
ï»¿

Independent Submission W. Zia
Request for Comments: 9223 T. Stockhammer
Category: Informational Qualcomm CDMA Technologies GmbH
ISSN: 2070-1721 L. Chaponniere
 G. Mandyam
 Qualcomm Technologies Inc.
 M. Luby
 BitRipple, Inc.
 April 2022

 Real-Time Transport Object Delivery over Unidirectional Transport
 (ROUTE)

Abstract

 The Real-time Transport Object delivery over Unidirectional Transport
 (ROUTE) protocol is specified for robust delivery of Application
 Objects, including Application Objects with real-time delivery
 constraints, to receivers over a unidirectional transport.
 Application Objects consist of data that has meaning to applications
 that use the ROUTE protocol for delivery of data to receivers; for
 example, it can be a file, a Dynamic Adaptive Streaming over HTTP
 (DASH) or HTTP Live Streaming (HLS) segment, a WAV audio clip, etc.
 The ROUTE protocol also supports low-latency streaming applications.

 The ROUTE protocol is suitable for unicast, broadcast, and multicast
 transport. Therefore, it can be run over UDP/IP, including multicast
 IP. The ROUTE protocol can leverage the features of the underlying
 protocol layer, e.g., to provide security, it can leverage IP
 security protocols such as IPsec.

 This document specifies the ROUTE protocol such that it could be used
 by a variety of services for delivery of Application Objects by
 specifying their own profiles of this protocol (e.g., by adding or
 constraining some features).

 This is not an IETF specification and does not have IETF consensus.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9223.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction
 1.1. Overview
 1.2. Protocol Stack for ROUTE
 1.3. Data Model
 1.4. Architecture and Scope of Specification
 1.5. Conventions Used in This Document
 2. ROUTE Packet Format
 2.1. Packet Structure and Header Fields
 2.2. LCT Header Extensions
 2.3. FEC Payload ID for Source Flows
 2.4. FEC Payload ID for Repair Flows
 3. Session Metadata
 3.1. Generic Metadata
 3.2. Session Metadata for Source Flows
 3.3. Session Metadata for Repair Flows
 4. Delivery Object Mode
 4.1. File Mode
 4.1.1. Extensions to FDT
 4.1.2. Constraints on Extended FDT
 4.2. Entity Mode
 4.3. Unsigned Package Mode
 4.4. Signed Package Mode
 5. Sender Operation
 5.1. Usage of ALC and LCT for Source Flow
 5.2. ROUTE Packetization for Source Flow
 5.2.1. Basic ROUTE Packetization
 5.2.2. ROUTE Packetization for CMAF Chunked Content
 5.3. Timing of Packet Emission
 5.4. Extended FDT Encoding for File Mode Sending
 5.5. FEC Framework Considerations
 5.6. FEC Transport Object Construction
 5.7. Super-Object Construction
 5.8. Repair Packet Considerations
 5.9. Summary FEC Information
 6. Receiver Operation
 6.1. Basic Application Object Recovery for Source Flows
 6.2. Fast Stream Acquisition
 6.3. Generating Extended FDT-Instance for File Mode
 6.3.1. File Template Substitution for Content-Location
 Derivation
 6.3.2. File@Transfer-Length Derivation
 6.3.3. FDT-Instance@Expires Derivation
 7. FEC Application
 7.1. General FEC Application Guidelines
 7.2. TOI Mapping
 7.3. Delivery Object Reception Timeout
 7.4. Example FEC Operation
 8. Considerations for Defining ROUTE Profiles
 9. ROUTE Concepts
 9.1. ROUTE Modes of Delivery
 9.2. File Mode Optimizations
 9.3. In-Band Signaling of Object Transfer Length
 9.4. Repair Protocol Concepts
 10. Interoperability Chart
 11. Security and Privacy Considerations
 11.1. Security Considerations
 11.2. Privacy Considerations
 12. IANA Considerations
 13. References
 13.1. Normative References
 13.2. Informative References
 Acknowledgments
 Authors’ Addresses

1. Introduction

1.1. Overview

 The Real-time Transport Object delivery over Unidirectional Transport

 (ROUTE) protocol can be used for robust delivery of Application
 Objects, including Application Objects with real-time delivery
 constraints, to receivers over a unidirectional transport.
 Unidirectional transport in this document has identical meaning to
 that in RFC 6726 [RFC6726], i.e., transport in the direction of
 receiver(s) from a sender. The robustness is enabled by a built-in
 mechanism, e.g., signaling for loss detection, enabling loss
 recovery, and optionally integrating application-layer Forward Error
 Correction (FEC).

 Application Objects consist of data that has meaning to applications
 that use the ROUTE protocol for delivery of data to receivers, e.g.,
 an Application Object can be a file, an MPEG Dynamic Adaptive
 Streaming over HTTP (DASH) [DASH] video segment, a WAV audio clip, an
 MPEG Common Media Application Format (CMAF) [CMAF] addressable
 resource, an MPEG-4 video clip, etc.

 The ROUTE protocol is designed to enable delivery of sequences of
 related Application Objects in a timely manner to receivers, e.g., a
 sequence of DASH video segments associated to a Representation or a
 sequence of CMAF addressable resources associated to a CMAF Track.
 The applications of this protocol target services enabled on media
 consumption devices such as smartphones, tablets, television sets,
 and so on. Most of these applications are real-time in the sense
 that they are sensitive to and rely upon such timely reception of
 data. The ROUTE protocol also supports chunked delivery of real-time
 Application Objects to enable low-latency streaming applications
 (similar in its properties to chunked delivery using HTTP). The
 protocol also enables low-latency delivery of DASH and Apple HTTP
 Live Streaming (HLS) content with CMAF Chunks.

 Content not intended for rendering in real time as it is received
 (e.g., a downloaded application), a file comprising continuous or
 discrete media and belonging to an app-based feature, or a file
 containing (opaque) data to be consumed by a Digital Rights
 Management (DRM) system client can also be delivered by ROUTE.

 The ROUTE protocol supports a caching model where Application Objects
 are recovered into a cache at the receiver and may be made available
 to applications via standard HTTP requests from the cache. Many
 current day applications rely on using HTTP to access content; hence,
 this approach enables such applications in broadcast/multicast
 environments.

 ROUTE is aligned with File Delivery over Unidirectional Transport
 (FLUTE) as defined in RFC 6726 [RFC6726] as well as the extensions
 defined in Multimedia Broadcast/Multicast Service (MBMS) [MBMS], but
 it also makes use of some principles of FCAST (Object Delivery for
 the Asynchronous Layered Coding (ALC) and NACK-Oriented Reliable
 Multicast (NORM) Protocols) as defined in RFC 6968 [RFC6968]; for
 example, object metadata and the object content may be sent together
 in a compound object.

 The alignment to FLUTE is enabled since in addition to reusing
 several of the basic FLUTE protocol features, as referred to by this
 document, certain optimizations and restrictions are added that
 enable optimized support for real-time delivery of media data; hence,
 the name of the protocol. Among others, the source ROUTE protocol
 enables or enhances the following functionalities:

 * Real-time delivery of object-based media data

 * Flexible packetization, including enabling media-aware
 packetization as well as transport-aware packetization of delivery
 objects

 * Independence of Application Objects and delivery objects, i.e., a
 delivery object may be a part of a file or may be a group of
 files.

 Advanced Television Systems Committee (ATSC) 3.0 specifies the ROUTE

 protocol integrated with an ATSC 3.0 services layer. That
 specification will be referred to as ATSC-ROUTE [ATSCA331] for the
 remainder of this document. Digital Video Broadcasting (DVB) has
 specified a profile of ATSC-ROUTE in DVB Adaptive Media Streaming
 over IP Multicast (DVB-MABR) [DVBMABR]. This document specifies the
 Application Object delivery aspects (delivery protocol) for such
 services, as the corresponding delivery protocol could be used as a
 reference by a variety of services by specifying profiles of ROUTE in
 their respective fora, e.g., by adding new optional features atop or
 by restricting various optional features specified in this document
 in a specific service standard. Hence, in the context of this
 document, the aforementioned ATSC-ROUTE and DVB-MABR are the services
 using ROUTE. The definition of profiles by the services also have to
 give due consideration to compatibility issues, and some related
 guidelines are also provided in this document.

 This document is not an IETF specification and does not have IETF
 consensus. It is provided here to aid the production of
 interoperable implementations.

1.2. Protocol Stack for ROUTE

 ROUTE delivers Application Objects such as MPEG DASH or HLS segments
 and optionally the associated repair data, operating over UDP/IP
 networks, as depicted in Table 1. The session metadata signaling to
 realize a ROUTE session as specified in this document MAY be
 delivered out of band or in band as well. Since ROUTE delivers
 objects in an application cache at the receiver from where the
 application can access them using HTTP, an application like DASH may
 use its standardized unicast streaming mechanisms in conjunction with
 ROUTE over broadcast/multicast to augment the services.

