
ï»¿

Internet Engineering Task Force (IETF) M. Loffredo
Request for Comments: 8977 M. Martinelli
Category: Standards Track IIT-CNR/Registro.it
ISSN: 2070-1721 S. Hollenbeck
 Verisign Labs
 January 2021

 Registration Data Access Protocol (RDAP) Query Parameters for Result
 Sorting and Paging

Abstract

 The Registration Data Access Protocol (RDAP) does not include core
 functionality for clients to provide sorting and paging parameters
 for control of large result sets. This omission can lead to
 unpredictable server processing of queries and client processing of
 responses. This unpredictability can be greatly reduced if clients
 can provide servers with their preferences for managing large
 responses. This document describes RDAP query extensions that allow
 clients to specify their preferences for sorting and paging result
 sets.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8977.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Conventions Used in This Document
 2. RDAP Query Parameter Specification
 2.1. Sorting and Paging Metadata
 2.1.1. RDAP Conformance
 2.2. "count" Parameter
 2.3. "sort" Parameter
 2.3.1. Sorting Properties Declaration
 2.3.2. Representing Sorting Links
 2.4. "cursor" Parameter
 2.4.1. Representing Paging Links
 3. Negative Answers
 4. Implementation Considerations

 5. IANA Considerations
 6. Security Considerations
 7. References
 7.1. Normative References
 7.2. Informative References
 Appendix A. JSONPath Operators
 Appendix B. Approaches to Result Pagination
 B.1. Specific Issues Raised by RDAP
 Appendix C. Implementation Notes
 C.1. Sorting
 C.2. Counting
 C.3. Paging
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The availability of functionality for result sorting and paging
 provides benefits to both clients and servers in the implementation
 of RESTful services [REST]. These benefits include:

 * reducing the server response bandwidth requirements

 * improving server response time

 * improving query precision and, consequently, obtaining more
 relevant results

 * decreasing server query processing load

 * reducing client response processing time

 Approaches to implementing features for result sorting and paging can
 be grouped into two main categories:

 1. Sorting and paging are implemented through the introduction of
 additional parameters in the query string (e.g., the Open Data
 Protocol (ODATA) [ODATA-PART1]).

 2. Information related to the number of results and the specific
 portion of the result set to be returned, in addition to a set of
 ready-made links for the result set scrolling, are inserted in
 the HTTP header of the request/response [RFC7231].

 However, there are some drawbacks associated with the use of the HTTP
 header. First, the header properties cannot be set directly from a
 web browser. Moreover, in an HTTP session, the information on the
 status (i.e., the session identifier) is usually inserted in the
 header or a cookie, while the information on the resource
 identification or the search type is included in the query string.
 Finally, providing custom information through HTTP headers assumes
 the client has prior knowledge of the server implementation, which is
 widely considered a Representational State Transfer (REST) design
 anti-pattern. As a result, this document describes a specification
 based on the use of query parameters.

 Currently, RDAP [RFC7482] defines two query types:

 lookup: the server returns only one object

 search: the server returns a collection of objects

 While the lookup query does not raise issues regarding response size
 management, the search query can potentially generate a large result
 set that is often truncated according to server limits. Besides, it
 is not possible to obtain the total number of objects found that
 might be returned in a search query response [RFC7483]. Lastly,
 there is no way to specify sort criteria to return the most relevant
 objects at the beginning of the result set. Therefore, the client
 might traverse the whole result set to find the relevant objects or,
 due to truncation, might not find them at all.

 The specification described in this document extends RDAP query
 capabilities to enable result sorting and paging by adding new query
 parameters that can be applied to RDAP search path segments. The
 service is implemented using the Hypertext Transfer Protocol (HTTP)
 [RFC7230] and the conventions described in [RFC7480].

 The implementation of the new parameters is technically feasible, as
 operators for counting, sorting, and paging rows are currently
 supported by the major relational database management systems.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. RDAP Query Parameter Specification

 The new query parameters are OPTIONAL extensions of path segments
 defined in [RFC7482]. They are as follows:

 "count": a boolean value that allows a client to request the return
 of the total number of objects found

 "sort": a string value that allows a client to request a specific
 sort order for the result set

 "cursor": a string value representing a pointer to a specific fixed-
 size portion of the result set

 Augmented Backus-Naur Form (ABNF) [RFC5234] is used in the following
 sections to describe the formal syntax of these new parameters.

2.1. Sorting and Paging Metadata

 According to most advanced principles in REST design, collectively
 known as HATEOAS (Hypermedia as the Engine of Application State)
 [HATEOAS], a client entering a REST application through an initial
 URI should use server-provided links to dynamically discover
 available actions and access the resources it needs. In this way,
 the client is neither required to have prior knowledge of the service
 nor, consequently, to hard code the URIs of different resources.
 This allows the server to make URI changes as the API evolves without
 breaking clients. Definitively, a REST service should be as self-
 descriptive as possible.

