I»e

Internet Engineering Task Force (IETF) D. Noveck, Ed.
Request for Comments: 8881 NetApp
Obsoletes: 5661 C. Lever
Category: Standards Track ORACLE
ISSN: 2070-1721 August 2020

Network File System (NFS) Version 4 Minor Version 1 Protocol
Abstract

This document describes the Network File System (NFS) version 4 minor
version 1, including features retained from the base protocol (NFS
version 4 minor version 0, which is specified in RFC 7530) and
protocol extensions made subsequently. The later minor version has
no dependencies on NFS version 4 minor version 0, and is considered a
separate protocol.

This document obsoletes RFC 5661. It substantially revises the
treatment of features relating to multi-server namespace, superseding
the description of those features appearing in RFC 5661.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8881.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction
1.1. Introduction to This Update

NDNNDNDNDDNDDNDNDDNDDNDNDDN

w W w

oo oo o1 oot DO DD

o oY O O

ENEEN N N BEN AN N |

o 00 0O 0O 0O 0O O 0o

O W W VW O

PR R RRRRPP

P OWoo-JdJoUuld WNEFEFQWOWJOoYO b WN

0.

The NFS Version 4 Minor Version 1 Protocol
Requirements Language

Scope of This Document

NFSv4 Goals

NFSv4.1l Goals

General Definitions

Overview of NFSv4.1l Features

Differences from NFSv4.0

ore Infrastructure

Introduction

RPC and XDR

COMPOUND and CB_COMPOUND

Client Identifiers and Client Owners
Server Owners

Security Service Negotiation

Minor Versioning

Non—-RPC-Based Security Services
Transport Layers

Session

Protocol Constants and Data Types

.1. Basic Constants

.2. Basic Data Types

.3. Structured Data Types

Filehandles

.1. Obtaining the First Filehandle

.2. Filehandle Types

.3. One Method of Constructing a Volatile Filehandle
.4. Client Recovery from Filehandle Expiration

File Attributes

.1. REQUIRED Attributes

2. RECOMMENDED Attributes

3. Named Attributes

4. Classification of Attributes

5. Set-Only and Get-Only Attributes

6. REQUIRED Attributes - List and Definition References
7. RECOMMENDED Attributes - List and Definition References
8. Attribute Definitions

.9. Interpreting owner and owner_group

.10. Character Case Attributes

.11. Directory Notification Attributes

.12. pNFS Attribute Definitions

.13. Retention Attributes

Access Control Attributes

.1. Goals

.2. File Attributes Discussion

.3. Common Methods

.4. Requirements

Single-Server Namespace

(ﬂwaH“jm\lO\(ﬂ'bWNHMOO\]O\(ﬂbWNI—‘

Server Exports

Browsing Exports

Server Pseudo File System

Multiple Roots

Filehandle Volatility

Exported Root

Mount Point Crossing

Security Policy and Namespace Presentation

tate Management

Client and Session ID
Stateid Definition

Lease Renewal

Crash Recovery

Server Revocation of Locks
Short and Long Leases

Clocks, Propagation Delay, and Calculating Lease Expiration
Obsolete Locking Infrastructure from NFSv4.0
1le Locking and Share Reservations

Opens and Byte—-Range Locks

Lock Ranges

Upgrading and Downgrading Locks

Stateid Seqgid Values and Byte—-Range Locks
Issues with Multiple Open-Owners

10.

11.

12.

13.

14.

15.

16.

9.6. Blocking Locks
9.7. Share Reservations
9.8. OPEN/CLOSE Operations
9.9. Open Upgrade and Downgrade
9.10. Parallel OPENs
9.11. Reclaim of Open and Byte-Range Locks

Client-Side Caching
10.1. Performance Challenges for Client-Side Caching
10.2. Delegation and Callbacks
10.3. Data Caching
10.4. Open Delegation
10.5. Data Caching and Revocation
10.6. Attribute Caching
10.7. Data and Metadata Caching and Memory Mapped Files
10.8. ©Name and Directory Caching without Directory Delegations
10.9. Directory Delegations

Multi-Server Namespace
11.1. Terminology
11.2. File System Location Attributes
11.3. File System Presence or Absence
11.4. Getting Attributes for an Absent File System
11.5. Uses of File System Location Information
11.6. Trunking without File System Location Information
11.7. Users and Groups in a Multi-Server Namespace
11.8. Additional Client-Side Considerations
11.9. Overview of File Access Transitions

11.10. Effecting Network Endpoint Transitions

11.11. Effecting File System Transitions

11.12. Transferring State upon Migration

11.13. Client Responsibilities When Access Is Transitioned
11.14. Server Responsibilities Upon Migration

11.15. Effecting File System Referrals

11.16. The Attribute fs_locations

11.17. The Attribute fs_locations_info

11.18. The Attribute fs_status

Parallel NFS (pNFS)
12.1. Introduction
12.2. pNFS Definitions
12.3. pNFS Operations
12.4. ©pNFS Attributes
12.5. Layout Semantics
12.6. pNFS Mechanics
12.7. Recovery
12.8. Metadata and Storage Device Roles
12.9. Security Considerations for pNFS
NFSv4.1l as a Storage Protocol in pNFS: the File Layout Type
13.1. Client ID and Session Considerations
13.2. File Layout Definitions
13.3. File Layout Data Types
13.4. Interpreting the File Layout
13.5. Data Server Multipathing
13.6. Operations Sent to NFSv4.1l Data Servers
13.7. COMMIT through Metadata Server
13.8. The Layout Iomode
13.9. Metadata and Data Server State Coordination

13.10. Data Server Component File Size

13.11. Layout Revocation and Fencing

13.12. Security Considerations for the File Layout Type
Internationalization

14.1. Stringprep Profile for the utf8str_cs Type

14.2. Stringprep Profile for the utf8str_cis Type
14.3. Stringprep Profile for the utf8str_mixed Type
14.4. UTF-8 Capabilities

14.5. UTF-8 Related Errors

Error Values
15.1. Error Definitions
15.2. Operations and Their Valid Errors

15.3. Callback Operations and Their Valid Errors
15.4. Errors and the Operations That Use Them
NFSv4.1l Procedures

16.1. Procedure 0: NULL - No Operation

16
17.
18.

18.
18.
18.
18.
18.

18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.

18

18.

18
18
18
18
18
18
18
18

18.
18.
18.
18.
18.

18.
18.

18.
18.
18.

18.
18.

18.

18.
18.
18.

18.

18.
18.
18.
18.
18.

18.

19.
19
19

20.
20
20
20

COMPOUND - Compound Operations

REQUIRED, RECOMMENDED, or OPTIONAL

ACCESS - Check Access Rights

CLOSE - Close File

COMMIT - Commit Cached Data

CREATE - Create a Non-Regular File Object
DELEGPURGE - Purge Delegations Awaiting

DELEGRETURN - Return Delegation

GETATTR - Get Attributes

GETFH - Get Current Filehandle

LINK - Create Link to a File

LOCK - Create Lock

LOCKT - Test for Lock

LOCKU - Unlock File

LOOKUP - Lookup Filename

LOOKUPP - Lookup Parent Directory

NVERIFY - Verify Difference in Attributes
OPEN - Open a Regular File

OPENATTR - Open Named Attribute Directory
OPEN_DOWNGRADE - Reduce Open File Access
PUTFH - Set Current Filehandle

PUTPUBFH - Set Public Filehandle
PUTROOTFH - Set Root Filehandle

READ - Read from File

READDIR - Read Directory

READLINK - Read Symbolic Link

REMOVE - Remove File System Object

RENAME - Rename Directory Entry

RESTOREFH - Restore Saved Filehandle
SAVEFH - Save Current Filehandle

SECINFO - Obtain Available Security
SETATTR - Set Attributes

VERIFY - Verify Same Attributes

WRITE - Write to File

BACKCHANNEL_CTL - Backchannel Control
BIND_CONN_TO_SESSION - Associate Connection

EXCHANGE_ID - Instantiate Client ID
CREATE_SESSION - Create New Session and
nt ID

DESTROY_SESSION - Destroy a Session
FREE_STATEID - Free Stateid with No Locks
GET_DIR_DELEGATION - Get a Directory

GETDEVICEINFO - Get Device Information

GETDEVICELIST - Get All Device Mappings for
m

LAYOUTCOMMIT - Commit Writes Made Using a

LAYOUTGET - Get Layout Information
LAYOUTRETURN - Release Layout Information
SECINFO_NO_NAME - Get Security on Unnamed

SEQUENCE - Supply Per-Procedure Sequencing

SET_SSV - Update SSV for a Client ID
TEST_STATEID - Test Stateids for Validity
WANT_DELEGATION - Request Delegation
DESTROY_CLIENTID - Destroy a Client ID
RECLAIM _COMPLETE - Indicates Reclaims

44: TILLEGAL - Illegal Operation

CB_NULL - No Operation
CB_COMPOUND - Compound Operations

CB_GETATTR - Get Attributes
CB_RECALL - Recall a Delegation

.2. Procedure 1:
Operations:
NFSv4.1 Operations
1. Operation 3:
2. Operation 4:
3. Operation 5:
4. Operation 6:
5. Operation 7:
Recovery
6. Operation 8:
7. Operation 9:
8. Operation 10:
9. Operation 11:
10. Operation 12:
11. Operation 13:
12. Operation 14:
13. Operation 15:
14. Operation 16:
15. Operation 17:
16. Operation 18:
17. Operation 19:
18. Operation 21:
19. Operation 22:
.20. Operation 23:
21. Operation 24:
.22. Operation 25:
.23. Operation 26:
.24. Operation 27:
.25. Operation 28:
.26. Operation 29:
.27. Operation 31:
.28. Operation 32:
.29. Operation 33:
30. Operation 34:
31. Operation 37:
32. Operation 38:
33. Operation 40:
34. Operation 41:
with Session
35. Operation 42:
36. Operation 43:
Confirm Clie
37. Operation 44:
38. Operation 45:
39. Operation 46:
Delegation
40. Operation 47:
41. Operation 48:
a File Syste
42. Operation 49:
Layout
43. Operation 50:
44, Operation 51:
45, Operation 52:
Object
46. Operation 53:
and Control
47. Operation 54:
48. Operation 55:
49. Operation 56:
50. Operation 57:
51. Operation 58:
Finished
52. Operation 100
NFSv4.1 Callback Procedures
.1. Procedure O:
.2. Procedure 1:
NFSv4.1 Callback Operations
.1. Operation 3:
.2. Operation 4:
.3. Operation 5:

CB_LAYOUTRECALL - Recall Layout from Client

1.

1.

20.4. Operation 6: CB_NOTIFY - Notify Client of Directory
Changes

20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested
Delegation to Client

20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects

20.7. Operation 9: CB_RECALLABLE_OBJ_AVAIL - Signal Resources
for Recallable Objects

20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits

20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing
and Control

20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending
Delegation Wants

20.11. Operation 13: CB_NOTIFY_ LOCK - Notify Client of Possible
Lock Availability

20.12. Operation 14: CB_NOTIFY_ DEVICEID - Notify Client of Device
ID Changes

20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation

21. Security Considerations
22. IANA Considerations
22.1. IANA Actions

22.2. Named Attribute Definitions
22.3. Device ID Notifications
22.4. Object Recall Types

22.5. Layout Types

22.6. Path Variable Definitions
23. References
23.1. Normative References
23.2. Informative References
Appendix A. The Need for This Update
Appendix B. Changes in This Update
B.1l. Revisions Made to Section 11 of RFC 5661
B.2. Revisions Made to Operations in RFC 5661
B.3. Revisions Made to Error Definitions in RFC 5661
B.4. Other Revisions Made to RFC 5661
Appendix C. Security Issues That Need to Be Addressed
Acknowledgments
Authors’ Addresses

Introduction
1. Introduction to This Update

Two important features previously defined in minor version 0 but
never fully addressed in minor version 1 are trunking, which is the
simultaneous use of multiple connections between a client and server,
potentially to different network addresses, and Transparent State
Migration, which allows a file system to be transferred between
servers in a way that provides to the client the ability to maintain
its existing locking state across the transfer.

The revised description of the NFS version 4 minor version 1

(NFSv4.1l) protocol presented in this update is necessary to enable
full use of these features together with other multi-server namespace
features. This document is in the form of an updated description of
the NFSv4.1 protocol previously defined in RFC 5661 [66]. RFC 5661
is obsoleted by this document. However, the update has a limited
scope and is focused on enabling full use of trunking and Transparent
State Migration. The need for these changes is discussed in

Appendix A. Appendix B describes the specific changes made to arrive
at the current text.

This limited-scope update replaces the current NFSv4.1l RFC with the
intention of providing an authoritative and complete specification,
the motivation for which is discussed in [36], addressing the issues
within the scope of the update. However, it will not address issues
that are known but outside of this limited scope as could be expected
by a full update of the protocol. Below are some areas that are
known to need addressing in a future update of the protocol:

* Work needs to be done with regard to RFC 8178 [67], which
establishes NFSv4-wide versioning rules. As RFC 5661 is currently

inconsistent with that document, changes are needed in order to
arrive at a situation in which there would be no need for RFC 8178
to update the NFSv4.1l specification.

* Work needs to be done with regard to RFC 8434 [70], which
establishes the requirements for parallel NFS (pNFS) layout types,
which are not clearly defined in RFC 5661. When that work is done
and the resulting documents approved, the new NFSv4.l
specification document will provide a clear set of requirements
for layout types and a description of the file layout type that
conforms to those requirements. Other layout types will have
their own specification documents that conform to those
requirements as well.

* Work needs to be done to address many errata reports relevant to
RFC 5661, other than errata report 2006 [64], which is addressed
in this document. Addressing that report was not deferrable
because of the interaction of the changes suggested there and the
newly described handling of state and session migration.

The errata reports that have been deferred and that will need to
be addressed in a later document include reports currently
assigned a range of statuses in the errata reporting system,
including reports marked Accepted and those marked Hold For
Document Update because the change was too minor to address
immediately.

In addition, there is a set of other reports, including at least
one in state Rejected, that will need to be addressed in a later
document. This will involve making changes to consensus decisions
reflected in RFC 5661, in situations in which the working group
has decided that the treatment in RFC 5661 is incorrect and needs
to be revised to reflect the working group’s new consensus and to
ensure compatibility with existing implementations that do not
follow the handling described in RFC 5661.

Note that it is expected that all such errata reports will remain
relevant to implementors and the authors of an eventual
rfc5661bis, despite the fact that this document obsoletes RFC 5661
[66].

* There is a need for a new approach to the description of
internationalization since the current internationalization
section (Section 14) has never been implemented and does not meet
the needs of the NFSv4 protocol. Possible solutions are to create
a new internationalization section modeled on that in [68] or to
create a new document describing internationalization for all
NFSv4 minor versions and reference that document in the RFCs
defining both NFSv4.0 and NFSv4.1l.

* There is a need for a revised treatment of security in NFSv4.1.
The issues with the existing treatment are discussed in
Appendix C.

Until the above work is done, there will not be a consistent set of
documents that provides a description of the NFSv4.1l protocol, and
any full description would involve documents updating other documents
within the specification. The updates applied by RFC 8434 [70] and
RFC 8178 [67] to RFC 5661 also apply to this specification, and will
apply to any subsequent v4.l specification until that work is done.

1.2. The NFS Version 4 Minor Version 1 Protocol

The NFS version 4 minor version 1 (NFSv4.1l) protocol is the second
minor version of the NFS version 4 (NFSv4) protocol. The first minor
version, NFSv4.0, is now described in RFC 7530 [68]. It generally
follows the guidelines for minor versioning that are listed in
Section 10 of RFC 3530 [37]. However, it diverges from guidelines 11
("a client and server that support minor version X must support minor
versions 0 through X-1") and 12 ("no new features may be introduced
as mandatory in a minor version"). These divergences are due to the

introduction of the sessions model for managing non-idempotent
operations and the RECLAIM_COMPLETE operation. These two new
features are infrastructural in nature and simplify implementation of
existing and other new features. Making them anything but REQUIRED
would add undue complexity to protocol definition and implementation.
NFSv4.1 accordingly updates the minor versioning guidelines

(Section 2.7).

As a minor version, NFSv4.1l is consistent with the overall goals for
NFSv4, but extends the protocol so as to better meet those goals,
based on experiences with NFSv4.0. In addition, NFSv4.1l has adopted
some additional goals, which motivate some of the major extensions in
NFSv4.1.

.3. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [1].

.4. Scope of This Document

This document describes the NFSv4.1l protocol. With respect to
NFSv4.0, this document does not:

* describe the NFSv4.0 protocol, except where needed to contrast
with NFSv4.1.

* modify the specification of the NFSv4.0 protocol.
* clarify the NFSv4.0 protocol.
.5. NFSv4 Goals

The NFSv4 protocol is a further revision of the NFS protocol defined

already by NFSv3 [38]. It retains the essential characteristics of

previous versions: easy recovery; independence of transport

protocols, operating systems, and file systems; simplicity; and good

performance. NFSv4 has the following goals:

* Improved access and good performance on the Internet
The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is low, and scale to very
large numbers of clients per server.

* Strong security with negotiation built into the protocol
The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC_GSS protocol. Additionally, the NFSv4.l
protocol provides a mechanism to allow clients and servers the
ability to negotiate security and require clients and servers to
support a minimal set of security schemes.

* Good cross-platform interoperability
The protocol features a file system model that provides a useful,
common set of features that does not unduly favor one file system
or operating system over another.

* Designed for protocol extensions

The protocol is designed to accept standard extensions within a
framework that enables and encourages backward compatibility.

.6. NFSv4.1l Goals

NFSv4.1 has the following goals, within the framework established by
the overall NFSv4 goals.

* To correct significant structural weaknesses and oversights

discovered in the base protocol.

* To add clarity and specificity to areas left unaddressed or not
addressed in sufficient detail in the base protocol. However, as
stated in Section 1.4, it is not a goal to clarify the NFSv4.0
protocol in the NFSv4.1l specification.

* To add specific features based on experience with the existing
protocol and recent industry developments.

* To provide protocol support to take advantage of clustered server
deployments including the ability to provide scalable parallel
access to files distributed among multiple servers.

General Definitions

The following definitions provide an appropriate context for the
reader.

Byte: In this document, a byte is an octet, i.e., a datum exactly 8
bits in length.

Client: The client is the entity that accesses the NFS server’s
resources. The client may be an application that contains the
logic to access the NFS server directly. The client may also be
the traditional operating system client that provides remote file
system services for a set of applications.

A client is uniquely identified by a client owner.

With reference to byte-range locking, the client is also the
entity that maintains a set of locks on behalf of one or more
applications. This client is responsible for crash or failure
recovery for those locks it manages.

Note that multiple clients may share the same transport and
connection and multiple clients may exist on the same network
node.

Client ID: The client ID is a 64-bit quantity used as a unique,
short-hand reference to a client-supplied verifier and client
owner. The server is responsible for supplying the client ID.

Client Owner: The client owner is a unique string, opaque to the
server, that identifies a client. Multiple network connections
and source network addresses originating from those connections
may share a client owner. The server is expected to treat
requests from connections with the same client owner as coming
from the same client.

File System: The file system is the collection of objects on a
server (as identified by the major identifier of a server owner,
which is defined later in this section) that share the same fsid
attribute (see Section 5.8.1.9).

Lease: A lease is an interval of time defined by the server for
which the client is irrevocably granted locks. At the end of a
lease period, locks may be revoked if the lease has not been
extended. A lock must be revoked if a conflicting lock has been
granted after the lease interval.

A server grants a client a single lease for all state.

Lock: The term "lock" is used to refer to byte-range (in UNIX
environments, also known as record) locks, share reservations,
delegations, or layouts unless specifically stated otherwise.

Secret State Verifier (SSV): The SSV is a unique secret key shared
between a client and server. The SSV serves as the secret key for
an internal (that is, internal to NFSv4.1l) Generic Security
Services (GSS) mechanism (the SSV GSS mechanism; see

Section 2.10.9). The SSV GSS mechanism uses the SSV to compute
message integrity code (MIC) and Wrap tokens. See

Section 2.10.8.3 for more details on how NFSv4.1l uses the SSV and
the SSV GSS mechanism.

Server: The Server is the entity responsible for coordinating client
access to a set of file systems and is identified by a server
owner. A server can span multiple network addresses.

Server Owner: The server owner identifies the server to the client.
The server owner consists of a major identifier and a minor
identifier. When the client has two connections each to a peer
with the same major identifier, the client assumes that both peers
are the same server (the server namespace is the same via each
connection) and that lock state is shareable across both
connections. When each peer has both the same major and minor
identifiers, the client assumes that each connection might be
associable with the same session.

Stable Storage: Stable storage is storage from which data stored by
an NFSv4.1l server can be recovered without data loss from multiple
power failures (including cascading power failures, that 1is,
several power failures in quick succession), operating system
failures, and/or hardware failure of components other than the
storage medium itself (such as disk, nonvolatile RAM, flash
memory, etc.).

Some examples of stable storage that are allowable for an NFS
server include:

1. Media commit of data; that is, the modified data has been
successfully written to the disk media, for example, the disk
platter.

2. An immediate reply disk drive with battery-backed, on-drive
intermediate storage or uninterruptible power system (UPS).

3. Server commit of data with battery-backed intermediate storage
and recovery software.

4, Cache commit with uninterruptible power system (UPS) and
recovery software.

Stateid: A stateid is a 128-bit quantity returned by a server that
uniquely defines the open and locking states provided by the
server for a specific open-owner or lock—-owner/open-owner pair for
a specific file and type of lock.

Verifier: A verifier is a 64-bit quantity generated by the client
that the server can use to determine if the client has restarted
and lost all previous lock state.

1.8. Overview of NFSv4.1l Features

The major features of the NFSv4.l protocol will be reviewed in brief.
This will be done to provide an appropriate context for both the
reader who is familiar with the previous versions of the NFS protocol
and the reader who is new to the NFS protocols. For the reader new
to the NFS protocols, there is still a set of fundamental knowledge
that is expected. The reader should be familiar with the External
Data Representation (XDR) and Remote Procedure Call (RPC) protocols
as described in [2] and [3]. A basic knowledge of file systems and
distributed file systems is expected as well.

In general, this specification of NFSv4.1l will not distinguish those
features added in minor version 1 from those present in the base
protocol but will treat NFSv4.l as a unified whole. See Section 1.9
for a summary of the differences between NFSv4.0 and NFSv4.1l.

1.8.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Remote Procedure Call (RPC) mechanisms used for the NFSv4.l
protocol are those defined in [2] and [3]. To meet end-to-end
security requirements, the RPCSEC_GSS framework [4] is used to extend
the basic RPC security. With the use of RPCSEC_GSS, various
mechanisms can be provided to offer authentication, integrity, and
privacy to the NFSv4 protocol. Kerberos V5 is used as described in
[5] to provide one security framework. With the use of RPCSEC_GSS,
other mechanisms may also be specified and used for NFSv4.l security.

To enable in-band security negotiation, the NFSv4.1l protocol has
operations that provide the client a method of querying the server
about its policies regarding which security mechanisms must be used
for access to the server’s file system resources. With this, the
client can securely match the security mechanism that meets the
policies specified at both the client and server.

NFSv4.1l introduces parallel access (see Section 1.8.2.2), which is

called pNFS. The security framework described in this section is
significantly modified by the introduction of pNFS (see
Section 12.9), because data access is sometimes not over RPC. The

level of significance varies with the storage protocol (see
Section 12.2.5) and can be as low as zero impact (see Section 13.12).

1.8.2. Protocol Structure
1.8.2.1. Core Protocol

Unlike NFSv3, which used a series of ancillary protocols (e.g., NLM,
NSM (Network Status Monitor), MOUNT), within all minor versions of
NFSv4 a single RPC protocol is used to make requests to the server.
Facilities that had been separate protocols, such as locking, are now
integrated within a single unified protocol.

1.8.2.2. Parallel Access

Minor version 1 supports high-performance data access to a clustered
server implementation by enabling a separation of metadata access and
data access, with the latter done to multiple servers in parallel.

Such parallel data access is controlled by recallable objects known
as "layouts", which are integrated into the protocol locking model.
Clients direct requests for data access to a set of data servers
specified by the layout via a data storage protocol which may be
NFSv4.1l or may be another protocol.

Because the protocols used for parallel data access are not
necessarily RPC-based, the RPC-based security model (Section 1.8.1)
is obviously impacted (see Section 12.9). The degree of impact
varies with the storage protocol (see Section 12.2.5) used for data
access, and can be as low as zero (see Section 13.12).

1.8.3. File System Model

The general file system model used for the NFSv4.l protocol is the

same as previous versions. The server file system is hierarchical
with the regular files contained within being treated as opaque byte
streams. In a slight departure, file and directory names are encoded

with UTF-8 to deal with the basics of internationalization.

The NFSv4.l1 protocol does not require a separate protocol to provide
for the initial mapping between path name and filehandle. All file
systems exported by a server are presented as a tree so that all file
systems are reachable from a special per-server global root
filehandle. This allows LOOKUP operations to be used to perform
functions previously provided by the MOUNT protocol. The server
provides any necessary pseudo file systems to bridge any gaps that
arise due to unexported gaps between exported file systems.

1.8.3.1. Filehandles

As in previous versions of the NFS protocol, opaque filehandles are
used to identify individual files and directories. Lookup-type and
create operations translate file and directory names to filehandles,
which are then used to identify objects in subsequent operations.

The NFSv4.l1 protocol provides support for persistent filehandles,
guaranteed to be valid for the lifetime of the file system object
designated. In addition, it provides support to servers to provide
filehandles with more limited validity guarantees, called volatile
filehandles.

1.8.3.2. File Attributes

The NFSv4.l protocol has a rich and extensible file object attribute
structure, which is divided into REQUIRED, RECOMMENDED, and named
attributes (see Section 5).

Several (but not all) of the REQUIRED attributes are derived from the
attributes of NFSv3 (see the definition of the fattr3 data type in
[38]). An example of a REQUIRED attribute is the file object’s type
(Section 5.8.1.2) so that regular files can be distinguished from
directories (also known as folders in some operating environments)
and other types of objects. REQUIRED attributes are discussed in
Section 5.1.

An example of three RECOMMENDED attributes are acl, sacl, and dacl.
These attributes define an Access Control List (ACL) on a file object
(Section 6). An ACL provides directory and file access control
beyond the model used in NFSv3. The ACL definition allows for
specification of specific sets of permissions for individual users
and groups. In addition, ACL inheritance allows propagation of
access permissions and restrictions down a directory tree as file
system objects are created. RECOMMENDED attributes are discussed in
Section 5.2.

A named attribute is an opaque byte stream that is associated with a
directory or file and referred to by a string name. Named attributes
are meant to be used by client applications as a method to associate
application—-specific data with a reqgular file or directory. NFSv4.l
modifies named attributes relative to NFSv4.0 by tightening the
allowed operations in order to prevent the development of non-
interoperable implementations. Named attributes are discussed in
Section 5.3.

1.8.3.3. Multi-Server Namespace

NFSv4.1l contains a number of features to allow implementation of
namespaces that cross server boundaries and that allow and facilitate
a nondisruptive transfer of support for individual file systems
between servers. They are all based upon attributes that allow one
file system to specify alternate, additional, and new location
information that specifies how the client may access that file
system.

These attributes can be used to provide for individual active file
systems:

* Alternate network addresses to access the current file system
instance.

* The locations of alternate file system instances or replicas to be
used in the event that the current file system instance becomes
unavailable.

These file system location attributes may be used together with the
concept of absent file systems, in which a position in the server
namespace is associated with locations on other servers without there
being any corresponding file system instance on the current server.
For example,

* These attributes may be used with absent file systems to implement

referrals whereby one server may direct the client to a file
system provided by another server. This allows extensive multi-
server namespaces to be constructed.

* These attributes may be provided when a previously present file
system becomes absent. This allows nondisruptive migration of
file systems to alternate servers.

.8.4. Locking Facilities

As mentioned previously, NFSv4.l1l is a single protocol that includes
locking facilities. These locking facilities include support for
many types of locks including a number of sorts of recallable locks.
Recallable locks such as delegations allow the client to be assured
that certain events will not occur so long as that lock is held.

When circumstances change, the lock is recalled via a callback
request. The assurances provided by delegations allow more extensive
caching to be done safely when circumstances allow it.

The types of locks are:
* Share reservations as established by OPEN operations.
* Byte-range locks.

* File delegations, which are recallable locks that assure the
holder that inconsistent opens and file changes cannot occur so
long as the delegation is held.

* Directory delegations, which are recallable locks that assure the
holder that inconsistent directory modifications cannot occur so
long as the delegation is held.

* Layouts, which are recallable objects that assure the holder that
direct access to the file data may be performed directly by the
client and that no change to the data’s location that is
inconsistent with that access may be made so long as the layout is
held.

All locks for a given client are tied together under a single client-
wide lease. All requests made on sessions associated with the client
renew that lease. When the client’s lease is not promptly renewed,
the client’s locks are subject to revocation. In the event of server
restart, clients have the opportunity to safely reclaim their locks
within a special grace period.

.9. Differences from NFSv4.0

The following summarizes the major differences between minor version
1 and the base protocol:

* Implementation of the sessions model (Section 2.10).
* Parallel access to data (Section 12).

* Addition of the RECLAIM COMPLETE operation to better structure the
lock reclamation process (Section 18.51).

* Enhanced delegation support as follows.

— Delegations on directories and other file types in addition to
regular files (Section 18.39, Section 18.49).

— Operations to optimize acquisition of recalled or denied
delegations (Section 18.49, Section 20.5, Section 20.7).

— Notifications of changes to files and directories
(Section 18.39, Section 20.4).

— A method to allow a server to indicate that it is recalling one
or more delegations for resource management reasons, and thus a

method to allow the client to pick which delegations to return
(Section 20.6) .

* Attributes can be set atomically during exclusive file create via
the OPEN operation (see the new EXCLUSIVE4_1 creation method in
Section 18.16).

* Open files can be preserved if removed and the hard link count
("hard 1link" is defined in an Open Group [6] standard) goes to
zero, thus obviating the need for clients to rename deleted files
to partially hidden names —-- colloquially called "silly rename"
(see the new OPEN4_RESULT_PRESERVE_UNLINKED reply flag in
Section 18.16).

* Improved compatibility with Microsoft Windows for Access Control
Lists (Section 6.2.3, Section 6.2.2, Section 6.4.3.2).

* Data retention (Section 5.13).

* Identification of the implementation of the NFS client and server
(Section 18.35).

* Support for notification of the availability of byte-range locks
(see the new OPEN4_RESULT_MAY_ NOTIFY LOCK reply flag in
Section 18.16 and see Section 20.11).

* In NFSv4.1l, LIPKEY and SPKM-3 are not required security mechanisms

[39].
2. Core Infrastructure
2.1. Introduction

NFSv4.1l relies on core infrastructure common to nearly every
operation. This core infrastructure is described in the remainder of
this section.

2.2. RPC and XDR

The NFSv4.1l protocol is a Remote Procedure Call (RPC) application
that uses RPC version 2 and the corresponding eXternal Data
Representation (XDR) as defined in [3] and [2].

2.2.1. RPC-Based Security

Previous NFS versions have been thought of as having a host-based
authentication model, where the NFS server authenticates the NFS
client, and trusts the client to authenticate all users. Actually,
NFS has always depended on RPC for authentication. One of the first
forms of RPC authentication, AUTH_SYS, had no strong authentication
and required a host-based authentication approach. NFSv4.1l also
depends on RPC for basic security services and mandates RPC support
for a user-based authentication model. The user—-based authentication
model has user principals authenticated by a server, and in turn the
server authenticated by user principals. RPC provides some basic
security services that are used by NFSv4.l.

2.2.1.1. RPC Security Flavors

As described in "Authentication", Section 7 of [3], RPC security is
encapsulated in the RPC header, via a security or authentication
flavor, and information specific to the specified security flavor.
Every RPC header conveys information used to identify and
authenticate a client and server. As discussed in Section 2.2.1.1.1,
some security flavors provide additional security services.

NFSv4.1l clients and servers MUST implement RPCSEC_GSS. (This
requirement to implement is not a requirement to use.) Other

flavors, such as AUTH_NONE and AUTH_SYS, MAY be implemented as well.

2.2.1.1.1. RPCSEC_GSS and Security Services

RPCSEC_GSS [4] uses the functionality of GSS-API [7]. This allows
for the use of various security mechanisms by the RPC layer without
the additional implementation overhead of adding RPC security
flavors.

2.2.1.1.1.1. Identification, Authentication, Integrity, Privacy

Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate
users on clients to servers, and servers to users. It can also
perform integrity checking on the entire RPC message, including the
RPC header, and on the arguments or results. Finally, privacy,
usually via encryption, is a service available with RPCSEC_GSS.
Privacy is performed on the arguments and results. Note that if
privacy is selected, integrity, authentication, and identification
are enabled. If privacy is not selected, but integrity is selected,
authentication and identification are enabled. If integrity and
privacy are not selected, but authentication is enabled,
identification is enabled. RPCSEC_GSS does not provide
identification as a separate service.

Although GSS-API has an authentication service distinct from its
privacy and integrity services, GSS-API’s authentication service is
not used for RPCSEC_GSS’s authentication service. Instead, each RPC
request and response header is integrity protected with the GSS-API
integrity service, and this allows RPCSEC_GSS to offer per—-RPC
authentication and identity. See [4] for more information.

NFSv4.1l client and servers MUST support RPCSEC_GSS’s integrity and
authentication service. NFSv4.l servers MUST support RPCSEC_GSS’s
privacy service. NFSv4.1l clients SHOULD support RPCSEC_GSS’s privacy
service.

2.2.1.1.1.2. Security Mechanisms for NFSv4.1l

RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that provide
security services. Therefore, NFSv4.1l clients and servers MUST
support the Kerberos V5 security mechanism.

The use of RPCSEC_GSS requires selection of mechanism, quality of
protection (QOP), and service (authentication, integrity, privacy).
For the mandated security mechanisms, NFSv4.l specifies that a QOP of
zero is used, leaving it up to the mechanism or the mechanism’s
configuration to map QOP zero to an appropriate level of protection.
Each mandated mechanism specifies a minimum set of cryptographic
algorithms for implementing integrity and privacy. NFSv4.1l clients
and servers MUST be implemented on operating environments that comply
with the REQUIRED cryptographic algorithms of each REQUIRED
mechanism.

2.2.1.1.1.2.1. Kerberos V5
The Kerberos V5 GSS-API mechanism as described in [5] MUST be
implemented with the RPCSEC_GSS services as specified in the

following table:

column descriptions:
1 == number of pseudo flavor

2 == name of pseudo flavor

3 == mechanism’s OID

4 == RPCSEC_GSS service

5 == NFSv4.1 clients MUST support

6 == NFSv4.1l servers MUST support

1 2 3 4 5 6
390003 krb5 1.2.840.113554.1.2.2 rpc_gss_svc_none yes yes
390004 krbb5i 1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
390005 krbb5p 1.2.840.113554.1.2.2 rpc_gss_svc_privacy no yes

Note that the number and name of the pseudo flavor are presented here

as a mapping aid to the implementor. Because the NFSv4.1l protocol
includes a method to negotiate security and it understands the GSS-
API mechanism, the pseudo flavor is not needed. The pseudo flavor is
needed for the NFSv3 since the security negotiation is done via the
MOUNT protocol as described in [40].

At the time NFSv4.l1 was specified, the Advanced Encryption Standard
(AES) with HMAC-SHAl was a REQUIRED algorithm set for Kerberos V5.
In contrast, when NFSv4.0 was specified, weaker algorithm sets were
REQUIRED for Kerberos V5, and were REQUIRED in the NFSv4.0
specification, because the Kerberos V5 specification at the time did
not specify stronger algorithms. The NFSv4.1l specification does not
specify REQUIRED algorithms for Kerberos V5, and instead, the
implementor is expected to track the evolution of the Kerberos V5
standard if and when stronger algorithms are specified.

2.2.1.1.1.2.1.1. Security Considerations for Cryptographic Algorithms
in Kerberos V5

When deploying NFSv4.1, the strength of the security achieved depends
on the existing Kerberos V5 infrastructure. The algorithms of
Kerberos V5 are not directly exposed to or selectable by the client
or server, so there is some due diligence required by the user of
NFSv4.l to ensure that security is acceptable where needed.

2.2.1.1.1.3. GSS Server Principal

Regardless of what security mechanism under RPCSEC_GSS is being used,
the NFS server MUST identify itself in GSS-API via a
GSS_C_NT_HOSTBASED_SERVICE name type. GSS_C_NT_HOSTBASED_SERVICE
names are of the form:

service@hostname
For NFS, the "service" element is
nfs

Implementations of security mechanisms will convert nfs@hostname to
various different forms. For Kerberos V5, the following form is
RECOMMENDED :

nfs/hostname
2.3. COMPOUND and CB_COMPOUND

A significant departure from the versions of the NFS protocol before
NFSv4 is the introduction of the COMPOUND procedure. For the NFSv4
protocol, in all minor versions, there are exactly two RPC
procedures, NULL and COMPOUND. The COMPOUND procedure is defined as
a series of individual operations and these operations perform the
sorts of functions performed by traditional NFS procedures.

The operations combined within a COMPOUND request are evaluated in
order by the server, without any atomicity guarantees. A limited set
of facilities exist to pass results from one operation to another.
Once an operation returns a failing result, the evaluation ends and
the results of all evaluated operations are returned to the client.

