Net wor k Wor ki ng G oup David D. dark

Request for Comments: 998 Mark L. Lanbert
obsol etes: RFC 969 Li xi a Zhang
MT

March 1987

NETBLT: A Bul k Data Transfer Protocol

1. Status

Thi s docunent is a description of, and a specification for, the
NETBLT protocol. It is a revision of the specification published in
NI C RFC-969. The protocol has been revised after extensive research
into NETBLT' s performance over |ong-delay, high-bandwi dth satellite
channels. Most of the changes in the protocol specification have to
do with the conputation and use of data tiners in a nmultiple
buffering data transfer nodel

Thi s docunent is published for discussion and conment, and does not
constitute a standard. The proposal may change and certain parts of
the protocol have not yet been specified; inplenentation of this
docunent is therefore not advised.

2. Introduction

NETBLT (NETwor k BLock Transfer) is a transport |evel protoco

i ntended for the rapid transfer of a |large quantity of data between
conputers. It provides a transfer that is reliable and flow
controlled, and is designed to provide maxi mumthroughput over a w de
variety of networks. Although NETBLT currently runs on top of the
Internet Protocol (IP), it should be able to operate on top of any
dat agram protocol simlar in function to IP

NETBLT' s notivation is to achi eve higher throughput than other
protocols m ght offer. The protocol achieves this goal by trying to
m nimze the effect of several network-rel ated probl ens: network
congestion, delays over satellite |inks, and packet | oss.

Its transm ssion rate-control algorithns deal well wth network
congestion; its multiple-buffering capability allows high throughput
over |long-delay satellite channels, and its various
timeout/retransmt algorithnms mnimze the effect of packet |oss
during a transfer. Mst inportantly, NETBLT s features give it good
performance over |ong-del ay channels w thout inpairing performance
over high-speed LANSs.

G ark, Lanbert, & Zhang [ Page 1]



RFC 998 March 1987

The protocol works by opening a connection between two "clients" (the
"sender" and the "receiver"), transferring the data in a series of

| arge data aggregates called "buffers”, and then closing the
connection. Because the ampunt of data to be transferred can be very
large, the client is not required to provide at once all the data to
the protocol nodule. Instead, the data is provided by the client in
buf fers. The NETBLT | ayer transfers each buffer as a sequence of
packets; since each buffer is conposed of a | arge nunber of packets,
the per-buffer interaction between NETBLT and its client is far nore
efficient than a per-packet interaction would be.

Inits sinplest form a NETBLT transfer works as follows: the
sending client | oads a buffer of data and calls down to the NETBLT
layer to transfer it. The NETBLT | ayer breaks the buffer up into
packets and sends these packets across the network in Internet

dat agrans. The receiving NETBLT | ayer | oads these packets into a

mat chi ng buffer provided by the receiving client. When the |ast
packet in the buffer has arrived, the receiving NETBLT checks to see
that all packets in that buffer have been correctly received. |If
sonme packets are nissing, the receiving NETBLT requests that they be
resent. When the buffer has been conpletely transnmitted, the
receiving client is notified by its NETBLT |layer. The receiving
client disposes of the buffer and provides a new buffer to receive
nore data. The receiving NETBLT notifies the sender that the new
buffer is ready, and the sender prepares and sends the next buffer in
the same manner. This continues until all the data has been sent; at
that tinme the sender notifies the receiver that the transnission has
been conpleted. The connection is then closed.

As described above, the NETBLT protocol is "lock-step". Action halts
after a buffer is transmtted, and begins again after confirmation is
received fromthe receiver of data. NETBLT provides for multiple
buffering, a transfer nodel in which the sending NETBLT can transnit
new buffers while earlier buffers are waiting for confirmation from
the receiving NETBLT. Miltiple buffering nakes packet flow
essentially continuous and markedly inproves perfornmance.

The remai nder of this docunent describes NETBLT in detail. The next
sections describe the phil osophy behind a nunmber of protocol
features: packetization, flow control, transfer reliability, and
connecti on managenent. The final sections describe NETBLT s packet
formats.

3. Buffers and Packets

NETBLT is designed to permit transfer of a very |large amounts of data
between two clients. During connection setup the sending NETBLT can
informthe receiving NETBLT of the transfer size; the maxi mum
transfer length is 2**32 bytes. This Ilinmt should pernmt any
practical application. The transfer size paraneter is for the use of
the receiving client; the receiving NETBLT nakes no use of it. A

Clark, Lanbert, & Zhang [ Page 2]



RFC 998 March 1987

NETBLT recei ver accepts data until told by the sender that the
transfer is conplete.

The data to be sent must be broken up into buffers by the client.
Each buffer must be the sane size, save for the last buffer. During
connection setup, the sending and receiving NETBLTs negotiate the
buf fer size, based on limts provided by the clients. Buffer sizes
are in bytes only; the client is responsible for placing data in

buf fers on byte boundari es.

NETBLT has been desi gned and should be inplenented to work with
buffers of any size. The only fundanental limtation on buffer size
shoul d be the ampunt of nenory available to the client. Buffers
shoul d be as | arge as possible since this mnimzes the nunber of
buffer transm ssions and therefore inproves performance.

NETBLT i s designed to require a mni num anount of menory, allow ng
the client to allocate as nuch nmenory as possible for buffer storage.
In particular, NETBLT does not keep buffer copies for retransnission
purposes. Instead, data to be retransmitted is recopied directly
fromthe client buffer. This means that the client cannot rel ease
buf fer storage piece by piece as the buffer is sent, but this has not
been a problemin prelimnary NETBLT inpl ementations.