 Therefore, servers implementing the query parameters described in
 this specification SHOULD provide additional information in their
 responses about both the available sorting criteria and possible
 pagination. Such information is collected in two OPTIONAL response
 elements named "sorting_metadata" and "paging_metadata".

 The "sorting_metadata" element contains the following properties:

 "currentSort": "String" (OPTIONAL)
 Either the value of the "sort" parameter as specified in the query
 string or the sort applied by default, if any.

 "availableSorts": "AvailableSort[]" (OPTIONAL)
 An array of objects, with each element describing an available
 sort criterion. The AvailableSort object includes the following
 members:

 "property": "String" (REQUIRED)
 The name that can be used by the client to request the sort
 criterion.

 "default": "Boolean" (REQUIRED)

 Indicator of whether the sort criterion is applied by default.
 An RDAP server MUST define only one default sorting property
 for each object class.

 "jsonPath": "String" (OPTIONAL)
 The JSONPath expression of the RDAP field corresponding to the
 property.

 "links": "Link[]" (OPTIONAL)
 An array of links as described in [RFC8288] containing the
 query string that applies the sort criterion.

 At least one of the "currentSort" and "availableSorts" properties
 MUST be present.

 The "paging_metadata" element contains the following fields:

 "totalCount": "Numeric" (OPTIONAL)
 A numeric value representing the total number of objects found.
 It MUST be provided if and only if the query string contains the
 "count" parameter.

 "pageSize": "Numeric" (OPTIONAL)
 A numeric value representing the number of objects that should
 have been returned in the current page. It MUST be provided if
 and only if the total number of objects exceeds the page size.
 This property is redundant for RDAP clients because the page size
 can be derived from the length of the search results array, but it
 can be helpful if the end user interacts with the server through a
 web browser.

 "pageNumber": "Numeric" (OPTIONAL)
 A numeric value representing the number of the current page in the
 result set. It MUST be provided if and only if the total number
 of objects found exceeds the page size.

 "links": "Link[]" (OPTIONAL)
 An array of links as described in [RFC8288] containing the
 reference to the next page. In this specification, only forward
 pagination is described because it is all that is necessary to
 traverse the result set.

2.1.1. RDAP Conformance

 Servers returning the "paging_metadata" element in their response
 MUST include the string literal "paging" in the rdapConformance
 array. Servers returning the "sorting_metadata" element MUST include
 the string literal "sorting".

2.2. "count" Parameter

 Currently, RDAP does not allow a client to determine the total number
 of results in a query response when the result set is truncated.
 This is inefficient because the user cannot determine if the result
 set is complete.

 The "count" parameter provides additional functionality that allows a
 client to request information from the server that specifies the
 total number of objects matching the search pattern.

 The following is an example of an RDAP query including the "count"
 parameter:

 https://example.com/rdap/domains?name=example*.com&count=true

 The ABNF syntax is the following:

 count = "count=" (trueValue / falseValue)
 trueValue = ("true" / "yes" / "1")
 falseValue = ("false" / "no" / "0")

 A trueValue means that the server MUST provide the total number of
 objects in the "totalCount" field of the "paging_metadata" element
 (Figure 1). A falseValue means that the server MUST NOT provide this
 number.

 {
 "rdapConformance": [
 "rdap_level_0",
 "paging"
],
 ...
 "paging_metadata": {
 "totalCount": 43
 },
 "domainSearchResults": [
 ...
]
 }

 Figure 1: Example of RDAP Response with "paging_metadata" Element
 Containing the "totalCount" Field

2.3. "sort" Parameter

 RDAP does not provide any capability to specify the result set sort
 criteria. A server could implement a default sorting scheme
 according to the object class, but this feature is not mandatory and
 might not meet user requirements. Sorting can be addressed by the
 client, but this solution is rather inefficient. Sorting features
 provided by the RDAP server could help avoid truncation of relevant
 results.

 The "sort" parameter allows the client to ask the server to sort the
 results according to the values of one or more properties and
 according to the sort direction of each property. The ABNF syntax is
 the following:

 sort = "sort=" sortItem *("," sortItem)
 sortItem = property-ref [":" ("a" / "d")]
 property-ref = ALPHA *(ALPHA / DIGIT / "_")

 "a" means that an ascending sort MUST be applied; "d" means that a
 descending sort MUST be applied. If the sort direction is absent, an
 ascending sort MUST be applied.

 The following are examples of RDAP queries that include the "sort"
 parameter:

 https://example.com/rdap/domains?name=example*.com&sort=name

 https://example.com/rdap/
 domains?name=example*.com&sort=registrationDate:d

 https://example.com/rdap/
 domains?name=example*.com&sort=lockedDate,name

 Except for sorting IP addresses and values denoting dates and times,
 servers MUST implement sorting according to the JSON value type of
 the RDAP field the sorting property refers to. That is, JSON strings
 MUST be sorted lexicographically, and JSON numbers MUST be sorted
 numerically. Values denoting dates and times MUST be sorted in
 chronological order. If IP addresses are represented as JSON
 strings, they MUST be sorted based on their numeric conversion.