With the use of the COMPOUND procedure, the client is able to build
simple or complex requests. These COMPOUND requests allow for a
reduction in the number of RPCs needed for logical file system
operations. For example, multi-component look up requests can be
constructed by combining multiple LOOKUP operations. Those can be
further combined with operations such as GETATTR, READDIR, or OPEN
plus READ to do more complicated sets of operation without incurring
additional latency.

NFSv4.1l also contains a considerable set of callback operations in
which the server makes an RPC directed at the client. Callback RPCs
have a similar structure to that of the normal server requests. 1In

all minor versions of the NFSv4 protocol, there are two callback RPC
procedures: CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is
defined in an analogous fashion to that of COMPOUND with its own set
of callback operations.

The addition of new server and callback operations within the
COMPOUND and CB_COMPOUND request framework provides a means of
extending the protocol in subsequent minor versions.

Except for a small number of operations needed for session creation,
server requests and callback requests are performed within the
context of a session. Sessions provide a client context for every
request and support robust replay protection for non-idempotent
requests.

2.4. Client Identifiers and Client Owners

For each operation that obtains or depends on locking state, the
specific client needs to be identifiable by the server.

Each distinct client instance is represented by a client ID. A
client ID is a 64-bit identifier representing a specific client at a
given time. The client ID is changed whenever the client re-
initializes, and may change when the server re-initializes. Client
IDs are used to support lock identification and crash recovery.

During steady state operation, the client ID associated with each
operation is derived from the session (see Section 2.10) on which the
operation is sent. A session is associated with a client ID when the
session is created.

Unlike NFSv4.0, the only NFSv4.1l operations possible before a client
ID is established are those needed to establish the client ID.

A sequence of an EXCHANGE_ID operation followed by a CREATE_SESSION
operation using that client ID (eir_clientid as returned from
EXCHANGE_ID) is required to establish and confirm the client ID on
the server. Establishment of identification by a new incarnation of
the client also has the effect of immediately releasing any locking
state that a previous incarnation of that same client might have had
on the server. Such released state would include all byte-range
lock, share reservation, layout state, and —-- where the server
supports neither the CLAIM DELEGATE_PREV nor CLAIM DELEG_CUR_FH claim
types —— all delegation state associated with the same client with
the same identity. For discussion of delegation state recovery, see
Section 10.2.1. For discussion of layout state recovery, see
Section 12.7.1.

Releasing such state requires that the server be able to determine
that one client instance is the successor of another. Where this
cannot be done, for any of a number of reasons, the locking state
will remain for a time subject to lease expiration (see Section 8.3)
and the new client will need to wait for such state to be removed, if
it makes conflicting lock requests.

Client identification is encapsulated in the following client owner
data type:

struct client_owner4d {

verifierd co_verifier;

opaque co_ownerid<NFS4_OPAQUE_LIMIT>;
}i

The first field, co_verifier, is a client incarnation verifier,
allowing the server to distinguish successive incarnations (e.g.,
reboots) of the same client. The server will start the process of
canceling the client’s leased state if co_verifier is different than
what the server has previously recorded for the identified client (as
specified in the co_ownerid field).

The second field, co_ownerid, is a variable length string that

uniquely defines the client so that subsequent instances of the same
client bear the same co_ownerid with a different verifier.

There are several considerations for how the client generates the
co_ownerid string:

* The string should be unique so that multiple clients do not
present the same string. The consequences of two clients
presenting the same string range from one client getting an error
to one client having its leased state abruptly and unexpectedly
cancelled.

* The string should be selected so that subsequent incarnations
(e.g., restarts) of the same client cause the client to present
the same string. The implementor is cautioned from an approach
that requires the string to be recorded in a local file because
this precludes the use of the implementation in an environment
where there is no local disk and all file access is from an
NFSv4.1l server.

* The string should be the same for each server network address that
the client accesses. This way, 1f a server has multiple
interfaces, the client can trunk traffic over multiple network
paths as described in Section 2.10.5. (Note: the precise opposite
was advised in the NFSv4.0 specification [37].)

* The algorithm for generating the string should not assume that the
client’s network address will not change, unless the client
implementation knows it is using statically assigned network

addresses. This includes changes between client incarnations and
even changes while the client is still running in its current
incarnation. Thus, with dynamic address assignment, if the client

includes just the client’s network address in the co_ownerid
string, there is a real risk that after the client gives up the
network address, another client, using a similar algorithm for
generating the co_ownerid string, would generate a conflicting
co_ownerid string.

Given the above considerations, an example of a well-generated
co_ownerid string is one that includes:

* If applicable, the client’s statically assigned network address.

* Additional information that tends to be unique, such as one or
more of:

— The client machine’s serial number (for privacy reasons, it is
best to perform some one-way function on the serial number).

— A Media Access Control (MAC) address (again, a one-way function
should be performed).

— The timestamp of when the NFSv4.1l software was first installed
on the client (though this is subject to the previously
mentioned caution about using information that is stored in a
file, because the file might only be accessible over NFSv4.1).

— A true random number. However, since this number ought to be
the same between client incarnations, this shares the same
problem as that of using the timestamp of the software
installation.

* For a user—-level NFSv4.1 client, it should contain additional
information to distinguish the client from other user-level
clients running on the same host, such as a process identifier or
other unique sequence.

The client ID is assigned by the server (the eir_clientid result from
EXCHANGE_ID) and should be chosen so that it will not conflict with a
client ID previously assigned by the server. This applies across
server restarts.

In the event of a server restart, a client may find out that its
current client ID is no longer valid when it receives an
NFS4ERR_STALE_CLIENTID error. The precise circumstances depend on
the characteristics of the sessions involved, specifically whether
the session is persistent (see Section 2.10.6.5), but in each case
the client will receive this error when it attempts to establish a
new session with the existing client ID and receives the error
NFS4ERR_STALE_CLIENTID, indicating that a new client ID needs to be
obtained via EXCHANGE_ID and the new session established with that
client ID.

When a session is not persistent, the client will find out that it
needs to create a new session as a result of getting an
NFS4ERR_BADSESSION, since the session in question was lost as part of
a server restart. When the existing client ID is presented to a
server as part of creating a session and that client ID is not
recognized, as would happen after a server restart, the server will
reject the request with the error NFS4ERR_STALE_CLIENTID.

In the case of the session being persistent, the client will re-
establish communication using the existing session after the restart.
This session will be associated with the existing client ID but may
only be used to retransmit operations that the client previously
transmitted and did not see replies to. Replies to operations that
the server previously performed will come from the reply cache;
otherwise, NFS4ERR_DEADSESSION will be returned. Hence, such a
session is referred to as "dead". 1In this situation, in order to
perform new operations, the client needs to establish a new session.
If an attempt is made to establish this new session with the existing
client ID, the server will reject the request with
NFS4ERR_STALE_CLIENTID.

When NFS4ERR_STALE_CLIENTID is received in either of these
situations, the client needs to obtain a new client ID by use of the
EXCHANGE_ID operation, then use that client ID as the basis of a new
session, and then proceed to any other necessary recovery for the
server restart case (see Section 8.4.2).

See the descriptions of EXCHANGE_ID (Section 18.35) and
CREATE_SESSION (Section 18.36) for a complete specification of these
operations.

.4.1. Upgrade from NFSv4.0 to NFSv4.l

To facilitate upgrade from NFSv4.0 to NFSv4.l, a server may compare a
value of data type client_owner4 in an EXCHANGE_ID with a value of
data type nfs_client_id4 that was established using the SETCLIENTID
operation of NFSv4.0. A server that does so will allow an upgraded
client to avoid waiting until the lease (i.e., the lease established
by the NFSv4.0 instance client) expires. This requires that the
value of data type client_owner4 be constructed the same way as the
value of data type nfs_client_id4. TIf the latter’s contents included
the server’s network address (per the recommendations of the NFSv4.0
specification [37]), and the NFSv4.1l client does not wish to use a
client ID that prevents trunking, it should send two EXCHANGE_ID
operations. The first EXCHANGE_ID will have a client_owner4 equal to
the nfs_client_id4. This will clear the state created by the NFSv4.0
client. The second EXCHANGE_ID will not have the server’s network
address. The state created for the second EXCHANGE_ID will not have
to wait for lease expiration, because there will be no state to
expire.

.4.2. Server Release of Client ID

NFSv4.1l introduces a new operation called DESTROY_CLIENTID

(Section 18.50), which the client SHOULD use to destroy a client ID
it no longer needs. This permits graceful, bilateral release of a
client ID. The operation cannot be used if there are sessions
associated with the client ID, or state with an unexpired lease.

If the server determines that the client holds no associated state
for its client ID (associated state includes unrevoked sessions,
opens, locks, delegations, layouts, and wants), the server MAY choose
to unilaterally release the client ID in order to conserve resources.
If the client contacts the server after this release, the server MUST
ensure that the client receives the appropriate error so that it will
use the EXCHANGE_ID/CREATE_SESSION sequence to establish a new client
ID. The server ought to be very hesitant to release a client ID
since the resulting work on the client to recover from such an event
will be the same burden as if the server had failed and restarted.
Typically, a server would not release a client ID unless there had
been no activity from that client for many minutes. As long as there
are sessions, opens, locks, delegations, layouts, or wants, the
server MUST NOT release the client ID. See Section 2.10.13.1.4 for
discussion on releasing inactive sessions.

2.4.3. Resolving Client Owner Conflicts

When the server gets an EXCHANGE_ID for a client owner that currently
has no state, or that has state but the lease has expired, the server
MUST allow the EXCHANGE_ID and confirm the new client ID if followed
by the appropriate CREATE_SESSION.

When the server gets an EXCHANGE_ID for a new incarnation of a client
owner that currently has an old incarnation with state and an
unexpired lease, the server is allowed to dispose of the state of the
previous incarnation of the client owner if one of the following is
true:

* The principal that created the client ID for the client owner is
the same as the principal that is sending the EXCHANGE_ID
operation. Note that if the client ID was created with
SP4_MACH_CRED state protection (Section 18.35), the principal MUST
be based on RPCSEC_GSS authentication, the RPCSEC_GSS service used
MUST be integrity or privacy, and the same GSS mechanism and
principal MUST be used as that used when the client ID was
created.

* The client ID was established with SP4_SSV protection
(Section 18.35, Section 2.10.8.3) and the client sends the
EXCHANGE_ID with the security flavor set to RPCSEC_GSS using the
GSS SSV mechanism (Section 2.10.9).

* The client ID was established with SP4_SSV protection, and under
the conditions described herein, the EXCHANGE_ID was sent with
SP4_MACH_CRED state protection. Because the SSV might not persist
across client and server restart, and because the first time a
client sends EXCHANGE_ID to a server it does not have an SSV, the
client MAY send the subsequent EXCHANGE_ID without an SSV
RPCSEC_GSS handle. Instead, as with SP4_MACH_CRED protection, the
principal MUST be based on RPCSEC_GSS authentication, the
RPCSEC_GSS service used MUST be integrity or privacy, and the same
GSS mechanism and principal MUST be used as that used when the
client ID was created.

If none of the above situations apply, the server MUST return
NFS4ERR_CLID_INUSE.

If the server accepts the principal and co_ownerid as matching that
which created the client ID, and the co_verifier in the EXCHANGE_ID
differs from the co_verifier used when the client ID was created,
then after the server receives a CREATE_SESSION that confirms the
client ID, the server deletes state. If the co_verifier values are
the same (e.g., the client either is updating properties of the
client ID (Section 18.35) or is attempting trunking (Section 2.10.5),
the server MUST NOT delete state.

2.5. Server Owners

The server owner is similar to a client owner (Section 2.4), but
unlike the client owner, there is no shorthand server ID. The server

2.6.

2.6.

2.6

owner is defined in the following data type:

struct server_owner4d ({

uinto64_t so_minor_id;

opaque so_major_id<NFS4_OPAQUE_LIMIT>;
bi

The server owner is returned from EXCHANGE_ID. When the so_major_id
fields are the same in two EXCHANGE_ID results, the connections that
each EXCHANGE_ID were sent over can be assumed to address the same

server (as defined in Section 1.7). If the so_minor_id fields are
also the same, then not only do both connections connect to the same
server, but the session can be shared across both connections. The

reader is cautioned that multiple servers may deliberately or
accidentally claim to have the same so_major_id or so_major_id/
so_minor_id; the reader should examine Sections 2.10.5 and 18.35 in
order to avoid acting on falsely matching server owner values.

The considerations for generating an so_major_id are similar to that
for generating a co_ownerid string (see Section 2.4). The
consequences of two servers generating conflicting so_major_id wvalues
are less dire than they are for co_ownerid conflicts because the
client can use RPCSEC_GSS to compare the authenticity of each server
(see Section 2.10.5).

Security Service Negotiation

With the NFSv4.l1 server potentially offering multiple security
mechanisms, the client needs a method to determine or negotiate which
mechanism is to be used for its communication with the server. The
NFS server may have multiple points within its file system namespace
that are available for use by NFS clients. These points can be
considered security policy boundaries, and, in some NFS
implementations, are tied to NFS export points. In turn, the NFS
server may be configured such that each of these security policy
boundaries may have different or multiple security mechanisms in use.

The security negotiation between client and server SHOULD be done
with a secure channel to eliminate the possibility of a third party
intercepting the negotiation sequence and forcing the client and
server to choose a lower level of security than required or desired.
See Section 21 for further discussion.

1. NFSv4.1l Security Tuples

An NFS server can assign one or more "security tuples" to each
security policy boundary in its namespace. Each security tuple
consists of a security flavor (see Section 2.2.1.1) and, if the
flavor is RPCSEC_GSS, a GSS—-API mechanism Object Identifier (OID), a
GSS-API quality of protection, and an RPCSEC_GSS service.

.2. SECINFO and SECINFO_NO_NAME

The SECINFO and SECINFO_NO_NAME operations allow the client to
determine, on a per-filehandle basis, what security tuple is to be
used for server access. In general, the client will not have to use
either operation except during initial communication with the server
or when the client crosses security policy boundaries at the server.
However, the server’s policies may also change at any time and force
the client to negotiate a new security tuple.

Where the use of different security tuples would affect the type of
access that would be allowed if a request was sent over the same
connection used for the SECINFO or SECINFO_NO_NAME operation (e.g.,
read-only vs. read-write) access, security tuples that allow greater
access should be presented first. Where the general level of access
is the same and different security flavors limit the range of
principals whose privileges are recognized (e.g., allowing or
disallowing root access), flavors supporting the greatest range of
principals should be listed first.

2.

6.

3. Security Error

Based on the assumption that each NFSv4.1l client and server MUST
support a minimum set of security (i.e., Kerberos V5 under
RPCSEC_GSS), the NFS client will initiate file access to the server
with one of the minimal security tuples. During communication with
the server, the client may receive an NFS error of NFS4ERR_WRONGSEC.
This error allows the server to notify the client that the security
tuple currently being used contravenes the server’s security policy.
The client is then responsible for determining (see Section 2.6.3.1)
what security tuples are available at the server and choosing one
that is appropriate for the client.

2.6.3.1. Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME

This section explains the mechanics of NFSv4.l security negotiation.

2.6.3.1.1. Put Filehandle Operations

The term "put filehandle operation” refers to PUTROOTFH, PUTPUBFH,
PUTFH, and RESTOREFH. Each of the subsections herein describes how
the server handles a subseries of operations that starts with a put
filehandle operation.

2.6.3.1.1.1. Put Filehandle Operation + SAVEFH

The client is saving a filehandle for a future RESTOREFH, LINK, or
RENAME . SAVEFH MUST NOT return NFS4ERR_WRONGSEC. To determine
whether or not the put filehandle operation returns NFS4ERR_WRONGSEC,
the server implementation pretends SAVEFH is not in the series of
operations and examines which of the situations described in the
other subsections of Section 2.6.3.1.1 apply.

2.6.3.1.1.2. Two or More Put Filehandle Operations

For a series of N put filehandle operations, the server MUST NOT
return NFS4ERR_WRONGSEC to the first N-1 put filehandle operations.
The Nth put filehandle operation is handled as if it is the first in
a subseries of operations. For example, if the server received a
COMPOUND request with this series of operations —-- PUTFH, PUTROOTFH,
LOOKUP —-- then the PUTFH operation is ignored for NFS4ERR_WRONGSEC
purposes, and the PUTROOTFH, LOOKUP subseries is processed as
according to Section 2.6.3.1.1.3.

2.6.3.1.1.3. Put Filehandle Operation + LOOKUP (or OPEN of an Existing

Name)

This situation also applies to a put filehandle operation followed by
a LOOKUP or an OPEN operation that specifies an existing component
name.

In this situation, the client is potentially crossing a security
policy boundary, and the set of security tuples the parent directory
supports may differ from those of the child. The server
implementation may decide whether to impose any restrictions on
security policy administration. There are at least three approaches
(sec_policy_child is the tuple set of the child export,
sec_policy_parent is that of the parent).

(a) sec_policy_child <= sec_policy_parent (<= for subset). This
means that the set of security tuples specified on the security
policy of a child directory is always a subset of its parent

directory.
(b) sec_policy_child * sec_policy_parent != {} (» for intersection,
{} for the empty set). This means that the set of security

tuples specified on the security policy of a child directory
always has a non-empty intersection with that of the parent.

(c) sec_policy_child * sec_policy_parent == {}. This means that the
set of security tuples specified on the security policy of a

child directory may not intersect with that of the parent. 1In
other words, there are no restrictions on how the system
administrator may set up these tuples.

In order for a server to support approaches (b) (for the case when a
client chooses a flavor that is not a member of sec_policy_parent)
and (c), the put filehandle operation cannot return NFS4ERR_WRONGSEC
when there is a security tuple mismatch. Instead, it should be
returned from the LOOKUP (or OPEN by existing component name) that
follows.

Since the above guideline does not contradict approach (a), it should
be followed in general. Even if approach (a) is implemented, it is
possible for the security tuple used to be acceptable for the target
of LOOKUP but not for the filehandles used in the put filehandle
operation. The put filehandle operation could be a PUTROOTFH or
PUTPUBFH, where the client cannot know the security tuples for the
root or public filehandle. Or the security policy for the filehandle
used by the put filehandle operation could have changed since the
time the filehandle was obtained.

Therefore, an NFSv4.1l server MUST NOT return NFS4ERR_WRONGSEC in
response to the put filehandle operation if the operation is
immediately followed by a LOOKUP or an OPEN by component name.

2.6.3.1.1.4. Put Filehandle Operation + LOOKUPP

Since SECINFO only works its way down, there is no way LOOKUPP can
return NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME
solves this issue via style SECINFO_STYLE4_PARENT, which works in the
opposite direction as SECINFO. As with Section 2.6.3.1.1.3, a put
filehandle operation that is followed by a LOOKUPP MUST NOT return
NFS4ERR_WRONGSEC. If the server does not support SECINFO_NO_NAME,
the client’s only recourse is to send the put filehandle operation,
LOOKUPP, GETFH sequence of operations with every security tuple it
supports.

Regardless of whether SECINFO_NO_NAME is supported, an NFSv4.l server
MUST NOT return NFS4ERR_WRONGSEC in response to a put filehandle
operation if the operation is immediately followed by a LOOKUPP.

2.6.3.1.1.5. Put Filehandle Operation + SECINFO/SECINFO_NO_NAME

A security-sensitive client is allowed to choose a strong security
tuple when querying a server to determine a file object’s permitted
security tuples. The security tuple chosen by the client does not
have to be included in the tuple list of the security policy of
either the parent directory indicated in the put filehandle operation
or the child file object indicated in SECINFO (or any parent
directory indicated in SECINFO_NO_NAME). Of course, the server has
to be configured for whatever security tuple the client selects;
otherwise, the request will fail at the RPC layer with an appropriate
authentication error.

In theory, there is no connection between the security flavor used by
SECINFO or SECINFO_NO_NAME and those supported by the security
policy. But in practice, the client may start looking for strong
flavors from those supported by the security policy, followed by
those in the REQUIRED set.

The NFSv4.1l server MUST NOT return NFS4ERR_WRONGSEC to a put
filehandle operation that is immediately followed by SECINFO or
SECINFO_NO_NAME. The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC
from SECINFO or SECINFO_NO_NAME.

2.6.3.1.1.6. Put Filehandle Operation + Nothing
The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC.

2.6.3.1.1.7. Put Filehandle Operation + Anything Else

"Anything Else" includes OPEN by filehandle.

The security policy enforcement applies to the filehandle specified
in the put filehandle operation. Therefore, the put filehandle
operation MUST return NFS4ERR_WRONGSEC when there is a security tuple
mismatch. This avoids the complexity of adding NFS4ERR_WRONGSEC as
an allowable error to every other operation.

A COMPOUND containing the series put filehandle operation +
SECINFO_NO_NAME (style SECINFO_STYLE4_CURRENT_FH) is an efficient way
for the client to recover from NFS4ERR_WRONGSEC.

The NFSv4.l1 server MUST NOT return NFS4ERR_WRONGSEC to any operation
other than a put filehandle operation, LOOKUP, LOOKUPP, and OPEN (by
component name) .

2.6.3.1.1.8. Operations after SECINFO and SECINFO_NO_NAME

Suppose a client sends a COMPOUND procedure containing the series
SEQUENCE, PUTFH, SECINFO_NONAME, READ, and suppose the security tuple
used does not match that required for the target file. By rule (see
Section 2.6.3.1.1.5), neither PUTFH nor SECINFO_NO_NAME can return
NFS4ERR_WRONGSEC. By rule (see Section 2.6.3.1.1.7), READ cannot
return NFS4ERR_WRONGSEC. The issue is resolved by the fact that
SECINFO and SECINFO_NO_NAME consume the current filehandle (note that
this is a change from NFSv4.0). This leaves no current filehandle
for READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

2.6.3.1.2. LINK and RENAME

The LINK and RENAME operations use both the current and saved
filehandles. Technically, the server MAY return NFS4ERR_WRONGSEC
from LINK or RENAME if the security policy of the saved filehandle
rejects the security flavor used in the COMPOUND request’s
credentials. If the server does so, then if there is no intersection
between the security policies of saved and current filehandles, this
means that it will be impossible for the client to perform the
intended LINK or RENAME operation.

For example, suppose the client sends this COMPOUND request:
SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH, RENAME "c" "d", where
filehandles bFH and aFH refer to different directories. Suppose no
common security tuple exists between the security policies of aFH and
bFH. If the client sends the request using credentials acceptable to
bFH’s security policy but not aFH’s policy, then the PUTFH aFH
operation will fail with NFS4ERR_WRONGSEC. After a SECINFO_NO_NAME
request, the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH,
RENAME "c" "d", using credentials acceptable to aFH’s security policy
but not bFH’s policy. The server returns NFS4ERR_WRONGSEC on the
RENAME operation.

To prevent a client from an endless sequence of a request containing
LINK or RENAME, followed by a request containing SECINFO_NO_NAME or
SECINFO, the server MUST detect when the security policies of the
current and saved filehandles have no mutually acceptable security
tuple, and MUST NOT return NFS4ERR_WRONGSEC from LINK or RENAME in
that situation. Instead the server MUST do one of two things:

* The server can return NFS4ERR_XDEV.

* The server can allow the security policy of the current filehandle
to override that of the saved filehandle, and so return NFS4_OK.

2.7. Minor Versioning
To address the requirement of an NFS protocol that can evolve as the
need arises, the NFSv4.l protocol contains the rules and framework to

allow for future minor changes or versioning.

The base assumption with respect to minor versioning is that any
future accepted minor version will be documented in one or more

Standards Track RFCs. Minor version 0 of the NFSv4 protocol is
represented by [37], and minor version 1 is represented by this RFC.
The COMPOUND and CB_COMPOUND procedures support the encoding of the
minor version being requested by the client.

The following items represent the basic rules for the development of
minor versions. Note that a future minor version may modify or add
to the following rules as part of the minor version definition.

1. Procedures are not added or deleted.

To maintain the general RPC model, NFSv4 minor versions will not
add to or delete procedures from the NFS program.

2. Minor versions may add operations to the COMPOUND and
CB_COMPOUND procedures.

The addition of operations to the COMPOUND and CB_COMPOUND
procedures does not affect the RPC model.

* Minor versions may append attributes to the bitmap4 that
represents sets of attributes and to the fattr4 that
represents sets of attribute values.

This allows for the expansion of the attribute model to allow
for future growth or adaptation.

* Minor version X must append any new attributes after the last
documented attribute.

Since attribute results are specified as an opaque array of
per—attribute, XDR-encoded results, the complexity of adding
new attributes in the midst of the current definitions would
be too burdensome.

3. Minor versions must not modify the structure of an existing
operation’s arguments or results.

Again, the complexity of handling multiple structure definitions

for a single operation is too burdensome. New operations should
be added instead of modifying existing structures for a minor
version.

This rule does not preclude the following adaptations in a minor
version:

* adding bits to flag fields, such as new attributes to
GETATTR’ s bitmap4 data type, and providing corresponding
variants of opaque arrays, such as a notify4 used together
with such bitmaps

* adding bits to existing attributes like ACLs that have flag
words

* extending enumerated types (including NFS4ERR_*) with new
values

* adding cases to a switched union

4. Minor versions must not modify the structure of existing
attributes.
5. Minor versions must not delete operations.

This prevents the potential reuse of a particular operation
"slot" in a future minor version.

6. Minor versions must not delete attributes.

7. Minor versions must not delete flag bits or enumeration wvalues.

2.

2.

2.

8. Minor versions may declare an operation MUST NOT be implemented.

Specifying that an operation MUST NOT be implemented is
equivalent to obsoleting an operation. For the client, it means
that the operation MUST NOT be sent to the server. For the
server, an NFS error can be returned as opposed to "dropping"
the request as an XDR decode error. This approach allows for
the obsolescence of an operation while maintaining its structure
so that a future minor version can reintroduce the operation.

1. Minor versions may declare that an attribute MUST NOT be
implemented.

2. Minor versions may declare that a flag bit or enumeration
value MUST NOT be implemented.

9. Minor versions may downgrade features from REQUIRED to
RECOMMENDED, or RECOMMENDED to OPTIONAL.

10. Minor versions may upgrade features from OPTIONAL to
RECOMMENDED, or RECOMMENDED to REQUIRED.

11. A client and server that support minor version X SHOULD support
minor versions zero through X-1 as well.

12. Except for infrastructural changes, a minor version must not
introduce REQUIRED new features.

This rule allows for the introduction of new functionality and
forces the use of implementation experience before designating a
feature as REQUIRED. On the other hand, some classes of
features are infrastructural and have broad effects. Allowing
infrastructural features to be RECOMMENDED or OPTIONAL
complicates implementation of the minor version.

13. A client MUST NOT attempt to use a stateid, filehandle, or
similar returned object from the COMPOUND procedure with minor
version X for another COMPOUND procedure with minor version Y,
where X != Y.

8. Non-RPC-Based Security Services

As described in Section 2.2.1.1.1.1, NFSv4.l relies on RPC for
identification, authentication, integrity, and privacy. NFSv4.1l
itself provides or enables additional security services as described
in the next several subsections.

.8.1. Authorization

Authorization to access a file object via an NFSv4.1l operation is
ultimately determined by the NFSv4.1l server. A client can
predetermine its access to a file object via the OPEN (Section 18.16)
and the ACCESS (Section 18.1) operations.

Principals with appropriate access rights can modify the
authorization on a file object via the SETATTR (Section 18.30)
operation. Attributes that affect access rights include mode, owner,
owner_group, acl, dacl, and sacl. See Section 5.

8.2. Auditing

NFSv4.1 provides auditing on a per-file object basis, via the acl and
sacl attributes as described in Section 6. It is outside the scope
of this specification to specify audit log formats or management
policies.

8.3. Intrusion Detection
NFSv4.1l provides alarm control on a per—-file object basis, via the

acl and sacl attributes as described in Section 6. Alarms may serve
as the basis for intrusion detection. It is outside the scope of

this specification to specify heuristics for detecting intrusion via
alarms.

.9. Transport Layers
.9.1. REQUIRED and RECOMMENDED Properties of Transports

NFSv4.1 works over Remote Direct Memory Access (RDMA) and non—-RDMA-
based transports with the following attributes:

* The transport supports reliable delivery of data, which NFSv4.l
requires but neither NFSv4.1 nor RPC has facilities for ensuring
[417.

* The transport delivers data in the order it was sent. Ordered
delivery simplifies detection of transmit errors, and simplifies
the sending of arbitrary sized requests and responses via the
record marking protocol [3].

Where an NFSv4.1 implementation supports operation over the IP
network protocol, any transport used between NFS and IP MUST be among
the IETF-approved congestion control transport protocols. At the
time this document was written, the only two transports that had the
above attributes were TCP and the Stream Control Transmission
Protocol (SCTP). To enhance the possibilities for interoperability,
an NFSv4.1l implementation MUST support operation over the TCP
transport protocol.

Even if NFSv4.1l is used over a non-IP network protocol, it is
RECOMMENDED that the transport support congestion control.

It is permissible for a connectionless transport to be used under
NFSv4.1l; however, reliable and in-order delivery of data combined
with congestion control by the connectionless transport is REQUIRED.
As a consequence, UDP by itself MUST NOT be used as an NFSv4.l
transport. NFSv4.l assumes that a client transport address and
server transport address used to send data over a transport together
constitute a connection, even if the underlying transport eschews the
concept of a connection.

.9.2. Client and Server Transport Behavior

If a connection-oriented transport (e.g., TCP) is used, the client
and server SHOULD use long-lived connections for at least three
reasons:

1. This will prevent the weakening of the transport’s congestion
control mechanisms via short-lived connections.

2. This will improve performance for the WAN environment by
eliminating the need for connection setup handshakes.

3. The NFSv4.1l callback model differs from NFSv4.0, and requires the
client and server to maintain a client-created backchannel (see
Section 2.10.3.1) for the server to use.

In order to reduce congestion, if a connection-oriented transport is
used, and the request is not the NULL procedure:

* A requester MUST NOT retry a request unless the connection the
request was sent over was lost before the reply was received.

* A replier MUST NOT silently drop a request, even if the request is
a retry. (The silent drop behavior of RPCSEC_GSS [4] does not
apply because this behavior happens at the RPCSEC_GSS layer, a
lower layer in the request processing.) Instead, the replier
SHOULD return an appropriate error (see Section 2.10.6.1), or it
MAY disconnect the connection.

When sending a reply, the replier MUST send the reply to the same
full network address (e.g., if using an IP-based transport, the

source port of the requester is part of the full network address)
from which the requester sent the request. If using a connection-
oriented transport, replies MUST be sent on the same connection from
which the request was received.

If a connection is dropped after the replier receives the request but
before the replier sends the reply, the replier might have a pending
reply. If a connection is established with the same source and
destination full network address as the dropped connection, then the
replier MUST NOT send the reply until the requester retries the
request. The reason for this prohibition is that the requester MAY
retry a request over a different connection (provided that connection
is associated with the original request’s session).

When using RDMA transports, there are other reasons for not
tolerating retries over the same connection:

* RDMA transports use "credits" to enforce flow control, where a

credit is a right to a peer to transmit a message. If one peer
were to retransmit a request (or reply), it would consume an
additional credit. If the replier retransmitted a reply, it would

certainly result in an RDMA connection loss, since the requester
would typically only post a single receive buffer for each
request. If the requester retransmitted a request, the additional
credit consumed on the server might lead to RDMA connection
failure unless the client accounted for it and decreased its
available credit, leading to wasted resources.

* RDMA credits present a new issue to the reply cache in NFSv4.1.
The reply cache may be used when a connection within a session is
lost, such as after the client reconnects. Credit information is
a dynamic property of the RDMA connection, and stale values must
not be replayed from the cache. This implies that the reply cache
contents must not be blindly used when replies are sent from it,
and credit information appropriate to the channel must be
refreshed by the RPC layer.

In addition, as described in Section 2.10.6.2, while a session is
active, the NFSv4.l1 requester MUST NOT stop waiting for a reply.

2.9.3. Ports
Historically, NFSv3 servers have listened over TCP port 2049. The
registered port 2049 [42] for the NFS protocol should be the default
configuration. NFSv4.1l clients SHOULD NOT use the RPC binding
protocols as described in [43].

2.10. Session

NFSv4.1l clients and servers MUST support and MUST use the session
feature as described in this section.

2.10.1. Motivation and Overview

Previous versions and minor versions of NFS have suffered from the
following:

* Lack of support for Exactly Once Semantics (EOS). This includes
lack of support for EOS through server failure and recovery.

* Limited callback support, including no support for sending
callbacks through firewalls, and races between replies to normal
requests and callbacks.

* Limited trunking over multiple network paths.

* Requiring machine credentials for fully secure operation.

Through the introduction of a session, NFSv4.l addresses the above
shortfalls with practical solutions:

* EOS is enabled by a reply cache with a bounded size, making it
feasible to keep the cache in persistent storage and enable EOS
through server failure and recovery. One reason that previous
revisions of NFS did not support EOS was because some EOS
approaches often limited parallelism. As will be explained in
Section 2.10.6, NFSv4.1l supports both EOS and unlimited
parallelism.

* The NFSv4.1l client (defined in Section 1.7) creates transport
connections and provides them to the server to use for sending
callback requests, thus solving the firewall issue
(Section 18.34). Races between responses from client requests and
callbacks caused by the requests are detected via the session’s
sequencing properties that are a consequence of EOS
(Section 2.10.6.3).

* The NFSv4.1l client can associate an arbitrary number of
connections with the session, and thus provide trunking
(Section 2.10.5).

* The NFSv4.1l client and server produce a session key independent of
client and server machine credentials which can be used to compute
a digest for protecting critical session management operations
(Section 2.10.8.3).

* The NFSv4.1l client can also create secure RPCSEC_GSS contexts for
use by the session’s backchannel that do not require the server to
authenticate to a client machine principal (Section 2.10.8.2).

A session is a dynamically created, long-lived server object created
by a client and used over time from one or more transport
connections. Its function is to maintain the server’s state relative
to the connection(s) belonging to a client instance. This state is
entirely independent of the connection itself, and indeed the state
exists whether or not the connection exists. A client may have one
or more sessions associated with it so that client-associated state
may be accessed using any of the sessions associated with that
client’s client ID, when connections are associated with those
sessions. When no connections are associated with any of a client
ID’s sessions for an extended time, such objects as locks, opens,
delegations, layouts, etc. are subject to expiration. The session
serves as an object representing a means of access by a client to the
associated client state on the server, independent of the physical
means of access to that state.

A single client may create multiple sessions. A single session MUST
NOT serve multiple clients.

2.10.2. NFSv4 Integration

Sessions are part of NFSv4.1l and not NFSv4.0. Normally, a major
infrastructure change such as sessions would require a new major
version number to an Open Network Computing (ONC) RPC program like
NFS. However, because NFSv4 encapsulates its functionality in a
single procedure, COMPOUND, and because COMPOUND can support an
arbitrary number of operations, sessions have been added to NFSv4.1l
with little difficulty. COMPOUND includes a minor version number
field, and for NFSv4.l1l this minor version is set to 1. When the
NFSv4 server processes a COMPOUND with the minor version set to 1, it
expects a different set of operations than it does for NFSv4.0.
NFSv4.1l defines the SEQUENCE operation, which is required for every
COMPOUND that operates over an established session, with the
exception of some session administration operations, such as
DESTROY_SESSION (Section 18.37).

2.10.2.1. SEQUENCE and CB_SEQUENCE

In NFSv4.1l, when the SEQUENCE operation is present, it MUST be the
first operation in the COMPOUND procedure. The primary purpose of
SEQUENCE is to carry the session identifier. The session identifier
associates all other operations in the COMPOUND procedure with a

particular session. SEQUENCE also contains required information for
maintaining EOS (see Section 2.10.6). Session-enabled NFSv4.1l
COMPOUND requests thus have the form:

= Fom fom fom fom e
| tag | minorversion | numops | SEQUENCE op | op + args |
| | (== 1) | (limited) | + args |
+————= Fom e o ——— Fom o ——— +———=
and the replies have the form:
Fom e = o= e +—=//
| last status | tag | numres |status + SEQUENCE op + results | //
o +——— F———— - +—=//
[/ +———
// status + op + results |
[=

A CB_COMPOUND procedure request and reply has a similar form to
COMPOUND, but instead of a SEQUENCE operation, there is a CB_SEQUENCE
operation. CB_COMPOUND also has an additional field called
"callback_ident", which is superfluous in NFSv4.l1 and MUST be ignored
by the client. CB_SEQUENCE has the same information as SEQUENCE, and
also includes other information needed to resolve callback races
(Section 2.10.6.3).

2.10.2.2. Client ID and Session Association

Fach client ID (Section 2.4) can have zero or more active sessions.
A client ID and associated session are required to perform file
access in NFSv4.l1. Each time a session is used (whether by a client
sending a request to the server or the client replying to a callback
request from the server), the state leased to its associated client
ID is automatically renewed.

State (which can consist of share reservations, locks, delegations,
and layouts (Section 1.8.4)) is tied to the client ID. Client state
is not tied to any individual session. Successive state changing
operations from a given state owner MAY go over different sessions,
provided the session is associated with the same client ID. A
callback MAY arrive over a different session than that of the request
that originally acquired the state pertaining to the callback. For
example, if session A is used to acquire a delegation, a request to
recall the delegation MAY arrive over session B if both sessions are
associated with the same client ID. Sections 2.10.8.1 and 2.10.8.2
discuss the security considerations around callbacks.