Buf fers are broken down by the NETBLT |ayer into sequences of DATA
packets. As with the buffer size, the DATA packet size is negotiated
bet ween t he sending and receiving NETBLTsS during connection setup.
Unl i ke buffer size, DATA packet size is visible only to the NETBLT

| ayer.

Al'l DATA packets save the | ast packet in a buffer nust be the sane
size. Packets should be as |arge as possible, since NETBLT s
performance is directly related to packet size. At the same tine,
the packets should not be so |large as to cause internetwork
fragmentation, since this normally causes performance degradation

Al'l buffers save the last buffer nust be the same size; the |ast

buf fer can be any size required to conplete the transfer. Since the
recei ving NETBLT does not know the transfer size in advance, it needs
some way of identifying the | ast packet in each buffer. For this
reason, the |ast packet of every buffer is not a DATA packet but

rat her an LDATA packet. DATA and LDATA packets are identical save
for the packet type.

4. Flow Contro

NETBLT uses two strategies for flow control, one internal and one at
the client |evel.

The sending and receiving NETBLTs transnit data in buffers; client
flow control is therefore at a buffer level. Before a buffer can be

Clark, Lanbert, & Zhang [ Page 3]



RFC 998 March 1987

transmtted, NETBLT confirns that both clients have set up natching
buffers, that one is ready to send data, and that the other is ready
to receive data. Either client can therefore control the flow of
data by not providing a new buffer. dients cannot stop a buffer
transfer once it is in progress.

Since buffers can be quite large, there has to be another nethod for
flow control that is used during a buffer transfer. The NETBLT | ayer
provides this formof flow control

There are several flow control problens that could arise while a
buffer is being transmtted. |f the sending NETBLT is transferring
data faster than the receiving NETBLT can process it, the receiver’'s
ability to buffer unprocessed packets could be overfl owed, causing
packet loss. Simlarly, a slow gateway or intermedi ate network coul d
cause packets to collect and overfl ow network packet buffer space.
Packets will then be lost within the network. This problemis
particularly acute for NETBLT because NETBLT buffers will generally
be quite large, and therefore conposed of many packets.

A traditional solution to packet flow control is a w ndow system in
whi ch the sending end is permitted to send only a certain nunber of
packets at a tine. Unfortunately, flow control using w ndows tends
to result in |ow throughput. Wndows nust be kept small in order to
avoi d overflow ng hosts and gateways, and cannot easily be updated,
since an end-to-end exchange is required for each wi ndow change.

To permt high throughput over a variety of networks and gateways,
NETBLT uses a novel flow control nethod: rate control. The

transm ssion rate i s negotiated by the sending and receiving NETBLTs
during connection setup and after each buffer transm ssion. The
sender uses tiners, rather than nessages fromthe receiver, to

mai ntain the negotiated rate.

Inits sinmplest form rate control specifies a mnimumtinme period
per packet transm ssion. This can cause perfornance problens for
several reasons. First, the transmission tinme for a single packet is
very small, frequently smaller than the granularity of the timng
mechani sm Al so, the overhead required to maintain timng nechani sns
on a per packet basis is relatively high and | owers performance.

The solution is to control the transm ssion rate of groups of
packets, rather than single packets. The sender transmits a burst of
packets over a negotiated tine interval, then sends another burst.

In this way, the overhead decreases by a factor of the burst size,
and the per-burst transmssion tine is | ong enough that timng
mechani snms will work properly. NETBLT s rate control therefore has
two parts, a burst size and a burst rate, with (burst size)/(burst
rate) equal to the average transm ssion tine per packet.

Clark, Lanbert, & Zhang [ Page 4]



RFC 998 March 1987

The burst size and burst rate should be based not only on the packet
transm ssi on and processi ng speed which each end can handl e, but also
on the capacities of any internedi ate gateways or networKks.

Foll owi ng are sone intuitive values for packet size, buffer size,
burst size, and burst rate.

Packet sizes can be as small as 128 bytes. Performance with packets
this small is al nbst always bad, because of the high per-packet
processi ng overhead. Even the default Internet Protocol packet size
of 576 bytes is barely big enough for adequate performance. Mst

net wor ks do not support packet sizes much | arger than one or two

t housand bytes, and packets of this size can also get fragmented when
traveling over internedi ate networks, |owering perfornmance.

The size of a NETBLT buffer is limted only by the amount of nenory

available to a client. Theoretically, buffers of 100 Kbytes or nore
are possible. This would mean the transm ssion of 50 to 100 packets
per buffer.

The burst size and burst rate are obviously very machi ne dependent.
There is a certain anmount of transm ssion overhead in the sending and
recei ving machi nes associated with maintaining tiners and scheduling
processes. This overhead can be m nim zed by sendi ng packets in
|arge bursts. There are also limtations inmposed on the burst size
by the nunber of avail abl e packet buffers in the operating system
kernel . On nost nodern operating systems, a burst size of between
five and ten packets should reduce the overhead to an acceptabl e
level. A prelimnary NETBLT inplenentation for the | BM PC/ AT sends
packets in bursts of five. It could send nore, but is [imted by the
avai | abl e nmenory.

