Denazis

Uni versity of Patras

Department of Electrical & Conputer Engineering
Patras 26500

G eece

EMai | : sdena@patras. gr

Hal eplidis, et al. I nf or mati onal [Page 18]

