
ï»¿

Internet Engineering Task Force (IETF) J. Snijders
Request for Comments: 9323 Fastly
Category: Standards Track T. Harrison
ISSN: 2070-1721 APNIC
 B. Maddison
 Workonline
 November 2022

 A Profile for RPKI Signed Checklists (RSCs)

Abstract

 This document defines a Cryptographic Message Syntax (CMS) protected
 content type for use with the Resource Public Key Infrastructure
 (RPKI) to carry a general-purpose listing of checksums (a
 ’checklist’). The objective is to allow for the creation of an
 attestation, termed an "RPKI Signed Checklist (RSC)", which contains
 one or more checksums of arbitrary digital objects (files) that are
 signed with a specific set of Internet Number Resources. When
 validated, an RSC confirms that the respective Internet resource
 holder produced the RSC.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9323.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Requirements Language
 2. RSC Profile and Distribution
 2.1. RSC EE Certificates
 3. The RSC eContentType
 4. The RSC eContent
 4.1. Version
 4.2. Resources
 4.2.1. ConstrainedASIdentifiers Type
 4.2.2. ConstrainedIPAddrBlocks Type
 4.3. digestAlgorithm
 4.4. checkList
 4.4.1. FileNameAndHash

 5. RSC Validation
 6. Verifying Files or Data Using RSC
 7. Operational Considerations
 8. Security Considerations
 9. IANA Considerations
 9.1. SMI Security for S/MIME CMS Content Type
 (1.2.840.113549.1.9.16.1)
 9.2. RPKI Signed Objects
 9.3. RPKI Repository Name Schemes
 9.4. SMI Security for S/MIME Module Identifier
 (1.2.840.113549.1.9.16.0)
 9.5. Media Types
 10. References
 10.1. Normative References
 10.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This document defines a Cryptographic Message Syntax (CMS) [RFC5652]
 [RFC6268] protected content type for a general-purpose listing of
 checksums (a ’checklist’), for use with the Resource Public Key
 Infrastructure (RPKI) [RFC6480]. The CMS protected content type is
 intended to provide for the creation and validation of an RPKI Signed
 Checklist (RSC), a checksum listing signed with a specific set of
 Internet Number Resources. The objective is to allow for the
 creation of an attestation that, when validated, provides a means to
 confirm a given Internet resource holder produced the RSC.

 RPKI Signed Checklists are expected to facilitate inter-domain
 business use cases that depend on an ability to verify resource
 holdership. RPKI-based validation processes are expected to become
 the industry norm for automated Bring Your Own IP (BYOIP) on-boarding
 or establishment of physical interconnections between Autonomous
 Systems (ASes).

 The RSC concept borrows heavily from Resource Tagged Attestation
 (RTA) [RPKI-RTA], Manifests [RFC9286], and OpenBSD’s signify utility
 [signify]. The main difference between an RSC and RTA is that the
 RTA profile allows multiple signers to attest a single digital object
 through a checksum of its content, while the RSC profile allows a
 single signer to attest the content of multiple digital objects. A
 single signer profile is considered a simplification for both
 implementers and operators.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. RSC Profile and Distribution

 RSC follows the Signed Object Template for the RPKI [RFC6488] with
 one exception: because RSCs MUST NOT be distributed through the
 global RPKI repository system, the Subject Information Access (SIA)
 extension MUST be omitted from the RSC’s X.509 End-Entity (EE)
 certificate.

 What constitutes suitable transport for RSC files is deliberately
 unspecified. For example, it might be a USB stick, a web interface
 secured with HTTPS, an email signed with Pretty Good Privacy (PGP), a
 T-shirt printed with a QR code, or a carrier pigeon.

2.1. RSC EE Certificates

 The Certification Authority (CA) MUST only sign one RSC with each EE
 certificate and MUST generate a new key pair for each new RSC. This

 type of EE certificate is termed a "one-time-use" EE certificate (see
 Section 3 of [RFC6487]).

