Net wor k Wor ki ng G- oup Ed Bel ove (Harvard)
Request for Comments: 56 Dave Bl ack (Harvard)
Bob Fl egel (Utah)

Lamar G Farquar (U ah)

June 1970

Third Level Protocol
Logger Protoco

General Description

In our view of the world each host has a set of four programs to allow a
user teletype to communicate with a foreign nonitor. The exact

i mpl enentati on of these programs is highly installation-dependent. Thus
all explanations are nmeant to describe functional characteristics rather
t han desi gn.

The four programs come in two nmale/female pairs. A user enploys a send-
|l ogger at his site to comrunicate with receive-logger at the appropriate
foreign site in order to establish a full duplex link between the user’s
teletype and the foreign nmachine's nmonitor. This puts himin the

equi valent of a pre-logged in state at the other machine. After the

i nk has been established, the two | oggers drop out of the picture, and
the user is left talking to a sender in his machi ne, whose main function
is to take input fromthe user’s teletype and send it down the |ink that
was established by the loggers to the receiver in the foreign host which
passes it along to its nonitor (making it | ook like input froma |oca
teletype). Replies fromthe foreign nonitor are given by it to the

recei ver, which transmts them back along the link to the sender, which
outputs themon the user’s teletype. The sender and receiver in each
machi ne nust either exist in nmultiple copies, one for each network user
or there nust be a single copy which can handle all of the network
users. The | oggers, however, need be able to handle only one user at a
time, since their task is quickly acconplished, leaving themfree to
satisfy other requests. However there should be sone nmethod of queuing
requests that can not be satisfied inmrediately. A less satisfactory
alternative would be to give a busy nessage to any user who tries to use
the logger while it is busy. (This, of course, does not preclude the
possibility of an installation having a re-entrant |ogger, or of having
mul tiple copies of the |ogger.)

The receive-1ogger should be user zero in every nmachi ne and shoul d

al ways be listening to socket zero. (This sane thing can be acconplished
by having the NCP intercept all nessages to user zero, socket zero, and
send themto the receive-logger; but it is sinpler and cleaner to have

[Page 1]

the | ogger actually be user zero and have the NCP handle its messages
the sanme as everyone else’s.)

When the send-logger is called, it pulls a pair of unused sockets (2N
and 2N+1) from a pool of free sockets and CONNECT from 2N+1 to User O,
Socket 0 in the desired foreign host. This activates the receive-I|ogger
whi ch accepts the connection if it has an available slot for the foreign
teletype. He then imedi ately cl oses down this connection to allow |inks
fromother sources to be initiated. If, on the other hand, there is no
roomfor the foreign teletype (or if, for sone other reason, the
recei ve-1 ogger does not wi sh to connect) the attenpted |ink to socket
zero is refused. This notifies the send-|ogger that he cannot |og on the
foreign host and it then notifies the user of this fact. There is no
guar ant ee, however, that the close was actually sent by the foreign

| ogger. It could have been sent by the NCP if, for exanple, the pending
call queue for the socket was overl oaded.

If the link to socket zero has been accepted (thus indicating that the
recei ve-l ogger can accommodate the request) after closing that |ink, the
recei ve-1 ogger picks an avail able pair of sockets (2Mand 2Mtl) fromits
pool, and connects from2Ml to 2N. (It found the identity of 2N when
its listen was answered by the link with 2N+1.) The send-I| ogger has
nmeanwhil e |istened to socket 2N and now accepts the |ink, and CONNECTS
from2N+1 to 2M The receive-logger has been listening to this socket
and accepts the attenpted |ink.

At this point, there is a full duplex connection between the two

| oggers. They then activate the sender and receiver, which handle al
ot her communi cati on between the user and the foreign nonitor. (The
senders and receivers can be part of the | oggers, or can be called by
them etc.)

When the user is finished and escapes back to his nonitor, it is upto
the sender to close down the links. On the receiving end, it would be
hi ghly desirable for the NCP to notify the receiver of this fact, so it
could log the user off (if he had failed to do that hinself) and coul d
free any resources that he had been using.

A nmore formal outline of the proposed protocol described in the scenario
above foll ows:

[Page 2]

1. Stable state: receive-logger at foreign host listening to User O,
Socket O.

2. Local user calls send-|ogger
3. Send-1ogger calls CONNECT (port, 2N+1, <foreign host#,0, 0>).
4. Send-1ogger calls LISTEN (port, <local host#, user#, 2N>).

5. Foreign logger’'s LISTEN is answered, and he is told | ocal user
nunber, host and #2N+1

6. Foreign |ogger |ooks for avail able sockets (2M and 2M+l). If they
exist and it is able to establish connection, it accepts and then
i medi ately closes the |ink.

7. Foreign logger calls CONNECT (port, 2Mtl, <local host#, user#,
2N>) .

8. Foreign logger calls LISTEN (port, <local host#, user#, 2M).

9. Send-1ogger has listened to 2N and accepts link, then calls
CONNECT (port, 2N+1, <foreign host#, user#,2M).

10. Receive-logger, which is listening on 2M accepts |ink.
11. Loggers activate appropriate handl ers.
12. When the user is finished, sender closes down both Iinks.

