Net wor k Wor ki ng Group B. Greenberg
Request for Comments: 1037 S. Keene
Decenmber 1987

NFILE - A File Access Protoco

STATUS OF TH S MEMO

Thi s docunent includes a specification of the NFILE file access
protocol and its underlying |levels of protocol, the Token List
Transport Layer and Byte Streamwi th Mark. The goal of this
specification is to prompte di scussion of the ideas described here,
and to encourage designers of future file protocols to take advantage
of these ideas. A secondary goal is to make the specification
available to sites that mght benefit frominplenenting NFILE. The
distribution of this docunment is unlinited.

TABLE OF CONTENTS

Page

1. 1 NTRODUCTI ON 3
2. NFILE PROTOCOL LAYERI NG 4
3. OVERVI EW OF AN NFI LE SESSI ON 5
4. NFILE CONTROL AND DATA CONNECTI ONS 6
5. NFILE FILE OPENI NG MODES 7
6. NFILE CHARACTER SET 9
7. CONVENTIONS USED I N THI S DOCUMENT 10
7.1 Mapping Data Types Into Token List Representation 10

7.2 Format of NFILE Conmands and Responses 10

7.3 Data Channel Handles and Direct File ldentifiers 13

7.4 Syntax of File and Directory Pat hname Arguments 13

7.5 Format of NFILE File Property/Value Pairs 14

8. NFI LE COVMANDS 16
8.1 ABORT Command 16

8.2 CHANGE- PROPERTI ES Comrand 16

8.3 CLOSE Command 17

8.4 COWPLETE Comrand 19

8.5 CONTI NUE Comrand 20

Greenberg & Keene [Page 1]

RFC 1037 NFILE - A File Access Protocol December 1987
8.6 CREATE- DI RECTORY Comrand 21
8.7 CREATE-LI NK Conmand 21
8.8 DATA- CONNECTI ON Conmand 22
8.9 DELETE Command 23
8.10 DI RECT- QUTPUT Commrand 23
8.11 DI RECTORY Command 24
8.11.1 NrFILE DI RECTORY Data Format 26
8.12 DI SABLE- CAPABI LI TI ES Comuand 27
8. 13 ENABLE- CAPABI LI TI ES Comrand 28
8.14 EXPUNGE Comrand 28
8.15 FILEPCS Command 29
8.15.1 Inplenentation Hint for FILEPOS Command 30
8.16 FI NI SH Conmand 30
8.17 HOMVE- DI RECTORY Commrand 31
8.18 LOG N Conmmand 32
8.19 MULTI PLE- FI LE- PLI STS Command 34
8.20 OPEN Command 35
8.20.1 NFILE OPEN Optional Keyword/Val ue Pairs 39
8.20.2 NFILE OPEN Response Return Val ues 45
8.21 PROPERTIES Conmmand 47
8.22 READ Command 49
8.23 RENAME Conmand 50
8.24 RESYNCHRONI ZE- DATA- CHANNEL Conmand 51
8.24.1 Inplenmentation Hi nts for RESYNCHRONI ZE- DATA- 51

CHANNEL Command
8.25 UNDATA- CONNECTI ON Conmand 52
9. NFILE RESYNCHRONI ZATI ON PROCEDURE 53
9.1 NFILE Control Connection Resynchronization 54
9.2 NFILE Data Connection Resynchroni zation 55
10. NFILE ERRORS AND NOTI FI CATI ONS 58
10.1 Notifications Fromthe NFILE Server 58
10.2 NFILE Conmmand Response Errors 59
10.3 NFILE Asynchronous Errors 60
10.4 NFILE Three-letter Error Codes 61
11. TOKEN LI ST TRANSPORT LAYER 65
11.1 Introduction to the Token List Transport Layer 65
11.2 Token List Stream 66
11.2.1 Types of Tokens and Token Lists 66
11.2.2 Token List Stream Exanple 68
11.2.3 Mapping of Lisp Obhjects to Token List Stream 70

Repr esent ati on

11.2.4 Aborting and the Token List Stream 71
Greenberg & Keene [Page 2]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

11.3 Token List Data Stream 72
12. BYTE STREAM W TH MARK 73
12.1 Discussion of Byte Streamw th Mark 73
12.2 Byte Streamw th Mark Abortable States 75
13. PGSSI BLE FUTURE EXTENSI ONS 77
APPENDI X A. NORMAL TRANSLATI ON MODE 79
APPENDI X B. RAW TRANSLATI ON MODE 83
APPENDI X C. SUPER- | MAGE TRANSLATI ON MODE 84
NOTES 86

LI ST OF TABLES

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS 80

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS 80

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP-10 CHARACTERS 81

TABLE 4. TRANSLATI ONS FROM PDP- 10 CHARACTERS TO NFI LE 82
CHARACTERS

TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASCI | 84

TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI | TO NFI LE 85

1. | NTRODUCTI ON

NFI LE stands for "New File Protocol"”. NFILE was originally designed
as a replacenent for an ol der protocol naned QFILE, with the goal of
sol vi ng robust ness problens of QFILE, hence the nane "New File

Pr ot ocol ".

NFI LE was desi gned and i npl enented at Synbolics by Bernard S.
Greenberg. M ke McMahon nade inportant contributions, especially in
the design and inplenentation of the Byte Streamw th Mark and Token
Li st Transport |ayers. NFILE has been used successfully for file
access between Synbolics computers since 1985. NFILE servers have
been written for UNI X hosts as well. NFILE is intended for use by
any type of file system not just the native Symbolics file system

NFILE is a file access protocol that supports a |large set of
operations on files and directories on renpte systens, including:

- Reading and witing entire files

- Reading and witing selected portions of files
- Deleting and renamng files

Greenberg & Keene [Page 3]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

- Creating links

- Listing, creating, and expunging directories

- Listing and changing the properties of files

- Enabling and di sabling access capabilities on a renmpte
host

NFI LE supports file transfer of binary or character files.

The NFI LE server provides information about any errors that occur in
the course of a coormand. |n addition, NFILE has a robust schene for
handl i ng aborts on the user side.

Thi s specification defines NFILE user version 2 and server version 2.
We do not envision NFILE as an unchangi ng protocol, but rather as a
protocol that could continue to develop if additional requirements
are identified though the process of this Request for Conmments. The
desi gn of NFILE makes room for various useful extensions. Sone of
the extensions that we are considering are described later on in this
document: See the section "Possible Future Extensions", section 13.

2. NFILE PROTOCOL LAYERI NG

NFILE is a |layered file protocol. The |ayers are:
T +
| client program or user interface
S +
| NFI LE |
o e m e e e e e e e e e e e e e e e e e e m e mm e ee— o +
| Token List Transport Layer
O +
| Byte Streamwi th Mark |
T +
| reliabl e host-host byte transm ssion protocol
o e m e e e e e e e e e e e e e e e e e e m e mm e ee— o +

Byte Streamwith Mark is a sinple protocol that guarantees that an
out - of - band signal can be transnmitted in the case of program
interruption. Byte Streamwith Mark is to be |ayered upon extant
byte stream protocols. An inportant goal of the NFILE design was
that NFILE could be built on any byte stream It is currently

i mpl enented on TCP and Chaosnet. See the section "Byte Streamwith
Mar k", section 12.

The Token List Transport Layer is a protocol that facilitates the

transm ssion of sinple structured data, such as lists. See the
section "Token List Transport Layer", section 11

Greenberg & Keene [Page 4]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The NFI LE conmmands and conmand responses are transmitted in "token
lists". See the section "NFILE Comrands", section 8.

Thi s specification does not include a client program or user
interface to the protocol. In the Synmbolics inplenentation, the
normal file operations transparently invoke NFILE, when the renote
host is known to support NFILE. Another possible interface to NFILE
woul d be through a dedicated client programthat would issue NFILE
conmands in response to explicit requests by the user

3. OVERVI EW OF AN NFI LE SESSI ON

An NFILE session is a dialogue between two hosts. The host that
initiates the NFILE session is known as the "user side", and the
other host is the "server side". The user side sends all NFILE
conmands. The server receives each conmand, processes it, and
responds to it, indicating the success or failure of the commuand.

The user side keeps track of commands sent and command responses
recei ved by using "transaction identifiers" to identify each comrand.
The user side generates a transaction identifier (which nust be

uni que per this dial ogue) for each comrand, and sends the transaction
identifier to the server along with the command. Each NFILE server
response includes the transaction identifier of the command wth

whi ch the response is associated. The server is not required to
respond to conmands in the same order that the user gave them

The user side sends NFILE commands over a bidirectional network
connection called the "control connection”. The server sends its
conmand responses on the sane control connection. The contro
connection governing the NFILE session is established at the

begi nning of the session. |f the control connection is ever broken
the NFILE session is ended.

VWer eas NFILE conmands and responses are transmitted on the contro
connection, file data is transferred over "data channels". An "input
data channel" transfers data fromserver to user. An "output data
channel " transfers data fromuser to server. Each input data channe
is associated with an output data channel; together these two
channel s conprise a "data connection".

Oten nore than one NFILE activity is occurring at any given tine.
For exanple, several files can be open and transferring data

si mul t aneously; one or nore conmands can be in process at the sane
time; and the server can be simultaneously transmitting directory

lists and processing further conmands. This happens in an

i mpl enentation in which the user side has multiple processes, and

several processes share a single NFILE server.

Greenberg & Keene [Page 5]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

4.

NFI LE CONTROL AND DATA CONNECTI ONS

The user and server conmuni cate through a single control connection
and a set of data connections. Data connections are established and
di sest abli shed by NFILE commands. The user side sends NFILE commands
to the server over the control connection. The server responds to
every user command over this control connection. The actual file
data is transmtted over the data connections.

User aborts can disrupt the nornmal flow of data on the contro
connection and data connections. An inportant aspect of any file
protocol is the way it handl es user aborts. NFILE uses a
resynchroni zati on procedure to bring the affected control connection
or data channel from an unknown, unsafe state into a known state.
After resynchronization, the control connection or data channel can
be reused. See the section "NFILE Resynchroni zati on Procedure”
section 9.

THE CONTROL CONNECTI ON

An NFI LE session is begun when the NFILE user program connects to a
renote host and establishes a network connection. This initia
connection is the control conection of the dialogue. If TCP is used
as the underlying protocol, contact NFILE s well-known port, 59. |If
Chaos is used, use the contact name "NFILE"

The control connection is the vehicle used by the user to send its
conmands, and the server to send its comrand responses. These types
of communi cati on occur over the NFILE control connection

- The user side sends NFlILE commands.

- The server sends conmmand responses.

- The server sends "notifications" and "asynchronous errors".
See the section "NFILE Errors and Notifications", section 10.

- During resynchronization (a special circunstance) either the
user or server sends a mark

Al'l comrands, conmand responses, and other data flow ng over the

NFI LE control connection are transnmitted in the format of "top-I|eve
token lists". The control connection expects never to receive "l oose
tokens"; that is, tokens not contained in token lists.

Greenberg & Keene [Page 6]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

DATA CONNECTI ONS

Dat a connections are established and di scarded at user request, by
nmeans of two NFILE commands: DATA- CONNECTI ON and UNDATA- CONNECTI ON
Each data connection is associated with a specific contro

connection, which is the same control connection that caused the data
connection to be established.

Each data connection is conposed of two "data channel s". Each data
channel is capable of sending data in one direction. The term"input
channel " refers to the data channel that transmts data fromthe
server to the user side; "output channel" refers to the data channe
that transmits data fromthe user to the server side. Throughout the
NFI LE docunentation, the terns "input channel" and "output channel"
are seen fromthe perspective of the user side. A single data
channel can be used for one data transfer after another

The format of the data transferred on the data channels is defined as
a "token list data streanml. See the section "Token List Data
Streamt, section 11.3. Wen the end of data is reached, the keyword
token ECF is sent. COccasionally, token lists are transnmtted over
the data channels, such as asynchronous error descriptions.

5. NFILE FI LE OPENI NG MODES

The NFI LE OPEN conmand opens a file for reading, witing, or "direct
access" at the server host. That neans, in general, asking the host
file systemto access the file and obtaining a file nunber, pointer,
or other quantity for subsequent rapid access to the file; this is
called an "opening". The term"opening"” translates to a file stream
in Synbolics term nology, a JFN in TOPS-20 term nol ogy, and a file
descriptor in UNI X term nol ogy. An opening usually keeps track of
how many bytes have been read or witten, and ot her bookkeeping

i nf or mati on.

NFI LE supports two ways of transferring file data, "data stream node"
and "direct access node". A single node is associated with each
opening. Note that an NFILE dial ogue can have nore than one opening,
and thus use both nodes.

DATA STREAM MODE
Data stream node of file transfer is the default nmobde of NFILE s OPEN
conmand. Data stream node is appropriate when the entire file is

transferred, either fromuser to server, or fromserver to user
Data stream npde is used nore often than direct access npde.

Greenberg & Keene [Page 7]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The OPEN command i ncl udes a "handl e" argunment, which identifies the
data channel to be used to transfer the data. The handle is used in
subsequent commands to reference this particul ar opening. Wen a
data stream opening is requested with the OPEN conmand, the file is
opened and the data begins to flow imredi ately.

The sending side transmits the entire contents of the specified file
over the specified data channel as rapidly as the network permts.
When the sending side reaches the end of the file, it transnmits a
special control token to signal end of file. The receiving side
expects an uninterrupted stream of bytes to appear imediately on its
side of the data channel

The user gives the CLOSE conmand to terminate a data streamtransfer.
CLOSE results in closing the file.

DI RECT ACCESS MODE

Direct access node enables reading or witing data froma given
starting point in a file through a specified nunber of bytes. In
direct access node, data is requested and sent in individua
transactions. To request a direct access node openi ng, the OPEN
command is used with a DI RECT-FILE-ID argunment. (ln data stream
node, no DIRECT-FILE-1D is supplied.) The direct file identifier is
used in subsequent conmands to reference the direct access opening.

When a file is opened in direct access node, the flow of data does
not start imrediately. Rather, the user gives either a READ comrand
(to request data to flow fromserver to user) or a DI RECT- QUTPUT
conmmand (to request data to flow fromuser to server). Wen reading
the READ conmand al l ows the user to specify the starting point and
the number of bytes of data to transfer. Wen witing, the FILEPCS
conmand can be used to specify the starting point, before the

DI RECT- QUTPUT command is given. The user can give many READ and

DI RECT- QUTPUT commands, one after another

The user side ternminates the direct access transfer by using the

CLCSE command. The ABORT conmand can be given to termnate w thout
transmtting all of the specified bytes.

Greenberg & Keene [Page 8]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

6. NFILE CHARACTER SET

The NFILE character set <1> is an extension of standard ASCII. NFILE
conmand and response nanes use only the standard ASCI| characters.
However, the protocol supports the transfer of the non-ASCl
characters in the NFILE character set; these characters m ght be
stored in files, or mght be used in pathnanes.

Servers on machines that do not natively use the NFILE character set
must perform character set translations for character openings,
dependi ng on the requested translation node. No translation is
required for binary openings. There are three translation nodes for
character openings: NORVAL, RAW and SUPER-1MAGE. Each node
specifies a way to translate between the server’s native set and the
NFI LE character set.

NORMAL node is the default of the OPEN conmmand. The translation for
NORMAL node ensures that a file containing characters in the NFILE
character set can be witten to a remote host and read back intact.
OPEN has optional keyword argunents to specify RAWor SUPER-| MAGE
RAW node nmeans to performno translati on whatsoever. SUPER-| MAGE
node is intended for use by PDP-10 fam |y machines only. It is
included largely as an illustration of a system dependent extension

The details of each translation node are given in Appendi ces:

See the section "NORMAL Transl ati on Mode", Appendix A See the
section "RAW Transl ati on Mode", Appendix B. See the section
"SUPER- | MAGE Transl ati on Mbde", Appendix C

The use of the NFILE character set brings up a difficulty invol ved
with determ ning an exact position within a character file. Sone
NFI LE characters expand to nore than one native character on sone
servers. Thus, for character files, when we speak of a given
position in a file or the length of a file, we nust specify whether
we are speaking in "NFILE units" or "server units", because the
counting of characters is different. This causes major problens in
file position reckoning for character files. Specifically, it is
futile for a user side to carefully nmonitor file position during
out put by counting characters, when character translation is in
effect. The server’s operating systeminterface for "position to
point x in a file" necessarily operates in server units, but the user
side has counted in NFILE units. The user side cannot try to
second-guess the transl ati on-counting process wthout |osing host-

i ndependence. See the section "FILEPOS NFILE Command".

Greenberg & Keene [Page 9]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

7. CONVENTIONS USED I N THI S DOCUMENT
7.1 Mapping Data Types Into Token List Representation

Thr oughout this NFILE specification, the data types of argunents,
return val ues, asynchronous error descriptions, and notifications are
descri bed as being strings, integers, dates, tine intervals, and so
on. However, each conceptual data type nust be mapped into the
appropriate token list representation for transmi ssion. The mapping
of conceptual data types to token list representation is shown here:

Concept ual Type Token List Representation

Keywor d A keyword token

Keyword |i st A token |ist of keyword tokens

I nt eger A nuneric data token

String A data token containing the characters of the

string in the NFILE character set.

Bool ean Truth The token known as BOOLEAN- TRUTH
Bool ean Fal se The enpty token list.
Dat e A numeric data token. The date is expressed in

Universal Tinme format, which neasures a tine as
the nunber of seconds since January 1, 1900, at

m dni ght GMI
Dat e- or - never Can be either a date or the enpty token list,
representing "never”. "Never" is used for

val ues such as the tine a directory was | ast
expunged, if it has never been expunged.

Ti me interval A nuneric data token. The tine interval is
expressed in seconds. Atine interva
indicating "never" is represented by the enpty
token |ist.