2.10.3. Channels

A channel is not a connection. A channel represents the direction
ONC RPC requests are sent.

Each session has one or two channels: the fore channel and the
backchannel. Because there are at most two channels per session, and
because each channel has a distinct purpose, channels are not
assigned identifiers.

The fore channel is used for ordinary requests from the client to the
server, and carries COMPOUND requests and responses. A session
always has a fore channel.

The backchannel is used for callback requests from server to client,
and carries CB_COMPOUND requests and responses. Whether or not there
is a backchannel is decided by the client; however, many features of
NFSv4.1l require a backchannel. NFSv4.1l servers MUST support
backchannels.

Each session has resources for each channel, including separate reply
caches (see Section 2.10.6.1). Note that even the backchannel
requires a reply cache (or, at least, a slot table in order to detect
retries) because some callback operations are non-idempotent.

2.10.3.1. Association of Connections, Channels, and Sessions

Each channel is associated with zero or more transport connections
(whether of the same transport protocol or different transport
protocols). A connection can be associated with one channel or both
channels of a session; the client and server negotiate whether a
connection will carry traffic for one channel or both channels via
the CREATE_SESSION (Section 18.36) and the BIND_CONN_TO_SESSION
(Section 18.34) operations. When a session is created via
CREATE_SESSION, the connection that transported the CREATE_SESSION
request is automatically associated with the fore channel, and
optionally the backchannel. TIf the client specifies no state
protection (Section 18.35) when the session is created, then when
SEQUENCE is transmitted on a different connection, the connection is
automatically associated with the fore channel of the session
specified in the SEQUENCE operation.

A connection’s association with a session is not exclusive. A
connection associated with the channel (s) of one session may be
simultaneously associated with the channel (s) of other sessions
including sessions associated with other client IDs.

It is permissible for connections of multiple transport types to be
associated with the same channel. For example, both TCP and RDMA
connections can be associated with the fore channel. 1In the event an
RDMA and non-RDMA connection are associated with the same channel,
the maximum number of slots SHOULD be at least one more than the
total number of RDMA credits (Section 2.10.6.1). This way, if all
RDMA credits are used, the non-RDMA connection can have at least one
outstanding request. If a server supports multiple transport types,
it MUST allow a client to associate connections from each transport
to a channel.

It is permissible for a connection of one type of transport to be
associated with the fore channel, and a connection of a different
type to be associated with the backchannel.

2.10.4. Server Scope

Servers each specify a server scope value in the form of an opaque
string eir_server_scope returned as part of the results of an
EXCHANGE_ID operation. The purpose of the server scope is to allow a
group of servers to indicate to clients that a set of servers sharing
the same server scope value has arranged to use distinct values of
opaque identifiers so that the two servers never assign the same
value to two distinct objects. Thus, the identifiers generated by
two servers within that set can be assumed compatible so that, in
certain important cases, identifiers generated by one server in that
set may be presented to another server of the same scope.

The use of such compatible values does not imply that a value
generated by one server will always be accepted by another. 1In most
cases, it will not. However, a server will not inadvertently accept
a value generated by another server. When it does accept it, it will
be because it is recognized as valid and carrying the same meaning as
on another server of the same scope.

When servers are of the same server scope, this compatibility of
values applies to the following identifiers:

* Filehandle values. A filehandle value accepted by two servers of
the same server scope denotes the same object. A WRITE operation
sent to one server is reflected immediately in a READ sent to the
other.

* Server owner values. When the server scope values are the same,
server owner value may be validly compared. In cases where the
server scope values are different, server owner values are treated
as different even if they contain identical strings of bytes.

The coordination among servers required to provide such compatibility
can be quite minimal, and limited to a simple partition of the ID
space. The recognition of common values requires additional
implementation, but this can be tailored to the specific situations
in which that recognition is desired.

Clients will have occasion to compare the server scope values of
multiple servers under a number of circumstances, each of which will
be discussed under the appropriate functional section:

* When server owner values received in response to EXCHANGE_ID
operations sent to multiple network addresses are compared for the
purpose of determining the validity of various forms of trunking,
as described in Section 11.5.2.

* When network or server reconfiguration causes the same network
address to possibly be directed to different servers, with the
necessity for the client to determine when lock reclaim should be
attempted, as described in Section 8.4.2.1.

When two replies from EXCHANGE_ID, each from two different server
network addresses, have the same server scope, there are a number of
ways a client can validate that the common server scope is due to two
servers cooperating in a group.

* TIf both EXCHANGE_ID requests were sent with RPCSEC_GSS ([41, [91,
[27]) authentication and the server principal is the same for both
targets, the equality of server scope is validated. It is
RECOMMENDED that two servers intending to share the same server
scope and server_owner major_id also share the same principal
name. In some cases, this simplifies the client’s task of
validating server scope.

* The client may accept the appearance of the second server in the
fs_locations or fs_locations_info attribute for a relevant file
system. For example, if there is a migration event for a
particular file system or there are locks to be reclaimed on a
particular file system, the attributes for that particular file
system may be used. The client sends the GETATTR request to the
first server for the fs_locations or fs_locations_info attribute
with RPCSEC_GSS authentication. It may need to do this in advance
of the need to verify the common server scope. If the client
successfully authenticates the reply to GETATTR, and the GETATTR
request and reply containing the fs_locations or fs_locations_info
attribute refers to the second server, then the equality of server
scope is supported. A client may choose to limit the use of this
form of support to information relevant to the specific file
system involved (e.g. a file system being migrated).

2.10.5. Trunking

Trunking is the use of multiple connections between a client and
server in order to increase the speed of data transfer. NFSv4.l
supports two types of trunking: session trunking and client ID
trunking.

In the context of a single server network address, it can be assumed
that all connections are accessing the same server, and NFSv4.l
servers MUST support both forms of trunking. When multiple
connections use a set of network addresses to access the same server,
the server MUST support both forms of trunking. NFSv4.l servers in a
clustered configuration MAY allow network addresses for different
servers to use client ID trunking.

Clients may use either form of trunking as long as they do not, when
trunking between different server network addresses, violate the
servers’ mandates as to the kinds of trunking to be allowed (see
below). With regard to callback channels, the client MUST allow the
server to choose among all callback channels valid for a given client
ID and MUST support trunking when the connections supporting the
backchannel allow session or client ID trunking to be used for

callbacks.

Session trunking is essentially the association of multiple
connections, each with potentially different target and/or source
network addresses, to the same session. When the target network
addresses (server addresses) of the two connections are the same, the
server MUST support such session trunking. When the target network
addresses are different, the server MAY indicate such support using
the data returned by the EXCHANGE_ID operation (see below).

Client ID trunking is the association of multiple sessions to the
same client ID. Servers MUST support client ID trunking for two
target network addresses whenever they allow session trunking for
those same two network addresses. In addition, a server MAY, by
presenting the same major server owner ID (Section 2.5) and server
scope (Section 2.10.4), allow an additional case of client ID
trunking. When two servers return the same major server owner and
server scope, it means that the two servers are cooperating on
locking state management, which is a prerequisite for client ID
trunking.

Distinguishing when the client is allowed to use session and client
ID trunking requires understanding how the results of the EXCHANGE_ID
(Section 18.35) operation identify a server. Suppose a client sends
EXCHANGE_IDs over two different connections, each with a possibly
different target network address, but each EXCHANGE_ID operation has
the same value in the eia_clientowner field. TIf the same NFSv4.1l
server is listening over each connection, then each EXCHANGE_ID
result MUST return the same values of eir_clientid,
eir_server_owner.so_major_id, and eir_server_scope. The client can
then treat each connection as referring to the same server (subject
to verification; see Section 2.10.5.1 below), and it can use each
connection to trunk requests and replies. The client’s choice is
whether session trunking or client ID trunking applies.

Session Trunking. If the eia_clientowner argument is the same in two
different EXCHANGE_ID requests, and the eir_clientid,
eir_server_owner.so_major_id, eir_server_owner.so_minor_id, and
eir_server_scope results match in both EXCHANGE_ID results, then
the client is permitted to perform session trunking. If the
client has no session mapping to the tuple of eir_clientid,
eir_server_owner.so_major_id, eir_server_scope, and
eir_server_owner.so_minor_id, then it creates the session via a
CREATE_SESSION operation over one of the connections, which
associates the connection to the session. If there is a session
for the tuple, the client can send BIND_CONN_TO_SESSION to
associate the connection to the session.

Of course, if the client does not desire to use session trunking,
it is not required to do so. It can invoke CREATE_SESSION on the
connection. This will result in client ID trunking as described

below. It can also decide to drop the connection if it does not

choose to use trunking.

Client ID Trunking. If the eia_clientowner argument is the same in
two different EXCHANGE_ID requests, and the eir_clientid,
eir_server_owner.so_major_id, and eir_server_scope results match
in both EXCHANGE_ID results, then the client is permitted to
perform client ID trunking (regardless of whether the
eir_server_owner.so_minor_id results match). The client can
associate each connection with different sessions, where each
session is associated with the same server.

The client completes the act of client ID trunking by invoking
CREATE_SESSION on each connection, using the same client ID that
was returned in eir_clientid. These invocations create two
sessions and also associate each connection with its respective
session. The client is free to decline to use client ID trunking
by simply dropping the connection at this point.

When doing client ID trunking, locking state is shared across

sessions associated with that same client ID. This requires the
server to coordinate state across sessions and the client to be
able to associate the same locking state with multiple sessions.

It is always possible that, as a result of various sorts of
reconfiguration events, eir_server_scope and eir_server_owner values
may be different on subsequent EXCHANGE_ID requests made to the same
network address.

In most cases, such reconfiguration events will be disruptive and
indicate that an IP address formerly connected to one server is now
connected to an entirely different one.

Some guidelines on client handling of such situations follow:

* When eir_server_scope changes, the client has no assurance that
any IDs that it obtained previously (e.g., filehandles) can be
validly used on the new server, and, even if the new server
accepts them, there is no assurance that this is not due to
accident. Thus, it is best to treat all such state as lost or
stale, although a client may assume that the probability of
inadvertent acceptance is low and treat this situation as within
the next case.

* When eir_server_scope remains the same and
eir_server_owner.so_major_id changes, the client can use the
filehandles it has, consider its locking state lost, and attempt
to reclaim or otherwise re-obtain its locks. It might find that
its filehandle is now stale. However, if NFS4ERR_STALE is not
returned, it can proceed to reclaim or otherwise re-obtain its
open locking state.

* When eir_server_scope and eir_server_owner.so_major_id remain the
same, the client has to use the now-current values of
eir_server_owner.so_minor_id in deciding on appropriate forms of
trunking. This may result in connections being dropped or new
sessions being created.

2.10.5.1. Verifying Claims of Matching Server Identity

When the server responds using two different connections that claim
matching or partially matching eir_server_owner, eir_server_scope,
and eir_clientid values, the client does not have to trust the
servers’ claims. The client may verify these claims before trunking
traffic in the following ways:

* For session trunking, clients SHOULD reliably verify if
connections between different network paths are in fact associated
with the same NFSv4.l server and usable on the same session, and
servers MUST allow clients to perform reliable verification. When
a client ID is created, the client SHOULD specify that
BIND_CONN_TO_SESSION is to be verified according to the SP4_SSV or
SP4_MACH_CRED (Section 18.35) state protection options. For
SP4_SSV, reliable verification depends on a shared secret (the
SSV) that is established via the SET_SSV (see Section 18.47)
operation.

When a new connection is associated with the session (via the
BIND_CONN_TO_SESSION operation, see Section 18.34), if the client
specified SP4_SSV state protection for the BIND_CONN_TO_SESSION
operation, the client MUST send the BIND_CONN_TO_SESSION with
RPCSEC_GSS protection, using integrity or privacy, and an
RPCSEC_GSS handle created with the GSS SSV mechanism (see

Section 2.10.9).

If the client mistakenly tries to associate a connection to a
session of a wrong server, the server will either reject the
attempt because it is not aware of the session identifier of the
BIND_CONN_TO_SESSION arguments, or it will reject the attempt
because the RPCSEC_GSS authentication fails. Even if the server
mistakenly or maliciously accepts the connection association

attempt, the RPCSEC_GSS verifier it computes in the response will
not be verified by the client, so the client will know it cannot
use the connection for trunking the specified session.

If the client specified SP4_MACH_CRED state protection, the
BIND_CONN_TO_SESSION operation will use RPCSEC_GSS integrity or
privacy, using the same credential that was used when the client
ID was created. Mutual authentication via RPCSEC_GSS assures the
client that the connection is associated with the correct session
of the correct server.

* For client ID trunking, the client has at least two options for
verifying that the same client ID obtained from two different
EXCHANGE_ID operations came from the same server. The first
option is to use RPCSEC_GSS authentication when sending each
EXCHANGE_ID operation. Each time an EXCHANGE_ID is sent with
RPCSEC_GSS authentication, the client notes the principal name of
the GSS target. If the EXCHANGE_ID results indicate that client
ID trunking is possible, and the GSS targets’ principal names are
the same, the servers are the same and client ID trunking is
allowed.

The second option for verification is to use SP4_SSV protection.
When the client sends EXCHANGE_ID, it specifies SP4_SSV
protection. The first EXCHANGE_ID the client sends always has to
be confirmed by a CREATE_SESSION call. The client then sends
SET_SSV. Later, the client sends EXCHANGE_ID to a second
destination network address different from the one the first
EXCHANGE_ID was sent to. The client checks that each EXCHANGE_ID
reply has the same eir_clientid, eir_server_owner.so_major_id, and
eir_server_scope. If so, the client verifies the claim by sending
a CREATE_SESSION operation to the second destination address,
protected with RPCSEC_GSS integrity using an RPCSEC_GSS handle
returned by the second EXCHANGE_ID. If the server accepts the
CREATE_SESSION request, and if the client verifies the RPCSEC_GSS
verifier and integrity codes, then the client has proof the second
server knows the SSV, and thus the two servers are cooperating for
the purposes of specifying server scope and client ID trunking.

2.10.6. Exactly Once Semantics

Via the session, NFSv4.l1l offers exactly once semantics (EOS) for
requests sent over a channel. EOS is supported on both the fore
channel and backchannel.

Each COMPOUND or CB_COMPOUND request that is sent with a leading
SEQUENCE or CB_SEQUENCE operation MUST be executed by the receiver
exactly once. This requirement holds regardless of whether the
request is sent with reply caching specified (see

Section 2.10.6.1.3). The requirement holds even if the requester is
sending the request over a session created between a pNFS data client
and pNFS data server. To understand the rationale for this
requirement, divide the requests into three classifications:

* Non-idempotent requests.
* Idempotent modifying requests.
* Idempotent non-modifying requests.

An example of a non-idempotent request is RENAME. Obviously, if a
replier executes the same RENAME request twice, and the first
execution succeeds, the re-—-execution will fail. If the replier
returns the result from the re-execution, this result is incorrect.
Therefore, EOS is required for non-idempotent requests.

An example of an idempotent modifying request is a COMPOUND request
containing a WRITE operation. Repeated execution of the same WRITE
has the same effect as execution of that WRITE a single time.
Nevertheless, enforcing EOS for WRITEs and other idempotent modifying
requests 1s necessary to avoid data corruption.

Suppose a client sends WRITE A to a noncompliant server that does not
enforce EOS, and receives no response, perhaps due to a network
partition. The client reconnects to the server and re-sends WRITE A.
Now, the server has outstanding two instances of A. The server can
be in a situation in which it executes and replies to the retry of A,
while the first A is still waiting in the server’s internal I/O
system for some resource. Upon receiving the reply to the second
attempt of WRITE A, the client believes its WRITE is done so it is
free to send WRITE B, which overlaps the byte-range of A. When the
original A is dispatched from the server’s I/0 system and executed
(thus the second time A will have been written), then what has been
written by B can be overwritten and thus corrupted.

An example of an idempotent non-modifying request is a COMPOUND
containing SEQUENCE, PUTFH, READLINK, and nothing else. The re-
execution of such a request will not cause data corruption or produce
an incorrect result. Nonetheless, to keep the implementation simple,
the replier MUST enforce EOS for all requests, whether or not
idempotent and non-modifying.

Note that true and complete EOS is not possible unless the server
persists the reply cache in stable storage, and unless the server is
somehow implemented to never require a restart (indeed, if such a
server exists, the distinction between a reply cache kept in stable
storage versus one that is not is one without meaning). See

Section 2.10.6.5 for a discussion of persistence in the reply cache.
Regardless, even if the server does not persist the reply cache, EOS
improves robustness and correctness over previous versions of NFS
because the legacy duplicate request/reply caches were based on the
ONC RPC transaction identifier (XID). Section 2.10.6.1 explains the
shortcomings of the XID as a basis for a reply cache and describes
how NFSv4.1l sessions improve upon the XID.

2.10.6.1. Slot Identifiers and Reply Cache

The RPC layer provides a transaction ID (XID), which, while required
to be unique, is not convenient for tracking requests for two
reasons. First, the XID is only meaningful to the requester; it
cannot be interpreted by the replier except to test for equality with
previously sent requests. When consulting an RPC-based duplicate
request cache, the opaqueness of the XID requires a computationally
expensive look up (often via a hash that includes XID and source
address). NFSv4.l requests use a non-opaque slot ID, which is an
index into a slot table, which is far more efficient. Second,
because RPC requests can be executed by the replier in any order,
there is no bound on the number of requests that may be outstanding
at any time. To achieve perfect EOS, using ONC RPC would require
storing all replies in the reply cache. XIDs are 32 bits; storing
over four billion (27(32)) replies in the reply cache is not
practical. 1In practice, previous versions of NFS have chosen to
store a fixed number of replies in the cache, and to use a least
recently used (LRU) approach to replacing cache entries with new
entries when the cache is full. In NFSv4.1l, the number of
outstanding requests is bounded by the size of the slot table, and a
sequence ID per slot is used to tell the replier when it is safe to
delete a cached reply.

In the NFSv4.1l reply cache, when the requester sends a new request,
it selects a slot ID in the range 0..N, where N is the replier’s
current maximum slot ID granted to the requester on the session over
which the request is to be sent. The value of N starts out as equal
to ca_maxrequests - 1 (Section 18.36), but can be adjusted by the
response to SEQUENCE or CB_SEQUENCE as described later in this
section. The slot ID must be unused by any of the requests that the
requester has already active on the session. "Unused" here means the
requester has no outstanding request for that slot ID.

A slot contains a sequence ID and the cached reply corresponding to
the request sent with that sequence ID. The sequence ID is a 32-bit
unsigned value, and is therefore in the range 0..0xFFFFFFFF (27 (32) -

1). The first time a slot is used, the requester MUST specify a

sequence ID of one (Section 18.36). Each time a slot is reused, the
request MUST specify a sequence ID that is one greater than that of
the previous request on the slot. If the previous sequence ID was
OXFFFFFFFF, then the next request for the slot MUST have the sequence
ID set to zero (i.e., (27(32) - 1) + 1 mod 2"(32)).

The sequence ID accompanies the slot ID in each request. It is for

the critical check at the replier: it used to efficiently determine

whether a request using a certain slot ID is a retransmit or a new,

never-before-seen request. It is not feasible for the requester to

assert that it is retransmitting to implement this, because for any

given request the requester cannot know whether the replier has seen
it unless the replier actually replies. Of course, if the requester
has seen the reply, the requester would not retransmit.

The replier compares each received request’s sequence ID with the
last one previously received for that slot ID, to see if the new
request is:

* A new request, in which the sequence ID is one greater than that
previously seen in the slot (accounting for sequence wraparound) .
The replier proceeds to execute the new request, and the replier
MUST increase the slot’s sequence ID by one.

* A retransmitted request, in which the sequence ID is equal to that
currently recorded in the slot. If the original request has
executed to completion, the replier returns the cached reply. See
Section 2.10.6.2 for direction on how the replier deals with
retries of requests that are still in progress.

* A misordered retry, in which the sequence ID is less than
(accounting for sequence wraparound) that previously seen in the
slot. The replier MUST return NFS4ERR_SEQ MISORDERED (as the
result from SEQUENCE or CB_SEQUENCE) .

* A misordered new request, in which the sequence ID is two or more
than (accounting for sequence wraparound) that previously seen in
the slot. ©Note that because the sequence ID MUST wrap around to
zero once it reaches OxFFFFFFFF, a misordered new request and a
misordered retry cannot be distinguished. Thus, the replier MUST
return NFS4ERR_SEQ MISORDERED (as the result from SEQUENCE or
CB_SEQUENCE) .

Unlike the XID, the slot ID is always within a specific range; this

has two implications. The first implication is that for a given
session, the replier need only cache the results of a limited number
of COMPOUND requests. The second implication derives from the first,

which is that unlike XID-indexed reply caches (also known as
duplicate request caches - DRCs), the slot ID-based reply cache
cannot be overflowed. Through use of the sequence ID to identify
retransmitted requests, the replier does not need to actually cache
the request itself, reducing the storage requirements of the reply
cache further. These facilities make it practical to maintain all
the required entries for an effective reply cache.

The slot ID, sequence ID, and session ID therefore take over the
traditional role of the XID and source network address in the
replier’s reply cache implementation. This approach is considerably
more portable and completely robust —-—- it is not subject to the
reassignment of ports as clients reconnect over IP networks. In
addition, the RPC XID is not used in the reply cache, enhancing
robustness of the cache in the face of any rapid reuse of XIDs by the
requester. While the replier does not care about the XID for the
purposes of reply cache management (but the replier MUST return the
same XID that was in the request), nonetheless there are
considerations for the XID in NFSv4.1 that are the same as all other
previous versions of NFS. The RPC XID remains in each message and
needs to be formulated in NFSv4.l requests as in any other ONC RPC
request. The reasons include:

* The RPC layer retains its existing semantics and implementation.

* The requester and replier must be able to interoperate at the RPC
layer, prior to the NFSv4.l decoding of the SEQUENCE or
CB_SEQUENCE operation.

* If an operation is being used that does not start with SEQUENCE or
CB_SEQUENCE (e.g., BIND_CONN_TO_SESSION), then the RPC XID is
needed for correct operation to match the reply to the request.

* The SEQUENCE or CB_SEQUENCE operation may generate an error. If
so, the embedded slot ID, sequence ID, and session ID (if present)
in the request will not be in the reply, and the requester has
only the XID to match the reply to the request.

Given that well-formulated XIDs continue to be required, this raises
the question: why do SEQUENCE and CB_SEQUENCE replies have a session
ID, slot ID, and sequence ID? Having the session ID in the reply
means that the requester does not have to use the XID to look up the
session ID, which would be necessary if the connection were
associated with multiple sessions. Having the slot ID and sequence
ID in the reply means that the requester does not have to use the XID
to look up the slot ID and sequence ID. Furthermore, since the XID
is only 32 bits, it is too small to guarantee the re-association of a
reply with its request [44]; having session ID, slot ID, and sequence
ID in the reply allows the client to validate that the reply in fact
belongs to the matched request.

The SEQUENCE (and CB_SEQUENCE) operation also carries a
"highest_slotid" wvalue, which carries additional requester slot usage

information. The requester MUST always indicate the slot ID
representing the outstanding request with the highest-numbered slot
value. The requester should in all cases provide the most

conservative value possible, although it can be increased somewhat
above the actual instantaneous usage to maintain some minimum or
optimal level. This provides a way for the requester to yield unused
request slots back to the replier, which in turn can use the
information to reallocate resources.

The replier responds with both a new target highest_slotid and an
enforced highest_slotid, described as follows:

* The target highest_slotid is an indication to the requester of the
highest_slotid the replier wishes the requester to be using. This
permits the replier to withdraw (or add) resources from a
requester that has been found to not be using them, in order to
more fairly share resources among a varying level of demand from
other requesters. The requester must always comply with the
replier’s value updates, since they indicate newly established
hard limits on the requester’s access to session resources.
However, because of request pipelining, the requester may have
active requests in flight reflecting prior values; therefore, the
replier must not immediately require the requester to comply.

* The enforced highest_slotid indicates the highest slot ID the
requester is permitted to use on a subsequent SEQUENCE or
CB_SEQUENCE operation. The replier’s enforced highest_slotid
SHOULD be no less than the highest_slotid the requester indicated
in the SEQUENCE or CB_SEQUENCE arguments.

A requester can be intransigent with respect to lowering its
highest_slotid argument to a Sequence operation, i.e. the
requester continues to ignore the target highest_slotid in the
response to a Sequence operation, and continues to set its
highest_slotid argument to be higher than the target
highest_slotid. This can be considered particularly egregious
behavior when the replier knows there are no outstanding requests
with slot IDs higher than its target highest_slotid. When faced
with such intransigence, the replier is free to take more forceful
action, and MAY reply with a new enforced highest_slotid that is
less than its previous enforced highest_slotid. Thereafter, if

the requester continues to send requests with a highest_slotid
that is greater than the replier’s new enforced highest_slotid,
the server MAY return NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in
the request is greater than the new enforced highest_slotid and
the request is a retry.

The replier SHOULD retain the slots it wants to retire until the
requester sends a request with a highest_slotid less than or equal
to the replier’s new enforced highest_slotid.

The requester can also be intransigent with respect to sending
non-retry requests that have a slot ID that exceeds the replier’s
highest_slotid. Once the replier has forcibly lowered the
enforced highest_slotid, the requester is only allowed to send
retries on slots that exceed the replier’s highest_slotid. If a
request is received with a slot ID that is higher than the new
enforced highest_slotid, and the sequence ID is one higher than
what is in the slot’s reply cache, then the server can both retire
the slot and return NFS4ERR_BADSLOT (however, the server MUST NOT
do one and not the other). The reason it is safe to retire the
slot is because by using the next sequence ID, the requester is
indicating it has received the previous reply for the slot.

* The requester SHOULD use the lowest available slot when sending a
new request. This way, the replier may be able to retire slot
entries faster. However, where the replier is actively adjusting
its granted highest_slotid, it will not be able to use only the
receipt of the slot ID and highest_slotid in the request. Neither
the slot ID nor the highest_slotid used in a request may reflect
the replier’s current idea of the requester’s session limit,
because the request may have been sent from the requester before
the update was received. Therefore, in the downward adjustment
case, the replier may have to retain a number of reply cache
entries at least as large as the old value of maximum requests
outstanding, until it can infer that the requester has seen a
reply containing the new granted highest_slotid. The replier can
infer that the requester has seen such a reply when it receives a
new request with the same slot ID as the request replied to and
the next higher sequence ID.

2.10.6.1.1. Caching of SEQUENCE and CB_SEQUENCE Replies

When a SEQUENCE or CB_SEQUENCE operation is successfully executed,
its reply MUST always be cached. Specifically, session ID, sequence
ID, and slot ID MUST be cached in the reply cache. The reply from
SEQUENCE also includes the highest slot ID, target highest slot ID,
and status flags. 1Instead of caching these values, the server MAY
re—-compute the values from the current state of the fore channel,
session, and/or client ID as appropriate. Similarly, the reply from
CB_SEQUENCE includes a highest slot ID and target highest slot ID.
The client MAY re-compute the values from the current state of the
session as appropriate.

Regardless of whether or not a replier is re-computing highest slot
ID, target slot ID, and status on replies to retries, the requester
MUST NOT assume that the values are being re-computed whenever it
receives a reply after a retry is sent, since it has no way of
knowing whether the reply it has received was sent by the replier in
response to the retry or is a delayed response to the original
request. Therefore, it may be the case that highest slot ID, target
slot ID, or status bits may reflect the state of affairs when the
request was first executed. Although acting based on such delayed
information is wvalid, it may cause the receiver of the reply to do
unneeded work. Requesters MAY choose to send additional requests to
get the current state of affairs or use the state of affairs reported
by subsequent requests, in preference to acting immediately on data
that might be out of date.

2.10.6.1.2. Errors from SEQUENCE and CB_SEQUENCE

Any time SEQUENCE or CB_SEQUENCE returns an error, the sequence ID of

the slot MUST NOT change. The replier MUST NOT modify the reply
cache entry for the slot whenever an error is returned from SEQUENCE
or CB_SEQUENCE.

2.10.6.1.3. Optional Reply Caching

On a per-request basis, the requester can choose to direct the
replier to cache the reply to all operations after the first
operation (SEQUENCE or CB_SEQUENCE) via the sa_cachethis or
csa_cachethis fields of the arguments to SEQUENCE or CB_SEQUENCE.
The reason it would not direct the replier to cache the entire reply
is that the request is composed of all idempotent operations [41].
Caching the reply may offer little benefit. If the reply is too
large (see Section 2.10.6.4), it may not be cacheable anyway. Even
if the reply to idempotent request is small enough to cache,
unnecessarily caching the reply slows down the server and increases
RPC latency.

Whether or not the requester requests the reply to be cached has no
effect on the slot processing. If the result of SEQUENCE or
CB_SEQUENCE is NFS4_OK, then the slot’s sequence ID MUST be
incremented by one. If a requester does not direct the replier to
cache the reply, the replier MUST do one of following:

* The replier can cache the entire original reply. Even though
sa_cachethis or csa_cachethis is FALSE, the replier is always free
to cache. It may choose this approach in order to simplify
implementation.

* The replier enters into its reply cache a reply consisting of the
original results to the SEQUENCE or CB_SEQUENCE operation, and
with the next operation in COMPOUND or CB_COMPOUND having the
error NFS4ERR_RETRY_UNCACHED_REP. Thus, if the requester later
retries the request, it will get NFS4ERR_RETRY_UNCACHED_REP. If a
replier receives a retried Sequence operation where the reply to
the COMPOUND or CB_COMPOUND was not cached, then the replier,

- MAY return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence
operation if the Sequence operation is not the first operation
(granted, a requester that does so is in violation of the
NFSv4.1l protocol).

— MUST NOT return NFS4ERR_RETRY UNCACHED_REP in reply to a
Sequence operation if the Sequence operation is the first
operation.

* If the second operation is an illegal operation, or an operation
that was legal in a previous minor version of NFSv4 and MUST NOT
be supported in the current minor version (e.g., SETCLIENTID), the
replier MUST NOT ever return NFS4ERR_RETRY_UNCACHED_REP. Instead
the replier MUST return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or
NFS4ERR_NOTSUPP as appropriate.

* If the second operation can result in another error status, the
replier MAY return a status other than NFS4ERR_RETRY_ UNCACHED_REP,
provided the operation is not executed in such a way that the
state of the replier is changed. Examples of such an error status
include: NFS4ERR_NOTSUPP returned for an operation that is legal
but not REQUIRED in the current minor versions, and thus not
supported by the replier; NFS4ERR_SEQUENCE_POS; and
NFS4ERR_REQ_ TOO_BIG.

The discussion above assumes that the retried request matches the
original one. Section 2.10.6.1.3.1 discusses what the replier might
do, and MUST do when original and retried requests do not match.
Since the replier may only cache a small amount of the information
that would be required to determine whether this is a case of a false
retry, the replier may send to the client any of the following
responses:

* The cached reply to the original request (if the replier has

cached it in its entirety and the users of the original request
and retry match).

* A reply that consists only of the Sequence operation with the
error NFS4ERR_SEQ_FALSE_RETRY.

* A reply consisting of the response to Sequence with the status
NFS4_OK, together with the second operation as it appeared in the
retried request with an error of NFS4ERR_RETRY_UNCACHED_REP or
other error as described above.

* A reply that consists of the response to Sequence with the status
NFS4_OK, together with the second operation as it appeared in the
original request with an error of NFS4ERR_RETRY_UNCACHED_REP or
other error as described above.

2.10.6.1.3.1. False Retry

If a requester sent a Sequence operation with a slot ID and sequence
ID that are in the reply cache but the replier detected that the
retried request is not the same as the original request, including a
retry that has different operations or different arguments in the
operations from the original and a retry that uses a different
principal in the RPC request’s credential field that translates to a
different user, then this is a false retry. When the replier detects
a false retry, it is permitted (but not always obligated) to return
NFS4ERR_SEQ_FALSE_RETRY in response to the Sequence operation when it
detects a false retry.

Translations of particularly privileged user values to other users
due to the lack of appropriately secure credentials, as configured on
the replier, should be applied before determining whether the users
are the same or different. If the replier determines the users are
different between the original request and a retry, then the replier
MUST return NFS4ERR_SEQ_ FALSE_RETRY.

If an operation of the retry is an illegal operation, or an operation
that was legal in a previous minor version of NFSv4 and MUST NOT be
supported in the current minor version (e.g., SETCLIENTID), the
replier MAY return NFS4ERR_SEQ_FALSE_RETRY (and MUST do so if the
users of the original request and retry differ). Otherwise, the
replier MAY return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or
NFS4ERR_NOTSUPP as appropriate. Note that the handling is in
contrast for how the replier deals with retries requests with no
cached reply. The difference is due to NFS4ERR_SEQ_FALSE_RETRY being
a valid error for only Sequence operations, whereas
NFS4ERR_RETRY_UNCACHED_REP is a valid error for all operations except
illegal operations and operations that MUST NOT be supported in the
current minor version of NFSv4.

2.10.6.2. Retry and Replay of Reply

A requester MUST NOT retry a request, unless the connection it used
to send the request disconnects. The requester can then reconnect
and re-send the request, or it can re-send the request over a
different connection that is associated with the same session.

If the requester is a server wanting to re-send a callback operation
over the backchannel of a session, the requester of course cannot
reconnect because only the client can associate connections with the
backchannel. The server can re-send the request over another
connection that is bound to the same session’s backchannel. If there
is no such connection, the server MUST indicate that the session has
no backchannel by setting the SEQ4_STATUS_CB_PATH_DOWN_SESSION flag
bit in the response to the next SEQUENCE operation from the client.
The client MUST then associate a connection with the session (or
destroy the session).

Note that it is not fatal for a requester to retry without a
disconnect between the request and retry. However, the retry does
consume resources, especially with RDMA, where each request, retry or

not, consumes a credit. Retries for no reason, especially retries
sent shortly after the previous attempt, are a poor use of network
bandwidth and defeat the purpose of a transport’s inherent congestion
control system.

A requester MUST wait for a reply to a request before using the slot
for another request. If it does not wait for a reply, then the
requester does not know what sequence ID to use for the slot on its
next request. For example, suppose a requester sends a request with
sequence ID 1, and does not wait for the response. The next time it
uses the slot, it sends the new request with sequence ID 2. If the
replier has not seen the request with sequence ID 1, then the replier
is not expecting sequence ID 2, and rejects the requester’s new
request with NFS4ERR_SEQ MISORDERED (as the result from SEQUENCE or
CB_SEQUENCE) .

RDMA fabrics do not guarantee that the memory handles (Steering Tags)
within each RPC/RDMA "chunk" [32] are valid on a scope outside that
of a single connection. Therefore, handles used by the direct
operations become invalid after connection loss. The server must
ensure that any RDMA operations that must be replayed from the reply
cache use the newly provided handle(s) from the most recent request.

A retry might be sent while the original request is still in progress
on the replier. The replier SHOULD deal with the issue by returning
NFS4ERR_DELAY as the reply to SEQUENCE or CB_SEQUENCE operation, but
implementations MAY return NFS4ERR_MISORDERED. Since errors from
SEQUENCE and CB_SEQUENCE are never recorded in the reply cache, this
approach allows the results of the execution of the original request
to be properly recorded in the reply cache (assuming that the
requester specified the reply to be cached).

2.10.6.3. Resolving Server Callback Races

It is possible for server callbacks to arrive at the client before
the reply from related fore channel operations. For example, a
client may have been granted a delegation to a file it has opened,
but the reply to the OPEN (informing the client of the granting of
the delegation) may be delayed in the network. If a conflicting
operation arrives at the server, it will recall the delegation using
the backchannel, which may be on a different transport connection,
perhaps even a different network, or even a different session
associated with the same client ID.

The presence of a session between the client and server alleviates
this issue. When a session is in place, each client request is
uniquely identified by its { session ID, slot ID, sequence ID }
triple. By the rules under which slot entries (reply cache entries)
are retired, the server has knowledge whether the client has "seen"
each of the server’s replies. The server can therefore provide
sufficient information to the client to allow it to disambiguate
between an erroneous or conflicting callback race condition.

For each client operation that might result in some sort of server
callback, the server SHOULD "remember" the { session ID, slot ID,
sequence ID } triple of the client request until the slot ID
retirement rules allow the server to determine that the client has,
in fact, seen the server’s reply. Until the time the { session ID,
slot ID, sequence ID } request triple can be retired, any recalls of
the associated object MUST carry an array of these referring
identifiers (in the CB_SEQUENCE operation’s arguments), for the
benefit of the client. After this time, it is not necessary for the
server to provide this information in related callbacks, since it is
certain that a race condition can no longer occur.

The CB_SEQUENCE operation that begins each server callback carries a
list of "referring" { session ID, slot ID, sequence ID } triples. If
the client finds the request corresponding to the referring session
ID, slot ID, and sequence ID to be currently outstanding (i.e., the
server’s reply has not been seen by the client), it can determine
that the callback has raced the reply, and act accordingly. If the

client does not find the request corresponding to the referring
triple to be outstanding (including the case of a session ID
referring to a destroyed session), then there is no race with respect
to this triple. The server SHOULD limit the referring triples to
requests that refer to just those that apply to the objects referred
to in the CB_COMPOUND procedure.