The burst rate is in part determined by the granularity of the
sender’s timng nmechanism and in part by the processing speed of the
receiver and any internedi ate gateways. It is also directly related
to the burst size. Burst rates from20 to 45 milliseconds per 5-
packet burst have been tried on the | BM PC/ AT and Synbolics 3600
NETBLT i npl ementations with good results within a single |ocal-area
network. This value clearly depends on the network bandw dth and
packet buffering avail abl e.

Al'l NETBLT fl ow control paraneters (packet size, buffer size, burst
size, and burst rate) are negotiated during connection setup. The
negoti ation process is the sane for all paraneters. The client
initiating the connection (the active end) proposes and sends a set
of values for each paraneter in its connection request. The other
client (the passive end) conpares these values with the highest-
performance values it can support. The passive end can then nodify
any of the paraneters, but only by making themnore restrictive. The
nodi fi ed paraneters are then sent back to the active end in its
response nessage.

Clark, Lanbert, & Zhang [ Page 5]



RFC 998 March 1987

The burst size and burst rate can also be re-negotiated after each
buf fer transmi ssion to adjust the transfer rate according to the
performance observed fromtransferring the previous buffer. The
recei ving end sends burst size and burst rate values inits OK
messages (described later). The sender conpares these values with
the values it can support. Again, it may then nodify any of the
paraneters, but only by making themnore restrictive. The nodified
paranmeters are then comunicated to the receiver in a NULL-ACK
packet, described |ater.

Qovi ously each of the parameters depend on nmany factors -- gateway
and host processing speeds, available nenory, timer granularity --
sone of which cannot be checked by either client. Each client nust
therefore try to nmake as best a guess as it can, tuning for
performance on subsequent transfers.

5. The NETBLT Transfer Mbodel

Each NETBLT transfer has three stages, connection setup, data
transfer, and connection close. The stages are described in detai
bel ow, along with nethods for insuring that each stage conpl etes
reliably.

5.1. Connection Setup

A NETBLT connection is set up by an exchange of two packets between
the active NETBLT and the passive NETBLT. Note that either NETBLT
can send or receive data; the words "active" and "passive" are only
used to differentiate the end maki ng the connection request fromthe
end responding to the connection request. The active end sends an
OPEN packet; the passive end acknow edges the OPEN packet in one of
two ways. It can either send a REFUSED packet, indicating that the
connection cannot be conpleted for some reason, or it can conplete
the connection setup by sending a RESPONSE packet. At this point the
transfer can begin.

As di scussed in the previous section, the OPEN and RESPONSE packets
are used to negotiate flow control parameters. O her paraneters used
in the data transfer are also negotiated. These paraneters are (1)
the maxi mum nunber of buffers that can be sending at any one tine,
and (2) whether or not DATA packet data will be checksummed. NETBLT
automatically checksuns all non- DATA/ LDATA packets. |f the

negoti ated checksumflag is set to TRUE (1), both the header and the
dat a of a DATA/ LDATA packet are checksumred; if set to FALSE (0),
only the header is checksummed. The checksum value is the bitw se
negati on of the ones-conplement sum of the 16-bit words being
checksunmmred

Finally, each end transmts its death-tinmeout value in seconds in

either the OPEN or the RESPONSE packet. The death-tinmeout value wll
be used to determine the frequency with which to send KEEPALI VE

Clark, Lanbert, & Zhang [ Page 6]



RFC 998 March 1987

packets during idle periods of an opened connection (death tiners and
KEEPALI VE packets are described in the followi ng section).

The active end specifies a passive client through a client-specific
"wel | -known" 16 bit port number on which the passive end |istens.
The active end identifies itself through a 32 bit Internet address
and a unique 16 bit port numnber.

In order to allow the active and passive ends to communi cate

m scel | aneous useful information, an unstructured, variable-length
field is provided in OPEN and RESPONSE packets for any client-
specific information that may be required. |In addition, a "reason
for refusal" field is provided i n REFUSED packets.

Recovery for |ost OPEN and RESPONSE packets is provided by the use of
timers. The active end sets a timer when it sends an OPEN packet.
VWhen the tiner expires, another OPEN packet is sent, until sone

pr edet er m ned nmaxi mum nunber of OPEN packets have been sent. The
timer is cleared upon receipt of a RESPONSE packet .

To prevent duplication of OPEN and RESPONSE packets, the OPEN packet
contains a 32 bit connection unique ID that must be returned in the
RESPONSE packet. This prevents the initiator from confusing the
response to the current request with the response to an earlier
connection request (there can only be one connection between any two
ports). Any OPEN or RESPONSE packet with a destination port matching
that of an open connection has its unique ID checked. |If the unique
I D of the packet matches the unique ID of the connection, then the
packet type is checked. |If it is a RESPONSE packet, it is treated as
a duplicate and ignored. |If it is an OPEN packet, the passive NETBLT
sends anot her RESPONSE (assuming that a previ ous RESPONSE packet was
sent and lost, causing the initiating NETBLT to retransmit its OPEN
packet). A non-matching unique ID nust be treated as an attenpt to
open a second connection between the same port pair and is rejected
by sendi ng an ABORT nessage.