 The conversion of an IPv4 address to a number is possible since each
 dotted format IPv4 address is a representation of a number written in
 a 256-based manner; for example, 192.168.0.1 means 1*256^0 + 0*256^1
 + 168*256^2 + 192*256^3 = 3232235521. Similarly, an IPv6 address can
 be converted into a number by applying the base 65536. Therefore,
 the numerical representation of the IPv6 address
 2001:0db8:85a3:0:0:8a2e:0370:7334 is

 42540766452641154071740215577757643572. Built-in functions and
 libraries for converting IP addresses into numbers are available in
 most known programming languages and relational database management
 systems.

 If the "sort" parameter presents an allowed sorting property, it MUST
 be provided in the "currentSort" field of the "sorting_metadata"
 element.

2.3.1. Sorting Properties Declaration

 In the "sort" parameter ABNF syntax, the element named "property-ref"
 represents a reference to a property of an RDAP object. Such a
 reference could be expressed by using a JSONPath expression (named
 "jsonpath" in the following).

 JSONPath is a syntax, originally based on the XML XPath notation
 [W3C.CR-xpath-31-20170321], which represents a path to select an
 element (or a set of elements) in a JSON document [RFC8259]. For
 example, the jsonpath to select the value of the ASCII name inside an
 RDAP domain lookup response is "$.ldhName", where $ identifies the
 root of the document object model (DOM). Another way to select a
 value inside a JSON document is the JSON Pointer [RFC6901].

 While JSONPath and JSON Pointer are both commonly adopted notations
 to select any value inside JSON data, neither is particularly concise
 and easy to use (e.g., "$.domainSearchResults[*].events[?(@.eventActi
 on=’registration’)].eventDate" is the jsonpath of the registration
 date in an RDAP domain search response).

 Therefore, this specification defines the "property-ref" element in
 terms of names identifying RDAP properties. However, not all the
 RDAP properties are suitable to be used in sort criteria. These
 properties include:

 * properties providing service information (e.g., links, notices,
 and remarks)

 * multivalued properties (e.g., status, roles, and variants)

 * properties representing relationships to other objects (e.g.,
 entities)

 On the contrary, properties expressed as values of other properties
 (e.g., registration date) could be used in such a context.

 A list of properties an RDAP server MAY implement is defined. The
 properties are divided into two groups: object-common properties and
 object-specific properties.

 * Object-common properties. Object-common properties are derived
 from merging the "eventAction" and the "eventDate" properties.
 The following values of the "sort" parameter are defined:

 - registrationDate

 - reregistrationDate

 - lastChangedDate

 - expirationDate

 - deletionDate

 - reinstantiationDate

 - transferDate

 - lockedDate

 - unlockedDate

 * Object-specific properties. Note that some of these properties
 are also defined as query path segments. These properties
 include:

 - Domain: name

 - Nameserver: name, ipv4, ipv6

 - Entity: fn, handle, org, email, voice, country, cc, city

 The correspondence between these sorting properties and the RDAP
 object classes is shown in Table 1. Some of the sorting properties
 defined for the RDAP entity class are related to jCard elements
 [RFC7095], but because jCard is the JSON format for vCard, the
 corresponding definitions are included in the vCard specification
 [RFC6350].

 An RDAP server MUST NOT use the defined sorting properties with a
 meaning other than that described in Table 1.

 +============+============+=================+======+=======+======+
 | Object | Sorting | RDAP property | RFC | RFC | RFC |
 | class | property | | 7483 | 6350 | 8605 |
 +============+============+=================+======+=======+======+
 | Searchable | Common | eventAction | 4.5 | | |
 | objects | properties | values suffixed | | | |
 | | | by "Date" | | | |
 +------------+------------+-----------------+------+-------+------+
 | Domain | name | unicodeName/ | 5.3 | | |
 | | | ldhName | | | |
 +------------+------------+-----------------+------+-------+------+
 | Nameserver | name | unicodeName/ | 5.2 | | |
 | | | ldhName | | | |
 +------------+------------+-----------------+------+-------+------+
 | | ipv4 | v4 ipAddress | 5.2 | | |
 +------------+------------+-----------------+------+-------+------+
 | | ipv6 | v6 ipAddress | 5.2 | | |
 +------------+------------+-----------------+------+-------+------+
 | Entity | handle | handle | 5.1 | | |
 +------------+------------+-----------------+------+-------+------+
 | | fn | jCard fn | 5.1 | 6.2.1 | |
 +------------+------------+-----------------+------+-------+------+
 | | org | jCard org | 5.1 | 6.6.4 | |
 +------------+------------+-----------------+------+-------+------+
 | | voice | jCard tel with | 5.1 | 6.4.1 | |
 | | | type="voice" | | | |
 +------------+------------+-----------------+------+-------+------+
 | | email | jCard email | 5.1 | 6.4.2 | |
 +------------+------------+-----------------+------+-------+------+
 | | country | country name in | 5.1 | 6.3.1 | |
 | | | jCard adr | | | |
 +------------+------------+-----------------+------+-------+------+
 | | cc | country code in | 5.1 | | 3.1 |
 | | | jCard adr | | | |
 +------------+------------+-----------------+------+-------+------+
 | | city | locality in | 5.1 | 6.3.1 | |
 | | | jCard adr | | | |
 +------------+------------+-----------------+------+-------+------+