3. The RSC eContentType

 The eContentType for an RSC is defined as id-ct-signedChecklist, with
 Object Identifier (OID) 1.2.840.113549.1.9.16.1.48.

 This OID MUST appear within both the eContentType in the
 encapContentInfo object and the ContentType signed attribute in the
 signerInfo object (see [RFC6488]).

4. The RSC eContent

 The content of an RSC indicates that a checklist for arbitrary
 digital objects has been signed with a specific set of Internet
 Number Resources. An RSC is formally defined as follows:

 RpkiSignedChecklist-2022
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) mod(0)
 id-mod-rpkiSignedChecklist-2022(73) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 CONTENT-TYPE, Digest, DigestAlgorithmIdentifier
 FROM CryptographicMessageSyntax-2010 -- in [RFC6268]
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

 IPAddressOrRange, ASIdOrRange
 FROM IPAddrAndASCertExtn -- in [RFC3779]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) mod(0)
 id-mod-ip-addr-and-as-ident(30) } ;

 ct-rpkiSignedChecklist CONTENT-TYPE ::=
 { TYPE RpkiSignedChecklist
 IDENTIFIED BY id-ct-signedChecklist }

 id-ct-signedChecklist OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) id-smime(16) id-ct(1) 48 }

 RpkiSignedChecklist ::= SEQUENCE {
 version [0] INTEGER DEFAULT 0,
 resources ResourceBlock,
 digestAlgorithm DigestAlgorithmIdentifier,
 checkList SEQUENCE (SIZE(1..MAX)) OF FileNameAndHash }

 FileNameAndHash ::= SEQUENCE {
 fileName PortableFilename OPTIONAL,
 hash Digest }

 PortableFilename ::=
 IA5String (FROM("a".."z" | "A".."Z" | "0".."9" | "." | "_" | "-"))

 ResourceBlock ::= SEQUENCE {
 asID [0] ConstrainedASIdentifiers OPTIONAL,
 ipAddrBlocks [1] ConstrainedIPAddrBlocks OPTIONAL }
 -- at least one of asID or ipAddrBlocks MUST be present
 (WITH COMPONENTS { ..., asID PRESENT} |
 WITH COMPONENTS { ..., ipAddrBlocks PRESENT })

 ConstrainedIPAddrBlocks ::=
 SEQUENCE (SIZE(1..MAX)) OF ConstrainedIPAddressFamily

 ConstrainedIPAddressFamily ::= SEQUENCE {
 addressFamily OCTET STRING (SIZE(2)),

 addressesOrRanges SEQUENCE (SIZE(1..MAX)) OF IPAddressOrRange }

 ConstrainedASIdentifiers ::= SEQUENCE {
 asnum [0] SEQUENCE (SIZE(1..MAX)) OF ASIdOrRange }

 END

4.1. Version

 The version number of the RpkiSignedChecklist MUST be 0.

4.2. Resources

 The resources contained here are the resources used to mark the
 attestation and MUST be a subset of the set of resources listed by
 the EE certificate carried in the CMS certificates field.

 If the asID field is present, it MUST contain an instance of
 ConstrainedASIdentifiers.

 If the ipAddrBlocks field is present, it MUST contain an instance of
 ConstrainedIPAddrBlocks.

 At least one of asID or ipAddrBlocks MUST be present.

 ConstrainedASIdentifiers and ConstrainedIPAddrBlocks are specified
 such that the resulting DER-encoded data instances are binary
 compatible with ASIdentifiers and IPAddrBlocks (defined in
 [RFC3779]), respectively.

 Implementations encountering decoding errors whilst attempting to
 read DER-encoded data using this specification should be aware of the
 possibility that the data may have been encoded using an
 implementation intended for use with [RFC3779]. Such data may
 contain elements prohibited by the current specification.

 Attempting to decode the errored data using the more permissive
 specification contained in [RFC3779] may enable implementors to
 gather additional context for use when reporting errors to the user.