7.2 Format of NFILE Conmands and Responses
Each command description begins by giving the command format and

response format. Here is the beginning of the DATA- CONNECTI ON
conmand descri ption:

Greenberg & Keene [Page 10]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Conmand: (DATA- CONNECTI ON ti d new- i nput - handl e new- out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)
The conmmand descriptions foll ow these conventi ons:

1. NFILE commands and responses are transmtted as top-level token
lists.

Top-l evel token lists are enclosed in parentheses in these
conmand descriptions. These parentheses are not sent literally
across the control or data connections, but are a shorthand
representation of special control tokens that delimt top-I|eve
token lists. Specifically, TOP-LEVEL-LIST-BEG N starts a top-

| evel token list; TOP-LEVEL-LIST-END ends a top-Ilevel token |ist.

2. NFILE command nanes are keywords.

The command nane is required in every command and command
response. All NFILE command nanes are keywords. Keywords appear
in the NFILE docurmentation as their names in uppercase. For
exanpl e, DATA- CONNECTI ON and DELETE are two conmand nanes.

3. A unique transaction identifier (tid) identifies each commnd.

The transaction identifier is a string made up by the user side
to identify this particular transaction, which is conposed of the
conmand and the response associated with this comand. The
transaction identifier is abbreviated in the command descri ptions
as tid. Transaction identifiers are limted to fifteen
characters in length. The transaction identifier is required in
every command and command response.

OPTI ONAL ARGUMENTS

Many NFILE conmands have "optional argunents". Optional argunents
can be supplied (with appropriate values), or left out. |If optiona
arguments are left out, their om ssion nust be nade explicit by means
of substituting the enpty token list in their place. The only
exception to that rule is for trailing optional arguments or return
val ues, which can be omtted wi thout including the enpty token |ist.

For exanple, the text of the DELETE command description explains that
either a handle or a pathnane nust be supplied, but not both;
therefore, one of themis an optional argunent. Here is the comrand
format of DELETE:

(DELETE tid handl e pat hnane)

Greenberg & Keene [Page 11]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

If you supply a handl e and no pat hnanme, the command format is:
(DELETE tid handl e)

If you supply a pathname and no handl e, the command format is:
(DELETE tid enpty-token-list pathnane)

The enpty token list in the token list stream appears as a LI ST-BEA N
foll owed i mediately by a LI ST-END

OPTI ONAL KEYWORD/ VALUE PAI RS

Four NFILE conmands have "optional keyword/value pairs". These
comuands are: COVPLETE, LOGd N, OPEN, and READ. Optiona
keywor d/ val ue pairs can be either included in the conmand or omtted
entirely. There is no need to substitute the enpty token list for
omm tted optional keyword tokens, unlike optional argunents. The
order of the option keyword/value pairs is not significant.

I f included, optional keyword/value pairs are a sequence of
alternati ng keywords and val ues. The val ues associated with the
keywords can be keywords, lists, strings, Bool eans, integers, dates,
date-or-never’s, and tine intervals. The text of each comrand
description states what type of value is appropriate for each
optional keyword.

Optional keyword/val ue pairs appear in the text as the keyword only,
in uppercase letters. For exanple, here is the format of the LOG N
comand:
Comand For nat :

(LOG@ N tid user password FlILE- SYSTEM USER- VERSI ON)
FI LE- SYSTEM and USER- VERSI ON are two optional keywords associ ated
with the LOG@ N command. The user side can supply USER-VERSI ON, and
onmit FILE-SYSTEM as shown in this exanple:

(LOGA N x105 tjones let-ne-in USER- VERSI ON 2)
As seen above, the optional keyword/val ue pair USER-VERSI ON, if

supplied in a command, consists of the keyword USER-VERSI ON f ol | owed
by the value to be used for that keyword (in this exanple, 2).

Greenberg & Keene [Page 12]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

7.3 Data Channel Handles and Direct File Identifiers

Several NFILE comrands require an argunent that specifies an opening.
This kind of argunent is called a handle in the comand description.

It is always a string type argunent. A handle can be either a data

channel handle or a direct file identifier, depending on the node of
t he openi ng:

Data Stream

The handl e nust identify a data channel that is bound to an opening.

Di rect Access

In general, the handle rmust be a direct file identifier. A direct

file identifier specifies a direct access opening. It is the same as
the value supplied in the D RECT-FI LE-1 D keyword/value pair in the
OPEN conmand. It is used for all operations that identify an opening

rat her than a data channel

Two NFI LE commands applicable to direct access openings are
exceptions to the general rule. The handl e supplied in ABORT and
CONTI NUE cannot be a direct file identifier, but nust be a data
channel handl e instead.

7.4 Syntax of File and Directory Pathname Arguments

Sone argunents and return values in the NFILE command descriptions
represent file pathnanmes. These are strings in the pathnanme syntax
native to the server host. These pathnanes contain no host
identifiers of any kind. These pathnames nust be fully defaulted, in
the sense that they have a directory and file name (and file type, if
the server operating systemsupports file types). |f appropriate, a
device is referenced in the pathname. |If the server file system
supports version nunbers, there is always an explicit version nunber,
even if that nunber or other specification is that systenis
representation of "newest" or "ol dest".

Greenberg & Keene [Page 13]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Here are sonme exanples of file pathnames, for different server hosts:

Server Host Exanpl e of File Pathname
UNI X fusr/max/life.c
TOPS- 20 ps: <max>life.bin. 17
VVB MACD: [MAX] LI FE. FOR; 3

Synbolics LMFS >nmax>life.lisp. newest

The CREATE- DI RECTORY and HOVE- DI RECTORY commands take a directory as
an argunent. In NFILE conmands, a directory is represented by a
string that nanes the directory. |In npbst cases this string is in the
syntax native to the server host. However in sone cases the native
format is nodified sonewhat to clarify that the string nanes a
directory, and not a file. For exanple, a directory on UNIX is
represented by "/usr/max/", not "/usr/max".

Here are sonme exanpl es of directory pathnanes for different server

host s:

Server Host Exampl e of Directory Pathname
UNI X /usr/ max/
TOPS- 20 <max>
VMBS MACD: [MAX]

Synbol i cs LMFS >max>hacks>

7.5 Format of NFILE File Property/Value Pairs

Several NFILE commands request information regarding the properties
of files or directories. These commands include: DI RECTORY

MULTI PLE- FI LE- PLI STS, PROPERTI ES, and CHANGE- PROPERTI ES. This
section describes how file property information is conveyed over the
token list stream

Greenberg & Keene [Page 14]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

File property information is usually sent in property/value pairs,
where the property identifies the property, and the follow ng val ue
gi ves the value of that property for the specified file.

Each property is denoted either by a keyword or an integer. You can
m x both ways of specifying properties (keyword or integer) within a
single description. An integer is interpreted as an index into the
Property Index Table, an array of property keywords. The server can
optionally send a Property Index Table to the user during the
execution of the LOA N conmand, although it is not required. This
greatly reduces the | ength of transm ssions.

In command argunents, file properties cannot be specified with

i ntegers; keywords nmust be used to specify file properties in comand
argunents. Integers can be used to denote file properties only in
command responses.

We now list the keywords associated with file properties. This |ist
is not intended to be restrictive. |If a programrer inplenenting

NFI LE needs a new keyword, a new keyword (not on this list) can be

i nvented. The type of value of any new keywords is by default
string. The keywords are sorted here by conceptual data type:

Data type Keywords denoting file properties

I nt egers BLOCK- SI ZE, BYTE- SI ZE, GENERATI ON- RETENTI ON- COUNT,
LENGTH- | N- BLOCKS, LENGTH-I N-BYTES,
DEFAULT- GENERATI ON- RETENTI ON- COUNT

Dat es CREATI ON- DATE, MODI FI CATI ON- DATE

Dat e- or - never’ s REFERENCE- DATE, | NCREMENTAL- DUVP- DATE
COVPLETE- DUVP- DATE, DATE- LAST- EXPUNGED
EXPI RATI ON- DATE

Time intervals AUTO EXPUNGE- | NTERVAL

Keyword Lists SETTABLE- PROPERTI ES, LI NK- TRANSPARENCI ES,
DEFAULT- LI NK- TRANSPARENCI ES

Bool ean val ues DELETED, DONT- DELETE, DONT- DUMP, DONT- REAP

SUPERSEDE- PROTECT, NOT- BACKED- UP, OFFLI NE
TEMPCRARY, CHARACTERS, DI RECTORY

Greenberg & Keene [Page 15]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Strings ACCOUNT, AUTHOR, LI NK-TO, PHYSI CAL- VOLUVE
PROTECTI ON, VOLUME- NAME, PACK- NUVBER, READER
Dl SK- SPACE- DESCRI PTI ON, and any keywor ds not
on this list

Note that these keyword nanes are intended to inply the semantics of
the properties. For a discussion of the semantics of CREATI ON- DATE
See the section "NFILE OPEN Response Return Val ues", section 8.20. 2.
The "Reference Guide to Streans, Files, and 1/O' in the Synbolics
docunentati on set details the semantics that Symbolics associ ates
with these properties.

8. NFILE COMVANDS

It is inmportant to understand the conventions used in each of the
foll owi ng command descriptions. See the section "Conventions Used in
Thi s Docunent"”, section 7.

8.1 ABORT Comand
Command: (ABORT tid input-handle)
Response: (ABORT tid)

ABORT cleanly interrupts and prenaturely termnates a single direct
access node data transfer initiated with READ. The required input-
handl e string argunent identifies a data channel on which an input
transfer is currently taking place; this nmust be a direct access
transfer. input-handle nust identify a data channel; it cannot be a
direct file identifier

Upon receiving the ABORT command, the server checks to see if a
transfer is still active on that channel. |f so, the server

term nates the transfer by telling the data connection | ogica

process to stop transferring bytes of data. The user side needs to

i ssue this conmand only when there are outstandi ng unread bytes.

Thi s excludes the case of the data channel havi ng been disestablished
or reallocated by the user side.

VWhet her or not a transfer is active on that channel, the user side
puts the data channel into the unsafe state. Before the data channe
can be used again, it nust be resynchronized.

8.2 CHANGE- PROPERTI ES Command
Conmand: (CHANGE- PROPERTI ES tid handl e pat hnane property-pairs)

Response: (CHANGE- PROPERTI ES ti d)

Greenberg & Keene [Page 16]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

CHANGE- PROPERTI ES changes one or nore properties of a file. Either a
handl e or a pathnanme must be given, but not both. Whichever one is
gi ven nust be supplied as a string. handle identifies a data channe
that is bound to an open file; it can be a direct file identifier

pat hname identifies a file on the server machine.

property-pairs is a required token list of keyword/value pairs, where
the nane of the property to be changed is the keyword, and the
desired new property value is the val ue.

The properties that can be changed are host-dependent, as are any
restrictions on the values of those properties. The properties that
can be changed are the sane as those returned as settabl e-properti es,
in the command response for the PROPERTIES conmand.

The server tries to modify all the properties listed in property-
pairs to the desired new values. There is currently no definition
about what should be done if the server can successfully change sone
properties but not others.

For further information on file property keywords and associ at ed
val ues: See the section "Format of NFILE File Property/Value Pairs",
section 7.5.

8.3 CLOSE Comand
Conmand: (CLOSE tid handl e abort-p)
Response: (CLCSE tid truename binary-p other-properties)

CLOSE terminates a data transfer, and frees a data channel. The
handl e nust be a data channel handle for a data stream opening, or a
direct file identifier for a direct access opening. |If a data
channel is given, a transfer nmust be active on that handle. |If
abort-p is supplied as Boolean truth, the file is cl ose-aborted, as
descri bed bel ow.

"Closing the file" has different inplications specific to each
operating system It generally inplies invalidation of the pointer
or logical identifier obtained fromthe operating system when the
file was "opened", and freeing of operating system and/or job
resources associated with active file access. For output files, it
i nvol ves ensuring that every last bit sent by the user has been
successfully witten to disk. The server should not send a
successful response until all these things have conpleted
successful ly.

Greenberg & Keene [Page 17]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

In either data streamor direct access node, the user can request the
server to close-abort the file, instead of sinply closing it. To

cl ose-abort a file neans to close it in such a way, if possible, that
it isas if the file had never been opened. 1In the specific case of
a file being created, it nust appear as if the file had never been
created. This mght be nore difficult to inplenment on certain
operating systens than others, but tricks with tenporary nanes and

cl ose-tinme renanings by the server can usually be used to inplenent

cl ose-abort in these cases. |In the case of a file being appended to,
cl ose-abort neans to forget the appended dat a.

AN UNSUCCESSFUL CLOSE OPERATI ON

For the normal CLOSE operation (not a close-abort), after witing
every last bit sent by the user to disk, and before closing the file,
the server checks the data channel specified by handle to see if an
asynchronous error is outstanding on that channel. That is, the
server mnust determ ne whether it has sent an asynchronous error
description to the user, to which the user has not yet responded wth

a CONTINUE conmmand. |f so, the server is unable to close the file,
and therefore sends a command error response indicating that an error
is pending on the channel. The appropriate three-letter error code

is EPC. See the section "NFILE Errors and Notifications", section
10.

A SUCCESSFUL CLOSE OPERATI ON

The return values for OPEN and CLOSE are syntactically identical, but
the val ues m ght change between the tinme of the file being opened and
when it is closed. For exanple, the truenane return value is
supplied after all the close-tine renaning of output files is done
and the version nunbers resolved (for operating systens supporting
versi on nunbers). Therefore, on some systens the truename of a file
has one value at the tine it is opened, and a different value when it
has been closed. For a description of the CLOSE return val ues: See
the section "NFI LE OPEN Response Return Val ues", section 8.20.2.

If the user gives the CLOSE command with abort-p supplied as Bool ean

truth, thus requesting a close-abort of the file, the server need not
check whet her an asynchronous error description is outstanding on the
channel . The server sinply close-aborts the file.

Greenberg & Keene [Page 18]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

8.4 COWPLETE Command
Conmand: (COMPLETE tid string pathname DI RECTI ON NEW OK DELETED)
Response: (COVPLETE tid newstring success)
COVPLETE perforns file pathnane conpl eti on.

string is a partial filename typed by the user and pathname is the
default name against which it is being typed. Both string and

pat hname are required argunents, and are of type string. The
remai ni ng argunents are optional keyword/val ue pairs.

NEW K is Boolean; if followed by Bool ean truth, the server should
allow either a file that already exists, or a file that does not yet
exist. The default of NEWOK is false; that is, the server does not
consider files that do not already exist.

DELETED i s a Bool ean type argunent; if foll owed by Bool ean truth, the
server is instructed to look for files that have been del eted but not
yet expunged, as well as non-deleted files. The default is to ignore
soft-deleted files.

DI RECTI ON can be followed by READ, to indicate that the file is to be
read. |If the file is to be witten, DI RECTION can be foll owed by
WRI TE. The default is READ

The filename is conpleted according to the files present in the host
file system and the expanded string newstring is returned. New
string is always a string containing a file nane: either the

original string, or a new, nore specific string. The value of
success indicates the status of the conpletion. The keyword val ue OLD
or NEW neans conpl ete success, whereas the enpty token list means
failure. The follow ng values of success are possible:

Val ue Meani ng

oD Success: the string conpleted to the nanme of
a file that exists.

NEW Success: the string conpleted to the nanme of
a file that could be created

Enpty token li st Failure due to one of these reasons:

The file is on a file systemthat does not

Greenberg & Keene [Page 19]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

support conpletion. newstring is supplied as
t he unchanged string.

There is no possible conmpletion. newstring
is supplied as the unchanged string.

There is nore than one possible conpletion

The given string is conpleted up to the first
poi nt of anbiguity, and the result is supplied
as new string.

A directory name was conpleted. Conpletion
was not successful because additiona
conponents to the right of this directory
remain to be specified. The stringis

conpl eted through the directory name and the
delimter that follows it, and the result is
returned in newstring.

The semantics of COVPLETE are not docunented here. See the
"Reference Guide to Streans, Files, and I/O" in the Synbolics
docunentati on set for the recommended semanti cs of COVPLETE.

8.5 CONTI NUE Command
Command: (CONTINUE tid handl e)
Response: (CONTI NUE ti d)

CONTI NUE resunes a data transfer that was tenporarily suspended due
to an asynchronous error. Each asynchronous error description has an
optional argunment of RESTARTABLE, indicating whether it makes any
sense to try to continue after this particular error occurred.
CONTINUE tries to resune the data transfer if the error is
potentially recoverable, according to the RESTARTABLE argument in the
asynchronous error description. For a discussion of asynchronous
errors: See the section "NFILE Errors and Notifications", section
10.

handle is a required string-type argunment that refers to the handle
of the data channel that received an asynchronous error. That data
channel could have been in use for a data streamor direct access
transfer. handl e cannot be a direct file identifier

If the asynchronous error description does not contain the

RESTARTABLE argunent, and the user issues the CONTI NUE conmrand
anyway, the server gives a command error response.

Greenberg & Keene [Page 20]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

8.6 CREATE- DI RECTORY Command
Command: (CREATE- DI RECTORY tid pat hname property-pairs)
Response: (CREATE-DI RECTORY tid dir-truename)

CREATE- DI RECTORY creates a directory on the renote file system The
requi red pathnane argunment is a string identifying the pathnanme of
the directory to be created. The return value dir-truenanme is the
pat hname of the directory that was successfully created. Both of
these pathnames are directory pathnanmes: See the section "Syntax of
File and Directory Pathnanme Argunents"”, section 7.4.

property-pairs is a keyword/value |ist of properties that further
define the attributes of the directory to be created. The allowable
keywords and associ ated val ues are operating system dependent;
typically they indicate argunments to be given to the native primtive
for creating directories.

If property-pairs is supplied as the empty token list, default access
and creation attributes apply and shoul d be assured by the server.
See the section "Format of NFILE File Property/Value Pairs", section
7.5.