 Table 1: Definitions of Sorting Properties

 Regarding the definitions in Table 1, some further considerations are
 needed to disambiguate some cases:

 * Since the response to a search on either domains or nameservers
 might include both A-labels and U-labels [RFC5890] in general, a
 consistent sorting policy MUST treat the unicodeName and ldhName
 as two representations of the same value. The unicodeName value
 MUST be used while sorting if it is present; when the unicodeName
 is unavailable, the value of the ldhName MUST be used instead.

 * The jCard "sort-as" parameter MUST be ignored for the sorting
 capability described in this document.

 * Even if a nameserver can have multiple IPv4 and IPv6 addresses,
 the most common configuration includes one address for each IP
 version. Therefore, this specification makes the assumption that
 nameservers have a single IPv4 and/or IPv6 value. When more than
 one address per IP version is presented, sorting MUST be applied
 to the first value.

 * Multiple events with a given action on an object might be
 returned. If this occurs, sorting MUST be applied to the most
 recent event.

 * Except for handle values, all the sorting properties defined for
 entity objects can be multivalued according to the definition of
 vCard as given in [RFC6350]. When more than one value is
 presented, sorting MUST be applied to the preferred value
 identified by the parameter pref="1". If the "pref" parameter is
 missing, sorting MUST be applied to the first value.

 The "jsonPath" field in the "sorting_metadata" element is used to
 clarify the RDAP response field the sorting property refers to. The
 mapping between the sorting properties and the jsonpaths of the RDAP
 response fields is shown below. The JSONPath operators used herein
 are described in Appendix A.

 * Searchable objects

 registrationDate
 $.domainSearchResults[*].events[?(@.eventAction=="registration"
)].eventDate

 reregistrationDate
 $.domainSearchResults[*].events[?(@.eventAction=="reregistratio
 n")].eventDate

 lastChangedDate
 $.domainSearchResults[*].events[?(@.eventAction=="last
 changed")].eventDate

 expirationDate
 $.domainSearchResults[*].events[?(@.eventAction=="expiration")]
 .eventDate

 deletionDate
 $.domainSearchResults[*].events[?(@.eventAction=="deletion")].e
 ventDate

 reinstantiationDate
 $.domainSearchResults[*].events[?(@.eventAction=="reinstantiati
 on")].eventDate

 transferDate
 $.domainSearchResults[*].events[?(@.eventAction=="transfer")].e
 ventDate

 lockedDate
 $.domainSearchResults[*].events[?(@.eventAction=="locked")].eve
 ntDate

 unlockedDate
 $.domainSearchResults[*].events[?(@.eventAction=="unlocked")].e
 ventDate

 * Domain

 name
 $.domainSearchResults[*].[unicodeName,ldhName]

 * Nameserver

 name
 $.nameserverSearchResults[*].[unicodeName,ldhName]

 ipv4
 $.nameserverSearchResults[*].ipAddresses.v4[0]

 ipv6
 $.nameserverSearchResults[*].ipAddresses.v6[0]

 * Entity

 handle
 $.entitySearchResults[*].handle

 fn
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="fn")][3]

 org
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="org")][3]

 voice
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="tel" &&
 @[1].type=="voice")][3]

 email
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="email")][3]

 country
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="adr")][3][6]

 cc
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="adr")][1].cc

 city
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="adr")][3][3]

 Additional notes on the provided jsonpaths:

 * Those related to the event dates are defined only for the "domain"
 object. To obtain the equivalent jsonpaths for "entity" and
 "nameserver", the path segment "domainSearchResults" must be
 replaced with "entitySearchResults" and "nameserverSearchResults",
 respectively.

 * Those related to jCard elements are specified without taking into
 account the "pref" parameter. Servers that sort those values
 identified by the "pref" parameter SHOULD update a jsonpath by
 adding an appropriate filter. For example, if the email values
 identified by pref="1" are considered for sorting, the jsonpath of
 the "email" sorting property should be
 $.entitySearchResults[*].vcardArray[1][?(@[0]=="email" &&
 @[1].pref=="1")][3].