The client must not simply wait forever for the expected server reply
to arrive before responding to the CB_COMPOUND that won the race,
because it is possible that it will be delayed indefinitely. The
client should assume the likely case that the reply will arrive
within the average round-trip time for COMPOUND requests to the
server, and wait that period of time. TIf that period of time
expires, it can respond to the CB_COMPOUND with NFS4ERR_DELAY. There
are other scenarios under which callbacks may race replies. Among
them are pNFS layout recalls as described in Section 12.5.5.2.

2.10.6.4. COMPOUND and CB_COMPOUND Construction Issues

Very large requests and replies may pose both buffer management
issues (especially with RDMA) and reply cache issues. When the
session is created (Section 18.36), for each channel (fore and back),
the client and server negotiate the maximum-sized request they will
send or process (ca_maxrequestsize), the maximum-sized reply they
will return or process (ca_maxresponsesize), and the maximum-sized
reply they will store in the reply cache (ca_maxresponsesize_cached).

If a request exceeds ca_maxrequestsize, the reply will have the
status NFS4ERR_REQ_TOO_BIG. A replier MAY return NFS4ERR_REQ_TOO_BIG
as the status for the first operation (SEQUENCE or CB_SEQUENCE) in
the request (which means that no operations in the request executed
and that the state of the slot in the reply cache is unchanged), or
it MAY opt to return it on a subsequent operation in the same
COMPOUND or CB_COMPOUND request (which means that at least one
operation did execute and that the state of the slot in the reply
cache does change). The replier SHOULD set NFS4ERR_REQ_TOO_BIG on
the operation that exceeds ca_maxrequestsize.

If a reply exceeds ca_maxresponsesize, the reply will have the status
NFS4ERR_REP_TOO_BIG. A replier MAY return NFS4ERR_REP_TOO_BIG as the
status for the first operation (SEQUENCE or CB_SEQUENCE) in the
request, or it MAY opt to return it on a subsequent operation (in the
same COMPOUND or CB_COMPOUND reply). A replier MAY return
NFS4ERR_REP_TOO_BIG in the reply to SEQUENCE or CB_SEQUENCE, even if
the response would still exceed ca_maxresponsesize.

If sa_cachethis or csa_cachethis is TRUE, then the replier MUST cache
a reply except if an error is returned by the SEQUENCE or CB_SEQUENCE
operation (see Section 2.10.6.1.2). TIf the reply exceeds
ca_maxresponsesize_cached (and sa_cachethis or csa_cachethis is
TRUE), then the server MUST return NFS4ERR_REP_TOO_BIG_TO_CACHE.

Even if NFS4ERR_REP_TOO_BIG_TO_CACHE (or any other error for that
matter) is returned on an operation other than the first operation
(SEQUENCE or CB_SEQUENCE), then the reply MUST be cached if
sa_cachethis or csa_cachethis is TRUE. For example, if a COMPOUND
has eleven operations, including SEQUENCE, the fifth operation is a
RENAME, and the tenth operation is a READ for one million bytes, the
server may return NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth
operation. Since the server executed several operations, especially
the non-idempotent RENAME, the client’s request to cache the reply
needs to be honored in order for the correct operation of exactly
once semantics. If the client retries the request, the server will
have cached a reply that contains results for ten of the eleven
requested operations, with the tenth operation having a status of
NFS4ERR_REP_TOO_BIG_TO_CACHE.

A client needs to take care that, when sending operations that change
the current filehandle (except for PUTFH, PUTPUBFH, PUTROOTFH, and
RESTOREFH), it does not exceed the maximum reply buffer before the
GETFH operation. Otherwise, the client will have to retry the
operation that changed the current filehandle, in order to obtain the

desired filehandle. For the OPEN operation (see Section 18.16),
retry is not always available as an option. The following guidelines
for the handling of filehandle-changing operations are advised:

* Within the same COMPOUND procedure, a client SHOULD send GETFH
immediately after a current filehandle-changing operation. A
client MUST send GETFH after a current filehandle-changing
operation that is also non-idempotent (e.g., the OPEN operation),
unless the operation is RESTOREFH. RESTOREFH is an exception,
because even though it is non-idempotent, the filehandle RESTOREFH
produced originated from an operation that is either idempotent
(e.g., PUTFH, LOOKUP), or non-idempotent (e.g., OPEN, CREATE). If
the origin is non-idempotent, then because the client MUST send
GETFH after the origin operation, the client can recover if
RESTOREFH returns an error.

* A server MAY return NFS4ERR_REP_TOO_BIG or
NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a
filehandle-changing operation if the reply would be too large on
the next operation.

* A server SHOULD return NFS4ERR_REP_TOO_BIG or
NFS4ERR_REP_TOO_BIG_TO_CACHE (if sa_cachethis is TRUE) on a
filehandle-changing, non-idempotent operation if the reply would
be too large on the next operation, especially if the operation is
OPEN.

* A server MAY return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent
current filehandle-changing operation, if it looks at the next
operation (in the same COMPOUND procedure) and finds it is not
GETFH. The server SHOULD do this if it is unable to determine in
advance whether the total response size would exceed
ca_maxresponsesize_cached or ca_maxresponsesize.

2.10.6.5. Persistence

Since the reply cache is bounded, it is practical for the reply cache
to persist across server restarts. The replier MUST persist the
following information if it agreed to persist the session (when the
session was created; see Section 18.36):

* The session ID.

* The slot table including the sequence ID and cached reply for each
slot.

The above are sufficient for a replier to provide EOS semantics for
any requests that were sent and executed before the server restarted.
If the replier is a client, then there is no need for it to persist
any more information, unless the client will be persisting all other
state across client restart, in which case, the server will never see
any NFSv4.l-level protocol manifestation of a client restart. If the
replier is a server, with just the slot table and session ID
persisting, any requests the client retries after the server restart
will return the results that are cached in the reply cache, and any
new requests (i.e., the sequence ID is one greater than the slot’s
sequence ID) MUST be rejected with NFS4ERR_DEADSESSION (returned by
SEQUENCE) . Such a session is considered dead. A server MAY re-
animate a session after a server restart so that the session will
accept new requests as well as retries. To re—animate a session, the
server needs to persist additional information through server
restart:

* The client ID. This is a prerequisite to let the client create
more sessions associated with the same client ID as the re-
animated session.

* The client ID’s sequence ID that is used for creating sessions
(see Sections 18.35 and 18.36). This is a prerequisite to let the
client create more sessions.

* The principal that created the client ID. This allows the server
to authenticate the client when it sends EXCHANGE_ID.

* The SSV, if SP4_SSV state protection was specified when the client

ID was created (see Section 18.35). This lets the client create
new sessions, and associate connections with the new and existing
sessions.

* The properties of the client ID as defined in Section 18.35.

A persistent reply cache places certain demands on the server. The
execution of the sequence of operations (starting with SEQUENCE) and
placement of its results in the persistent cache MUST be atomic. If
a client retries a sequence of operations that was previously
executed on the server, the only acceptable outcomes are either the
original cached reply or an indication that the client ID or session
has been lost (indicating a catastrophic loss of the reply cache or a
session that has been deleted because the client failed to use the
session for an extended period of time).

A server could fail and restart in the middle of a COMPOUND procedure
that contains one or more non-idempotent or idempotent-but-modifying
operations. This creates an even higher challenge for atomic
execution and placement of results in the reply cache. One way to
view the problem is as a single transaction consisting of each
operation in the COMPOUND followed by storing the result in
persistent storage, then finally a transaction commit. If there is a
failure before the transaction is committed, then the server rolls
back the transaction. If the server itself fails, then when it
restarts, its recovery logic could roll back the transaction before
starting the NFSv4.l server.

While the description of the implementation for atomic execution of
the request and caching of the reply is beyond the scope of this
document, an example implementation for NFSv2 [45] is described in
[46].

2.10.7. RDMA Considerations

A complete discussion of the operation of RPC-based protocols over
RDMA transports is in [32]. A discussion of the operation of NFSv4,
including NFSv4.1, over RDMA is in [33]. Where RDMA is considered,
this specification assumes the use of such a layering; it addresses
only the upper-layer issues relevant to making best use of RPC/RDMA.

2.10.7.1. RDMA Connection Resources

RDMA requires its consumers to register memory and post buffers of a
specific size and number for receive operations.

Registration of memory can be a relatively high-overhead operation,
since it requires pinning of buffers, assignment of attributes (e.g.,
readable/writable), and initialization of hardware translation.
Preregistration is desirable to reduce overhead. These registrations
are specific to hardware interfaces and even to RDMA connection
endpoints; therefore, negotiation of their limits is desirable to
manage resources effectively.

Following basic registration, these buffers must be posted by the RPC
layer to handle receives. These buffers remain in use by the RPC/
NFSv4.1 implementation; the size and number of them must be known to
the remote peer in order to avoid RDMA errors that would cause a
fatal error on the RDMA connection.

NFSv4.1l manages slots as resources on a per-session basis (see
Section 2.10), while RDMA connections manage credits on a per-—
connection basis. This means that in order for a peer to send data
over RDMA to a remote buffer, it has to have both an NFSv4.1l slot and
an RDMA credit. If multiple RDMA connections are associated with a
session, then if the total number of credits across all RDMA
connections associated with the session is X, and the number of slots

in the session is Y, then the maximum number of outstanding requests
is the lesser of X and Y.

2.10.7.2. Flow Control

Previous versions of NFS do not provide flow control; instead, they
rely on the windowing provided by transports like TCP to throttle
requests. This does not work with RDMA, which provides no operation
flow control and will terminate a connection in error when limits are
exceeded. Limits such as maximum number of requests outstanding are
therefore negotiated when a session is created (see the
ca_maxrequests field in Section 18.36). These limits then provide
the maxima within which each connection associated with the session’s
channel (s) must remain. RDMA connections are managed within these
limits as described in Section 3.3 of [32]; if there are multiple
RDMA connections, then the maximum number of requests for a channel
will be divided among the RDMA connections. Put a different way, the
onus is on the replier to ensure that the total number of RDMA
credits across all connections associated with the replier’s channel
does exceed the channel’s maximum number of outstanding requests.

The limits may also be modified dynamically at the replier’s choosing
by manipulating certain parameters present in each NFSv4.1l reply. In
addition, the CB_RECALL_SLOT callback operation (see Section 20.8)
can be sent by a server to a client to return RDMA credits to the
server, thereby lowering the maximum number of requests a client can
have outstanding to the server.

2.10.7.3. Padding

Header padding is requested by each peer at session initiation (see
the ca_headerpadsize argument to CREATE_SESSION in Section 18.36),
and subsequently used by the RPC RDMA layer, as described in [32].
Zero padding is permitted.

Padding leverages the useful property that RDMA preserve alignment of
data, even when they are placed into anonymous (untagged) buffers.

If requested, client inline writes will insert appropriate pad bytes
within the request header to align the data payload on the specified
boundary. The client is encouraged to add sufficient padding (up to
the negotiated size) so that the "data" field of the WRITE operation
is aligned. Most servers can make good use of such padding, which
allows them to chain receive buffers in such a way that any data
carried by client requests will be placed into appropriate buffers at
the server, ready for file system processing. The receiver’s RPC
layer encounters no overhead from skipping over pad bytes, and the
RDMA layer’s high performance makes the insertion and transmission of
padding on the sender a significant optimization. In this way, the
need for servers to perform RDMA Read to satisfy all but the largest
client writes is obviated. An added benefit is the reduction of
message round trips on the network —-- a potentially good trade, where
latency is present.

The value to choose for padding is subject to a number of criteria.
A primary source of variable-length data in the RPC header is the
authentication information, the form of which is client-determined,
possibly in response to server specification. The contents of
COMPOUNDs, sizes of strings such as those passed to RENAME, etc. all
go into the determination of a maximal NFSv4.l request size and
therefore minimal buffer size. The client must select its offered
value carefully, so as to avoid overburdening the server, and vice
versa. The benefit of an appropriate padding value is higher
performance.

Sender gather:
|RPC Request |Pad bytes|Length| -> |User data...
\—————- tomm e /
\ \
\ Receiver scatter: \m————— = +-
/=== e \ \ \
|RPC Request |Pad|Length| -> |FS buffer|->|FS buffer|->...

In the above case, the server may recycle unused buffers to the next
posted receive if unused by the actual received request, or may pass
the now-complete buffers by reference for normal write processing.
For a server that can make use of it, this removes any need for data
copies of incoming data, without resorting to complicated end-to-end
buffer advertisement and management. This includes most kernel-based
and integrated server designs, among many others. The client may
perform similar optimizations, if desired.

2.10.7.4. Dual RDMA and Non-RDMA Transports

Some RDMA transports (e.g., RFC 5040 [8]) permit a "streaming" (non-—
RDMA) phase, where ordinary traffic might flow before "stepping up"
to RDMA mode, commencing RDMA traffic. Some RDMA transports start
connections always in RDMA mode. NFSv4.1l allows, but does not
assume, a streaming phase before RDMA mode. When a connection is
associated with a session, the client and server negotiate whether
the connection is used in RDMA or non-RDMA mode (see Sections 18.36
and 18.34).

2.10.8. Session Security
2.10.8.1. Session Callback Security

Via session/connection association, NFSv4.l improves security over
that provided by NFSv4.0 for the backchannel. The connection is
client-initiated (see Section 18.34) and subject to the same firewall
and routing checks as the fore channel. At the client’s option (see
Section 18.35), connection association is fully authenticated before
being activated (see Section 18.34). Traffic from the server over
the backchannel is authenticated exactly as the client specifies (see
Section 2.10.8.2).

2.10.8.2. Backchannel RPC Security

When the NFSv4.1l client establishes the backchannel, it informs the
server of the security flavors and principals to use when sending
requests. If the security flavor is RPCSEC_GSS, the client expresses
the principal in the form of an established RPCSEC_GSS context. The
server is free to use any of the flavor/principal combinations the
client offers, but it MUST NOT use unoffered combinations. This way,
the client need not provide a target GSS principal for the
backchannel as it did with NFSv4.0, nor does the server have to
implement an RPCSEC_GSS initiator as it did with NFSv4.0 [37].

The CREATE_SESSION (Section 18.36) and BACKCHANNEL_CTL
(Section 18.33) operations allow the client to specify flavor/
principal combinations.

Also note that the SP4_SSV state protection mode (see Sections 18.35
and 2.10.8.3) has the side benefit of providing SSV-derived
RPCSEC_GSS contexts (Section 2.10.9).

2.10.8.3. Protection from Unauthorized State Changes

As described to this point in the specification, the state model of
NFSv4.1l is vulnerable to an attacker that sends a SEQUENCE operation
with a forged session ID and with a slot ID that it expects the
legitimate client to use next. When the legitimate client uses the
slot ID with the same sequence number, the server returns the
attacker’s result from the reply cache, which disrupts the legitimate
client and thus denies service to it. Similarly, an attacker could
send a CREATE_SESSION with a forged client ID to create a new session
associated with the client ID. The attacker could send requests
using the new session that change locking state, such as LOCKU
operations to release locks the legitimate client has acquired.
Setting a security policy on the file that requires RPCSEC_GSS
credentials when manipulating the file’s state is one potential work
around, but has the disadvantage of preventing a legitimate client
from releasing state when RPCSEC_GSS is required to do so, but a GSS

context cannot be obtained (possibly because the user has logged off
the client).

NFSv4.1l provides three options to a client for state protection,
which are specified when a client creates a client ID via EXCHANGE_ID
(Section 18.35).

The first (SP4_NONE) is to simply waive state protection.

The other two options (SP4_MACH_CRED and SP4_SSV) share several
traits:

* An RPCSEC_GSS-based credential is used to authenticate client ID
and session maintenance operations, including creating and
destroying a session, associating a connection with the session,
and destroying the client ID.

* Because RPCSEC_GSS is used to authenticate client ID and session
maintenance, the attacker cannot associate a rogue connection with
a legitimate session, or associate a rogue session with a
legitimate client ID in order to maliciously alter the client ID’s
lock state via CLOSE, LOCKU, DELEGRETURN, LAYOUTRETURN, etc.

In cases where the server’s security policies on a portion of its
namespace require RPCSEC_GSS authentication, a client may have to
use an RPCSEC_GSS credential to remove per—-file state (e.g.,
LOCKU, CLOSE, etc.). The server may require that the principal
that removes the state match certain criteria (e.g., the principal
might have to be the same as the one that acquired the state).
However, the client might not have an RPCSEC_GSS context for such
a principal, and might not be able to create such a context
(perhaps because the user has logged off). When the client
establishes SP4_MACH_CRED or SP4_SSV protection, it can specify a
list of operations that the server MUST allow using the machine
credential (if SP4_MACH_CRED is used) or the SSV credential (if
SP4_SSV is used).

The SP4_MACH_CRED state protection option uses a machine credential
where the principal that creates the client ID MUST also be the
principal that performs client ID and session maintenance operations.
The security of the machine credential state protection approach
depends entirely on safeguarding the per-machine credential.

Assuming a proper safeguard using the per-machine credential for
operations like CREATE_SESSION, BIND_CONN_TO_SESSION,
DESTROY_SESSION, and DESTROY_CLIENTID will prevent an attacker from
associating a rogue connection with a session, or associating a rogue
session with a client ID.

There are at least three scenarios for the SP4_MACH_CRED option:

1. The system administrator configures a unique, permanent per-
machine credential for one of the mandated GSS mechanisms (e.g.,
if Kerberos V5 is used, a "keytab" containing a principal derived
from a client host name could be used).

2. The client is used by a single user, and so the client ID and its
sessions are used by just that user. If the user’s credential
expires, then session and client ID maintenance cannot occur, but
since the client has a single user, only that user is
inconvenienced.

3. The physical client has multiple users, but the client
implementation has a unique client ID for each user. This is
effectively the same as the second scenario, but a disadvantage
is that each user needs to be allocated at least one session
each, so the approach suffers from lack of economy.

The SP4_SSV protection option uses the SSV (Section 1.7), via
RPCSEC_GSS and the SSV GSS mechanism (Section 2.10.9), to protect
state from attack. The SP4_SSV protection option is intended for the
situation comprised of a client that has multiple active users and a

system administrator who wants to avoid the burden of installing a
permanent machine credential on each client. The SSV is established
and updated on the server via SET_SSV (see Section 18.47). To
prevent eavesdropping, a client SHOULD send SET_SSV via RPCSEC_GSS
with the privacy service. Several aspects of the SSV make it
intractable for an attacker to guess the SSV, and thus associate
rogue connections with a session, and rogue sessions with a client
ID:

* The arguments to and results of SET_SSV include digests of the old
and new SSV, respectively.

* Because the initial value of the SSV is zero, therefore known, the
client that opts for SP4_SSV protection and opts to apply SP4_SSV
protection to BIND_CONN_TO_SESSION and CREATE_SESSION MUST send at
least one SET_SSV operation before the first BIND_CONN_TO_SESSION
operation or before the second CREATE_SESSION operation on a
client ID. If it does not, the SSV mechanism will not generate
tokens (Section 2.10.9). A client SHOULD send SET_SSV as soon as
a session is created.

* A SET_SSV request does not replace the SSV with the argument to
SET_SSV. Instead, the current SSV on the server is logically
exclusive ORed (XORed) with the argument to SET_SSV. Each time a
new principal uses a client ID for the first time, the client
SHOULD send a SET_SSV with that principal’s RPCSEC_GSS
credentials, with RPCSEC_GSS service set to RPC_GSS_SVC_PRIVACY.

Here are the types of attacks that can be attempted by an attacker
named Eve on a victim named Bob, and how SP4_SSV protection foils
each attack:

* Suppose Eve is the first user to log into a legitimate client.
Eve’s use of an NFSv4.l1l file system will cause the legitimate
client to create a client ID with SP4_SSV protection, specifying
that the BIND_CONN_TO_SESSION operation MUST use the SSV
credential. Eve’s use of the file system also causes an SSV to be
created. The SET_SSV operation that creates the SSV will be
protected by the RPCSEC_GSS context created by the legitimate
client, which uses Eve’s GSS principal and credentials. Eve can
eavesdrop on the network while her RPCSEC_GSS context is created
and the SET_SSV using her context is sent. Even if the legitimate
client sends the SET_SSV with RPC_GSS_SVC_PRIVACY, because Eve
knows her own credentials, she can decrypt the SSV. Eve can
compute an RPCSEC_GSS credential that BIND_CONN_TO_SESSION will
accept, and so associate a new connection with the legitimate
session. Eve can change the slot ID and sequence state of a
legitimate session, and/or the SSV state, in such a way that when
Bob accesses the server via the same legitimate client, the
legitimate client will be unable to use the session.

The client’s only recourse is to create a new client ID for Bob to
use, and establish a new SSV for the client ID. The client will
be unable to delete the old client ID, and will let the lease on
the old client ID expire.

Once the legitimate client establishes an SSV over the new session
using Bob’s RPCSEC_GSS context, Eve can use the new session via
the legitimate client, but she cannot disrupt Bob. Moreover,
because the client SHOULD have modified the SSV due to Eve using
the new session, Bob cannot get revenge on Eve by associating a
rogue connection with the session.

The question is how did the legitimate client detect that Eve has
hijacked the old session? When the client detects that a new
principal, Bob, wants to use the session, it SHOULD have sent a
SET_SSV, which leads to the following sub-scenarios:

- Let us suppose that from the rogue connection, Eve sent a
SET_SSV with the same slot ID and sequence ID that the
legitimate client later uses. The server will assume the

SET_SSV sent with Bob’s credentials is a retry, and return to
the legitimate client the reply it sent Eve. However, unless
Eve can correctly guess the SSV the legitimate client will use,
the digest verification checks in the SET_SSV response will
fail. That is an indication to the client that the session has
apparently been hijacked.

— Alternatively, Eve sent a SET_SSV with a different slot ID than
the legitimate client uses for its SET_SSV. Then the digest
verification of the SET_SSV sent with Bob’s credentials fails
on the server, and the error returned to the client makes it
apparent that the session has been hijacked.

— Alternatively, Eve sent an operation other than SET_SSV, but
with the same slot ID and sequence that the legitimate client
uses for its SET_SSV. The server returns to the legitimate
client the response it sent Eve. The client sees that the
response is not at all what it expects. The client assumes
either session hijacking or a server bug, and either way
destroys the old session.

* Eve associates a rogue connection with the session as above, and
then destroys the session. Again, Bob goes to use the server from
the legitimate client, which sends a SET_SSV using Bob’s
credentials. The client receives an error that indicates that the
session does not exist. When the client tries to create a new
session, this will fail because the SSV it has does not match that
which the server has, and now the client knows the session was
hijacked. The legitimate client establishes a new client ID.

* TIf Eve creates a connection before the legitimate client
establishes an SSV, because the initial value of the SSV is zero
and therefore known, Eve can send a SET_SSV that will pass the
digest verification check. However, because the new connection
has not been associated with the session, the SET_SSV is rejected
for that reason.

In summary, an attacker’s disruption of state when SP4_SSV protection
is in use is limited to the formative period of a client ID, its
first session, and the establishment of the SSV. Once a non-
malicious user uses the client ID, the client quickly detects any
hijack and rectifies the situation. Once a non-malicious user
successfully modifies the SSV, the attacker cannot use NFSv4.l
operations to disrupt the non-malicious user.

Note that neither the SP4_MACH_CRED nor SP4_SSV protection approaches
prevent hijacking of a transport connection that has previously been
associated with a session. If the goal of a counter-threat strategy
is to prevent connection hijacking, the use of IPsec is RECOMMENDED.

If a connection hijack occurs, the hijacker could in theory change
locking state and negatively impact the service to legitimate
clients. However, if the server is configured to require the use of
RPCSEC_GSS with integrity or privacy on the affected file objects,
and if EXCHGID4_FLAG_BIND_PRINC_STATEID capability (Section 18.35) is
in force, this will thwart unauthorized attempts to change locking
state.

2.10.9. The Secret State Verifier (SSV) GSS Mechanism

The SSV provides the secret key for a GSS mechanism internal to
NFSv4.1 that NFSv4.1l uses for state protection. Contexts for this
mechanism are not established via the RPCSEC_GSS protocol. Instead,
the contexts are automatically created when EXCHANGE_ID specifies
SP4_SSV protection. The only tokens defined are the PerMsgToken
(emitted by GSS_GetMIC) and the SealedMessage token (emitted by
GSS_Wrap) .

The mechanism OID for the SSV mechanism is
iso.org.dod.internet.private.enterprise.Michael Eisler.nfs.ssv_mech
(1.3.6.1.4.1.28882.1.1). While the SSV mechanism does not define any

initial context tokens, the OID can be used to let servers indicate
that the SSV mechanism is acceptable whenever the client sends a
SECINFO or SECINFO_NO_NAME operation (see Section 2.6).

The SSV mechanism defines four subkeys derived from the SSV value.
Each time SET_SSV is invoked, the subkeys are recalculated by the
client and server. The calculation of each of the four subkeys
depends on each of the four respective ssv_subkey4 enumerated values.
The calculation uses the HMAC [52] algorithm, using the current SSV
as the key, the one-way hash algorithm as negotiated by EXCHANGE_ID,
and the input text as represented by the XDR encoded enumeration
value for that subkey of data type ssv_subkey4. TIf the length of the
output of the HMAC algorithm exceeds the length of key of the
encryption algorithm (which is also negotiated by EXCHANGE_ID), then
the subkey MUST be truncated from the HMAC output, i.e., if the
subkey is of N bytes long, then the first N bytes of the HMAC output
MUST be used for the subkey. The specification of EXCHANGE_ID states
that the length of the output of the HMAC algorithm MUST NOT be less
than the length of subkey needed for the encryption algorithm (see
Section 18.35).

/* Input for computing subkeys */

enum ssv_subkey4 {
SSV4_SUBKEY_MIC_I2T
SSV4_SUBKEY_MIC_T2I
SSV4_SUBKEY_SEAL_I2T =
SSV4_SUBKEY_SEAL_T2I

~

S w N
~

~

i

The subkey derived from SSV4_SUBKEY MIC_I2T is used for calculating
message integrity codes (MICs) that originate from the NFSv4.l
client, whether as part of a request over the fore channel or a
response over the backchannel. The subkey derived from
SSV4_SUBKEY_MIC_T2I is used for MICs originating from the NFSv4.l
server. The subkey derived from SSV4_SUBKEY_SEAL_I2T is used for
encryption text originating from the NFSv4.1 client, and the subkey
derived from SSV4_SUBKEY_ SEAL_T2I is used for encryption text
originating from the NFSv4.1 server.

The PerMsgToken description is based on an XDR definition:

/* Input for computing smt_hmac */
struct ssv_mic_plain_tkn4 {
uint32_t smpt_ssv_seq;
opaque smpt_orig_plain<>;
}i

/* SSV GSS PerMsgToken token */
struct ssv_mic_tkn4d {
uint32_t smt_ssv_seq;
opaque smt_hmac<>;
}i

The field smt_hmac is an HMAC calculated by using the subkey derived
from SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY MIC_T2I as the key, the one-
way hash algorithm as negotiated by EXCHANGE_ID, and the input text
as represented by data of type ssv_mic_plain_tkn4. The field
smpt_ssv_seq is the same as smt_ssv_seq. The field smpt_orig_plain
is the "message" input passed to GSS_GetMIC() (see Section 2.3.1 of
[71) . The caller of GSS_GetMIC() provides a pointer to a buffer
containing the plain text. The SSV mechanism’s entry point for
GSS_GetMIC() encodes this into an opaque array, and the encoding will
include an initial four-byte length, plus any necessary padding.
Prepended to this will be the XDR encoded value of smpt_ssv_seq, thus
making up an XDR encoding of a value of data type ssv_mic_plain_tkn4,
which in turn is the input into the HMAC.

The token emitted by GSS_GetMIC() is XDR encoded and of XDR data type
ssv_mic_tkn4. The field smt_ssv_seq comes from the SSV sequence
number, which is equal to one after SET_SSV (Section 18.47) is called
the first time on a client ID. Thereafter, the SSV sequence number

is incremented on each SET_SSV. Thus, smt_ssv_seq represents the
version of the SSV at the time GSS_GetMIC () was called. As noted in
Section 18.35, the client and server can maintain multiple concurrent
versions of the SSV. This allows the SSV to be changed without
serializing all RPC calls that use the SSV mechanism with SET_SSV
operations. Once the HMAC is calculated, it is XDR encoded into
smt_hmac, which will include an initial four-byte length, and any
necessary padding. Prepended to this will be the XDR encoded value
of smt_ssv_seq.

The SealedMessage description is based on an XDR definition:

/* Input for computing ssct_encr_data and ssct_hmac */
struct ssv_seal_plain_tkn4d {

opaque sspt_confounder<>;
uint32_t sspt_ssv_seq;
opaque sspt_orig_plain<>;
opaque sspt_pad<>;

}i

/* SSV GSS SealedMessage token */
struct ssv_seal_cipher_tkn4d {

uint32_t ssct_ssv_seq;
opaque ssct_iv<>;

opaque ssct_encr_data<>;
opaque ssct_hmac<>;

i

The token emitted by GSS_Wrap() is XDR encoded and of XDR data type
ssv_seal_cipher_tkn4.

The ssct_ssv_seqg field has the same meaning as smt_ssv_seq.

The ssct_encr_data field is the result of encrypting a value of the
XDR encoded data type ssv_seal_plain_tkn4. The encryption key is the
subkey derived from SSV4_SUBKEY_SEAL_I2T or SSV4_SUBKEY_ SEAL_T2I, and
the encryption algorithm is that negotiated by EXCHANGE_ID.

The ssct_iv field is the initialization vector (IV) for the
encryption algorithm (if applicable) and is sent in clear text. The
content and size of the IV MUST comply with the specification of the
encryption algorithm. For example, the id-aes256-CBC algorithm MUST
use a l6-byte initialization vector (IV), which MUST be unpredictable
for each instance of a value of data type ssv_seal_plain_tkn4 that is
encrypted with a particular SSV key.

The ssct_hmac field is the result of computing an HMAC using the
value of the XDR encoded data type ssv_seal_plain_tkn4 as the input
text. The key is the subkey derived from SSV4_SUBKEY MIC_I2T or
SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that
negotiated by EXCHANGE_ID.

The sspt_confounder field is a random value.
The sspt_ssv_seq field is the same as ssvt_ssv_seq.

The field sspt_orig_plain field is the original plaintext and is the
"input_message" input passed to GSS_Wrap() (see Section 2.3.3 of
[7]1). As with the handling of the plaintext by the SSV mechanism’s
GSS_GetMIC() entry point, the entry point for GSS_Wrap () expects a
pointer to the plaintext, and will XDR encode an opaque array into
sspt_orig_plain representing the plain text, along with the other
fields of an instance of data type ssv_seal_plain_tkn4.

The sspt_pad field is present to support encryption algorithms that
require inputs to be in fixed-sized blocks. The content of sspt_pad
is zero filled except for the length. Beware that the XDR encoding
of ssv_seal_plain_tkn4 contains three variable-length arrays, and so
each array consumes four bytes for an array length, and each array
that follows the length is always padded to a multiple of four bytes
per the XDR standard.

For example, suppose the encryption algorithm uses 1l6-byte blocks,
and the sspt_confounder is three bytes long, and the sspt_orig_plain
field is 15 bytes long. The XDR encoding of sspt_confounder uses
eight bytes (4 + 3 + 1l-byte pad), the XDR encoding of sspt_ssv_seq
uses four bytes, the XDR encoding of sspt_orig plain uses 20 bytes (4
+ 15 + 1-byte pad), and the smallest XDR encoding of the sspt_pad
field is four bytes. This totals 36 bytes. The next multiple of 16
is 48; thus, the length field of sspt_pad needs to be set to 12
bytes, or a total encoding of 16 bytes. The total number of XDR
encoded bytes is thus 8 + 4 + 20 + 16 = 48.

GSS_Wrap () emits a token that is an XDR encoding of a value of data
type ssv_seal_ cipher_ tkn4. Note that regardless of whether or not
the caller of GSS_Wrap () requests confidentiality, the token always
has confidentiality. This is because the SSV mechanism is for
RPCSEC_GSS, and RPCSEC_GSS never produces GSS_wrap () tokens without
confidentiality.

There is one SSV per client ID. There is a single GSS context for a
client ID / SSV pair. All SSV mechanism RPCSEC_GSS handles of a
client ID / SSV pair share the same GSS context. SSV GSS contexts do
not expire except when the SSV is destroyed (causes would include the
client ID being destroyed or a server restart). Since one purpose of
context expiration is to replace keys that have been in use for "too
long", hence vulnerable to compromise by brute force or accident, the
client can replace the SSV key by sending periodic SET_SSV
operations, which is done by cycling through different users’
RPCSEC_GSS credentials. This way, the SSV is replaced without
destroying the SSV’s GSS contexts.

SSV RPCSEC_GSS handles can be expired or deleted by the server at any
time, and the EXCHANGE_ID operation can be used to create more SSV
RPCSEC_GSS handles. Expiration of SSV RPCSEC_GSS handles does not
imply that the SSV or its GSS context has expired.

The client MUST establish an SSV via SET_SSV before the SSV GSS
context can be used to emit tokens from GSS_Wrap () and GSS_GetMIC() .
If SET_SSV has not been successfully called, attempts to emit tokens
MUST fail.

The SSV mechanism does not support replay detection and sequencing in
its tokens because RPCSEC_GSS does not use those features (see
"Context Creation Requests", Section 5.2.2 of [4]). However,

Section 2.10.10 discusses special considerations for the SSV
mechanism when used with RPCSEC_GSS.

2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV
Mechanism

When a client ID is created with SP4_SSV state protection (see
Section 18.35), the client is permitted to associate multiple
RPCSEC_GSS handles with the single SSV GSS context (see

Section 2.10.9). Because of the way RPCSEC_GSS (both version 1 and
version 2, see [4] and [9]) calculate the verifier of the reply,
special care must be taken by the implementation of the NFSv4.l
client to prevent attacks by a man-in-the-middle. The verifier of an
RPCSEC_GSS reply is the output of GSS_GetMIC () applied to the input
value of the seqg _num field of the RPCSEC_GSS credential (data type
rpc_gss_cred_ver_1_t) (see Section 5.3.3.2 of [4]). If multiple
RPCSEC_GSS handles share the same GSS context, then if one handle is
used to send a request with the same seg num value as another handle,
an attacker could block the reply, and replace it with the verifier
used for the other handle.

There are multiple ways to prevent the attack on the SSV RPCSEC_GSS
verifier in the reply. The simplest is believed to be as follows.

* Each time one or more new SSV RPCSEC_GSS handles are created via
EXCHANGE_ID, the client SHOULD send a SET_SSV operation to modify
the SSV. By changing the SSV, the new handles will not result in

the re-use of an SSV RPCSEC_GSS verifier in a reply.

* When a requester decides to use N SSV RPCSEC_GSS handles, it
SHOULD assign a unique and non-overlapping range of seqg_nums to
each SSV RPCSEC_GSS handle. The size of each range SHOULD be
equal to MAXSEQ / N (see Section 5 of [4] for the definition of
MAXSEQ) . When an SSV RPCSEC_GSS handle reaches its maximum, it
SHOULD force the replier to destroy the handle by sending a NULL
RPC request with seq_num set to MAXSEQ + 1 (see Section 5.3.3.3 of
[41) .

* When the requester wants to increase or decrease N, it SHOULD
force the replier to destroy all N handles by sending a NULL RPC
request on each handle with seq num set to MAXSEQ + 1. If the
requester is the client, it SHOULD send a SET_SSV operation before
using new handles. If the requester is the server, then the
client SHOULD send a SET_SSV operation when it detects that the
server has forced it to destroy a backchannel’s SSV RPCSEC_GSS
handle. By sending a SET_SSV operation, the SSV will change, and
so the attacker will be unavailable to successfully replay a
previous verifier in a reply to the requester.

Note that if the replier carefully creates the SSV RPCSEC_GSS
handles, the related risk of a man-in-the-middle splicing a forged
SSV RPCSEC_GSS credential with a verifier for another handle does not

exist. This is because the verifier in an RPCSEC_GSS request is
computed from input that includes both the RPCSEC_GSS handle and
seqgq_num (see Section 5.3.1 of [4]). Provided the replier takes care

to avoid re-using the value of an RPCSEC_GSS handle that it creates,
such as by including a generation number in the handle, the man-in-
the-middle will not be able to successfully replay a previous
verifier in the request to a replier.

2.10.11. Session Mechanics - Steady State
2.10.11.1. Obligations of the Server

The server has the primary obligation to monitor the state of
backchannel resources that the client has created for the server
(RPCSEC_GSS contexts and backchannel connections). If these
resources vanish, the server takes action as specified in
Section 2.10.13.2.

2.10.11.2. Obligations of the Client

The client SHOULD honor the following obligations in order to utilize
the session:

* Keep a necessary session from going idle on the server. A client
that requires a session but nonetheless is not sending operations
risks having the session be destroyed by the server. This is
because sessions consume resources, and resource limitations may
force the server to cull an inactive session. A server MAY
consider a session to be inactive if the client has not used the
session before the session inactivity timer (Section 2.10.12) has
expired.

* Destroy the session when not needed. If a client has multiple
sessions, one of which has no requests waiting for replies, and
has been idle for some period of time, it SHOULD destroy the
session.

* Maintain GSS contexts and RPCSEC_GSS handles for the backchannel.
If the client requires the server to use the RPCSEC_GSS security
flavor for callbacks, then it needs to be sure the RPCSEC_GSS
handles and/or their GSS contexts that are handed to the server
via BACKCHANNEL_CTL or CREATE_SESSION are unexpired.