 +--+
 | Application (DASH and HLS segments, CMAF Chunks, etc.) |
 +--+
 | ROUTE |
 +--+
 | UDP |
 +--+
 | IP |
 +--+

 Table 1: Protocol Layering

1.3. Data Model

 The ROUTE data model is constituted by the following key concepts.

 Application Object: data that has meaning to the application that
 uses the ROUTE protocol for delivery of data to receivers,
 e.g., an Application Object can be a file, a DASH video
 segment, a WAV audio clip, an MPEG-4 video clip, etc.

 Delivery Object: an object on course of delivery to the application
 from the ROUTE sender to ROUTE receiver.

 Transport Object: an object identified by the Transport Object
 Identifier (TOI) in RFC 5651 [RFC5651]. It MAY be either a
 source or a repair object, depending on if it is carried by a
 Source Flow or a Repair Flow, respectively.

 Transport Session: a Layered Coding Transport (LCT) channel, as
 defined by RFC 5651 [RFC5651]. A Transport Session SHALL be
 uniquely identified by a unique Transport Session Identifier
 (TSI) value in the LCT header. The TSI is scoped by the IP
 address of the sender, and the IP address of the sender
 together with the TSI uniquely identify the session. Transport
 Sessions are a subset of a ROUTE session. For media delivery,
 a Transport Session would typically carry a media component,
 for example, a DASH Representation. Within each Transport
 Session, one or more objects are carried, typically objects

 that are related, e.g., DASH segments associated to one
 Representation.

 ROUTE Session: an ensemble or multiplex of one or more Transport
 Sessions. Each ROUTE session is associated with an IP address/
 port combination. A ROUTE session typically carries one or
 more media components of streaming media e.g., Representations
 associated with a DASH Media Presentation.

 Source Flow: a Transport Session carrying source data. Source Flow
 is independent of the Repair Flow, i.e., the Source Flow MAY be
 used by a ROUTE receiver without the ROUTE Repair Flows.

 Repair Flow: a Transport Session carrying repair data for one or
 more Source Flows.

1.4. Architecture and Scope of Specification

 The scope of the ROUTE protocol is to enable robust and real-time
 transport of delivery objects using LCT packets. This architecture
 is depicted in Figure 1.

 The normative aspects of the ROUTE protocol focus on the following
 aspects:

 * The format of the LCT packets that carry the transport objects.

 * The robust transport of the delivery object using a repair
 protocol based on Forward Error Correction (FEC).

 * The definition and possible carriage of object metadata along with
 the delivery objects. Metadata may be conveyed in LCT packets
 and/or separate objects.

 * The ROUTE session, LCT channel, and delivery object description
 provided as service metadata signaling to enable the reception of
 objects.

 * The normative aspects (formats, semantics) of the delivery objects
 conveyed as a content manifest to be delivered along with the
 objects to optimize the performance for specific applications
 e.g., real-time delivery. The objects and manifest are made
 available to the application through an Application Object cache.
 The interface of this cache to the application is not specified in
 this document; however, it will typically be enabled by the
 application acting as an HTTP client and the cache as the HTTP
 server.

 Application Objects
 Application to application
 Objects from ^
 an application +--+
 + | ROUTE Receiver | |
 | | +------+------+ | | |
 | | | Application | |
 | | | Object Cache| |
 | | +------+------+ |
 | LCT over| +---------------+ ^ |
 v UDP/IP | | Source object | +---------+ | |
 +----+---+ | +->+ recovery +--+ Repair +-+ |
 | ROUTE | | | +---------------+ +----+----+ |
 | Sender +----------+ ^ |
 +----+---+ | | | |
 | | | +---------------+ | | | |
 | | | | Repair object | | |
 | | +->+ recovery +-------+ |
 +----------->+ +---------------+ |
 ROUTE | |
 Metadata +--+

 Figure 1: Architecture/Functional Block Diagram

1.5. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. ROUTE Packet Format

2.1. Packet Structure and Header Fields

 The packet format used by ROUTE Source Flows and Repair Flows follows
 the ALC packet format specified in RFC 5775 [RFC5775] with the UDP
 header followed by the default LCT header and the source FEC Payload
 ID followed by the packet payload. The overall ROUTE packet format
 is as depicted in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | UDP Header |
 | |
 +=+
 | Default LCT header |
 | |
 +-+
 | FEC Payload ID |
 +-+
 | Payload Data |
 | ... |
 +-+

 Figure 2: Overall ROUTE Packet Format

 The Default LCT header is as defined in the LCT building block in RFC
 5651 [RFC5651].

 The LCT packet header fields SHALL be used as defined by the LCT
 building block in RFC 5651 [RFC5651]. The semantics and usage of the
 following LCT header fields SHALL be further constrained in ROUTE as
 follows:

 Version number (V): This 4-bit field indicates the protocol version
 number. The version number SHALL be set to ’0001’, as specified
 in RFC 5651 [RFC5651].

 Congestion Control flag (C) field: This 2-bit field, as defined in
 RFC 5651 [RFC5651], SHALL be set to ’00’.

 Protocol-Specific Indication (PSI): The most significant bit of this
 2-bit flag is called the Source Packet Indicator (SPI) and
 indicates whether the current packet is a source packet or a FEC
 repair packet. The SPI SHALL be set to ’1’ to indicate a source
 packet and SHALL bet set to ’0’ to indicate a repair packet.

 Transport Session Identifier flag (S): This 1-bit field SHALL be set
 to ’1’ to indicate a 32-bit word in the TSI field.

 Transport Object Identifier flag (O): This 2-bit field SHALL be set
 to ’01’ to indicate the number of full 32-bit words in the TOI
 field.

 Half-word flag (H): This 1-bit field SHALL be set to ’0’ to indicate
 that no half-word field sizes are used.

 Codepoint (CP): This 8-bit field is used to indicate the type of the
 payload that is carried by this packet; for ROUTE, it is defined
 as shown below to indicate the type of delivery object carried in
 the payload of the associated ROUTE packet. The remaining

 unmapped Codepoint values can be used by a service using ROUTE.
 In this case, the Codepoint values SHALL follow the semantics
 specified in the following table. "IS" stands for Initialization
 Segment of the media content such as the DASH Initialization
 Segment [DASH]. The various modes of operation in the table
 (File/Entity/Package Mode) are specified in Section 4. The table
 also lists a Codepoint value range that is reserved for future
 service-specific uses.

 +=================+=================================+
 | Codepoint value | Semantics |
 +=================+=================================+
 | 0 | Reserved (not used) |
 +-----------------+---------------------------------+
 | 1 | Non Real Time (NRT) - File Mode |
 +-----------------+---------------------------------+
 | 2 | NRT - Entity Mode |
 +-----------------+---------------------------------+
 | 3 | NRT - Unsigned Package Mode |
 +-----------------+---------------------------------+
 | 4 | NRT - Signed Package Mode |
 +-----------------+---------------------------------+
 | 5 | New IS, timeline changed |
 +-----------------+---------------------------------+
 | 6 | New IS, timeline continued |
 +-----------------+---------------------------------+
 | 7 | Redundant IS |
 +-----------------+---------------------------------+
 | 8 | Media Segment, File Mode |
 +-----------------+---------------------------------+
 | 9 | Media Segment, Entity Mode |
 +-----------------+---------------------------------+
 | 10 | Media Segment, File Mode with |
 | | CMAF Random Access chunk |
 +-----------------+---------------------------------+
 | 11 - 255 | Reserved, service-specific |
 +-----------------+---------------------------------+

 Table 2: Codepoint Values

 Congestion Control Information (CCI): For packets carrying DASH
 segments, CCI MAY convey the 32-bit earliest presentation time
 [DASH] of the DASH segment contained in the ROUTE packet. In this
 case, this information can be used by a ROUTE receiver for fast
 stream acquisition (details in Section 6.2). Otherwise, this
 field SHALL be set to 0.

 Transport Session Identifier (TSI): This 32-bit field identifies the
 Transport Session in ROUTE. The context of the Transport Session
 is provided by signaling metadata. The value TSI = 0 SHALL only
 be used for service-specific signaling.

 Transport Object Identifier (TOI): This 32-bit field SHALL identify
 the object within this session to which the payload of the current
 packet belongs. The mapping of the TOI field to the object is
 provided by the Extended File Delivery Table (FDT).

2.2. LCT Header Extensions

 The following LCT header extensions are defined or used by ROUTE:

 EXT_FTI: as specified in RFC 5775.

 EXT_TOL: the length in bytes of the multicast transport object shall
 be signaled using EXT_TOL as specified by ATSC-ROUTE [ATSCA331]
 with 24 bits or, if required, 48 bits of Transfer Length. The
 frequency of using the EXT_TOL header extension is determined by
 channel conditions that may cause the loss of the packet carrying
 the Close Object flag (B) [RFC5651].

 NOTE: The transport object length can also be determined without

 the use of EXT_TOL by examining the LCT packet with the Close
 Object flag (B). However, if this packet is lost, then the
 EXT_TOL information can be used by the receiver to determine the
 transport object length.

 EXT_TIME Header: as specified in RFC 5651 [RFC5651]. The Sender
 Current Time SHALL be signaled using EXT_TIME.