 However, implementations MUST NOT ignore errors resulting from the
 more restrictive definitions contained herein; in particular, such
 errors MUST cause the validation procedure described in Section 5 to
 fail.

4.2.1. ConstrainedASIdentifiers Type

 ConstrainedASIdentifiers is a SEQUENCE consisting of a single field,
 asnum, which in turn contains a SEQUENCE OF one or more ASIdOrRange
 instances as defined in [RFC3779].

 ConstrainedASIdentifiers is defined such that the resulting DER-
 encoded data are binary compatible with ASIdentifiers defined in
 [RFC3779].

4.2.2. ConstrainedIPAddrBlocks Type

 ConstrainedIPAddrBlocks is a SEQUENCE OF one or more instances of
 ConstrainedIPAddressFamily.

 There MUST be only one instance of ConstrainedIPAddressFamily per
 unique Address Family Identifier (AFI).

 The elements of ConstrainedIPAddressFamily MUST be ordered by
 ascending addressFamily values (treating the octets as unsigned
 numbers). Thus, when both IPv4 and IPv6 addresses are specified, the
 IPv4 addresses MUST precede the IPv6 addresses (since the IPv4 AFI of
 0001 is less than the IPv6 AFI of 0002).

 ConstrainedIPAddrBlocks is defined such that the resulting DER-
 encoded data are binary compatible with IPAddrBlocks defined in

 [RFC3779].

4.2.2.1. ConstrainedIPAddressFamily Type

4.2.2.1.1. addressFamily Field

 The addressFamily field is an OCTET STRING containing a 2-octet AFI,
 in network byte order. Unlike IPAddrBlocks [RFC3779], a third octet
 containing a Subsequent Address Family Identifier (SAFI) MUST NOT be
 present. AFIs are specified in the "Address Family Numbers" registry
 [IANA.ADDRESS-FAMILY-NUMBERS] maintained by IANA.

4.2.2.1.2. addressesOrRanges Field

 The addressesOrRanges element is a SEQUENCE OF one or more
 IPAddressOrRange values, as defined in [RFC3779]. The rules for
 canonicalization and encoding defined in Section 2.2.3.6 of [RFC3779]
 apply to the value of addressesOrRanges.

4.3. digestAlgorithm

 The digest algorithm is used to create the message digest of the
 attested digital object(s). This algorithm MUST be a hashing
 algorithm defined in [RFC7935].

4.4. checkList

 This field is a SEQUENCE OF one or more FileNameAndHash values.
 There is one FileNameAndHash entry for each digital object referenced
 on the RSC.

4.4.1. FileNameAndHash

 Each FileNameAndHash is an ordered pair of the name of the directory
 entry containing the digital object and the message digest of the
 digital object.

 The hash field is mandatory. The value of the hash field is the
 calculated message digest of the digital object. The hashing
 algorithm is specified in the digestAlgorithm field.

 The fileName field is OPTIONAL. This is to allow RSCs to be used in
 a "stand-alone" fashion in which nameless digital objects are
 addressed directly through their respective message digest rather
 than through a file system abstraction.

 If the fileName field is present, then its value:

 * MUST contain only characters specified in the Portable Filename
 Character Set as defined in [POSIX].

 * MUST be unique with respect to the other FileNameAndHash elements
 of checkList for which the fileName field is also present.

 Conversely, if the fileName field is omitted, then the value of the
 hash field MUST be unique with respect to the other FileNameAndHash
 elements of checkList for which the fileName field is also omitted.

5. RSC Validation

 Before a Relying Party (RP) can use an RSC to validate a set of
 digital objects, the RP MUST first validate the RSC. To validate an
 RSC, the RP MUST perform all the validation checks specified in
 [RFC6488], except for checking for the presence of an SIA extension,
 which MUST NOT be present in the EE certificate (see Section 2). In
 addition, the RP MUST perform the following RSC-specific validation
 steps:

 1. The contents of the CMS eContent field MUST conform to all of the
 constraints described in Section 4, including the constraints
 described in Section 4.4.1.