2.3.2. Representing Sorting Links

 An RDAP server MAY use the "links" array of the "sorting_metadata"
 element to provide ready-made references [RFC8288] to the available
 sort criteria (Figure 2). Each link represents a reference to an
 alternate view of the results.

 The "value", "rel", and "href" JSON values MUST be specified. All
 other JSON values are OPTIONAL.

 {
 "rdapConformance": [
 "rdap_level_0",
 "sorting"
],
 ...

 "sorting_metadata": {
 "currentSort": "name",
 "availableSorts": [
 {
 "property": "registrationDate",
 "jsonPath": "$.domainSearchResults[*]
 .events[?(@.eventAction==\"registration\")].eventDate",
 "default": false,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=example*.com
 &sort=name",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=example*.com
 &sort=registrationDate",
 "title": "Result Ascending Sort Link",
 "type": "application/rdap+json"
 },
 {
 "value": "https://example.com/rdap/domains?name=example*.com
 &sort=name",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=example*.com
 &sort=registrationDate:d",
 "title": "Result Descending Sort Link",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
 },
 "domainSearchResults": [
 ...
]
 }

 Figure 2: Example of a "sorting_metadata" Instance to Implement
 Result Sorting

2.4. "cursor" Parameter

 The "cursor" parameter defined in this specification can be used to
 encode information about any pagination method. For example, in the
 case of a simple implementation of the "cursor" parameter to
 represent offset pagination information, the "cursor" value
 "b2Zmc2V0PTEwMCxsaW1pdD01MA==" is the base64 encoding of
 "offset=100,limit=50". Likewise, in a simple implementation to
 represent keyset pagination information, the "cursor" value
 "ZXhhbXBsZS1OLmNvbQ==" represents the base64 encoding of
 "key=example-N.com" whereby the key value identifies the last row of
 the current page.

 Note that this specification uses a base64 encoding for cursor
 obfuscation just for example. RDAP servers are NOT RECOMMENDED to
 obfuscate the "cursor" value through a mere base64 encoding.

 This solution lets RDAP providers implement a pagination method
 according to their needs, a user’s access level, and the submitted
 query. Besides, servers can change the method over time without
 announcing anything to clients. The considerations that have led to
 this solution are described in more detail in Appendix B.

 The ABNF syntax of the "cursor" parameter is the following:

 cursor = "cursor=" 1*(ALPHA / DIGIT / "/" / "=" / "-" / "_")

 The following is an example of an RDAP query including the "cursor"
 parameter:

 https://example.com/rdap/domains?name=example*.com

 &cursor=wJlCDLIl6KTWypN7T6vc6nWEmEYe99Hjf1XY1xmqV-M=

2.4.1. Representing Paging Links

 An RDAP server SHOULD use the "links" array of the "paging_metadata"
 element to provide a ready-made reference [RFC8288] to the next page
 of the result set (Figure 3). Examples of additional "rel" values a
 server MAY implement are "first", "last", and "prev".

 {
 "rdapConformance": [
 "rdap_level_0",
 "paging"
],
 ...
 "notices": [
 {
 "title": "Search query limits",
 "type": "result set truncated due to excessive load",
 "description": [
 "search results for domains are limited to 50"
]
 }
],
 "paging_metadata": {
 "totalCount": 73,
 "pageSize": 50,
 "pageNumber": 1,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=example*.com",
 "rel": "next",
 "href": "https://example.com/rdap/domains?name=example*.com
 &cursor=wJlCDLIl6KTWypN7T6vc6nWEmEYe99Hjf1XY1xmqV-M=",
 "title": "Result Pagination Link",
 "type": "application/rdap+json"
 }
]
 },
 "domainSearchResults": [
 ...
]
 }

 Figure 3: Example of a "paging_metadata" Instance to Implement Cursor
 Pagination

3. Negative Answers

 The constraints for the values of parameters are defined by their
 ABNF syntax. Therefore, each request that includes an invalid value
 for a parameter SHOULD produce an HTTP 400 (Bad Request) response
 code. The same response SHOULD be returned in the following cases:

 * if sorting by either single or multiple properties, the client
 provides an unsupported value for the "sort" parameter, as well as
 a value related to an object property not included in the response

 * if the client submits an invalid value for the "cursor" parameter

 Optionally, the response MAY include additional information regarding
 either the supported sorting properties or the correct "cursor" value
 in the HTTP entity body (Figure 4).

 {
 "errorCode": 400,
 "title": "Domain sorting property ’unknown’ is not valid",
 "description": [
 "Supported domain sorting properties are:"
 "’aproperty’, ’anotherproperty’"
]

 }

 Figure 4: Example of RDAP Error Response Due to an Invalid Domain
 Sorting Property Included in the Request

4. Implementation Considerations

 Implementation of the new parameters is technically feasible, as
 operators for counting, sorting, and paging are currently supported
 by the major relational database management systems. Similar
 operators are completely or partially supported by the most well-
 known NoSQL databases (e.g., MongoDB, CouchDB, HBase, Cassandra,
 Hadoop, etc.). Additional implementation notes are included in
 Appendix C.