8.7 CREATE- LI NK Comrand
Conmand: (CREATE-LINK tid pathnane target-pathnane properties)
Response: (CREATE-LINK tid Iink-truenane)
CREATE-LINK creates a link on the renote file system
pat hnanme is the pathname of the link to be created; target-pathname
is the place in the file systemto which the link points. Both are
requi red argunents. The return value |ink-truenane nanes the

resulting link.

If a server on a file systemthat does not support |inks receives the
CREATE- LI NK command, it sends a command error response.

The argunments pat hname and target-pathnane, and the return val ue
link-truename, are all strings in the full pathnane syntax of the
server host. See the section "Syntax of File and Directory Pathnane
Argunents", section 7.4.

The required properties argunment is a token list of keyword/val ue

pairs. These properties and their values specify certain attributes
to be given to the Iink. The allowable keywords and associ at ed

Greenberg & Keene [Page 21]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

val ues are operating system dependent; typically they indicate
argunents to be given to the native primtive for creating |inks.

If no property pairs are given in the command, the server should
apply a reasonable default set of attributes to the Iink. See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.8 DATA- CONNECTI ON Conmand
Conmand: (DATA- CONNECTI ON ti d new i nput - handl e new- out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)

DATA- CONNECTI ON enabl esthe user side to initiate the establishment of
a new data connection. The user side supplies two required string
argunents, newinput-handl e and new- output-handle. These arguments
are used by subsequent conmmands to reference the two data channel s
that constitute the data connection now being created. newinput-
handl e descri bes the server-to-user data channel, and new- out put -
handl e descri bes the user-to-server channel. newinput-handle and
new- out put - handl e cannot refer to any data channel s already in use.

Upon receiving the DATA- CONNECTI ON command, the server arranges for a
| ogi cal port (called socket or contact nane on sone networks) to be
nade avail able on the foreign host machine. Wen the server has nade
that port available, it nust informthe user of its identity. The
server relays that information in the command response, in the

requi red connection-identifier, a string. The server then listens on
the port naned by connection-identifier, and waits for the user side
to connect to it.

Upon receiving the success comrand response, the user side supplies
the connection-identifier to the local network inplenentation, in
order to connect to the specified port. The data connection is not
fully established until the user side connects successfully to that
port. This command is unusual in that the successful command
response does not signify the conpletion of the command; it indicates
only that the server has fulfilled its responsibility in the process
of establishing a data connection

Greenberg & Keene [Page 22]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The connection-identifier infornms the user of the correct identity of
the |l ogical port that the server has provided. NFILE expects the
connection-identifier to be a string. For TCP this string is the
port nunber represented in decinmal. For Chaosnet, this string is the
contact name. The connection-identifier is used only once; in al
subsequent NFILE commands that need to reference either of the data
channel s that constitute this data connection, the newinput-handle
and new- out put - handl e are used.

For background information: See the section "NFILE Control and Data
Connections", section 4.

8.9 DELETE Conmand
Conmand: (DELETE tid handl e pat hnane)
Response: (DELETE tid)
DELETE deletes a file on the rennte file system

Ei ther a handle or a pathnanme rmust be supplied, but not both. If

gi ven, the handle nmust be a data channel handle for a data stream
opening, or a direct file identifier for a direct access opening.
pathnane is a string in the full pathnane syntax of the server host.
See the section "Syntax of File and Directory Pathname Argunents"”,
section 7. 4.

Wth a pathnane supplied, the DELETE command causes the specified
file to be deleted. DELETE has different results depending on the
operating systeminvolved. That is, DELETE causes soft deletion on
TOPS-20 and LMFS, and hard deletion on UNIX and Multics. If an
attenpt is made to delete a delete-through link on a Synbolics LMS,
its target is deleted instead.

If the handle argunment is supplied to DELETE, the server deletes the
open file bound to the data channel specified by handl e at cl ose
time. This is true in both the output and input cases.

8.10 DI RECT- QUTPUT Command
Conmand: (DI RECT- QUTPUT tid direct-handl e out put-handl e)
Response: (DI RECT- QUTPUT tid)
DI RECT- QUTPUT starts and stops output data flow for a direct access

file opening. DI RECT-OUTPUT explicitly controls binding and
unbi ndi ng of an output data channel to a direct access opening.

Greenberg & Keene [Page 23]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

direct-handle is a required argurment, and output-handle is optional

I f supplied, output-handle is a request to bind an output data
channel (indicated by output-handle) to the direct access opening
designated by the direct-handle. The specified output data channe
nust be free. The server binds the data channel and begi ns accepting
data fromthat connection and witing it to the opening.

If the output-handle is onmitted, this is a request to unbind the
channel and terminate the active output transfer.

8.11 DI RECTORY Command

Command: (DI RECTORY tid input-handl e pathname control - keywords
properties)

Response: (DI RECTORY tid)

DI RECTORY returns a directory listing including the identities and
attributes for logically related groups of files, directories, and
links. If the command is successful, a single token Iist containing
the requested information is sent over the data channel specified by
i nput - handl e, and the data channel is then inplicitly freed by both
sides <2>. For details on the format of the token list: See the
section "NFILE DI RECTORY Data Format", section 8.11.1.

pat hname specifies the files that are to be described; it is a string
in the full pathnane syntax of the server host. See the section
"Syntax of File and Directory Pathnanme Argunents”, section 7.4.

The pat hnane generally contains wildcard characters, in operating-
system specific format, describing potential file name matches. Most
operating systens provide a facility that accepts such a pat hnanme and
returns information about all files matching this pathname. Sone
operating systens allow w | dcard (potential multiple) matches in the
directory or device portions of the pathnanme; other operating systens
do not. There is no clear contract at this tine about what is
expected of servers on systens that do not allow wi | dcard matches (or
some kinds of wild card matches), when presented with a wildcard.

properties is a token list of keywords that are the nanes of
properties. |If properties is omtted or supplied as the enpty token
list, the server sends along all properties. |f any properties are
supplied, the user is requesting the server to send only those
properties.

Greenberg & Keene [Page 24]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

control - keywor ds ARGUMENT TO DI RECTORY

control -keywords is a token list of keywords. The control -keywords
af fect the way the DI RECTORY comrand wor ks on the server nmachi ne.

Al t hough sone of the options bel ow request the server to limt (by
sone filter) the data to be returned, it is never an error if the
server returns nore information than is requested.

The foll owi ng keywords are recogni zed:
DELETED

I ncl udes soft-deleted files in the directory list. Wthout this
option, they must not be included. Such files have the DELETED
property indicated as true" ampong their properties. DELETED is
i gnored on systens that do not support soft deletion

DI RECTORI ES- ONLY

Thi s option changes the semantics of DI RECTORY fairly drastically.
Normal Iy, the server returns information about all files,
directories, and |inks whose pathnanes match the supplied pathnane.
This nmeans that for each file, directory, or link to be listed, its
directory nane nust natch the potentially wldcarded) directory nane
in the supplied pathnane, its file name nust match the file nane in
the supplied pathnane, and so on

VWhen DI RECTORI ES-ONLY is supplied, the server is to list only
directories, not whose pathnames match the supplied pat hname, but
whose pat hnanes expressed as directory pathnames match the
(potentially wldcarded) directory portion of the supplied pathnane.
The description of the PROBE-DI RECTORY keyword that can be supplied
as the direction argunment of the OPEN command di scusses this: See
the section "OPEN Command", section 8. 20.

It is not yet established what servers on hosts that do not support
this type of action natively are to do when presented with
DI RECTORI ES- ONLY and a pathname with a wildcard directory conponent.

FAST Speeds up the operation and data transm ssion by not listing any

properties at all for the files concerned; that is, only the
truenanmes are returned.

Greenberg & Keene [Page 25]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

NO- EXTRA- | NFO

Specifies that the server is to suppress listing those properties
that are generally nore difficult or expensive to obtain. This
typically elimnates listing of directory-specific properties such as
i nformati on about default generation counts and expunge dates.

SORTED

This causes the directory listing to be sorted. The sorting is done
al phabetically by directory, then by file name, then file type, then
file version (by increasing version nunber).

8.11.1 NFILE DI RECTORY Data For mat

If the NFILE DI RECTORY command conpl etes successfully, a single token
list containing the requested directory information is sent on the
dat a channel specified by the input-handle argunment in the DI RECTORY
conmand. This section describes the format of that single token
list, and gives further detail on the properties argunment to

DI RECTCRY

The token list is a top-level token list, so it is delimted by TOP-
LEVEL- LI ST-BEG N and TOP-LEVEL-LI ST-END. The top-level token |ist
contai ns enbedded token lists. The first enbedded token |i st
contains the enpty token list foll owed by property/value pairs

descri bing property information of the file systemas a whol e rather
than of a specific file. NFILE requires one property of the file
systemto be present: Dl SK-SPACE-DESCRI PTION is a string describing
the anmobunt of free file space available on the system The follow ng
enmbedded token lists contain the pathname of a file, followed by
property/val ue pairs describing the properties of that file.

The foll owi ng exanpl e shows the fornmat of the top-level token Iist
returned by DI RECTORY, for two files. It is expected that the server
return several property/value pairs for each file; the nunber of
pairs returned is not constrained. In this exanple, two
property/value pairs are returned for the file system two pairs are
returned for the first file, and only one pair is returned for the
second file.

TOP- LEVEL- LI ST- BEG N

LI ST-BEGA N - first enbedded token list starts

LI ST-BEA N - an enpty enbedded token list starts
LI ST- END - the enpty enbedded token |ist ends
propl val uel - property/value pairs of file system
prop2 val ue2

LI ST- END

Greenberg & Keene [Page 26]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

LI ST-BEGA N

pat hnanmel - pathnane of the first file

propl val uel - property/value pairs of first file
prop2 val ue2

LI ST- END

LI ST-BEA N

pat hnanme2 - pathnane of the second file

propl val uel - property/value pairs of second file
LI ST- END

TOP- LEVEL- LI ST- END

The following exanple is designed to illustrate the structure of the
top-1evel token |ist by depicting TOP-LEVEL-LIST-BEG N and TOP-
LEVEL- LI ST- END by parent heses and LI ST-BEG N and LI ST- END by squar be
rackets. respectively. The indentation, blank spaces, and new ines
in the exanple are not part of the token list, but are used here to
make the structure of the token list clear

([[1] propl val uel prop2 val ue2]
[pat hnanmel propl val uel prop2 val ue2]
[pat hnane2 propl val uel])

The pathname is a string in the full pathnane syntax of the server
host. See the section "Syntax of File and Directory Pathnane
Argunents"”, section 7.4.

For further information on file property/value pairs: See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.12 DI SABLE- CAPABI LI TI ES Commrand
Conmand: (DI SABLE- CAPABI LI TIES tid capability)

Response: (DI SABLE- CAPABI LI TIES tid cap-1 success-1
cap-2 success-2 cap-3 success-3 ...)

DI SABLE- CAPABI LI TI ES causes an access capability to be disabled on
the server nachine. <capability is a string naming the capability to
be disabled. The nmeaning of the capability is dependent on the
operating system

The return val ues cap-1, cap-2, and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successful ly disabled, the correspondi ng success-1 is supplied as
Bool ean truth; otherwise it is the enpty token list.

Greenberg & Keene [Page 27]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Al t hough the user can specify only one capability to disable, it is
concei vable that the result of disabling that particular capability
is the disabling of other, related capabilities. That is why the
conmand response can contain information on nore than one capability.

8.13 ENABLE- CAPABI LI TI ES Comrand
Conmand: (ENABLE- CAPABILITIES tid capability password)}

Response: (ENABLE- CAPABI LITIES tid cap-1 success-1
cap-2 success-2 cap-3 success-3 ...)

ENABLE- CAPABI LI TI ES causes an access capability to be enabl ed on the
server machine. The password argunment is optional, and should be
included only if it is needed to enable this particular capability.
Bot h password and capability are strings. The neaning of the
capability is dependent on the operating system

The return values cap-1, cap-2 and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successfully enabl ed, the correspondi ng success-1 is supplied as
Bool ean truth; otherwise it is the enpty token list.

Al t hough the user can specify only one capability to enable, it is
concei vable that the result of enabling that particular capability is
the enabling of other, related capabilities. That is why the comand
response can contain informati on on nore than one capability.

8.14 EXPUNGE Conmand
Conmand: (EXPUNGE tid directory-pat hname)
Response: (EXPUNGE tid server-storage-units-freed)

EXPUNGE causes the directory specified by pathnanme to be expunged.
Expungi ng neans that any files that have been soft deleted are to be
per manently renoved

For file systens that do not support soft deletion, the command is to
be i gnhored; a success comrand response is sent, but no action is
performed on the file system In this case, the nunber-of-server-
storage-units-freed return val ue should be onmtted.

directory-pathnanme is a required string argunent in the directory
pat hname format; it nmust refer to a directory on the server file
system and not to a file. See the section "Syntax of File and
Directory Pat hname Argunents”, section 7.4.

Greenberg & Keene [Page 28]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The return val ue server-storage-units-freed is an integer specifying
how many records, bl ocks, or whatever unit is used to neasure file
storage on the server host system were recovered. This return value
should be omtted if the server does not know how many storage units
were freed

The protocol does not define whether directory-pathnane is really a
pat hname as directory or a wildcard pathnane of files to be expunged.
The protocol does not define whether or not wldcards are permitted,
or required to be supported, in the directory portion of the pathnane
(representing an inmplicit request to expunge many directories).

8.15 FILEPGCS Comrand
Conmand: (FILEPCS tid handl e position resync-uid)
Response: (FILEPGCS tid)

FI LEPCS sets the file access pointer to a given position, relative to
the beginning of the file. FILEPOS is used to indicate the position
of the next byte of data to be transferred.

The handl e indicates the file to be affected. handle nmust be a data
channel handle for a data streamopening, or a direct file identifier
for a direct access opening. Both handle and position are required
ar gunent s.

position is an integer indicating to which point in the file the file
access pointer is to be reset. position is either a byte numnber
according to the current byte size being used, or characters for
character openings. Position zero is the beginning of the file. |If
this is a character opening, position is nmeasured in server units,

not in NFILE character set units.

If the FILEPCS command is given on an input data channel (that is, a
dat a channel currently sending data from server to user), the

af fected data channel nust be resynchronized after the FILEPCS is
acconplished, in order to identify the start of the new data. The
resync-uid is a unique identifier associated with the

resynchroni zation of the data channel; it is unique with respect to
this dial ogue. resync-uid nmust be supplied if handle is an input
handl e, but it is not supplied otherwise. For nore infornmation on
the resynchroni zati on procedure: See the section "NFILE Data
Connecti on Resynchroni zation", section 9.2.

In the output case, the user nust sonmehow indicate to the server, on

the out put data channel, when there is no nore data. The user side
sends the keyword token EOF to do so. Upon receiving that contro

Greenberg & Keene [Page 29]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

token, the server is required to position the file pointer according
to the position given. Wen the new file position is established,
the server resumes accepting data at the new file position

In nost cases, using the direct access node of transfer is nore
conveni ent and efficient than repeated use of FILEPOS with a data
st ream openi ng.

There are problens inherent in trying to set a file position of a
character-oriented file on a foreign host, if one machine is a
Synbolics conputer and the other is not. For exanple, character set
transl ation nust take place. See the section "NFlILE Character Set",
section 6. Because of these difficulties, FILEPCS m ght not be
supported in the future on character files. FILEPOS is not
problematic for binary files.

8.15.1 Inplementation H nt for FILEPOS Comand

The server processing of this command (by the control connection
handl er) must not attenpt to wait for the resynchronization procedure
to conplete. It is possible that the user could abort between
sendi ng the FILEPOS conmand and reading for the mark and

resynchroni zation identifier. That scenario could | eave the sender
of the resynchronization identifier, on the server side, blocked for
out put indefinitely.

Only two commands recei ved on the control connection can break the
data channel out of the bl ocked state described above: CLOSE with
abort-p supplied as Bool ean truth, and RESYNCHRONI ZE- DATA- CHANNEL.
Therefore, the control connection nust not wait for the data channe
to finish perform ng the resynchroni zati on procedure. This wait
shoul d i nstead be perforned by the process nanagi ng the data channel

8.16 FI N SH Conmand
Conmmand: (FINISH tid handl e)
Response: (FINISH tid truenane bi nary-p other-properties)
FINISH closes a file and reopens it imrediately with the file
position pointer saved, thus leaving it open for further 1/O If
possi bl e, the inplenentation should do the closing and opening in an

i ndi visible operation, such that no other process can get access to
the file.

Greenberg & Keene [Page 30]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The argunents, results, and their nmeaning are identical to those of
the CLOSE command. See the section "CLOSE Conmand", section 8. 3.
FINI SH requires a handl e, which has the sanme nmeani ng as the handl e of
t he CLOSE command.

In the output case, for both direct nbde and data stream node of
openi ngs, the server wites out all buffers and sets the byte count
of the file. The user sends the keyword token ECF on the data
channel, to indicate that the end of data has been reached. The
server leaves the file in such a state that if the systemor server
crashes anytime after the FINISH command has completed, it would

| at er appear as though the file had been closed by this command.
However, the file is not left in a closed state now, it is left open
for further I/O operations. FINISHis a reliability feature.

FINISH i s somewhat pointless in the input case, but valid. The
native Synbolics file system (LMFS) inplenents FIN SH on an out put
file by an internal operation that effectively goes through the work
of closing but |eaves the file open for appending.

ERRORS ON FI NI SH

After witing every last bit sent by the user to disk, and before
closing the file, the server checks the data channel specified by
handle to see if an asynchronous error is outstanding on that
channel. That is, the server nust determi ne whether it has sent an
asynchronous error to the user, to which the user has not yet
responded wi th a CONTINUE conmmand. |If so, the server is unable to
finish the file, and it nust send a command error response response,
indicating that an error is pending on the channel. The appropriate
three-letter error code is EPC. See the section "NFILE Errors and
Noti fications", section 10.