2.3. FEC Payload ID for Source Flows

 The syntax of the FEC Payload ID for the Compact No-Code FEC Scheme
 used in ROUTE Source Flows is a 32-bit unsigned integer value that
 SHALL express the start_offset as an octet number corresponding to
 the first octet of the fragment of the delivery object carried in
 this packet. The start_offset value for the first fragment of any
 delivery object SHALL be set to 0. Figure 3 shows the 32-bit
 start_offset field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | start_offset |
 +-+

 Figure 3: FEC Payload ID for Source Flows

2.4. FEC Payload ID for Repair Flows

 FEC Payload ID for Repair Flows is specified in RFC 6330 [RFC6330].

3. Session Metadata

 The required session metadata for Source and Repair Flows is
 specified in the following sections. The list specified here is not
 exhaustive; a service MAY signal more metadata to meet its needs.
 The data format is also not specified beyond its cardinality; the
 exact format of specifying the data is left for the service, e.g., by
 using XML encoding format, as has been done by [DVBMABR] and
 [ATSCA331]. It is specified in the following if an attribute is
 mandatory (m), conditional mandatory (cm) or optional (o) to realize
 a basic ROUTE session. A mandatory field SHALL always be present in
 the session metadata, and a conditional mandatory field SHALL be
 present if the specified condition is true. The delivery of the
 session metadata to the ROUTE receiver is beyond the scope of this
 document.

3.1. Generic Metadata

 Generic metadata is applicable to both Source and Repair Flows as
 follows. Before a receiver can join a ROUTE session, the receiver
 needs to obtain this generic metadata that contains at least the
 following information:

 ROUTE version number (m): the version number of ROUTE used in this
 session. The version number conforming to this document SHALL be
 1.

 Connection ID (m): the unique identifier of a Connection, usually
 consisting of the following 4-tuple: source IP address/source port
 number, destination IP address/destination port number. The IP
 addresses can be IPv4 or IPv6 addresses depending upon which IP
 version is used by the deployment.

3.2. Session Metadata for Source Flows

 stsi (m): The LCT TSI value corresponding to the Transport Session
 for the Source Flow.

 rt (o): A Boolean flag that SHALL indicate whether the content
 component carried by this Source Flow corresponds to real-time
 streaming media or non-real-time content. When set to "true", it

 SHALL be an indication of real-time content, and when absent or
 set to "false", it SHALL be an indication of non-real-time (NRT)
 content.

 minBufferSize (o): A 32-bit unsigned integer that SHALL represent,
 in kilobytes, the minimum required storage size of the receiver
 transport buffer for the parent LCT channel of this Source Flow.
 The buffer holds the data belonging to a source object until its
 complete reception. This attribute is only applicable when rt =
 "true".

 A service that chooses not to signal this attribute relies on the
 receiver implementation, which must discard the received data
 beyond its buffering capability. Such discarding of data will
 impact the service quality.

 EFDT (cm): When present, SHALL contain a single instance of an FDT-
 Instance element per RFC 6726 FLUTE [RFC6726], which MAY contain
 the optional FDT extensions as defined in Section 4.1. The
 optional EFDT element MAY only be present for File Mode of
 delivery. In File Mode, it SHALL be present if this Source Flow
 transports streaming media segments.

 contentType (o): A string that SHALL represent the media type for
 the media content. It SHALL obey the semantics of the Content-
 Type header as specified by the HTTP/1.1 protocol in RFC 7231
 [RFC7231]. This document does not define any new contentType
 strings. In its absence, the signaling of media type for the
 media content is beyond the scope of this document.

 applicationMapping (m): A set of identifiers that provide an
 application-specific mapping of the received Application Objects
 to the Source Flows. For example, for DASH, this would provide
 the mapping of a Source Flow to a specific DASH Representation
 from a Media Presentation Description (MPD), the latter identified
 by its Representation and corresponding Adaptation Set and Period
 IDs.

3.3. Session Metadata for Repair Flows

 minBuffSize (o): A 32-bit unsigned integer whose value SHALL
 represent a required size of the receiver transport buffer for
 AL-FEC decoding processing. When present, this attribute SHALL
 indicate the minimum buffer size that is required to handle all
 associated objects that are assigned to a super-object, i.e., a
 delivery object formed by the concatenation of multiple FEC
 transport objects in order to bundle these FEC transport objects
 for AL-FEC protection.

 A service that chooses not to signal this attribute relies on the
 receiver implementation, which must discard the received repair
 data beyond its buffering capability. Such discarding of data
 will impact the service quality.

 fecOTI (m): A parameter consisting of the concatenation of Common
 and Scheme-Specific FEC Object Transmission Information (FEC OTI)
 as defined in Sections 3.3.2 and 3.3.3 of [RFC6330] and that
 corresponds to the delivery objects carried in the Source Flow to
 which this Repair Flow is associated, with the following
 qualification: the 40-bit Transfer Length (F) field may either
 represent the actual size of the object, or it is encoded as all
 zeroes. In the latter case, the FEC transport object size either
 is unknown or cannot be represented by this attribute. In other
 words, for the all-zeroes format, the delivery objects in the
 Source Flow correspond to streaming content, either a live Service
 whereby content encoding has not yet occurred at the time this
 session data was generated or pre-recorded streaming content whose
 delivery object sizes, albeit known at the time of session data
 generation, are variable and cannot be represented as a single
 value by the fecOTI attribute.

 ptsi (m): TSI value(s) of each Source Flow protected by this Repair
 Flow.

 mappingTOIx (o): Values of the constant X for use in deriving the
 TOI of the delivery object of each protected Source Flow from the
 TOI of the FEC (super-)object. The default value is "1".
 Multiple mappingTOIx values MAY be provided for each protected
 Source Flow depending upon the usage of FEC (super-)object.

 mappingTOIy (o): The corresponding constant Y to each mappingTOIx,
 when present, for use in deriving the parent SourceTOI value from
 the above equation. The default value is "0".

4. Delivery Object Mode

 ROUTE provides several different delivery object modes, and one of
 these modes may suit the application needs better for a given
 Transport Session. A delivery object is self contained for the
 application, typically associated with certain properties, metadata,
 and timing-related information relevant to the application. The
 signaling of the delivery object mode is done on an object basis
 using Codepoint as specified in Section 2.1.

4.1. File Mode

 File Mode uses an out-of-band Extended FDT (EFDT) signaling for
 recovery of delivery objects with the following extensions and
 considerations.

4.1.1. Extensions to FDT

 The following extensions are specified to FDT, as specified in RFC
 6726 [RFC6726]. An Extended FDT-Instance is an instance of FLUTE
 FDT, as specified in [RFC6726], plus optionally one or more of the
 following extensions:

 efdtVersion: A value that SHALL represent the version of this
 Extended FDT-Instance.

 maxExpiresDelta: Let "tp" represent the wall clock time at the
 receiver when the receiver acquires the first ROUTE packet
 carrying data of the object described by this Extended FDT-
 Instance. maxExpiresDelta, when present, SHALL represent a time
 interval that when added to "tp" SHALL represent the expiration
 time of the associated Extended FDT-Instance "te". The time
 interval is expressed in number of seconds. When maxExpiresDelta
 is not present, the expiration time of the Extended FDT-Instance
 SHALL be given by the sum of a) the value of the ERT field in the
 EXT_TIME LCT header extension in the first ROUTE packet carrying
 data of that file, and b) the current receiver time when parsing
 the packet header of that ROUTE packet. See Sections 5.4 and
 6.3.3 on additional rules for deriving the Extended FDT-Instance
 expiration time. Hence, te = tp + maxExpiresDelta

 maxTransportSize: An attribute that SHALL represent the maximum
 transport size in bytes of any delivery object described by this
 Extended FDT-Instance. This attribute SHALL be present if a) the
 fileTemplate is present in Extended FDT-Instance, or b) one or
 more File elements, if present in this Extended FDT-Instance, do
 not include the Transfer-Length attribute. When maxTransportSize
 is not present, the maximum transport size is not signaled, while
 other signaling such as the Transfer-Length attribute signal the
 exact Transfer Length of the object.

 fileTemplate: A string value, which when present and in conjunction
 with parameter substitution, is used in deriving the Content-
 Location attribute for the delivery object described by this
 Extended FDT-Instance. It SHALL include the "TOI" identifier.
 Each identifier MAY be suffixed as needed by specific file names
 within the enclosing ’$’ characters following this prototype:
 %0[width]d

 The width parameter is an unsigned integer that provides the minimum
 number of characters to be printed. If the value to be printed is
 shorter than this number, the result SHALL be padded with leading
 zeroes. The value is not truncated even if the result is larger.
 When no format tag is present, a default format tag with width=1
 SHALL be used.

 Strings other than identifiers SHALL only contain characters that are
 permitted within URIs according to RFC 3986 [RFC3986].

 $$ is an escape sequence in fileTemplate value, i.e., "$$" is non-
 recursively replaced with a single "$".

 The usage of fileTemplate is described in Sender and Receiver
 operations in Sections 5.4 and 6.3, respectively.