5.2. Data Transfer

The sinpl est nodel of data transfer proceeds as follows. The sending
client sets up a buffer full of data. The receiving NETBLT sends a
GO nessage inside a CONTROL packet to the sender, signifying that it
too has set up a buffer and is ready to receive data. Once the GO
nessage is received, the sender transmts the buffer as a series of
DATA packets foll owed by an LDATA packet. When the |ast packet in
the buffer has been received, the receiver sends a RESEND nessage

i nside a CONTROL packet containing a |list of packets that were not
received. The sender resends these packets. This process continues
until there are no mssing packets. At that tine the receiver sends
an K nmessage i nside a CONTROL packet, sets up another buffer to
receive data, and sends another GO nessage. The sender, having
recei ved the OK nessage, sets up another buffer, waits for the GO

Clark, Lanbert, & Zhang [ Page 7]



RFC 998 March 1987

nessage, and repeats the process.

The above data transfer nodel is effectively a | ock-step protocol

and causes time to be wasted while the sending NETBLT waits for

perm ssion to send a new buffer. A nore efficient transfer node
uses nultiple buffering to i ncrease performance. Miltiple buffering
is a technique in which the sender and receiver allocate and transmt
buffers in a nanner that allows error recovery or successfu

transm ssion confirmati on of previous buffers to be concurrent with
transm ssion of the current buffer.

During the connection setup phase, one of the negotiated paraneters
is the nunmber of concurrent buffers pernmitted during the transfer.
If there is nore than one buffer available, transfer of the next
buffer may start right after the current buffer finishes. This is
illustrated in the foll owi ng exanpl e:

Assune two buffers A and Bin a nultiple-buffer transfer, with A
precedi ng B. When A has been transferred and the sending NETBLT is
wai ting for either an OK or a RESEND nessage for it, the sending
NETBLT can start sending B i medi ately, keeping data flowing at a
stable rate. |If the receiver of data sends an K for A all is well;
if it receives a RESEND, the m ssing packets specified in the RESEND
nessage are retransmitted.

In the nmultiple-buffer transfer nodel, all packets to be sent are
re-ordered by buffer nunber (Il owest nunmber first), with the transfer
rate specified by the burst size and burst rate. Since buffer
nunbers increase nonotonically, packets froman earlier buffer wll
al ways precede packets froma later buffer.

Havi ng several buffers transmitting concurrently is actually not that
much nore conplicated than transmitting a single buffer at a tine.
The key is to visualize each buffer as a finite state machi ne;
several buffers are merely a group of finite state machi nes, each in
one of several states. The transfer process consists of noving

buf fers through various states until the entire transni ssion has
conpl et ed

There are several obvious flaws in the data transfer nodel as

descri bed above. First, what if the GO OK or RESEND nessages are

| ost? The sender cannot act on a packet it has not received, so the
protocol will hang. Second, if an LDATA packet is |ost, how does the
recei ver know when the buffer has been transmtted? Solutions for
each of these problens are presented bel ow.

5.2.1. Recovering from Lost Control Messages
NETBLT sol ves the problem of |ost OK GO and RESEND nessages in two

ways. First, it nmakes use of a control tiner. The receiver can send
one or nore control messages (OK, GO, or RESEND) within a single

Clark, Lanbert, & Zhang [ Page 8]



RFC 998 March 1987

CONTROL packet. \Wenever the receiver sends a control packet, it
sets a control tinmer. This tiner is either "reset" (set again) or
"cleared" (deactivated), under the follow ng conditions:

VWhen the control tinmer expires, the receiving NETBLT resends the
control packet and resets the timer. The receiving NETBLT conti nues
to resend control packets in response to control tinmer’'s expiration
until either the control timer is cleared or the receiving NETBLT s
death timer (described later) expires (at which time it shuts down
the connection).

Each control nessage includes a sequence number which starts at one
and increases by one for each control nessage sent. The sending
NETBLT checks the sequence nunber of every inconmi ng control nessage
agai nst all other sequence nunmbers it has received. |t stores the
hi ghest sequence number bel ow which all other received sequence
nunbers are consecutive (in follow ng paragraphs this is called the
hi gh- acknowl edged- sequence-nunber) and returns this nunber in every
packet flowi ng back to the receiver. The receiver is pernitted to
clear its control tiner when it receives a packet fromthe sender

wi th a hi gh-acknow edged- sequence- nunber greater than or equal to the
hi ghest sequence number in the control packet just sent.

Ideally, a NETBLT inplenentation should be able to cope wth out-of-
sequence control nessages, perhaps collecting themfor |ater
processing, or even processing themimmediately. |f an incom ng
control message "fills" a "hole" in a group of nmessage sequence
nunbers, the inplenentation could even be clever enough to detect
this and adjust its outgoi ng sequence val ue accordingly.

The sendi ng NETBLT, upon receiving a CONTROL packet, should act on
the packet as quickly as possible. It either sets up a new buffer
(upon receipt of an OK nessage for a previous buffer), marks data for
resendi ng (upon recei pt of a RESEND nessage), or prepares a buffer
for sending (upon receipt of a GO nessage). |If the sending NETBLT is
not in a position to send data, it should send a NULL-ACK packet,

whi ch contains its hi gh-acknow edged- sequence-nunber (this pernits
the receiving NETBLT to acknowl edge any outstanding contro

nmessages), and wait until it can send nore data. 1In all of these
cases, the system overhead for a response to the incomng contro
nmessage should be small and rel atively constant.

The smal | anpunt of nessage-processing overhead all ows accurate
control timers to be set for all types of control nessages with a
single, sinple algorithm-- the network round-trip transit tine, plus
a variance factor. This is nore efficient than schemes used by other
protocol s, where timer value cal cul ati on has been a probl em because
the processing tinme for a particular packet can vary greatly
dependi ng on the packet type.