8.17 HOVE- DI RECTORY Command
Conmand: (HOMVE- DI RECTORY tid user)
Response: (HOVE- DI RECTORY tid directory-pat hnane)

HOVE- DI RECTORY returns the full pathname of the home directory on the
server machine for the given user

user is a string that should be recogni zable as a user’s |ogin nane
on the server operating system directory-pathnanme is a string in

the directory pathnanme format. See the section "Syntax of File and
Directory Pathname Argunents”, section 7.4.

Greenberg & Keene [Page 31]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

8.18 LOG N Comand
Conmand: (LOG N tid user password FI LE- SYSTEM USER- VERSI ON)
Response: (LOG N tid keyword/val ue-pairs)

LOA@ N | ogs the given user in to the server machine, using the
password if necessary. Both user and password are string argunents;
user is required, password is optional. An omitted password is valid
if the host allows the specified user to log in wthout a password.
Dependi ng on the operating systemand server, it m ght be necessary
tolog intorun a program (in this case the NFILE server program on
the host. LOQA N establishes a user identity that is used by the
operating systemto establish the file author and deternine file
access rights during the current session

The server has the option to reject with an error any conmand except
LOA N if a successful LOG N command has not been perforned. This is
recormended. Many operating systens performthe login function in a
different process and/or environment than user programs. The portion
of the NFILE server running in the special |ogin environment could
concei vably be capable only of processing the LO@ N conmand; this is
the reason for having the LOG N conmand in NFILE

FI LE- SYSTEM and USER- VERSI ON are optional keyword/value pairs. The
FI LE- SYSTEM keywor d/ val ue pair selects the identity of the file
systemto which all follow ng commands in this session are to be
directed. This argunent has meaning only if the server host machine
has multiple file systens, and the targeted file systemis other than
the default file systemthat a user would get by initiating a

di al ogue with that host. The FILE-SYSTEM argunent is an arbitrary
token list. |If the server does not recognize it, the server gives an
appropriate conmand error response.

Currently, the only use of FILE-SYSTEMis for Synbolics servers to
sel ect one of the front-end processor hosts instead of the LMS,
which is the default. |In this case, the first elenent in the token
list is the keyword FEP, and the second element in the token list is
an integer, indicating the desired FEP disk unit nunber. |If the
server discovers there is no such file system the server gives a
conmand error response including the three-letter code NFS, meaning
"no file systemf. See the section "NFILE Errors and Notifications",
section 10.

Greenberg & Keene [Page 32]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The user tells the server what version of NFILE it is running by

i ncl udi ng the optional USER-VERSI ON keyword/val ue pair. The val ue
associ ated with USER-VERSI ON can be a string, an integer, or a token
list. This docunment describes NFILE user version 2 and server
version 2.

Upon receiving the representation of the user version, the server can
ei ther adjust certain paraneters to handle this particular version
or sinmply ignore the user version altogether. Currently, the only
rel eased versions of NFILE are user version 2 and server version 2.

LOEd N RETURN VALUES: keyword/val ue-pairs

The keyword/value-pairs is a token |ist conposed of keywords foll owed
by their values. The server includes any or all of the follow ng
keywords and their values; they are all optional. The follow ng
keywords are recogni zed:

NAVE

The val ue associated with NAME is a string specifying the user
identity, in the server host’s terns.

PERSONAL - NAME

The val ue associated with PERSONAL-NAME is a string representing the
user’s personal nane, last name first. For exanple: "MGIIicuddy,
Al oysius X.".

HOVEDI R- PATHNAME

The val ue associated with HOVEDI R- PATHNAME is a string in the

pat hname as directory format, indicating the honme directory of the
user. See the section "Syntax of File and Directory Pathnane
Arguments”, section 7.4.

GROUP- AFFI LI ATI ON

The val ue associated with GROUP- AFFILIATION is a string specifying
the group to which the user bel ongs, when this concept is

appropri ate.

SERVER- VERSI ON

The val ue associ ated with SERVER- VERSI ON can be a string, an integer
or a token list. The value is a representation of the version of the

server is running. Upon receiving the server version, the user can
adj ust certain paraneters to handle this particular version; accept

Greenberg & Keene [Page 33]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

the version; or close the connection. Currently, the only rel eased
versi ons of NFILE are user version 2 and server version 2.

PROPERTY- | NDEX- TABLE

The val ue associ ated with PROPERTY-1 NDEX- TABLE is a token |ist of
keywords. This return value enables the server to informthe user
which file properties are meaningful on its file system The
keywor ds i n PROPERTY-| NDEX- TABLE can be used by the D RECTORY conmand
(a user request for information on file properties of a specified
directory or directories). The server can specify a certain property
by giving an integer that is the index of that file property into the
PROPERTY- | NDEX- TABLE. This reduces the volune of data sent during
directory listings. The first elenment in PROPERTY-| NDEX- TABLE is

i ndexed by the number 0. See the section "Dl RECTORY Conmand",
section 8.11.

8.19 MILTI PLE- FI LE- PLI STS Comrand

Command: (MULTI PLE- FI LE- PLI STS tid input-handl e paths
characters properties)

Response: (MILTI PLE- FI LE- PLI STS ti d)

MULTI PLE- FI LE- PLI STS returns file property information of one or nore
files. The server sends the information in a data structure (the
format is described later in this section) on the given input-handle.
paths is an enbedded token |ist conposed of the pathnanes in which
the user is interested. Each pathnanme in this list is a string in
the full pathname syntax of the server host. Unlike for the

DI RECTORY command, w |l dcards are not allowed in these pathnanes. See
the section "Syntax of File and Directory Pathnanme Argunents"”,
section 7. 4.

characters is either Boolean truth (indicating that each file is a
character file), the enpty token list (each file is a binary file),

or the keyword DEFAULT. DEFAULT indicates that the server itself is
to figure out whether a file is a character or binary file. For nore
i nformation on the meani ng of the DEFAULT keyword: See the section
"OPEN Command", section 8.20. The value of characters can influence
some servers’ idea of a file s length.

properties is a token list of keywords indicating which properties
the user wants returned. The server is always free to return nore
properties than those requested in the properties argurment. |f
properties is supplied as the enpty token list, the server should
transmt all known properties on the files.

Greenberg & Keene [Page 34]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The server transmits as nuch of the requested informati on as possible
on the given input-handle. The information is contained in a top-

| evel token list of elenents. Each el enent corresponds with a
suppl i ed pat hname; the order of the original pathlist nust be
retained in the returned token list. An elenent is an enpty token
list if the corresponding file or any of its containing directories
does not exist. The elenents that correspond to successfully |ocated
files are lists conposed of truenane foll owed by any properties.
properties are keyword/value pairs. truenane is a string in the ful
pat hname syntax of the server host.

The foll owi ng exanpl e shows TOP-LEVEL-LI ST-BEG N and TOP- LEVEL- LI ST-
END as parentheses, and LI ST-BEG N and LI ST-END with square brackets.

For exanple, the user supplied a pathlist argument resenbling:
[filel file2 file3]

The server could not locate filel or file3, but did locate file2, and
found the I ength and author of file2. The top-level token |ist
transmtted by the server is:

([T [truename-of-file2 LENGTH 381 AUTHOR williams] [])

For further detail on how file properties and val ues are expressed:
See the section "Format of NFILE File Property/Value Pairs", section
7.5.

8.20 OPEN Command

Conmand: (OPEN tid handl e pathnane direction binary-p
TEMPORARY RAW SUPER- | MAGE DELETED PRESERVE- DATES
SUBM T DI RECT- FI LE- 1 D ESTI MATED- LENGTH BYTE- Sl ZE
| F- EXI STS | F- DOES- NOT- EXI ST)

Response: (OPEN tid truenane binary-p other-properties)

OPEN opens a file for reading, witing, or direct access at the
server host. That means, in general, asking the host file systemto
access the file and obtaining a file nunber, pointer, or other
gquantity for subsequent rapid access to the file; this is called an
"opening". See the section "NFILE File Opening Mdes", section 5.

The OPEN command has the nobst conplicated syntax of any NFILE
conmand. The OPEN command has required argunents, an optiona
argunent, and many optional keyword/value pairs. For details on the
syntax of each of these parts of the OPEN command: See the section
“Conventions Used in This Docunent"”, section 7.

Greenberg & Keene [Page 35]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The foll owi ng argunents are required: pathnane, direction, and

bi nary-p. handle is an optional argument, which nmust either be
supplied or explicitly omtted by means of substituting in its place
the enpty token |ist.

The OPEN command has many optional keyword/val ue pairs, which encode
conceptual argunents to the server file systemfor the OPEN
operation. A detailed description of all the supported OPEN optiona
keywords i s given bel ow.

The OPEN return values reflect information about the file opened,
when the opening is successful. |In the case of a probe-type opening,
this information is returned when the given file (or link, or
directory) exists and is accessible, even though the file (or link
or directory) is not actually opened. For detail on the OPEN return
val ues: See the section "NFILE OPEN Response Return Val ues", section
8. 20. 2.

THE pat hnanme OPEN ARGUNVENT

The pathnanme is a required argunment specifying the file to be opened.
pathname is a string in the full pathnane syntax of the server host.
See the section "Syntax of File and Directory Pathnanme Argunents”,
section 7.4.

For some purposes (for exanple, when the OPEN argunent direction is
suppl i ed as PROBE-DI RECTORY), only the directory specified by this
pathname is utilized. See the section "NFILE OPEN Optiona
Keywor d/ Val ue Pai rs", section 8.20.1.

THE handl e OPEN ARGUMENT

The handl e argument of the OPEN conmand specifies a data channel to
be used for the transfer. Subsequent commands in this session use
the sane handle to specify this opening. It is the user side’s
responsibility to ensure that handle refers to an existing and free
dat a channel that does not require resynchronization before use. A
handl e nmust be supplied, unless a probe-type opening is desired (that
is, the direction is supplied as PROBE, PROBE-DI RECTORY, or PROBE-
LINK) or a direct access opening is being requested (that is, a

DI RECT-FILE-ID is supplied). |In those cases, the enpty token list is
supplied for handle.

THE direction OPEN ARGUMENT
The direction argunment must be supplied as one of these keywords:

| NPUT, QUTPUT, | O PROBE, PROBE-DI RECTORY, and PROBE-LINK. The
nmeani ngs of the direction keywords are as foll ows:

Greenberg & Keene [Page 36]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

[NPUT

Specifies that the file is to be opened for input server-to-user
transfer). To request a direct access opening, supply a value for
DI RECT-FILE-ID. If no DIRECT-FILE-1D is supplied, the opening is a
dat a stream openi ng.

QUTPUT

Specifies that the file is to be opened for output user-to-server
transfer). To request a direct access opening, supply a value for
DI RECT-FILE-ID. If no DIRECT-FILE-1D is supplied, the opening is a
dat a stream openi ng.

Specifies that interspersed input and output will be perforned on
the file. This is only neaningful in direct access node. A

DI RECT- FI LE- I D nust al so be supplied. See the section "NFILE OPEN
Opti onal Keyword/ Val ue Pairs", section 8.20.1.

If direction is supplied as PROBE, PROBE-LINK, or PROBE-DI RECTORY
the opening is said to be a probe-type opening. The D RECT-FILE-ID
option is nmeaningless and an error for probe-type openings. The file
handl e nust be supplied as an enpty token list for probe-type

openi ngs.

PROBE
Specifies that the file is not to be opened at all, but sinmply
checked for existence. |If the file does not exist or is not
accessible, the error indications and actions are identical to
those that would be given for an I NPUT opening. |If the file does

exi st, the successful comand response contains the sane
information as it would have if the file had been opened for
INPUT. If it is alink, the link is followed to its target.

PROBE- LI NK
Li ke PROBE, with one difference. PROBE-LINK specifies that if the

pat hname is found to refer to a link, that link is not to be
foll owed, and information about the link itself is to be returned.

Greenberg & Keene [Page 37]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

PROBE- DI RECTORY

PROBE- DI RECTORY requests informati on about the directory

desi gnated by the pathnanme argunent. In the PROBE-DI RECTORY case,
the pat hname argument refers to the directory on which informtion
is requested. In all other cases, the pathname refers to a file
to be opened. |If pathnane contains a file nane and file type,

these parts of the pathnane are ignored for PROBE- DI RECTORY
openings as long as they are syntactically valid.

THE bi nary-p OPEN ARGUVENT

The val ue of binary-p affects the node in which the server opens the
file, as well as informng it whether or not character set
transl ati on rmust be perforned.

If binary-p is supplied as the enpty token list, the opening is said
to be a character opening. The server perforns character set

transl ation between its native character set and the NFILE character
set. The data is transferred over the data connection one character
per eight-bit byte. See the section "NFILE Character Set", section
6.

If binary-p is supplied as Bool ean truth, the opening is said to be a
bi nary opening. The user side supplies the byte size via the BYTE-

SI ZE option; if not supplied, the default byte size is 16 bits. |If
byte size is less than 9, the file data is transferred byte by byte.
If the byte size is 9 or greater, the server transfers each byte of
the file as two eight-bit bytes, |oworder first.

bi nary-p can al so be supplied as the keyword DEFAULT. DEFAULT
specifies that the server itself is to determnmine whether to transfer
bi nary or character data. DEFAULT is meaningful only for input
openings; it is an error for OUTPUT, 1O or probe-type openings. For
file systems that maintain the innate binary or character nature of a
file, the server sinply asks the file system which case is in force
for the file specified by pathnane.

When binary-p is supplied as DEFAULT, on file systens that do not
mai ntai n thisinformation, the server is required to performa
heuristic check for Synbolicsobject fileson the first two 16-bit
bytes of the file. |If the file isdetermned to be aSynbolics object
file, the server performs a BlI NARY openi ngwi th BYTE- SI ZE of 16;
otherwi se, it performs a CHARACTER openi ng.

Greenberg & Keene [Page 38]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The details of the check are as follows: if the first 16-bit byte is
the octal nunber 170023 and the second 16-bit byte is any nunber
between 0 and 77 octal (inclusive), the file is recognized as a
Synbolics object file. 1In any othercase, it is not.

8.20.1 NFILE OPEN Optional Keyword/Value Pairs

The OPEN command has many optional keyword/val ue pairs that encode
conceptual argunents to the file systemfor the OPEN operation

The foll owi ng options are used often:
BYTE- SI ZE

Must be foll owed by an integer between 1 and 16, inclusive, or the
enpty token list. BYTE-SIZE is meaningful only for binary

openi ngs. BYTE-SIZE can be ignored for probe-type openings. It
can be omtted entirely for character openings, but if supplied,
nust be followed by the enpty token list. |If binary-p is supplied
as DEFAULT, BYTE-SIZE can be omitted entirely, or followed by the
enpty token |ist.

If a binary opening is requested and BYTE-SI ZE i s not suppli ed,
the assuned value is 16 for output openings. For input binary
openings, the default is the host file systenis stored conception
of the file's byte size (for those hosts that natively support
byte size). For file systens that do not natively support
natively byte size, the default byte-size on binary input is 16.

For file systens that nmaintain the innate byte-size of each file,
the server should supply this nunber to the appropriate operating
systeminterface that perfornms the semantics of opening the file.
For other operating systenms, a file witten with a given byte size
must produce the same bytes in the same order when read with that
byte size. In this case, the server or host operating system can
choose any packi ng scheme that conplies with this rule.

Operating systens that do not support byte size rmust ensure that
binary files witten fromuser ends of the current protocol can be
read back correctly. However, the server can choose packing
schenes that allow all bits of the server host’s word to be
accessed and concur with other packing schenes used by native host
sof t war e.

For exanple, Multics supports 36 bit words and 9 bit bytes. A
packi ng scheme appropriate for a Multics NFILE server is:

Greenberg & Keene [Page 39]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Byte Size Packi ng Schene
7, 8, or 9 bits four per 36-bit word
10, 11, or 12 bits three per 36-bit word

13, 14, 15, or 16 bits two per 36-bit word

In the first packing schene in the table, native Miltics
character-oriented software can access each | ogical byte
sequentially. In the |ast packing scheme, each Synbolics byte is
in a hal fword, easily accessible and visible in an octa
representation. To achieve maxi mum data transfer rate and access
all bits of a Multics word, a byte size of 12 nust be specifi ed.

DELETED

I f supplied as Bool ean truth, DELETED specifies that del eted"
files are to be treated as though they were not "del et ed"
DELETED i s neani ngful only for operating systenms that support
"soft deletion" and subsequent "undel etion" of files. Oher
operating systens must ignore this option. Normally, deleted
files are not visible to the OPEN operation; this option makes
t hem vi si bl e.

DELETED can al so be foll owed by the enpty token list, which has
the same effect as omitting the DELETED keyword/val ue pair
entirely. For output openings, DELETED i s neani ngl ess and an
error if supplied.

DI RECT- FI LE-I1 D

If supplied, the DIRECT-FILE-1D indicates that the opening is to
be a direct access node opening. |f not supplied, the opening is
a data stream opening. The value of DIRECT-FILE-ID is a string
generated by the user, that has not been used as a DI RECT-FILE-ID

in this dial ogue, and does not designate any data channel. The
DIRECT-FILE-ID is a unique identifier for the direct access
opening. It is used for all operations that identify an opening

rather than a data channel. The DIRECT-FILE-ID is used to
identify a direct access opening, just as a file handle is used to
identify a data stream opening. The PROPERTIES, CLOSE, and RENAME
conmands use the DIRECT-FILE-ID in this way. There are only two
NFI LE conmands applicable to direct access openings (ABORT and
CONTI NUE) that do not use the DI RECT-FILE-1D, but use a data
channel handl e instead.