4.1.2. Constraints on Extended FDT

 The Extended FDT-Instance SHALL conform to an FDT-Instance according
 to RFC 6726 [RFC6726] with the following constraints: at least one
 File element and the @Expires attribute SHALL be present.

 Content encoding MAY be used for delivery of any file described by an
 FDT-Instance.File element in the Extended FDT-Instance. The content
 encoding defined in the present document is gzip [RFC1952]. When
 content encoding is used, the File@Content-Encoding and File@Content-
 Length attributes SHALL be present in the Extended FDT-Instance.

4.2. Entity Mode

 For Entity Mode, the following applies:

 * Delivery object metadata SHALL be expressed in the form of entity
 headers as defined in HTTP/1.1, which correspond to one or more of
 the representation header fields, payload header fields, and
 response header fields as defined in Sections 3.1, 3.3, and 7,
 respectively, of [RFC7231].

 * The entity headers sent along with the delivery object provide all
 information about that multicast transport object.

 * Sending a media object (if the object is chunked) in Entity Mode
 may result in one of the following options:

 - If the length of the chunked object is known at the sender, the
 ROUTE Entity Mode delivery object MAY be sent without using
 HTTP/1.1 chunked transfer coding, i.e., the object starts with
 an HTTP header containing the Content Length field followed by
 the concatenation of CMAF Chunks:

 |HTTP Header+Length||---chunk ----||---chunk ----||---chunk --
 --||---chunk ----|

 - If the length of the chunked object is unknown at the sender
 when starting to send the object, HTTP/1.1 chunked transfer
 coding format SHALL be used:

 |HTTP Header||Separator+Length||---chunk ----
 ||Separator+Length||---chunk ----||Separator+Length||---chunk
 ----||Separator+Length||---chunk ----||Separator+Length=0|

 Note, however, that it is not required to send a CMAF Chunk in
 exactly one HTTP chunk.

4.3. Unsigned Package Mode

 In this delivery mode, the delivery object consists of a group of
 files that are packaged for delivery only. If applied, the client is
 expected to unpack the package and provide each file as an
 independent object to the application. Packaging is supported by

 Multipart Multipurpose Internet Mail Extensions (MIME) [RFC2557],
 where objects are packaged into one document for transport, with
 Content-Type set to multipart/related. When binary files are
 included in the package, Content-Transfer-Encoding of "binary" should
 be used for those files.

4.4. Signed Package Mode

 In Signed Package Mode delivery, the delivery object consists of a
 group of files that are packaged for delivery, and the package
 includes one or more signatures for validation. Signed packaging is
 supported by RFC 8551 Secure MIME (S/MIME) [RFC8551], where objects
 are packaged into one document for transport and the package includes
 objects necessary for validation of the package.

5. Sender Operation

5.1. Usage of ALC and LCT for Source Flow

 ROUTE Source Flow carries the source data as specified in RFC 5775
 [RFC5775]. There are several special considerations that ROUTE
 introduces to the usage of the LCT building block as outlined in the
 following:

 * ROUTE limits the usage of the LCT building block to a single
 channel per session. Congestion control is thus sender driven in
 ROUTE. It also signifies that there is no specific congestion-
 control-related signaling from the sender to the receiver; the CCI
 field is either set to 0 or used for other purposes as specified
 in Section 2.1. The functionality of receiver-driven layered
 multicast may still be offered by the application, allowing the
 receiver application to select the appropriate delivery session
 based on the bandwidth requirement of that session.

 Further, the following details apply to LCT:

 * The Layered Coding Transport (LCT) Building Block as defined in
 RFC 5651 [RFC5651] is used with the following constraints:

 - The TSI in the LCT header SHALL be set equal to the value of
 the stsi attribute in Section 3.2.

 - The Codepoint (CP) in the LCT header SHALL be used to signal
 the applied formatting as defined in the signaling metadata.

 - In accordance with ALC, a source FEC Payload ID header is used
 to identify, for FEC purposes, the encoding symbols of the
 delivery object, or a portion thereof, carried by the
 associated ROUTE packet. This information may be sent in
 several ways:

 o As a simple new null FEC scheme with the following usage:

 + The value of the source FEC Payload ID header SHALL be
 set to 0 in case the ROUTE packet contains the entire
 delivery object, or

 + The value of the source FEC Payload ID header SHALL be
 set as a direct address (start offset) corresponding to
 the starting byte position of the portion of the object
 carried in this packet using a 32-bit field.

 o In a compatible manner to RFC 6330 [RFC6330] where the SBN
 and ESI defines the start offset together with the symbol
 size T.

 o The signaling metadata provides the appropriate parameters
 to indicate any of the above modes using the srcFecPayloadId
 attribute.

 * The LCT Header EXT_TIME extension as defined in RFC 5651 [RFC5651]

 MAY be used by the sender in the following manner:

 - The Sender Current Time (SCT), depending on the application,
 MAY be used to occasionally or frequently signal the sender
 current time possibly for reliever time synchronization.

 - The Expected Residual Time (ERT) MAY be used to indicate the
 expected remaining time for transmission of the current object
 in order to optimize detection of a lost delivery object.

 - The Sender Last Changed (SLC) flag is typically not utilized
 but MAY be used to indicate the addition/removal of Segments.

 Additional extension headers MAY be used to support real-time
 delivery. Such extension headers are defined in Section 2.1.

5.2. ROUTE Packetization for Source Flow

 The following description of the ROUTE sender operation on the
 mapping of the Application Object to the ROUTE packet payloads
 logically represents an extension of RFC 5445 [RFC5445], which in
 turn inherits the context, language, declarations, and restrictions
 of the FEC building block in RFC 5052 [RFC5052].

 The data carried in the payload of a given ROUTE packet constitutes a
 contiguous portion of the Application Object. ROUTE source delivery
 can be considered as a special case of the use of the Compact No-Code
 Scheme associated with FEC Encoding ID = 0 according to Sections
 3.4.1 and 3.4.2 of [RFC5445], in which the encoding symbol size is
 exactly one byte. As specified in Section 2.1, for ROUTE Source
 Flows, the FEC Payload ID SHALL deliver the 32-bit start_offset. All
 receivers are expected to support, at minimum, operation with this
 special case of the Compact No-Code FEC.

 Note that in the event the source object size is greater than 2^32
 bytes (approximately 4.3 GB), the applications (in the broadcaster
 server and the receiver) are expected to perform segmentation/
 reassembly using methods beyond the scope of this document.

 Finally, in some special cases, a ROUTE sender MAY need to produce
 ROUTE packets that do not contain any payload. This may be required,
 for example, to signal the end of a session. These dataless packets
 do not contain FEC Payload ID or payload data, but only the LCT
 header fields. The total datagram length, conveyed by outer protocol
 headers (e.g., the IP or UDP header), enables receivers to detect the
 absence of the LCT header, FEC Payload ID, and payload data.

5.2.1. Basic ROUTE Packetization

 In the basic operation, it is assumed that the Application Object is
 fully available at the ROUTE sender.

 1. The amount of data to be sent in a single ROUTE packet is limited
 by the maximum transfer unit of the data packets or the size of
 the remaining data of the Application Object being sent,
 whichever is smaller. The transfer unit is determined either by
 knowledge of underlying transport block sizes or by other
 constraints.

 2. The start_offset field in the LCT header of the ROUTE packet
 indicates the byte offset of the carried data in the Application
 Object being sent.

 3. The Close Object flag (B) is set to 1 if this is the last ROUTE
 packet carrying the data of the Application Object.

 The order of packet delivery is arbitrary, but in the absence of
 other constraints, delivery with increasing start_offset value is
 recommended.

5.2.2. ROUTE Packetization for CMAF Chunked Content

 The following additional guidelines should be followed for ROUTE
 packetization of CMAF Chunked Content in addition to the guidelines
 of Section 5.2.1:

 1. If it is the first ROUTE packet carrying a CMAF Random Access
 chunk, except for the first CMAF Chunk in the segment, the
 Codepoint value MAY be set to 10, as specified in the Codepoint
 value table in Section 2.1. The receiver MAY use this
 information for optimization of random access.

 2. As soon as the total length of the media object is known,
 potentially with the packaging of the last CMAF Chunk of a
 segment, the EXT_TOL extension header MAY be added to the LCT
 header to signal the Transfer Length, so that the receiver may
 know this information in a timely fashion.

5.3. Timing of Packet Emission

 The sender SHALL use the timing information provided by the
 application to time the emission of packets for a timely reception.
 This information may be contained in the Application Objects e.g.,
 DASH segments and/or the presentation manifest. Hence, such packets
 of streaming media with real-time constraints SHALL be sent in such a
 way as to enable their timely reception with respect to the
 presentation timeline.

5.4. Extended FDT Encoding for File Mode Sending

 For File Mode sending:

 * The TOI field in the ROUTE packet header SHALL be set such that
 Content-Location can be derived at the receiver according to File
 Template substitution specified in Section 6.3.1.