Control timer value estimation is extrenely inportant in a high-

Clark, Lanbert, & Zhang [ Page 9]



RFC 998 March 1987

performance protocol |ike NETBLT. A long control tiner causes the
receiving NETBLT to wait for long periods of tine before
retransmtting unacknow edged nmessages. A short control tinmer value
causes the sending NETBLT to receive many duplicate control messages
(which it can reject, but which takes tine).

In addition to the use of control timers, NETBLT reduces lost contro
nessages by using a single long-lived control packet; the packet is
treated |i ke a FIFO queue, with new control messages added on at the
end and acknow edged control messages renoved fromthe front. The

i mpl enent ati on pl aces control messages in the control packet and
transmts the entire control packet, consisting of any unacknow edged
control nessages plus new nessages just added. The entire contro
packet is also transmtted whenever the control timer expires. Since
control packet transm ssions are fairly frequent, unacknow edged
nmessages may be transmitted several times before they are finally
acknow edged. This redundant transm ssion of control nessages

provi des autonatic recovery for nobst control nessage | osses over a
noi sy channel

Thi s schene pl aces sone burdens on the receiver of the contro
messages. It nust be able to quickly reject duplicate contro
nmessages, since a given message may be retransmitted several tines
before its acknow edgenent is received and it is renoved fromthe
control packet. Typically this is fairly easy to do; the sender of
data nerely throws away any control nessages with sequence nunbers
[ ower than its high-acknow edged- sequence- nunber.

Anot her problemw th this scheme is that the control packet nmay
beconme | arger than the nmaxi mum al | owabl e packet size if too many
control nessages are placed into it. This has not been a problemin
the current NETBLT inplenentations: a typical control packet size is
1000 bytes; RESEND control messages average about 20 bytes in |ength,
GO nessages are 8 bytes long, and OK nessages are 16 bytes | ong.

This all ows 50-80 control nessages to be placed in the contro

packet, nore than enough for reasonable transfers. Qher

i mpl enentations can provide for nmultiple control packets if a single
control packet nay not be sufficient.

The control tiner value nust be carefully estimated. It can have as
its initial value an arbitrary number. Subsequent control packets
shoul d have their tinmer values based on the network round-trip
transit time (i.e. the tinme between sending the control packet and
recei ving the acknow edgnment of all nessages in the control packet)
plus a variance factor. The tiner value should be continually

updat ed, based on a snpot hed average of collected round-trip transit
times.

Clark, Lanbert, & Zhang [ Page 10]



RFC 998 March 1987

5.2.2. Recovering from Lost LDATA Packets

NETBLT sol ves the probl em of LDATA packet | oss by using a data tiner
for each buffer at the receiving end. The sinplest data timer node
has a data tiner set when a buffer is ready to be received; if the
data tiner expires, the receiving NETBLT assunmes a | ost LDATA packet
and sends a RESEND nessage requesting all missing DATA packets in the
buffer. Wen all packets have been received, the tiner is cleared.

Data tinmer values are not based on network round-trip transit tinme;
instead they are based on the anpbunt of time taken to transfer a
buf fer (as determ ned by the nunber of DATA packet bursts in the
buffer times the burst rate) plus a variance factor <1>.

Obviously an accurate estimation of the data tiner value is very
important. A short data timer value causes the receiving NETBLT to
send unnecessary RESEND packets. This causes serious performance
degradati on since the sending NETBLT has to stop what it is doing and
resend a nunber of DATA packets.

Data tinmer setting and clearing turns out to be fairly conplicated,
particularly in a nultiple-buffering transfer nmodel. In
under st andi ng how and when data tiners are set and cleared, it is

hel pful to visualize each buffer as a finite-state machi ne and take a
| ook at the various states.

The state sequence for a sending buffer is sinple. Wen a GO nessage
for the buffer is received, the buffer is created, filled w th data,
and placed in a SENDI NG state. When an K for that buffer has been
received, it goes into a SENT state and is di sposed of.

The state sequence for a receiving buffer is alittle nore
conplicated. Assume existence of a buffer A Wen a control nessage
for Alis sent, the buffer noves into state ACK-WAIT (it is waiting
for acknow edgenment of the control message).

As soon as the control nessage has been acknow edged, buffer A noves
fromthe ACK-WAIT state into the ACKED state (it is now waiting for
DATA packets to arrive). At this point, A's data tinmer is set and
the control message removed fromthe control packet. Estinmation of
the data tinmer value at this point is quite difficult. 1In a

nmul tiple-buffer transfer nodel, the receiving NETBLT can send severa
GO nessages at once. A single DATA packet fromthe sending NETBLT
coul d acknow edge all the GO nessages, causing several buffers to
start up data tinmers. Cearly each of the data tiners nust be set in
a manner that takes into account each buffer’s place in the order of
transm ssion. Packets for a buffer A- 1 will always be transmtted
bef ore packets in A, so A's data tinmer nust take into account the
arrival of all of A - 1's DATA packets as well as arrival of its own
DATA packets. This neans that the timer val ues becone increasingly
| ess accurate for higher-nunbered buffers. Because this data tinmer

Clark, Lanbert, & Zhang [ Page 11]



RFC 998 March 1987

val ue can be quite inaccurate, it is called a "loose" data tinmner.
The | oose data tiner value is recalculated later (using the sane
algorithm but with updated information), giving a "tight" timer, as
descri bed bel ow.