* Preserve a connection for a backchannel. The server requires a
backchannel in order to gracefully recall recallable state or
notify the client of certain events. Note that if the connection

is not being used for the fore channel, there is no way for the
client to tell if the connection is still alive (e.g., the server
restarted without sending a disconnect). The onus is on the
server, not the client, to determine if the backchannel’s
connection is alive, and to indicate in the response to a SEQUENCE
operation when the last connection associated with a session’s
backchannel has disconnected.

2.10.11.3. Steps the Client Takes to Establish a Session

If the client does not have a client ID, the client sends EXCHANGE_ID
to establish a client ID. If it opts for SP4_MACH_CRED or SP4_SSV
protection, in the spo_must_enforce list of operations, it SHOULD at
minimum specify CREATE_SESSION, DESTROY_SESSION,
BIND_CONN_TO_SESSION, BACKCHANNEL_CTL, and DESTROY_CLIENTID. If it
opts for SP4_SSV protection, the client needs to ask for SSV-based
RPCSEC_GSS handles.

The client uses the client ID to send a CREATE_SESSION on a
connection to the server. The results of CREATE_SESSION indicate
whether or not the server will persist the session reply cache
through a server that has restarted, and the client notes this for
future reference.

If the client specified SP4_SSV state protection when the client ID
was created, then it SHOULD send SET_SSV in the first COMPOUND after
the session is created. Each time a new principal goes to use the
client ID, it SHOULD send a SET_SSV again.

If the client wants to use delegations, layouts, directory
notifications, or any other state that requires a backchannel, then
it needs to add a connection to the backchannel if CREATE_SESSION did
not already do so. The client creates a connection, and calls
BIND_CONN_TO_SESSION to associate the connection with the session and
the session’s backchannel. If CREATE_SESSION did not already do so,
the client MUST tell the server what security is required in order
for the client to accept callbacks. The client does this via
BACKCHANNEL_CTL. If the client selected SP4_MACH_CRED or SP4_SSV
protection when it called EXCHANGE_ID, then the client SHOULD specify
that the backchannel use RPCSEC_GSS contexts for security.

If the client wants to use additional connections for the
backchannel, then it needs to call BIND_CONN_TO_SESSION on each
connection it wants to use with the session. If the client wants to
use additional connections for the fore channel, then it needs to
call BIND_CONN_TO_SESSION if it specified SP4_SSV or SP4_MACH_CRED
state protection when the client ID was created.

At this point, the session has reached steady state.
2.10.12. Session Inactivity Timer

The server MAY maintain a session inactivity timer for each session.
If the session inactivity timer expires, then the server MAY destroy
the session. To avoid losing a session due to inactivity, the client
MUST renew the session inactivity timer. The length of session
inactivity timer MUST NOT be less than the lease_time attribute
(Section 5.8.1.11). As with lease renewal (Section 8.3), when the
server receives a SEQUENCE operation, it resets the session
inactivity timer, and MUST NOT allow the timer to expire while the
rest of the operations in the COMPOUND procedure’s request are still
executing. Once the last operation has finished, the server MUST set
the session inactivity timer to expire no sooner than the sum of the
current time and the value of the lease_time attribute.

2.10.13. Session Mechanics - Recovery
2.10.13.1. Events Requiring Client Action

The following events require client action to recover.

2.10.13.1.1. RPCSEC_GSS Context Loss by Callback Path

If all RPCSEC_GSS handles granted by the client to the server for
callback use have expired, the client MUST establish a new handle via
BACKCHANNEL_CTL. The sr_status_flags field of the SEQUENCE results
indicates when callback handles are nearly expired, or fully expired
(see Section 18.46.3).

2.10.13.1.2. Connection Loss

If the client loses the last connection of the session and wants to
retain the session, then it needs to create a new connection, and if,
when the client ID was created, BIND_CONN_TO_SESSION was specified in
the spo_must_enforce list, the client MUST use BIND_CONN_TO_SESSION
to associate the connection with the session.

If there was a request outstanding at the time of connection loss,
then if the client wants to continue to use the session, it MUST
retry the request, as described in Section 2.10.6.2. Note that it is
not necessary to retry requests over a connection with the same
source network address or the same destination network address as the
lost connection. As long as the session ID, slot ID, and sequence ID
in the retry match that of the original request, the server will
recognize the request as a retry if it executed the request prior to
disconnect.

If the connection that was lost was the last one associated with the
backchannel, and the client wants to retain the backchannel and/or
prevent revocation of recallable state, the client needs to
reconnect, and if it does, it MUST associate the connection to the
session and backchannel via BIND_CONN_TO_SESSION. The server SHOULD
indicate when it has no callback connection via the sr_status_flags
result from SEQUENCE.

2.10.13.1.3. Backchannel GSS Context Loss

Via the sr_status_flags result of the SEQUENCE operation or other
means, the client will learn if some or all of the RPCSEC_GSS
contexts it assigned to the backchannel have been lost. If the
client wants to retain the backchannel and/or not put recallable
state subject to revocation, the client needs to use BACKCHANNEL_CTL
to assign new contexts.

2.10.13.1.4. Loss of Session
The replier might lose a record of the session. Causes include:
* Replier failure and restart.

* A catastrophe that causes the reply cache to be corrupted or lost
on the media on which it was stored. This applies even if the
replier indicated in the CREATE_SESSION results that it would
persist the cache.

* The server purges the session of a client that has been inactive
for a very extended period of time.

* As a result of configuration changes among a set of clustered
servers, a network address previously connected to one server
becomes connected to a different server that has no knowledge of
the session in question. Such a configuration change will
generally only happen when the original server ceases to function
for a time.

Loss of reply cache is equivalent to loss of session. The replier
indicates loss of session to the requester by returning
NFS4ERR_BADSESSION on the next operation that uses the session ID
that refers to the lost session.

After an event like a server restart, the client may have lost its
connections. The client assumes for the moment that the session has

not been lost. It reconnects, and if it specified connection
association enforcement when the session was created, it invokes
BIND_CONN_TO_SESSION using the session ID. Otherwise, it invokes
SEQUENCE. If BIND_CONN_TO_SESSION or SEQUENCE returns
NFS4ERR_BADSESSION, the client knows the session is not available to
it when communicating with that network address. If the connection
survives session loss, then the next SEQUENCE operation the client
sends over the connection will get back NFS4ERR_BADSESSION. The
client again knows the session was lost.

Here is one suggested algorithm for the client when it gets
NFS4ERR_BADSESSION. It is not obligatory in that, if a client does
not want to take advantage of such features as trunking, it may omit
parts of it. However, it is a useful example that draws attention to
various possible recovery issues:

1. If the client has other connections to other server network
addresses associated with the same session, attempt a COMPOUND
with a single operation, SEQUENCE, on each of the other
connections.

2. If the attempts succeed, the session is still alive, and this is
a strong indicator that the server’s network address has moved.
The client might send an EXCHANGE_ID on the connection that
returned NFS4ERR_BADSESSION to see if there are opportunities for
client ID trunking (i.e., the same client ID and so_major_id
value are returned). The client might use DNS to see if the
moved network address was replaced with another, so that the
performance and availability benefits of session trunking can
continue.

3. 1If the SEQUENCE requests fail with NFS4ERR_BADSESSION, then the
session no longer exists on any of the server network addresses
for which the client has connections associated with that session
ID. It is possible the session is still alive and available on
other network addresses. The client sends an EXCHANGE_ID on all
the connections to see if the server owner is still listening on
those network addresses. If the same server owner is returned
but a new client ID is returned, this is a strong indicator of a
server restart. If both the same server owner and same client ID
are returned, then this is a strong indication that the server
did delete the session, and the client will need to send a
CREATE_SESSION if it has no other sessions for that client ID.

If a different server owner is returned, the client can use DNS
to find other network addresses. If it does not, or if DNS does
not find any other addresses for the server, then the client will
be unable to provide NFSv4.1l service, and fatal errors should be
returned to processes that were using the server. If the client
is using a "mount" paradigm, unmounting the server is advised.

4. If the client knows of no other connections associated with the
session ID and server network addresses that are, or have been,
associated with the session ID, then the client can use DNS to
find other network addresses. If it does not, or if DNS does not
find any other addresses for the server, then the client will be
unable to provide NFSv4.1l service, and fatal errors should be
returned to processes that were using the server. If the client
is using a "mount" paradigm, unmounting the server is advised.

If there is a reconfiguration event that results in the same network
address being assigned to servers where the eir server_ scope value is
different, it cannot be guaranteed that a session ID generated by the
first will be recognized as invalid by the first. Therefore, in
managing server reconfigurations among servers with different server
scope values, it is necessary to make sure that all clients have
disconnected from the first server before effecting the
reconfiguration. Nonetheless, clients should not assume that servers
will always adhere to this requirement; clients MUST be prepared to
deal with unexpected effects of server reconfigurations. Even where
a session ID is inappropriately recognized as wvalid, it is likely
either that the connection will not be recognized as valid or that a

sequence value for a slot will not be correct. Therefore, when a
client receives results indicating such unexpected errors, the use of
EXCHANGE_ID to determine the current server configuration is
RECOMMENDED .

A variation on the above is that after a server’s network address
moves, there is no NFSv4.1l server listening, e.g., no listener on
port 2049. 1In this example, one of the following occur: the NFSv4
server returns NFS4ERR_MINOR_VERS_MISMATCH, the NFS server returns a
PROG_MISMATCH error, the RPC listener on 2049 returns PROG_UNVAIL, or
attempts to reconnect to the network address timeout. These SHOULD
be treated as equivalent to SEQUENCE returning NFS4ERR_BADSESSION for
these purposes.

When the client detects session loss, it needs to call CREATE_SESSION
to recover. Any non-idempotent operations that were in progress
might have been performed on the server at the time of session loss.
The client has no general way to recover from this.

Note that loss of session does not imply loss of byte-range lock,
open, delegation, or layout state because locks, opens, delegations,
and layouts are tied to the client ID and depend on the client ID,
not the session. Nor does loss of byte-range lock, open, delegation,
or layout state imply loss of session state, because the session
depends on the client ID; loss of client ID however does imply loss
of session, byte-range lock, open, delegation, and layout state. See
Section 8.4.2. A session can survive a server restart, but lock
recovery may still be needed.

It is possible that CREATE_SESSION will fail with
NFS4ERR_STALE_CLIENTID (e.g., the server restarts and does not
preserve client ID state). If so, the client needs to call
EXCHANGE_ID, followed by CREATE_SESSION.

.10.13.2. Events Requiring Server Action
The following events require server action to recover.
.10.13.2.1. Client Crash and Restart

As described in Section 18.35, a restarted client sends EXCHANGE_ID
in such a way that it causes the server to delete any sessions it
had.

.10.13.2.2. Client Crash with No Restart

If a client crashes and never comes back, it will never send
EXCHANGE_ID with its old client owner. Thus, the server has session
state that will never be used again. After an extended period of
time, and if the server has resource constraints, it MAY destroy the
old session as well as locking state.

.10.13.2.3. Extended Network Partition

To the server, the extended network partition may be no different
from a client crash with no restart (see Section 2.10.13.2.2).
Unless the server can discern that there is a network partition, it
is free to treat the situation as if the client has crashed
permanently.

.10.13.2.4. Backchannel Connection Loss

If there were callback requests outstanding at the time of a
connection loss, then the server MUST retry the requests, as
described in Section 2.10.6.2. Note that it is not necessary to
retry requests over a connection with the same source network address
or the same destination network address as the lost connection. As
long as the session ID, slot ID, and sequence ID in the retry match
that of the original request, the callback target will recognize the
request as a retry even if it did see the request prior to
disconnect.

If the connection lost is the last one associated with the
backchannel, then the server MUST indicate that in the
sr_status_flags field of every SEQUENCE reply until the backchannel
is re—established. There are two situations, each of which uses
different status flags: no connectivity for the session’s backchannel
and no connectivity for any session backchannel of the client. See
Section 18.46 for a description of the appropriate flags in
sr_status_flags.

2.10.13.2.5. GSS Context Loss

The server SHOULD monitor when the number of RPCSEC_GSS handles
assigned to the backchannel reaches one, and when that one handle is
near expiry (i.e., between one and two periods of lease time), and
indicate so in the sr_status_flags field of all SEQUENCE replies.
The server MUST indicate when all of the backchannel’s assigned
RPCSEC_GSS handles have expired via the sr_status_flags field of all
SEQUENCE replies.

2.10.14. Parallel NFS and Sessions

A client and server can potentially be a non-pNFS implementation, a
metadata server implementation, a data server implementation, or two
or three types of implementations. The EXCHGID4_FLAG_USE_NON_PNFS,
EXCHGID4_FLAG_USE_PNFS_MDS, and EXCHGID4_FLAG_USE_PNFS_DS flags (not
mutually exclusive) are passed in the EXCHANGE_ID arguments and
results to allow the client to indicate how it wants to use sessions
created under the client ID, and to allow the server to indicate how
it will allow the sessions to be used. See Section 13.1 for pNFS
sessions considerations.

3. Protocol Constants and Data Types

The syntax and semantics to describe the data types of the NFSv4.l
protocol are defined in the XDR (RFC 4506 [2]) and RPC (RFC 5531 [3])
documents. The next sections build upon the XDR data types to define
constants, types, and structures specific to this protocol. The full
list of XDR data types is in [10].

3.1. Basic Constants
const NFS4_FHSIZE = 128;
const NFS4_VERIFIER_SIZE = 8;
const NFS4_OPAQUE_LIMIT = 1024;
const NFS4_SESSIONID_SIZE = 16;
const NFS4_INT64_MAX = OxXTffffffffffffffet;
const NFS4_UINT64_MAX = Oxfffffffffffffffef;
const NFS4_INT32_MAX = OxT7fffffff;
const NFS4_UINT32_MAX = Oxffffffff;
const NFS4_MAXFILELEN = Oxffffffffffffffff;
const NFS4_MAXFILEOFF = Oxfffffffffffffffe;

Except where noted, all these constants are defined in bytes.
* NFS4_FHSIZE is the maximum size of a filehandle.
* NFS4_VERIFIER_SIZE is the fixed size of a verifier.

* NFS4_OPAQUE_LIMIT is the maximum size of certain opaque
information.

* NFS4_SESSIONID_SIZE is the fixed size of a session identifier.
* NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.

* NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit
integer.

NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.

NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit

integer.

NFS4_MAXFILELEN is the maximum length of a regular file.

NFS4_MAXFILEOFF is the maximum offset into a regular file.

Basic Data Types

These are the base NFSv4.1l data types.

+ + +
| Data Type | Definition
+ + +
| int32_t | typedef int int32_t;
o e +
| uint32_t | typedef unsigned int uint32_t; |
F———————— +—_ +
| int64_t | typedef hyper inté64_t;
o e +
| uint64_t | typedef unsigned hyper uint64_t; |
o e +
attrlist4 typedef opaque attrlistéd<>;
Used for file/directory attributes.
o e +
bitmap4 typedef uint32_t bitmapi4<>;
Used in attribute array encoding.
F———————— +—_ +
changeid4 typedef uint64_t changeid4;
Used in the definition of change_info4.
o ———————— e +
clientid4 typedef uint64_t clientid4;
Shorthand reference to client
identification.
o e +
count4 typedef uint32_t count4;
Various count parameters (READ, WRITE,
COMMIT) .
o e +
length4 typedef uint64_t lengthi4;
The length of a byte-range within a file.
F———————— +—_ +
mode4 typedef uint32_t mode4;
Mode attribute data type.
o ———————— e +
nfs_cookie4d typedef uint64_t nfs_cookie4;
Opaque cookie value for READDIR.
o e +
nfs_fh4 typedef opaque nfs_fh4<NFS4_FHSIZE>;
Filehandle definition.
F———————— +—_ +
nfs_ftype4d enum nfs_ftype4;
Various defined file types.
o ———————— e +
nfsstat4 enum nfsstat4;
Return value for operations.
o e +
| offset4 | typedef uint64_t offsetd;

sequenceid4

verifier4d

Various offset designations
LOCK, COMMIT) .

(READ, WRITE,

typedef uint32_t gop4;

Quality of protection designation in
SECINFO.

typedef opaque sec_oid4d<>;

Security Object Identifier. The sec_oid4
data type is not really opaque. Instead, it
contains an ASN.1l OBJECT IDENTIFIER as used
by GSS-API in the mech_type argument to
GSS_Init_sec_context. See [7] for details.

typedef uint32_t sequenceid4;

Sequence number used for various session
operations (EXCHANGE_ID, CREATE_SESSION,
SEQUENCE, CB_SEQUENCE) .

typedef uint32_t seqgid4;

Sequence identifier used for locking.

typedef opaque
sessionid4 [NFS4_SESSIONID_SIZE];

Session identifier.

typedef uint32_t slotid4;

Sequencing artifact for various session
operations (SEQUENCE, CB_SEQUENCE) .

typedef opaque utf8string<>;

UTF-8 encoding for strings.

typedef utf8string utf8str_cis;

Case—-insensitive UTF-8 string.

typedef utf8string utf8str_cs;

Case-sensitive UTF-8 string.

typedef utf8string utf8str_mixed;

UTF-8 strings with a case—-sensitive prefix
and a case—insensitive suffix.

typedef utf8str_cs component4;

Represents pathname components.

typedef utf8str_cs linktext4;
Symbolic link contents ("symbolic link" is
defined in an Open Group [1l1] standard).

typedef component4 pathnamed<>;

Represents pathname for fs_locations.

typedef opaque
verifier4 [NFS4_VERIFIER_SIZE];

Verifier used for various operations

| | (COMMIT, CREATE, EXCHANGE_ID, OPEN, READDIR, |
| | WRITE) NFS4_VERIFIER_SIZE is defined as 8. |
Fom o +

Table 1
End of Base Data Types
3.3. Structured Data Types
3.3.1. nfstimed

struct nfstimed {
int64_t seconds;
uint32_t nseconds;
}i

The nfstime4 data type gives the number of seconds and nanoseconds
since midnight or zero hour January 1, 1970 Coordinated Universal
Time (UTC). Values greater than zero for the seconds field denote
dates after the zero hour January 1, 1970. Values less than zero for
the seconds field denote dates before the zero hour January 1, 1970.
In both cases, the nseconds field is to be added to the seconds field
for the final time representation. For example, if the time to be
represented is one-half second before zero hour January 1, 1970, the
seconds field would have a value of negative one (-1) and the
nseconds field would have a value of one-half second (500000000).
Values greater than 999,999,999 for nseconds are invalid.

This data type is used to pass time and date information. A server
converts to and from its local representation of time when processing
time values, preserving as much accuracy as possible. If the
precision of timestamps stored for a file system object is less than
defined, loss of precision can occur. An adjunct time maintenance
protocol is RECOMMENDED to reduce client and server time skew.

3.3.2. time_how4

enum time_howd {
SET_TO_SERVER_TIME4 = O,
SET_TO_CLIENT_TIME4 = 1

}i
3.3.3. settimed

union settimed4 switch (time_how4d set_it) {
case SET_TO_CLIENT_TIMEA4:
nfstimed time;
default:
void;

i

The time_how4 and settimed4 data types are used for setting timestamps
in file object attributes. If set_it is SET_TO_SERVER_TIME4, then
the server uses its local representation of time for the time value.

3.3.4. specdata4d

struct specdatad {

uint32_t specdatal; /* major device number */
uint32_t specdata2; /* minor device number */
bi

This data type represents the device numbers for the device file
types NF4CHR and NF4BLK.

3.3.5. fsid4
struct fsid4 {

uinto64_t major;
uinto64_t minor;

}i
3.3.6. change_policy4

struct change_policy4 {
uint64_t cp_major;
uint64_t cp_minor;

}i

The change_policy4 data type is used for the change_policy
RECOMMENDED attribute. It provides change sequencing indication
analogous to the change attribute. To enable the server to present a
value valid across server re-initialization without requiring
persistent storage, two 64-bit quantities are used, allowing one to
be a server instance ID and the second to be incremented non-
persistently, within a given server instance.

3.3.7. fattr4

struct fattréd {
bitmap4 attrmask;
attrlist4 attr_vals;

}i

The fattr4 data type is used to represent file and directory
attributes.

The bitmap is a counted array of 32-bit integers used to contain bit
values. The position of the integer in the array that contains bit n
can be computed from the expression (n / 32), and its bit within that
integer is (n mod 32).

3.3.8. change_info4

struct change_info4 {

bool atomic;
changeid4 before;
changeid4 after;

}i

This data type is used with the CREATE, LINK, OPEN, REMOVE, and
RENAME operations to let the client know the value of the change
attribute for the directory in which the target file system object

resides.
3.3.9. netaddr4

struct netaddr4d {
/* see struct rpcb in RFC 1833 */
string na_r_netid<>; /* network id */
string na_r_addr<>; /* universal address */

i

The netaddr4 data type is used to identify network transport
endpoints. The na_r_netid and na_r_addr fields respectively contain
a netid and uaddr. The netid and uaddr concepts are defined in [12].
The netid and uaddr formats for TCP over IPv4 and TCP over IPv6 are
defined in [12], specifically Tables 2 and 3 and in Sections 5.2.3.3
and 5.2.3.4.

3.3.10. state_owner4d

struct state_owner4d {
clientid4 clientid;
opaque owner<NFS4_OPAQUE_LIMIT>;

}i

typedef state_owner4 open_owner4;
typedef state_owner4 lock_owner4;

The state_owner4 data type is the base type for the open_owner4d
(Section 3.3.10.1) and lock_owner4 (Section 3.3.10.2).

3.3.10.1. open_owner4
This data type is used to identify the owner of OPEN state.
3.3.10.2. lock_owner4

This structure is used to identify the owner of byte-range locking
state.

3.3.11. open_to_lock_owner4

struct open_to_lock_ownerd {

seqgid4 open_seqgid;
stateid4 open_stateid;
seqid4 lock_seqgid;
lock_owner4 lock_owner;

}i

This data type is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and lock_owner, such
that the transition is made from a valid open_stateid sequence to
that of the new lock_stateid sequence. Using this mechanism avoids
the confirmation of the lock_owner/lock_seqgid pair since it is tied
to established state in the form of the open_stateid/open_seqgid.

3.3.12. stateid4

struct stateid4d {
uint32_t seqgid;
opaque other[12];
bi

This data type is used for the various state sharing mechanisms
between the client and server. The client never modifies a value of
data type stateid. The starting value of the "seqgid" field is
undefined. The server is required to increment the "seqgid" field by
one at each transition of the stateid. This is important since the
client will inspect the segid in OPEN stateids to determine the order
of OPEN processing done by the server.

3.3.13. layouttype4d

enum layouttyped {

LAYOUT4_NFSV4_1_ FILES = 0x1,
LAYOUT4_0OSD2_OBJECTS = 0x2,
LAYOUT4_BLOCK_VOLUME = 0x3

}i

This data type indicates what type of layout is being used. The file
server advertises the layout types it supports through the
fs_layout_type file system attribute (Section 5.12.1). A client asks
for layouts of a particular type in LAYOUTGET, and processes those
layouts in its layout-type-specific logic.

The layouttype4 data type is 32 bits in length. The range
represented by the layout type is split into three parts. Type 0x0
is reserved. Types within the range 0x00000001-0x7FFFFFFF are
globally unique and are assigned according to the description in
Section 22.5; they are maintained by IANA. Types within the range
0x80000000-0xXFFFFFFFF are site specific and for private use only.

The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1l file
layout type, as defined in Section 13, is to be used. The
LAYOUT4_OSD2_OBJECTS enumeration specifies that the object layout, as

defined in [47], is to be used. Similarly, the LAYOUT4_BLOCK_VOLUME
enumeration specifies that the block/volume layout, as defined in
[48], is to be used.

3.3.14. deviceid4
const NFS4_DEVICEID4_SIZE = 16;
typedef opaque deviceid4 [NFS4_DEVICEID4_SIZE];

Layout information includes device IDs that specify a storage device
through a compact handle. Addressing and type information is
obtained with the GETDEVICEINFO operation. Device IDs are not
guaranteed to be valid across metadata server restarts. A device ID
is unique per client ID and layout type. See Section 12.2.10 for
more details.

3.3.15. device_addr4

struct device_addr4d {
layouttype4 da_layout_type;
opaque da_addr_body<>;
bi

The device address is used to set up a communication channel with the
storage device. Different layout types will require different data
types to define how they communicate with storage devices. The
opaque da_addr_body field is interpreted based on the specified
da_layout_type field.

This document defines the device address for the NFSv4.1l file layout
(see Section 13.3), which identifies a storage device by network IP
address and port number. This is sufficient for the clients to
communicate with the NFSv4.1 storage devices, and may be sufficient
for other layout types as well. Device types for object-based
storage devices and block storage devices (e.g., Small Computer
System Interface (SCSI) volume labels) are defined by their
respective layout specifications.

3.3.16. layout_content4

struct layout_content4d {
layouttyped4 loc_type;
opaque loc_body<>;
}i

The loc_body field is interpreted based on the layout type
(loc_type). This document defines the loc_body for the NFSv4.1l file
layout type; see Section 13.3 for its definition.

3.3.17. layout4d

struct layoutéd {

offset4 lo_offset;
length4 lo_length;
layoutiomode4 lo_iomode;
layout_content4 lo_content;

i

The layout4 data type defines a layout for a file. The layout type
specific data is opaque within lo_content. Since layouts are sub-
dividable, the offset and length together with the file’s filehandle,
the client ID, iomode, and layout type identify the layout.

3.3.18. layoutupdate4

struct layoutupdated {
layouttype4 lou_type;
opadque lou_body<>;
}i

The layoutupdated4 data type is used by the client to return updated
layout information to the metadata server via the LAYOUTCOMMIT
(Section 18.42) operation. This data type provides a channel to pass
layout type specific information (in field lou_body) back to the
metadata server. For example, for the block/volume layout type, this
could include the list of reserved blocks that were written. The
contents of the opaque lou_body argument are determined by the layout
type. The NFSv4.1l file-based layout does not use this data type; if
lou_type is LAYOUT4_NFSV4_1_FILES, the lou_body field MUST have a
zero length.

3.3.19. layouthint4

struct layouthint4d ({
layouttype4 loh_type;
opaque loh_body<>;
bi

The layouthint4 data type is used by the client to pass in a hint
about the type of layout it would like created for a particular file.
It is the data type specified by the layout_hint attribute described
in Section 5.12.4. The metadata server may ignore the hint or may
selectively ignore fields within the hint. This hint should be
provided at create time as part of the initial attributes within
OPEN. The loh_body field is specific to the type of layout
(loh_type). The NFSv4.1l file-based layout uses the
nfsv4_1_file_layouthint4 data type as defined in Section 13.3.

3.3.20. layoutiomode4

enum layoutiomode4d ({

LAYOUTIOMODE4_READ 1,
LAYOUTIOMODE4_RW = 2,
LAYOUTIOMODE4_ANY =3

}i

The iomode specifies whether the client intends to just read or both
read and write the data represented by the layout. While the
LAYOUTIOMODE4_ANY iomode MUST NOT be used in the arguments to the
LAYOUTGET operation, it MAY be used in the arguments to the
LAYOUTRETURN and CB_LAYOUTRECALL operations. The LAYOUTIOMODE4_ANY
iomode specifies that layouts pertaining to both LAYOUTIOMODE4_READ
and LAYOUTIOMODE4_RW iomodes are being returned or recalled,
respectively. The metadata server’s use of the iomode may depend on
the layout type being used. The storage devices MAY validate I/O
accesses against the iomode and reject invalid accesses.

3.3.21. nfs_impl_id4

struct nfs_impl_id4 {

utf8str_cis nii_domain;
utf8str_cs nii_name;
nfstimed nii_date;

}i

This data type is used to identify client and server implementation
details. The nii_domain field is the DNS domain name with which the
implementor is associated. The nii_name field is the product name of
the implementation and is completely free form. It is RECOMMENDED
that the nii_name be used to distinguish machine architecture,
machine platforms, revisions, versions, and patch levels. The
nii_date field is the timestamp of when the software instance was
published or built.

3.3.22. threshold_item4

struct threshold_item4 ({
layouttype4 thi_layout_type;
bitmap4 thi_hintset;
opaque thi_hintlist<>;
bi

This data type contains a list of hints specific to a layout type for
helping the client determine when it should send I/O directly through
the metadata server versus the storage devices. The data type
consists of the layout type (thi_layout_type), a bitmap (thi_hintset)
describing the set of hints supported by the server (they may differ
based on the layout type), and a list of hints (thi_hintlist) whose
content is determined by the hintset bitmap. See the mdsthreshold
attribute for more details.

The thi_hintset field is a bitmap of the following values:

+ +===+ + +
name # Data Description

Type
+ +===+ + +
threshold4_read_size 0 length4 If a file’s length is
less than the value of
threshold4_read_size,
then it is RECOMMENDED
that the client read
from the file via the
MDS and not a storage
device.

threshold4_write_size 1 length4 If a file’s length is
less than the value of
threshold4_write_size,
then it is RECOMMENDED
that the client write
to the file via the
MDS and not a storage
device.

threshold4_read_iosize 2 length4 For read I/O sizes
below this threshold,
it is RECOMMENDED to
read data through the
MDS.

threshold4_write_iosize 3 lengthi4 For write I/O sizes
below this threshold,
it is RECOMMENDED to
write data through the
MDS.
f———————————— o o ——————————— +

Table 2
3.3.23. mdsthreshold4

struct mdsthreshold4 {
threshold_item4 mth_hints<>;

}i

This data type holds an array of elements of data type
threshold_item4, each of which is valid for a particular layout type.
An array 1s necessary because a server can support multiple layout
types for a single file.

4. Filehandles
The filehandle in the NFS protocol is a per—-server unique identifier
for a file system object. The contents of the filehandle are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system
object.

4.1. Obtaining the First Filehandle

The operations of the NFS protocol are defined in terms of one or

more filehandles. Therefore, the client needs a filehandle to
initiate communication with the server. With the NFSv3 protocol (RFC
1813 [38]), there exists an ancillary protocol to obtain this first
filehandle. The MOUNT protocol, RPC program number 100005, provides
the mechanism of translating a string-based file system pathname to a
filehandle, which can then be used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandle was introduced in RFC 2054 [49] and RFC 2055 [50]. With
the use of the public filehandle in combination with the LOOKUP
operation in the NFSv3 protocol, it has been demonstrated that the
MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFSv4.1l protocol will not use an ancillary protocol

for translation from string-based pathnames to a filehandle. Two
special filehandles will be used as starting points for the NFS
client.

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual" root of the file system namespace
at the NFS server. The client uses or starts with the ROOT
filehandle by employing the PUTROOTFH operation. The PUTROOTFH
operation instructs the server to set the "current" filehandle to the
ROOT of the server’s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’s file
tree with the LOOKUP operation. A complete discussion of the server
namespace is in Section 7.

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC filehandle. Unlike the
ROOT filehandle, the PUBLIC filehandle may be bound or represent an
arbitrary file system object at the server. The server is
responsible for this binding. It may be that the PUBLIC filehandle
and the ROOT filehandle refer to the same file system obiject.
However, it is up to the administrative software at the server and
the policies of the server administrator to define the binding of the
PUBLIC filehandle and server file system object. The client may not
make any assumptions about this binding. The client uses the PUBLIC
filehandle via the PUTPUBFH operation.

4.2. Filehandle Types

In the NFSv3 protocol, there was one type of filehandle with a single
set of semantics. This type of filehandle is termed "persistent” in
NFSv4.1. The semantics of a persistent filehandle remain the same as
before. A new type of filehandle introduced in NFSv4.l1 is the
"volatile" filehandle, which attempts to accommodate certain server
environments.

The volatile filehandle type was introduced to address server
functionality or implementation issues that make correct
implementation of a persistent filehandle infeasible. Some server
environments do not provide a file-system-level invariant that can be
used to construct a persistent filehandle. The underlying server
file system may not provide the invariant or the server’s file system
programming interfaces may not provide access to the needed
invariant. Volatile filehandles may ease the implementation of
server functionality such as hierarchical storage management or file
system reorganization or migration. However, the volatile filehandle
increases the implementation burden for the client.

Since the client will need to handle persistent and volatile
filehandles differently, a file attribute is defined that may be used
by the client to determine the filehandle types being returned by the
server.

4.2.1. General Properties of a Filehandle

The filehandle contains all the information the server needs to
distinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a later request and
can compare two filehandles from the same server for equality by
doing a byte-by-byte comparison. However, the client MUST NOT
otherwise interpret the contents of filehandles. 1If two filehandles
from the same server are equal, they MUST refer to the same file.
Servers SHOULD try to maintain a one-to-one correspondence between
filehandles and files, but this is not required. Clients MUST use
filehandle comparisons only to improve performance, not for correct
behavior. All clients need to be prepared for situations in which it
cannot be determined whether two filehandles denote the same object
and in such cases, avoid making invalid assumptions that might cause
incorrect behavior. Further discussion of filehandle and attribute
comparison in the context of data caching is presented in

Section 10.3.4.

As an example, in the case that two different pathnames when
traversed at the server terminate at the same file system object, the
server SHOULD return the same filehandle for each path. This can
occur if a hard link (see [6]) is used to create two file names that
refer to the same underlying file object and associated data. For
example, if paths /a/b/c and /a/d/c refer to the same file, the
server SHOULD return the same filehandle for both pathnames’
traversals.

4.2.2. Persistent Filehandle

A persistent filehandle is defined as having a fixed value for the
lifetime of the file system object to which it refers. Once the
server creates the filehandle for a file system object, the server
MUST accept the same filehandle for the object for the lifetime of
the object. If the server restarts, the NFS server MUST honor the
same filehandle value as it did in the server’s previous
instantiation. Similarly, if the file system is migrated, the new
NF'S server MUST honor the same filehandle as the old NFS server.

The persistent filehandle will be become stale or invalid when the
file system object is removed. When the server is presented with a
persistent filehandle that refers to a deleted object, it MUST return
an error of NFS4ERR_STALE. A filehandle may become stale when the
file system containing the object is no longer available. The file
system may become unavailable if it exists on removable media and the
media is no longer available at the server or the file system in
whole has been destroyed or the file system has simply been removed
from the server’s namespace (i.e., unmounted in a UNIX environment) .

4.2.3. Volatile Filehandle

A volatile filehandle does not share the same longevity
characteristics of a persistent filehandle. The server may determine
that a volatile filehandle is no longer valid at many different
points in time. TIf the server can definitively determine that a
volatile filehandle refers to an object that has been removed, the
server should return NFS4ERR_STALE to the client (as is the case for
persistent filehandles). In all other cases where the server
determines that a volatile filehandle can no longer be used, it
should return an error of NFS4ERR_FHEXPIRED.

The REQUIRED attribute "fh_expire_type" is used by the client to
determine what type of filehandle the server is providing for a
particular file system. This attribute is a bitmask with the
following values:

FH4_PERSISTENT The value of FH4_PERSISTENT is used to indicate a
persistent filehandle, which is wvalid until the object is removed
from the file system. The server will not return
NFS4ERR_FHEXPIRED for this filehandle. FH4_PERSISTENT is defined
as a value in which none of the bits specified below are set.

FH4_VOLATILE_ANY The filehandle may expire at any time, except as
specifically excluded (i.e., FH4_NO_EXPIRE_WITH_OPEN) .

FH4_NOEXPIRE_WITH_OPEN May only be set when FH4_VOLATILE_ANY is set.
If this bit is set, then the meaning of FH4_VOLATILE_ANY is
qualified to exclude any expiration of the filehandle when it is
open.

FH4_VOL_MIGRATION The filehandle will expire as a result of a file
system transition (migration or replication), in those cases in
which the continuity of filehandle use is not specified by handle
class information within the fs_locations_info attribute. When
this bit is set, clients without access to fs_locations_info
information should assume that filehandles will expire on file
system transitions.

FH4_VOL_RENAME The filehandle will expire during rename. This
includes a rename by the requesting client or a rename by any
other client. If FH4_VOL_ANY is set, FH4_VOL_RENAME is redundant.

Servers that provide volatile filehandles that can expire while open
require special care as regards handling of RENAMEs and REMOVEs.
This situation can arise if FH4_VOL_MIGRATION or FH4_VOL_RENAME is
set, if FH4_VOLATILE_ANY is set and FH4_NOEXPIRE_WITH_OPEN is not
set, or if a non-read-only file system has a transition target in a
different handle class. In these cases, the server should deny a
RENAME or REMOVE that would affect an OPEN file of any of the
components leading to the OPEN file. 1In addition, the server should
deny all RENAME or REMOVE requests during the grace period, in order
to make sure that reclaims of files where filehandles may have
expired do not do a reclaim for the wrong file.

Volatile filehandles are especially suitable for implementation of
the pseudo file systems used to bridge exports. See Section 7.5 for
a discussion of this.

.3. One Method of Constructing a Volatile Filehandle
A volatile filehandle, while opaque to the client, could contain:
[volatile bit = 1 | server boot time | slot | generation number]
* slot is an index in the server volatile filehandle table

* generation number is the generation number for the table entry/
slot

When the client presents a volatile filehandle, the server makes the
following checks, which assume that the check for the volatile bit
has passed. If the server boot time is less than the current server
boot time, return NFS4ERR_FHEXPIRED. If slot is out of range, return
NFS4ERR_BADHANDLE. If the generation number does not match, return
NFS4ERR_FHEXPIRED.