5. IANA Considerations

 IANA has registered the following values in the "RDAP Extensions"
 registry:

 Extension identifier: paging
 Registry operator: Any
 Published specification: RFC 8977
 Contact: IETF <iesg@ietf.org>
 Intended usage: This extension describes a best practice for result
 set paging.

 Extension identifier: sorting
 Registry operator: Any
 Published specification: RFC 8977
 Contact: IETF <iesg@ietf.org>
 Intended usage: This extension describes a best practice for result
 set sorting.

6. Security Considerations

 Security services for the operations specified in this document are
 described in [RFC7481].

 A search query typically requires more server resources (such as
 memory, CPU cycles, and network bandwidth) when compared to a lookup
 query. This increases the risk of server resource exhaustion and
 subsequent denial of service. This risk can be mitigated by either
 restricting search functionality or limiting the rate of search
 requests. Servers can also reduce their load by truncating the
 results in a response. However, this last security policy can result
 in a higher inefficiency or risk due to acting on incomplete
 information if the RDAP server does not provide any functionality to
 return the truncated results.

 The new parameters presented in this document provide RDAP operators
 with a way to implement a server that reduces inefficiency risks.
 The "count" parameter gives the client the ability to evaluate the
 completeness of a response. The "sort" parameter allows the client
 to obtain the most relevant information at the beginning of the
 result set. This can reduce the number of unnecessary search
 requests. Finally, the "cursor" parameter enables the user to scroll
 the result set by submitting a sequence of sustainable queries within
 server-acceptable limits.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC6350] Perreault, S., "vCard Format Specification", RFC 6350,
 DOI 10.17487/RFC6350, August 2011,
 <https://www.rfc-editor.org/info/rfc6350>.

 [RFC7095] Kewisch, P., "jCard: The JSON Format for vCard", RFC 7095,
 DOI 10.17487/RFC7095, January 2014,
 <https://www.rfc-editor.org/info/rfc7095>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7480] Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the
 Registration Data Access Protocol (RDAP)", RFC 7480,
 DOI 10.17487/RFC7480, March 2015,
 <https://www.rfc-editor.org/info/rfc7480>.

 [RFC7481] Hollenbeck, S. and N. Kong, "Security Services for the
 Registration Data Access Protocol (RDAP)", RFC 7481,
 DOI 10.17487/RFC7481, March 2015,
 <https://www.rfc-editor.org/info/rfc7481>.

 [RFC7482] Newton, A. and S. Hollenbeck, "Registration Data Access
 Protocol (RDAP) Query Format", RFC 7482,
 DOI 10.17487/RFC7482, March 2015,
 <https://www.rfc-editor.org/info/rfc7482>.

 [RFC7483] Newton, A. and S. Hollenbeck, "JSON Responses for the
 Registration Data Access Protocol (RDAP)", RFC 7483,
 DOI 10.17487/RFC7483, March 2015,
 <https://www.rfc-editor.org/info/rfc7483>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [RFC8605] Hollenbeck, S. and R. Carney, "vCard Format Extensions:
 ICANN Extensions for the Registration Data Access Protocol
 (RDAP)", RFC 8605, DOI 10.17487/RFC8605, May 2019,
 <https://www.rfc-editor.org/info/rfc8605>.

7.2. Informative References

 [CURSOR] Nimesh, R., "Paginating Real-Time Data with Cursor Based
 Pagination", July 2014, <https://www.sitepoint.com/
 paginating-real-time-data-cursor-based-pagination/>.

 [CURSOR-API1]
 Facebook, "Facebook for Developers -- Using the Graph
 API", <https://developers.facebook.com/docs/graph-api/
 using-graph-api>.

 [CURSOR-API2]
 Twitter, "Twitter Ads API",
 <https://developer.twitter.com/en/docs/twitter-ads-api>.

 [GOESSNER-JSON-PATH]
 Goessner, S., "JSONPath - XPath for JSON", February 2007,
 <https://goessner.net/articles/JsonPath/>.

 [HATEOAS] Jedrzejewski, B., "HATEOAS - a simple explanation",
 February 2018, <https://www.e4developer.com/2018/02/16/
 hateoas-simple-explanation/>.

 [JSONPATH-COMPARISON]
 "JSONPath Comparison",
 <https://cburgmer.github.io/json-path-comparison/>.

 [JSONPATH-WG]
 IETF, "JSON Path (jsonpath)",
 <https://datatracker.ietf.org/wg/jsonpath/about/>.