When the first DATA packet for A arrives, A noves fromthe ACKED
state to the RECEIVING state and its data timer is set to a new
"tight" value. The tight tiner value is calculated in the sane
manner as the loose tinmer, but it is nore accurate since we have
nmoved forward in tine and those buffers nunbered | ower than A have
presumably been dealt with (or their packets would have arrived
before A's), leaving fewer packets to arrive between the setting of
the data tiner and the arrival of the | ast DATA packet in A

The receiving NETBLT al so sets the tight data tiners of any buffers
nunbered | ower than A that are also in the ACKED state. This is done
as an optim zation: we know that buffers are processed in order

| owest number first. |If a buffer B nunbered |ower than Ais in the
ACKED state, its DATA packets should arrive before A's. Since A's
have arrived first, B's must have gotten lost. Since B's |oose data
timer has not expired (it would then have sent a RESEND nessage and
be in the ACK-WAIT state), we set the tight timer, allow ng the

m ssing packets to be detected earlier. An imrediate RESEND i s not
sent because it is possible that A's packet was re-ordered before B's
by the network, and that B's packets may arrive shortly.

When al | DATA packets for A have been received, it noves fromthe
RECEI VING state to the RECEI VED state and is di sposed of. Had any
packets been missing, A's data tinmer would have expired and A woul d
have noved into the ACK-WAIT state after sending a RESEND nessage.
The state progression would then nove as in the above exanpl e.

The control and data timer system can be sunmarized as foll ows:

normal Iy, the receiving NETBLT is working under one of two types of
timers, a control timer or a data timer. There is one data tinmer per
buf fer transm ssion and one control tinmer per control packet. The
data tiner is active while its buffer is in either the ACKED (| oose
data tiner value is used) or the RECEIVING (tight data tiner value is
used) states; a control tinmer is active whenever the receiving NETBLT
has any unacknow edged control nessages in its control packet.

5.2.3. Death Tiners and Keepal i ve Packets

The above systemstill |leaves a few problens. |[|f the sending NETBLT
is not ready to send, it sends a single NULL-ACK packet to clear any
outstanding control timers at the receiving end. After this the
receiver will wait. The sending NETBLT could die and the receiver,
with its control tiner cleared, would hang. Also, the above system
puts tiners only on the receiving NETBLT. The sending NETBLT has no
timers; if the receiving NETBLT dies, the sending NETBLT will hang
while waiting for control messages to arrive.

Clark, Lanbert, & Zhang [ Page 12]



RFC 998 March 1987

The solution to the above two problens is the use of a death tiner
and a keepalive packet for both the sending and receiving NETBLTS.

As soon as the connection is opened, each end sets a death timer;
this timer is reset every time a packet is received. Wen a NETBLT s
death timer expires, it can assune the other end has died and can

cl ose the connection

It is possible that the sending or receiving NETBLTs will have to
wait for long periods while their respective clients get buffer space
and |load their buffers with data. Since a NETBLT waiting for buffer
space is in a perfectly valid state, the protocol nust have some

net hod for preventing the other end' s death timer fromexpiring. The
solution is to use a KEEPALI VE packet, which is sent repeatedly at
fixed intervals when a NETBLT cannot send other packets. Since the
death timer is reset whenever a packet is received, it will never
expire as long as the other end sends packets.

The frequency with which KEEPALI VE packets are transmitted is
conputed as follows: At connection startup, each NETBLT chooses a
deat h-timer value and sends it to the other end in either the OPEN or
t he RESPONSE packet. The other end takes the death-timeout val ue and
uses it to conpute a frequency with which to send KEEPALI VE packets.
The KEEPALI VE frequency shoul d be high enough that several KEEPALIVE
packets can be | ost before the other end' s death timer expires (e.g.
death tinmer val ue divided by four).

The death timer value is relatively easy to estimate. Since it is
continually reset, it need not be based on the transfer size.
Instead, it should be based at least in part on the type of
application using NETBLT. User applications should have smaller
death tinmeout values to avoid forcing humans to wait |ong periods of
time for a death tinmeout to occur. WMachine applications can have

| onger timeout val ues.

5.3. dosing the Connection

There are three ways to close a connection: a connection close, a
"quit", or an "abort".

5.3.1. Successful Transfer

After a successful data transfer, NETBLT cl oses the connection. Wen
the sender is transnmitting the last buffer of data, it sets a "l ast-
buffer" flag on every DATA packet in the buffer. This neans that no
NEW data will be transmitted. The receiver knows the transfer has
conpl eted successfully when all of the following are true: (1) it has
recei ved DATA packets with a "last-buffer” flag set, (2) all its
control nessages have been acknow edged, and (3) it has no

out standi ng buffers with m ssing packets. At that point, the
receiver is permtted to close its half of the connection. The
sender knows the transfer has conpleted when the follow ng are true:

Clark, Lanbert, & Zhang [ Page 13]



RFC 998 March 1987

(1) it has transnmitted DATA packets with a "last-buffer"” flag set and
(2) it has received OK nessages for all its buffers. At that point,
it "dallies" for a predetermined period of time before closing its
hal f of the connection. |If the NULL-ACK packet acknow edgi ng the
receiver’s |last OK message was |lost, the receiver has tinme to
retransmt the OK nessage, receive a new NULL-ACK, and recognize a
successful transfer. The dally timer value MJST be based on the
receiver’s control timer value; it nust be |ong enough to allow the
receiver’'s control tinmer to expire so that the OK nmessage can be re-
sent. For this reason, all OK nessages contain (in addition to new
burst size and burst rate values), the receiver’s current contro
timer value in mlliseconds. The sender uses this value to compute
its dally tinmer value