When the server restarts, the table is gone (it is volatile).

If the volatile bit is 0, then it is a persistent filehandle with a
different structure following it.

.4. Client Recovery from Filehandle Expiration

If possible, the client SHOULD recover from the receipt of an
NFS4ERR_FHEXPIRED error. The client must take on additional
responsibility so that it may prepare itself to recover from the
expiration of a volatile filehandle. TIf the server returns
persistent filehandles, the client does not need these additional
steps.

For volatile filehandles, most commonly the client will need to store
the component names leading up to and including the file system

object in question. With these names, the client should be able to
recover by finding a filehandle in the namespace that is still
available or by starting at the root of the server’s file system
namespace.

If the expired filehandle refers to an object that has been removed
from the file system, obviously the client will not be able to
recover from the expired filehandle.

It is also possible that the expired filehandle refers to a file that
has been renamed. If the file was renamed by another client, again
it is possible that the original client will not be able to recover.
However, in the case that the client itself is renaming the file and
the file is open, it is possible that the client may be able to
recover. The client can determine the new pathname based on the
processing of the rename request. The client can then regenerate the
new filehandle based on the new pathname. The client could also use
the COMPOUND procedure to construct a series of operations like:

RENAME A B
LOOKUP B
GETFH

Note that the COMPOUND procedure does not provide atomicity. This
example only reduces the overhead of recovering from an expired
filehandle.

File Attributes

To meet the requirements of extensibility and increased
interoperability with non-UNIX platforms, attributes need to be
handled in a flexible manner. The NFSv3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure cannot be extended as
new needs arise and it provides no way to indicate non-support. With
the NFSv4.1l protocol, the client is able to query what attributes the
server supports and construct requests with only those supported
attributes (or a subset thereof).

To this end, attributes are divided into three groups: REQUIRED,
RECOMMENDED, and named. Both REQUIRED and RECOMMENDED attributes are
supported in the NFSv4.1l protocol by a specific and well-defined
encoding and are identified by number. They are requested by setting
a bit in the bit vector sent in the GETATTR request; the server
response includes a bit vector to list what attributes were returned
in the response. New REQUIRED or RECOMMENDED attributes may be added
to the NFSv4 protocol as part of a new minor version by publishing a
Standards Track RFC that allocates a new attribute number value and
defines the encoding for the attribute. See Section 2.7 for further
discussion.

Named attributes are accessed by the new OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system object. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the named attributes is a directory object accessible by LOOKUP
or READDIR and contains files whose names represent the named

attributes and whose data bytes are the value of the attribute. For

example:
Fom Fom et +
| Lookup | "foo" | ; look up file |
Fom Fom P +
| GETATTR | attrbits | |
- o - +
| OPENATTR | | ; access foo’s named attributes |
Fom Fom et +
| Lookup | "xllicon" | ; look up specific attribute |
Fom Fom P +
| READ | 0,4096 | ; read stream of bytes
- o - +

5.

5

5.

Table 3

Named attributes are intended for data needed by applications rather
than by an NFS client implementation. NFS implementors are strongly
encouraged to define their new attributes as RECOMMENDED attributes
by bringing them to the IETF Standards Track process.

The set of attributes that are classified as REQUIRED is deliberately
small since servers need to do whatever it takes to support them. A
server should support as many of the RECOMMENDED attributes as
possible but, by their definition, the server is not required to
support all of them. Attributes are deemed REQUIRED if the data is
both needed by a large number of clients and is not otherwise
reasonably computable by the client when support is not provided on
the server.

Note that the hidden directory returned by OPENATTR is a convenience
for protocol processing. The client should not make any assumptions
about the server’s implementation of named attributes and whether or
not the underlying file system at the server has a named attribute
directory. Therefore, operations such as SETATTR and GETATTR on the
named attribute directory are undefined.

1. REQUIRED Attributes

These MUST be supported by every NFSv4.l client and server in order
to ensure a minimum level of interoperability. The server MUST store
and return these attributes, and the client MUST be able to function
with an attribute set limited to these attributes. With just the
REQUIRED attributes some client functionality may be impaired or
limited in some ways. A client may ask for any of these attributes
to be returned by setting a bit in the GETATTR request, and the
server MUST return their wvalue.

.2. RECOMMENDED Attributes

These attributes are understood well enough to warrant support in the
NFSv4.1l protocol. However, they may not be supported on all clients
and servers. A client may ask for any of these attributes to be
returned by setting a bit in the GETATTR request but must handle the
case where the server does not return them. A client MAY ask for the
set of attributes the server supports and SHOULD NOT request
attributes the server does not support. A server should be tolerant
of requests for unsupported attributes and simply not return them
rather than considering the request an error. It is expected that
servers will support all attributes they comfortably can and only
fail to support attributes that are difficult to support in their
operating environments. A server should provide attributes whenever
they don’t have to "tell lies"™ to the client. For example, a file
modification time should be either an accurate time or should not be
supported by the server. At times this will be difficult for
clients, but a client is better positioned to decide whether and how
to fabricate or construct an attribute or whether to do without the
attribute.

3. Named Attributes

These attributes are not supported by direct encoding in the NFSv4
protocol but are accessed by string names rather than numbers and
correspond to an uninterpreted stream of bytes that are stored with
the file system object. The namespace for these attributes may be
accessed by using the OPENATTR operation. The OPENATTR operation
returns a filehandle for a virtual "named attribute directory", and
further perusal and modification of the namespace may be done using
operations that work on more typical directories. In particular,
READDIR may be used to get a list of such named attributes, and
LOOKUP and OPEN may select a particular attribute. Creation of a new
named attribute may be the result of an OPEN specifying file
creation.

Once an OPEN is done, named attributes may be examined and changed by
normal READ and WRITE operations using the filehandles and stateids
returned by OPEN.

Named attributes and the named attribute directory may have their own
(non—-named) attributes. Each of these objects MUST have all of the
REQUIRED attributes and may have additional RECOMMENDED attributes.
However, the set of attributes for named attributes and the named
attribute directory need not be, and typically will not be, as large
as that for other objects in that file system.

Named attributes and the named attribute directory might be the
target of delegations (in the case of the named attribute directory,
these will be directory delegations). However, since granting of
delegations is at the server’s discretion, a server need not support
delegations on named attributes or the named attribute directory.

It is RECOMMENDED that servers support arbitrary named attributes. A
client should not depend on the ability to store any named attributes
in the server’s file system. If a server does support named
attributes, a client that is also able to handle them should be able
to copy a file’s data and metadata with complete transparency from
one location to another; this would imply that names allowed for
regular directory entries are valid for named attribute names as
well.

In NFSv4.1l, the structure of named attribute directories is
restricted in a number of ways, in order to prevent the development
of non-interoperable implementations in which some servers support a
fully general hierarchical directory structure for named attributes
while others support a limited but adequate structure for named
attributes. In such an environment, clients or applications might
come to depend on non-portable extensions. The restrictions are:

* CREATE is not allowed in a named attribute directory. Thus, such
objects as symbolic links and special files are not allowed to be
named attributes. Further, directories may not be created in a
named attribute directory, so no hierarchical structure of named
attributes for a single object is allowed.

* If OPENATTR is done on a named attribute directory or on a named
attribute, the server MUST return NFS4ERR_WRONG_TYPE.

* Doing a RENAME of a named attribute to a different named attribute
directory or to an ordinary (i.e., non-named-attribute) directory
is not allowed.

* Creating hard links between named attribute directories or between
named attribute directories and ordinary directories is not
allowed.

Names of attributes will not be controlled by this document or other
IETF Standards Track documents. See Section 22.2 for further
discussion.

.4. Classification of Attributes

Each of the REQUIRED and RECOMMENDED attributes can be classified in
one of three categories: per server (i.e., the value of the attribute
will be the same for all file objects that share the same server
owner; see Section 2.5 for a definition of server owner), per file
system (i.e., the value of the attribute will be the same for some or
all file objects that share the same fsid attribute (Section 5.8.1.9)
and server owner), or per file system object. ©Note that it is
possible that some per file system attributes may vary within the
file system, depending on the value of the "homogeneous"

(Section 5.8.2.16) attribute. Note that the attributes
time_access_set and time_modify_set are not listed in this section
because they are write-only attributes corresponding to time_access
and time_modify, and are used in a special instance of SETATTR.

* The per-server attribute is:
lease_time
* The per—-file system attributes are:

supported_attrs, suppattr_exclcreat, fh_expire_type,
link_support, symlink_support, unique_handles, aclsupport,
cansettime, case_insensitive, case_preserving,
chown_restricted, files_avail, files_free, files_total,
fs_locations, homogeneous, maxfilesize, maxname, maxread,
maxwrite, no_trunc, space_avail, space_free, space_total,
time_delta, change_policy, fs_status, fs_layout_type,
fs_locations_info, fs_charset_cap

* The per—-file system object attributes are:

type, change, size, named_attr, fsid, rdattr_error, filehandle,
acl, archive, fileid, hidden, maxlink, mimetype, mode,
numlinks, owner, owner_group, rawdev, space_used, system,
time_access, time_backup, time_create, time_metadata,
time_modify, mounted_on_fileid, dir_notif_ delay,
dirent_notif_delay, dacl, sacl, layout_type, layout_hint,
layout_blksize, layout_alignment, mdsthreshold, retention_get,
retention_set, retentevt_get, retentevt_set, retention_hold,
mode_set_masked

For quota_avail_hard, quota_avail_soft, and quota_used, see their
definitions below for the appropriate classification.

5.5. Set-Only and Get-Only Attributes

Some REQUIRED and RECOMMENDED attributes are set-only; i.e., they can
be set via SETATTR but not retrieved via GETATTR. Similarly, some
REQUIRED and RECOMMENDED attributes are get-only; i.e., they can be
retrieved via GETATTR but not set via SETATTR. If a client attempts
to set a get-only attribute or get a set-only attributes, the server
MUST return NFS4ERR_INVAL.

5.6. REQUIRED Attributes - List and Definition References

The list of REQUIRED attributes appears in Table 4. The meaning of
the columns of the table are:

Name: The name of the attribute.

Id: The number assigned to the attribute. In the event of conflicts
between the assigned number and [10], the latter is likely
authoritative, but should be resolved with Errata to this document
and/or [10]. See [51] for the Errata process.

Data Type: The XDR data type of the attribute.

Acc: Access allowed to the attribute. R means read-only (GETATTR
may retrieve, SETATTR may not set). W means write-only (SETATTR
may set, GETATTR may not retrieve). R W means read/write (GETATTR
may retrieve, SETATTR may set).

Defined in: The section of this specification that describes the

attribute.

+ + + + + +
| Name | Id | pata Type | Acc | Defined in:

+ + + + + +
| supported_attrs | 0 | bitmap4 | R | section 5.8.1.1 |
Fom T F——— Fom +
| type | 1 | nfs_ftyped | R | Section 5.8.1.2 |
Fom T t———— Fom +
| fh_expire_type | 2 | uint32_t | R | Section 5.8.1.3 |
Fom e F———— Fom +
| change | 3 | uinte4_t | R | section 5.8.1.4 |

5.

7.

The RECOMMENDED attributes are defined in Table 5.
the column headers are the same as Table 4;

| lease_time

+ ____________________
| rdattr_error

+ ____________________
| filehandle

+ ____________________
| suppattr_exclcreat
+ ____________________

RECOMMENDED Attribut

t—t—t—+—F—+—F—F—+ —+—+

es

o -
| uint64_t | R W
fo——— -
| bool | R
fo——— -
| bool | R
o -
| bool | R
fo——— -
| fsid4 | R
fo——— -
| bool | R
o -
| nfs_lease4 | R
fo——— -
| enum | R
fo——— -
| nfs_fh4 | R
o -
| bitmap4 | R
o -
Table 4

t—t—t—+—F—+—F—F—+ —+—+

List and Definition References

The meanings of
see Section 5.6 for the

meanings.
+ + + + +
| Name | Id | pata Type Acc | Defined in:
+ + + + +
acl 12 nfsaced<> R W Section
6.2.1
Fmm S = Fom e
aclsupport 13 uint32_t R Section
6.2.1.2
e e e e e e o= e
archive 14 bool RW Section
5.8.2.1
Fmm S = Fom e
cansettime 15 bool R Section
5.8.2.2
e e e e e e o= e
case_insensitive 16 bool R Section
5.8.2.3
Fmm S = Fom e
case_preserving 17 bool R Section
5.8.2.4
e e e e e e o= e
change_policy 60 chg_policy4 R Section
5.8.2.5
Fmm S = Fom e
chown_restricted 18 bool R Section
5.8.2.6
e e e e e e o= e
dacl 58 nfsacldl RW Section
6.2.2
Fmm S = Fom e
dir_notif_ delay 56 nfstime4 R Section
5.11.1
e e e e e e o= e
dirent_notif_delay 57 nfstimed R Section
5.11.2
Fmm S = Fom e
fileid 20 uint64_t R Section
5.8.2.7
e e e e e e o= e
files_avail 21 uinto64_t R Section
5.8.2.8

+ ____________________
files_free

mounted_on_fileid

+ ____________________
no_trunc

22 uint64_t R Section
5.8.2.9
e
23 uint64_t R Section
5.8.2.10
e s e e L
76 uint32_t R Section
5.8.2.11
e
62 layouttyped<> R Section
5.12.1
e e e L e e
24 fs_locations R Section
5.8.2.12
e
67 fs_locations_info4 R Section
5.8.2.13
e e e T e L e
61 fs4_status R Section
5.8.2.14
e
25 bool RW Section
5.8.2.15
e e e T e L e
26 bool R Section
5.8.2.16
e
66 uint32_t R Section
5.12.2
e e e T e L e
65 uint32_t R Section
5.12.3
e
63 layouthint4 W Section
5.12.4
e e e T e L e
64 layouttyped<> R Section
5.12.5
e
27 uint64_t R Section
5.8.2.17
e e e T e L e
28 uint32_t R Section
5.8.2.18
e
29 uint32_t R Section
5.8.2.19
e e e T e L e
30 uint64_t R Section
5.8.2.20
e
31 uint64_t R Section
5.8.2.21
e e e T e L e
68 mdsthreshold4 R Section
5.12.6
e
32 utf8str_cs RW Section
5.8.2.22
e e e T e L e
33 mode4 R W Section
6.2.4
e
74 mode_masked4 W Section
6.2.5
e e e T e L e
55 uint64_t R Section
5.8.2.23
o +———— o ———— +
| 34 | bool R Section

+ ____________________
numlinks

time_delta

+ ____________________

s St L +———— o +
35 uint32_t R Section
5.8.2.25
——t t—————
36 utf8str_mixed R W Section
5.8.2.26
e S Sttt o
37 utf8str_mixed R W Section
5.8.2.27
——t t—————
38 uint64_t R Section
5.8.2.28
e S Sttt o
39 uint64_t R Section
5.8.2.29
——t t—————
40 uint64_t R Section
5.8.2.30
e S Sttt o
41 specdata4d R Section
5.8.2.31
——t t—————
71 retention_get4 R Section
5.13.3
e S Sttt o
72 retention_set4 W Section
5.13.4
——t t—————
69 retention_get4 R Section
5.13.1
e et st o
73 uint64_t R W Section
5.13.5
——t t—————
70 retention_set4 W Section
5.13.2
e et st o
59 nfsacldl RW Section
6.2.3
——t t—————
42 uint64_t R Section
5.8.2.32
e et st o
43 uint64_t R Section
5.8.2.33
——t t—————
44 uint64_t R Section
5.8.2.34
e et st o
45 uint64_t R Section
5.8.2.35
——t t—————
46 bool R W Section
5.8.2.36
e et st o
47 nfstime4 R Section
5.8.2.37
——t t—————
48 settimed W Section
5.8.2.38
e et st o
49 nfstimed RW Section
5.8.2.39
——t t—————
50 nfstimed R W Section
5.8.2.40
e et st o
51 nfstimed R Section
5.8.2.41
T - t————— +

time_metadata 52 nfstimed R Section
5.8.2.42

o ———— e +————— t—————— +
time_modify 53 nfstimed R Section
5.8.2.43

o e +———— e +
time_modify_set 54 settime4 W Section
5.8.2.44

o ———— e +————— t—————— +

Table 5
5.8. Attribute Definitions
5.8.1. Definitions of REQUIRED Attributes
5.8.1.1. Attribute 0: supported_attrs
The bit wvector that would retrieve all REQUIRED and RECOMMENDED
attributes that are supported for this object. The scope of this
attribute applies to all objects with a matching fsid.

5.8.1.2. Attribute 1: type

Designates the type of an object in terms of one of a number of
special constants:

* NF4REG designates a regular file.

* NF4DIR designates a directory.

* NF4BLK designates a block device special file.

* NF4CHR designates a character device special file.
* NF4LNK designates a symbolic link.

* NF4SOCK designates a named socket special file.

* NF4FIFO designates a fifo special file.

* NF4ATTRDIR designates a named attribute directory.
* NF4NAMEDATTR designates a named attribute.

Within the explanatory text and operation descriptions, the following
phrases will be used with the meanings given below:

* The phrase "is a directory" means that the object’s type attribute
is NF4DIR or NF4ATTRDIR.

* The phrase "is a special file" means that the object’s type
attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FIFO.

* The phrases "is an ordinary file" and "is a regular file" mean
that the object’s type attribute is NF4REG or NF4NAMEDATTR.

5.8.1.3. Attribute 2: fh_expire_type

Server uses this to specify filehandle expiration behavior to the
client. See Section 4 for additional description.

5.8.1.4. Attribute 3: change

A value created by the server that the client can use to determine if
file data, directory contents, or attributes of the object have been
modified. The server may return the object’s time_metadata attribute
for this attribute’s wvalue, but only if the file system object cannot
be updated more frequently than the resolution of time_metadata.

5.8.1.5. Attribute 4: size

The size of the object in bytes.
.8.1.6. Attribute 5: link_support

TRUE, if the object’s file system supports hard links.
.8.1.7. Attribute 6: symlink_ support

TRUE, if the object’s file system supports symbolic links.
.8.1.8. Attribute 7: named_attr

TRUE, if this object has named attributes. In other words, object
has a non-empty named attribute directory.

.8.1.9. Attribute 8: fsid
Unique file system identifier for the file system holding this
object. The fsid attribute has major and minor components, each of
which are of data type uint64_t.

.8.1.10. Attribute 9: unique_handles

TRUE, if two distinct filehandles are guaranteed to refer to two
different file system objects.

.8.1.11. Attribute 10: lease_time
Duration of the lease at server in seconds.
.8.1.12. Attribute 11: rdattr_error

Error returned from an attempt to retrieve attributes during a
READDIR operation.

.8.1.13. Attribute 19: filehandle
The filehandle of this object (primarily for READDIR requests).
.8.1.14. Attribute 75: suppattr_exclcreat
The bit vector that would set all REQUIRED and RECOMMENDED attributes
that are supported by the EXCLUSIVE4_1 method of file creation via
the OPEN operation. The scope of this attribute applies to all
objects with a matching fsid.
.8.2. Definitions of Uncategorized RECOMMENDED Attributes
The definitions of most of the RECOMMENDED attributes follow.
Collections that share a common category are defined in other
sections.

.8.2.1. Attribute 14: archive

TRUE, if this file has been archived since the time of last
modification (deprecated in favor of time_backup) .

.8.2.2. Attribute 15: cansettime

TRUE, if the server is able to change the times for a file system
object as specified in a SETATTR operation.

.8.2.3. Attribute 16: case_insensitive

TRUE, if file name comparisons on this file system are case
insensitive.

.8.2.4. Attribute 17: case_preserving

TRUE, if file name case on this file system is preserved.

5.8.2.5. Attribute 60: change_policy
A value created by the server that the client can use to determine if
some server policy related to the current file system has been
subject to change. If the value remains the same, then the client
can be sure that the values of the attributes related to fs location
and the fss_type field of the fs_status attribute have not changed.
On the other hand, a change in this wvalue does necessarily imply a
change in policy. It is up to the client to interrogate the server
to determine if some policy relevant to it has changed. See
Section 3.3.6 for details.
This attribute MUST change when the value returned by the
fs_locations or fs_locations_info attribute changes, when a file
system goes from read-only to writable or vice versa, or when the
allowable set of security flavors for the file system or any part
thereof is changed.

5.8.2.6. Attribute 18: chown_restricted
If TRUE, the server will reject any request to change either the
owner or the group associated with a file if the caller is not a
privileged user (for example, "root" in UNIX operating environments
or, in Windows 2000, the "Take Ownership" privilege).

5.8.2.7. Attribute 20: fileid
A number uniquely identifying the file within the file system.

5.8.2.8. Attribute 21: files_avail

File slots available to this user on the file system containing this
object —— this should be the smallest relevant limit.

5.8.2.9. Attribute 22: files_free

Free file slots on the file system containing this object -- this
should be the smallest relevant limit.

5.8.2.10. Attribute 23: files_total
Total file slots on the file system containing this object.
5.8.2.11. Attribute 76: fs_charset_cap
Character set capabilities for this file system. See Section 14.4.
5.8.2.12. Attribute 24: fs_locations
Locations where this file system may be found. If the server returns
NFS4ERR_MOVED as an error, this attribute MUST be supported. See
Section 11.16 for more details.

5.8.2.13. Attribute 67: fs_locations_info

Full function file system location. See Section 11.17.2 for more
details.

5.8.2.14. Attribute 61: fs_status

Generic file system type information. See Section 11.18 for more
details.

5.8.2.15. Attribute 25: hidden

TRUE, if the file is considered hidden with respect to the Windows
APT.

5.8.2.16. Attribute 26: homogeneous

TRUE, if this object’s file system is homogeneous; i.e., all objects
in the file system (all objects on the server with the same fsid)
have common values for all per-file-system attributes.

.8.2.17. Attribute 27: maxfilesize
Maximum supported file size for the file system of this object.
.8.2.18. Attribute 28: maxlink
Maximum number of links for this obiject.
.8.2.19. Attribute 29: maxname
Maximum file name size supported for this obiject.
.8.2.20. Attribute 30: maxread

Maximum amount of data the READ operation will return for this
object.

.8.2.21. Attribute 31: maxwrite

Maximum amount of data the WRITE operation will accept for this
object. This attribute SHOULD be supported if the file is writable.
Lack of this attribute can lead to the client either wasting
bandwidth or not receiving the best performance.

.8.2.22. Attribute 32: mimetype
MIME body type/subtype of this object.
.8.2.23. Attribute 55: mounted_on_fileid

Like fileid, but if the target filehandle is the root of a file
system, this attribute represents the fileid of the underlying
directory.

UNIX-based operating environments connect a file system into the
namespace by connecting (mounting) the file system onto the existing
file object (the mount point, usually a directory) of an existing
file system. When the mount point’s parent directory is read via an
APT like readdir (), the return results are directory entries, each
with a component name and a fileid. The fileid of the mount point’s
directory entry will be different from the fileid that the stat ()
system call returns. The stat() system call is returning the fileid
of the root of the mounted file system, whereas readdir () is
returning the fileid that stat () would have returned before any file
systems were mounted on the mount point.

Unlike NFSv3, NFSv4.1l allows a client’s LOOKUP request to cross other
file systems. The client detects the file system crossing whenever
the filehandle argument of LOOKUP has an fsid attribute different
from that of the filehandle returned by LOOKUP. A UNIX-based client
will consider this a "mount point crossing". UNIX has a legacy
scheme for allowing a process to determine its current working
directory. This relies on readdir() of a mount point’s parent and
stat () of the mount point returning fileids as previously described.
The mounted_on_fileid attribute corresponds to the fileid that
readdir () would have returned as described previously.

While the NFSv4.1l client could simply fabricate a fileid
corresponding to what mounted_on_fileid provides (and if the server
does not support mounted_on_fileid, the client has no choice), there
is a risk that the client will generate a fileid that conflicts with
one that is already assigned to another object in the file system.
Instead, if the server can provide the mounted_on_fileid, the
potential for client operational problems in this area is eliminated.

If the server detects that there is no mounted point at the target
file object, then the value for mounted_on_fileid that it returns is

the same as that of the fileid attribute.

The mounted_on_fileid attribute is RECOMMENDED, so the server SHOULD
provide it if possible, and for a UNIX-based server, this is
straightforward. Usually, mounted_on_fileid will be requested during
a READDIR operation, in which case it is trivial (at least for UNIX-
based servers) to return mounted_on_fileid since it is equal to the
fileid of a directory entry returned by readdir(). If
mounted_on_fileid is requested in a GETATTR operation, the server
should obey an invariant that has it returning a value that is equal
to the file object’s entry in the object’s parent directory, i.e.,
what readdir () would have returned. Some operating environments
allow a series of two or more file systems to be mounted onto a
single mount point. In this case, for the server to obey the
aforementioned invariant, it will need to find the base mount point,
and not the intermediate mount points.

5.8.2.24. Attribute 34: no_trunc

If this attribute is TRUE, then if the client uses a file name longer
than name_max, an error will be returned instead of the name being
truncated.

5.8.2.25. Attribute 35: numlinks
Number of hard links to this object.
5.8.2.26. Attribute 36: owner
The string name of the owner of this object.
5.8.2.27. Attribute 37: owner_group
The string name of the group ownership of this object.
5.8.2.28. Attribute 38: quota_avail_hard

The value in bytes that represents the amount of additional disk
space beyond the current allocation that can be allocated to this
file or directory before further allocations will be refused. It is
understood that this space may be consumed by allocations to other
files or directories.

5.8.2.29. Attribute 39: quota_avail_soft

The value in bytes that represents the amount of additional disk
space that can be allocated to this file or directory before the user
may reasonably be warned. It is understood that this space may be
consumed by allocations to other files or directories though there is
a rule as to which other files or directories.

5.8.2.30. Attribute 40: quota_used

The value in bytes that represents the amount of disk space used by
this file or directory and possibly a number of other similar files
or directories, where the set of "similar" meets at least the
criterion that allocating space to any file or directory in the set
will reduce the "quota_avail_hard" of every other file or directory
in the set.

Note that there may be a number of distinct but overlapping sets of
files or directories for which a quota_used value is maintained,
e.g., "all files with a given owner", "all files with a given group
owner", etc. The server is at liberty to choose any of those sets
when providing the content of the quota_used attribute, but should do
so in a repeatable way. The rule may be configured per file system
or may be "choose the set with the smallest quota".

5.8.2.31. Attribute 41: rawdev

Raw device number of file of type NF4BLK or NF4CHR. The device

number is split into major and minor numbers. If the file’s type
attribute is not NF4BLK or NF4CHR, the value returned SHOULD NOT be
considered useful.

.8.2.32. Attribute 42: space_avail

Disk space in bytes available to this user on the file system
containing this object —-- this should be the smallest relevant limit.

.8.2.33. Attribute 43: space_free

Free disk space in bytes on the file system containing this object —--
this should be the smallest relevant limit.

.8.2.34. Attribute 44: space_total

Total disk space in bytes on the file system containing this obiject.
.8.2.35. Attribute 45: space_used

Number of file system bytes allocated to this object.
.8.2.36. Attribute 46: system

This attribute is TRUE if this file is a "system" file with respect
to the Windows operating environment.

.8.2.37. Attribute 47: time_access

The time_access attribute represents the time of last access to the
object by a READ operation sent to the server. The notion of what is
an "access" depends on the server’s operating environment and/or the
server’s file system semantics. For example, for servers obeying
Portable Operating System Interface (POSIX) semantics, time_access
would be updated only by the READ and READDIR operations and not any
of the operations that modify the content of the object [13], [14],
[15]. Of course, setting the corresponding time_access_set attribute
is another way to modify the time_access attribute.

Whenever the file object resides on a writable file system, the
server should make its best efforts to record time_access into stable
storage. However, to mitigate the performance effects of doing so,
and most especially whenever the server is satisfying the read of the
object’s content from its cache, the server MAY cache access time
updates and lazily write them to stable storage. It is also
acceptable to give administrators of the server the option to disable
time_access updates.

.8.2.38. Attribute 48: time_access_set
Sets the time of last access to the object. SETATTR use only.

.8.2.39. Attribute 49: time_backup
The time of last backup of the object.

.8.2.40. Attribute 50: time_create
The time of creation of the object. This attribute does not have any
relation to the traditional UNIX file attribute "ctime" or "change
time".

.8.2.41. Attribute 51: time_delta
Smallest useful server time granularity.

.8.2.42. Attribute 52: time_metadata

The time of last metadata modification of the obiject.

.8.2.43. Attribute 53: time_modify

The time of last modification to the obiject.
5.8.2.44. Attribute 54: time_modify_set

Sets the time of last modification to the object. SETATTR use only.
5.9. Interpreting owner and owner_group

The RECOMMENDED attributes "owner" and "owner_group" (and also users
and groups within the "acl" attribute) are represented in terms of a
UTF-8 string. To avoid a representation that is tied to a particular
underlying implementation at the client or server, the use of the
UTF-8 string has been chosen. Note that Section 6.1 of RFC 2624 [53]
provides additional rationale. It is expected that the client and
server will have their own local representation of owner and
owner_group that is used for local storage or presentation to the end
user. Therefore, it is expected that when these attributes are
transferred between the client and server, the local representation
is translated to a syntax of the form "user@dns_domain". This will
allow for a client and server that do not use the same local
representation the ability to translate to a common syntax that can
be interpreted by both.

Similarly, security principals may be represented in different ways
by different security mechanisms. Servers normally translate these
representations into a common format, generally that used by local
storage, to serve as a means of identifying the users corresponding
to these security principals. When these local identifiers are
translated to the form of the owner attribute, associated with files
created by such principals, they identify, in a common format, the
users associated with each corresponding set of security principals.

The translation used to interpret owner and group strings is not
specified as part of the protocol. This allows various solutions to
be employed. For example, a local translation table may be consulted
that maps a numeric identifier to the user@dns_domain syntax. A name
service may also be used to accomplish the translation. A server may
provide a more general service, not limited by any particular
translation (which would only translate a limited set of possible
strings) by storing the owner and owner_group attributes in local
storage without any translation or it may augment a translation
method by storing the entire string for attributes for which no
translation is available while using the local representation for
those cases in which a translation is available.

Servers that do not provide support for all possible values of the
owner and owher_group attributes SHOULD return an error
(NFS4ERR_BADOWNER) when a string is presented that has no
translation, as the value to be set for a SETATTR of the owner,
owner_group, or acl attributes. When a server does accept an owner
or owner_group value as valid on a SETATTR (and similarly for the
owner and group strings in an acl), it is promising to return that
same string when a corresponding GETATTR is done. Configuration
changes (including changes from the mapping of the string to the
local representation) and ill-constructed name translations (those
that contain aliasing) may make that promise impossible to honor.
Servers should make appropriate efforts to avoid a situation in which
these attributes have their values changed when no real change to
ownership has occurred.

The "dns_domain" portion of the owner string is meant to be a DNS
domain name, for example, user@example.org. Servers should accept as
valid a set of users for at least one domain. A server may treat
other domains as having no valid translations. A more general
service is provided when a server is capable of accepting users for
multiple domains, or for all domains, subject to security
constraints.

In the case where there is no translation available to the client or
server, the attribute value will be constructed without the "@".

Therefore, the absence of the @ from the owner or owner_group
attribute signifies that no translation was available at the sender
and that the receiver of the attribute should not use that string as
a basis for translation into its own internal format. Even though
the attribute wvalue cannot be translated, it may still be useful. In
the case of a client, the attribute string may be used for local
display of ownership.

To provide a greater degree of compatibility with NFSv3, which
identified users and groups by 32-bit unsigned user identifiers and
group identifiers, owner and group strings that consist of decimal
numeric values with no leading zeros can be given a special
interpretation by clients and servers that choose to provide such
support. The receiver may treat such a user or group string as
representing the same user as would be represented by an NFSv3 uid or
gid having the corresponding numeric value. A server is not
obligated to accept such a string, but may return an NFS4ERR_BADOWNER
instead. To avoid this mechanism being used to subvert user and
group translation, so that a client might pass all of the owners and
groups in numeric form, a server SHOULD return an NEFS4ERR_BADOWNER
error when there is a wvalid translation for the user or owner

designated in this way. In that case, the client must use the
appropriate name@domain string and not the special form for
compatibility.

The owner string "nobody" may be used to designate an anonymous user,
which will be associated with a file created by a security principal
that cannot be mapped through normal means to the owner attribute.
Users and implementations of NFSv4.1l SHOULD NOT use "nobody" to
designate a real user whose access is not anonymous.

5.10. Character Case Attributes

With respect to the case_insensitive and case_preserving attributes,
each UCS-4 character (which UTF-8 encodes) can be mapped according to
Appendix B.2 of RFC 3454 [16]. For general character handling and
internationalization issues, see Section 14.

5.11. Directory Notification Attributes

As described in Section 18.39, the client can request a minimum delay
for notifications of changes to attributes, but the server is free to
ignore what the client requests. The client can determine in advance
what notification delays the server will accept by sending a GETATTR
operation for either or both of two directory notification
attributes. When the client calls the GET_DIR_DELEGATION operation
and asks for attribute change notifications, it should request
notification delays that are no less than the values in the server-
provided attributes.

5.11.1. Attribute 56: dir_notif_delay

The dir_notif_delay attribute is the minimum number of seconds the
server will delay before notifying the client of a change to the
directory’s attributes.

5.11.2. Attribute 57: dirent_notif_delay

The dirent_notif_delay attribute is the minimum number of seconds the
server will delay before notifying the client of a change to a file
object that has an entry in the directory.

5.12. ©pNFS Attribute Definitions
5.12.1. Attribute 62: fs_layout_type

The fs_layout_type attribute (see Section 3.3.13) applies to a file
system and indicates what layout types are supported by the file
system. When the client encounters a new fsid, the client SHOULD
obtain the wvalue for the fs_layout_type attribute associated with the
new file system. This attribute is used by the client to determine

if the layout types supported by the server match any of the client’s
supported layout types.

5.12.2. Attribute 66: layout_alignment

When a client holds layouts on files of a file system, the
layout_alignment attribute indicates the preferred alignment for I/O
to files on that file system. Where possible, the client should send
READ and WRITE operations with offsets that are whole multiples of
the layout_alignment attribute.

5.12.3. Attribute 65: layout_blksize

When a client holds layouts on files of a file system, the
layout_blksize attribute indicates the preferred block size for I/O
to files on that file system. Where possible, the client should send
READ operations with a count argument that is a whole multiple of
layout_blksize, and WRITE operations with a data argument of size
that is a whole multiple of layout_blksize.

5.12.4. Attribute 63: layout_hint

The layout_hint attribute (see Section 3.3.19) may be set on newly
created files to influence the metadata server’s choice for the
file’s layout. If possible, this attribute is one of those set in
the initial attributes within the OPEN operation. The metadata
server may choose to ignore this attribute. The layout_hint
attribute is a subset of the layout structure returned by LAYOUTGET.
For example, instead of specifying particular devices, this would be

used to suggest the stripe width of a file. The server
implementation determines which fields within the layout will be
used.

5.12.5. Attribute 64: layout_type

This attribute lists the layout type(s) available for a file. The
value returned by the server is for informational purposes only. The
client will use the LAYOUTGET operation to obtain the information
needed in order to perform I/0O, for example, the specific device
information for the file and its layout.

5.12.6. Attribute 68: mdsthreshold

This attribute is a server-provided hint used to communicate to the
client when it is more efficient to send READ and WRITE operations to
the metadata server or the data server. The two types of thresholds
described are file size thresholds and I/O size thresholds. If a
file’s size is smaller than the file size threshold, data accesses
SHOULD be sent to the metadata server. If an I/O request has a
length that is below the I/0 size threshold, the I/O SHOULD be sent
to the metadata server. Each threshold type is specified separately
for read and write.

The server MAY provide both types of thresholds for a file. If both
file size and I/0 size are provided, the client SHOULD reach or
exceed both thresholds before sending its read or write requests to
the data server. Alternatively, if only one of the specified
thresholds is reached or exceeded, the I/O requests are sent to the
metadata server.

For each threshold type, a value of zero indicates no READ or WRITE
should be sent to the metadata server, while a value of all ones
indicates that all READs or WRITEs should be sent to the metadata
server.

The attribute is available on a per-filehandle basis. If the current
filehandle refers to a non-pNFS file or directory, the metadata
server should return an attribute that is representative of the
filehandle’s file system. It is suggested that this attribute is
queried as part of the OPEN operation. Due to dynamic system
changes, the client should not assume that the attribute will remain

constant for any specific time period; thus, it should be
periodically refreshed.

5.13. Retention Attributes

Retention is a concept whereby a file object can be placed in an
immutable, undeletable, unrenamable state for a fixed or infinite
duration of time. Once in this "retained" state, the file cannot be
moved out of the state until the duration of retention has been
reached.

When retention is enabled, retention MUST extend to the data of the
file, and the name of file. The server MAY extend retention to any
other property of the file, including any subset of REQUIRED,
RECOMMENDED, and named attributes, with the exceptions noted in this
section.

Servers MAY support or not support retention on any file object type.
The five retention attributes are explained in the next subsections.

