
ï»¿

Internet Engineering Task Force (IETF) D. Benjamin
Request for Comments: 9258 Google, LLC.
Category: Standards Track C. A. Wood
ISSN: 2070-1721 Cloudflare
 July 2022

 Importing External Pre-Shared Keys (PSKs) for TLS 1.3

Abstract

 This document describes an interface for importing external Pre-
 Shared Keys (PSKs) into TLS 1.3.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9258.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Conventions and Definitions
 3. Terminology
 4. Overview
 5. PSK Importer
 5.1. External PSK Diversification
 5.2. Binder Key Derivation
 6. Deprecating Hash Functions
 7. Incremental Deployment
 8. Security Considerations
 9. Privacy Considerations
 10. IANA Considerations
 11. References
 11.1. Normative References
 11.2. Informative References
 Appendix A. Addressing Selfie
 Acknowledgements
 Authors’ Addresses

1. Introduction

 TLS 1.3 [RFC8446] supports Pre-Shared Key (PSK) authentication,

 wherein PSKs can be established via session tickets from prior
 connections or via some external, out-of-band mechanism. The
 protocol mandates that each PSK only be used with a single hash
 function. This was done to simplify protocol analysis. TLS 1.2
 [RFC5246], in contrast, has no such requirement, as a PSK may be used
 with any hash algorithm and the TLS 1.2 pseudorandom function (PRF).
 While there is no known way in which the same external PSK might
 produce related output in TLS 1.3 and prior versions, only limited
 analysis has been done. Applications SHOULD provision separate PSKs
 for (D)TLS 1.3 and prior versions. In cases where this is not
 possible (e.g., there are already-deployed external PSKs or
 provisioning is otherwise limited), reusing external PSKs across
 different versions of TLS may produce related outputs, which may, in
 turn, lead to security problems; see Appendix E.7 of [RFC8446].

 To mitigate such problems, this document specifies a PSK importer
 interface by which external PSKs may be imported and subsequently
 bound to a specific key derivation function (KDF) and hash function
 for use in TLS 1.3 [RFC8446] and DTLS 1.3 [RFC9147]. In particular,
 it describes a mechanism for importing PSKs derived from external
 PSKs by including the target KDF, (D)TLS protocol version, and an
 optional context string to ensure uniqueness. This process yields a
 set of candidate PSKs, each of which are bound to a target KDF and
 protocol, that are separate from those used in (D)TLS 1.2 and prior
 versions. This expands what would normally have been a single PSK
 and identity into a set of PSKs and identities.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 The following terms are used throughout this document:

 External PSK (EPSK): A PSK established or provisioned out of band
 (i.e., not from a TLS connection) that is a tuple of (Base Key,
 External Identity, Hash).

 Base Key: The secret value of an EPSK.

 External Identity: A sequence of bytes used to identify an EPSK.

 Target protocol: The protocol for which a PSK is imported for use.

 Target KDF: The KDF for which a PSK is imported for use.

 Imported PSK (IPSK): A TLS PSK derived from an EPSK, optional
 context string, target protocol, and target KDF.

 Non-imported PSK: An EPSK that is used directly as a TLS PSK without
 being imported.

 Imported Identity: A sequence of bytes used to identify an IPSK.

 This document uses presentation language from Section 3 of [RFC8446].

4. Overview

 The PSK importer interface mirrors that of the TLS exporter interface
 (see [RFC8446]) in that it diversifies a key based on some contextual
 information. In contrast to the exporter interface, wherein output
 uniqueness is achieved via an explicit label and context string, the
 PSK importer interface defined herein takes an external PSK and
 identity and "imports" it into TLS, creating a set of "derived" PSKs
 and identities that are each unique. Each of these derived PSKs are
 bound to a target protocol, KDF identifier, and optional context

 string. Additionally, the resulting PSK binder keys are modified
 with a new derivation label to prevent confusion with non-imported
 PSKs. Through this interface, importing external PSKs with different
 identities yields distinct PSK binder keys.

 Imported keys do not require negotiation for use since a client and
 server will not agree upon identities if imported incorrectly.
 Endpoints may incrementally deploy PSK importer support by offering
 non-imported PSKs for TLS versions prior to TLS 1.3. Non-imported
 and imported PSKs are not equivalent since their identities are
 different. See Section 7 for more details.

 Endpoints that import external keys MUST NOT use the keys that are
 input to the import process for any purpose other than the importer,
 and they MUST NOT use the derived keys for any purpose other than TLS
 PSKs. Moreover, each external PSK fed to the importer process MUST
 be associated with one hash function at most. This is analogous to
 the rules in Section 4.2.11 of [RFC8446]. See Section 8 for more
 discussion.

