Net wor k Wor ki ng G oup J. Poste

Request for Comments: 959 J. Reynol ds
| SI
osol etes RFC. 765 (1 EN 149) Cct ober 1985

FI LE TRANSFER PROTCOCOL (FTP)

Status of this Menp

This menmo is the official specification of the File Transfer
Protocol (FTP). Distribution of this memp is unlimted.

The foll owi ng new optional comands are included in this edition of
the specification:

CDUP (Change to Parent Directory), SMNT (Structure Munt), STQU
(Store Unique), RVD (Renmpbve Directory), MD (Make Directory), PW
(Print Directory), and SYST (System.

Note that this specification is conpatible with the previous edition.
1. 1 NTRODUCTI ON

The objectives of FTP are 1) to pronote sharing of files (computer
prograns and/or data), 2) to encourage indirect or inplicit (via
prograns) use of renote conputers, 3) to shield a user from
variations in file storage systens anong hosts, and 4) to transfer
data reliably and efficiently. FTP, though usable directly by a user
at atermnal, is designed mainly for use by prograns.

The attenpt in this specification is to satisfy the diverse needs of
users of maxi-hosts, nmini-hosts, personal workstations, and TACs,
with a sinple, and easily inplenented protocol design.

Thi s paper assumes knowl edge of the Transm ssion Control Protocol
(TCP) [2] and the Telnet Protocol [3]. These docunents are contained
in the ARPA-Internet protocol handbook [1].

2. OVERVI EW

In this section, the history, the term nology, and the FTP nodel are
di scussed. The ternms defined in this section are only those that
have special significance in FTP. Sonme of the term nology is very
specific to the FTP nodel; sone readers nay wish to turn to the
section on the FTP nmodel while review ng the tern nol ogy.

Postel & Reynol ds [Page 1]

RFC 959 Cct ober 1985
File Transfer Protocol

2.1. H STORY

FTP has had a |l ong evol ution over the years. Appendix IlIl is a
chronol ogi cal conpilation of Request for Comrents docunents
relating to FTP. These include the first proposed file transfer
mechani sns in 1971 that were devel oped for inplenmentation on hosts
at MI1.T. (RFC 114), plus comments and di scussion in RFC 141.

RFC 172 provided a user-level oriented protocol for file transfer
bet ween host conputers (including termnal I MPs). A revision of
this as RFC 265, restated FTP for additional review, while RFC 281
suggested further changes. The use of a "Set Data Type"
transacti on was proposed in RFC 294 in January 1982.

RFC 354 obsol eted RFCs 264 and 265. The File Transfer Protoco
was now defined as a protocol for file transfer between HOSTs on
the ARPANET, with the primary function of FTP defined as
transfering files efficiently and reliably anong hosts and

al l owi ng the convenient use of renote file storage capabilities.
RFC 385 further conmented on errors, enphasis points, and
additions to the protocol, while RFC 414 provided a status report
on the working server and user FTPs. RFC 430, issued in 1973,
(anobng other RFCs too nunerous to nmention) presented further
conments on FTP. Finally, an "official" FTP docunent was
publ i shed as RFC 454.

By July 1973, considerabl e changes fromthe | ast versions of FTP
were made, but the general structure renmained the sane. RFC 542
was published as a new "official" specification to reflect these
changes. However, many inpl enmentati ons based on the ol der

speci ficati on were not updated.

In 1974, RFCs 607 and 614 continued comrents on FTP. RFC 624
proposed further design changes and m nor nodifications. |n 1975,
RFC 686 entitled, "Leaving Well Enough Al one", discussed the

di fferences between all of the early and | ater versions of FTP.
RFC 691 presented a m nor revision of RFC 686, regarding the

subj ect of print files.

Motivated by the transition fromthe NCP to the TCP as the
underlying protocol, a phoenix was born out of all of the above
efforts in RFC 765 as the specification of FTP for use on TCP

This current edition of the FTP specification is intended to
correct some mnor docunmentation errors, to inprove the

expl anati on of sone protocol features, and to add sonme new
opti onal commands.

Postel & Reynol ds [Page 2]

RFC 959 Cct ober 1985
File Transfer Protocol

In particular, the foll owi ng new optional commands are included in
this edition of the specification

CDUP - Change to Parent Directory
SMNT - Structure Munt
STQU - Store Unique
RVD - Renove Directory
MKD - Make Directory
PW - Print Directory
SYST - System

This specification is conpatible with the previous edition. A

program i npl enented in conformance to the previous specification

shoul d automatically be in conformance to this specification

2.2. TERM NOLOGY

ASCI |
The ASCI| character set is as defined in the ARPA-Internet
Protocol Handbook. In FTP, ASCI| characters are defined to be
the lower half of an eight-bit code set (i.e., the nost
significant bit is zero).

access controls
Access controls define users’ access privileges to the use of a
system and to the files in that system Access controls are
necessary to prevent unauthorized or accidental use of files.
It is the prerogative of a server-FTP process to invoke access
controls.

byte size
There are two byte sizes of interest in FTP. the |ogical byte
size of the file, and the transfer byte size used for the
transm ssion of the data. The transfer byte size is always 8
bits. The transfer byte size is not necessarily the byte size

in which data is to be stored in a system nor the |ogical byte
size for interpretation of the structure of the data.

Postel & Reynol ds [Page 3]

RFC 959 Cct ober 1985
File Transfer Protocol

control connection

The communi cation path between the USER-PI and SERVER-PI for
the exchange of commands and replies. This connection foll ows
the Tel net Protocol

data connecti on

A full duplex connection over which data is transferred, in a
speci fied node and type. The data transferred may be a part of
afile, an entire file or a nunber of files. The path may be
bet ween a server-DTP and a user-DTP, or between two
server - DTPs.

data port

The passive data transfer process "listens" on the data port
for a connection fromthe active transfer process in order to
open the data connecti on.

DTP

The data transfer process establishes and manages the data
connection. The DTP can be passive or active.

End- of - Li ne

The end-of -1ine sequence defines the separation of printing
lines. The sequence is Carriage Return, followed by Line Feed.

ECF

The end-of-file condition that defines the end of a file being
transferred.

EOR

The end-of -record condition that defines the end of a record
bei ng transferred.

error recovery
A procedure that allows a user to recover fromcertain errors
such as failure of either host systemor transfer process. In

FTP, error recovery may involve restarting a file transfer at a
gi ven checkpoi nt.

Postel & Reynol ds [Page 4]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

FTP commands

A set of conmands that conprise the control information flow ng
fromthe user-FTP to the server-FTP process.

file

An ordered set of conmputer data (including prograns), of
arbitrary length, uniquely identified by a pathnane.

node

The node in which data is to be transferred via the data
connection. The node defines the data format during transfer
i ncluding EOR and EOF. The transfer nodes defined in FTP are
described in the Section on Transni ssion Mdes.

NVT
The Network Virtual Termnal as defined in the Tel net Protocol
NVFS

The Network Virtual File System A concept which defines a
standard network file systemw th standard commands and
pat hname conventi ons.

page

A file may be structured as a set of independent parts called
pages. FTP supports the transm ssion of discontinuous files as
i ndependent i ndexed pages.

pat hnane

Pat hname is defined to be the character string which nmust be
input to a file systemby a user in order to identify a file.
Pat hname normal |y contains device and/or directory names, and
file name specification. FTP does not yet specify a standard
pat hnanme convention. Each user nust follow the file nam ng
conventions of the file systens involved in the transfer.

P
The protocol interpreter. The user and server sides of the

protocol have distinct roles inplenented in a user-Pl and a
server-Pl.

& Reynol ds [Page 5]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

record

A sequential file may be structured as a nunber of contiguous
parts called records. Record structures are supported by FTP
but a file need not have record structure.

reply

A reply is an acknow edgnent (positive or negative) sent from
server to user via the control connection in response to FTP
conmands. The general formof a reply is a conpletion code
(including error codes) followed by a text string. The codes
are for use by programs and the text is usually intended for
human users.

server-DTP

The data transfer process, in its nornal "active" state,

establ i shes the data connection with the "listening" data port.
It sets up paraneters for transfer and storage, and transfers
data on command fromits PI. The DTP can be placed in a

"passive" state to listen for, rather than initiate a
connection on the data port.

server - FTP process

A process or set of processes which performthe function of
file transfer in cooperation with a user-FTP process and,
possi bly, another server. The functions consist of a protoco
interpreter (PlI) and a data transfer process (DTP)

server- Pl
The server protocol interpreter "listens" on Port L for a
connection froma user-Pl and establishes a contro
communi cati on connection. It receives standard FTP comands

fromthe user-Pl, sends replies, and governs the server-DITP
type

The data representation type used for data transfer and
storage. Type inplies certain transformations between the tine
of data storage and data transfer. The representation types
defined in FTP are described in the Section on Establishing
Dat a Connecti ons.

& Reynol ds [Page 6]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

user

A person or a process on behalf of a person wishing to obtain
file transfer service. The human user may interact directly
with a server-FTP process, but use of a user-FTP process is
preferred since the protocol design is weighted towards

aut omat a.

user - DTP
The data transfer process "listens" on the data port for a
connection froma server-FTP process. |If two servers are

transferring data between them the user-DIP is inactive.

user - FTP process

A set of functions including a protocol interpreter, a data
transfer process and a user interface which together perform
the function of file transfer in cooperation with one or nore
server-FTP processes. The user interface allows a |oca

| anguage to be used in the conmand-reply dial ogue with the
user.

user - Pl

The user protocol interpreter initiates the control connection
fromits port Uto the server-FTP process, initiates FTP

conmands, and governs the user-DTP if that process is part of
the file transfer.

& Reynol ds [Page 7]

RFC 959 Cct ober 1985
File Transfer Protocol
2.3. THE FTP MODEL

Wth the above definitions in mnd, the foll owing nodel (shown in
Figure 1) may be diagramed for an FTP service.

REEERAREEE Vi
|| User || = --------
|| I nterface| <--->| User
AEEEEI Y | RN
---------- | | |
| /------ \| FTP Conmands |[/----V----\]
|| Server|<---------------- >| User ||
[| P | FTP Replies || PI ||
|\--need AEEEELSEEA
| | | | |
-------- | /--V---\| Dat a | /----V----\] R
| File |<--->|Server|<---------------- > User | <--->] File
| Syst en || DTP || Connecti on [] DTP [] | Syst en]
-------- |\------T7] |\----m- -7
Server - FTP USER- FTP

NOTES: 1. The data connection may be used in either direction.
2. The data connection need not exist all of the tine.

Figure 1 Mdel for FTP Use

In the nodel described in Figure 1, the user-protocol interpreter
initiates the control connection. The control connection follows
the Telnet protocol. At the initiation of the user, standard FTP
conmands are generated by the user-Pl and transmtted to the
server process via the control connection. (The user may
establish a direct control connection to the server-FTP, froma
TAC term nal for example, and generate standard FTP commands

i ndependent |y, bypassing the user-FTP process.) Standard replies
are sent fromthe server-Pl to the user-Pl over the contro
connection in response to the commands.

The FTP commands specify the parameters for the data connection
(data port, transfer node, representation type, and structure) and
the nature of file systemoperation (store, retrieve, append,
delete, etc.). The user-DTP or its designate should "listen" on
the specified data port, and the server initiate the data
connection and data transfer in accordance with the specified
paranmeters. |t should be noted that the data port need not be in

Postel & Reynol ds [Page 8]

RFC 959

Cct ober 1985

File Transfer Protocol

the sanme host that initiates the FTP commands via the contro
connection, but the user or the user-FTP process nust ensure a

"l'isten" on the specified data port. It ought to also be noted
that the data connection nmay be used for sinultaneous sendi ng and
recei vi ng.

In anot her situation a user mght wish to transfer files between
two hosts, neither of which is a |local host. The user sets up
control connections to the two servers and then arranges for a
data connection between them In this manner, control information
is passed to the user-Pl but data is transferred between the
server data transfer processes. Following is a nodel of this
server-server interaction

Control ------------ Contro

—————————— > User-FTP | <-----------

| | User-Pl | |

| | "C | |

Y L \Y,
| Server-FTP | Dat a Connecti on | Server-FTP
| A SR >| "B" |
-------------- Port (A) Port (B) --------------

Figure 2

The protocol requires that the control connections be open while
data transfer is in progress. It is the responsibility of the
user to request the closing of the control connections when
finished using the FTP service, while it is the server who takes
the action. The server nay abort data transfer if the contro
connections are closed w thout conmmand.