PRESERVE- DATES

I f supplied as Bool ean truth, PRESERVE-DATES specifies that the

Greenberg & Keene [Page 40]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

server is to attenpt to prevent the operating systemfrom updating
the "reference date" or date-tine used" of the file. This is
meani ngful only for input openings, and is an error otherw se.

The Synbolics operating systeminvokes this option for operations
such as View File in the editor, where it wi shes to assert that
the user did not "read" the file, but just "looked at it".
Servers on operating systens that do not support reference dates
or users revising or suppressing update of the reference dates
must ignore this option

ESTI MATED- LENGTH

The val ue of ESTI MATED-LENGTH is an integer estimating the I ength
of the file to be transferred. This option is neani ngful and
permtted only for output openings. ESTIMATED- LENGTH enabl es t he
user end to suggest to the server’s file systemhow |long the file
is going to be. This can be useful for file systens that nust
preal locate files or file naps or that accrue perfornmance benefits
fromknowing this information at nthe tine the file is first
opened. This estimate, if supplied, is not required to be exact.
It is ignored by servers to which it is not useful or interesting.
The units of the estimate are characters for character openings,
and bytes of the agreed-upon byte size for binary openings. The
character units should be server units, if possible, but since
this is only an estinmate, NFILE character units are acceptable.
See the section "NFILE Character Set", section 6.

EXI STS

Meani ngful only for output openings, ignored otherw se, but not

di agnosed as an error. The value of IF-EXISTS is a keyword that
specifies the action to Be taken if a file of the given nane

al ready exists. The semantics of the values are derived fromthe
Conmon Li sp specification and repeated here for conpl eteness. |If
the file does not already exist, the | F-EXISTS option and its

val ue are ignored.

If the user side does not give the |IF-EXI STS option, The action to
be taken if a file of the given nane already exists depends on
whet her or not the file system supports file versions. If it

does, the default is ERROR (if an explicit version is given in the
file pathnane) or NEWVERSION (if the version in the file pathnane
is the newest version). For file systens not supporting versions,
the default is SUPERSEDE. These actions are described bel ow.

Greenberg & Keene [Page 41]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

| F- EXI STS provi des the nmechanismfor overwiting or appending to
files. Wth the default setting of IF-EXISTS, new files are
created by every output opening.

Operating systens supporting soft deletion can take different
actions if a "deleted" file already exists with the sane nane (and
type and version, where appropriate) as a file to be created. The
Synbolics file system (LMFS) effectively uses SUPERSEDE, even if
not asked to do so. QOher servers and file systens are urged to
do simlarly. Recommended action is to not allow deleted files to
prevent successful file creation (with specific version nunber)
even if an | F-EXI STS opti on weaker than SUPERSEDE, RENAME, or
RENAME- AND- DELETE is specified or inplied.

Here are the possible values and their neanings:
ERROR

Reports an error.
NEW VERSI ON

Creates a newfile with the sane file name but with a | arger
versi on nunber. This is the default when the version conponent
of the filename is newest. File systens wi thout version
nunbers can inplenment this by effectively treating it as
SUPERSEDE

RENAME

Renanmes the existing file to sone other name and then creates a
new file with the specified name. On nost file systems, this
renam ng happens at the time of a successful close.

RENAME- AND- DELETE

Renanmes the existing file to sone other nane and then del etes
it (but does not expunge it, on those systens that distinguish
del etion fromexpunging). Then it creates a new file with the
specified nanme. On nost file systens, this renam ng happens at
the time of a successful close.

OVERWRI TE
Qut put operations on the opening destructively nmodify the
existing file. New data replaces old data at the begi nning of

the file; however, the file is not truncated to |l ength zero
upon openi ng.

Greenberg & Keene [Page 42]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

TRUNCATE

Qut put operations on the opening destructively nmodify the
existing file. The file pointer is initially positioned at the
begi nning of the file; at that tine, TRUNCATE truncates the
file to length zero and frees di sk storage occupied by it.

APPEND

Qut put operations on the opening destructively nmodify the
existing file. New data is placed at the current end of the
file.

SUPERSEDE

Supersedes the existing file. This neans that the old file is
renoved or del eted and expunged. The new file takes its place.
I f possible, the file system does not destroy the old file
until the new file is closed, against the possibility that the
file will be close-aborted. This differs from NEWVERSION in
that SUPERSEDE creates a new file with the sane name as the old
one, rather than a file name with a higher version nunber.

There are currently no standards on what a server can do if it
cannot i nplenent sonme of these actions.

| F- DOES- NOT- EXI ST
Meani ngful for input openings, never meani ngful for probe-type
openi ngs, and sonetines neani ngful for output openings. |F DOES
NOT- EXI ST takes a val ue token, which specifies the action to be
taken if the file does not already exist. Like IF-EXISTS, it is a
derivative of Common Lisp. The default is as follows: If this is
a probe-type opening or read opening, or if the IF-EX STS option
is specified as OVERWRI TE, TRUNCATE, or APPEND, the default is
ERROR. Otherw se, the default is CREATE
These are the values for |F-DCES-NOT- EXI ST:
ERROR

Reports an error.

CREATE

Creates an enpty file with the specified name and then proceeds
as if it already existed.

Greenberg & Keene [Page 43]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The foll owi ng optional keyword/value pairs are rarely used, if ever:

RAW

If supplied as Bool ean truth, RAWspecifies that character set
translation is not to be perforned, but that characters are to be
transferred intact, wi thout inspection. This option is neaningfu
only for character openings; it is an error otherwise. It is also
an error to supply RAWas Bool ean truth for probe-type openings.
RAW can al so be followed by the enpty token list, which has the
same effect as if the RAW keyword/value pair were onmitted
entirely. See the section "RAW Transl ati on Mdde", Appendi x B

SUPER- | MAGE

I f supplied as Bool ean truth, SUPER-IMAGE specifies that Rubout
quoting is not to be performed. This operation is neaningful only
for character openings; it is an error otherwise. It is also an
error for probe-type openings. SUPER-IMAGE can al so be foll owed
by the enpty token list, which has the sane effect as if the
SUPER- | MAGE keyword/ val ue pair were omitted entirely.

SUPER- | MAGE npde causes the server to read or wite character
files where ASCII Rubout characters are a significant part of the
file content, not where they are an escape for this protocol
However, other translations nust still be perfornmed: See the
section SUPER-1 MACE Transl ati on Mode", Appendi x C.

TEMPORARY

Used by the TOPS-20 server only. TEMPORARY says to use Q%M in
the GTJFN. This is useful mainly when witing files, and

i ndicates that the foreign operating systemis to treat the file
as temporary. See TOPS-20 docunentation for nore about the
inmplications of this option. Qher servers can ignore it. This
option is nmeaningless and an error for input or probe-type

openi ngs. TEMPORARY can al so be followed by the enpty token list,
whi ch has the sane effect as if the TEMPORARY keyword/val ue pair
were onmitted entirely.

SUBM T

SUBM T is nmeaningful for output only. |If supplied as Bool ean
truth, SUBM T causes the server to submit the contents of the file
being witten to the operating systemas a job, after the file is
closed. VMs is an exanple of an operating systemthat could
conveniently support SUBMT. SUBMT can also be foll owed by the
enpty token list, which has the sane effect as if the SUBMT

Greenberg & Keene [Page 44]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

keyword/ val ue pair were omitted entirely. Servers that do not
i mpl enent this option should give an error response if requested
to submit a file to the operating system

8.20.2 NFILE OPEN Response Return Val ues
The results of a successful OPEN operation are reported in the
conmand response. Here is the specification of the OPEN response
format :
Response For mat :

(OPEN tid truenane binary-p other-properties)

The return values for OPEN and CLOSE are syntactically identical, but
the val ues can change in the tinme interval between open and cl ose.

truenanme is a string representing the pathnane of the file in the
full pathnane syntax of the server host. It should be determ ned by
the server once it has opened the file, via sone request to its
operating system The request can be of the form "What file

corresponds to this JFN, file nunber, pointer, etc.?" |If the
operating system supports version nunbers, this string al ways
contains an explicit version nunber. It always contains a directory

name, a file nanme, and so on

Sone operating systens mght not know the truenane of an output file
until it is closed. It is permssible not to supply an explicit
versi on nunmber in the pathname in the OPEN response in this specific
case. On these systens the truenanme when the file is opened is
different than the truename after it has been cl osed.

The return val ue binary-p indicates whether the opening is a binary
or character opening. For binary openings, binary-p is supplied as
Bool ean truth; for character openings it is the enpty token |ist.

other-properties is a list of keyword/value pairs. other-properties
nmust contai n CREATI ON- DATE and LENGTH. AUTHOR shoul d be included if
the server operating system has a conveni ent nmechani sm for

determ ning the author of the sfile. The other properties described
here can be included if desired.

AUTHOR
The value of AUTHOR is a string representing the nane of the author
of the file. This is sone kind of user identifier, whose format is

systemspecific. As with CREATI ON- DATE (see below), AUTHOR is
supposed to represent the logical determnor of the current data

Greenberg & Keene [Page 45]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

content of the file, not necessarily the agency that actually created
the file.

BYTE- SI ZE

The byte-size agreed upon via the rules described for the BYTE-SI ZE
option. The value of BYTE-SIZE is an integer. For details on the
ram fications of BYTE-SIZE: See the section "NFILE OPEN Optiona
Keywor d/ Val ue Pairs", section 8.20.1. This paraneter is only

meani ngf ul for BI NARY openings. However, if FILEPOS is returned in
the other-properties list, BYTE-SIZE should al so be included, even
for character openings.

CREATI ON- DATE

The creation date of the file. The date is expressed in Universa
Time format, which neasures a tine as the nunmber of seconds since
January 1, 1900, at mdnight GMI. Creation date does not necessarily
nean the tinme the file systemcreated the directory entry or records
of the file. For systens that support nodification or appending to
files, it is usually the nodification date of the file. Creation
date can nean the date that the bit count or byte count of the file
was set by an application program

Sone types of file systems support a user-settable quantity

(CREATI ON- DATE) whi ch the user can set to an arbitrary tinme, to

i ndicate that the contents of this file were witten a long tine ago
by soneone el se on another computer. The default value of this
gquantity, if the user has not set it, is the time someone | ast
nodified the information in the file. This quantity, in the OPEN
response for an output file, is disregarded by the user side, but
nevert hel ess nust be present.

The Synbolics conputer system software uses this quantity as a uni que
identifier of file contents, for a given file name, type, and
version, to prove that a file has not changed since it |ast recorded
this quantity for a file.

FI LEPOS

An integer giving the position of the logical file pointer, in
characters or bytes as appropriate for the type of opening. This is
al ways zero for an input opening and for an output opening creating a
new file. For an output opening appending to an existing file,

FI LEPCS is the nunmber of characters or bytes, as appropriate,
currently in the file. This nunber, for character openings, is
nmeasured in server units: See the section "NFILE Character Set",
section 6.

Greenberg & Keene [Page 46]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

LENGTH

An integer reporting the Iength of the file, in characters for
character openings and in bytes of the agreed-upon size for binary
openi ngs. LENGTH shoul d be reported as zero for output openings,
even if appending to an existing file. The server usually only knows
the length for a character opening in server units; thus, it reports
length in server units.

8.21 PROPERTIES Conmand

Conmand: (PROPERTIES tid handl e pat hnanme control - keywor ds
properties)

Response: (PROPERTIES tid property-el ement settabl e-properties)

PROPERTI ES requests the property information about one file. The
file is identified by the pathnane argunent or the handl e argunent,
but not both. |If pathname is supplied, it is a string in the ful

pat hname syntax of the server host. See the section "Syntax of File
and Directory Pathnane Argunents", section 7.4.

If handle is supplied, its value is a string identifying an openi ng,
which inplicitly identifies a file. For direct access node openings,
handl e must be a direct file identifier

control -keywords is reserved in the current design. However, it is a

requi red argunent, and nust be supplied as the enpty token list. |Its
presence in the NFILE specification allows for future expansion. In
the future the value of control-keywords mght affect the listing
node.

properties is a token list of keywords indicating the properties the
user wants returned. (In command argunents, properties cannot be
specified with integers, such as indices into the Property Index
Table). For a list of keywords associated with file properties: See
the section "Fornmat of NFILE File Property/Value Pairs", section 7.5.

The server is always free to return nore properties than those
requested in the properties argument. |If properties is supplied as
the enpty token list, the server transmts all known properties of
the file.

Greenberg & Keene [Page 47]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

PROPERTI ES COMVAND RESPONSE

The server returns the property information for the given file in the
conmand response. The PROPERTIES conmand does not use any data
channels. If the specified file does not exist or is not accessible,
the server signals an error and includes an appropriate three-letter
error code in the conmand error response. See the section "NFILE
Errors and Notifications", section 10.

The return val ue property-elenment is a token list. The first el ement
in that token list is the pathname of the file, in the full pathname
syntax of the server host. The follow ng elenents of the property-
el ement token list are property/value pairs. The server is expected
to return several property/value pairs; the nunber of pairs is not
constrained. For further details on file properties and their

associ ated values: See the section "Format of NFILE File
Property/Val ue Pairs", section 7.5.

The return val ue settabl e-properties is a token |ist of keywords.
The nunber of keywords is not constrained. (Note that integers
cannot be used in settable-properties to indicate the file property;
keywords are to be used instead.) Each keyword supplied in

settabl e-properties identifies a property considered settable by the
server. The server is inplicitly guaranteeing a nmechani sm for
changi ng the properties reported as settable. The user can change
any of the settable properties for this file by using the CHANGE-
PROPERTI ES conmand. See the section "CHANGE- PROPERTI ES Conmand",
section 8. 2.

The foll owi ng exanpl e shows the fornmat of the PROPERTIES command
response. Renenber that the nunber of property/value pairs and

keywords is not constrained; this exanple has two property/val ue
pairs and three settabl e-properties keywords returned:

Greenberg & Keene [Page 48]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

TOP- LEVEL- LI ST- BEG N

PROPERTI ES - name of the command

tid - transaction identifier

LI ST-BEA N

pat hname of file

propl val uel - file's property/value pairs
prop2 val ue2

LI ST- END

LI ST-BEA N

keyword- 1 - file's settable properties
keywor d- 2

keywor d- 3

LI ST- END

TOP- LEVEL- LI ST- END

The foll owing exanple is designed to better show the structure of the
top-1evel token list by depicting TOP-LEVEL-LIST-BEG N and TOP-
LEVEL- LI ST- END by parent heses and LI ST-BEA N and LI ST-END by square
brackets. The indentation and newines in the exanple are not part
of the token list, but are used here to make the structure of the
token list clear.

(PROPERTIES tid [pathnanme propl val uel prop2 value2 ...]
[keywordl keyword2 keyword3 ...]

8.22 READ Command
Command: (READ tid direct-file-id input-handle count FILEPQOS)
Response: (READ tid)

READ requests input data flow for direct access openings. The
direct-file-id is the same as the DI RECT-FILE-1D argunment that was

gi ven when opening the file; it designates the opening from which the
characters or bytes are to be transferred. The input-handle

speci fies which data channel should be used for the transfer of data
fromserver to user. The data channel shoul d have been al ready
establ i shed, cannot have been disestablished, and nust not currently
be in use.

count is an integer specifying how many bytes (or NFILE characters,
as appropriate) to read. count can be supplied as the enpty token
list, nmeaning read to the end of the file. |If the user specifies the
enpty token list or a count greater than the nunber of bytes
remaining in the file, the server sends the keyword ECOF to mark the
end of the file.

Greenberg & Keene [Page 49]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

FI LEPCS is an optional keyword/value pair. |If the keyword FILEPCS is
supplied, it must be followed by an integer. Before data is
transferred, the opening is positioned to the point specified by the
val ue of FILEPOS. The position of the point is measured in server
units for character openings; for binary openings it is measured in
bi nary bytes. See the section "FILEPOS NFILE Command”.

Upon receiving the READ conmand, the server binds the data channel to
the opening and i medi ately begins transferring data. The server
stops when all data has been transferred. After the server sends the
| ast requested byte, it unbinds the data channel, freeing it for

ot her use. Wen the user side has processed the | ast byte, the user
si de assunes that the data channel can now be reused for another data
transfer.

8.23 RENAME Conmmand
Conmand: (RENAME tid handl e pat hnane to- pat hname)
Response: (RENAME tid from pat hname to- pat hnane)

RENAME requests the server to give a file a newnane. This is
NFILE s interface to the systemi s native rename operation, with al
of its systemspecific semantics and constraints.

Ei ther a handle or a pathnanme (but not both) specifies the file that
is to receive a new nanme. The argunent to-pathnane designhates that
new name. The return val ue from pathnane gives the full origina
nane of the file, and to-pathnane gives the full new nane of the
file. For systens that support version nunbers, the return val ues
can differ in version nunber fromthe val ues of the argunents given
t o RENAME

The arguments pat hname and to-pat hname and the return values from
pat hname and to-pat hnanme are strings in the full pathname syntax of
the server host. See the section "Syntax of File and Directory

Pat hnanme Argunents", section 7.4.

If the file to be renamed is specified by a pathnane, the file should
be renaned i mediately. |If the file is specified by handle, it is
acceptable to wait until close-tine to renane the file.

Sone operating systens can renane only within a directory.
Nevert hel ess, the to-pathnanme of the RENAME nust be fully specified;
the server on these systens must check for and reject an attenpted
cross-directory renane.

Greenberg & Keene [Page 50]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

8.24 RESYNCHRON ZE- DATA- CHANNEL Command

The conmand and response format for this command varies, dependi ng on
whet her the handl e argument indicates an input or output data
channel

For an | nput Handl e:

Conmand: (RESYNCHRONI ZE- DATA- CHANNEL ti d handl e)

Response: (RESYNCHRONI ZE- DATA- CHANNEL tid identifier)

For an CQutput Handl e:

Command: (RESYNCHRONI ZE- DATA- CHANNEL tid handl e identifier)
Response: (RESYNCHRONI ZE- DATA- CHANNEL t i d)

RESYNCHRONI ZE- DATA- CHANNEL begi ns a prescri bed procedure between user
and server over the unsafe data channel specified by handle. The
resynchroni zati on procedure clears the data channel of any unwanted
data, and restores the data channel to a safe state, ready to
transfer data again.