5.13.1. Attribute 69: retention_get

If retention is enabled for the associated file, this attribute’s

value represents the retention begin time of the file object. This
attribute’s value is only readable with the GETATTR operation and
MUST NOT be modified by the SETATTR operation (Section 5.5). The

value of the attribute consists of:

const RET4_DURATION_INFINITE = Oxffffffffffffffff;
struct retention_get4d {

uint64_t rg_duration;

nfstimed rg_begin_time<l>;

i

The field rg_duration is the duration in seconds indicating how long
the file will be retained once retention is enabled. The field

rg_begin_time is an array of up to one absolute time value. If the
array is zero length, no beginning retention time has been
established, and retention is not enabled. 1If rg_duration is equal

to RET4_DURATION_INFINITE, the file, once retention is enabled, will
be retained for an infinite duration.

If (as soon as) rg_duration is zero, then rg_begin_time will be of
zero length, and again, retention is not (no longer) enabled.

5.13.2. Attribute 70: retention_set

This attribute is used to set the retention duration and optionally
enable retention for the associated file object. This attribute is
only modifiable via the SETATTR operation and MUST NOT be retrieved
by the GETATTR operation (Section 5.5). This attribute corresponds
to retention_get. The value of the attribute consists of:

struct retention_setd {
bool rs_enable;
uint64_t rs_duration<l>;
}i

If the client sets rs_enable to TRUE, then it is enabling retention
on the file object with the begin time of retention starting from the
server’s current time and date. The duration of the retention can
also be provided if the rs_duration array is of length one. The
duration is the time in seconds from the begin time of retention, and
if set to RET4_DURATION_INFINITE, the file is to be retained forever.
If retention is enabled, with no duration specified in either this
SETATTR or a previous SETATTR, the duration defaults to zero seconds.
The server MAY restrict the enabling of retention or the duration of
retention on the basis of the ACE4_WRITE_RETENTION ACL permission.
The enabling of retention MUST NOT prevent the enabling of event-
based retention or the modification of the retention_hold attribute.

The following rules apply to both the retention_set and retentevt_set
attributes.

* As long as retention is not enabled, the client is permitted to
decrease the duration.

* The duration can always be set to an equal or higher value, even
if retention is enabled. Note that once retention is enabled, the
actual duration (as returned by the retention_get or retentevt_get
attributes; see Section 5.13.1 or Section 5.13.3) is constantly
counting down to zero (one unit per second), unless the duration
was set to RET4_DURATION_INFINITE. Thus, it will not be possible
for the client to precisely extend the duration on a file that has
retention enabled.

* While retention is enabled, attempts to disable retention or
decrease the retention’s duration MUST fail with the error
NFS4ERR_INVAL.

* TIf the principal attempting to change retention_set or
retentevt_set does not have ACE4_WRITE_RETENTION permissions, the
attempt MUST fail with NFS4ERR_ACCESS.

5.13.3. Attribute 71: retentevt_get

Gets the event-based retention duration, and if enabled, the event-
based retention begin time of the file object. This attribute is
like retention_get, but refers to event-based retention. The event
that triggers event-based retention is not defined by the NFSv4.l
specification.

5.13.4. Attribute 72: retentevt_set

Sets the event-based retention duration, and optionally enables
event-based retention on the file object. This attribute corresponds
to retentevt_get and is like retention_set, but refers to event-based
retention. When event-based retention is set, the file MUST be
retained even if non-event-based retention has been set, and the
duration of non-event-based retention has been reached. Conversely,
when non-event-based retention has been set, the file MUST be
retained even if event-based retention has been set, and the duration
of event-based retention has been reached. The server MAY restrict
the enabling of event-based retention or the duration of event-based
retention on the basis of the ACE4_WRITE_RETENTION ACL permission.
The enabling of event-based retention MUST NOT prevent the enabling
of non-event-based retention or the modification of the
retention_hold attribute.

5.13.5. Attribute 73: retention_hold

Gets or sets administrative retention holds, one hold per bit
position.

This attribute allows one to 64 administrative holds, one hold per
bit on the attribute. If retention_hold is not zero, then the file
MUST NOT be deleted, renamed, or modified, even if the duration on
enabled event or non-event-based retention has been reached. The
server MAY restrict the modification of retention_hold on the basis
of the ACE4_WRITE_RETENTION_HOLD ACL permission. The enabling of
administration retention holds does not prevent the enabling of
event-based or non-event-based retention.

If the principal attempting to change retention_hold does not have
ACE4_WRITE_RETENTION_HOLD permissions, the attempt MUST fail with
NFS4ERR_ACCESS.

6. Access Control Attributes

Access Control Lists (ACLs) are file attributes that specify fine-
grained access control. This section covers the "acl", "dacl",

6.1.

6.2.

"sacl", "aclsupport", "mode", and "mode_set_masked" file attributes
and their interactions. Note that file attributes may apply to any
file system object.

Goals

ACLs and modes represent two well-established models for specifying
permissions. This section specifies requirements that attempt to
meet the following goals:

* If a server supports the mode attribute, it should provide
reasonable semantics to clients that only set and retrieve the
mode attribute.

* TIf a server supports ACL attributes, it should provide reasonable
semantics to clients that only set and retrieve those attributes.

* On servers that support the mode attribute, if ACL attributes have
never been set on an object, via inheritance or explicitly, the
behavior should be traditional UNIX-like behavior.

* On servers that support the mode attribute, if the ACL attributes
have been previously set on an object, either explicitly or via
inheritance:

— Setting only the mode attribute should effectively control the
traditional UNIX-like permissions of read, write, and execute
on owner, owner_group, and other.

— Setting only the mode attribute should provide reasonable
security. For example, setting a mode of 000 should be enough
to ensure that future OPEN operations for
OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any
principal fail, regardless of a previously existing or
inherited ACL.

* NFSv4.l1 may introduce different semantics relating to the mode and
ACL attributes, but it does not render invalid any previously
existing implementations. Additionally, this section provides
clarifications based on previous implementations and discussions
around them.

* On servers that support both the mode and the acl or dacl
attributes, the server must keep the two consistent with each
other. The value of the mode attribute (with the exception of the
three high-order bits described in Section 6.2.4) must be
determined entirely by the value of the ACL, so that use of the
mode is never required for anything other than setting the three
high-order bits. See Section 6.4.1 for exact requirements.

* When a mode attribute is set on an object, the ACL attributes may
need to be modified in order to not conflict with the new mode.
In such cases, it is desirable that the ACL keep as much
information as possible. This includes information about
inheritance, AUDIT and ALARM ACEs, and permissions granted and
denied that do not conflict with the new mode.

File Attributes Discussion
1. Attribute 12: acl
The NFSv4.1 ACL attribute contains an array of Access Control Entries
(ACEs) that are associated with the file system object. Although the
client can set and get the acl attribute, the server is responsible
for using the ACL to perform access control. The client can use the
OPEN or ACCESS operations to check access without modifying or
reading data or metadata.

The NFS ACE structure is defined as follows:

typedef uint32_t acetyped;

typedef uint32_t aceflag4;
typedef uint32_t acemask4;

struct nfsaced {

acetype4 type;
aceflag4 flag;
acemask4 access_mask;
utf8str_mixed who;

}i

To determine if a request succeeds, the server processes each nfsace4
entry in order. Only ACEs that have a "who" that matches the
requester are considered. Each ACE is processed until all of the
bits of the requester’s access have been ALLOWED. Once a bit (see
below) has been ALLOWED by an ACCESS_ALLOWED_ACE, it is no longer
considered in the processing of later ACEs. If an ACCESS_DENIED_ACE
is encountered where the requester’s access still has unALLOWED bits
in common with the "access_mask" of the ACE, the request is denied.
When the ACL is fully processed, if there are bits in the requester’s
mask that have not been ALLOWED or DENIED, access is denied.

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types do
not affect a requester’s access, and instead are for triggering
events as a result of a requester’s access attempt. Therefore, AUDIT
and ALARM ACEs are processed only after processing ALLOW and DENY
ACEs.

The NFSv4.l1 ACL model is quite rich. Some server platforms may
provide access-control functionality that goes beyond the UNIX-style
mode attribute, but that is not as rich as the NFS ACL model. So
that users can take advantage of this more limited functionality, the
server may support the acl attributes by mapping between its ACL
model and the NFSv4.1 ACL model. Servers must ensure that the ACL
they actually store or enforce is at least as strict as the NFSv4 ACL
that was set. It is tempting to accomplish this by rejecting any ACL
that falls outside the small set that can be represented accurately.
However, such an approach can render ACLs unusable without special
client-side knowledge of the server’s mapping, which defeats the
purpose of having a common NFSv4 ACL protocol. Therefore, servers
should accept every ACL that they can without compromising security.
To help accomplish this, servers may make a special exception, in the
case of unsupported permission bits, to the rule that bits not
ALLOWED or DENIED by an ACL must be denied. For example, a UNIX-
style server might choose to silently allow read attribute
permissions even though an ACL does not explicitly allow those
permissions. (An ACL that explicitly denies permission to read
attributes should still be rejected.)

The situation is complicated by the fact that a server may have
multiple modules that enforce ACLs. For example, the enforcement for
NFSv4.l access may be different from, but not weaker than, the
enforcement for local access, and both may be different from the
enforcement for access through other protocols such as SMB (Server
Message Block). So it may be useful for a server to accept an ACL
even if not all of its modules are able to support it.

The guiding principle with regard to NFSv4 access is that the server
must not accept ACLs that appear to make access to the file more
restrictive than it really is.

6.2.1.1. ACE Type
The constants used for the type field (acetyped) are as follows:
const ACE4_ACCESS_ALLOWED_ACE_TYPE 0x00000000;
const ACE4_ACCESS_DENIED_ACE_TYPE 0x00000001;

const ACE4_SYSTEM AUDIT_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM_ALARM ACE_TYPE 0x00000003;

Only the ALLOWED and DENIED bits may be used in the dacl attribute,
and only the AUDIT and ALARM bits may be used in the sacl attribute.
All four are permitted in the acl attribute.

+ + + +
value | Abbreviation | Description
+ + + +
ACE4_ACCESS_ALLOWED_ACE_TYPE ALLOW Explicitly grants
the access
defined in
acemask4 to the
file or
directory.

ACE4_ACCESS_DENIED_ACE_TYPE DENY Explicitly denies
the access
defined in
acemask4 to the
file or
directory.

ACE4_SYSTEM_AUDIT_ACE_TYPE AUDIT Log (in a system-—
dependent way)
any access
attempt to a file
or directory that
uses any of the
access methods
specified in
acemask4.

ACE4_SYSTEM _ALARM_ACE_TYPE ALARM Generate an alarm
(in a system-—
dependent way)
when any access
attempt is made
to a file or
directory for the
access methods
specified in
acemask4.
o o ———————— o +

Table 6

The "Abbreviation" column denotes how the types will be referred to
throughout the rest of this section.

6.2.1.2. Attribute 13: aclsupport

A server need not support all of the above ACE types. This attribute
indicates which ACE types are supported for the current file system.

The bitmask constants used to represent the above definitions within

the aclsupport attribute are as follows:

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;

const ACL4_SUPPORT_ALARM_ACL

0x00000008;

Servers that support either the ALLOW or DENY ACE type SHOULD support
both ALLOW and DENY ACE types.

Clients should not attempt to set an ACE unless the server claims
support for that ACE type. If the server receives a request to set
an ACE that it cannot store, it MUST reject the request with
NFS4ERR_ATTRNOTSUPP. If the server receives a request to set an ACE
that it can store but cannot enforce, the server SHOULD reject the
request with NFS4ERR_ATTRNOTSUPP.

Support for any of the ACL attributes is optional (albeit

RECOMMENDED) . However, a server that supports either of the new ACL
attributes (dacl or sacl) MUST allow use of the new ACL attributes to
access all of the ACE types that it supports. In other words, if
such a server supports ALLOW or DENY ACEs, then it MUST support the
dacl attribute, and if it supports AUDIT or ALARM ACEs, then it MUST
support the sacl attribute.

6.2.1.3. ACE Access Mask

The bitmask constants used for the access mask field are as follows:

const ACE4_READ_DATA = 0x00000001;
const ACE4_LIST_DIRECTORY = 0x00000001;
const ACE4_WRITE_DATA = 0x00000002;

const ACE4_ADD_FILE = 0x00000002;

const ACE4_APPEND_DATA = 0x00000004;
const ACE4_ADD_SUBDIRECTORY = 0x00000004;
const ACE4_READ_NAMED_ATTRS = 0x00000008;
const ACE4_WRITE_NAMED_ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE_CHILD = 0x00000040;

const ACE4_READ_ATTRIBUTES = 0x00000080;

const ACE4_WRITE_ATTRIBUTES = 0x00000100;
const ACE4_WRITE_RETENTION = 0x00000200;
const ACE4_WRITE_RETENTION_HOLD = 0x00000400;
const ACE4_DELETE = 0x00010000;
const ACE4_READ_ACL = 0x00020000;
const ACE4_WRITE_ACL = 0x00040000;
const ACE4_WRITE_OWNER = 0x00080000;
const ACE4_SYNCHRONIZE = 0x00100000;

Note that some masks have coincident values, for example,
ACE4_READ_DATA and ACE4_LIST_DIRECTORY. The mask entries
ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are
intended to be used with directory objects, while ACE4_READ_DATA,
ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with
non-directory objects.

6.2.1.3.1. Discussion of Mask Attributes
ACE4_READ_DATA

Operation(s) affected:
READ

OPEN

Discussion:
Permission to read the data of the file.

Servers SHOULD allow a user the ability to read the data of the
file when only the ACE4_EXECUTE access mask bit is allowed.

ACE4_LIST_DIRECTORY

Operation(s) affected:
READDIR

Discussion:
Permission to list the contents of a directory.

ACE4_WRITE_DATA

Operation(s) affected:
WRITE

OPEN

SETATTR of size

Discussion:
Permission to modify a file’s data.

ACE4_ADD_FILE

Operation(s) affected:

CREATE
LINK
OPEN
RENAME

Discussion:
Permission to add a new file in a directory. The CREATE
operation is affected when nfs_ftyped4 is NF4LNK, NF4BLK,
NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not listed because it
is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when
used to create a regular file. LINK and RENAME are always
affected.

ACE4_APPEND_DATA

Operation(s) affected:
WRITE

OPEN
SETATTR of size

Discussion:
The ability to modify a file’s data, but only starting at EOF.
This allows for the notion of append-only files, by allowing
ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to the same user
or group. If a file has an ACL such as the one described above
and a WRITE request is made for somewhere other than EOF, the
server SHOULD return NFS4ERR_ACCESS.

ACE4_ADD_SUBDIRECTORY

Operation(s) affected:
CREATE

RENAME

Discussion:
Permission to create a subdirectory in a directory. The CREATE
operation is affected when nfs_ftype4 is NF4DIR. The RENAME
operation is always affected.

ACE4_READ_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to read the named attributes of a file or to look up
the named attribute directory. OPENATTR is affected when it is
not used to create a named attribute directory. This is when
1) createdir is TRUE, but a named attribute directory already
exists, or 2) createdir is FALSE.

ACE4_WRITE_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to write the named attributes of a file or to create
a named attribute directory. OPENATTR is affected when it 1is

used to create a named attribute directory. This is when
createdir is TRUE and no named attribute directory exists. The
ability to check whether or not a named attribute directory
exists depends on the ability to look it up; therefore, users
also need the ACE4_READ_NAMED_ATTRS permission in order to
create a named attribute directory.

ACE4_EXECUTE

Operation(s) affected:
READ

OPEN
REMOVE
RENAME
LINK
CREATE

Discussion:
Permission to execute a file.

Servers SHOULD allow a user the ability to read the data of the
file when only the ACE4_EXECUTE access mask bit is allowed.
This is because there is no way to execute a file without
reading the contents. Though a server may treat ACE4_EXECUTE
and ACE4_READ_DATA bits identically when deciding to permit a
READ operation, it SHOULD still allow the two bits to be set
independently in ACLs, and MUST distinguish between them when
replying to ACCESS operations. In particular, servers SHOULD
NOT silently turn on one of the two bits when the other is set,
as that would make it impossible for the client to correctly
enforce the distinction between read and execute permissions.

As an example, following a SETATTR of the following ACL:
nfsuser:ACE4_EXECUTE :ALLOW
A subsequent GETATTR of ACL for that file SHOULD return:
nfsuser:ACE4_EXECUTE :ALLOW
Rather than:
nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW
ACE4_EXECUTE

Operation(s) affected:
LOOKUP

Discussion:
Permission to traverse/search a directory.

ACE4_DELETE_CHILD

Operation(s) affected:
REMOVE

RENAME

Discussion:
Permission to delete a file or directory within a directory.
See Section 6.2.1.3.2 for information on ACE4_DELETE and
ACE4_DELETE_CHILD interact.

ACE4_READ_ATTRIBUTES

Operation(s) affected:
GETATTR of file system object attributes

VERIFY
NVERIFY
READDIR

Discussion:
The ability to read basic attributes (non-ACLs) of a file. On
a UNIX system, basic attributes can be thought of as the stat-
level attributes. Allowing this access mask bit would mean
that the entity can execute "ls -1" and stat. If a READDIR
operation requests attributes, this mask must be allowed for
the READDIR to succeed.

ACE4_WRITE_ATTRIBUTES

Operation(s) affected:
SETATTR of time_access_set, time_backup,

time_create, time_modify_ set, mimetype, hidden, system

Discussion:
Permission to change the times associated with a file or
directory to an arbitrary value. Also permission to change the
mimetype, hidden, and system attributes. A user having
ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to set
the times associated with a file to the current server time.

ACE4_WRITE_RETENTION

Operation(s) affected:
SETATTR of retention_set, retentevt_set.

Discussion:
Permission to modify the durations of event and non-event-based
retention. Also permission to enable event and non-event-based
retention. A server MAY behave such that setting
ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

ACE4_WRITE_RETENTION_HOLD

Operation(s) affected:
SETATTR of retention_hold.

Discussion:
Permission to modify the administration retention holds. A
server MAY map ACE4_WRITE_ATTRIBUTES to
ACE_WRITE_RETENTION_HOLD.
ACE4_DELETE

Operation(s) affected:
REMOVE

Discussion:
Permission to delete the file or directory. See
Section 6.2.1.3.2 for information on ACE4_DELETE and
ACE4_DELETE_CHILD interact.
ACE4_READ_ACL

Operation(s) affected:
GETATTR of acl, dacl, or sacl

NVERIFY

VERIFY

Discussion:
Permission to read the ACL.

ACE4_WRITE_ACL

Operation(s) affected:
SETATTR of acl and mode

Discussion:
Permission to write the acl and mode attributes.

ACE4_WRITE_OWNER

Operation(s) affected:
SETATTR of owner and owner_group

Discussion:
Permission to write the owner and owner_group attributes. On
UNIX systems, this is the ability to execute chown () and
chgrp () .

ACE4_SYNCHRONIZE

Operation(s) affected:

NONE

Discussion:
Permission to use the file object as a synchronization
primitive for interprocess communication. This permission is

not enforced or interpreted by the NFSv4.1l server on behalf of
the client.

Typically, the ACE4_SYNCHRONIZE permission is only meaningful
on local file systems, i.e., file systems not accessed via
NFSv4.1l. The reason that the permission bit exists is that
some operating environments, such as Windows, use
ACE4_SYNCHRONIZE.

For example, if a client copies a file that has
ACE4_SYNCHRONIZE set from a local file system to an NFSv4.l
server, and then later copies the file from the NFSv4.l server
to a local file system, it is likely that if ACE4_SYNCHRONIZE
was set in the original file, the client will want it set in
the second copy. The first copy will not have the permission
set unless the NFSv4.l1 server has the means to set the
ACE4_SYNCHRONIZE bit. The second copy will not have the
permission set unless the NFSv4.1l server has the means to
retrieve the ACE4_SYNCHRONIZE bit.

Server implementations need not provide the granularity of control
that is implied by this list of masks. For example, POSIX-based
systems might not distinguish ACE4_APPEND_DATA (the ability to append
to a file) from ACE4_WRITE_DATA (the ability to modify existing
contents); both masks would be tied to a single "write" permission
[17]. When such a server returns attributes to the client, it would
show both ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the
write permission is enabled.

If a server receives a SETATTR request that it cannot accurately
implement, it should err in the direction of more restricted access,
except in the previously discussed cases of execute and read. For
example, suppose a server cannot distinguish overwriting data from
appending new data, as described in the previous paragraph. If a
client submits an ALLOW ACE where ACE4_APPEND_DATA is set but
ACE4_WRITE_DATA is not (or vice versa), the server should either turn
off ACE4_APPEND_DATA or reject the request with NFS4ERR_ATTRNOTSUPP.

6.2.1.3.2. ACE4_DELETE vs. ACE4_DELETE_CHILD

Two access mask bits govern the ability to delete a directory entry:
ACE4_DELETE on the object itself (the "target") and ACE4_DELETE_CHILD

on the containing directory (the "parent").

Many systems also take the "sticky bit" (MODE4_SVTX) on a directory
to allow unlink only to a user that owns either the target or the
parent; on some such systems the decision also depends on whether the
target is writable.

Servers SHOULD allow unlink if either ACE4_DELETE is permitted on the
target, or ACE4_DELETE_CHIID is permitted on the parent. (Note that
this is true even if the parent or target explicitly denies one of
these permissions.)

If the ACLs in question neither explicitly ALLOW nor DENY either of
the above, and if MODE4_SVTX is not set on the parent, then the
server SHOULD allow the removal if and only if ACE4_ADD_FILE is
permitted. In the case where MODE4_SVTX is set, the server may also
require the remover to own either the parent or the target, or may
require the target to be writable.

This allows servers to support something close to traditional UNIX-
like semantics, with ACE4_ADD_FILE taking the place of the write bit.

6.2.1.4. ACE flag

The bitmask constants used for the flag field are as follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;
const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;
const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;
const ACE4_INHERIT_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FATILED_ACCESS_ACE_FLAG = 0x00000020;
const ACE4_IDENTIFIER_GROUP = 0x00000040;
const ACE4_INHERITED_ACE = 0x00000080;
A server need not support any of these flags. If the server supports

flags that are similar to, but not exactly the same as, these flags,
the implementation may define a mapping between the protocol-defined
flags and the implementation-defined flags.

For example, suppose a client tries to set an ACE with
ACE4_FILE_INHERIT_ACE set but not ACE4_DIRECTORY_INHERIT_ACE. If the
server does not support any form of ACL inheritance, the server
should reject the request with NFS4ERR_ATTRNOTSUPP. TIf the server
supports a single "inherit ACE" flag that applies to both files and
directories, the server may reject the request (i.e., requiring the
client to set both the file and directory inheritance flags). The
server may also accept the request and silently turn on the
ACE4_DIRECTORY_INHERIT_ACE flag.

6.2.1.4.1. Discussion of Flag Bits

ACE4_FILE_INHERIT_ACE
Any non-directory file in any sub-directory will get this ACE
inherited.

ACE4_DIRECTORY_INHERIT_ACE
Can be placed on a directory and indicates that this ACE should be
added to each new directory created.

If this flag is set in an ACE in an ACL attribute to be set on a
non-directory file system object, the operation attempting to set
the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

ACE4_NO_PROPAGATE_INHERIT_ACE
Can be placed on a directory. This flag tells the server that
inheritance of this ACE should stop at newly created child
directories.

ACE4_INHERIT_ONLY_ACE
Can be placed on a directory but does not apply to the directory;

ALLOW and DENY ACEs with this bit set do not affect access to the
directory, and AUDIT and ALARM ACEs with this bit set do not
trigger log or alarm events. Such ACEs only take effect once they
are applied (with this bit cleared) to newly created files and
directories as specified by the ACE4_FILE_INHERIT_ACE and
ACE4_DIRECTORY_INHERIT_ACE flags.

If this flag is present on an ACE, but neither
ACE4_DIRECTORY_INHERIT_ACE nor ACE4_FILE_INHERIT_ACE is present,
then an operation attempting to set such an attribute SHOULD fail
with NFS4ERR_ATTRNOTSUPP.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on
ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE
(ALARM) ACE types. If during the processing of the file’s ACL,
the server encounters an AUDIT or ALARM ACE that matches the
principal attempting the OPEN, the server notes that fact, and the
presence, if any, of the SUCCESS and FAILED flags encountered in
the AUDIT or ALARM ACE. Once the server completes the ACL
processing, it then notes if the operation succeeded or failed.
If the operation succeeded, and if the SUCCESS flag was set for a
matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM
event occurs. If the operation failed, and if the FAILED flag was
set for the matching AUDIT or ALARM ACE, then the appropriate
AUDIT or ALARM event occurs. Either or both of the SUCCESS or
FAILED can be set, but if neither is set, the AUDIT or ALARM ACE
is not useful.

The previously described processing applies to ACCESS operations
even when they return NFS4_OK. For the purposes of AUDIT and
ALARM, we consider an ACCESS operation to be a "failure" if it
fails to return a bit that was requested and supported.

ACE4_IDENTIFIER_GROUP
Indicates that the "who" refers to a GROUP as defined under UNIX
or a GROUP ACCOUNT as defined under Windows. Clients and servers
MUST ignore the ACE4_IDENTIFIER_GROUP flag on ACEs with a who
value equal to one of the special identifiers outlined in
Section 6.2.1.5.

ACE4_INHERITED_ACE
Indicates that this ACE is inherited from a parent directory. A
server that supports automatic inheritance will place this flag on
any ACEs inherited from the parent directory when creating a new
object. Client applications will use this to perform automatic
inheritance. Clients and servers MUST clear this bit in the acl
attribute; it may only be used in the dacl and sacl attributes.

6.2.1.5. ACE Who

The "who" field of an ACE is an identifier that specifies the

principal or principals to whom the ACE applies. It may refer to a
user or a group, with the flag bit ACE4_IDENTIFIER GROUP specifying
which.

There are several special identifiers that need to be understood
universally, rather than in the context of a particular DNS domain.
Some of these identifiers cannot be understood when an NFS client
accesses the server, but have meaning when a local process accesses
the file. The ability to display and modify these permissions is
permitted over NFS, even if none of the access methods on the server
understands the identifiers.

+ + +
| Who | Description

+ + +
| OWNER | The owner of the file.

= - +
| GRouP | The group associated with the file.

Fom Fem +
| EVERYONE | The world, including the owner and owning group. |
Fomm Fomm +
| INTERACTIVE | Accessed from an interactive terminal.

Fom o +
| NETWORK | Accessed via the network.

Fom Fem +
| praLup | Accessed as a dialup user to the server.

Fomm Fomm +
| BATCH | Accessed from a batch job.

Fom o +
| ANONYMOUS | Accessed without any authentication.

Fom Fem +
| AUTHENTICATED | Any authenticated user (opposite of ANONYMOUS). |
Fomm Fomm +
| SERVICE | Access from a system service.

Fom o +

Table 7

To avoid conflict, these special identifiers are distinguished by an
appended "@" and should appear in the form "xxxxQ@" (with no domain
name after the "@"), for example, ANONYMOUSQ@.

The ACE4_IDENTIFIER GROUP flag MUST be ignored on entries with these
special identifiers. When encoding entries with these special
identifiers, the ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

6.2.1.5.1. Discussion of EVERYONE®

It is important to note that "EVERYONE@Q" is not equivalent to the
UNIX "other" entity. This is because, by definition, UNIX "other"
does not include the owner or owning group of a file. "EVERYONE@"
means literally everyone, including the owner or owning group.

.2.2. Attribute 58: dacl

The dacl attribute is like the acl attribute, but dacl allows just
ALLOW and DENY ACEs. The dacl attribute supports automatic
inheritance (see Section 6.4.3.2).

.2.3. Attribute 59: sacl

The sacl attribute is like the acl attribute, but sacl allows just
AUDIT and ALARM ACEs. The sacl attribute supports automatic
inheritance (see Section 6.4.3.2).

.2.4. Attribute 33: mode

The NFSv4.l1 mode attribute is based on the UNIX mode bits. The
following bits are defined:

const MODE4_SUID = 0x800; /* set user id on execution */
const MODE4_SGID 0x400; /* set group id on execution */
const MODE4_SVTX 0x200; /* save text even after use */
const MODE4_RUSR 0x100; /* read permission: owner */
const MODE4_WUSR 0x080; /* write permission: owner */
const MODE4_XUSR = 0x040; /* execute permission: owner */
const MODE4_RGRP 0x020; /* read permission: group */
const MODE4_WGRP 0x010; /* write permission: group */
const MODE4_XGRP 0x008; /* execute permission: group */
const MODE4_ROTH = 0x004; /* read permission: other */
const MODE4_WOTH 0x002; /* write permission: other */
const MODE4_XOTH = 0x001; /* execute permission: other */

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal
identified in the owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and
MODE4_XGRP apply to principals identified in the owner_group
attribute but who are not identified in the owner attribute. Bits
MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any principal that
does not match that in the owner attribute and does not have a group

matching that of the owner_group attribute.

Bits within a mode other than those specified above are not defined
by this protocol. A server MUST NOT return bits other than those
defined above in a GETATTR or READDIR operation, and it MUST return
NFS4ERR_INVAL if bits other than those defined above are set in a
SETATTR, CREATE, OPEN, VERIFY, or NVERIFY operation.

6.2.5. Attribute 74: mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows
individual bits in the mode attribute to be set or reset, without
changing others. It allows, for example, the bits MODE4_SUID,
MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified
any of the nine low-order mode bits devoted to permissions.

In such instances that the nine low-order bits are left unmodified,
then neither the acl nor the dacl attribute should be automatically
modified as discussed in Section 6.4.1.

The mode_set_masked attribute consists of two words, each in the form
of a moded4. The first consists of the value to be applied to the
current mode value and the second is a mask. Only bits set to one in
the mask word are changed (set or reset) in the file’s mode. All
other bits in the mode remain unchanged. Bits in the first word that
correspond to bits that are zero in the mask are ignored, except that
undefined bits are checked for wvalidity and can result in
NFS4ERR_INVAL as described below.

The mode_set_masked attribute is only valid in a SETATTR operation.
If it is used in a CREATE or OPEN operation, the server MUST return
NFS4ERR_INVAL.

Bits not defined as valid in the mode attribute are not wvalid in
either word of the mode_set_masked attribute. The server MUST return
NFS4ERR_INVAL if any such bits are set to one in a SETATTR. If the
mode and mode_set_masked attributes are both specified in the same
SETATTR, the server MUST also return NFS4ERR_INVAL.

6.3. Common Methods

The requirements in this section will be referred to in future
sections, especially Section 6.4.

6.3.1. Interpreting an ACL
6.3.1.1. Server Considerations

The server uses the algorithm described in Section 6.2.1 to determine
whether an ACL allows access to an object. However, the ACL might
not be the sole determiner of access. For example:

* In the case of a file system exported as read-only, the server may
deny write access even though an object’s ACL grants it.

* Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL
permissions to prevent a situation from arising in which there is
no valid way to ever modify the ACL.

* All servers will allow a user the ability to read the data of the
file when only the execute permission is granted (i.e., if the ACL
denies the user the ACE4_READ_DATA access and allows the user
ACE4_EXECUTE, the server will allow the user to read the data of
the file).

* Many servers have the notion of owner-override in which the owner
of the object is allowed to override accesses that are denied by
the ACL. This may be helpful, for example, to allow users
continued access to open files on which the permissions have
changed.

* Many servers have the notion of a "superuser" that has privileges
beyond an ordinary user. The superuser may be able to read or
write data or metadata in ways that would not be permitted by the
ACL.

* A retention attribute might also block access otherwise allowed by
ACLs (see Section 5.13).

6.3.1.2. Client Considerations

Clients SHOULD NOT do their own access checks based on their
interpretation of the ACL, but rather use the OPEN and ACCESS
operations to do access checks. This allows the client to act on the
results of having the server determine whether or not access should
be granted based on its interpretation of the ACL.

Clients must be aware of situations in which an object’s ACL will
define a certain access even though the server will not enforce it.
In general, but especially in these situations, the client needs to
do its part in the enforcement of access as defined by the ACL. To
do this, the client MAY send the appropriate ACCESS operation prior
to servicing the request of the user or application in order to
determine whether the user or application should be granted the
access requested. For examples in which the ACL may define accesses
that the server doesn’t enforce, see Section 6.3.1.1.

6.3.2. Computing a Mode Attribute from an ACL

The following method can be used to calculate the MODE4_R*, MODE4_Wx*,
and MODE4_X* bits of a mode attribute, based upon an ACL.

First, for each of the special identifiers OWNER@, GROUP@, and
EVERYONE@, evaluate the ACL in order, considering only ALLOW and DENY
ACEs for the identifier EVERYONE@ and for the identifier under
consideration. The result of the evaluation will be an NFSv4 ACL
mask showing exactly which bits are permitted to that identifier.

Then translate the calculated mask for OWNER@, GROUP@, and EVERYONE@
into mode bits for, respectively, the user, group, and other, as
follows:

1. Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and
only if ACE4_READ_DATA is set in the corresponding mask.

2. Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and
only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the
corresponding mask.

3. Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if
and only if ACE4_EXECUTE is set in the corresponding mask.

6.3.2.1. Discussion

Some server implementations also add bits permitted to named users
and groups to the group bits (MODE4_RGRP, MODE4_WGRP, and
MODE4_XGRP) .

Implementations are discouraged from doing this, because it has been
found to cause confusion for users who see members of a file’s group
denied access that the mode bits appear to allow. (The presence of

DENY ACEs may also lead to such behavior, but DENY ACEs are expected
to be more rarely used.)

The same user confusion seen when fetching the mode also results if
setting the mode does not effectively control permissions for the
owner, group, and other users; this motivates some of the
requirements that follow.

6.4. Requirements

The server that supports both mode and ACL must take care to

synchronize the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with the
ACEs that have respective who fields of "OWNER@", "GROUPQ", and
"EVERYONE@". This way, the client can see if semantically equivalent
access permissions exist whether the client asks for the owner,
owner_group, and mode attributes or for just the ACL.

In this section, much is made of the methods in Section 6.3.2. Many
requirements refer to this section. But note that the methods have
behaviors specified with "SHOULD". This is intentional, to avoid
invalidating existing implementations that compute the mode according
to the withdrawn POSIX ACL draft (1003.le draft 17), rather than by
actual permissions on owner, group, and other.

6.4.1. Setting the Mode and/or ACL Attributes

In the case where a server supports the sacl or dacl attribute, in
addition to the acl attribute, the server MUST fail a request to set
the acl attribute simultaneously with a dacl or sacl attribute. The
error to be given is NFS4ERR_ATTRNOTSUPP.

6.4.1.1. Setting Mode and not ACL

When any of the nine low-order mode bits are subject to change,
either because the mode attribute was set or because the
mode_set_masked attribute was set and the mask included one or more
bits from the nine low-order mode bits, and no ACL attribute is
explicitly set, the acl and dacl attributes must be modified in
accordance with the updated value of those bits. This must happen
even if the value of the low-order bits is the same after the mode is
set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl
attribute) are unaffected by changes to the mode.

In cases in which the permissions bits are subject to change, the acl
and dacl attributes MUST be modified such that the mode computed via
the method in Section 6.3.2 yields the low-order nine bits (MODE4_RY*,
MODE4_W*, MODE4_X*) of the mode attribute as modified by the
attribute change. The ACL attributes SHOULD also be modified such
that:

1. TIf MODE4_RGRP is not set, entities explicitly listed in the ACL
other than OWNER@ and EVERYONE@ SHOULD NOT be granted
ACE4_READ_DATA.

2. If MODE4_WGRP is not set, entities explicitly listed in the ACL
other than OWNER@ and EVERYONE@ SHOULD NOT be granted
ACE4_WRITE_DATA or ACE4_APPEND_DATA.

3. 1If MODE4_XGRP is not set, entities explicitly listed in the ACL
other than OWNER@ and EVERYONE@ SHOULD NOT be granted
ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW
ACEs, MAY also be disabled.

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect
the permissions of the ACL itself, nor do ACEs of the type AUDIT and
ALARM. As such, it is desirable to leave these ACEs unmodified when
modifying the ACL attributes.

Also note that the requirement may be met by discarding the acl and
dacl, in favor of an ACL that represents the mode and only the mode.
This is permitted, but it is preferable for a server to preserve as
much of the ACL as possible without violating the above requirements.
Discarding the ACL makes it effectively impossible for a file created
with a mode attribute to inherit an ACL (see Section 6.4.3).

6.4.1.2. Setting ACL and Not Mode

When setting the acl or dacl and not setting the mode or

mode_set_masked attributes, the permission bits of the mode need to
be derived from the ACL. In this case, the ACL attribute SHOULD be
set as given. The nine low-order bits of the mode attribute
(MODE4_R*, MODE4_W*, MODE4_X*) MUST be modified to match the result
of the method in Section 6.3.2. The three high-order bits of the
mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

6.4.1.3. Setting Both ACL and Mode

When setting both the mode (includes use of either the mode attribute
or the mode_set_masked attribute) and the acl or dacl attributes in
the same operation, the attributes MUST be applied in this order:
mode (or mode_set_masked), then ACL. The mode-related attribute is
set as given, then the ACL attribute is set as given, possibly
changing the final mode, as described above in Section 6.4.1.2.

6.4.2. Retrieving the Mode and/or ACL Attributes

This section applies only to servers that support both the mode and
ACL attributes.

Some server implementations may have a concept of "objects without
ACLs", meaning that all permissions are granted and denied according
to the mode attribute and that no ACL attribute is stored for that
object. If an ACL attribute is requested of such a server, the
server SHOULD return an ACL that does not conflict with the mode;
that is to say, the ACL returned SHOULD represent the nine low-order
bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*) as
described in Section 6.3.2.