The Rel ationship between FTP and Tel net:

Post el

The FTP uses the Tel net protocol on the control connection

This can be achieved in two ways: first, the user-Pl or the
server-Pl may inplenent the rules of the Tel net Protoco
directly in their own procedures; or, second, the user-Pl or
the server-Pl may make use of the existing Telnet nodule in the
system

Ease of inpl enentaion, sharing code, and nodul ar programm ng
argue for the second approach. Efficiency and i ndependence

& Reynol ds [Page 9]

RFC 959 Cct ober 1985
File Transfer Protocol

argue for the first approach. 1In practice, FTP relies on very
little of the Telnet Protocol, so the first approach does not
necessarily involve a | arge anount of code.

3. DATA TRANSFER FUNCTI ONS

Files are transferred only via the data connection. The contro
connection is used for the transfer of conmands, which describe the
functions to be perfornmed, and the replies to these commands (see the
Section on FTP Replies). Several conmands are concerned with the
transfer of data between hosts. These data transfer commands incl ude
the MODE conmand which specify how the bits of the data are to be
transmitted, and the STRUcture and TYPE conmands, which are used to
define the way in which the data are to be represented. The

transm ssion and representation are basically independent but the
"Stream' transm ssion node i s dependent on the file structure
attribute and i f "Conpressed" transm ssion node is used, the nature
of the filler byte depends on the representation type.

3.1. DATA REPRESENTATI ON AND STORAGE

Data is transferred froma storage device in the sending host to a
storage device in the receiving host. COten it is necessary to
performcertain transformati ons on the data because data storage
representations in the two systenms are different. For exanple,
NVT-ASCI 1 has different data storage representations in different
systens. DEC TOPS-20s’s generally store NVT-ASCI| as five 7-bit
ASCI | characters, left-justified in a 36-bit word. |IBM Mainfrane’s
store NVT-ASCI| as 8-bit EBCDIC codes. Miltics stores NVT-ASCl

as four 9-bit characters in a 36-bit word. It is desirable to
convert characters into the standard NVT-ASCI| representation when
transmtting text between dissimlar systens. The sending and
receiving sites would have to performthe necessary
transfornmati ons between the standard representation and their

i nternal representations.

A different problemin representation arises when transnitting
bi nary data (not character codes) between host systens with
different word lengths. It is not always clear how the sender
shoul d send data, and the receiver store it. For exanple, when
transmtting 32-bit bytes froma 32-bit word-length systemto a
36-bit word-length system it nmay be desirable (for reasons of
efficiency and usefulness) to store the 32-bit bytes
right-justified in a 36-bit word in the latter system |In any
case, the user should have the option of specifying data
representation and transformation functions. It should be noted

Postel & Reynol ds [Page 10]

RFC 959 Cct ober 1985
File Transfer Protocol

that FTP provides for very limted data type representations.
Transformati ons desired beyond this limted capability should be
performed by the user directly.

3.1.1. DATA TYPES

Data representations are handled in FTP by a user specifying a
representation type. This type may inmplicitly (as in ASCI1 or
EBCDIC) or explicitly (as in Local byte) define a byte size for
interpretation which is referred to as the "logical byte size."
Note that this has nothing to do with the byte size used for
transm ssion over the data connection, called the "transfer
byte size", and the two should not be confused. For exanple,
NVT-ASCI 1 has a logical byte size of 8 bits. [If the type is
Local byte, then the TYPE command has an obligatory second
paraneter specifying the logical byte size. The transfer byte
size is always 8 bits.

3.1.1.1. ASC | TYPE

This is the default type and nust be accepted by all FTP

i npl enentations. It is intended primarily for the transfer
of text files, except when both hosts would find the EBCDI C
type nore convenient.

The sender converts the data from an internal character
representation to the standard 8-bit NvVT- ASCl

representation (see the Tel net specification). The receiver
will convert the data fromthe standard formto his own
internal form

In accordance with the NVT standard, the <CRLF> sequence
shoul d be used where necessary to denote the end of a |line
of text. (See the discussion of file structure at the end
of the Section on Data Representation and Storage.)

Using the standard NVT-ASCI| representati on neans that data
must be interpreted as 8-bit bytes.

The Format paranmeter for ASCI|I and EBCDI C types is discussed
bel ow.

Postel & Reynol ds [Page 11]

RFC 959 Cct ober 1985
File Transfer Protocol

3.1.1.2. EBCDI C TYPE

This type is intended for efficient transfer between hosts
whi ch use EBCDI C for their internal character
representation.

For transm ssion, the data are represented as 8-bit EBCDI C
characters. The character code is the only difference

bet ween the functional specifications of EBCD C and ASCI
types.

End-of -1i ne (as opposed to end-of-record--see the di scussion
of structure) will probably be rarely used with EBCDI C type
for purposes of denoting structure, but where it is
necessary the <NL> character should be used.

3.1.1.3. | MAGE TYPE

The data are sent as contiguous bits which, for transfer,
are packed into the 8-bit transfer bytes. The receiving
site nmust store the data as contiguous bits. The structure
of the storage system m ght necessitate the padding of the
file (or of each record, for a record-structured file) to
some conveni ent boundary (byte, word or block). This

paddi ng, which nust be all zeros, may occur only at the end
of the file (or at the end of each record) and there nust be
a way of identifying the padding bits so that they may be
stripped off if the file is retrieved. The padding
transformation should be well publicized to enable a user to
process a file at the storage site.

I mge type is intended for the efficient storage and
retrieval of files and for the transfer of binary data. It
is recomended that this type be accepted by all FTP

i mpl ement ati ons.

3.1.1.4. LCCAL TYPE

The data is transferred in |ogical bytes of the size
specified by the obligatory second paraneter, Byte size.
The val ue of Byte size must be a decimal integer; there is
no default value. The |ogical byte size is not necessarily
the sane as the transfer byte size. |If thereis a
difference in byte sizes, then the |ogical bytes should be
packed contiguously, disregarding transfer byte boundaries
and with any necessary paddi ng at the end.

Postel & Reynol ds [Page 12]

RFC 959 Cct ober 1985
File Transfer Protocol

When the data reaches the receiving host, it will be
transforned in a manner dependent on the |ogical byte size
and the particular host. This transformation nust be
invertible (i.e., an identical file can be retrieved if the
same paraneters are used) and should be well publicized by
the FTP i npl enent ors.

For exanple, a user sending 36-bit floating-point nunbers to
a host with a 32-bit word could send that data as Local byte
with a logical byte size of 36. The receiving host would
then be expected to store the |ogical bytes so that they
could be easily manipulated; in this exanple putting the
36-bit logical bytes into 64-bit double words shoul d
suffice.

In anot her exanple, a pair of hosts with a 36-bit word size
may send data to one another in words by using TYPE L 36.
The data would be sent in the 8-bit transm ssion bytes
packed so that 9 transm ssion bytes carried two host words.

3.1.1.5. FORMAT CONTROL

The types ASCI| and EBCDI C al so take a second (optional)
paranmeter; this is to indicate what kind of vertical format
control, if any, is associated with a file. The follow ng
data representation types are defined in FTP:

A character file may be transferred to a host for one of
three purposes: for printing, for storage and | ater

retrieval, or for processing. If a file is sent for
printing, the receiving host nust know how the vertica
format control is represented. 1In the second case, it nust

be possible to store a file at a host and then retrieve it
later in exactly the sane form Finally, it should be
possible to nmove a file fromone host to another and process
the file at the second host without undue trouble. A single
ASCI | or EBCDIC format does not satisfy all these
conditions. Therefore, these types have a second paraneter
specifying one of the followi ng three formats:

3.1.1.5.1. NON PRI NT
This is the default format to be used if the second

(format) parameter is omtted. Non-print format nust be
accepted by all FTP inpl enentations.

Postel & Reynol ds [Page 13]

RFC 959 Cct ober 1985
File Transfer Protocol

The file need contain no vertical format information. |If
it is passed to a printer process, this process my
assune standard val ues for spacing and nargins.

Normal ly, this format will be used with files destined
for processing or just storage.

3.1.1.5.2. TELNET FORVAT CONTROLS

The file contains ASCI|I/EBCDI C vertical format controls
(i.e., <CR>, <LF> <NL> <VT> <FF>) which the printer
process will interpret appropriately. <CRLF> in exactly
this sequence, al so denotes end-of-Iline.

3.1.1.5.2. CARRI AGE CONTROL (ASA)

The file contains ASA (FORTRAN) vertical format contro
characters. (See RFC 740 Appendi x C, and Conmuni cati ons
of the ACM Vol. 7, No. 10, p. 606, Cctober 1964.) 1In a
line or a record formatted according to the ASA Standard,
the first character is not to be printed. Instead, it
shoul d be used to determine the vertical novenment of the
paper which shoul d take place before the rest of the
record is printed.

The ASA Standard specifies the follow ng contro
characters:

Char act er Vertical Spacing

bl ank Move paper up one line

0 Move paper up two |ines

1 Move paper to top of next page

+ No nmovenent, i.e., overprint
Clearly there nmust be some way for a printer process to
di stingui sh the end of the structural entity. |If a file
has record structure (see below) this is no problem
records will be explicitly marked during transfer and
storage. |If the file has no record structure, the <CRLF>

end-of -1 i ne sequence is used to separate printing lines,
but these format effectors are overridden by the ASA
controls.

Postel & Reynol ds [Page 14]

RFC 959 Cct ober 1985
File Transfer Protocol

3.1.2. DATA STRUCTURES

In addition to different representation types, FTP allows the
structure of a file to be specified. Three file structures are
defined in FTP:

file-structure, where there is no internal structure and
the file is considered to be a
conti nuous sequence of data bytes,

record-structure, where the file is made up of sequentia
records,

and page-structure, where the file is nade up of independent
i ndexed pages.

File-structure is the default to be assuned if the STRUcture
conmand has not been used but both file and record structures
must be accepted for "text" files (i.e., files with TYPE ASCI

or EBCDIC) by all FTP inplenmentations. The structure of a file
will affect both the transfer node of a file (see the Section
on Transmi ssion Mddes) and the interpretation and storage of

the file.
The "natural" structure of a file will depend on which host
stores the file. A source-code file will usually be stored on

an |BM Mainfrane in fixed |l ength records but on a DEC TOPS- 20
as a stream of characters partitioned into |ines, for exanple
by <CRLF>. |If the transfer of files between such disparate
sites is to be useful, there nmust be sonme way for one site to
recogni ze the other’s assunptions about the file.

Wth sonme sites being naturally file-oriented and others
naturally record-oriented there may be problens if a file with
one structure is sent to a host oriented to the other. If a
text file is sent with record-structure to a host which is file
oriented, then that host should apply an interna

transformation to the file based on the record structure.
Qoviously, this transformation should be useful, but it nust

al so be invertible so that an identical file may be retrieved
using record structure.

In the case of a file being sent with file-structure to a
record-oriented host, there exists the question of what
criteria the host should use to divide the file into records
whi ch can be processed locally. |If this division is necessary,
the FTP inpl enentati on should use the end-of-1ine sequence,

Postel & Reynol ds [Page 15]

RFC 959 Cct ober 1985
File Transfer Protocol

<CRLF> for ASCII, or <NL> for EBCDIC text files, as the
delimter. |If an FTP inplenmentation adopts this technique, it
nust be prepared to reverse the transformation if the file is
retrieved with file-structure

3.1.2.1. FILE STRUCTURE

File structure is the default to be assuned if the STRUcture
command has not been used.

In file-structure there is no internal structure and the
file is considered to be a continuous sequence of data
byt es.

3.1.2.2. RECORD STRUCTURE

Record structures nust be accepted for "text" files (i.e.
files with TYPE ASCII or EBCDIC) by all FTP inplenmentations.

In record-structure the file is nade up of sequentia
records.

3.1.2.3. PAGE STRUCTURE

To transmit files that are di scontinuous, FTP defines a page
structure. Files of this type are sonetinmes known as
"random access files" or even as "holey files". 1In these
files there is sonetines other information associated with
the file as a whole (e.g., a file descriptor), or with a
section of the file (e.g., page access controls), or both.
In FTP, the sections of the file are called pages.

To provide for various page sizes and associ at ed
i nformati on, each page is sent with a page header. The page
header has the follow ng defined fields:

Header Length

The nunber of |ogical bytes in the page header
including this byte. The m nimum header length is 4.

Page | ndex
The | ogi cal page nunber of this section of the file.
This is not the transm ssion sequence nunber of this

page, but the index used to identify this page of the
file.

Postel & Reynol ds [Page 16]

RFC 959 Cct ober 1985
File Transfer Protocol
Data Length

The nunber of |ogical bytes in the page data. The
m ni mum data length is O.