 2. If the asID field is present within the contents of the resources
 field, then the AS identifier delegation extension [RFC3779] MUST
 be present in the EE certificate contained in the CMS
 certificates field. The AS identifiers present in the eContent
 resources field MUST be a subset of those present in the
 certificate extension. The EE certificate’s AS identifier
 delegation extension MUST NOT contain "inherit" elements.

 3. If the ipAddrBlocks field is present within the contents of the
 resources field, then the IP address delegation extension
 [RFC3779] MUST be present in the EE certificate contained in the
 CMS certificates field. The IP addresses present in the eContent
 resources field MUST be a subset of those present in the
 certificate extension. The EE certificate’s IP address
 delegation extension MUST NOT contain "inherit" elements.

6. Verifying Files or Data Using RSC

 To verify a set of digital objects with an RSC:

 * The RSC MUST be validated according to the procedure described in
 Section 5. If the RSC cannot be validated, verification MUST
 fail. This error SHOULD be reported to the user.

 * For every digital object to be verified:

 1. If the verification procedure is provided with a filename for
 the object being verified (e.g., because the user has provided
 a file system path from which to read the object), then
 verification SHOULD proceed in "filename-aware" mode.
 Otherwise, verification SHOULD proceed in "filename-unaware"
 mode.

 Implementations MAY provide an option to override the
 verification mode, for example, to ignore the fact that the
 object is to be read from a file.

 2. The message digest MUST be computed from the file contents or
 data using the digest algorithm specified in the
 digestAlgorithm field of the RSC.

 3. The digest computed in Step 2 MUST be compared to the value
 appearing in the hash field of all FileNameAndHash elements of
 the checkList field of the RSC.

 One or more FileNameAndHash elements MUST be found with a
 matching hash value; otherwise, verification MUST fail, and
 the error SHOULD be reported to the user.

 4. If the mode selected in Step 1 is "filename-aware", then
 exactly one of the FileNameAndHash elements matched in Step 3
 MUST contain a fileName field value exactly matching the
 filename of the object being verified.

 Alternatively, if the mode selected in Step 1 is "filename-
 unaware", then exactly one of the FileNameAndHash elements
 matched in Step 3 MUST have the fileName field omitted.

 Otherwise, verification MUST fail, and the error SHOULD be
 reported to the user.

 Note that in the above procedure, not all elements of checkList
 necessarily need be used. That is, it is not an error if the length
 of checkList is greater than the size of the set of digital objects
 to be verified. However, in this situation, implementations SHOULD
 issue a warning to the user, allowing for corrective action to be
 taken if necessary.

7. Operational Considerations

 When creating digital objects of a plain-text nature (such as ASCII,
 UTF-8, HTML, Javascript, and XML), converting such objects into a
 lossless compressed form is RECOMMENDED. Distributing plain-text
 objects within a compression envelope (such as GZIP [RFC1952]) might
 help avoid unexpected canonicalization at intermediate systems (which
 in turn would lead to checksum verification errors). Validator
 implementations are expected to treat a checksummed digital object as
 a string of arbitrary single octets.

 If a fileName field is present, but no digital object within the set
 of to-be-verified digital objects has a filename that matches the
 content of that field, a validator implementation SHOULD compare the
 message digest of each digital object to the value from the hash
 field of the associated FileNameAndHash and report matches to the
 user for further consideration.

8. Security Considerations

 RPs are hereby warned that the data in an RSC is self-asserted. When
 determining the meaning of any data contained in an RSC, RPs MUST NOT
 make any assumptions about the signer beyond the fact that it had
 sufficient control of the issuing CA to create the object. These
 data have not been verified by the Certificate Authority (CA) that
 issued the CA certificate to the entity that issued the EE
 certificate used to validate the RSC.