Al'l argunents to RESYNCHRONI ZE- DATA- CHANNEL are required.

For a detail ed description of how the user and server coordi nate the
resynchroni zati on of data channels: See the section "NFILE Data
Connecti on Resynchroni zati on", section 9. 2.

8.24.1 Inplenentation Hints for RESYNCHRON ZE- DATA- CHANNEL Conmmrand

In general, both the user and server should should be inplenented
with the know edge that a transm ssion can be aborted. That is, the
recei ving side nust be careful not to act upon a transm ssion (that
is, to performany action or side effect) until the transm ssion has
been successfully received in entirety. This protects the user
program fromthe possibility that an abort can occur after a

transm ssion has been partially sent.

Greenberg & Keene [Page 51]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

RESYNCHRONI ZI NG AN OQUTPUT DATA CHANNEL

The server will probably want to dispatch the | ooping and reading to
the | ogical data process. Looping reading for the resynchronization
identifier in the control connection handler is not a viable option
If the user side fails to send the resynchronization identifier (for
exanpl e, due to a user abort) the control connection handler can
never be broken out of this |oop

Shoul d the user side send the control connection handl er conmand
first, or send the marks and identifiers first?

Sending the marks first is problematic, because the data channel at
the other end m ght not be reading them (for it has not yet been so
instructed by the control connection handler). The user m ght then
becorme bl ocked for output, thus prohibiting sending of the
RESYNCHRONI ZE- DATA- CHANNEL conmand.

On the other hand, sending the control connection handl er comrand
first requires that the user side can send the marks and identifiers
bet ween sending the control connection handl er command and recei vi ng
a response for it. The response will never cone until the marks and
identifiers have been successfully received. The user inplenentation
must allow for this one case of a command where a subroutine that
"sends a command and waits for a response" is inapplicable.

RESYNCHRONI ZI NG AN | NPUT DATA CHANNEL

The server control process should dispatch the data process to send
the mark, and not wait, |est the data process becone bl ocked for

out put due to a user abort. The control process nust go back to its
conmand | oop, to possibly receive a command that night break the data
process out of that bl ock.

8.25 UNDATA- CONNECTI ON Commrand
Conmand: (UNDATA- CONNECTI ON tid i nput-handl e out put - handl e)
Response: (UNDATA- CONNECTI ON ti d)
UNDATA- CONNECTI ON explicitly disestablishes a data connection from
the user side. The user side has the option of disestablishing data
connections at its discretion. There is no place in the protoco

where di sestablishnent of data connections is required, other than at
the end of the session, where it is inplicit.

Greenberg & Keene [Page 52]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The data connection to be disestablished is the one designated by the
i nput - handl e and out put-handl e argunments. These two handl es nust
refer to the sane data connection

It is not permtted to explicitly disestablish a data connection
ei t her of whose channels is active. |If the session is termnated by
the breaking of the control connection, all file handl es becone
meani ngl ess, and the server nust close all data connections known to
it and close-abort all files opened on behalf of the user during the
di al ogue.

In the Synbolics inplementation, the user side disestablishes data
connections that have not been used for a long tinme, such as twenty
m nutes or so.

For nmore information about data connections: See the section "NFILE
Control and Data Connections", section 4.

9. NFILE RESYNCHRONI ZATI ON PROCEDURE

Odinarily, the user side sends NFILE commands to the server side
over the control connection; the server side responds to every user
command, and file data is transmtted over the data channels. This
section describes a resynchroni zation procedure that takes place when
sonet hing di sturbs the usual course of events.

First, if the server side aborts while sending or receiving data,
not hi ng can be done to sal vage the connection between the two hosts.
The control connection and any data channels associated with this
connection are broken. This happens rarely, if at all

It is not unusual for the user side to abort file operations, either
conmands or data transfer. On a Synbolics conmputer, the user can do
this by pressing CONTROL- ABORT. An inportant aspect of any file
protocol is the way it handl es the situati on when the user side
aborts file operations.

An NFILE user side reacts to user side aborts by inmredi ately narking
the connection unsafe. Wen a control connection is unsafe, it nust
be resynchroni zed before it can be used again. Data channels can

al so be marked unsafe, and nmust al so be resynchroni zed before further
use. The resynchroni zation process rids the connection (whether
control or data connection) of bytes of data that are now unwanted,
and thus cleans up the channel so it can be used again

The resynchroni zation procedure is sonewhat conplex, but it fulfills

a genui ne need. For those interested, a brief design discussion is
i ncl uded as note <3>.

Greenberg & Keene [Page 53]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

9.1 NFILE Control Connection Resynchronization

NFI LE requires any unsafe control connection to undergo a
resynchroni zati on procedure before further use. Therefore, the
resynchroni zati on does not necessarily occur immediately after the
control connection is marked unsafe. The user side initiates the
control connection resynchroni zati on when another operation on the
control connection is attenpted.

A "mark" is defined in the context of Byte Streamw th Mark: See the
section "Discussion of Byte Streamw th Mark", section 12.1.

USER SI DE STEPS: CONTROL CONNECTI ON RESYNCHRONI ZATI ON

1. The user side sends a mark over the control connection to
the server.

2. The user side sends the ASCI| characters USER- RESYNC- DUMWY
(as a data token) to the server.

3. The user side sends a second mark to the server.

4. The user side declares the control connection safe (at the
token list level).

5. The user side generates and sends a unique data token to
the server.

6. The user side then waits, expecting to detect a mark
foll owed by the unique data token. The user side reads and
di scards all tokens and marks until the desired match is
f ound.

Once the user side detects the mark and uni que data token, the
control connection has been fully resynchronized, and can be used
agai n.

SERVER S| DE STEPS: CONTROL CONNECTI ON RESYNCHRONI ZATI ON
1. The server side detects a mark. The server is thus alerted
that the control connection is unsafe, and that
resynchroni zation is in progress.
2. The server continues to read data coming fromthe user side

until it detects the second mark, and the token follow ng
it.

Greenberg & Keene [Page 54]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

3. The server checks to see if the token following the mark is
USER- RESYNC- DUMW. This rare situation occurs if the user
aborts during the course of the resynchronization itself.

If so, the server side discards the USER- RESYNC- DUMWY
token. The control connection is still unsafe, and the
user side restarts the resynchroni zati on procedure; the
server side therefore begins at Step 2 again

4. 1f the token following the mark i s not USER- RESYNC- DUMWY
(this is the expected circunmstance), the server should have
received a single data token that is the unique data token
generated by the user side.

a. The server sends a mark to the user side.

b. The server declares the control connection safe (at
the token list level).

c. The server sends the unique data token to the user
si de.

5. If the server detects something follow ng the mark that was
nei t her USER- RESYNC- DUMW nor a single data token, a
protocol error has occurred.

9.2 NFILE Data Connection Resynchroni zation

The NFI LE data channel resynchroni zation procedure is simlar to the
NFI LE control connection resynchronization. Both procedures are
based on a mark signalling the unsafe condition, then a second mark
followed by a unique identifier. One inportant difference between
the two procedures is the circunstances in which they occur. Contro
connections are put into unsafe states only when the user aborts
during control connection I/O operations. Data channels are made
unsafe by a larger set of circunstances:

Greenberg & Keene [Page 55]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

- User aborts occur during the file protocol operations that
assi gn and deassign data channels. This is the npst comon
cause of data channel s becom ng unsafe.

- A server receives a CLOSE command (with abort-p supplied as
Bool ean truth) specifying an open file that has not finished
transmtting data. That is, file reading is aborted.

- The ABORT command is issued, causing data channels to be
made unsafe.

- The FILEPOCS command is issued, causing the input data
channel to becone unsafe.

The resynchroni zation clears the data channel of unwanted data from
aborted operations and puts the data channel in a known state. The
dat a channel resynchronization procedure is invoked when the user
side gives the RESYNCHRON ZE- DATA- CHANNEL conmmand over the contro
connecti on.

The foll owing policies can be used to inprove response time, but are
not required by the NFILE protocol: The user side can initiate
resynchroni zation only if it needs the data channel, having first
tried to use a free data channel that does not require

resynchroni zation. Also, the user side can periodically
resynchroni ze all unsafe data channel s.

I n giving the RESYNCHRONI ZE- DATA- CHANNEL command, the user side

i ndi cates which data channel should be resynchronized. Data channels
are unidirectional, which nmeans that depending on the direction
(either input or output) of the data channel, either the user side or
the server side sends the resynchronization data. This is another

di fference fromthe resynchronizati on of the control connection, in
whi ch the resynchronization data is always sent by the user side.

The resynchroni zation steps for input data channels are different
than the steps for output data channels.

Greenberg & Keene [Page 56]

RFC 1037 NFILE - A File Access Protocol December
| NPUT DATA CHANNEL RESYNCHRONI ZATI ON

1. The user side gives the RESYNCHRON ZE- DATA- CHANNEL conmand
on the control connection, with only one argunment, the
handl e of the data channel to be resynchronized.

2. The server side of the data channel generates a uni que
identifier, and sends that data token in its regul ar
conmand response to the user side.

3. The server side sends a mark over the data channel

4. The server side sends the unique identifier token over the
dat a channel

5. The user side reads until it detects a mark followed by the

uni que identifier token. The resynchronization is then
conplete. The data channel is no |onger in an unsafe
state.

OQUTPUT DATA CHANNEL RESYNCHRONI ZATI ON

1

The user side gives the RESYNCHRONI ZE- DATA- CHANNEL conmmand
on the control connection, with two argunments: the handl e
of the data channel to be resynchroni zed, and a uni que
identifier that it has just generated.

The user side of the data channel sends a nmark.

The user side of the data channel sends a dummy identifier
token. The dummy identifier can be any token that the
server could not interpret as being the unique identifier
One suggestion is the data token DUMW- 1 DENTI FI ER

The server side of the data channel was alerted by the
RESYNCHRONI ZE- DATA- CHANNEL conmand t hat resynchroni zation
is in progress. The server side now reads the data,
seeking the first mark.

The server side reads and discards the first mark and the
dunmy identifier.

The user side sends a second nark.
The user side sends the unique identifier.

The server side recognizes the mark and the uni que
identifier that follows, and the resynchronization is

Greenberg & Keene [Page

1987

57]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

conplete. The data channel is no longer in the unsafe
state.

10. NFILE ERRORS AND NOTI FI CATI ONS
NFI LE recogni zes two types of errors: command response errors and
asynchronous errors. In addition to errors, NFILE supports
notifications.
Conmmand response errors:

- Signify an error that prevented the successful conpletion of
the command; when such an error occurs, a command response
error is sent instead of a normal command response.

- Cccur frequently in nornmal operations

Asynchronous errors:

Are not related to any specific command

- Are associated with an erring data channe

Typically indicate a problemin the transfer, such as
runni ng out of disk space or allocation, or an unreadabl e
di sk record

- Cccur rarely in normal operations

Noti fications:

- Are not associated with an error

- Are sent at the server’s discretion

- Provide general information, such as a warning that the
systemis goi ng down

10.1 Notifications Fromthe NFlILE Server

The NFI LE server can send asynchronous notifications to the user side
over the control connection. The text of the notification contains
information of interest to the person using NFILE, such as a warning
that the server’s operating systemw || be going down soon
Notifications can come fromthe server side at any time that the
server is not sending sonething else.

The format of NFILE notifications is:
(NOTI FI CATION "" text)

The enpty string takes the place of a transaction identifier
Notifications are initiated by the server, and are not associ ated
with any transaction originated by the user side.n

Greenberg & Keene [Page 58]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

10.2 NFILE Conmand Response Errors

When an error prevents the successful conpletion of an NFILE conmand,
a conmand response error is sent instead of the normal conmmand
response. A normal command response indicates success; a conmand
response error indicates failure of the command.

NFI LE conmand response errors are sent fromthe server to the user
across the control connection as top-level token lists, in this
format:

(ERROR tid three-letter-code error-vars nmessage)

ERROR is a keyword. The tid is the transaction identifier of the
conmand that encountered this error. The argunents three-letter-
code, error-vars, and nessage are all required.

The three-letter-code provides the informati on on what kind of an
error was encountered. For a table of the three-letter codes and
their meanings: See the section "NFILE Three-letter Error Codes",
section 10. 4.

message is a string that is displayed to the human user of the
pr ot ocol

error-vars is a keyword/value list. The three possible keywords are:
PATHNAME, OPERATI ON, and NEW PATHNAME. Before transnitting an error
the server |ooks at the type of error to see if it can easily
determ ne the value of any of the keywords. |[If so, the server

i ncl udes the keyword/value pair inits error. |If not, the
keyword/value pair is omtted. The value associated w th OPERATI ON
is the keyword nami ng the NFILE conmand that failed. The val ues
associ ated wi th PATHNAME and NEW PATHNAME are strings in the ful

pat hname syntax of the server host.

For exanple, suppose the server on a file systemwi th hierarchica
directories could not access a file because its containing directory
did not exist. The command error response woul d use the PATHNAME
keyword to indicate the first directory level that did not exist,

i nstead of the full pathnane which was supplied as the conmmand
argunent. This gives the user side valuable information that it

ot herwi se woul d not have known.

Greenberg & Keene [Page 59]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

10.3 NFILE Asynchronous Errors

When a data channel process, in either direction, encounters an error
condition, the server sends an asynchronous error description. An
asynchronous error description consists of a top-level token list.
Typi cal ly, asynchronous errors indicate error conditions in the
transfer, such as running out of disk space or allocation, or a

unr eadabl e di sk record

The format of asynchronous error descriptions is:
(ASYNC- ERROR handl e three-letter-code error-vars nessage)

ASYNC- ERROR is a keyword. The handl e argunment identifies the erring
data channel. The argunents three-letter-code, error-vars, and
nmessage are all required. Their meanings are the sane as in NFILE
conmand error responses: See the section "NFILE Command Response
Errors”, section 10. 2.

When the server detects an asynchronous error on an input data
channel , the server sends an asynchronous error description on that
data channel itself. When an asynchronous error occurs on an out put
dat a channel, the asynchronous error description is sent on the
control connection.

Sone asynchronous errors are restartable. In this context,
restartable means it nakes sense to try to resune the operation. One
exanpl e of a restartable error is an attenpt to wite a file to a
file systemthat is out of room The server side indicates whether
an asynchronous error is restartable by prependi ng the keyword
RESTARTABLE and the associ ated val ue Boolean truth to the error-vars
list. To proceed froma restartable error, the user side sends a
CONTI NUE command over the control connection

On any asynchronous error, either input or output, the data channe
on the server side enters an "asynchronous error outstandi ng" state.
The server can exit that state in one of two ways: by receiving a
CONTI NUE command or a CLOSE conmmand with the abort-p argunent
suppl i ed as Bool ean truth.

On a normal CLOSE (not a cl ose-abort), the server side checks the
channel it was requested to close. |If an asynchronous error
descripti on has been sent on the data channel, but not yet processed
by CONTINUE, the server side does not close the channel, but sends a
command error response. The sane thing happens on a FINl SH comand
recei ved on a channel that has an asynchronous error pending. In
both cases, the three-letter code included in the conmand error
response is EPC, for Error Pending on Channel

Greenberg & Keene [Page 60]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

10.4 NFILE Three-letter Error Codes

Usual |y the server’s operating system provi des sone description of an
error that occurs. NFILE has a mechani smfor conveying that
information to the user side. Upon detecting an error, the NFILE
server should characterize the error by choosing the three-letter
code that best describes the error. The three-letter code is an
argunent in both the conmand response error and asynchronous error
nmessages fromthe server to the user

Each of the NFILE three-letter codes represents some systemerror.
The set of codes enables all operating systens to use one error-
reporting nechanism Some operating systens will never encounter
certain of the error conditions.

Sone errors fit logically into two error codes. For exanple, suppose
the server could not delete a file because the file was not found.
This error could be considered either CDF (Cannot Delete File) or FNF
(File Not Found). |In this case, File Not Found gives nore specific
and val uabl e informati on than Cannot Delete File. Since the protoco
does not allow nore than one error code to be reported when an error
occurs, the server must choose the nost appropriate error code, given
the information available to it fromthe operating system

This is the set of three-letter codes:
ACC Access error. This indicates a protection-violation error
ATD Incorrect access to directory. A directory could not be
accessed because the user’s access rights to it did not
permt this type of access.
ATF Incorrect access to file. A file could not be accessed
because the user’s access rights to it did not permt this

type of access.

BUG File systembug. This includes all protocol violations
detected by the server, as well as by the host file system

CCD Cannot create directory. An error occurred in attenpting to
create a directory.

CDF Cannot delete file. The file systemreported that it cannot
delete a file.

CCL Cannot create link. An error occurred in attenpting to
create a |ink.

Greenberg & Keene [Page 61]

RFC 1037

R

DAE

DAT

DND

DNF

EPC

FAE

FNF

FOO

FOR

NFILE - A File Access Protocol Decenmber 1987

Circular link. An operation was attenpted on a pathnane that
designates a link that eventually links back to itself.

Cannot renanme file. An error occurred in attenpting to
renane a file.

Cannot set property. An error occurred in attenpting to
change the properties of a file. This could nmean that you
tried to set a property that only the file systemis all owed
to set, or a property that is not defined on this type of
file system

Directory already exists. A directory could not be created
because a directory or file of this name already exists.

Data error. The file system contains unreadable data. This
could mean data errors detected by hardware or inconsistent
data inside the file system

Devi ce not found. The device of the file was not found or
does not exist.