Page Type

The type of page this is. The follow ng page types
are defined:

0 = Last Page
This is used to indicate the end of a paged
structured transm ssion. The header | ength nust
be 4, and the data | ength nust be O.

1 = Sinple Page
This is the normal type for sinple paged files
with no page | evel associated contro
i nformati on. The header |ength nust be 4.

2 = Descriptor Page

This type is used to transmt the descriptive
information for the file as a whole.

3 = Access Controll ed Page
This type includes an additional header field
for paged files with page | evel access contro
i nformati on. The header |ength must be 5.
Optional Fields
Further header fields may be used to supply per page
control information, for exanple, per page access
control
Al fields are one logical byte in length. The |ogical byte
size is specified by the TYPE command. See Appendix | for
further details and a specific case at the page structure.

A note of caution about paranmeters: a file nust be stored and
retrieved with the sane paraneters if the retrieved version is to

Postel & Reynol ds [Page 17]

RFC 959 Cct ober 1985
File Transfer Protocol

be identical to the version originally transmtted. Conversely,
FTP i npl ementations nust return a file identical to the origina
if the parameters used to store and retrieve a file are the sane.

3.2. ESTABLI SHI NG DATA CONNECTI ONS

The nechani cs of transferring data consists of setting up the data
connection to the appropriate ports and choosing the paraneters
for transfer. Both the user and the server-DIPs have a default
data port. The user-process default data port is the sane as the
control connection port (i.e., U. The server-process default
data port is the port adjacent to the control connection port
(i.e., L-1).

The transfer byte size is 8-bit bytes. This byte size is relevant
only for the actual transfer of the data; it has no bearing on
representation of the data within a host’s file system

The passive data transfer process (this nmay be a user-DIP or a
second server-DTP) shall "listen" on the data port prior to
sending a transfer request command. The FTP request command
determ nes the direction of the data transfer. The server, upon
receiving the transfer request, will initiate the data connection
to the port. Wen the connection is established, the data
transfer begins between DIP's, and the server-Pl sends a
confirmng reply to the user-PI

Every FTP inpl enentation nmust support the use of the default data
ports, and only the USER-PlI can initiate a change to non-default
ports.

It is possible for the user to specify an alternate data port by
use of the PORT command. The user may want a file dunped on a TAC
line printer or retrieved froma third party host. In the latter
case, the user-Pl sets up control connections with both
server-Pl’s. One server is then told (by an FTP conmand) to
"l'isten" for a connection which the other will initiate. The
user-Pl sends one server-Pl a PORT command indicating the data
port of the other. Finally, both are sent the appropriate
transfer conmands. The exact sequence of commands and replies
sent between the user-controller and the servers is defined in the
Section on FTP Replies.

In general, it is the server’s responsibility to maintain the data
connection--to initiate it and to close it. The exception to this

Postel & Reynol ds [Page 18]

RFC 95

9 Cct ober 1985

File Transfer Protocol

3. 3.

Post el

is when the user-DIP is sending the data in a transfer node that
requires the connection to be closed to indicate EO-. The server
MUST cl ose the data connection under the follow ng conditions:

1. The server has conpleted sending data in a transfer node
that requires a close to indicate EOF

2. The server receives an ABORT command fromthe user

3. The port specification is changed by a conmmand fromthe
user.

4. The control connection is closed legally or otherw se.
5. An irrecoverable error condition occurs.

QO herwi se the close is a server option, the exercise of which the
server must indicate to the user-process by either a 250 or 226

reply only.
DATA CONNECTI ON MANAGEMENT

Def ault Data Connection Ports: Al FTP inplenmentations nust
support use of the default data connection ports, and only the
User-PI may initiate the use of non-default ports.

Negoti ati ng Non-Default Data Ports: The User-Pl may specify a
non-default user side data port with the PORT command. The
User-Pl may request the server side to identify a non-default
server side data port with the PASV conmand. Since a connection
is defined by the pair of addresses, either of these actions is
enough to get a different data connection, still it is permtted
to do both commands to use new ports on both ends of the data
connecti on.

Reuse of the Data Connection: Wen using the stream node of data
transfer the end of the file nust be indicated by closing the
connection. This causes a problemif nultiple files are to be
transfered in the session, due to need for TCP to hold the
connection record for a tinme out period to guarantee the reliable
comuni cation. Thus the connection can not be reopened at once.

There are two solutions to this problem The first is to
negotiate a non-default port. The second is to use anot her
transfer node.

A comment on transfer npdes. The streamtransfer node is

& Reynol ds [Page 19]

RFC 959 Cct ober 1985
File Transfer Protocol

i nherently unreliable, since one can not determine if the
connection closed prematurely or not. The other transfer nodes
(Bl ock, Compressed) do not close the connection to indicate the
end of file. They have enough FTP encoding that the data
connection can be parsed to determi ne the end of the file.

Thus using these nodes one can | eave the data connection open
for multiple file transfers.

3.4. TRANSM SSI ON MODES

The next consideration in transferring data is choosing the
appropriate transm ssion node. There are three nodes: one which
formats the data and allows for restart procedures; one which also
conpresses the data for efficient transfer; and one which passes

the data with little or no processing. 1In this |ast case the node
interacts with the structure attribute to deternmine the type of
processing. In the conpressed nbde, the representation type

deternmines the filler byte.

Al data transfers nmust be conpleted with an end-of-file (ECF)
which may be explicitly stated or inplied by the closing of the
data connection. For files with record structure, all the

end-of -record markers (EOR) are explicit, including the final one.
For files transmtted in page structure a "l ast-page" page type is
used.

NOTE: In the rest of this section, byte neans "transfer byte"
except where explicitly stated ot herw se.

For the purpose of standardized transfer, the sending host will
translate its internal end of line or end of record denotation
into the representation prescribed by the transfer node and file
structure, and the receiving host will performthe inverse
translation to its internal denotation. An |IBM Minfranme record
count field nmay not be recogni zed at another host, so the

end-of -record informati on may be transferred as a two byte contro
code in Stream node or as a flagged bit in a Block or Conpressed
node descriptor. End-of-line in an ASCIl1 or EBCDIC file with no
record structure should be indicated by <CRLF> or <NL>,
respectively. Since these transformations inply extra work for
some systens, identical systems transferring non-record structured
text files might wish to use a binary representati on and stream
node for the transfer.

Postel & Reynol ds [Page 20]

RFC 959 Cct ober 1985
File Transfer Protocol

The foll owi ng transm ssi on nodes are defined in FTP:

3.4.1. STREAM MODE
The data is transnitted as a streamof bytes. There is no
restriction on the representation type used; record structures

are all owed.

In a record structured file EOR and EOF will each be indicated
by a two-byte control code. The first byte of the control code

will be all ones, the escape character. The second byte will
have the |l ow order bit on and zeros el sewhere for EOR and the
second | ow order bit on for ECF, that is, the byte will have

value 1 for EOR and value 2 for EOF. EOR and ECF nmay be

i ndi cated together on the last byte transmitted by turning both
| ow order bits on (i.e., the value 3). |If a byte of all ones
was i ntended to be sent as data, it should be repeated in the
second byte of the control code.

If the structure is a file structure, the EOF is indicated by
the sending host closing the data connection and all bytes are
dat a bytes.

3.4.2. BLOCK MODE

The file is transnmtted as a series of data bl ocks preceded by
one or nore header bytes. The header bytes contain a count
field, and descriptor code. The count field indicates the
total length of the data block in bytes, thus marking the

begi nni ng of the next data block (there are no filler bits).
The descriptor code defines: last block in the file (ECF) I ast
block in the record (EOR), restart marker (see the Section on
Error Recovery and Restart) or suspect data (i.e., the data
being transferred is suspected of errors and is not reliable).
This last code is NOT intended for error control within FTP.

It is notivated by the desire of sites exchanging certain types
of data (e.g., seismic or weather data) to send and receive al
the data despite |local errors (such as "magnetic tape read
errors"), but to indicate in the transm ssion that certain
portions are suspect). Record structures are allowed in this
node, and any representation type nmay be used.

The header consists of the three bytes. O the 24 bits of
header information, the 16 | ow order bits shall represent byte
count, and the 8 high order bits shall represent descriptor
codes as shown bel ow.

Postel & Reynol ds [Page 21]

Cct ober 1985

File Transfer Protocol

Bl ock Header
S S S +
| Descriptor | Byt e Count
| 8 bits | 16 bits |
e oo e oo oo +

The descriptor codes are indicated by bit flags in the
descriptor byte. Four codes have been assigned, where each
code nunber is the decinal value of the corresponding bit in
the byte.

Code Meani ng
128 End of data block is EOR
64 End of data block is EOF
32 Suspected errors in data bl ock
16 Data block is a restart narker

Wth this encoding, nore than one descriptor coded condition
may exist for a particular block. As many bits as necessary
may be fl agged.

The restart nmarker is enbedded in the data stream as an

i ntegral number of 8-bit bytes representing printable
characters in the | anguage bei ng used over the contro
connection (e.g., default--NVT-ASCI|I). <SP> (Space, in the
appropriate | anguage) nust not be used WTHI N a restart narker

For exanple, to transmit a six-character marker, the follow ng
woul d be sent:

Fomm e e Fomm e e Fomm e e +
| Descrptr| Byte count |
| code= 16| =6

Fomm e m oo - Fomm e m oo - Fomm e m oo - +
Fomm oo Fomm oo Fomm oo +

& Reynol ds [Page 22]

RFC 959 Cct ober 1985
File Transfer Protocol

3.4.3. COVPRESSED MODE

There are three kinds of information to be sent: regular data,
sent in a byte string; conpressed data, consisting of
replications or filler; and control information, sent in a

two- byt e escape sequence. |If n>0 bytes (up to 127) of regular
data are sent, these n bytes are preceded by a byte with the
left-nbst bit set to 0 and the right-nmost 7 bits containing the
nunber n.

Byte string:

1 7 8 8
e 2 e S e
| 0l n || d(1) | d(n)
T S S S S S T S S T S e
N N

| ---n bytes---
of data

String of n data bytes d(1),..., d(n)
Count n nust be positive.

To conpress a string of n replications of the data byte d, the
following 2 bytes are sent:

Replicated Byte

2 6 8
T S S S A A S S e e
|1 0] n || d |

T T wi S SIS S S S

A string of n filler bytes can be conpressed into a single
byte, where the filler byte varies with the representation
type. If the type is ASCII or EBCDIC the filler byte is <SP>
(Space, ASCI|I code 32, EBCDIC code 64). If the type is |Imge
or Local byte the filler is a zero byte.

Filler String:

2 6
i T S S
|1 1 n |

B e S S e

The escape sequence is a double byte, the first of which is the

Postel & Reynol ds [Page 23]

RFC 959 Cct ober 1985
File Transfer Protocol

escape byte (all zeros) and the second of which contains
descriptor codes as defined in Block node. The descriptor
codes have the sane neaning as in Block node and apply to the
succeedi ng string of bytes.

Conpressed node is useful for obtaining increased bandw dth on
very large network transmissions at a little extra CPU cost.

It can be nost effectively used to reduce the size of printer
files such as those generated by RJE hosts.

3.5. ERROR RECOVERY AND RESTART

There is no provision for detecting bits |ost or scranbled in data
transfer; this level of error control is handled by the TCP
However, a restart procedure is provided to protect users from
gross systemfailures (including failures of a host, an

FTP- process, or the underlying network).

The restart procedure is defined only for the bl ock and conpressed
nodes of data transfer. It requires the sender of data to insert
a special marker code in the data streamw th sone narker
information. The narker information has neaning only to the
sender, but must consist of printable characters in the default or
negoti at ed | anguage of the control connection (ASCI|I or EBCD C).
The marker could represent a bit-count, a record-count, or any
other information by which a systemmy identify a data
checkpoint. The receiver of data, if it inplenents the restart
procedure, would then mark the correspondi ng position of this
marker in the receiving system and return this information to the
user.

In the event of a systemfailure, the user can restart the data
transfer by identifying the marker point with the FTP restart
procedure. The following exanple illustrates the use of the
restart procedure.

The sender of the data inserts an appropriate marker block in the
data stream at a convenient point. The receiving host marks the
corresponding data point inits file systemand conveys the | ast
known sender and receiver marker information to the user, either
directly or over the control connection in a 110 reply (depending
on who is the sender). 1In the event of a systemfailure, the user
or controller process restarts the server at the |ast server

mar ker by sending a restart command with server’s marker code as
its argunent. The restart conmand is transmitted over the contro

Postel & Reynol ds [Page 24]

RFC 959 Cct ober 1985
File Transfer Protocol

connection and is imediately foll owed by the command (such as
RETR, STOR or LIST) which was bei ng executed when the system
failure occurred.