 * After sending the first packet with a given TOI value, none of the
 packets pertaining to this TOI SHALL be sent later than the wall
 clock time as derived from maxExpiresDelta. The EXT_TIME header
 with Expected Residual Time (ERT) MAY be used in order to convey
 more accurate expiry time.

5.5. FEC Framework Considerations

 The FEC framework uses concepts of the FECFRAME work as defined in
 RFC 6363 [RFC6363], as well as the FEC building block, RFC 5052
 [RFC5052], which is adopted in the existing FLUTE/ALC/LCT
 specifications.

 The FEC design adheres to the following principles:

 * FEC-related information is provided only where needed.

 * Receivers not capable of this framework can ignore repair packets.

 * The FEC is symbol based with fixed symbol size per protected
 Source Flow. The ALC protocol and existing FEC schemes are
 reused.

 * A FEC Repair Flow provides protection of delivery objects from one
 or more Source Flows.

 The FEC-specific components of the FEC framework are:

 * FEC Repair Flow declaration including all FEC-specific
 information.

 * A FEC transport object that is the concatenation of a delivery
 object, padding octets, and size information in order to form a
 chunk of data that has a size in symbols of N, where N >= 1.

 * A FEC super-object that is the concatenation of one or more FEC

 transport objects in order to bundle FEC transport objects for FEC
 protection.

 * A FEC protocol and packet structure.

 A receiver needs to be able to recover delivery objects from repair
 packets based on available FEC information.

5.6. FEC Transport Object Construction

 In order to identify a delivery object in the context of the repair
 protocol, the following information is needed:

 * TSI and TOI of the delivery object. In this case, the FEC object
 corresponds to the (entire) delivery object.

 * Octet range of the delivery object, i.e., start offset within the
 delivery object and number of subsequent and contiguous octets of
 delivery object that constitutes the FEC object (i.e., the FEC-
 protected portion of the source object). In this case, the FEC
 object corresponds to a contiguous byte range portion of the
 delivery object.

 Typically, for real-time object delivery with smaller delivery object
 sizes, the first mapping is applied, i.e., the delivery object is a
 FEC object.

 Assuming that the FEC object is the delivery object, for each
 delivery object, the associated FEC transport object is comprised of
 the concatenation of the delivery object, padding octets (P), and the
 FEC object size (F) in octets, where F is carried in a 4-octet field.

 The FEC transport object size S, in FEC encoding symbols, SHALL be an
 integer multiple of the symbol size Y. S is determined from the
 session information and/or the repair packet headers.

 F is carried in the last 4 octets of the FEC transport object.
 Specifically, let:

 * F be the size of the delivery object in octets,

 * F’ be the F octets of data of the delivery object,

 * f’ denote the four octets of data carrying the value of F in
 network octet order (high-order octet first),

 * S be the size of the FEC transport object with S=ceil((F+4)/Y),
 where the ceil() function rounds the result upward to its nearest
 integer,

 * P’ be S*Y-4-F octets of data, i.e., padding placed between the
 delivery object and the 4-byte field conveying the value of F and
 located at the end of the FEC transport object, and

 * O’ be the concatenation of F’, P’, and f’.

 O’ then constitutes the FEC transport object of size S*Y octets.
 Note that padding octets and the object size F are not sent in source
 packets of the delivery object but are only part of a FEC transport
 object that FEC decoding recovers in order to extract the FEC object
 and thus the delivery object or portion of the delivery object that
 constitutes the FEC object. In the above context, the FEC transport
 object size in symbols is S.

 The general information about a FEC transport object that is conveyed
 to a FEC-enabled receiver is the source TSI, source TOI, and the
 associated octet range within the delivery object comprising the
 associated FEC object. However, as the size in octets of the FEC
 object is provided in the appended field within the FEC transport
 object, the remaining information can be conveyed as:

 * The TSI and TOI of the delivery object from which the FEC object
 associated with the FEC transport object is generated

 * The start octet within the delivery object for the associated FEC
 object

 * The size in symbols of the FEC transport object, S

5.7. Super-Object Construction

 From the FEC Repair Flow declaration, the construction of a FEC
 super-object as the concatenation of one or more FEC transport
 objects can be determined. The FEC super-object includes the general
 information about the FEC transport objects as described in the
 previous sections, as well as the placement order of FEC transport
 objects within the FEC super-object.

 Let:

 * N be the total number of FEC transport objects for the FEC super-
 object construction.

 * For i = 0, ..., N-1, let S[i] be the size in symbols of FEC
 transport object i.

 * B’ be the FEC super-object that is the concatenation of the FEC
 transport objects in numerical order, comprised of K = Sum of N
 source symbols, each symbol denoted as S[i].

 For each FEC super-object, the remaining general information that
 needs to be conveyed to a FEC-enabled receiver, beyond what is
 already carried in the FEC transport objects that constitute the FEC
 super-object, comprises:

 * The total number of FEC transport objects N.

 * For each FEC transport object:

 - The TSI and TOI of the delivery object from which the FEC
 object associated with the FEC transport object is generated,

 - The start octet within the delivery object for the associated
 FEC object, and

 - The size in symbols of the FEC transport object.

 The carriage of the FEC repair information is discussed below.

5.8. Repair Packet Considerations

 The repair protocol is based on Asynchronous Layered Coding (ALC) as
 defined in RFC 5775 [RFC5775] and the Layered Coding Transport (LCT)
 Building Block as defined in RFC 5651 [RFC5651] with the following
 details:

 * The Layered Coding Transport (LCT) Building Block as defined in
 RFC 5651 [RFC5651] is used as defined in Asynchronous Layered
 Coding (ALC), Section 2.1. In addition, the following constraint
 applies:

 - The TSI in the LCT header SHALL identify the Repair Flow to
 which this packet applies by the matching the value of the ptsi
 attribute in the signaling metadata among the LCT channels
 carrying Repair Flows.

 * The FEC building block is used according to RFC 6330 [RFC6330],
 but only repair packets are delivered.

 - Each repair packet within the scope of the Repair Flow (as
 indicated by the TSI field in the LCT header) SHALL carry the
 repair symbols for a corresponding FEC transport object/super-

 object as identified by its TOI. The repair object/super-
 object TOI SHALL be unique for each FEC super-object that is
 created within the scope of the TSI.

5.9. Summary FEC Information

 For each super-object (identified by a unique TOI within a Repair
 Flow that is in turn identified by the TSI in the LCT header) that is
 generated, the following information needs to be communicated to the
 receiver:

 * The FEC configuration consisting of:

 - FEC Object Transmission Information (OTI) per RFC 5052
 [RFC5052].

 - Additional FEC information (see Section 3.3).

 - The total number of FEC objects included in the FEC super-
 object, N.

 * For each FEC transport object:

 - TSI and TOI of the delivery object used to generate the FEC
 object associated with the FEC transport object,

 - The start octet within the delivery object of the associated
 FEC object, if applicable, and

 - The size in symbols of the FEC transport object, S.

 The above information is delivered:

 * Statically in the session metadata as defined in Section 3.3, and

 * Dynamically in an LCT extension header.

6. Receiver Operation

 The receiver receives packets and filters those packets according to
 the following. From the ROUTE session and each contained LCT
 channel, the receiver regenerates delivery objects from the ROUTE
 session and each contained LCT channel.

 In the event that the receiver receives data that does not conform to
 the ROUTE protocol specified in this document, the receiver SHOULD
 attempt to recover gracefully by e.g., informing the application
 about the issues using means beyond the scope of this document. The
 ROUTE packetization specified in Section 5.2.1 implies that the
 receiver SHALL NOT receive overlapping data; if such a condition is
 encountered at the receiver, the packet SHALL be assumed to be
 corrupted.

 The basic receiver operation is provided below (it assumes an error-
 free scenario), while repair considerations are provided in
 Section 7.

6.1. Basic Application Object Recovery for Source Flows

 Upon receipt of each ROUTE packet of a Source Flow, the receiver
 proceeds with the following steps in the order listed.

 1) The ROUTE receiver is expected to parse the LCT and FEC Payload
 ID to verify that it is a valid header. If it is not valid, then
 the payload is discarded without further processing.

 2) All ROUTE packets used to recover a specific delivery object
 carry the same TOI value in the LCT header.

 3) The ROUTE receiver is expected to assert that the TSI and the
 Codepoint represent valid operation points in the signaling

 metadata, i.e., the signaling contains a matching entry to the
 TSI value provided in the packet header, as well as for this TSI,
 and the Codepoint field in the LCT header has a valid Codepoint
 mapping.