"Do Not Delete" flag set. An attenpt was nade to delete a
file that is marked by a "Do Not Delete" flag.

Directory not enpty. An invalid deletion of a nonenpty
directory was attenpted

Directory not found. The directory was not found or does not
exist. This refers specifically to the containing directory;
if you are trying to access a directory, and the actua
directory you are trying to access is not found, FNF (for
File Not Found) should be indicated instead.

Error pending on channel. The server cannot close the
channel in attenpting to close or finish the channel

File already exists. The file could not be created because a
file or directory of this name al ready exists.

File not found. The file was not found in the containing
directory. The TOPS-20 and TENEX "no such file type" and "no
such file version" errors should also report this condition

File open for output. Opening a file that was al ready opened
for output was attenpted.

Fil epos out of range. Setting the file pointer past the

Greenberg & Keene [Page 62]

RFC 1037

FTB

HNA

I BS

| P?

I PS

| PV

LCK

LIP

MsC

NAV

NFILE - A File Access Protocol Decenmber 1987

end-of -file position or to a negative position was attenpted.

File too big. File is larger than the maxinumfile size
supported by the file system

Host not available The file server or file systemis
intentionally denying service to user. This does not nean
that the network connection failed; it neans that the file
systemis explicitly not avail abl e.

Invalid byte size. The value of the "byte size" option was
not valid.

I nconsi stent options. Sone of the options given in this
operation are inconsistent with others.

Invalid operation for directory. The specified operation is
invalid for directories, and the given pathnanme specifies a
directory, in directory pathnane as file format.

Invalid operation for link. The specified operation is
invalid for links, and this pathnanme is the nane of a |ink.

Invalid password. The specified password was invalid.

I nvalid pathname syntax. This includes all invalid pathname
syntax errors.

Invalid property value. The new val ue provided for the
property is invalid.

Invalid wildcard. The pathnane is not a valid wildcard
pat hname.

File locked. The file is locked. It cannot be accessed,
possi bly because it is in use by some other process.

Logi n problens. A problemwas encountered while trying to
log into the file system

M scel | aneous probl ens.

Not available. The file or device exists but is not

avail able. Typically, the disk pack is not mounted on a
drive, the drive is broken, or the like. Operator
intervention is probably required to fix the problem but
retrying the operation is likely to succeed after the probl em
i s solved.

Greenberg & Keene [Page 63]

RFC 1037

NER

NET

NFS

NLI

NVR

RAD

REF

UKC

UKP

UNK

uuo

NFILE - A File Access Protocol Decenmber 1987

Not enough resources. For exanple, a systemlinit on the
nunber of open files or network connections has been reached.

Network problem The file server had some sort of trouble
trying to create a new data connection, or perform sone ot her
networ k operation, and was unable to do so.

No file system The file systemwas not avail able. For
exanpl e, this host does not have any file systens, or this
host’s file systemcannot be initialized or accessed for sone
reason, or the file systemsinply does not exist.

Not logged in. A file operation was attenpted before | ogging
in. Normally the file systeminterface always |ogs in before
doi ng any operation, but this problemcan occur in certain
unusual cases in which |logging in has been aborted.

No more room The file systemis out of room This can nean
any of several things:

- The entire file systemis full

- The particul ar volume involved is full

- The particular directory involved is full

- The user’s allocated quota has been exceeded.

Renane across directories. The devices or directories of the
initial and target pathnames are not the same, but on this
file systemthey are required to be.

Renanme to existing file. The target nane of a renane
operation is the nane of a file that already exists.

Unknown operation. An unsupported file system operation was
attenpted, or an unsupported comrand was attenpted.

Unknown property. The property i s unknown.

Unknown user. The specified user nane is unknown to this
host .

Uni npl enented option. An option to a command i s not
i mpl enent ed.

Wong kind of file. This includes errors in which an invalid
operation for a file, directory, or link was attenpted.

W | dcard not all owned.

Greenberg & Keene [Page 64]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

11.

11.

TOKEN LI ST TRANSPORT LAYER

PURPOSE: The Token List Transport Layer is a protocol that
facilitates the transm ssion of sinple structured data, such as
lists.

1 Introduction to the Token List Transport Layer

The Token List Transport Layer is a general -purpose protocol. The
Token List Transport Layer sends "tokens" through its underlying
stream Each token usually represents a sinple quantity, such as a
string or integer.

Tokens can be organi zed into "token lists". Special tokens are
provided to denote the starting and ending point of lists. The token
list transport |ayer differentiates between "top-level token lists",
whi ch are not contained in other lists, and "enbedded token |ists",
which are contained in other lists. Using lists makes it conveni ent
to send structured records, such as commands and commrand responses of
the client protocol. The top-level token |ists provide robustness.

The Token List Transport Layer is a general termthat includes two
separate but related subjects: the "token list streanf and the
"token list data streanf. The token list streamis commonly used for
applications that can easily organi ze the information to be
transmtted into tokens and lists. The token list data streamis
nore appropriate for transnmitting a |l arge volume of data that cannot
easily be structured into tokens and lists, such as file data, which
is sinply a sequence of characters or bytes.

The following table illustrates the main differences between token
list streans and token |ist data streamns:

Token List Data Stream Token List Stream
Built on: token list stream Byte Streamwi th Mark
Transnits: stream dat a t okens, token lists
Exampl e
of use: NFI LE data channel s NFI LE contro

connecti on

Greenberg & Keene [Page 65]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

NFI LE uses the the Token List Transport Layer, and provides an
excel l ent exanple of its useful ness. The NFILE commands and conmand
responses are sent over the control connection in a token I|ist
stream File data is sent across each data channel in a token list
data stream

11.2 Token List Stream
11.2.1 Types of Tokens and Token Lists

Al nunbers in the token |list docunentation are represented in
decimal notation. Bytes are 8 bits |ong.

TYPES OF TOKENS
Tokens are of the follow ng types:
1. Atomc tokens.
Atonic tokens are of the follow ng subtypes:

- Data tokens. A data token consists of a sequence of
bytes with an effectively infinite maxinumlength. In
sone contexts a data token represents a string; in
ot her contexts, a data token is other arbitrary data.

Each data token is preceded in the token |list stream
by a representation of its length in bytes.

Data tokens that are under 200 bytes |ong are preceded
by one byte containing their length in bytes. That

is, a data token of 34 bytes is preceded by one byte
of val ue 34.

Dat a tokens 200 bytes or over are preceded by the byte
known as PUNCTUATI ON- LONG, of value 201. After the
201 cones a four-byte-long nunber (least significant
byte first) containing the length of the data token
that foll ows.

- Nuneric tokens. A sequence of bytes that represent
and encode a nonnegative binary integer. The |argest
valid integer is 2763 - 1

Nureri c tokens are either short integers (less than
256) or long integers (greater than or equal to 256).
Short integers are preceded by the byte known as
PUNCTUATI ON- SHORT- | NTEGER, of val ue 206.

Greenberg & Keene [Page 66]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Long integers are begun by PUNCTUATI ON- LONG | NTECER,

of value 207. One byte follows, containing the | ength
(in bytes) of the long integer. The integer itself is
next, |east significant byte first.

- Keyword tokens. A sequence of bytes that represent
and encode a naned identifier of the inplenented
protocol. Keyword tokens are used by the client
protocol to convey a nanme; the only significance of a
keyword token is in its nane.

Each keyword is preceded by the byte known as
PUNCTUATI ON- KEYWORD, of val ue 208. The data token
foll owi ng PUNCTUATI ON- KEYWORD represents the name of
the keyword as a string. The characters are in
upper -case standard ASC |

- Boolean truth. A special token that represents the
Bool ean truth value. This token is known as
BOOLEAN- TRUTH, of val ue 209 <4>.

2. Control tokens.

The token list stream supports four control tokens to delimt token
lists, and one paddi ng token

TOP- LEVEL- LI ST-BEG N 202 This control token
appears at the start of
each top-level token list.

TOP- LEVEL- LI ST- END 203 This control token
appears at the end of
each top-level token list.
LI ST-BEG N 204 This control token
appears at the start of
each enbedded token |ist.

LI ST- END 205 This control token
appears at the end of
each enmbedded token |ist.

PUNCTUATI ON- PAD 200 Thi s paddi ng token shoul d
be i gnored by the token
l[ist stream It can be
sent to fill buffers.

Greenberg & Keene [Page 67]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

TOKEN LI STS

A token list consists of a sequence of atom c tokens or token lists.
Token |ists are begun and ended by control tokens that delinmt the
token lists. There are three types of token lists:

1. Top-level token lists.

Top-1evel token lists begin with TOP-LEVEL-LIST-BEA N and
end with TOP-LEVEL-LI ST-END. Top-level token lists are not
contained in other I|ists.

2. Enbedded token lists.

These token lists occur inside other token lists. They
begin with LIST-BEG N and end with LI ST-END.

3. The enpty token list.

This is a special exanple of the enbedded token list. In
some contexts, the enpty token list represents Bool ean
falsity. An enbedded enpty token list is conposed of a

LI ST-BEG N fol l owed i nmedi ately by a LIST-END. A top-I|evel
enpty token list is conposed of TOP-LEVEL-LIST-BEG N

foll owed i medi ately by TOP-LEVEL- LI ST- END,

11.2.2 Token List Stream Exanpl e

This section contains an exanple of some data that can appear on a
token list stream The exanple is a top-level token |list encoding an
NFlI LE DELETE comand

The DELETE command is conposed of the follow ng pieces: a TOP-
LEVEL- LI ST-BEG N, the keyword DELETE, a data token containing the
transaction identifier, a LIST-BEG N, a LIST-END, a data token
containing a pathnanme of a file to be deleted, and a TOP- LEVEL- LI ST-
END. This exanple uses t105 as the transaction identifier, and
[usr/ max/tenp as the pat hnane.

Al nunbers in this section are expressed in decimal notation.

The pieces of the command are di splayed here in order

1. TOP-LEVEL-LI ST-BEG N

2. The keyword token whose nane i s DELETE

3. The data token containing the characters: t105
4. LIST-BEG N

5. LI ST-END

Greenberg & Keene [Page 68]

RFC 1037

NFILE - A File Access Protocol Decenmber 1987

6. The data token containing the characters: /usr/mx/tenp
7. TOP- LEVEL- LI ST- END

Now, let’s translate each piece of the command into the bytes that
are transmtted through the token |ist stream

1

TOP- LEVEL- LI ST- BEG N
202 represents TOP-LEVEL-LIST-BEG N
The keyword token whose nanme is DELETE

A keyword token is introduced by PUNCTUATI ON- KEYWORD, whi ch
is represented in the token list streamas the byte 208.

A data token follows, containing the string "DELETE'. A
data token under 200 bytes long is introduced by one byte
containing its length in bytes. The length of this data
token is 6 bytes.

The data token continues with the standard ASCI| character
set representation of each character in the string DELETE:

208 represents PUNCTUATI ON- KEYWORD

006 represents the length of this data token
068 represents "D'

069 represents "E'

076 represents "L"

069 represents "E"

084 represents "T"

069 represents "E"

The data token containing the characters: t105

This data token is begun by its length in bytes (4), and
continues with the NFILE character set representation of
each character in the string

004 represents the length of this data token
116 represents "t"
049 represents "1"
048 represents "0"
053 represents "5"

4. LI ST-BEG N

204 represents LIST-BEG N

Greenberg & Keene [Page 69]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

5. LI ST- END
205 represents LI ST-END

6. The data token containing the characters: /usr/max/tenp

013 represents length of this data token
047 represents "/"
117 represents "u"
115 represents "s"
114 represents "r"
047 represents "/"
109 represents "nf
097 represents "a"
120 represents "x"
047 represents "/"
116 represents "t"
101 represents "e"
109 represents "nf
112 represents "p"

7. TOP-LEVEL- LI ST-END
203 represents TOP-LEVEL- LI ST- END
11.2.3 Mapping of Lisp Objects to Token List Stream Representation

The Synbolics interface to the token list stream sends Lisp objects
through the underlying Byte Streamw th Mark and produces Lisp

objects on the other end. Not all Lisp objects can be sent in this
way. For exanple, conpound objects other than lists are not handl ed.
An appropriate analogy is the sending and reconstruction of |ist

structure via printed representation. These are the types of objects

that can be sent, and their representations:

- Lisp strings are represented as data tokens in the NFILE
character set. Only 8-bit strings can be sent <5>.

- Keyword synbols are represented as keyword tokens. Although
identifiable and reconstructable as keyword synbols, only
their nanes are sent. Any properties, bindings, and the
l'i ke are not sent.

- T is represented as BOOLEAN TRUTH.

- NIL is represented as the enpty token list.

- Lists are represented as token lists. Circular lists cannot

Greenberg & Keene [Page 70]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

be sent. See the footnote related to the ambiguity between

NIL and the empty list: See the section "Types of Tokens
and Token Lists", section 11.2.1.

- Integers are represented as nuneric tokens. Only
nonnegative integers | ess than 2263 can be sent.

11.2.4 Aborting and the Token List Stream

A token |list stream accrues the benefits of the abort managenent
policy of the Byte Streamwith Mark on which it is built. In order
to fully realize this benefit, sone sinple rules nmust be obeyed by
any inplenmentation of the token Iist stream

The term "transm ssion" neans either an atonic token or a conplete
top-level token list. Atransm ssion starts with the control token
TOP- LEVEL-BEG N and ends with TOP-LEVEL-END. The top-Ievel token

l'ist can contain enbedded token |ists.

The interface that wites to the token list stream nmust be capabl e of
witing the representation of entire transm ssions. Wen this
interface is called, it must effectively |lock the token list stream
and exclude access by other processes until the entire transm ssion
has been encoded and sent.

If the sending is aborted while the streamis |ocked, the stream
enters an "unsafe" state. Trying to send data while the streamis
unsafe signals an error. The application and the token |ist stream
nmust send a mark to cause resynchroni zation, and allow the token |i st
streamto be used again. Wen the reading side encounters this mark,
it resynchronizes itself according to whatever client protocol is in
use.

Simlarly, the interface that reads fromthe token |ist stream nust

be capable of reading entire transnmissions. Wen this interface is

called, it must |lock the stream excluding access by other processes
until the entire transmi ssion has been read.

If the reading is aborted while the streamis |ocked, the stream
enters an unsafe state. The only exit fromthis unsafe state is by
neans of receiving a mark. Wen the streamis unsafe, the only valid
operation that can be perforned upon it is "read and discard al
tokens until a mark is encountered; read and discard that mark

decl are the stream safe again".

Greenberg & Keene [Page 71]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

Dependi ng on the client protocol, the receipt of a mark m ght cause
the reading side to read for further nmarks. NFILE inplenents the
resynchroni zati on of token list streanms, and serves as a usefu
exanpl e: See the section "NFILE Control Connection

Resynchroni zation", section 9.1.

The Synbolics inplenentation provides the two mark-handling
primitives in this way:

1. Send token (or list) preceded by a mark. Wen the stream
is in the unsafe state (on the output side), this is the
only permitted output operation (other than closing).

2. Read through to a mark and read the token (or Ilist)
followi ng the mark. Wen the streamis in the unsafe state
(on the input side), this is the only permtted input
operation (other than closing).

11.3 Token List Data Stream

The token list data streamis a facility to transmt stream data
through a token list stream The token list data streaminposes the
followi ng protocol on the data transmtted:

- Data is sent in the format of | oose data tokens, not
contained in token |ists.

- The keyword token ECF indicates that the end of data has
been reached.

- Token lists can be transmitted through the token |i st
data stream

- No | oose tokens other than data tokens or the keyword
token EOF can be sent.

- Boundaries between data tokens are not signification
The data is considered to be a continuous stream wth
the possi bl e exception of narks.

The token list data streamis nost appropriate for sending file data.
It is expected (but not required) that its typical node of use is to
send a | arge nunber of data tokens, with an occasional token |ist.
The design intent was that token lists would be used by the
application programto indicate exceptional situations.

Dat a tokens, the keyword token EOF, and token lists are defined in

Greenberg & Keene [Page 72]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

the token list stream docunentation: See the section "Types of
Tokens and Token Lists", section 11.2.1.

The NFILE file protocol provides a good exanple of the use of token
list data streans. NFILE sends file data through token |ist data
streans; each NFILE data channel is a token list data stream Errors
such as disk errors during the reading of a file are conveyed as
token lists through the token Iist data stream

12. BYTE STREAM W TH MARK

PURPOSE: Byte Streamwith Mark is a sinple |ayer of protocol that
guarantees that an out-of-band signal can be transmitted in the case
of programinterruption. Byte Streamwith Mark is designed to
provi de end-to-end stream consistency in the face of user program
aborts.

12.1 Discussion of Byte Streamw th Mark
| NTRODUCTI ON

Byte Streamwith Mark is a reliable, bidirectional byte streamwth
one out-of-band (but not out-of-sequence) signal called a "mark".

The design of Byte Streamwi th Mark ensures that the mark is al ways
recogni zabl e on the receiving end. The Byte Streamw th Mark is
built on an underlying stream which must support the transm ssion of
8-bit bytes. Byte Streamw th Mark has been inplemented to run on
TCP and Chaos. Marks are inplemented differently on the two

pr ot ocol s.

Marks are used to resynchroni ze the stream when sonet hi ng has
occurred to interrupt normal operations. For exanple, an application
| ayer sending data over the Byte Streamwi th Mark can abort in the

m ddl e of sending that data. Recovery is handl ed by sending a mark.

In the context of this docunment, "aborting" is defined as foll ows:
Aborting the current execution of a programneans to halt that
execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably discarded.

EXAMPLE OF USE

Byte Streamwith Mark is the | ayer of protocol underlying NFILE

NFI LE uses the marks inplenented in Byte Streamwith Mark to
resynchroni ze control connections or data channel s whose
synchroni zati on has been lost. For a description of NFILE s use of
marks to resynchroni ze streans: See the section "NFILE
Resynchroni zati on Procedure", section 9.