4. FI LE TRANSFER FUNCTI ONS

The conmmuni cati on channel fromthe user-Pl to the server-Pl is
established as a TCP connection fromthe user to the standard server
port. The user protocol interpreter is responsible for sending FTP
conmands and interpreting the replies received; the server-P

i nterprets conmands, sends replies and directs its DIP to set up the
data connection and transfer the data. |If the second party to the
data transfer (the passive transfer process) is the user-DIP, then it
is governed through the internal protocol of the user-FTP host; if it
is a second server-DTP, then it is governed by its Pl on comand from
the user-Pl. The FTP replies are discussed in the next section. In
the description of a few of the commands in this section, it is

hel pful to be explicit about the possible replies.

4.1. FTP COMVANDS
4.1.1. ACCESS CONTROL COMVANDS

The foll owi ng commands specify access control identifiers
(command codes are shown in parentheses).

USER NAME (USER)

The argunment field is a Telnet string identifying the user
The user identification is that which is required by the
server for access to its file system This command wl |
normal ly be the first command transmtted by the user after
the control connections are made (sonme servers nmay require
this). Additional identification information in the form of
a password and/or an account comrand rmay al so be required by
some servers. Servers may allow a new USER comrand to be
entered at any point in order to change the access contro
and/ or accounting information. This has the effect of
flushing any user, password, and account infornmation already
suppl i ed and begi nning the | ogin sequence again. Al

transfer paraneters are unchanged and any file transfer in
progress is conpleted under the old access contro

par anet er s.

Postel & Reynol ds [Page 25]

RFC 959 Cct ober 1985
File Transfer Protocol

PASSWORD (PASS)

The argunment field is a Telnet string specifying the user’s
password. This conmand nust be i mredi ately preceded by the
user nane comand, and, for sonme sites, conpletes the user’s

identification for access control. Since password
information is quite sensitive, it is desirable in genera
to "mask" it or suppress typeout. It appears that the
server has no fool proof way to achieve this. It is

therefore the responsibility of the user-FTP process to hide
the sensitive password information

ACCOUNT (ACCT)

The argunment field is a Telnet string identifying the user’s
account. The command is not necessarily related to the USER
conmand, as sone sites may require an account for |ogin and
others only for specific access, such as storing files. 1In
the latter case the command may arrive at any time.

There are reply codes to differentiate these cases for the
aut omati on: when account information is required for login
the response to a successful PASSword command is reply code
332. On the other hand, if account information is NOT
required for login, the reply to a successful PASSword
conmmand is 230; and if the account information is needed for
a command issued later in the dial ogue, the server should
return a 332 or 532 reply dependi ng on whether it stores
(pendi ng recei pt of the ACCounT conmmand) or discards the
command, respectively.

CHANGE WORKI NG DI RECTCRY (QWD)

This command allows the user to work with a different
directory or dataset for file storage or retrieval w thout
altering his login or accounting information. Transfer
paranmeters are simlarly unchanged. The argunment is a

pat hname specifying a directory or other system dependent
file group designator.

CHANGE TO PARENT DI RECTORY (CDUP)
This command is a special case of CAD, and is included to

simplify the inplenmentation of prograns for transferring
directory trees between operating systens having different

Postel & Reynol ds [Page 26]

RFC 959 Cct ober 1985
File Transfer Protocol

syntaxes for nam ng the parent directory. The reply codes
shall be identical to the reply codes of CWD. See
Appendix Il for further details.

STRUCTURE MOUNT (SMNT)

This command allows the user to nmount a different file
system data structure without altering his login or
accounting information. Transfer paraneters are simlarly
unchanged. The argunent is a pathnane specifying a
directory or other system dependent file group designator.

REI NI TI ALl ZE (REI N)

This command term nates a USER, flushing all 1/0O and account
i nfornmation, except to allow any transfer in progress to be
conpleted. Al paraneters are reset to the default settings
and the control connection is left open. This is identica
to the state in which a user finds hinself immediately after
the control connection is opened. A USER comand nmay be
expected to foll ow

LOGOUT (QUI T)

This command terminates a USER and if file transfer is not
in progress, the server closes the control connection. |If
file transfer is in progress, the connection will remain
open for result response and the server will then close it.
If the user-process is transferring files for several USERs
but does not wish to close and then reopen connections for
each, then the REIN conmand shoul d be used instead of QUIT.

An unexpected close on the control connection will cause the
server to take the effective action of an abort (ABOR) and a
| ogout (QUIT).

4.1.2. TRANSFER PARAMETER COVIVANDS

Al data transfer paraneters have default values, and the
conmands specifying data transfer paraneters are required only
if the default paranmeter values are to be changed. The default
value is the last specified value, or if no value has been
specified, the standard default value is as stated here. This
inmplies that the server must "remenber” the applicable default
val ues. The commands may be in any order except that they nust
precede the FTP service request. The follow ng conmands
specify data transfer paraneters:

Postel & Reynol ds [Page 27]

RFC 959
File Transfer

Pr ot oco

DATA PORT (PORT)

The ar gunent
to be used in data connection

the user and server data ports,
circunstances this command and its
this command is used, the argunent
32-bit internet host address and a
This address information is broken
val ue of each field is transmtted
character string representation).

Cct ober 1985

is a HOST- PORT specification for the data port

There are defaults for both
and under nor nma
reply are not needed. |If

is the concatenation of a
16-bit TCP port address.
into 8-bit fields and the
as a deci mal nunber (in
The fiel ds are separated

by conmas. A port conmand woul d be:

PORT h1, h2, h3, h4, p1, p2

where hl is the high order 8 bits of the internet host
addr ess.

PASSI VE (PASV)

This command requests the server-DIP to "listen" on a data
port (which is not its default data port) and to wait for a
connection rather than initiate one upon receipt of a
transfer conmand. The response to this conmand includes the
host and port address this server is listening on.

REPRESENTATI ON TYPE (TYPE)

The argurment specifies the representation type as descri bed
in the Section on Data Representation and Storage. Severa
types take a second paraneter. The first paranmeter is
denoted by a single Telnet character, as is the second
Format parameter for ASCI|I and EBCDI C, the second paraneter
for local byte is a decinal integer to indicate Bytesize.
The paraneters are separated by a <SP> (Space, ASCI| code
32).

The foll owi ng codes are assigned for type:

\ /
A - ASCI | | N - Non-print
|-><-] T - Telnet format effectors
E - EBCDI C | C- Carriage Control (ASA)
/ \
I - |l mage
L <byte size> - Local byte Byte size

Postel & Reynol ds [Page 28]

RFC 959 Cct ober 1985
File Transfer Protocol

The default representation type is ASCII Non-print. |[If the
Format parameter is changed, and later just the first
argunent is changed, Format then returns to the Non-print
defaul t.

FI LE STRUCTURE (STRU)

The argurment is a single Tel net character code specifying
file structure described in the Section on Data
Repr esentati on and Storage.

The foll owi ng codes are assigned for structure:

F - File (no record structure)
R - Record structure
P - Page structure

The default structure is File.
TRANSFER MODE (MODE)

The argurment is a single Telnet character code specifying
the data transfer nodes described in the Section on
Transm ssi on Modes.

The foll owi ng codes are assigned for transfer nodes:

S - Stream
B - Bl ock
C - Conpressed
The default transfer npde is Stream
4.1.3. FTP SERVI CE COMMANDS

The FTP service commands define the file transfer or the file
system function requested by the user. The argunent of an FTP
service command will normally be a pathname. The syntax of
pat hnanmes nmust conformto server site conventions (with
standard defaults applicable), and the | anguage conventions of
the control connection. The suggested default handling is to
use the last specified device, directory or file name, or the
standard default defined for |local users. The commands may be
in any order except that a "rename from' command nust be
followed by a "rename to" comand and the restart command nust
be followed by the interrupted service command (e.g., STOR or
RETR). The data, when transferred in response to FTP service

Postel & Reynol ds [Page 29]

RFC 959 Cct ober 1985
File Transfer Protocol

conmands, shall always be sent over the data connection, except
for certain informative replies. The follow ng conmands
specify FTP service requests:

RETRI EVE (RETR)

Thi s command causes the server-DIP to transfer a copy of the
file, specified in the pathnane, to the server- or user-DIP
at the other end of the data connection. The status and

contents of the file at the server site shall be unaffected.

STORE (STOR)

Thi s command causes the server-DIP to accept the data
transferred via the data connection and to store the data as
afile at the server site. |If the file specified in the

pat hnanme exists at the server site, then its contents shal
be replaced by the data being transferred. A newfile is
created at the server site if the file specified in the

pat hname does not al ready exist.

STORE UNI QUE (STOU)

Thi s command behaves |ike STOR except that the resultant
file is to be created in the current directory under a nane
unique to that directory. The 250 Transfer Started response
nmust include the nane generated.

APPEND (with create) (APPE)

Thi s command causes the server-DIP to accept the data
transferred via the data connection and to store the data in
afile at the server site. |If the file specified in the

pat hnane exists at the server site, then the data shall be
appended to that file; otherwise the file specified in the
pat hname shall be created at the server site.

ALLOCATE (ALLO)

This command may be required by sone servers to reserve
sufficient storage to accommopdate the new file to be
transferred. The argument shall be a decinal integer
representing the nunmber of bytes (using the |ogical byte
size) of storage to be reserved for the file. For files
sent with record or page structure a maxi mumrecord or page
size (in logical bytes) might also be necessary; this is

i ndicated by a decinmal integer in a second argunent field of

Postel & Reynol ds [Page 30]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

the command. This second argument is optional, but when
present should be separated fromthe first by the three

Tel net characters <SP> R <SP>. This command shall be
followed by a STORe or APPEnd command. The ALLO command
shoul d be treated as a NOOP (no operation) by those servers
whi ch do not require that the maxi mum size of the file be
decl ared beforehand, and those servers interested in only
the maxi mum record or page size should accept a dunmy val ue
in the first argument and ignore it.

RESTART (REST)

The argument field represents the server marker at which
file transfer is to be restarted. This conmand does not
cause file transfer but skips over the file to the specified
dat a checkpoint. This conmand shall be inmediately followed
by the appropriate FTP servi ce comand whi ch shall cause
file transfer to resune.

RENAME FROM (RNFR)

Thi s command specifies the old pathnane of the file which is
to be renamed. This comand nust be i mediately foll owed by
a "renane to" command specifying the new file pathnamne.

RENAME TO (RNTO)

Thi s command specifies the new pathnane of the file
specified in the i nmediately preceding "renanme front
conmand. Together the two commands cause a file to be
r enamed.

ABORT (ABOR)

This command tells the server to abort the previous FTP
servi ce command and any associ ated transfer of data. The
abort command may require "special action", as discussed in
the Section on FTP Conmands, to force recognition by the
server. No action is to be taken if the previous comand
has been conpl eted (including data transfer). The contro
connection is not to be closed by the server, but the data
connection nust be cl osed.

There are two cases for the server upon receipt of this

conmmand: (1) the FTP service conmand was al ready conpl eted
or (2) the FTP service command is still in progress.

& Reynol ds [Page 31]

RFC 959 Cct ober 1985
File Transfer Protocol

In the first case, the server closes the data connection
(if it is open) and responds with a 226 reply, indicating
that the abort command was successful ly processed.

In the second case, the server aborts the FTP service in
progress and cl oses the data connection, returning a 426
reply to indicate that the service request term nated
abnormal ly. The server then sends a 226 reply,

i ndicating that the abort comand was successfully
processed.

DELETE (DELE)

Thi s command causes the file specified in the pathname to be
del eted at the server site. |If an extra level of protection
is desired (such as the query, "Do you really wish to

del ete?"), it should be provided by the user-FTP process.

REMOVE DI RECTORY (RVD)

This command causes the directory specified in the pathnane
to be renpved as a directory (if the pathname is absol ute)
or as a subdirectory of the current working directory (if
the pathname is relative). See Appendix 11

MAKE DI RECTORY (MKD)

This command causes the directory specified in the pathnane
to be created as a directory (if the pathname is absol ute)
or as a subdirectory of the current working directory (if
the pathname is relative). See Appendix |1

PRI NT WORKI NG DI RECTORY (PVD)

This command causes the nane of the current working
directory to be returned in the reply. See Appendix |1

LI ST (LI ST)

This command causes a list to be sent fromthe server to the
passive DTP. |f the pathnane specifies a directory or other
group of files, the server should transfer a list of files
in the specified directory. |If the pathname specifies a
file then the server should send current information on the
file. A null argunent inplies the user’s current working or
default directory. The data transfer is over the data
connection in type ASCIl or type EBCDI C. (The user mnust

Postel & Reynol ds [Page 32]

RFC 959 Cct ober 1985
File Transfer Protocol

ensure that the TYPE is appropriately ASCI|I or EBCDI Q).
Since the information on a file may vary widely from system
to system this information may be hard to use automatically
in a program but nay be quite useful to a human user

NAVE LI ST (NLST)

This command causes a directory listing to be sent from
server to user site. The pathnane should specify a
directory or other systemspecific file group descriptor; a
nul | argurment inplies the current directory. The server
will return a stream of names of files and no other
information. The data will be transferred in ASCI| or
EBCDI C type over the data connection as valid pathnane
strings separated by <CRLF> or <NL>. (Again the user nust
ensure that the TYPE is correct.) This comand is intended
to return information that can be used by a programto
further process the files automatically. For exanple, in
the inplementation of a "multiple get" function.