 RPKI certificates are not bound to real-world identities; see
 [RFC9255] for an elaboration. RPs can only associate real-world
 entities to Internet Number Resources by additionally consulting an
 exogenous authority. RSCs are a tool to communicate assertions
 signed with Internet Number Resources and do not communicate any
 other aspect of the resource holder’s business operations, such as
 the identity of the resource holder itself.

 RSC objects are not distributed through the RPKI repository system.
 From this, it follows that third parties who do not have a copy of a
 given RSC may not be aware of the existence of that RSC. Since RSC
 objects use EE certificates but all other currently defined types of
 RPKI object profiles are published in public CA repositories, an
 observer may infer from discrepancies in the repository that RSC
 object(s) may exist. For example, if a CA does not use random serial
 numbers for certificates, an observer could detect gaps between the
 serial numbers of the published EE certificates. Similarly, if the
 CA includes a serial number on a Certificate Revocation List (CRL)
 that does not match any published object, an observer could postulate
 that an RSC EE certificate was revoked.

 Conversely, a gap in serial numbers does not imply that an RSC
 exists. Nor does the presence in a CRL of a serial number unknown to
 the RP imply an RSC object exists: the implicitly referenced object
 might not be an RSC, it might have never been published, or it may
 have been revoked before it was visible to RPs. In general, it is
 not possible to confidently infer the existence or non-existence of
 RSCs from the repository state without access to a given RSC.

 While a one-time-use EE certificate must only be used to generate and
 sign a single RSC object, CAs technically are not restricted from
 generating and signing multiple different RSC objects with a single
 key pair. Any RSC objects sharing the same EE certificate cannot be
 revoked individually.

9. IANA Considerations

9.1. SMI Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1)

 IANA has allocated the following in the "SMI Security for S/MIME CMS
 Content Type (1.2.840.113549.1.9.16.1)" registry:

 +=========+=======================+============+
 | Decimal | Description | References |
 +=========+=======================+============+

 | 48 | id-ct-signedChecklist | RFC 9323 |
 +---------+-----------------------+------------+

 Table 1

9.2. RPKI Signed Objects

 IANA has registered the OID for the RSC in the "RPKI Signed Objects"
 registry [RFC6488] as follows:

 +==================+============================+===========+
 | Name | OID | Reference |
 +==================+============================+===========+
 | Signed Checklist | 1.2.840.113549.1.9.16.1.48 | RFC 9323 |
 +------------------+----------------------------+-----------+

 Table 2

9.3. RPKI Repository Name Schemes

 IANA has added the Signed Checklist file extension to the "RPKI
 Repository Name Schemes" registry [RFC6481] as follows:

 +====================+==================+===========+
 | Filename Extension | RPKI Object | Reference |
 +====================+==================+===========+
 | .sig | Signed Checklist | RFC 9323 |
 +--------------------+------------------+-----------+

 Table 3

9.4. SMI Security for S/MIME Module Identifier
 (1.2.840.113549.1.9.16.0)

 IANA has allocated the following in the "SMI Security for S/MIME
 Module Identifier (1.2.840.113549.1.9.16.0)" registry:

 +=========+=================================+============+
 | Decimal | Description | References |
 +=========+=================================+============+
 | 73 | id-mod-rpkiSignedChecklist-2022 | RFC 9323 |
 +---------+---------------------------------+------------+

 Table 4

9.5. Media Types

 IANA has registered the media type "application/rpki-checklist" in
 the "Media Types" registry as follows:

 Type name: application

 Subtype name: rpki-checklist

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: Carries an RPKI Signed Checklist. This
 media type contains no active content. See Section 5 of RFC 9323
 for further information.