Since the dally timer value nmay be quite large, the receiving NETBLT
is permtted to "short-circuit" the sending NETBLT' s dally timer by
transmtting a DONE packet. The DONE packet is transmitted when the
recei ver knows the transfer has been successfully conpleted. Wen
the sender receives a DONE packet, it is allowed to clear its dally
timer and close its half of the connection imediately. The DONE
packet is not reliably transmtted, since failure to receive it only
means that the sending NETBLT will take longer tine to close its half
of the connection (as it waits for its dally timer to clear)

5.3.2. Cient QUT

During a NETBLT transfer, one client may send a QU T packet to the
other if it thinks that the other client is malfunctioning. Since
the QU T occurs at a client level, the QU T transm ssion can only
occur between buffer transm ssions. The NETBLT receiving the QUT
packet can take no action other than imediately notifying its client
and transmtting a QU TACK packet. The QU T sender must tine out and
retransmt until a QU TACK has been received or its death tinmer
expires. The sender of the QU TACK dallies before quitting, so that
it can respond to a retransmtted QU T.

5.3.3. NETBLT ABORT
An ABORT takes place when a NETBLT layer thinks that it or its
opposite is mal functioning. Since the ABORT originates in the NETBLT
| ayer, it can be sent at any tine. The ABORT inplies that the NETBLT
layer is malfunctioning, so no transmt reliability is expected, and
the sender can inmmediately close it connection

6. Protocol Layering Structure

NETBLT is inplenented directly on top of the Internet Protocol (IP).
It has been assigned an official protocol nunber of 30 (decinal).

Clark, Lanbert, & Zhang [ Page 14]



RFC 998 March 1987

7. Pl anned Enhancenents

As currently specified, NETBLT has no algorithmfor determning its
rate-control paranmeters (burst rate, burst size, etc.). In initial
performance testing, these paraneters have been set by the person
performng the test. W are now exploring ways to have NETBLT set
and adjust its rate-control paraneters automatically.

8. Packet Formmats

NETBLT packets are divided into three categories, all of which share
a common packet header. First, there are those packets that trave
only fromdata sender to receiver; these contain the high-

acknow edged- sequence- nunbers which the receiver uses for contro
nessage transnission reliability. These packets are the NULL-ACK,
DATA, and LDATA packets. Second, there is a packet that travels only
fromreceiver to sender. This is the CONTROL packet; each CONTRCL
packet can contain an arbitrary nunber of control nessages (GO K,
or RESEND), each with its own sequence nunber. Finally, there are
those packets which either have special ways of insuring reliability,
or are not reliably transnmtted. These are the OPEN, RESPONSE
REFUSED, QUI T, QUI TACK, DONE, KEEPALIVE, and ABORT packets. O
these, all save the DONE packet can be sent by both sendi ng and

recei ving NETBLTS.

Al'l packets are "l ongword-aligned', i.e. all packets are a nmultiple
of 4 bytes in length and all 4-byte fields start on a | ongword
boundary. All arbitrary-length string fields are term nated with at

| east one null byte, with extra null bytes added at the end to create
afield that is a multiple of 4 bytes |ong.

Clark, Lanbert, & Zhang [ Page 15]



RFC 998 March 1987

Packet Formats for NETBLT

OPEN (type 0) and RESPONSE (type 1):

1 2 3
12345678901234567890123456789012
S S S S +
| Checksum | Ver si on | Type |
. . . . +
| Lengt h | Local Port |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +

| Forei gn Port | Longword Alignment Padding
S TR S S TR S +
| Connection Unique ID
. . . . +
| Buf fer Size
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Transfer Size
S TR S S S +
| DATA packet size | Burst Size |
. . . . +
| Burst Rate | Deat h Ti nmer Val ue |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Reserved (MBZ) | M Maxi mum # CQutstanding Buffers
S TR S S TR O +
| Cdient String ..
. . .
Longword Ali gnment Paddi ng |
--------------- T

Checksum packet checksum (algorithmis described in the section
"Connection Setup")

Version: the NETBLT protocol version number

Type: the NETBLT packet type nunber (OPEN = 0, RESPONSE = 1,
etc.)

Length: the total length (NETBLT header plus data, if present)
of the NETBLT packet in bytes

Local Port: the local NETBLT s 16-bit port nunber
Foreign Port: the foreign NETBLT s 16-bit port nunber

Connection U D: the 32 bit connection U D specified in the
section "Connection Setup".

Buf fer size: the size in bytes of each NETBLT buffer (save the
| ast)

Clark, Lanbert, & Zhang [ Page 16]



RFC 998 March 1987

Transfer size: (optional) the size in bytes of the transfer.

This is for client information only; the receiving NETBLT should
NOT nake use of it.

Dat a packet size: length of each DATA packet in bytes

Burst Size: Nunmber of DATA packets in a burst

Burst Rate: Transmit tine in mlliseconds of a single burst
Death tiner: Packet sender’s death timer value in seconds
"M': the transfer node (0 = READ, 1 = WRI TE)

"C': the DATA packet data checksumflag (0 = do not checksum
DATA packet data, 1 = do)

Maxi mum Qut st andi ng Buffers: naxi mum nunber of buffers that can
be transferred before waiting for an OK nessage fromthe
recei ving NETBLT.