SI TE PARAMETERS ('Sl TE)

This command is used by the server to provide services
specific to his systemthat are essential to file transfer
but not sufficiently universal to be included as comands in
the protocol. The nature of these services and the
specification of their syntax can be stated in a reply to
the HELP SI TE command.

SYSTEM (SYST)

This command is used to find out the type of operating
systemat the server. The reply shall have as its first
word one of the systemnanes listed in the current version
of the Assigned Nunbers document [4].

STATUS (STAT)

This command shall cause a status response to be sent over
the control connection in the formof a reply. The command
may be sent during a file transfer (along with the Telnet IP
and Synch signal s--see the Section on FTP Comrands) in which

case the server will respond with the status of the
operation in progress, or it may be sent between file
transfers. |In the latter case, the command may have an
argunent field. |If the argunent is a pathname, the command
is anal ogous to the "list" command except that data shall be

Postel & Reynol ds [Page 33]

RFC 959 Cct ober 1985
File Transfer Protocol

transferred over the control connection. |If a partia

pat hname is given, the server may respond with a list of
file names or attributes associated with that specification
If no argunment is given, the server should return genera
status informati on about the server FTP process. This
shoul d i nclude current values of all transfer paranmeters and
the status of connections.

HELP (HELP)

This command shall cause the server to send hel pfu
information regarding its inplenentation status over the
control connection to the user. The comrand may take an
argunent (e.g., any command nane) and return nore specific
information as a response. The reply is type 211 or 214.

It is suggested that HELP be all owed before entering a USER
command. The server may use this reply to specify
site-dependent paraneters, e.g., in response to HELP SITE

NOCP (NOOP)

Thi s command does not affect any paraneters or previously
entered conmmands. It specifies no action other than that the
server send an OK reply.

The File Transfer Protocol follows the specifications of the Tel net
protocol for all communications over the control connection. Since
the | anguage used for Tel net comruni cation nmay be a negoti at ed
option, all references in the next two sections will be to the

"Tel net | anguage" and the corresponding "Tel net end-of-1ine code".
Currently, one may take these to nean NVT-ASCI| and <CRLF>. No other
specifications of the Tel net protocol will be cited.

FTP conmmands are "Tel net strings" term nated by the "Tel net end of
line code". The command codes thensel ves are al phabetic characters
term nated by the character <SP> (Space) if paranmeters follow and

Tel net- EQL ot herwi se. The command codes and the senmantics of
conmands are described in this section; the detailed syntax of
conmands is specified in the Section on Conmands, the reply sequences
are discussed in the Section on Sequenci ng of Commands and Repli es,
and scenarios illustrating the use of commands are provided in the
Section on Typical FTP Scenari os.

FTP commands may be partitioned as those specifying access-contro
identifiers, data transfer paraneters, or FTP service requests.
Certai n commands (such as ABOR, STAT, QUIT) may be sent over the
control connection while a data transfer is in progress. Sone

Postel & Reynol ds [Page 34]

RFC 959 Cct ober 1985
File Transfer Protocol

servers may not be able to nonitor the control and data connections
si mul taneously, in which case sone special action will be necessary
to get the server’'s attention. The follow ng ordered format is
tentatively reconmended:

1. User systeminserts the Telnet "Interrupt Process" (IP) signa
in the Tel net stream

2. User system sends the Tel net "Synch" signal

3. User systeminserts the command (e.g., ABOR) in the Tel net
stream

4. Server Pl, after receiving "IP", scans the Telnet streamfor
EXACTLY ONE FTP command

(For other servers this may not be necessary but the actions |isted
above shoul d have no unusual effect.)

4.2. FTP REPLIES

Replies to File Transfer Protocol commands are devised to ensure
the synchroni zati on of requests and actions in the process of file
transfer, and to guarantee that the user process always knows the
state of the Server. Every command nust generate at | east one
reply, although there may be nore than one; in the latter case,
the multiple replies nust be easily distinguished. In addition
sonme commands occur in sequential groups, such as USER, PASS and
ACCT, or RNFR and RNTO. The replies show the existence of an
internediate state if all preceding commands have been successful .
A failure at any point in the sequence necessitates the repetition
of the entire sequence fromthe begi nning.

The details of the comand-reply sequence are nmade explicit in
a set of state diagrans bel ow

An FTP reply consists of a three digit nunmber (transmtted as
three al phanuneric characters) foll owed by sonme text. The numnber
is intended for use by autonmata to determine what state to enter

next; the text is intended for the human user. It is intended
that the three digits contain enough encoded infornation that the
user-process (the User-Pl) will not need to exam ne the text and

may either discard it or pass it on to the user, as appropriate.
In particular, the text nmay be server-dependent, so there are
likely to be varying texts for each reply code.

Areply is defined to contain the 3-digit code, followed by Space

Postel & Reynol ds [Page 35]

RFC 959 Cct ober 1985
File Transfer Protocol

<SP>, followed by one line of text (where some maxi mumline |ength
has been specified), and term nated by the Tel net end-of-1line
code. There will be cases however, where the text is |onger than
a single line. |In these cases the conplete text must be bracketed
so the User-process knows when it nay stop reading the reply (i.e.
stop processing input on the control connection) and go do ot her
things. This requires a special format on the first line to
indicate that nore than one line is comng, and another on the
last line to designate it as the last. At |east one of these nust
contain the appropriate reply code to indicate the state of the
transaction. To satisfy all factions, it was decided that both
the first and last |ine codes should be the samne.

Thus the format for multi-line replies is that the first |line
will begin with the exact required reply code, followed

i medi ately by a Hyphen, "-" (also known as M nus), followed by
text. The last line will begin with the same code, followed

i mredi ately by Space <SP>, optionally sone text, and the Tel net
end- of -1 i ne code.

For exanpl e:
123-First line
Second | i ne
234 A line beginning with nunbers
123 The last line

The user-process then sinply needs to search for the second
occurrence of the sane reply code, followed by <SP> (Space), at
the beginning of a line, and ignore all internediary lines. |If
an intermediary line begins with a 3-digit nunber, the Server
must pad the front to avoid confusion

This schene all ows standard systemroutines to be used for
reply information (such as for the STAT reply), with
"artificial" first and last lines tacked on. |In rare cases
where these routines are able to generate three digits and a
Space at the beginning of any line, the begi nning of each
text line should be offset by sone neutral text, |ike Space.

Thi s schene assunes that multi-line replies may not be nested.

The three digits of the reply each have a special significance.
This is intended to allow a range of very sinple to very
sophi sti cated responses by the user-process. The first digit
denot es whet her the response is good, bad or inconplete.
(Referring to the state diagran), an unsophisticated user-process
will be able to determine its next action (proceed as pl anned,

Postel & Reynol ds [Page 36]

RFC 959 Cct ober 1985
File Transfer Protocol

redo, retrench, etc.) by sinply examining this first digit. A
user-process that wants to know approxi mately what kind of error
occurred (e.g. file systemerror, comrand syntax error) nay

exam ne the second digit, reserving the third digit for the finest
gradation of information (e.g., RNTO command wi thout a preceding
RNFR) .

There are five values for the first digit of the reply code:
lyz Positive Prelimnary reply

The requested action is being initiated; expect another
reply before proceeding with a new command. (The
user - process sendi ng anot her conmand before the
conpletion reply would be in violation of protocol; but
server-FTP processes shoul d queue any comrmands t hat
arrive while a preceding command is in progress.) This
type of reply can be used to indicate that the comuand
was accepted and the user-process may now pay attention
to the data connections, for inplenentations where
simul taneous nmonitoring is difficult. The server-FTP
process may send at nobst, one lyz reply per comrand.

2yz Positive Completion reply

The requested action has been successfully conpleted. A
new request may be initiated.

3yz Positive Internmediate reply

The conmmand has been accepted, but the requested action
is being held in abeyance, pending receipt of further
information. The user should send another conmmand
specifying this information. This reply is used in
command sequence groups.

4yz Transi ent Negative Conpletion reply

The command was not accepted and the requested action did
not take place, but the error condition is tenmporary and
the action nay be requested again. The user should
return to the beginning of the command sequence, if any.
It is difficult to assign a meaning to "transient"”,
particularly when two distinct sites (Server- and

User - processes) have to agree on the interpretation

Each reply in the 4yz category m ght have a slightly
different time value, but the intent is that the

Postel & Reynol ds [Page 37]

RFC 959 Cct ober 1985
File Transfer Protocol

user-process is encouraged to try again. A rule of thunb
in determining if areply fits into the 4yz or the 5yz
(Permanent Negative) category is that replies are 4yz if
the commands can be repeated wi thout any change in
conmand formor in properties of the User or Server

(e.g., the command is spelled the same with the sane
argunents used; the user does not change his file access
or user nane; the server does not put up a new

i mpl enent ation.)

S5yz Per manent Negative Conpletion reply

The conmmand was not accepted and the requested action did
not take place. The User-process is discouraged from
repeating the exact request (in the same sequence). Even
sone "pernanent” error conditions can be corrected, so
the human user may want to direct his User-process to
reinitiate the comand sequence by direct action at sone
point in the future (e.g., after the spelling has been
changed, or the user has altered his directory status.)

The foll owi ng function groupings are encoded in the second
digit:

x0z Syntax - These replies refer to syntax errors,
syntactically correct commands that don’'t fit any
functional category, uninplenmented or superfluous
comrands.

x1z Information - These are replies to requests for
i nformation, such as status or help.

X2z Connections - Replies referring to the control and
data connecti ons.

x3z Aut henti cation and accounting - Replies for the login
process and accounting procedures.

x4z Unspecified as yet.
x5z File system - These replies indicate the status of the
Server file systemvis-a-vis the requested transfer or
other file system acti on.
The third digit gives a finer gradation of neaning in each of

the function categories, specified by the second digit. The
list of replies beloww Il illustrate this. Note that the text

Postel & Reynol ds [Page 38]

RFC 959 Cct ober 1985
File Transfer Protocol

associ ated with each reply is recommended, rather than

mandat ory, and may even change according to the command wth
which it is associated. The reply codes, on the other hand,
nmust strictly follow the specifications in the last section
that is, Server inplenentations should not invent new codes for
situations that are only slightly different fromthe ones
descri bed here, but rather shoul d adapt codes already defi ned.

A command such as TYPE or ALLO whose successful execution
does not offer the user-process any new information wll
cause a 200 reply to be returned. |I|f the conmand is not

i mpl enented by a particul ar Server-FTP process because it
has no rel evance to that conmputer system for exanple ALLO
at a TOPS20 site, a Positive Completion reply is stil
desired so that the sinple User-process knows it can proceed
with its course of action. A 202 reply is used in this case
with, for exanple, the reply text: "No storage allocation
necessary." |If, on the other hand, the command requests a
non-site-specific action and i s uninpl enented, the response
is 502. A refinement of that is the 504 reply for a comrand
that is inplenented, but that requests an uninpl enented

par anet er.

4.2.1 Reply Codes by Function G oups

200 Command okay.
500 Syntax error, command unrecogni zed.
This may include errors such as comand |ine too |ong.
501 Syntax error in paraneters or argunents.
202 Command not inpl emented, superfluous at this site.
502 Command not i npl ement ed.
503 Bad sequence of commands.
504 Command not inplenented for that paranmeter.

Postel & Reynol ds [Page 39]

RFC 959

File Transfer

110

211
212
213
214

215

120
220
221

421

125
225
425
226

426
227

230
530
331
332
532

Cct ober 1985
Pr ot oco

Restart marker reply.
In this case, the text is exact and not left to the
particular inplementation; it rmust read:

MARK yyyy = nmmm
Where yyyy is User-process data stream marker, and nmmm
server’s equival ent marker (note the spaces between markers
and "="
System status, or systemhelp reply.
Directory status.
File status.
Hel p nessage.
On how to use the server or the meaning of a particular
non- st andard command. This reply is useful only to the
human user.
NAME system type
VWhere NAME is an official systemnanme fromthe list in the
Assi gned Nunbers docunent.