Greenberg & Keene [Page 73]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

BYTE STREAM W TH MARK ON CHAGCSNET

A mark is recognized on Chaosnet by a packet bearing the opcode 201
(octal). There is no data in a mark packet, so the data portion of
the packet is ignored. Byte Streamwi th Mark transmts all data in
packets bearing opcode 200 (octal).

If Byte Streamwith Mark is inplenmented on another (non-Chaos) stream
that supports opcode-beari ng packets, the recommended inpl enmentation
is the reservation of an opcode for the mark

BYTE STREAM W TH MARK ON TCP: RECORD MODE

The purpose of Byte Streamwith Mark is to guarantee that nmarks can
al ways be unambi guously identified. Therefore, for TCP (and for any
transport layer that does not inplement packets natively) a sinmple
record streamis inposed on the stream The record boundaries serve
only to distinguish where a nark can occur. A record consists of a
two-byte byte count, nobst significant byte first, followed by that
many bytes of data. A byte count of zero is recognized as a mark

Both the sending side and the receiving side must rigorously maintain
the integrity of the record boundaries. A witer to the stream nust
never output a byte count without that nunber of data bytes
following. Simlarly, a reader of the stream after reading a byte
count, has effectively contracted to read that many bytes fromthe
encapsul ated stream regardl ess of whether those bytes are requested
by the application |ayer.

MAI NTAI NI NG RECORD | NTEGRI TY

Thi s subsection deals with nmaintaining record integrity on non-Chaos
networks. Since Chaos inplenents packets natively, no special care
is required to maintain record integrity on the Chaos network.

The desi gn di scussed here guarantees record integrity; the underlying
stream nmust guarantee data integrity.

The basic design of Byte Streamwi th Mark on TCP (and other transport
| ayers that do not inplement packets natively) is to preserve record
integrity by putting clearly denmarcated, byte-counted records in the
natural records of the encapsulated stream Therefore, when the
outer streamrequests a buffer’s worth of file data fromthe

encapsul ated stream it expects to receive a buffer containing one
entire, ntegral, record of that stream conplete with byte count.

Because of diverse network inplementations on different operating
systens, the software that inplenents the encapsul ated stream m ght

Greenberg & Keene [Page 74]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

12.

not be able to provide integral record buffers to the Byte Stream
with Mark inplenmentation. For exanple, the witing streamcould have
witten records that are rmuch | onger than available buffers on the
receiving system |In this case, a request to read fromthe

encapsul ated streamreturns sone buffer or sonme anpbunt of data
representing less than an entire Byte Streamwi th Mark record. The

i nput subroutine of the Byte Streamwi th Mark inpl enmentati on nust
therefore return a region of this (smaller) buffer, representing |ess
than the full Byte Streamwith Mark record. Nevertheless, the Byte
Streamwi th Mark nust extract the count of the full Byte Streamw th
Mark record fromthe first such buffer of each Byte Streamw th Mark
record, and maintain and update this count as succeedi ng conponent
buffers are read.

In this case, if the programreading fromthe Byte Streamw th Mark
aborts while reading data, the inplenentation of Byte Streamw th
Mark nust continue to read through the remaining buffers of the Byte
Streamwith Mark record that has been subdivided in this fashion

The user side programwi |l have deternined that an abort has
occurred, and will request the Byte Streamwith Mark to read up to
and through the next mark. The Byte Streamwith Mark will have
processed a fractional record, and nust discard the remaining buffers
of the record now being read.

2 Byte Streamwi th Mark Abortable States

Byte Streamwith Mark is designed to provide end-to-end stream

consi stency in the face of user program aborts. This section

descri bes user program aborts, and how Byte Streamwi th Mark handl es
them |In the context of this docunent, "aborting" is defined as
follows: Aborting the current execution of a program neans to halt
that execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably discarded.

USER PROGRAM ABORTS AND |/ O STREAMS

Aborting the execution of the code that nmanipulates |/O streans, in
general , poses significant problens. Gven that a streamis a static
data object, and is intended to be used over and over again, aborting
the execution of any routine manipulating a streamcan leave it in an
i nconsi stent, unusable state.

Many operating systenms solve this problem by mani pulating a | arge
subset of streams within the confines of the supervisor or executive
program which is not vul nerable to aborts, short of system or
network failure. Nevertheless, the need still exists to inplenent
streans outside of the boundaries of the supervisor. Furthernore,

Greenberg & Keene [Page 75]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

the Synbolics conputer environnment has no supervisor or executive
program and is thus vul nerable to aborts everywhere.

BYTE STREAM W TH MARK HANDLI NG OF USER PROGRAM ABCRTS

Byte Streamwith Mark is designed to be nearly inpervious to the
aborting of programs using it. |Its design is based on carefu
analysis of all possible states of the stream and of the effect of
aborts of the prograns using the streamin each of these states.
This section provides that analysis.

A "transmission" is a collection of user data sent by the application
| evel through the Byte Streamwith Mark whose end is well-defined,
once its start has been recognized. For instance, the token |i st
stream when using Byte Streamwi th Mark, sends token lists. Wen a
TOP- LEVEL- LI ST-BEG N has been sent, the containing transmission is
not considered conplete until the corresponding TOP-LEVEL-LIST-END is
read. See the section "Token List Transport Layer", section 11

The foll owi ng cases are possible states of the stream when an abort
occurs:

1. Abort occurs when the user programis not manipul ating the
stream

Thi s case presents no problem

2. Abort occurs after a transm ssion has been partially sent,
at a packet or record boundary.

This inplies that the datumthat woul d indicate the
successful conpl ete sending of that transm ssion has been
not yet been sent.

The Byte Streamwith Mark state is consistent, but the
application level state is not. The application |evel nust
determ ne that the execution of the code conposing and
sending its transm ssion was, in fact, aborted, and
initiate resynchronization via nmarks.

The receiving side nust be careful not to act upon a
transm ssion (that is, to performany action or side
effect) until the transm ssion has been successfully
received in entirety. This protects the user programfrom
the possibility that an abort can occur after a
transm ssi on has been partially sent.

Greenberg & Keene [Page 76]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

3. Abort occurs during the sending or receiving of a record.

This is the nost vul nerable state of the nechanism This
case does not occur on packet-oriented nmedia; it is
subsunmed by the next case.

This case is handled by mnimzing the extent of this

wi ndow, and killing the connection when and if the
situation is detected. Depending on the operating system
i nvol ved, this wi ndow could be m nimzed by using

i nterrupt-di sabling nechani sns, auxiliary processes or
tasks, or sone ot her technique.

For buffered streans, input and output waiting can be done
in consistent states, thus minimzing the amount of tine
mani pul ati ng the actual encapsul ated stream For
unbuffered streans, a lot of tine can be spent in this

wi ndow. It is expected that unbuffered streans will be
exceedi ngly uncommon. Nevert hel ess, the inplenentation of
Byte Streamwi th Mark nust detect this case.

4. Abort occurs during the sending or receiving of fundanenta
units of the | owest-I|evel underlying stream (packets,
buffers, or bytes).

This case is usually handled by inhibiting interrupts, or
other forms of nmasking, in the code inplenmenting the
encapsul ated stream since no waiting is possible at
unexpected tines.

13. PCOSSI BLE FUTURE EXTENSI ONS
NFI LE was designed to be extended as the needs of its clients grow,

or as new clients with different needs appear. Currently it neets
the needs of the Synmbolics Genera 7.0 operating system although its

design is intentionally general. |If users of other operating systens
identify new features that would be useful, they could be added to
NFI LE. This section illustrates sone areas areas where the design of

NFI LE i ntentionally accommopdat es ext ensi ons.

- The NFILE protocol encodes comrands and responses as text,
rather than using prearranged nunbers. This nmeans that new
conmands and responses can be added without having to obtain
a new nunber froma central registry.

- The Token List Transport Layer provides a general substrate

for the value-transm ssion portion of network protocols. In
fact, it has been used at Synbolics for other protocols

Greenberg & Keene [Page 77]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

besi des NFILE. The Token List Transport Layer could
conveniently be extended to support transnission of other
types of val ues besides those it currently supports.

- The character set to be used for file transfer could be nade
negoti abl e.

- The command character set could be nade negoti abl e.
Currently there is no negotiation sequence, but one could be
added.

- Greater support for nore conplex file organizations could be
added, such as record files, databases, and so on. This
could be an extension to the direct access node facility.

- Currently, the LOA N conmand all ows the user side to inform
the server which version of NFILE it is running. This
feature is included in NFILE so that a server can continue
to support ol der versions of the protocol even after new,
ext ended versi ons have been inpl enented. However, the
specification is currently somewhat vague as to how the
server can nake use of the version.

- NFILE is not restricted to using TCP or Chaos as its
underlying protocol. NFILE can be built on any byte stream
protocol that supports reliable transm ssion of 8-bit bytes
and nmul tiple connections.

In addition to the possible future extensions, we would like to
mention a known limtation of NFILE

Currently NFILE requires nultiple connections for a single session
That is, the control connection nust be separate fromthe data
connections. |If NFILE is to be used over a tel ephone, this

requi rement poses an inconvenient restriction. It is possible to
i mpl enent a multiplexing schenme as a | evel between NFILE and the
comuni cati on medi um

Greenberg & Keene [Page 78]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

APPENDI X A
NORVAL TRANSLATI ON MODE

NORMAL transl ati on nmode guarantees the foll ow ng:

- Afile containing characters in the NFILE character set can
be witten to any NFILE server and read back intact
(contai ning the sane characters).

- Afile witten by NFILE should not appear as "foreign” to a
server operating systemunless the file contains NFILE s
extended characters. That is, a server file that uses only
the subset of the NFILE character set limted to standard
ASCI| characters (the 95 printing characters, and the native
representation of return, |inefeed, page, backspace, rubout,
and tab) can be read and witten, with the result being the
sane data in NFILE characters as exists in server
characters.

In this section, all nunbers designating val ues of character codes
are to be interpreted in octal. The notation "x in cl..c2" means
"for all character codes x such that cl <= x <= c2."

The NFILE character set is an extension of standard ASCII. The 95
ASCI | printing characters have the sane nunerical codes in the NFILE
character set. Five ASCII non-printing characters have counterparts
in the NFILE character set, as shown in the follow ng table. The
NFI LE character set includes a single Return character, rather than
the carriage-return line-feed sequence typically used in ASCII. The
NFI LE character set does not include the ASCII control characters,
other than the five shown in the followi ng table, but does include
some additional printing and formatting characters that have no
counterparts in ASClI

NFI LE St andard ASCI

Rubout : 207 177

Backspace: 210 10

Tab: 211 11

Li nef eed: 212 12

Page: 214 14
Note that the NFILE Return character is of code 215. This character
includes "going to the next Iine". This is a notable difference from
the convention used in PDP-10 ASCII in which |ines are ended by a
pair of characters, "carriage return” and "line feed".

Greenberg & Keene [Page 79]

RFC 1037 NFI LE -

A File Access Protocol Decenmber 1987

NORVAL TRANSLATI ON TO UNI X SERVERS

The translation given in this table is appropriate for use by UN X
servers, or other servers that use 8-bit bytes to store ASCI
characters. Machines with 8-bit bytes usually place the extra NFILE
characters in the top half of their character set.

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS

NFI LE char acter

X in 000..007
X in 010..015
X in 016..176

X in 200..207
X in 210..211
212
X in 213..214
215
X in 216..376
377

UNI X char act er

X

X + 200
X

377

X

X - 200
015

x - 200
012

X

177

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS

UNI X char act er

X in 000..007
X in 010..011
012
X in 013..014
015
X in 016..176
177
X in 200..207
X in 210..215
X in 216..376
377

NFI LE char acter

X
X + 200
215

X + 200
212

X

377

X

x - 200
X

177

NORMAL TRANSLATI ON TO PDP-10 FAM LY SERVERS

The translation given in this table is appropriate for use by PDP-10
famly servers, or other servers that use 7-bit bytes to store ASCl
characters. On the PDP-10 the sequence CRLF, 015 012, represents a

new | i ne.

Greenberg & Keene

[Page 80]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

The nmechanismfor this translation on machines with 7-bit bytes is to
use the RUBOQUT character (octal code 177) as an escape character.

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP-10 CHARACTERS

NFI LE char act er PDP- 10 character(s)
X in 000..007 X

X in 010..012 177 x

013 013

X in 014..015 177 x

X in 016..176 X

177 177 177

X in 200..207 177 x - 200

X in 210..212 x - 200

213 177 013

214 014

215 015 012

X in 216..376 177 x - 200

377 no correspondi ng code

These tables m ght seem confusing at first, but there are sone
general rules about it that should make it clearer. First, NFILE
characters in the range 000..177 are generally represented as
thensel ves, and x in 200..377 is generally represented as 177
followed by x - 200. That is, 177 is used to quote the second 200
NFI LE characters. It was deened that 177 is a nore useful and conmon
character than 377, so 177 177 means 177, and there is no way to
describe 377 with PDP-10 ASCI| characters. |In the NFILE character
set, the formatting control characters appear offset up by 200 with
respect to standard ASCII. This explains why the preferred node of
expressing 210 (backspace) is 010, and 010 turns into 177 010. The
same reasoning applies to 211 (Tab), 212 (Linefeed), 214 (Fornfeed),
and 215 (Return).

More special care is needed for the Return character, which is the
mappi ng of the system dependent representation of "the start of a new
[ine". The NFILE Return (215) is equivalent to 015 012 (CRLF) in
some ASCI| systems. |In the NFILE character set there is no
representation

Greenberg & Keene [Page 81]

RFC 1037 NFI LE -

TABLE 4. TRANSLATI ONS

PDP- 10 char acter

X in 000..007

X in 010..012

013

014

015 012

015 not-012

X in 016..176

177 x in 000..007
177 x in 010..012
177 013

177 x in 014..015
177 x in 016..176
177 177

of a carriage that doesn’'t
server file, it must be tr
converting ASCI| character
an 012 therefore turns int

A File Access Protocol Decenmber 1987

FROM PDP- 10 CHARACTERS TO NFI LE CHARACTERS

NFI LE char acter

X

x + 200
013

214

215

115

X

x + 200
X

213

X

X + 200
177

gotoanewline, soif thereis onein a
anslated to sonething else. When
s to NFILE characters, an 015 foll owed by
0 a 215. A stray CRis arbitrarily

translated into a single M (115).

Greenberg & Keene

[Page 82]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

APPENDI X B
RAW TRANSLATI ON MODE

RAW node neans no transl ation should be perfornmed. In RAWnode the
server operating systemshould treat the file as a character file and
use the sane data fornmatting that would be appropriate for a
character file, but transfer the actual binary values of the
character codes.

Greenberg & Keene [Page 83]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

APPENDI X C
SUPER- | MAGE TRANSLATI ON MCODE

SUPER- | MAGE node is intended for use by PDP-10 fam |y machi nes only.
It is included largely as an illustration of a system dependent
extension. A server nmachine that has 8-bit bytes should treat
SUPER- | MAGE node the sane as NORMAL node

In this section, all nunbers designating val ues of character codes
are to be interpreted in octal. The notation "x in cl..c2" means
“for all character codes x such that cl <= x <= c2."

SUPER- | MAGE npde suppresses the use of the 177 character as an escape
character. Character translation should be done as in NORVAL node,
with one exception. Wen a two-character sequence beginning with 177
is detected, the 177 should not be output at all

In this section, all nunmbers designating val ues of character codes
are to be interpreted in octal. SUPER-IMAGE node is intended for use
by PDP-10 nachi nes only.

SUPER- | MAGE suppresses the use of Rubout for quoting. That is, for
each entry beginning with a 177 in the PDP-10 character colum in the
NORMAL translation table, the NFILE character has the 177 renoved.

TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASCI

NFI LE char act er PDP- 10 character(s)

X in 000..177 X

x in 200..214 <x - 200>

215 015 012

X in 216..376 <x - 200>

377 no correspondi ng code

Greenberg & Keene [Page 84]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI | TO NFI LE

PDP- 10 character NFILE character

X in 000..007 X

X in 010..012 X + 200
013 013

014 214

015 012 215

015 not-012 115

X in <016..176> X

177 177

Greenberg & Keene [Page 85]

RFC 1037 NFILE - A File Access Protocol Decenmber 1987

NOTES

1. NFILE s requirenent for using the NFILE character set is
recogni zed as a drawback for non-Synbolics machines. A usefu
extension to NFILE would be a provision to nake the character set
negoti abl e.

2. Inmplementation note: Care nust be taken that the freeing is done
before the control connection is allowed to process another
conmand, or else the control connection may find the data channe
to be falsely indicated as being in use.

3. The Synbolics operating systemhas the policy that whenever the
user side is waiting for the server side, a user abort can occur
Thi s user side waiting can occur in any context, such awaiting a
response, waiting in the mddle of reading network input, or
waiting in the mddle of transmtting network output. Thus there
are no "hung" states.

4. Note that the Token List Transport Layer supplies a special token
to indicate Boolean truth, but no correspondi ng token to indicate
Bool ean falsity. NFILE uses an enpty token list to indicate
Bool ean falsity. The historical reason for this asynmretry is the
inability of the Lisp language to differentiate between the enpty
list and NIL, which is traditionally used to nean Bool ean falsity.
If the flexibility of both a Boolean falsity and an enpty token
list were allowed, it would create problens for an operating
systemthat cannot distinguish between the two. This aspect of
the protocol is recognized as a concession to the Lisp | anguage.
The unfortunate effect is to disallow operating systens to
di stingui sh between Bool ean falsity and an enpty |ist.

5. No so-called "fat strings" can be sent.

Greenberg & Keene [Page 86]