 [ODATA-PART1]
 Pizzo, M., Handl, R., and M. Zurmuehl, "OData Version 4.0.
 Part 1: Protocol Plus Errata 03", June 2016,
 <https://docs.oasis-
 open.org/odata/odata/v4.0/errata03/os/complete/part1-
 protocol/odata-v4.0-errata03-os-part1-protocol-
 complete.pdf>.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000,
 <https://www.ics.uci.edu/˜fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [SEEK] EverSQL, "Faster Pagination in Mysql - Why Order By With
 Limit and Offset is Slow?", July 2017,
 <https://www.eversql.com/faster-pagination-in-mysql-why-
 order-by-with-limit-and-offset-is-slow/>.

 [W3C.CR-xpath-31-20170321]
 Robie, J., Dyck, M., and J. Spiegel, "XML Path Language
 (XPath) 3.1", World Wide Web Consortium Recommendation
 REC-xpath-31-20170321, March 2017,
 <https://www.w3.org/TR/2017/REC-xpath-31-20170321/>.

Appendix A. JSONPath Operators

 The jsonpaths used in this document are provided according to the
 Goessner proposal [GOESSNER-JSON-PATH].

 Such specification requires that implementations support a set of
 "basic operators". These operators are used to access the elements
 of a JSON structure like objects and arrays, as well as their
 subelements (object members and array items, respectively). No
 operations are defined for retrieving parent or sibling elements of a
 given element. The root element is always referred to as $
 regardless of it being an object or array.

 Additionally, the specification permits implementations to support
 arbitrary script expressions. These can be used to index into an
 object or array, or to filter elements from an array. While script
 expression behavior is implementation-defined, most implementations

 support the basic relational and logical operators as well as both
 object member and array item access, sufficiently similar for the
 purpose of this document. Commonly supported operators/functions
 divided into "top-level operators" and "filter operators" are
 documented in Tables 2 and 3, respectively.

 For more information on implementation interoperability issues, see
 [JSONPATH-COMPARISON]. At the time of writing, work is beginning on
 a standardization effort too (see [JSONPATH-WG]).

 +===================+===+
 | Operator | Description |
 +===================+===+
 | $ | Root element |
 +-------------------+---+
 | .<name> | Object member access (dot-notation) |
 +-------------------+---+
 | [’<name>’] | Object member access (bracket-notation) |
 +-------------------+---+
 | [<number>] | Array item access |
 +-------------------+---+
 | * | All elements within the specified scope |
 +-------------------+---+
 | [?(<expression>)] | Filter expression |
 +-------------------+---+

 Table 2: JSONPath Top-Level Operators

 +====================+==+
 | Operator | Description |
 +====================+==+
 | @ | Current element being processed |
 +--------------------+--+
 | .<name> | Object member access |
 +--------------------+--+
 | .[<name1>,<name2>] | Union of object members |
 +--------------------+--+
 | [<number>] | Array item access |
 +--------------------+--+
 | == | Left is equal to right |
 +--------------------+--+
 | != | Left is not equal to right |
 +--------------------+--+
 | < | Left is less than right |
 +--------------------+--+
 | <= | Left is less than or equal to right |
 +--------------------+--+
 | > | Left is greater than right |
 +--------------------+--+
 | >= | Left is greater than or equal to right |
 +--------------------+--+
 | && | Logical conjunction |
 +--------------------+--+
 | || | Logical disjunction |
 +--------------------+--+

 Table 3: JSONPath Filter Operators

Appendix B. Approaches to Result Pagination

 An RDAP query could return a response with hundreds, even thousands,
 of objects, especially when partial matching is used. For this
 reason, the "cursor" parameter addressing result pagination is
 defined to make responses easier to handle.

 Presently, the most popular methods to implement pagination in a REST
 API include offset pagination and keyset pagination. Neither
 pagination method requires the server to handle the result set in a
 storage area across multiple requests since a new result set is
 generated each time a request is submitted. Therefore, they are
 preferred to any other method requiring the management of a REST

 session.

 Using limit and offset operators represents the traditionally used
 method to implement result pagination. Both of them can be used
 individually:

 "limit=N": means that the server returns the first N objects of the
 result set

 "offset=N": means that the server skips the first N objects and
 returns objects starting from position N+1

 When limit and offset are used together, they provide the ability to
 identify a specific portion of the result set. For example, the pair
 "offset=100,limit=50" returns the first 50 objects starting from
 position 101 of the result set.

 Though easy to implement, offset pagination also includes drawbacks:

 * When offset has a very high value, scrolling the result set could
 take some time.

 * It always requires fetching all rows before dropping as many rows
 as specified by offset.

 * It may return inconsistent pages when data are frequently updated
 (i.e., real-time data).

 Keyset pagination [SEEK] adds a query condition that enables the
 selection of the only data not yet returned. This method has been
 taken as the basis for the implementation of a "cursor" parameter
 [CURSOR] by some REST API providers [CURSOR-API1] [CURSOR-API2]. The
 cursor is a URL-safe string opaque to the client and representing a
 logical pointer to the first result of the next page.

 Nevertheless, even keyset pagination can be troublesome:

 * It needs at least one key field.