5. PSK Importer

 This section describes the PSK importer interface and its underlying
 diversification mechanism and binder key computation modification.

5.1. External PSK Diversification

 As input, the PSK importer interface takes an EPSK with External
 Identity external_identity and base key epsk (as defined in
 Section 3) along with an optional context. It then transforms the
 input into a set of PSKs and imported identities for use in a
 connection based on target protocols and KDFs. In particular, for
 each supported target protocol target_protocol and KDF target_kdf,
 the importer constructs an ImportedIdentity structure as follows:

 struct {
 opaque external_identity<1...2^16-1>;
 opaque context<0..2^16-1>;
 uint16 target_protocol;
 uint16 target_kdf;
 } ImportedIdentity;

 The list of ImportedIdentity.target_kdf values is maintained by IANA
 as described in Section 10. External PSKs MUST NOT be imported for
 (D)TLS 1.2 or prior versions. See Section 7 for discussion on how
 imported PSKs for TLS 1.3 and non-imported PSKs for earlier versions
 coexist for incremental deployment.

 ImportedIdentity.context MUST include the context used to determine
 the EPSK, if any exists. For example, ImportedIdentity.context may
 include information about peer roles or identities to mitigate
 Selfie-style reflection attacks [Selfie]. See Appendix A for more
 details. Since the EPSK is a key derived from an external protocol
 or sequence of protocols, ImportedIdentity.context MUST include a
 channel binding for the deriving protocols [RFC5056]. The details of
 this binding are protocol specific and out of scope for this
 document.

 ImportedIdentity.target_protocol MUST be the (D)TLS protocol version
 for which the PSK is being imported. For example, TLS 1.3 [RFC8446]
 uses 0x0304, which will therefore also be used by QUICv1 [QUIC].
 Note that this means the number of PSKs derived from an EPSK is a
 function of the number of target protocols.

 Given an ImportedIdentity and corresponding EPSK with base key epsk,
 an imported PSK IPSK with base key ipskx is computed as follows:

 epskx = HKDF-Extract(0, epsk)
 ipskx = HKDF-Expand-Label(epskx, "derived psk",
 Hash(ImportedIdentity), L)

 L corresponds to the KDF output length of ImportedIdentity.target_kdf
 as defined in Section 10. For hash-based KDFs, such as HKDF_SHA256
 (0x0001), this is the length of the hash function output, e.g., 32
 octets for SHA256. This is required for the IPSK to be of length
 suitable for supported ciphersuites. Internally, HKDF-Expand-Label
 uses a label corresponding to ImportedIdentity.target_protocol (e.g.,
 "tls13" for TLS 1.3, as per Section 7.1 of [RFC8446] or "dtls13" for
 DTLS 1.3, as per Section 5.10 of [RFC9147]).

 The identity of ipskx as sent on the wire is ImportedIdentity, i.e.,
 the serialized content of ImportedIdentity is used as the content of
 PskIdentity.identity in the PSK extension. The corresponding PSK
 input for the TLS 1.3 key schedule is "ipskx".

 As the maximum size of the PSK extension is 2^16 - 1 octets, an
 Imported Identity that exceeds this size is likely to cause a
 decoding error. Therefore, the PSK importer interface SHOULD reject
 any ImportedIdentity that exceeds this size.

 The hash function used for HMAC-based Key Derivation Function (HKDF)
 [RFC5869] is that which is associated with the EPSK. It is not the
 hash function associated with ImportedIdentity.target_kdf. If the
 EPSK does not have such an associated hash function, SHA-256 [SHA2]
 SHOULD be used. Diversifying EPSK by ImportedIdentity.target_kdf
 ensures that an IPSK is only used as input keying material to one KDF
 at most, thus satisfying the requirements in [RFC8446]. See
 Section 8 for more details.

 Endpoints SHOULD generate a compatible ipskx for each target
 ciphersuite they offer. For example, importing a key for
 TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 would yield two
 PSKs: one for HKDF-SHA256 and another for HKDF-SHA384. In contrast,
 if TLS_AES_128_GCM_SHA256 and TLS_CHACHA20_POLY1305_SHA256 are
 supported, only one derived key is necessary. Each ciphersuite
 uniquely identifies the target KDF. Future specifications that
 change the way the KDF is negotiated will need to update this
 specification to make clear how target KDFs are determined for the
 import process.