 Interoperability considerations: N/A

 Published specification: RFC 9323

 Applications that use this media type: RPKI operators

 Fragment identifier considerations: N/A

 Additional information:

 Content: This media type is a signed object, as defined in
 [RFC6488], which contains a payload of a list of checksums as
 defined in RFC 9323.
 Magic number(s): N/A
 File extension(s): .sig
 Macintosh file type code(s): N/A

 Person & email address to contact for further information: Job
 Snijders (job@fastly.com)

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Job Snijders (job@fastly.com)

 Change controller: IETF

10. References

10.1. Normative References

 [POSIX] IEEE and The Open Group, "Base Specifications", Issue 7,
 DOI 10.1109/IEEESTD.2016.7582338, 2016,
 <https://publications.opengroup.org/standards/unix/c165>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779,
 DOI 10.17487/RFC3779, June 2004,
 <https://www.rfc-editor.org/info/rfc3779>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for
 Resource Certificate Repository Structure", RFC 6481,
 DOI 10.17487/RFC6481, February 2012,
 <https://www.rfc-editor.org/info/rfc6481>.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487,
 DOI 10.17487/RFC6487, February 2012,
 <https://www.rfc-editor.org/info/rfc6487>.

 [RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object
 Template for the Resource Public Key Infrastructure
 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,
 <https://www.rfc-editor.org/info/rfc6488>.

 [RFC7935] Huston, G. and G. Michaelson, Ed., "The Profile for
 Algorithms and Key Sizes for Use in the Resource Public
 Key Infrastructure", RFC 7935, DOI 10.17487/RFC7935,
 August 2016, <https://www.rfc-editor.org/info/rfc7935>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC9286] Austein, R., Huston, G., Kent, S., and M. Lepinski,
 "Manifests for the Resource Public Key Infrastructure
 (RPKI)", RFC 9286, DOI 10.17487/RFC9286, June 2022,
 <https://www.rfc-editor.org/info/rfc9286>.

10.2. Informative References

 [IANA.ADDRESS-FAMILY-NUMBERS]
 IANA, "Address Family Numbers",
 <https://www.iana.org/assignments/address-family-numbers>.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, DOI 10.17487/RFC1952, May 1996,
 <https://www.rfc-editor.org/info/rfc1952>.

 [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
 for the Cryptographic Message Syntax (CMS) and the Public
 Key Infrastructure Using X.509 (PKIX)", RFC 6268,
 DOI 10.17487/RFC6268, July 2011,
 <https://www.rfc-editor.org/info/rfc6268>.

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,
 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

 [RFC9255] Bush, R. and R. Housley, "The ’I’ in RPKI Does Not Stand
 for Identity", RFC 9255, DOI 10.17487/RFC9255, June 2022,
 <https://www.rfc-editor.org/info/rfc9255>.

 [RPKI-RTA] Michaelson, G., Huston, G., Harrison, T., Bruijnzeels, T.,
 and M. Hoffman, "A profile for Resource Tagged
 Attestations (RTAs)", Work in Progress, Internet-Draft,
 draft-ietf-sidrops-rpki-rta-00, 17 January 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-
 rpki-rta-00>.

 [signify] Unangst, T. and M. Espie, "signify - cryptographically
 sign and verify files", <https://man.openbsd.org/signify>.

Acknowledgements

 The authors wish to thank George Michaelson, Geoff Huston, Randy
 Bush, Stephen Kent, Matt Lepinski, Rob Austein, Ted Unangst, and Marc
 Espie for prior art. The authors thank Russ Housley for reviewing
 the ASN.1 notation and providing suggestions. The authors would like
 to thank Nimrod Levy, Tim Bruijnzeels, Alberto Leiva, Ties de Kock,
 Peter Peele, Claudio Jeker, Theo Buehler, Donald Eastlake 3rd, Erik
 Kline, Robert Wilton, Roman Danyliw, Ã\211ric Vyncke, Lars Eggert, Paul
 Wouters, and Murray S. Kucherawy for document review and suggestions.

Authors’ Addresses

 Job Snijders
 Fastly
 Amsterdam
 Netherlands
 Email: job@fastly.com

 Tom Harrison
 Asia Pacific Network Information Centre
 6 Cordelia St
 South Brisbane QLD 4101
 Australia
 Email: tomh@apnic.net

 Ben Maddison
 Workonline Communications
 Cape Town
 South Africa
 Email: benm@workonline.africa