Service ready in nnn mnutes.

Servi ce ready for new user.

Service closing control connection

Logged out if appropriate.

Service not available, closing control connection
This may be a reply to any command if the service knows it
must shut down.

Dat a connection al ready open; transfer starting.
Dat a connection open; no transfer in progress.

Can’'t open data connection

Cl osing data connection

Requested file action successful (for example, file
transfer or file abort).

Connection closed; transfer aborted.

Entering Passive Mde (hl, h2, h3, h4, pl, p2).

User | ogged in, proceed.

Not | ogged in.

User nanme okay, need password.
Need account for |ogin.

Need account for storing files.

Postel & Reynol ds [Page 40]

RFC 959

File Transfer

Post el

150
250
257
350
450

550
451
551
452

552

553

Cct ober
Pr ot oco

File status okay; about to open data connecti on.
Requested file action okay, conpleted.

"PATHNAME" cr eat ed

Requested file action pending further information.
Requested file action not taken

File unavail able (e.g., file busy).

Request ed action not taken.

File unavail able (e.g., file not found, no access).
Requested action aborted. Local error in processing.
Request ed action aborted. Page type unknown.
Request ed action not taken

I nsufficient storage space in system

Requested file action aborted.

Exceeded storage allocation (for current directory or
dat aset) .

Request ed action not taken

File nane not all owed.

4.2.2 Nureric Order List of Reply Codes

110

120
125
150

& Reynol ds

Restart marker reply.
In this case, the text is exact and not left to the
particul ar inplementation; it rust read:

MARK yyyy = nmmmmm

1985

VWere yyyy is User-process data stream nmarker, and nmmmm
server’s equival ent marker (note the spaces between markers

and "="

Service ready in nnn mnutes.

Dat a connection al ready open; transfer starting.
File status okay; about to open data connection.

[Page 41]

RFC 959

File Transfer

200
202
211
212
213
214

215

220
221

225
226

227
230
250
257

331
332
350

421
425
426
450

451
452

Cct ober 1985
Pr ot oco

Command okay.

Conmand not i nmpl enented, superfluous at this site.
System status, or systemhelp reply.

Directory status.

File status.

Hel p nessage.

On how to use the server or the meaning of a particular
non- st andard command. This reply is useful only to the
human user.

NAME system type

VWhere NAME is an official systemname fromthe list in the
Assi gned Nunbers docunent.

Servi ce ready for new user.

Service closing control connection

Logged out if appropriate.

Dat a connection open; no transfer in progress.

Cl osing data connection

Requested file action successful (for example, file
transfer or file abort).

Entering Passive Mde (hl, h2, h3, h4, pl, p2).

User | ogged in, proceed.

Requested file action okay, conpleted.

"PATHNAME" creat ed

User nanme okay, need password.
Need account for |ogin.
Requested file action pending further infornmation.

Service not available, closing control connection

This may be a reply to any command if the service knows it
must shut down.

Can’t open data connection

Connection cl osed; transfer aborted.

Requested file action not taken

File unavail able (e.g., file busy).

Requested action aborted: local error in processing.
Request ed action not taken.

I nsufficient storage space in system

Postel & Reynol ds [Page 42]

RFC 9

File Transfer

59

500

501
502
503
504
530
532
550

551
552

553

Cct ober
Pr ot oco

Syntax error, command unrecogni zed.

This may include errors such as command |ine too |ong.
Syntax error in paranmeters or arguments

Conmand not i npl enent ed.

Bad sequence of conmands.

Command not inplenmented for that paraneter.

Not | ogged i n.

Need account for storing files.

Request ed action not taken

File unavailable (e.g., file not found, no access).
Requested action aborted: page type unknown.
Requested file action aborted.

Exceeded storage allocation (for current directory or
dat aset) .

Request ed action not taken

File nane not all owed.

5. DECLARATI VE SPECI FI CATI ONS

5.

Post el

1

In order to nmake FTP wor kabl e wi t hout needl ess error

M NI MUM | MPLEMENTATI ON

followi ng mnimuminplenmentation is required for all servers:

TYPE - ASCI I Non-print

MODE - Stream
STRUCTURE - File, Record
COWANDS - USER, QUIT, PORT,

TYPE, MODE, STRU

for the default val ues
RETR, STOR,
NOOP

The default values for transfer paranmeters are:

TYPE - ASCI I Non-print

MODE - Stream

STRU - File
Al'l hosts nust accept the above as the standard defaults.
& Reynol ds

nessages,

1985

t he

[Page 43]

RFC 959 Cct ober 1985
File Transfer Protocol

5.2. CONNECTI ONS

The server protocol interpreter shall "listen" on Port L. The
user or user protocol interpreter shall initiate the full-duplex
control connection. Server- and user- processes should follow the
conventions of the Telnet protocol as specified in the
ARPA- | nt ernet Protocol Handbook [1]. Servers are under no
obligation to provide for editing of command |lines and may require
that it be done in the user host. The control connection shall be
cl osed by the server at the user’s request after all transfers and
replies are conpl eted

The user-DTP nmust "listen" on the specified data port; this may be
the default user port (U or a port specified in the PORT command
The server shall initiate the data connection fromhis own default

data port (L-1) using the specified user data port. The direction
of the transfer and the port used will be deternmined by the FTP
servi ce conmand.

Note that all FTP inplenentation nust support data transfer using
the default port, and that only the USER-PI may initiate the use
of non-default ports.

When data is to be transferred between two servers, A and B (refer
to Figure 2), the user-Pl, C, sets up control connections wth
both server-Pl’s. One of the servers, say A is then sent a PASV
conmmand telling himto "listen" on his data port rather than
initiate a connection when he receives a transfer service conmand.
When the user-Pl receives an acknow edgnent to the PASV command,
whi ch includes the identity of the host and port being |istened
on, the user-Pl then sends A's port, a, to Bin a PORT command; a
reply is returned. The user-Pl may then send the corresponding
service conmands to A and B. Server B initiates the connection
and the transfer proceeds. The command-reply sequence is listed
bel ow where the nmessages are vertically synchronous but

hori zontal I y asynchronous:

Postel & Reynol ds [Page 44]

RFC 959
File Transfer Protocol
User-Pl - Server A
C->A : Connect
C->A : PASV
A->C : 227 Entering Passive Mde.
C>A : STOR
B- >A

The data connecti on shal

Fi gure 3

be cl osed by the server

Cct ober 1985

User-Pl - Server B

C->B : Connect

Al, A2, A3, A4, al, a2

C->B : PORT Al, A2, A3, A4, al, a2
B->C : 200 OCkay
C->B : RETR

Connect to HOST-A, PORT-a

under the

conditions described in the Section on Establishing Data

Connecti ons.

user must
transfer

connection is left open,
and the user-P

issuing a

request).

the server
after a new transfer conmand is not pernitted
have already tested the data
it needs to do a "listen";

If the data connection is to be closed followi ng a
data transfer where closing the connection is not
i ndi cate the end-of-file,
Waiting unti
because the user-process wll
connection to see if

required to
must do so inmediately.

(renmenber that the

"listen" on a closed data port BEFORE sending the

new transfer command).

To prevent a race condition here,
sends a reply (226) after closing the data connection (or
a "file transfer conpl eted"
should wait for one of these replies before

t he server
if the
reply (250)

Any time either the user or server see that the connection is

bei ng cl osed by the other side,

it should pronptly read any

remai ni ng data queued on the connection and issue the close on its

own si de.

5. 3.

COMVANDS

The conmmands are Tel net character strings transmitted over the

connections as described in the Section on FTP Commands.

The command functions and semantics are described in the Section

contro

on Access Control Commands, Transfer

Servi ce Commands, and M scel | aneous Commands.
is specified here.

Commands, FTP
The command synt ax

Par amet er

The conmmands begin with a command code foll owed by an argunent

field.

The command codes are four or fewer al phabetic characters.

Upper and | ower case al phabetic characters are to be treated

i dentically.

Thus,

retri eve conmmand:

Post el

& Reynol ds

any of the follow ng may represent the

[Page 45]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

RETR Retr retr ReTr r ETr

This also applies to any synbols representing paraneter val ues,
such as A or a for ASCII TYPE. The conmand codes and the argunent
fields are separated by one or nobre spaces.

The argument field consists of a variable length character string
ending with the character sequence <CRLF> (Carriage Return, Line
Feed) for NVT-ASCI| representation; for other negotiated | anguages
a different end of line character might be used. It should be
noted that the server is to take no action until the end of Iine
code is received.

The syntax is specified belowin NVT-ASCII. Al characters in the
argunent field are ASCI| characters including any ASCl

represented decimal integers. Square brackets denote an optiona
argunent field. |If the option is not taken, the appropriate
default is inplied.

& Reynol ds [Page 46]

RFC 959 Cct ober 1985
File Transfer Protocol

5.3.1. FTP COMVANDS
The following are the FTP commands:

USER <SP> <user nanme> <CRLF>
PASS <SP> <password> <CRLF>
ACCT <SP> <account-i nformation> <CRLF>
QW <SP> <pat hnane> <CRLF>
CDUP <CRLF>
SMNT <SP> <pat hnane> <CRLF>
QU T <CRLF>
REI N <CRLF>
PORT <SP> <host-port> <CRLF>
PASV <CRLF>
TYPE <SP> <type-code> <CRLF>
STRU <SP> <structure-code> <CRLF>
MODE <SP> <nopde- code> <CRLF>
RETR <SP> <pat hnane> <CRLF>
STOR <SP> <pat hnane> <CRLF>
STQU <CRLF>
APPE <SP> <pat hnane> <CRLF>
ALLO <SP> <deci mal -i nt eger >

[<SP> R <SP> <deci nmal -i nteger>] <CRLF>
REST <SP> <mar ker > <CRLF>
RNFR <SP> <pat hname> <CRLF>
RNTO <SP> <pat hname> <CRLF>
ABOR <CRLF>
DELE <SP> <pat hnanme> <CRLF>
RVMD <SP> <pat hname> <CRLF>
MKD <SP> <pat hname> <CRLF>
PW <CRLF>
LI ST [<SP> <pat hnane>] <CRLF>
NLST [<SP> <pat hnane>] <CRLF>
SI TE <SP> <string> <CRLF>
SYST <CRLF>
STAT [<SP> <pat hnane>] <CRLF>
HELP [<SP> <string>] <CRLF>
NOOP <CRLF>

Postel & Reynol ds [Page 47]

RFC 959 Cct ober 1985
File Transfer Protocol

5.3.2. FTP COWAND ARGUMENTS

The syntax of the above argunment fields (using BNF notation
where applicable) is:

<usernane> ::= <string>
<password> ::= <string>
<account-information> ::= <string>
<string> ::= <char> | <char><string>
<char> ::= any of the 128 ASCI| characters except <CR> and
<LF>
<marker> ::= <pr-string>
<pr-string> ::= <pr-char> | <pr-char><pr-string>
<pr-char> ::= printable characters, any
ASCI | code 33 through 126
<byt e-si ze> ::= <nunber>
<host - port> :: = <host - nunber >, <port - nunber >
<host - nunber > :: = <nunber >, <nunber >, <nunber >, <nunber >
<port-nunber> ::= <nunber >, <nunber >
<nunber> ::= any decimal integer 1 through 255

<formcode> ::= N| T| C
<type-code> ::= A [<sp> <form code>]
| E [<sp> <formcode>]
| |
| L <sp> <byte-size>
<structure-code> ::=F | R| P
<node-code> ::= S| B| C
<pat hnane> ::= <string>

<deci mal -i nteger> ::= any deci nal integer

Postel & Reynol ds [Page 48]

RFC 959 Cct ober 1985
File Transfer Protocol

5. 4.

Post el

SEQUENCI NG OF COMVANDS AND REPLI ES

The communi cation between the user and server is intended to be an
alternating dialogue. As such, the user issues an FTP command and
the server responds with a pronpt prinmary reply. The user should
wait for this initial primary success or failure response before
sendi ng further commuands.

Certain conmands require a second reply for which the user shoul d
also wait. These replies may, for exanple, report on the progress
or completion of file transfer or the closing of the data

connection. They are secondary replies to file transfer comrands.

One inmportant group of informational replies is the connection
greetings. Under normal circunstances, a server will send a 220
reply, "awaiting input", when the connection is conpleted. The
user should wait for this greeting nessage before sendi ng any
conmands. |If the server is unable to accept input right away, a
120 "expected del ay" reply should be sent i mediately and a 220
reply when ready. The user will then know not to hang up if there
is a del ay.