Thi s basic nethod of establishing a full duplex connection should be
standard t hroughout the network. The particular way each installation
handl es the inplenmentation of the sender, receiver, and the two | oggers
is of no consequence to the network and is highly machi ne dependent.
(Even the fact of needing a sender and receiver is machi ne dependent in
that some nmenbers of the network might be able to handle their functions
in other ways.) However, sonme conventions must be established regarding
conmuni cati on between the sender and receiver, or their equival ents.

Net wor k St andard Code

In order to facilitate use of the network, we propose the convention
that all teletype-to-foreign-nonitor comruni cati on be done using 128
character USASCII. (This is the code used by the IMPs and is in the
appendi x to the | MP operating manual .) It nakes sense to require

nmachi nes to make only one conversion to a standard code, than to have to
nmake conversions to every code on the net.

[Page 3]

In addition, since nost of the network machi nes use ASCI|1 as their
internal character code, it will be no trouble for them Even those
machi nes that use a different code nust translate to and fromASCI| in
order to comunicate with | ocal tel etypes. Extending this translation to
the network should cause very little trouble. W envision this

transl ation as taking place in the sender and receiver, but again that

i s inmplenentation dependent.

If ASCI| is adopted as a standard, we woul d suggest that all non-ASCl
machi nes create a nonitor to the machine’'s internal code. This woul d
nmake the conpl ete character set available to those who w shed to use it
(and were willing to wite a sinple conversion routine for the |oca
machine.) In this way, those users who wanted to could use any machi ne
on the net fromtheir teletype, without requiring their machines to have
records of all the network codes, and yet could use the full power of
the foreign nmachine if they wanted.

Again, this standard applies only for tel etype-to-foreign-nonitor
comuni cati on.

Break Characters

A standard way of handling the break character has to be established for
the network and be included in the protocol. Problenms with the break
character arise in several contexts. First, there are two distinct

pur poses served by the break character. One is as a panic button. This
says, "l do not care what is happening, stop and get ne out to nonitor

I evel now." This command is executed i medi ately upon receipt, and is
nost comonly used to get out of a programthat one does not want to be
in (e.g., one that is in an infinite |oop, etc.)

The ot her purpose that is served is that of an exit froma subsystem or
on a machine with a forking structure as a nethod to get back to the
next higher level fork. This second purpose is not an i nmedi ate one in
that the user wants the systemto finish all that he has told it to do
bef ore exiting.

We assune that there does not exist in every system1l) a way of
perform ng each of these functions, or 2) a clear cut distinction
between the calling and operation of the two. Furthernore, there are
subtl e distinctions as to how each systemtreats the commands.

The panic button function can easily be perfornmed by the proposed
control command <INT>. This function nmust be acconplished by using a
control conmand, since a programcan enter a state where it is accepting
no i nput: hence, the program cannot be aborted by sending it a nessage
down the teletype link. There is no reason to worry about the race

condi tion caused by sending this conmand down the control link since its

[Page 4]

whol e purpose is to force the machine to disregard everything el se the
user has sent.

In our inplenentation of this, we would ask the user to specify to the
| ogger a sel dom used character that he wants to be his foreign panic
button. Then, it would be a sinple task for the sender to map this
character into an <INT> command, which the forei gn machi ne nust
interpret properly. This scheme would work well for nobst nmachi nes, but
sonme may | end thenselves to different ways of generating the <INT>.

The other problemthat presents itself is what to do if the foreign
machine’s "exit" character is the sane as the |ocal nachine’s. The
problemis that while a user is talking to a foreign machine, he would
want to be in a transparent node, where everything he types is sent
directly to the other machi ne. The way he would get hinself out of this
node is to type either his nmachine's "exit" character or its panic
button. Thus, if the foreign nmachine has the sane one, there would be no
way to send it. The way out of this is the sane as above--nerely a
mappi ng of another sel dom used character into the foreign machine’s
"exit" character. This type of mapping can be carried as far as each
installation deens necessary. Gving the user conplete control over
translation is helpful inthat it allows himto user characters that his
tel etype cannot generate.

Conmand Message Formats

Each site should establish its now conventions about when to send a

noni tor command string, and in what size chunks. Wen perforning a
routi ne operation, one mght want to send several command |ines as a
single message. |If working with the nonitor as usual, a reasonabl e break
poi nt mi ght be at every carriage return. \When using a highly interactive
| anguage such as QED, one night decide character-by-character

transm ssion was a necessity. W feel that each user should have the
choi ce between these three nmethods (and possible nore). Furthernore, the
user should be able to change between each node at will. The differences
in syntax of the send-nmessage conmands menti oned above shoul d be not ed.
For the first, a special send-message command character must be defined,
and it should not be sent along with the nessage. For the second, the
carriage return acts dually as the send-nmessage conmand and as a conmmand
delimter. Therefore it nust be sent with the nessage. Finally, the case
of character-by-character transmssion with its inmplicit send comrand
shoul d pose no significant problens.

[Page 5]

The precedi ng di scussion is meant to inply also that the receiver nust
be able to buffer up each of the above types of transmission into a form
acceptable to its own nonitor interface

In addition, all echoing should be done in the |local host, with the
forei gn machi ne suppressing its echoes (if it can.)

We would like to thank Carl Ellison (of Uah) for his val uable
suggestions and criticisnms of this work, and JimCurry (of Utah) for his
encour agenent and support of the effort.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Jon Ri bbens 7/97]

[Page 6]