Client string: an arbitrary, null-termnated, |ongword-aligned
string for use by NETBLT clients.

KEEPALI VE (type 2), QU TACK (type 4), and DONE (type 11)

1 2 3
12345678901234567890123456789012
R R R R +
| Checksum | Ver si on | Type |
oo oo oo oo +
| Lengt h | Local Port |
S S S S +

| For ei gn Port | Longword Alignnent Padding
R R R R +

Clark, Lanbert, & Zhang [ Page 17]



RFC 998 March 1987

QU T (type 3), ABORT (type 5), and REFUSED (type 10)

1 2 3
12345678901234567890123456789012
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Checksum | Ver si on | Type |
S TR S S TR S R +
| Lengt h | Local Port |
. . . . +

| For ei gn Port | Longword Alignnent Padding
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Reason for QU T/ ABORT/ REFUSE. .
S TR S S
Longword Alignment Paddi ng |
--------------- e

DATA (type 6) and LDATA (type 7):

1 2 3
12345678901234567890123456789012
. . . . +
| Checksum | Ver si on | Type |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Lengt h | Local Port |
S IR S S TR S +

| For ei gn Port | Longword Alignment Padding
. . . . +
| Buf f er Number |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Hi gh Consecutive Seq Num Rcvd | Packet Number

S TR S S TR S +
| Dat a Area Checksum Val ue | Reserved (MBZ) | L
. . . . +

Buf fer nunber: a 32 bit unique nunmber assigned to every buffer.
Nunbers are nonotoni cally increasing.

H gh Consecutive Sequence Nunber Received: Hi ghest contro

nmessage sequence number bel ow whi ch all sequence nunbers received
are consecutive.

Packet nunber: nonotonically increasing DATA packet identifier
Dat a Area Checksum Val ue: Checksum of the DATA packet’s data.

Al gorithmused is the sane as that used to conpute checksuns of
ot her NETBLT packets.

"L" is a flag set when the buffer that this DATA packet bel ongs
tois the last buffer in the transfer.

Clark, Lanbert, & Zhang [ Page 18]



RFC 998 March 1987

NULL- ACK (type 8)

1 2 3
12345678901234567890123456789012
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Checksum | Ver si on | Type |
S TR S S TR S R +
| Lengt h | Local Port |
. . . . +
| For ei gn Port | Longword Alignnent Padding |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Hi gh Consecutive Seq Num Rcvd | New Burst Size |
S TR S S TR S +
| New Burst Rate | Longword Alignnment Padding |
. . . . +

H gh Consecutive Sequence Nunber Received: same as in DATA/ LDATA
packet

New Burst Size: Burst size as negotiated from val ue given by
recei ving NETBLT in OK nmessage

New burst rate: Burst rate as negotiated from val ue given
by receiving NETBLT in OK nessage. Value is in mlliseconds.

CONTROL (type 9):

1 2 3
12345678901234567890123456789012
R R R R +
| Checksum | Ver si on | Type |
oo oo oo oo +
| Lengt h | Local Port |
S S S S +
| For ei gn Port | Longword Alignnent Padding |
R R R R +

Fol | owed by any nunber of nessages, each of which is | ongword
aligned, with the follow ng formats:

GO nessage (type 0):

1 2 3
12345678901234567890123456789012
. . . . +
| Type | Word Padding | Sequence Number |
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Buf f er Number |
S TR S S S +

Type: nessage type (GO = 0, OK = 1, RESEND = 2)

Clark, Lanbert, & Zhang [ Page 19]



RFC 998 March 1987

Sequence nunber: A 16 bit unique nessage nunber. Sequence
nunbers nust be nonotonically increasing, starting froml
Buf f er nunber: as in DATA/ LDATA packet

X nessage (type 1):

1 2 3
12345678901234567890123456789012
S S S S +

| Type | Word Padding | Sequence Number
R R R R +
| Buf f er Number

B B B B +
| New Of fered Burst Size | New Of fered Burst Rate |
S S S S +
| Current control timer value | Longword Alignnent Padding
R R R R +

New of fered burst size: burst size for subsequent buffer
transfers, possibly based on performance information for previous
buffer transfers.

New of fered burst rate: burst rate for subsequent buffer
transfers, possibly based on performance information for previous
buffer transfers. Rate is in mlliseconds.

Current control tinmer value: Receiving NETBLT s control timer
value in mlliseconds.

RESEND Message (type 2):

1 2 3
12345678901234567890123456789012
Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +

| Type | Word Padding | Sequence Nunber

S R S TR S TR S +
| Buf f er Number

. . . . +
| Nunmber of M ssing Packets | Longword Alignnent Padding

Fom e e e oo - Fom e e e oo - Fom e e e oo - Fom e e e oo - +
| Packet Number (2 bytes)

S TR S S R

Packet nunber: the 16 bit data packet identifier found in each
DATA packet.

Clark, Lanbert, & Zhang [ Page 20]



RFC 998 March 1987

NOTES:

<1> Wen the buffer size is large, the variances in the round trip
del ays of many packets may cancel each other out; this means the
variance val ue need not be very big. This expectation will be
explored in further testing.

Clark, Lanbert, & Zhang [ Page 21]