 4) The ROUTE receiver should process the remainder of the payload,
 including the appropriate interpretation of the other payload
 header fields, using the source FEC Payload ID (to determine the
 start_offset) and the payload data to reconstruct the
 corresponding object as follows:

 a. For File Mode, upon receipt of the first ROUTE packet payload
 for an object, the ROUTE receiver uses the File@Transfer-
 Length attribute of the associated Extended FDT-Instance,
 when present, to determine the length T of the object. When
 the File@Transfer-Length attribute is not present in the
 Extended FDT-Instance, the receiver uses the maxTransportSize
 attribute of the associated Extended FDT-Instance to
 determine the maximum length T’ of the object.
 Alternatively, and specifically for delivery modes other than
 File Mode, the EXT_TOL header can be used to determine the
 length T of the object.

 b. The ROUTE receiver allocates buffer space for the T or T’
 bytes that the object will or may occupy.

 c. The ROUTE receiver computes the length of the payload, Y, by
 subtracting the payload header length from the total length
 of the received payload.

 d. The ROUTE receiver allocates a Boolean array RECEIVED[0..T-1]
 or RECEIVED[0..T’-1], as appropriate, with all entries
 initialized to false to track received object symbols. The
 ROUTE receiver continuously acquires packet payloads for the
 object as long as all of the following conditions are
 satisfied:

 i. there is at least one entry in RECEIVED still set to
 false,

 ii. the object has not yet expired, and

 iii. the application has not given up on reception of this
 object.

 More details are provided below.

 e. For each received ROUTE packet payload for the object
 (including the first payload), the steps to be taken to help
 recover the object are as follows:

 i. If the packet includes an EXT_TOL or EXT_FTI header,
 modify the Boolean array RECEIVED[0..T’-1] to become
 RECEIVED[0..T-1].

 ii. Let X be the value of the start_offset field in the
 ROUTE packet header and let Y be the length of the
 payload, Y, computed by subtracting the LCT header size
 and the FEC Payload ID size from the total length of
 the received packet.

 iii. The ROUTE receiver copies the data into the appropriate
 place within the space reserved for the object and sets
 RECEIVED[X ... X+Y-1] = true.

 iv. If all T entries of RECEIVED are true, then the
 receiver has recovered the entire object.

 Upon recovery of both the complete set of packet payloads for the
 delivery object associated with a given TOI value, and the metadata
 for that delivery object, the reception of the delivery object, now a

 fully received Application Object, is complete.

 Given the timely reception of ROUTE packets belonging to an
 Application Object, the receiver SHALL make the Application Objects
 available to the application in a timely fashion using the
 application-provided timing data (e.g., the timing data signaled via
 the presentation manifest file). For example, HTTP/1.1 chunked
 transfer may need to be enabled to transfer the Application Objects
 if MPD@availabilityTimeOffset is signaled in the DASH presentation
 manifest in order to allow for the timely sending of segment data to
 the application.

6.2. Fast Stream Acquisition

 When the receiver initially starts reception of ROUTE packets, it is
 likely that the reception does not start from the very first packet
 carrying the data of a multicast transport object; in this case, such
 a partially received object is normally discarded. However, the
 channel acquisition or "tune-in" times can be improved if the
 partially received object is usable by the application. One example
 realization for this is as follows:

 * The receiver checks for the first received packet with the
 Codepoint value set to 10, indicating the start of a CMAF Random
 Access chunk.

 * The receiver MAY make the partially received object (a partial
 DASH segment starting from the packet above) available to the
 application for fast stream acquisition.

 * It MAY recover the earliest presentation time of this CMAF Random
 Access chunk from the ROUTE packet LCT Congestion Control
 Information (CCI) field as specified in Section 2.1 to be able to
 add a new Period element in the MPD exposed to the application
 containing just the partially received DASH segment with period
 continuity signaling.

6.3. Generating Extended FDT-Instance for File Mode

 An Extended FDT-Instance conforming to RFC 6726 [RFC6726], is
 produced at the receiver using the service metadata and in-band
 signaling in the following steps:

6.3.1. File Template Substitution for Content-Location Derivation

 The Content-Location element of the Extended FDT for a specific
 Application Object is derived as follows:

 "TOI" is substituted with the unique TOI value in the LCT header of
 the ROUTE packets used to recover the given delivery object (as
 specified in Section 6.1).

 After the substitution, the fileTemplate SHALL be a valid URL
 corresponding to the Content-Location attribute of the associated
 Application Object.

 An example @fileTemplate using a width of 5 is:
 fileTemplate="myVideo$TOI%05d$.mps", resulting in file names with
 exactly five digits in the number portion. The Media Segment file
 name for TOI=33 using this template is myVideo00033.mps.

6.3.2. File@Transfer-Length Derivation

 Either the EXT_FTI header (per RFC 5775 [RFC5775]) or the EXT_TOL
 header, when present, is used to derive the Transport Object Length
 (TOL) of the File. If the File@Transfer-Length parameter in the
 Extended FDT-Instance is not present, then the EXT_TOL header or the
 or EXT_FTI header SHALL be present. Note that a header containing
 the transport object length (EXT_TOL or EXT_FTI) need not be present
 in each packet header. If the broadcaster does not know the length
 of the transport object at the beginning of the transfer, an EXT_TOL

 or EXT_FTI header SHALL be included in at least the last packet of
 the file and should be included in the last few packets of the
 transfer.

6.3.3. FDT-Instance@Expires Derivation

 When present, the maxExpiresDelta attribute SHALL be used to generate
 the value of the FDT-Instance@Expires attribute. The receiver is
 expected to add this value to its wall clock time when acquiring the
 first ROUTE packet carrying the data of a given delivery object to
 obtain the value for @Expires.

 When maxExpiresDelta is not present, the EXT_TIME header with
 Expected Residual Time (ERT) SHALL be used to derive the expiry time
 of the Extended FDT-Instance. When both maxExpiresDelta and the ERT
 of EXT_TIME are present, the smaller of the two values should be used
 as the incremental time interval to be added to the receiver’s
 current time to generate the effective value for @Expires. When
 neither maxExpiresDelta nor the ERT field of the EXT_TIME header is
 present, then the expiration time of the Extended FDT-Instance is
 given by its @Expires attribute.

7. FEC Application

7.1. General FEC Application Guidelines

 It is up to the receiver to decide to use zero, one, or more of the
 FEC streams. Hence, the application assigns a recovery property to
 each flow, which defines aspects such as the delay and the required
 memory if one or the other is chosen. The receiver MAY decide
 whether or not to utilize Repair Flows based on the following
 considerations:

 * The desired start-up and end-to-end latency. If a Repair Flow
 requires a significant amount of buffering time to be effective,
 such Repair Flow might only be used in time-shift operations or in
 poor reception conditions, since use of such Repair Flow trades
 off end-to-end latency against DASH Media Presentation quality.

 * FEC capabilities, i.e., the receiver MAY pick only the FEC
 algorithm that it supports.

 * Which Source Flows are being protected; for example, if the Repair
 Flow protects Source Flows that are not selected by the receiver,
 then the receiver may not select the Repair Flow.

 * Other considerations such as available buffer size, reception
 conditions, etc.

 If a receiver decides to acquire a certain Repair Flow, then the
 receiver must receive data on all Source Flows that are protected by
 that Repair Flow to collect the relevant packets.

7.2. TOI Mapping

 When mappingTOIx/mappingTOIy are used to signal X and Y values, the
 TOI value(s) of the one or more source objects (sourceTOI) protected
 by a given FEC transport object or FEC super-object with a TOI value
 rTOI is derived through an equation sourceTOI = X*rTOI + Y.

 When neither mappingTOIx nor mappingTOIy is present, there is a 1:1
 relationship between each delivery object carried in the Source Flow
 as identified by ptsi to a FEC object carried in this Repair Flow.
 In this case, the TOI of each of those delivery objects SHALL be
 identical to the TOI of the corresponding FEC object.

7.3. Delivery Object Reception Timeout

 The permitted start and end times for the receiver to perform the
 file repair procedure, in case of unsuccessful broadcast file
 reception, and associated rules and parameters are as follows:

 * The latest time that the file repair procedure may start is bound
 by the @Expires attribute of the FDT-Instance.

 * The receiver may choose to start the file repair procedure earlier
 if it detects the occurrence of any of the following events:

 - Presence of the Close Object flag (B) in the LCT header
 [RFC5651] for the file of interest;

 - Presence of the Close Session flag (A) in the LCT header
 [RFC5651] before the nominal expiration of the Extended FDT-
 Instance as defined by the @Expires attribute.

7.4. Example FEC Operation

 To be able to recover the delivery objects that are protected by a
 Repair Flow, a receiver needs to obtain the necessary Service
 signaling metadata fragments that describe the corresponding
 collection of delivery objects that are covered by this Repair Flow.
 A Repair Flow is characterized by the combination of an LCT channel,
 a unique TSI number, as well as the corresponding protected Source
 Flows.

 If a receiver acquires data of a Repair Flow, the receiver is
 expected to collect all packets of all protected Transport Sessions.
 Upon receipt of each packet, whether it is a source or repair packet,
 the receiver proceeds with the following steps in the order listed.

 1. The receiver is expected to parse the packet header and verify
 that it is a valid header. If it is not valid, then the packet
 SHALL be discarded without further processing.

 2. The receiver is expected to parse the TSI field of the packet
 header and verify that a matching value exists in the Service
 signaling for the Repair Flow or the associated Protected Source
 Flow. If no match is found, the packet SHALL be discarded
 without further processing.