Spont aneous Replies

Sonetimes "the systeni spontaneously has a nessage to be sent
to a user (usually all users). For exanple, "System going down
in 15 minutes". There is no provision in FTP for such

spont aneous infornation to be sent fromthe server to the user
It is recormended that such information be queued in the
server-Pl and delivered to the user-Pl in the next reply
(possibly making it a nmulti-line reply).

The table below lists alternative success and failure replies for
each conmand. These nust be strictly adhered to; a server nay
substitute text in the replies, but the neaning and action inplied
by the code nunbers and by the specific command reply sequence
cannot be altered.

Conmand- Repl y Sequences

In this section, the coomand-reply sequence is presented. Each
conmand is listed with its possible replies; command groups are
listed together. Prelimnary replies are listed first (with
their succeeding replies indented and under them, then
positive and negative conpletion, and finally internediary

& Reynol ds [Page 49]

RFC 959
File Transfer Protocol

Cct ober 1985

replies with the remaining commands fromthe sequence
following. This listing fornms the basis for the state

di agrams, which will be presented separately.

Connecti on Establi shnent
120
220
220
421
Logi n
USER
230
530
500, 501, 421
331, 332
PASS
230
202
530
500, 501, 503, 421
332
ACCT
230
202
530
500, 501, 503, 421
WD
250
500, 501, 502, 421, 530, 550
CDUP
200
500, 501, 502, 421, 530, 550
SIMNT
202, 250
500, 501, 502, 421, 530, 550
Logout
REI N
120
220
220
421
500, 502
QT
221
500

Postel & Reynol ds

[Page 50]

RFC 959
File Transfer Protocol

Transfer parameters
PORT
200
500, 501, 421, 530
PASV
227

500, 501, 502, 421, 530

MCDE
200

500, 501, 504, 421, 530

TYPE
200

500, 501, 504, 421, 530

STRU
200

500, 501, 504, 421, 530

File acti on commands
ALLO
200
202

500, 501, 504, 421, 530

REST

500, 501, 502, 421, 530

350
STOR
125, 150
(110)
226, 250

425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530
STOU
125, 150
(110)
226, 250

425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530
RETR
125, 150
(110)
226, 250
425, 426, 451
450, 550
500, 501, 421, 530

Postel & Reynol ds

Cct ober

1985

[Page 51]

RFC 959
File Transfer Protocol

LI ST
125, 150

226, 250
425, 426, 451

450

500, 501, 502, 421, 530

NLST
125, 150

226, 250
425, 426, 451

450

500, 501, 502, 421, 530

APPE
125, 150
(110)

226, 250
425, 426, 451, 551, 552
550, 452, 553

532, 450,

500, 501,
RNFR

450, 550

500, 501,

350
RNTO

250

532, 553

500, 501,
DELE

250

450, 550

500, 501,
RVD

250

500, 501,
VKD

257

500, 501,
PVWD

257

500, 501,
ABOR

225, 226

500, 501,

Postel & Reynol ds

502,

502,

502,

502,

502,

502,

502,

502,

421,

421,

5083,

421,

421,

421,

421,

421

530

530

421, 530

530

530, 550

530, 550

550

Cct ober 1985

[Page 52]

RFC 959 Cct ober 1985
File Transfer Protocol

| nf or mati onal conmands
SYST
215
500, 501, 502, 421
STAT
211, 212, 213
450
500, 501, 502, 421, 530
HELP
211, 214
500, 501, 502, 421
M scel | aneous commands
SITE
200
202
500, 501, 530
NOOP
200
500 421

Postel & Reynol ds [Page 53]

RFC 959 Cct ober 1985
File Transfer Protocol

6. STATE DI AGRAMS

Here we present state diagrans for a very sinple m nded FTP

i npl enentation. Only the first digit of the reply codes is used.
There is one state diagramfor each group of FTP commands or comrand
sequences.

The conmmand groupi ngs were determ ned by constructing a nodel for
each conmand then collecting together the commands with structurally
i denti cal nodel s.

For each command or command sequence there are three possible

out comes: success (S), failure (F), and error (E). 1In the state

di agranms bel ow we use the synbol B for "begin", and the symbol Wfor
"wait for reply"

We first present the diagramthat represents the | argest group of FTP

comands:

1,3 +---+
----------- >| E|
| +---+

|
+-- -+ cnd +-- -+ 2 +-- -+
= > W--mooeoes > S|
+-- -+ +-- -+ +-- -+

Thi s di agram nodel s the commands:

ABOR, ALLO, DELE, COwWD, CDUP, SMNT, HELP, MODE, NOOP, PASYV,
QUI T, SITE, PORT, SYST, STAT, RWD, MKD, PWD, STRU, and TYPE

Postel & Reynol ds [Page 54]

RFC 959

File Transfer Protocol

Cct ober 1985

The other |arge group of conmands is represented by a very simlar
di agram
3 +---4
----------- > E|
| +--- 4+
|
+---+ cnd +---+ 2 +---+
| Bl---mm--e-- > W|--ene-ee > S |
+---4 D L +---4
| | |
| | 4,5 4o+
I e > F |
----- +-- -+

Thi s di agram nodel s

t he conmands:

APPE, LIST, NLST, REIN, RETR, STOR, and STQU

Note that this second

group of commands, the
the 100 series replies
whil e the second group
Renenber that at nost,

nodel
only difference being that

could also be used to represent the first

in the first group

are unexpected and therefore treated as error

expects (some may require)

100 series replies.

one 100 series reply is allowed per conmmand.

The remai ni ng di agrans nodel conmand sequences,
of these is the renane sequence:
+---+ RNFR +---+ 1,2 +---+
| Bl--moooe-- > W---ooee- > E |
+---+ +---+ e >4 - -+
| | |
3 | | 45 |
.................... |
| | e
I e EER e, > S|
| | L3 | e
| 2] ------
| | | |
\ | |
+---+ RNTO +---+ 4,5 ----- S+---+
I > W---eee- > F |
+---+ +---+ +---+

Postel & Reynol ds

per haps the sinpl est

[Page 55]

RFC 959 Cct ober 1985
File Transfer Protocol

The next diagramis a sinple nodel of the Restart comand:

+---+ REST 4---+ 1,2 4---+

| B |- > W|---oeoees > E |
+-- -+ +-- -+ e >t - -+
|
3 | | 4,5 |
____________________ |
| I
e EE R > s |
| |3 1 e
| 2| ceeee-es
| | | |
\ || |
+-- -+ cnd +---+ 4,5 ----- S+-- -+
| e > W|--oeeoees > F |
+-- -+ e >t - -+ +-- -+
| |
|1

Where "cmd" is APPE, STOR, or RETR

We note that the above three npdels are simlar. The Restart differs
fromthe Renane two only in the treatnent of 100 series replies at
the second stage, while the second group expects (some nmay require)
100 series replies. Renenber that at nost, one 100 series reply is
al | owed per comrand.

Postel & Reynol ds [Page 56]

RFC 959 Cct ober 1985
File Transfer Protocol

The nost conplicated diagramis for the Logi n sequence:

1

+---+ USER Feme e e e e e e >+---+
| Bl---------- > W[2 ---->| E|
+---+ R T | -- >t - -+

| | |1

311 45 | ||

------------------- |||

| |1 ||

| N

e |

| 1| |1

v | |
+---+ PASS -+ 2 | - >4---+
I > W-mmmmeeeees > s |
+---+ I T I >+---+

I |

31 14,5 | |

______________________ |

| I I

I I

| L3
\ |2l | |

+---+ ACCT S e pep—— >+---+
I >| W| 4,5 -------- >| F |
+---+ Feme e e e e e e >+---+

Postel & Reynol ds [Page 57]

RFC 959 Cct ober 1985
File Transfer Protocol

Finally, we present a generalized diagramthat could be used to node
the command and reply interchange:

I I
Begi n |
I v I
| +---+ cmd +---4+ 2 +---+ |
S B EEEEEEE IR ERRREEEEEE > |
| | W | S]----- |
ek I BT B EEEEE | |
| +-- -+ | +---+ 4,5 | +-- -+ |
I I I I I I
I I | 1] |3 I oot I
I I I |1 I | I
I I - ----> Fl-----
I I I |
I I I +o--t
I
I
\%
End

Postel & Reynol ds [Page 58]

RFC 959

File Transfer Protocol

7. TYPICAL FTP SCENARI O

Cct ober 1985

User at host U wanting to transfer files to/fromhost S:

In general, the user wll
user - FTP process.

user - FTP pronpts are shown i n parentheses,
commands fromhost Uto host S, and '<----

host S to host U.
LOCAL COMMVANDS BY USER

ftp (host) nultics<CR>

user nane Doe <CR>

password rmumnbl e <CR>

retrieve (loca
(l ocal pathname) test 1 <CR>
(for. pathname) test.pl 1<CR>

type | mage<CR>

store (loca
(1 ocal
(for.pathnane) >udd>cn>f d<CR>

type) imge<CR>

termnate

8. CONNECTI ON ESTABLI SHVENT

The FTP contro
process port U and the server

assigned the service port 21 (25 octal),

Postel & Reynol ds

type) ASC | <CR>

pat hnanme) file dunmp<CR>

comuni cate to the server via a mediating
The foll owing may be a typica

scenario. The
"---->" represents

represents replies from

ACTI ON | NVOLVED

Connect to host S, port L,
establ i shing control connecti ons.
<---- 220 Service ready <CRLF>.
USER Doe<CRLF>---->
<---- 331 User nanme ok

need passwor d<CRLF>.
PASS nunbl e<CRLF>---->
<---- 230 User |ogged i n<CRLF>.

User - FTP opens local file in ASCI
RETR test. pl 1<CRLF> ---->

<---- 150 File status okay;
about to open data
connect i on<CRLF>.

Server nakes data connection

to port U

<---- 226 Cosing data connection

file transfer successful <CRLF>.
TYPE | <CRLF> ---->
<---- 200 Command OK<CRLF>

User- FTP opens local file in | mge.

STOR >udd>cn>f d<CRLF> ---->
<---- 550 Access deni ed<CRLF>
QUIT <CRLF> ---->

Server cl oses al

connecti ons.

connection is established via TCP between the user
process port L.

This protocol is

that is L=21.

[Page 59]

RFC 959 Cct ober 1985
File Transfer Protocol

APPENDI X | - PAGE STRUCTURE

The need for FTP to support page structure derives principally from
the need to support efficient transm ssion of files between TOPS-20
systens, particularly the files used by NLS.

The file system of TOPS-20 is based on the concept of pages. The
operating systemis nost efficient at manipulating files as pages.
The operating systemprovides an interface to the file systemso that
many applications view files as sequential streans of characters.
However, a few applications use the underlying page structures
directly, and some of these create holey files.

A TOPS-20 disk file consists of four things: a pathnane, a page
table, a (possibly enpty) set of pages, and a set of attributes.

The pathnane is specified in the RETR or STOR conmmand. |t includes
the directory nane, file nanme, file name extension, and generation
nunber .

The page table contains up to 2**18 entries. Each entry may be
EMPTY, or nmay point to a page. |If it is not enpty, there are also
some page-specific access bits; not all pages of a file need have the
same access protection

A page is a contiguous set of 512 words of 36 bits each.

The attributes of the file, in the File Descriptor Block (FDB)
contain such things as creation tine, wite tine, read tinme, witer’s
byte-si ze, end-of-file pointer, count of reads and wites, backup
system tape nunbers, etc.

Note that there is NO requirenment that entries in the page table be
contiguous. There may be enpty page table slots between occupied
ones. Also, the end of file pointer is sinply a nunber. There is no
requirenent that it in fact point at the "last" datumin the file.
Ordinary sequential 1/Ocalls in TOPS-20 will cause the end of file
pointer to be left after the | ast datumwitten, but other operations
may cause it not to be so, if a particular programmng systemso
requires.

In fact, in both of these special cases, "holey" files and

end-of -file pointers NOT at the end of the file, occur with NLS data
files.

Postel & Reynol ds [Page 60]

RFC 959 Cct ober 1985
File Transfer Protocol

The TOPS-20 paged files can be sent with the FTP transfer paraneters:
TYPE L 36, STRUP, and MODE S (in fact, any node could be used).

Each page of infornation has a header. Each header field, which is a
| ogi cal byte, is a TOPS-20 word, since the TYPE is L 36.

The header fields are:
Word 0: Header Length.
The header length is 5.
Wrd 1: Page | ndex.