 EPSKs MAY be imported before the start of a connection if the target
 KDFs, protocols, and context string(s) are known a priori. EPSKs MAY
 also be imported for early data use if they are bound to the protocol
 settings and configuration that are required for sending early data.
 Minimally, this means that the Application-Layer Protocol Negotiation
 (ALPN) value [RFC7301], QUIC transport parameters (if used for QUIC),
 and any other relevant parameters that are negotiated for early data
 MUST be provisioned alongside these EPSKs.

5.2. Binder Key Derivation

 To prevent confusion between imported and non-imported PSKs, imported
 PSKs change the PSK binder key derivation label. In particular, the
 standard TLS 1.3 PSK binder key computation is defined as follows:

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret
 |
 +-----> Derive-Secret(., "ext binder" | "res binder", "")
 | = binder_key
 V

 Imported PSKs use the string "imp binder" rather than "ext binder" or
 "res binder" when deriving binder_key. This means the binder key is
 computed as follows:

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret

 |
 +-----> Derive-Secret(., "ext binder"
 | | "res binder"
 | | "imp binder", "")
 | = binder_key
 V

 This new label ensures a client and server will negotiate use of an
 external PSK if and only if (a) both endpoints import the PSK or (b)
 neither endpoint imports the PSK. As binder_key is a leaf key,
 changing its computation does not affect any other key.

6. Deprecating Hash Functions

 If a client or server wishes to deprecate a hash function and no
 longer use it for TLS 1.3, it removes the corresponding KDF from the
 set of target KDFs used for importing keys. This does not affect the
 KDF operation used to derive imported PSKs.

7. Incremental Deployment

 In deployments that already have PSKs provisioned and in use with TLS
 1.2, attempting to incrementally deploy the importer mechanism would
 result in concurrent use of the already-provisioned PSK directly as
 both a TLS 1.2 PSK and an EPSK, which, in turn, could mean that the
 same KDF and key would be used in two different protocol contexts.
 This is not a recommended configuration; see Section 8 for more
 details. However, the benefits of using TLS 1.3 and PSK importers
 may prove sufficiently compelling that existing deployments choose to
 enable this noncompliant configuration for a brief transition period
 while new software (using TLS 1.3 and importers) is deployed.
 Operators are advised to make any such transition period as short as
 possible.

8. Security Considerations

 The PSK importer security goals can be roughly stated as follows:
 avoid PSK reuse across KDFs while properly authenticating endpoints.
 When modeled as computational extractors, KDFs assume that input
 keying material (IKM) is sampled from some "source" probability
 distribution and that any two IKM values are chosen independently of
 each other [Kraw10]. This source-independence requirement implies
 that the same IKM value cannot be used for two different KDFs.

 PSK-based authentication is functionally equivalent to session
 resumption in that a connection uses existing key material to
 authenticate both endpoints. Following the work of [BAA15], this is
 a form of compound authentication. Loosely speaking, compound
 authentication is the property that an execution of multiple
 authentication protocols, wherein at least one is uncompromised,
 jointly authenticates all protocols. Therefore, authenticating with
 an externally provisioned PSK should ideally authenticate both the
 TLS connection and the external provisioning process. Typically, the
 external provisioning process produces a PSK and corresponding
 context from which the PSK was derived and in which it should be
 used. If available, this is used as the ImportedIdentity.context
 value. We refer to an external PSK without such context as "context-
 free".

 Thus, in considering the source-independence and compound
 authentication requirements, the PSK importer interface described in
 this document aims to achieve the following goals:

 1. Externally provisioned PSKs imported into a TLS connection
 achieve compound authentication of the provisioning process and
 connection.

 2. Context-free PSKs only achieve authentication within the context
 of a single connection.

 3. Imported PSKs are not used as IKM for two different KDFs.

 4. Imported PSKs do not collide with future protocol versions and
 KDFs.

 There are no known related outputs or security issues caused from the
 process for computing imported PSKs from an external PSK and the
 processing of existing external PSKs used in (D)TLS 1.2 and below, as
 noted in Section 7. However, only limited analysis has been done,
 which is an additional reason why applications SHOULD provision
 separate PSKs for (D)TLS 1.3 and prior versions, even when the
 importer interface is used in (D)TLS 1.3.

 The PSK importer does not prevent applications from constructing non-
 importer PSK identities that collide with imported PSK identities.

9. Privacy Considerations

 External PSK identities are commonly static by design so that
 endpoints may use them to look up keying material. As a result, for
 some systems and use cases, this identity may become a persistent
 tracking identifier.