 3. The receiver processes the remainder of the packet, including
 interpretation of the other header fields, and using the source
 FEC Payload ID (to determine the start_offset byte position
 within the source object), the Repair FEC Payload ID, as well as
 the payload data, reconstructs the decoding blocks corresponding
 to a FEC super-object as follows:

 a. For a source packet, the receiver identifies the delivery
 object to which the received packet is associated using the
 session information and the TOI carried in the payload
 header. Similarly, for a repair object, the receiver
 identifies the FEC super-object to which the received packet
 is associated using the session information and the TOI
 carried in the payload header.

 b. For source packets, the receiver collects the data for each
 FEC super-object and recovers FEC super-objects in the same
 way as a Source Flow in Section 6.1. The received FEC super-
 object is then mapped to a source block and the corresponding
 encoding symbols are generated.

 c. With the reception of the repair packets, the FEC super-
 object can be recovered.

 d. Once the FEC super-object is recovered, the individual
 delivery objects can be extracted.

8. Considerations for Defining ROUTE Profiles

 Services (e.g., ATSC-ROUTE [ATSCA331], DVB-MABR [DVBMABR], etc.) may
 define specific ROUTE "profiles" based on this document in their
 respective standards organizations. An example is noted in the

 overview section: DVB has specified a profile of ATSC-ROUTE in DVB
 Adaptive Media Streaming over IP Multicast (DVB-MABR) [DVBMABR]. The
 definition has the following considerations. Services MAY

 * Restrict the signaling of certain values signaled in the LCT
 header and/or provision unused fields in the LCT header.

 * Restrict using certain LCT header extensions and/or add new LCT
 header extensions.

 * Restrict or limit usage of some Codepoints and/or assign semantics
 to service-specific Codepoints marked as reserved in this
 document.

 * Restrict usage of certain Service signaling attributes and/or add
 their own service metadata.

 Services SHALL NOT redefine the semantics of any of the ROUTE
 attributes in LCT headers and extensions, as well as Service
 signaling attributes already specified in this document.

 By following these guidelines, services can define profiles that are
 interoperable.

9. ROUTE Concepts

9.1. ROUTE Modes of Delivery

 Different ROUTE delivery modes specified in Section 4 are optimized
 for delivery of different types of media data. For example, File
 Mode is specifically optimized for delivering DASH content using
 Segment Template with number substitution. Using File Template in
 EFDT avoids the need for the repeated sending of metadata as outlined
 in the following section. Same optimizations, however, cannot be
 used for time substitution and segment timeline where the addressing
 of each segment is time dependent and in general does not follow a
 fixed or repeated pattern. In this case, Entity Mode is more
 optimized since it carries the file location in band. Also, Entity
 Mode can be used to deliver a file or part of the file using HTTP
 Partial Content response headers.

9.2. File Mode Optimizations

 In File Mode, the delivery object represents an Application Object.
 This mode replicates FLUTE as defined in RFC 6726 [RFC6726] but with
 the ability to send static and pre-known file metadata out of band.

 In FLUTE, FDT-Instances are delivered in band and need to be
 generated and delivered in real time if objects are generated in real
 time at the sender. These FDT-Instances have some differences as
 compared to the FDT specified in Section 3.4.2 of [RFC6726] and
 Section 7.2.10 of MBMS [MBMS]. The key difference is that besides
 separated delivery of file metadata from the delivery object it
 describes, the FDT functionality in ROUTE may be extended by
 additional file metadata and rules that enable the receiver to
 generate the Content-Location attribute of the File element of the
 FDT, on the fly. This is done by using information in both the
 extensions to the FDT and the LCT header. The combination of pre-
 delivery of static file metadata and receiver self generation of
 dynamic file metadata avoids the necessity of continuously sending
 the FDT-Instances for real-time objects. Such modified FDT
 functionality in ROUTE is referred to as the Extended FDT.

9.3. In-Band Signaling of Object Transfer Length

 As an extension to FLUTE, ROUTE allows for using EXT_TOL LCT header
 extension with 24 bits or, if required, 48 bits to signal the
 Transfer Length directly within the ROUTE packet.

 The transport object length can also be determined without the use of
 EXT_TOL by examining the LCT packet with the Close Object flag (B).

 However, if this packet is lost, then the EXT_TOL information can be
 used by the receiver to determine the transport object length.

 Applications using ROUTE for delivery of low-latency streaming
 content may make use of this feature for sender-end latency
 optimizations: the sender does not have to wait for the completion of
 the packaging of a whole Application Object to find its Transfer
 Length to be included in the FDT before the sending can start.
 Rather, partially encoded data can already be started to be sent via
 the ROUTE sender. As the time approaches when the encoding of the
 Application Object is nearing completion, and the length of the
 object becomes known (e.g., the time of writing the last CMAF Chunk
 of a DASH segment), only then the sender can signal the object length
 using the EXT TOL LCT header. For example, for a 2-second DASH
 segment with 100-millisecond chunks, it may result in saving up to
 1.9 second latency at the sending end.

9.4. Repair Protocol Concepts

 The ROUTE repair protocol is FEC-based and is enabled as an
 additional layer between the transport layer (e.g., UDP) and the
 object delivery layer protocol. The FEC reuses concepts of the FEC
 Framework defined in RFC 6363 [RFC6363], but in contrast to the FEC
 Framework in RFC 6363 [RFC6363], the ROUTE repair protocol does not
 protect packets but instead protects delivery objects as delivered in
 the source protocol. In addition, as an extension to FLUTE, it
 supports the protection of multiple objects in one source block which
 is in alignment with the FEC Framework as defined in RFC 6363
 [RFC6363]. Each FEC source block may consist of parts of a delivery
 object, as a single delivery object (similar to FLUTE) or multiple
 delivery objects that are bundled prior to FEC protection. ROUTE FEC
 makes use of FEC schemes in a similar way as those defined in RFC
 5052 [RFC5052] and uses the terminology of that document. The FEC
 scheme defines the FEC encoding and decoding as well as the protocol
 fields and procedures used to identify packet payload data in the
 context of the FEC scheme.

 In ROUTE, all packets are LCT packets as defined in RFC 5651
 [RFC5651]. Source and repair packets may be distinguished by:

 * Different ROUTE sessions, i.e., they are carried on different UDP/
 IP port combinations.

 * Different LCT channels, i.e., they use different TSI values in the
 LCT header.

 * The most significant PSI bit in the LCT, if carried in the same
 LCT channel. This mode of operation is mostly suitable for FLUTE-
 compatible deployments.

10. Interoperability Chart

 As noted in prevision sections, ATSC-ROUTE [ATSCA331] and DVB-MABR
 [DVBMABR] are considered services using this document that constrain
 specific features as well as add new ones. In this context, the
 following table is an informative comparison of the interoperability
 of ROUTE as specified in this document with ATSC-ROUTE [ATSCA331] and
 DVB-MABR [DVBMABR]:

 +===============+===================+==================+============+
 | Element | ATSC-ROUTE | This Document | DVB-MABR |
 +===============+===================+==================+============+
LCT header	PSI LSB set to 0	Not defined	Set to 1
field	for Source Flow		for Source
			Flow for
			CMAF
			Random
			Access
			chunk
+-------------------+------------------+------------+			
	CCI may be set to	CCI may be set to EPT for	

 | | 0 | Source Flow |
 +---------------+-------------------+------------------+------------+
LCT header	EXT_ROUTE_	Not defined;	Shall not
extensions	PRESENTATION_TIME	may be added by	be used.
	Header used for	a profile.	
	Media Delivery		
	Event (MDE) mode		
+-------------------+------------------+------------+			
	EXT_TIME Header	EXT_TIME Header may be used	
	linked to MDE	regardless (for FDT-	
	mode in Annex	Instance@Expires	
	A.3.7.2	calculation)	
	[ATSCA331]		
+---------------+-------------------+------------------+------------+			
Codepoints	Full set	Does not	Restricted
		specify range	to 5 - 9
		11 - 255	
		(leaves to	
		profiles)	
+---------------+-------------------+------------------+------------+			
Session	Full set	Only defines a	Reuses
metadata		small subset of	A/331
		data necessary	metadata,
		for setting up	duplicated
		Source and	from its
		Repair Flows.	own
		Does not define	Service
		format or	signaling.
		encoding of	
		data except if	
		data is	
		integral/	
		alphanumerical.	
		Leaves rest to	
		profiles.	
+---------------+-------------------+------------------+------------+			
Extended FDT	Instance shall	Not restricted,	Instance
	not be sent with	may be	shall not
	Source Flow	restricted by a	be sent
		profile.	with
			Source
			Flow
+-------------------+------------------+------------+			
	No restriction	Only allowed in File Mode	
+---------------+-------------------+------------------+------------+			
Delivery	File, Entity, Signed/unsigned	Signed/	
Object Mode	package	unsigned	
		package	
		not	
		allowed	
+---------------+-------------------+------------------+------------+			
Sender	Defined for DASH	Defined for DASH segment and	
operation:	segment	CMAF Chunks	
Packetization			
+---------------+-------------------+-------------------------------+			
Receiver	Object handed to	Object may be handed before	
object	application upon	completion if	
recovery	complete	MPD@availabilityTimeOffset	
	reception	signaled	
+-------------------+-------------------------------+			
	-	Fast Stream acquisition	
		guidelines provided	
 +---------------+-------------------+-------------------------------+

 Table 3: Interoperability Chart

11. Security and Privacy Considerations

11.1. Security Considerations

 As noted in Section 9, ROUTE is aligned with FLUTE as specified in

 RFC 6726 [RFC6726] and only diverges in certain signaling
 optimizations, especially for the real-time object delivery case.
 Hence, most of the security considerations documented in RFC 6726
 [RFC6726] for the data flow itself, the session metadata (session
 control parameters in RFC 6726 [RFC6726]), and the associated
 building blocks apply directly to ROUTE as elaborated in the
 following along with some additional considerations.