If the data is a disk file page, this is the nunber of that
page in the file' s page map. Enpty pages (holes) in the file
are sinmply not sent. Note that a hole is NOT the sane as a
page of zeros.

Word 2: Data Length.

The nunber of data words in this page, follow ng the header
Thus, the total length of the transm ssion unit is the Header
Length plus the Data Length.

Wrd 3: Page Type.

A code for what type of chunk this is. A data page is type 3,
the FDB page is type 2.

Word 4: Page Access Control

The access bits associated with the page in the file' s page
map. (This full word quantity is put into AC2 of an SPACS by
the programreading fromnet to disk.)

After the header are Data Length data words. Data Length is
currently either 512 for a data page or 31 for an FDB. Trailing
zeros in a disk file page may be di scarded, making Data Length | ess
than 512 in that case

Postel & Reynol ds [Page 61]

RFC 959 Cct ober 1985
File Transfer Protocol

APPENDI X Il - DI RECTORY COVIVANDS
Since UNI X has a tree-like directory structure in which directories
are as easy to nmanipulate as ordinary files, it is useful to expand
the FTP servers on these nachines to include commands which deal with
the creation of directories. Since there are other hosts on the
ARPA- | nt ernet which have tree-like directories (including TOPS-20 and
Multics), these conmands are as general as possible.
Four directory comands have been added to FTP:
MKD pat hnane
Make a directory with the nane "pat hnanme".
RVD pat hnane
Renove the directory with the nane "pathnanme".
PWD
Print the current working directory nane.
CDUP

Change to the parent of the current working directory.

The "pathname" argument should be created (renoved) as a
subdirectory of the current working directory, unless the "pathnane"
string contains sufficient information to specify otherwise to the
server, e.g., "pathname" is an absolute pathname (in UN X and
Multics), or pathname is sonmething like "<abso.lute.path>" to

TOPS- 20.

REPLY CODES

The CDUP command is a special case of CAWD, and is included to
simplify the inplementation of programs for transferring directory
trees between operating systens having different syntaxes for

nam ng the parent directory. The reply codes for CDUP be
identical to the reply codes of CWD.

The reply codes for RVD be identical to the reply codes for its
file anal ogue, DELE.

The reply codes for MKD, however, are a bit nore conplicated. A
freshly created directory will probably be the object of a future

Postel & Reynol ds [Page 62]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

CW command. Unfortunately, the argument to MKD nay not al ways be
a suitable argunent for CAD. This is the case, for example, when

a TOPS-20 subdirectory is created by giving just the subdirectory

nane. That is, with a TOPS-20 server FTP, the command sequence

MKD MYDI R

WD MYDI R
will fail. The new directory may only be referred to by its
"absol ute" name; e.g., if the MKD conmand above were issued while

connected to the directory <DFRANKLI N>, the new subdirectory
could only be referred to by the nanme <DFRANKLI N. MYDI R>.

Even on UNI X and Multics, however, the argument given to MKD may
not be suitable. If it is a "relative" pathnane (i.e., a pathnane
which is interpreted relative to the current directory), the user
woul d need to be in the sane current directory in order to reach
the subdirectory. Depending on the application, this may be

i nconvenient. It is not very robust in any case.

To solve these probl ems, upon successful conpletion of an MKD
conmand, the server should return a line of the form

257<space>"<di r ect or y- nanme>" <space><conment ar y>

That is, the server will tell the user what string to use when
referring to the created directory. The directory nane can
contai n any character; enbedded doubl e-quotes shoul d be escaped by
doubl e-quotes (the "quote-doubling" convention).

For exanple, a user connects to the directory /usr/dm and creates
a subdirectory, named pat hnane:

CWD /usr/dm

200 directory changed to /usr/dm

MKD pat hnane

257 "/usr/dm pat hname" directory created

An exanple with an enbedded doubl e quote:
MKD f 00" bar
257 "/usr/dm foo""bar" directory created

QWD /usr/dni f oo" bar
200 directory changed to /usr/dnifoo"bar

& Reynol ds [Page 63]

RFC 959 Cct ober 1985
File Transfer Protocol

The prior existence of a subdirectory with the same name is an
error, and the server nmust return an "access denied" error reply
in that case

QWD /usr/dm

200 directory changed to /usr/dm

MKD pat hnane

521-"/usr/dm pat hname" directory already exists;
521 taking no action

The failure replies for MKD are anal ogous to its file creating
cousin, STOR Also, an "access denied" return is given if afile
nane with the same nane as the subdirectory will conflict with the
creation of the subdirectory (this is a problemon UN X, but

shoul dn’t be one on TOPS-20).

Essentially because the PW comand returns the sanme type of
i nformati on as the successful MKD comrand, the successful PWD
conmand uses the 257 reply code as well.

SUBTLETI ES

Because these conmands will be nost useful in transferring
subtrees fromone machine to another, carefully observe that the
argunent to MKDis to be interpreted as a sub-directory of the
current working directory, unless it contains enough information
for the destination host to tell otherwi se. A hypothetica
exanple of its use in the TOPS-20 worl d:

QWD <sone. wher e>

200 Working directory changed

MKD overr ai nbow

257 "<sone. where. overrai nbow>" directory created
QWD overrai nbow

431 No such directory

QWD <sone. wher e. overrai nbow>

200 Worki ng directory changed

CWD <sone. wher e>

200 Working directory changed to <sone.where>
MKD <unanbi guous>

257 "<unanbi guous>" directory created

QWD <unambi guous>

Note that the first exanple results in a subdirectory of the

connected directory. |In contrast, the argunent in the second
exanpl e contai ns enough information for TOPS-20 to tell that the

Postel & Reynol ds [Page 64]

RFC 959 Cct ober 1985
File Transfer Protocol

Post el

<unanbi guous> directory is a top-level directory. Note also that
in the first exanple the user "violated" the protocol by
attenpting to access the freshly created directory with a nane

ot her than the one returned by TOPS-20. Problens could have
resulted in this case had there been an <overrai nbow> directory;
this is an anbiguity inherent in some TOPS-20 inpl enentations.
Sim | ar considerations apply to the RVMD command. The point is
this: except where to do so would violate a host’s conventions for
denoting rel ative versus absol ute pat hnanes, the host should treat
the operands of the MKD and RVD conmmands as subdirectories. The
257 reply to the MKD conmmand nust al ways contain the absolute

pat hname of the created directory.

& Reynol ds [Page 65]

RFC 959 Cct ober 1985
File Transfer Protocol
APPENDI X |1l - RFCs on FTP

Bhushan, Abhay, "A File Transfer Protocol"”, RFC 114 (N C 5823),
M T-Project MAC, 16 April 1971.

Harslem Eric, and John Heafner, "Conments on RFC 114 (A File
Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol"”, RFC 172
(NIC 6794), MT-Project MAC, 23 June 1971.

Braden, Bob, "Comrents on DTP and FTP Proposal s", RFC 238 (NI C 7663),
UCLA/ CCN, 29 Septenber 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
(NIC 7813), MT-Project MAC, 17 Novenber 1971.

McKenzi e, Al ex, "A Suggested Addition to File Transfer Protocol",
RFC 281 (NI C 8163), BBN, 8 December 1971.

Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
Transfer Protocol", RFC 294 (NI C 8304), M T-Project NAC,
25 January 1972.

Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (N C 10596),
M T-Project MAC, 8 July 1972.

Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)",
RFC 385 (NI C 11357), M T-Project MAC, 18 August 1972.

H cks, Geg, "User FTP Documentation", RFC 412 (N C 12404), Ut ah,
27 Novenber 1972.

Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further
Conment s", RFC 414 (NI C 12406), M T-Project MAC, 20 Novenber 1972.

Braden, Bob, "Comments on File Transfer Protocol", RFC 430
(NI C 13299), UCLA/CCN, 7 February 1973.

Thomas, Bob, and Bob C enents, "FTP Server-Server |Interaction”,
RFC 438 (NI C 13770), BBN, 15 January 1973.

Braden, Bob, "Print Files in FTP", RFC 448 (N C 13299), UCLA/ CCN,
27 February 1973.

McKenzie, Alex, "File Transfer Protocol", RFC 454 (N C 14333), BBN,
16 February 1973.

Postel & Reynol ds [Page 66]

RFC 959 Cct ober 1985
File Transfer Protocol

Bressl er, Bob, and Bob Thomas, "Mail Retrieval via FTP', RFC 458
(NIC 14378), BBN-NET and BBN TENEX, 20 February 1973.

Nei gus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN
12 July 1973.

Kril anovi ch, Mark, and George Gregg, "Comments on the File Transfer
Protocol ", RFC 607 (NI C 21255), UCSB, 7 January 1974.

Pogran, Ken, and Nancy Nei gus, "Response to RFC 607 - Comments on the
File Transfer Protocol", RFC 614 (NI C 21530), BBN, 28 January 1974.

Kril anovi ch, Mark, George Gregg, \Wayne Hat haway, and Jim Wite,
"Comments on the File Transfer Protocol”, RFC 624 (NI C 22054), UCSB,
Ames Research Center, SRI-ARC, 28 February 1974.

Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463
(NI C 14573), M T-DMCG 21 February 1973.

Braden, Bob, "FTP Data Conpression", RFC 468 (N C 14742), UCLA/ CCN,
8 March 1973.

Bhushan, Abhay, "FTP and Network Miil System, RFC 475 (NI C 14919),
M T-DMCG, 6 March 1973.

Bressl er, Bob, and Bob Thomas "FTP Server-Server Interaction - II",
RFC 478 (NI C 14947), BBN-NET and BBN TENEX, 26 March 1973.

Wiite, Jim "Use of FTP by the NIC Journal", RFC 479 (NI C 14948),
SRI - ARC, 8 March 1973.

VWite, Jim "Host-Dependent FTP Paraneters”, RFC 480 (NI C 14949),
SRl - ARC, 8 March 1973.

Padl i psky, M ke, "An FTP Conmand- Nanmi ng Probl em', RFC 506
(NI C 16157), MT-Miltics, 26 June 1973.

Day, John, "Meno to FTP Group (Proposal for File Access Protocol)",
RFC 520 (NIC 16819), Illinois, 25 June 1973.

Merryman, Robert, "The UCSD CC Server-FTP Facility", RFC 532
(NIC 17451), UCSD-CC, 22 June 1973.

Braden, Bob, "TENEX FTP Problenm, RFC 571 (N C 18974), UCLA/ CCN,
15 Novenber 1973.

Postel & Reynol ds [Page 67]

RFC 959 Cct ober 1985
File Transfer Protocol

McKenzi e, Al ex, and Jon Postel, "Telnet and FTP | nplementation -
Schedul e Change", RFC 593 (NI C 20615), BBN and M TRE
29 Novenber 1973

Sussman, Julie, "FTP Error Code Usage for Mre Reliable Mai
Service", RFC 630 (N C 30237), BBN, 10 April 1974.

Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NI C 30843),
UCLA/ NMC, 5 June 1974.

Harvey, Brian, "Leaving Well Enough Al one", RFC 686 (N C 32481),
SU-Al, 10 May 1975.

Harvey, Brian, "One Mxre Try on the FTP", RFC 691 (N C 32700), SU- Al,
28 May 1975.

Lieb, J., "OWD Command of FTP', RFC 697 (N C 32963), 14 July 1975.

Harrenstien, Ken, "FTP Extension: XSEN', RFC 737 (NI C 42217), SRI-KL,
31 Cctober 1977.

Harrenstien, Ken, "FTP Extension: XRSQ XRCP', RFC 743 (NI C 42758),
SRI - KL, 30 Decenber 1977.

Lebling, P. David, "Survey of FTP Mail and M.FL", RFC 751, MT,
10 Decenber 1978

Postel, Jon, "File Transfer Protocol Specification", RFC 765, |SI,
June 1980.

Manki ns, David, Dan Franklin, and Buzz Omen, "Directory Oriented FTP
Commands”, RFC 776, BBN, Decenber 1980.

Padl i psky, M chael, "FTP Uni que-Naned Store Command", RFC 949, M TRE,
July 1985.

Postel & Reynol ds [Page 68]

RFC 959 Cct ober 1985
File Transfer Protocol
REFERENCES

[1] Feinler, Elizabeth, "Internet Protocol Transition Wrkbook",
Network I nfornmation Center, SRl International, March 1982

[2] Postel, Jon, "Transm ssion Control Protocol - DARPA I|nternet
Program Prot ocol Specification", RFC 793, DARPA, Septenmber 1981.

[3] Postel, Jon, and Joyce Reynol ds, "Telnet Protoco
Specification", RFC 854, ISlI, My 1983.

[4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943,
[SI, April 1985.

Postel & Reynol ds [Page 69]