 * It does not allow sorting simply by any field because the sorting
 criterion must contain a key.

 * It works best with full composite values supported by database
 management systems (i.e., [x,y]>[a,b]); emulation is possible but
 inelegant and less efficient.

 * It does not allow direct navigation to arbitrary pages because the
 result set must be scrolled in sequential order starting from the
 initial page.

 * Implementing bidirectional navigation is tedious because all
 comparison and sort operations have to be reversed.

B.1. Specific Issues Raised by RDAP

 Some additional considerations can be made in the RDAP context:

 * An RDAP object is a conceptual aggregation of information
 generally collected from more than one data structure (e.g.,
 table), and this makes it even harder to implement keyset
 pagination, a task that is already quite difficult. For example,
 the entity object can include information from different data
 structures (registrars, registrants, contacts, resellers), each
 one with its key field mapping the RDAP entity handle.

 * Depending on the number of page results as well as the number and
 the complexity of the properties of each RDAP object in the
 response, the time required by offset pagination to skip the
 previous pages could be much faster than the processing time
 needed to build the current page. In fact, RDAP objects are
 usually formed by information belonging to multiple data

 structures and containing multivalued properties (i.e., arrays);
 therefore, data selection might be a time-consuming process. This
 situation occurs even though the selection is supported by
 indexes.

 * Depending on the access levels defined by each RDAP operator, the
 increase in complexity and the decrease in flexibility of keyset
 pagination in comparison to offset pagination could be considered
 impractical.

 Ultimately, both pagination methods have benefits and drawbacks.

Appendix C. Implementation Notes

 This section contains an overview of the main choices made during the
 implementation of the capabilities defined in this document in the
 RDAP public test server of Registro.it at the Institute of
 Informatics and Telematics of the National Research Council (IIT-
 CNR). The content of this section can represent guidance for
 implementers who plan to provide RDAP users with those capabilities.
 The RDAP public test server can be accessed at
 <https://rdap.pubtest.nic.it/>. Further documentation about the
 server features is available at <https://rdap.pubtest.nic.it/doc/
 README.html>.

C.1. Sorting

 If no sort criterion is specified in the query string, the results
 are sorted by a default property: "name" for domains and nameservers,
 and "handle" for entities. The server supports multiple property
 sorting but the "sorting_metadata" object includes only the links to
 alternative result set views sorted by a single property just to show
 the list of sorting properties allowed for each searchable object.
 The server supports all the object-specific sorting properties
 described in the specification except for nameserver sorting based on
 unicodeName, that is, the "name" sorting property is mapped onto the
 "ldhName" response field. Regarding the object-common properties,
 sorting by registrationDate, expirationDate, lastChangedDate, and
 transferDate is supported.

C.2. Counting

 The counting operation is implemented through a separate query. Some
 relational database management systems support custom operators to
 get the total count together with the rows, but the resulting query
 can be considerably more expensive than that performed without the
 total count. Therefore, as "totalCount" is an optional response
 information, always fetching the total number of rows has been
 considered an inefficient solution. Furthermore, to avoid the
 processing of unnecessary queries, when the "count" parameter is
 included in the submitted query, it is not also repeated in the query
 strings of the "links" array provided in both "paging_metadata" and
 "sorting_metadata" objects.

C.3. Paging

 The server implements the cursor pagination through the keyset
 pagination when sorting by a unique property is requested or the
 default sort is applied. Otherwise, it implements the cursor
 pagination through the offset pagination. As most relational
 database management systems don’t support the comparison of full
 composite values natively, the implementation of full keyset
 pagination seem to be troublesome so, at least initially, a selective
 applicability of keyset pagination is advisable. Moreover, the
 "cursor" value encodes not only information about pagination but also
 about the search pattern and the other query parameters in order to
 check the consistency of the entire query string. If the "cursor"
 value is inconsistent with the rest of the query string, the server
 returns an error response.

Acknowledgements

 The authors would like to acknowledge Brian Mountford, Tom Harrison,
 Karl Heinz Wolf, Jasdip Singh, Erik Kline, Ã\211ric Vyncke, Benjamin
 Kaduk, and Roman Danyliw for their contributions to the development
 of this document.

Authors’ Addresses

 Mario Loffredo
 IIT-CNR/Registro.it
 Via Moruzzi,1
 56124 Pisa
 Italy

 Email: mario.loffredo@iit.cnr.it
 URI: https://www.iit.cnr.it

 Maurizio Martinelli
 IIT-CNR/Registro.it
 Via Moruzzi,1
 56124 Pisa
 Italy

 Email: maurizio.martinelli@iit.cnr.it
 URI: https://www.iit.cnr.it

 Scott Hollenbeck
 Verisign Labs
 12061 Bluemont Way
 Reston, VA 20190
 United States of America

 Email: shollenbeck@verisign.com
 URI: https://www.verisignlabs.com/