 Both encryption and integrity protection applied either on file or
 packet level, as recommended in the file corruption considerations of
 RFC 6726 [RFC6726], SHOULD be used for ROUTE. Additionally, RFC 3740
 [RFC3740] documents multicast security architecture in great detail
 with clear security recommendations that SHOULD be followed.

 When ROUTE is carried over UDP and a reverse channel from receiver to
 sender is available, the security mechanisms provided in RFC 9147
 [RFC9147] SHOULD be applied.

 In regard to considerations for attacks against session description,
 this document does not specify the semantics or mechanism of delivery
 of session metadata, though the same threats apply for service using
 ROUTE as well. Hence, a service using ROUTE SHOULD take these
 threats into consideration and address them appropriately following
 the guidelines provided by RFC 6726 [RFC6726]. Additionally, to the
 recommendations of RFC 6726 [RFC6726], for Internet connected
 devices, services SHOULD enable clients to access the session
 description information using HTTPS with customary authentication/
 authorization, instead of sending this data via multicast/broadcast,
 since considerable security work has been done already in this
 unicast domain, which can enable highly secure access of session
 description data. Accessing via unicast, however, will have
 different privacy considerations, noted in Section 11.2. Note that
 in general the multicast/broadcast stream is delayed with respect to
 the unicast stream. Therefore, the session description protocol
 SHOULD be time synchronized with the broadcast stream, particularly
 if the session description contains security-related information.

 In regard to FDT, there is one key difference for File Mode when
 using File Template in EFDT, which avoids repeated sending of FDT-
 Instances and hence, the corresponding threats noted in RFC 6726
 [RFC6726] do not apply directly to ROUTE in this case. The threat,
 however, is shifted to the ALC/LCT headers, since they carry the
 additional signaling that enables determining Content-Location and
 File@Transfer-Length in this case. Hence, integrity protection
 recommendations of ALC/LCT header SHOULD be considered with higher
 emphasis in this case for ROUTE.

 Finally, attacks against the congestion control building block for
 the case of ROUTE can impact the optional fast stream acquisition
 specified in Section 6.2. Receivers SHOULD have robustness against
 timestamp values that are suspicious, e.g., by comparing the signaled
 time in the LCT headers with the approximate time signaled by the
 MPD, and SHOULD discard outlying values. Additionally, receivers
 MUST adhere to the expiry timelines as specified in Section 6.
 Integrity protection mechanisms documented in RFC 6726 [RFC6726]
 SHOULD be used to address this threat.

11.2. Privacy Considerations

 Encryption mechanisms recommended for security considerations in
 Section 11.1 SHOULD also be applied to enable privacy and protection
 from snooping attacks.

 Since this protocol is primarily targeted for IP multicast/broadcast
 environments where the end user is mostly listening, identity
 protection and user data retention considerations are more protected
 than in the unicast case. Best practices for enabling privacy on IP
 multicast/broadcast SHOULD be applied by the operators, e.g.,
 "Recommendations for DNS Privacy Service Operators" in RFC 8932
 [RFC8932].

 However, if clients access session description information via HTTPS,
 the same privacy considerations and solutions SHALL apply to this
 access as for regular HTTPS communication, an area that is very well
 studied and the concepts of which are being integrated directly into
 newer transport protocols such as IETF QUIC [RFC9000] enabling HTTP/3
 [HTTP3]. Hence, such newer protocols SHOULD be used to foster
 privacy.

 Note that streaming services MAY contain content that may only be
 accessed via DRM (digital rights management) systems. DRM systems
 can prevent unauthorized access to content delivered via ROUTE.

12. IANA Considerations

 This document has no IANA actions.

13. References

13.1. Normative References

 [ATSCA331] Advanced Television Systems Committee, "Signaling,
 Delivery, Synchronization, and Error Protection", ATSC
 Standard A/331:2022-03, March 2022.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, DOI 10.17487/RFC1952, May 1996,
 <https://www.rfc-editor.org/info/rfc1952>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052,
 DOI 10.17487/RFC5052, August 2007,
 <https://www.rfc-editor.org/info/rfc5052>.

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, DOI 10.17487/RFC5445, March 2009,
 <https://www.rfc-editor.org/info/rfc5445>.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered Coding
 Transport (LCT) Building Block", RFC 5651,
 DOI 10.17487/RFC5651, October 2009,
 <https://www.rfc-editor.org/info/rfc5651>.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 DOI 10.17487/RFC5775, April 2010,
 <https://www.rfc-editor.org/info/rfc5775>.

 [RFC6330] Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T.,
 and L. Minder, "RaptorQ Forward Error Correction Scheme
 for Object Delivery", RFC 6330, DOI 10.17487/RFC6330,
 August 2011, <https://www.rfc-editor.org/info/rfc6330>.

 [RFC6363] Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363,
 DOI 10.17487/RFC6363, October 2011,
 <https://www.rfc-editor.org/info/rfc6363>.

 [RFC6726] Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
 "FLUTE - File Delivery over Unidirectional Transport",
 RFC 6726, DOI 10.17487/RFC6726, November 2012,
 <https://www.rfc-editor.org/info/rfc6726>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

13.2. Informative References

 [CMAF] International Organization for Standardization,
 "Information technology -- Multimedia application format
 (MPEG-A) -- Part 19: Common media application format
 (CMAF) for segmented media", First edition, ISO/IEC
 FDIS 23000-19, January 2018,
 <https://www.iso.org/standard/71975.html>.

 [DASH] International Organization for Standardization,
 "Information technology - Dynamic adaptive streaming over
 HTTP (DASH) - Part 1: Media presentation description and
 segment formats", Fourth edition, ISO/IEC 23009-1:2019,
 December 2019, <https://www.iso.org/standard/79329.html>.

 [DVBMABR] ETSI, "Digital Video Broadcasting (DVB); Adaptive media
 streaming over IP multicast", version 1.1.1, ETSI TS 103
 769, November 2020.

 [HTTP3] Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-34, 2 February 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-quic-
 http-34>.

 [MBMS] ETSI, "Universal Mobile Telecommunications Systems (UMTS);
 LTE; 5G; Multimedia Broadcast/Multicast Service (MBMS);
 Protocols and codecs", version 16.9.1, ETSI TS 126 346,
 May 2021.

 [RFC3740] Hardjono, T. and B. Weis, "The Multicast Group Security
 Architecture", RFC 3740, DOI 10.17487/RFC3740, March 2004,
 <https://www.rfc-editor.org/info/rfc3740>.

 [RFC6968] Roca, V. and B. Adamson, "FCAST: Object Delivery for the
 Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 6968,
 DOI 10.17487/RFC6968, July 2013,
 <https://www.rfc-editor.org/info/rfc6968>.

 [RFC8932] Dickinson, S., Overeinder, B., van Rijswijk-Deij, R., and
 A. Mankin, "Recommendations for DNS Privacy Service
 Operators", BCP 232, RFC 8932, DOI 10.17487/RFC8932,
 October 2020, <https://www.rfc-editor.org/info/rfc8932>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The

 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

Acknowledgments

 As outlined in the introduction and in ROUTE concepts in Section 9,
 the concepts specified in this document are the culmination of the
 collaborative work of several experts and organizations over the
 years. The authors would especially like to acknowledge the work and
 efforts of the following people and organizations to help realize the
 technologies described in this document (in no specific order): Mike
 Luby, Kent Walker, Charles Lo, and other colleagues from Qualcomm
 Incorporated, LG Electronics, Nomor Research, Sony, and BBC R&D.

Authors’ Addresses

 Waqar Zia
 Qualcomm CDMA Technologies GmbH
 Anzinger Str. 13
 81671 Munich
 Germany
 Email: wzia@qti.qualcomm.com

 Thomas Stockhammer
 Qualcomm CDMA Technologies GmbH
 Anzinger Str. 13
 81671 Munich
 Germany
 Email: tsto@qti.qualcomm.com

 Lenaig Chaponniere
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, CA 92121
 United States of America
 Email: lguellec@qti.qualcomm.com

 Giridhar Mandyam
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, CA 92121
 United States of America
 Email: mandyam@qti.qualcomm.com

 Michael Luby
 BitRipple, Inc.
 1133 Miller Ave
 Berkeley, CA 94708
 United States of America
 Email: luby@bitripple.com