 Note also that ImportedIdentity.context is visible in cleartext on
 the wire as part of the PSK identity. Unless otherwise protected by
 a mechanism such as TLS Encrypted ClientHello [ECH], applications
 SHOULD NOT put sensitive information in this field.

10. IANA Considerations

 IANA has created the "TLS KDF Identifiers" registry under the
 existing "Transport Layer Security (TLS) Parameters" registry.

 The entries in the registry are as follows:

 +========+=================+===========+
 | Value | KDF Description | Reference |
 +========+=================+===========+
 | 0x0000 | Reserved | RFC 9258 |
 +--------+-----------------+-----------+
 | 0x0001 | HKDF_SHA256 | [RFC5869] |
 +--------+-----------------+-----------+
 | 0x0002 | HKDF_SHA384 | [RFC5869] |
 +--------+-----------------+-----------+

 Table 1: TLS KDF Identifiers Registry

 New target KDF values are allocated according to the following
 process:

 * Values in the range 0x0000-0xfeff are assigned via Specification
 Required [RFC8126].

 * Values in the range 0xff00-0xffff are reserved for Private Use
 [RFC8126].

 The procedures for requesting values in the Specification Required
 space are specified in Section 17 of [RFC8447].

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <https://www.rfc-editor.org/info/rfc5056>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8447] Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,
 <https://www.rfc-editor.org/info/rfc8447>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

11.2. Informative References

 [BAA15] Bhargavan, K., Delignat-Lavaud, A., and A. Pironti,
 "Verified Contributive Channel Bindings for Compound
 Authentication", Proceedings 2015 Network and Distributed
 System Security, DOI 10.14722/ndss.2015.23277, February
 2015, <https://doi.org/10.14722/ndss.2015.23277>.

 [ECH] Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS
 Encrypted Client Hello", Work in Progress, Internet-Draft,
 draft-ietf-tls-esni-14, 13 February 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 esni-14>.

 [Kraw10] Krawczyk, H., "Cryptographic Extraction and Key
 Derivation: The HKDF Scheme", Proceedings of Crypto 2010,
 May 2010, <https://eprint.iacr.org/2010/264>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [Selfie] Drucker, N. and S. Gueron, "Selfie: reflections on TLS 1.3
 with PSK", DOI 10.1007/s00145-021-09387-y, May 2021,
 <https://eprint.iacr.org/2019/347.pdf>.

 [SHA2] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4,
 DOI 10.6028/NIST.FIPS.180-4, August 2015,
 <https://doi.org/10.6028/NIST.FIPS.180-4>.

Appendix A. Addressing Selfie

 The Selfie attack [Selfie] relies on a misuse of the PSK interface.
 The PSK interface makes the implicit assumption that each PSK is
 known only to one client and one server. If multiple clients or
 multiple servers with distinct roles share a PSK, TLS only
 authenticates the entire group. A node successfully authenticates
 its peer as being in the group whether the peer is another node or
 itself. Note that this case can also occur when there are two nodes
 sharing a PSK without predetermined roles.

 Applications that require authenticating finer-grained roles while
 still configuring a single shared PSK across all nodes can resolve
 this mismatch either by exchanging roles over the TLS connection
 after the handshake or by incorporating the roles of both the client
 and the server into the IPSK context string. For instance, if an
 application identifies each node by the Media Access Control (MAC)
 address, it could use the following context string.

 struct {
 opaque client_mac<0..2^8-1>;
 opaque server_mac<0..2^8-1>;
 } Context;

 If an attacker then redirects a ClientHello intended for one node to
 a different node, including the node that generated the ClientHello,
 the receiver will compute a different context string and the
 handshake will not complete.

 Note that, in this scenario, there is still a single shared PSK
 across all nodes, so each node must be trusted not to impersonate
 another node’s role.

Acknowledgements

 The authors thank Eric Rescorla and Martin Thomson for discussions
 that led to the production of this document, as well as Christian
 Huitema for input regarding privacy considerations of external PSKs.
 John PreuÃ\237 Mattsson provided input regarding PSK importer deployment
 considerations. Hugo Krawczyk provided guidance for the security
 considerations. Martin Thomson, Jonathan Hoyland, Scott Hollenbeck,
 Benjamin Kaduk, and others all provided reviews, feedback, and
 suggestions for improving the document.

Authors’ Addresses

 David Benjamin
 Google, LLC.
 Email: davidben@google.com

 Christopher A. Wood
 Cloudflare
 Email: caw@heapingbits.net