For other server implementations, the ACL attribute is always present
for every object. Such servers SHOULD store at least the three high-
order bits of the mode attribute (MODE4_SUID, MODE4_SGID,
MODE4_SVTX). The server SHOULD return a mode attribute if one is
requested, and the low-order nine bits of the mode (MODE4_R¥*,
MODE4_W*, MODE4_X*) MUST match the result of applying the method in
Section 6.3.2 to the ACL attribute.

6.4.3. Creating New Objects

If a server supports any ACL attributes, it may use the ACL
attributes on the parent directory to compute an initial ACL
attribute for a newly created object. This will be referred to as
the inherited ACL within this section. The act of adding one or more
ACEs to the inherited ACL that are based upon ACEs in the parent
directory’s ACL will be referred to as inheriting an ACE within this
section.

Implementors should standardize what the behavior of CREATE and OPEN
must be depending on the presence or absence of the mode and ACL
attributes.
1. If just the mode is given in the call:
In this case, inheritance SHOULD take place, but the mode MUST be
applied to the inherited ACL as described in Section 6.4.1.1,
thereby modifying the ACL.
2. If just the ACL is given in the call:
In this case, inheritance SHOULD NOT take place, and the ACL as
defined in the CREATE or OPEN will be set without modification,
and the mode modified as in Section 6.4.1.2.

3. If both mode and ACL are given in the call:

In this case, inheritance SHOULD NOT take place, and both
attributes will be set as described in Section 6.4.1.3.

4, If neither mode nor ACL is given in the call:

In the case where an object is being created without any initial
attributes at all, e.g., an OPEN operation with an opentyped4 of
OPEN4_CREATE and a createmode4 of EXCLUSIVE4, inheritance SHOULD
NOT take place (note that EXCLUSIVE4_1 is a better choice of
createmoded4, since it does permit initial attributes). Instead,
the server SHOULD set permissions to deny all access to the newly
created object. It is expected that the appropriate client will
set the desired attributes in a subsequent SETATTR operation, and
the server SHOULD allow that operation to succeed, regardless of
what permissions the object is created with. For example, an
empty ACL denies all permissions, but the server should allow the
owner’s SETATTR to succeed even though WRITE_ACL is implicitly
denied.

In other cases, inheritance SHOULD take place, and no
modifications to the ACL will happen. The mode attribute, if
supported, MUST be as computed in Section 6.3.2, with the
MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no
inheritable ACEs exist on the parent directory, the rules for
creating acl, dacl, or sacl attributes are implementation
defined. If either the dacl or sacl attribute is supported, then
the ACL4_DEFAULTED flag SHOULD be set on the newly created
attributes.

6.4.3.1. The Inherited ACL

If the object being created is not a directory, the inherited ACL
SHOULD NOT inherit ACEs from the parent directory ACL unless the
ACE4_FILE_INHERIT_FLAG is set.

If the object being created is a directory, the inherited ACL should
inherit all inheritable ACEs from the parent directory, that is,
those that have the ACE4_FILE_INHERIT_ACE or
ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has
ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE is clear,
the inherited ACE on the newly created directory MUST have the
ACE4_INHERIT_ONLY ACE flag set to prevent the directory from being
affected by ACEs meant for non-directories.

When a new directory is created, the server MAY split any inherited
ACE that is both inheritable and effective (in other words, that has
neither ACE4_INHERIT_ONLY_ACE nor ACE4_NO_PROPAGATE_INHERIT_ACE set),
into two ACEs, one with no inheritance flags and one with
ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute,
both of those ACEs SHOULD also have the ACE4_INHERITED_ACE flag set.)
This makes it simpler to modify the effective permissions on the
directory without modifying the ACE that is to be inherited to the
new directory’s children.

6.4.3.2. Automatic Inheritance

The acl attribute consists only of an array of ACEs, but the sacl
(Section 6.2.3) and dacl (Section 6.2.2) attributes also include an
additional flag field.

struct nfsaclédl {
aclflag4 na4l_flag;
nfsaced na4l_aces<>;

}i

The flag field applies to the entire sacl or dacl; three flag values
are defined:

const ACL4_AUTO_INHERIT = 0x00000001;
const ACL4_PROTECTED = 0x00000002;
const ACL4_DEFAULTED 0x00000004;

and all other bits must be cleared. The ACE4_INHERITED_ACE flag may
be set in the ACEs of the sacl or dacl (whereas it must always be
cleared in the acl).

Together these features allow a server to support automatic
inheritance, which we now explain in more detail.

Inheritable ACEs are normally inherited by child objects only at the
time that the child objects are created; later modifications to
inheritable ACEs do not result in modifications to inherited ACEs on
descendants.

However, the dacl and sacl provide an OPTIONAL mechanism that allows
a client application to propagate changes to inheritable ACEs to an
entire directory hierarchy.

A server that supports this performs inheritance at object creation
time in the normal way, and SHOULD set the ACE4_INHERITED_ACE flag on
any inherited ACEs as they are added to the new object.

A client application such as an ACL editor may then propagate changes
to inheritable ACEs on a directory by recursively traversing that

directory’s descendants and modifying each ACL encountered to remove
any ACEs with the ACE4_INHERITED_ACE flag and to replace them by the

new inheritable ACEs (also with the ACE4_INHERITED_ACE flag set). It
uses the existing ACE inheritance flags in the obvious way to decide
which ACEs to propagate. (Note that it may encounter further

inheritable ACEs when descending the directory hierarchy and that
those will also need to be taken into account when propagating
inheritable ACEs to further descendants.)

The reach of this propagation may be limited in two ways: first,
automatic inheritance is not performed from any directory ACL that
has the ACL4_AUTO_INHERIT flag cleared; and second, automatic
inheritance stops wherever an ACL with the ACL4_PROTECTED flag is
set, preventing modification of that ACL and also (if the ACL is set
on a directory) of the ACL on any of the object’s descendants.

This propagation is performed independently for the sacl and the dacl
attributes; thus, the ACL4_AUTO_INHERIT and ACL4_PROTECTED flags may
be independently set for the sacl and the dacl, and propagation of
one type of acl may continue down a hierarchy even where propagation
of the other acl has stopped.

New objects should be created with a dacl and a sacl that both have
the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set to
the same value as that on, respectively, the sacl or dacl of the
parent object.

Both the dacl and sacl attributes are RECOMMENDED, and a server may
support one without supporting the other.

A server that supports both the old acl attribute and one or both of
the new dacl or sacl attributes must do so in such a way as to keep
all three attributes consistent with each other. Thus, the ACEs
reported in the acl attribute should be the union of the ACEs
reported in the dacl and sacl attributes, except that the
ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl.
And of course a client that queries only the acl will be unable to
determine the values of the sacl or dacl flag fields.

When a client performs a SETATTR for the acl attribute, the server
SHOULD set the ACL4_PROTECTED flag to true on both the sacl and the
dacl. By using the acl attribute, as opposed to the dacl or sacl
attributes, the client signals that it may not understand automatic
inheritance, and thus cannot be trusted to set an ACL for which
automatic inheritance would make sense.

When a client application queries an ACL, modifies it, and sets it
again, it should leave any ACEs marked with ACE4_INHERITED_ACE
unchanged, in their original order, at the end of the ACL. TIf the
application is unable to do this, it should set the ACL4_PROTECTED
flag. This behavior is not enforced by servers, but violations of
this rule may lead to unexpected results when applications perform
automatic inheritance.

If a server also supports the mode attribute, it SHOULD set the mode
in such a way that leaves inherited ACEs unchanged, in their original
order, at the end of the ACL. If it is unable to do so, it SHOULD
set the ACL4_PROTECTED flag on the file’s dacl.

Finally, in the case where the request that creates a new file or
directory does not also set permissions for that file or directory,
and there are also no ACEs to inherit from the parent’s directory,
then the server’s choice of ACL for the new object is implementation-—
dependent. In this case, the server SHOULD set the ACL4_DEFAULTED
flag on the ACL it chooses for the new object. An application
performing automatic inheritance takes the ACL4_DEFAULTED flag as a
sign that the ACL should be completely replaced by one generated
using the automatic inheritance rules.

Single-Server Namespace

This section describes the NFSv4 single-server namespace. Single-—
server namespaces may be presented directly to clients, or they may
be used as a basis to form larger multi-server namespaces (e.g.,
site-wide or organization-wide) to be presented to clients, as
described in Section 11.

.1. Server Exports

On a UNIX server, the namespace describes all the files reachable by
pathnames under the root directory or "/". On a Windows server, the
namespace constitutes all the files on disks named by mapped disk
letters. NFS server administrators rarely make the entire server’s
file system namespace available to NFS clients. More often, portions
of the namespace are made available via an "export" feature. 1In
previous versions of the NFS protocol, the root filehandle for each
export is obtained through the MOUNT protocol; the client sent a
string that identified the export name within the namespace and the
server returned the root filehandle for that export. The MOUNT
protocol also provided an EXPORTS procedure that enumerated the
server’s exports.

.2. Browsing Exports

The NFSv4.l protocol provides a root filehandle that clients can use
to obtain filehandles for the exports of a particular server, via a
series of LOOKUP operations within a COMPOUND, to traverse a path. A
common user experience is to use a graphical user interface (perhaps
a file "Open" dialog window) to find a file via progressive browsing
through a directory tree. The client must be able to move from one
export to another export via single-component, progressive LOOKUP
operations.

This style of browsing is not well supported by the NFSv3 protocol.
In NFSv3, the client expects all LOOKUP operations to remain within a
single server file system. For example, the device attribute will
not change. This prevents a client from taking namespace paths that
span exports.

In the case of NFSv3, an automounter on the client can obtain a
snapshot of the server’s namespace using the EXPORTS procedure of the
MOUNT protocol. 1If it understands the server’s pathname syntax, it
can create an image of the server’s namespace on the client. The
parts of the namespace that are not exported by the server are filled
in with directories that might be constructed similarly to an NFSv4.1l
"pseudo file system" (see Section 7.3) that allows the user to browse
from one mounted file system to another. There is a drawback to this
representation of the server’s namespace on the client: it is static.
If the server administrator adds a new export, the client will be
unaware of it.

.3. Server Pseudo File System

NFSv4.1l servers avoid this namespace inconsistency by presenting all

7.

7.

7.

the exports for a given server within the framework of a single
namespace for that server. An NFSv4.1l client uses LOOKUP and READDIR
operations to browse seamlessly from one export to another.

Where there are portions of the server namespace that are not
exported, clients require some way of traversing those portions to
reach actual exported file systems. A technique that servers may use
to provide for this is to bridge the unexported portion of the
namespace via a "pseudo file system" that provides a view of exported
directories only. A pseudo file system has a unique fsid and behaves
like a normal, read-only file system.

Based on the construction of the server’s namespace, it is possible
that multiple pseudo file systems may exist. For example,

/a pseudo file system
/a/b real file system
/a/b/c pseudo file system
/a/b/c/d real file system

Each of the pseudo file systems is considered a separate entity and
therefore MUST have its own fsid, unique among all the fsids for that
server.

.4. Multiple Roots

Certain operating environments are sometimes described as having
"multiple roots". In such environments, individual file systems are
commonly represented by disk or volume names. NFSv4 servers for
these platforms can construct a pseudo file system above these root
names so that disk letters or volume names are simply directory names
in the pseudo root.

5. Filehandle Volatility

The nature of the server’s pseudo file system is that it is a logical
representation of file system(s) available from the server.
Therefore, the pseudo file system is most likely constructed
dynamically when the server is first instantiated. It is expected
that the pseudo file system may not have an on-disk counterpart from
which persistent filehandles could be constructed. Even though it is
preferable that the server provide persistent filehandles for the
pseudo file system, the NFS client should expect that pseudo file
system filehandles are volatile. This can be confirmed by checking
the associated "fh_expire_type" attribute for those filehandles in
question. If the filehandles are volatile, the NFS client must be
prepared to recover a filehandle value (e.g., with a series of LOOKUP
operations) when receiving an error of NFS4ERR_FHEXPIRED.

Because it is quite likely that servers will implement pseudo file
systems using volatile filehandles, clients need to be prepared for
them, rather than assuming that all filehandles will be persistent.

6. Exported Root
If the server’s root file system is exported, one might conclude that

a pseudo file system is unneeded. This is not necessarily so.
Assume the following file systems on a server:

/ fsl (exported)
/a fs2 (not exported)
/a/b fs3 (exported)

Because fs2 is not exported, £fs3 cannot be reached with simple
LOOKUPs. The server must bridge the gap with a pseudo file system.

7. Mount Point Crossing
The server file system environment may be constructed in such a way

that one file system contains a directory that is ’covered’ or
mounted upon by a second file system. For example:

/a/b (file system 1)
/a/b/c/d (file system 2)

The pseudo file system for this server may be constructed to look
like:

/ (place holder/not exported)
/a/b (file system 1)
/a/b/c/d (file system 2)

It is the server’s responsibility to present the pseudo file system
that is complete to the client. If the client sends a LOOKUP request
for the path /a/b/c/d, the server’s response is the filehandle of the
root of the file system /a/b/c/d. 1In previous versions of the NFS
protocol, the server would respond with the filehandle of directory
/a/b/c/d within the file system /a/b.

The NFS client will be able to determine if it crosses a server mount
point by a change in the value of the "fsid" attribute.

.8. Security Policy and Namespace Presentation

Because NFSv4 clients possess the ability to change the security
mechanisms used, after determining what is allowed, by using SECINFO
and SECINFO_NONAME, the server SHOULD NOT present a different view of
the namespace based on the security mechanism being used by a client.
Instead, it should present a consistent view and return
NFS4ERR_WRONGSEC if an attempt is made to access data with an
inappropriate security mechanism.

If security considerations make it necessary to hide the existence of
a particular file system, as opposed to all of the data within it,
the server can apply the security policy of a shared resource in the
server’s namespace to components of the resource’s ancestors. For
example:

/ (place holder/not exported)
/al/b (file system 1)
/a/b/MySecretProject (file system 2)

The /a/b/MySecretProject directory is a real file system and is the
shared resource. Suppose the security policy for /a/b/
MySecretProject is Kerberos with integrity and it is desired to limit
knowledge of the existence of this file system. In this case, the
server should apply the same security policy to /a/b. This allows
for knowledge of the existence of a file system to be secured when
desirable.

For the case of the use of multiple, disjoint security mechanisms in

the server’s resources, applying that sort of policy would result in

the higher-level file system not being accessible using any security

flavor. Therefore, that sort of configuration is not compatible with
hiding the existence (as opposed to the contents) from clients using

multiple disjoint sets of security flavors.

In other circumstances, a desirable policy is for the security of a
particular object in the server’s namespace to include the union of
all security mechanisms of all direct descendants. A common and
convenient practice, unless strong security requirements dictate
otherwise, is to make the entire the pseudo file system accessible by
all of the valid security mechanisms.

Where there is concern about the security of data on the network,
clients should use strong security mechanisms to access the pseudo
file system in order to prevent man-in-the-middle attacks.

State Management

Integrating locking into the NFS protocol necessarily causes it to be
stateful. With the inclusion of such features as share reservations,

file and directory delegations, recallable layouts, and support for
mandatory byte-range locking, the protocol becomes substantially more
dependent on proper management of state than the traditional
combination of NFS and NLM (Network Lock Manager) [54]. These
features include expanded locking facilities, which provide some
measure of inter—-client exclusion, but the state also offers features
not readily providable using a stateless model. There are three
components to making this state manageable:

* clear division between client and server

* ability to reliably detect inconsistency in state between client
and server

* simple and robust recovery mechanisms

In this model, the server owns the state information. The client
requests changes in locks and the server responds with the changes
made. Non-client-initiated changes in locking state are infrequent.
The client receives prompt notification of such changes and can
adjust its view of the locking state to reflect the server’s changes.

Individual pieces of state created by the server and passed to the
client at its request are represented by 128-bit stateids. These
stateids may represent a particular open file, a set of byte-range
locks held by a particular owner, or a recallable delegation of
privileges to access a file in particular ways or at a particular
location.

In all cases, there is a transition from the most general information
that represents a client as a whole to the eventual lightweight
stateid used for most client and server locking interactions. The
details of this transition will vary with the type of object but it
always starts with a client ID.

8.1. Client and Session ID

A client must establish a client ID (see Section 2.4) and then one or
more sessionids (see Section 2.10) before performing any operations
to open, byte-range lock, delegate, or obtain a layout for a file
object. Each session ID is associated with a specific client ID, and
thus serves as a shorthand reference to an NFSv4.1l client.

For some types of locking interactions, the client will represent
some number of internal locking entities called "owners", which
normally correspond to processes internal to the client. For other
types of locking-related objects, such as delegations and layouts, no
such intermediate entities are provided for, and the locking-related
objects are considered to be transferred directly between the server
and a unitary client.

8.2. Stateid Definition

When the server grants a lock of any type (including opens, byte-
range locks, delegations, and layouts), it responds with a unique
stateid that represents a set of locks (often a single lock) for the
same file, of the same type, and sharing the same ownership
characteristics. Thus, opens of the same file by different open-
owners each have an identifying stateid. Similarly, each set of
byte-range locks on a file owned by a specific lock-owner has its own
identifying stateid. Delegations and layouts also have associated
stateids by which they may be referenced. The stateid is used as a
shorthand reference to a lock or set of locks, and given a stateid,
the server can determine the associated state-owner or state—-owners
(in the case of an open-owner/lock—owner pair) and the associated
filehandle. When stateids are used, the current filehandle must be
the one associated with that stateid.

All stateids associated with a given client ID are associated with a
common lease that represents the claim of those stateids and the
objects they represent to be maintained by the server. See

8

L2,

.2

Section 8.3 for a discussion of the lease.

The server may assign stateids independently for different clients.

A stateid with the same bit pattern for one client may designate an

entirely different set of locks for a different client. The stateid
is always interpreted with respect to the client ID associated with

the current session. Stateids apply to all sessions associated with
the given client ID, and the client may use a stateid obtained from

one session on another session associated with the same client ID.

1. Stateid Types

With the exception of special stateids (see Section 8.2.3), each
stateid represents locking objects of one of a set of types defined
by the NFSv4.1l protocol. Note that in all these cases, where we
speak of guarantee, it is understood there are situations such as a
client restart, or lock revocation, that allow the guarantee to be
voided.

* Stateids may represent opens of files.

Each stateid in this case represents the OPEN state for a given
client ID/open-owner/filehandle triple. Such stateids are subject
to change (with consequent incrementing of the stateid’s seqgid) in
response to OPENs that result in upgrade and OPEN_DOWNGRADE
operations.

* Stateids may represent sets of byte-range locks.

All locks held on a particular file by a particular owner and
gotten under the aegis of a particular open file are associated
with a single stateid with the segid being incremented whenever
LOCK and LOCKU operations affect that set of locks.

* Stateids may represent file delegations, which are recallable
guarantees by the server to the client that other clients will not
reference or modify a particular file, until the delegation is
returned. In NFSv4.1l, file delegations may be obtained on both
regular and non-regular files.

A stateid represents a single delegation held by a client for a
particular filehandle.

* Stateids may represent directory delegations, which are recallable
guarantees by the server to the client that other clients will not
modify the directory, until the delegation is returned.

A stateid represents a single delegation held by a client for a
particular directory filehandle.

* Stateids may represent layouts, which are recallable guarantees by
the server to the client that particular files may be accessed via
an alternate data access protocol at specific locations. Such
access 1is limited to particular sets of byte-ranges and may
proceed until those byte-ranges are reduced or the layout is
returned.

A stateid represents the set of all layouts held by a particular
client for a particular filehandle with a given layout type. The
seqgid is updated as the layouts of that set of byte-ranges change,
via layout stateid changing operations such as LAYOUTGET and
LAYOUTRETURN.

.2. Stateid Structure

Stateids are divided into two fields, a 96-bit "other" field
identifying the specific set of locks and a 32-bit "seqgid" sequence
value. Except in the case of special stateids (see Section 8.2.3), a
particular value of the "other" field denotes a set of locks of the
same type (for example, byte-range locks, opens, delegations, or
layouts), for a specific file or directory, and sharing the same

ownership characteristics. The seqgid designates a specific instance
of such a set of locks, and is incremented to indicate changes in
such a set of locks, either by the addition or deletion of locks from
the set, a change in the byte-range they apply to, or an upgrade or
downgrade in the type of one or more locks.

When such a set of locks is first created, the server returns a
stateid with seqgid value of one. On subsequent operations that
modify the set of locks, the server is required to increment the
"segid" field by one whenever it returns a stateid for the same
state—-owner/file/type combination and there is some change in the set
of locks actually designated. In this case, the server will return a
stateid with an "other" field the same as previously used for that
state-owner/file/type combination, with an incremented "seqid" field.
This pattern continues until the seqgid is incremented past
NFS4_UINT32_MAX, and one (not zero) is the next seqgid wvalue.

The purpose of the incrementing of the seqgid is to allow the server
to communicate to the client the order in which operations that
modified locking state associated with a stateid have been processed
and to make it possible for the client to send requests that are
conditional on the set of locks not having changed since the stateid
in gquestion was returned.

Except for layout stateids (Section 12.5.3), when a client sends a
stateid to the server, it has two choices with regard to the seqgid
sent. It may set the seqgid to zero to indicate to the server that it
wishes the most up-to-date seqgid for that stateid’s "other" field to
be used. This would be the common choice in the case of a stateid

sent with a READ or WRITE operation. It also may set a non-zero
value, in which case the server checks if that seqgid is the correct
one. In that case, the server is required to return

NFS4ERR_OLD_STATEID if the seqgid is lower than the most current wvalue
and NFS4ERR_BAD_STATEID if the seqgid is greater than the most current
value. This would be the common choice in the case of stateids sent
with a CLOSE or OPEN_DOWNGRADE. Because OPENs may be sent in
parallel for the same owner, a client might close a file without
knowing that an OPEN upgrade had been done by the server, changing
the lock in question. If CLOSE were sent with a zero seqgid, the OPEN
upgrade would be cancelled before the client even received an
indication that an upgrade had happened.

When a stateid is sent by the server to the client as part of a
callback operation, it is not subject to checking for a current seqgid
and returning NFS4ERR_OLD_STATEID. This is because the client is not
in a position to know the most up-to-date segid and thus cannot
verify it. Unless specially noted, the segid value for a stateid
sent by the server to the client as part of a callback is required to
be zero with NFS4ERR_BAD_STATEID returned if it is not.

In making comparisons between seqgids, both by the client in
determining the order of operations and by the server in determining
whether the NFS4ERR_OLD_STATEID is to be returned, the possibility of
the seqgid being swapped around past the NFS4_UINT32_MAX value needs
to be taken into account. When two seqgid values are being compared,
the total count of slots for all sessions associated with the current
client is used to do this. When one seqgid value is less than this
total slot count and another seqgid value is greater than
NEFS4_UINT32_MAX minus the total slot count, the former is to be
treated as lower than the latter, despite the fact that it is
numerically greater.

8.2.3. Special Stateids

Stateid values whose "other" field is either all zeros or all ones
are reserved. They may not be assigned by the server but have
special meanings defined by the protocol. The particular meaning
depends on whether the "other" field is all zeros or all ones and the
specific value of the "seqgid" field.

The following combinations of "other" and "seqgid" are defined in

NFSv4.1:

* When "other" and "segid" are both zero, the stateid is treated as
a special anonymous stateid, which can be used in READ, WRITE, and
SETATTR requests to indicate the absence of any OPEN state
associated with the request. When an anonymous stateid wvalue is
used and an existing open denies the form of access requested,
then access will be denied to the request. This stateid MUST NOT
be used on operations to data servers (Section 13.6).

* When "other" and "segid" are both all ones, the stateid is a
special READ bypass stateid. When this value is used in WRITE or
SETATTR, it is treated like the anonymous value. When used in
READ, the server MAY grant access, even if access would normally
be denied to READ operations. This stateid MUST NOT be used on
operations to data servers.

* When "other" is zero and "segid" is one, the stateid represents
the current stateid, which is whatever value is the last stateid
returned by an operation within the COMPOUND. 1In the case of an
OPEN, the stateid returned for the open file and not the
delegation is used. The stateid passed to the operation in place
of the special value has its "seqgid" value set to zero, except
when the current stateid is used by the operation CLOSE or
OPEN_DOWNGRADE. If there is no operation in the COMPOUND that has
returned a stateid value, the server MUST return the error
NFS4ERR_BAD_STATEID. As illustrated in Figure 6, if the wvalue of
a current stateid is a special stateid and the stateid of an
operation’s arguments has "other" set to zero and "segid" set to
one, then the server MUST return the error NFS4ERR_BAD_STATEID.

* When "other" is zero and "segid" is NFS4_UINT32_MAX, the stateid
represents a reserved stateid value defined to be invalid. When
this stateid is used, the server MUST return the error
NFS4ERR_BAD_STATEID.

If a stateid value is used that has all zeros or all ones in the
"other" field but does not match one of the cases above, the server
MUST return the error NFS4ERR_BAD_STATEID.

Special stateids, unlike other stateids, are not associated with
individual client IDs or filehandles and can be used with all wvalid
client IDs and filehandles. 1In the case of a special stateid
designating the current stateid, the current stateid wvalue
substituted for the special stateid is associated with a particular
client ID and filehandle, and so, if it is used where the current
filehandle does not match that associated with the current stateid,
the operation to which the stateid is passed will return
NFS4ERR_BAD_STATEID.

.2.4. Stateid Lifetime and Validation

Stateids must remain valid until either a client restart or a server
restart or until the client returns all of the locks associated with
the stateid by means of an operation such as CLOSE or DELEGRETURN.

If the locks are lost due to revocation, as long as the client ID is
valid, the stateid remains a valid designation of that revoked state
until the client frees it by using FREE_STATEID. Stateids associated
with byte-range locks are an exception. They remain valid even if a
LOCKU frees all remaining locks, so long as the open file with which
they are associated remains open, unless the client frees the
stateids via the FREE_STATEID operation.

It should be noted that there are situations in which the client’s
locks become invalid, without the client requesting they be returned.
These include lease expiration and a number of forms of lock
revocation within the lease period. It is important to note that in
these situations, the stateid remains valid and the client can use it
to determine the disposition of the associated lost locks.

An "other" value must never be reused for a different purpose (i.e.,

different filehandle, owner, or type of locks) within the context of
a single client ID. A server may retain the "other" value for the

same purpose beyond the point where it may otherwise be freed, but if
it does so, it must maintain "seqgid" continuity with previous wvalues.

One mechanism that may be used to satisfy the requirement that the
server recognize invalid and out-of-date stateids is for the server
to divide the "other" field of the stateid into two fields.

* an index into a table of locking-state structures.

* a generation number that is incremented on each allocation of a
table entry for a particular use.

And then store in each table entry,
* the client ID with which the stateid is associated.

* the current generation number for the (at most one) wvalid stateid
sharing this index value.

* the filehandle of the file on which the locks are taken.

* an indication of the type of stateid (open, byte-range lock, file
delegation, directory delegation, layout).

* the last "seqgid" value returned corresponding to the current
"other" wvalue.

* an indication of the current status of the locks associated with
this stateid, in particular, whether these have been revoked and
if so, for what reason.

With this information, an incoming stateid can be validated and the
appropriate error returned when necessary. Special and non-special
stateids are handled separately. (See Section 8.2.3 for a discussion
of special stateids.)

Note that stateids are implicitly qualified by the current client 1ID,
as derived from the client ID associated with the current session.
Note, however, that the semantics of the session will prevent
stateids associated with a previous client or server instance from
being analyzed by this procedure.

If server restart has resulted in an invalid client ID or a session
ID that is invalid, SEQUENCE will return an error and the operation
that takes a stateid as an argument will never be processed.

If there has been a server restart where there is a persistent
session and all leased state has been lost, then the session in
question will, although valid, be marked as dead, and any operation
not satisfied by means of the reply cache will receive the error
NFS4ERR_DEADSESSION, and thus not be processed as indicated below.

When a stateid is being tested and the "other" field is all zeros or

all ones, a check that the "other" and "seqgid" fields match a defined
combination for a special stateid is done and the results determined

as follows:

* TIf the "other" and "seqgid" fields do not match a defined
combination associated with a special stateid, the error
NFS4ERR_BAD_STATEID is returned.

* If the special stateid is one designating the current stateid and
there is a current stateid, then the current stateid is
substituted for the special stateid and the checks appropriate to
non-special stateids are performed.

* If the combination is wvalid in general but is not appropriate to
the context in which the stateid is used (e.g., an all-zero
stateid is used when an OPEN stateid is required in a LOCK

8

L2,

operation), the error NFS4ERR_BAD_STATEID is also returned.

* Otherwise, the check is completed and the special stateid is
accepted as valid.

When a stateid is being tested, and the "other" field is neither all
zeros nor all ones, the following procedure could be used to validate
an incoming stateid and return an appropriate error, when necessary,
assuming that the "other" field would be divided into a table index
and an entry generation.

* TIf the table index field is outside the range of the associated
table, return NFS4ERR_BAD_STATEID.

* TIf the selected table entry is of a different generation than that
specified in the incoming stateid, return NFS4ERR_BAD_STATEID.

* TIf the selected table entry does not match the current filehandle,
return NFS4ERR_BAD_STATEID.

* If the client ID in the table entry does not match the client ID
associated with the current session, return NFS4ERR_BAD_STATEID.

* TIf the stateid represents revoked state, then return
NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or NFS4ERR_DELEG_REVOKED,
as appropriate.

* If the stateid type is not valid for the context in which the
stateid appears, return NFS4ERR_BAD_STATEID. Note that a stateid
may be valid in general, as would be reported by the TEST_STATEID
operation, but be invalid for a particular operation, as, for
example, when a stateid that doesn’t represent byte-range locks is
passed to the non-from open case of LOCK or to LOCKU, or when a
stateid that does not represent an open is passed to CLOSE or
OPEN_DOWNGRADE . In such cases, the server MUST return
NFS4ERR_BAD_STATEID.

* If the "seqgid" field is not zero and it is greater than the
current sequence value corresponding to the current "other" field,
return NFS4ERR_BAD_STATEID.

* If the "seqgid" field is not zero and it is less than the current
sequence value corresponding to the current "other" field, return
NFS4ERR_OLD_STATEID.

* Otherwise, the stateid is valid and the table entry should contain
any additional information about the type of stateid and
information associated with that particular type of stateid, such
as the associated set of locks, e.g., open-owner and lock-owner
information, as well as information on the specific locks, e.g.,
open modes and byte-ranges.

5. Stateid Use for I/O Operations

Clients performing I/0O operations need to select an appropriate
stateid based on the locks (including opens and delegations) held by
the client and the various types of state-owners sending the I/O
requests. SETATTR operations that change the file size are treated
like I/0 operations in this regard.

The following rules, applied in order of decreasing priority, govern
the selection of the appropriate stateid. In following these rules,
the client will only consider locks of which it has actually received
notification by an appropriate operation response or callback. Note
that the rules are slightly different in the case of I/O to data
servers when file layouts are being used (see Section 13.9.1).

* TIf the client holds a delegation for the file in question, the
delegation stateid SHOULD be used.

* Otherwise, if the entity corresponding to the lock-owner (e.g., a

process) sending the I/O has a byte-range lock stateid for the
associated open file, then the byte-range lock stateid for that
lock-owner and open file SHOULD be used.

* If there is no byte-range lock stateid, then the OPEN stateid for
the open file in question SHOULD be used.

* Finally, if none of the above apply, then a special stateid SHOULD
be used.

Ignoring these rules may result in situations in which the server
does not have information necessary to properly process the request.
For example, when mandatory byte-range locks are in effect, if the
stateid does not indicate the proper lock-owner, via a lock stateid,
a request might be avoidably rejected.

The server however should not try to enforce these ordering rules and
should use whatever information is available to properly process I/0
requests. In particular, when a client has a delegation for a given
file, it SHOULD take note of this fact in processing a request, even
if it is sent with a special stateid.

.2.6. Stateid Use for SETATTR Operations

Because each operation is associated with a session ID and from that
the clientid can be determined, operations do not need to include a
stateid for the server to be able to determine whether they should
cause a delegation to be recalled or are to be treated as done within
the scope of the delegation.

In the case of SETATTR operations, a stateid is present. In cases
other than those that set the file size, the client may send either a
special stateid or, when a delegation is held for the file in
question, a delegation stateid. While the server SHOULD validate the
stateid and may use the stateid to optimize the determination as to
whether a delegation is held, it SHOULD note the presence of a
delegation even when a special stateid is sent, and MUST accept a
valid delegation stateid when sent.

.3. Lease Renewal

Each client/server pair, as represented by a client ID, has a single
lease. The purpose of the lease is to allow the client to indicate
to the server, in a low-overhead way, that it is active, and thus
that the server is to retain the client’s locks. This arrangement
allows the server to remove stale locking-related objects that are
held by a client that has crashed or is otherwise unreachable, once

the relevant lease expires. This in turn allows other clients to
obtain conflicting locks without being delayed indefinitely by
inactive or unreachable clients. It is not a mechanism for cache

consistency and lease renewals may not be denied if the lease
interval has not expired.

Since each session is associated with a specific client (identified
by the client’s client ID), any operation sent on that session is an
indication that the associated client is reachable. When a request
is sent for a given session, successful execution of a SEQUENCE
operation (or successful retrieval of the result of SEQUENCE from the
reply cache) on an unexpired lease will result in the lease being
implicitly renewed, for the standard renewal period (equal to the
lease_time attribute).

If the client ID’s lease has not expired when the server receives a
SEQUENCE operation, then the server MUST renew the lease. If the
client ID’s lease has expired when the server receives a SEQUENCE
operation, the server MAY renew the lease; this depends on whether
any state was revoked as a result of the client’s failure to renew
the lease before expiration.

Absent other activity that would renew the lease, a COMPOUND
consisting of a single SEQUENCE operation will suffice. The client

should also take communication-related delays into account and take
steps to ensure that the renewal messages actually reach the server
in good time. For example:

* When trunking is in effect, the client should consider sending
multiple requests on different connections, in order to ensure
that renewal occurs, even in the event of blockage in the path
used for one of those connections.

* Transport retransmission delays might become so large as to
approach or exceed the length of the lease period. This may be
particularly likely when the server is unresponsive due to a
restart; see Section 8.4.2.1. If the client implementation is not
careful, transport retransmission delays can result in the client
failing to detect a server restart before the grace period ends.
The scenario is that the client is using a transport with
exponential backoff, such that the maximum retransmission timeout
exceeds both the grace period and the lease_time attribute. A
network partition causes the client’s connection’s retransmission
interval to back off, and even after the partition heals, the next
transport-level retransmission is sent after the server has
restarted and its grace period ends.

The client MUST either recover from the ensuing NFS4ERR_NO_GRACE
errors or it MUST ensure that, despite transport-level
retransmission intervals that exceed the lease_time, a SEQUENCE
operation is sent that renews the lease before expiration. The
client can achieve this by associating a new connection with the
session, and sending a SEQUENCE operation on it. However, if the
attempt to establish a new connection is delayed for some reason
(e.g., exponential backoff of the connection establishment
packets), the client will have to abort the connection
establishment attempt before the lease expires, and attempt to
reconnect.

If the server renews the lease upon receiving a SEQUENCE operation,
the server MUST NOT allow the lease to expire while the rest of the
operations in the COMPOUND procedure’s request are still executing.
Once the last operation has finished, and the response to COMPOUND
has been sent, the server MUST set the lease to expire no sooner than
the sum of current time and the value of the lease_time attribute.

A client ID’s lease can expire when it has been at least the lease
interval (lease_time) since the last lease-renewing SEQUENCE
operation was sent on any of the client ID’s sessions and there are
no active COMPOUND operations on any such sessions.

Because the SEQUENCE operation is the basic mechanism to renew a
lease, and because it must be done at least once for each lease
period, it is the natural mechanism whereby the server will inform
the client of changes in the lease status that the client needs to be
informed of. The client should inspect the status flags
(sr_status_flags) returned by sequence and take the appropriate
action (see Section 18.46.3 for details).

* The status bits SEQ4_STATUS_CB_PATH_ DOWN and
SEQ4_STATUS_CB_PATH_DOWN_SESSION indicate problems with the
backchannel that the client may need to address in order to
receive callback requests.

* The status bits SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRING and
SEQ4_STATUS_CB_GSS_CONTEXTS_EXPIRED indicate problems with GSS
contexts or RPCSEC_GSS handles for the backchannel that the client
might have to address in order to allow callback requests to be
sent.

* The status bits SEQ4_STATUS_EXPIRED_ ALIL STATE_REVOKED,
SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED,
SEQ4_STATUS_ADMIN_STATE_REVOKED, and
SEQ4_STATUS_RECALLABLE_STATE_REVOKED notify the client of lock
revocation events. When these bits are set, the client should use

TEST_STATEID to find what stateids have been revoked and use
FREE_STATEID to acknowledge loss of the associated state.

* The status bit SEQ4_STATUS_LEASE_MOVE indicates that
responsibility for lease renewal has been transferred to one or
more new servers.

* The status bit SEQ4_STATUS_RESTART_RECLAIM NEEDED indicates that
due to server restart the client must reclaim locking state.

* The status bit SEQ4_STATUS_BACKCHANNEL_FAULT indicates that the
server has encountered an unrecoverable fault with the backchannel
(e.g., it has lost track of a sequence ID for a slot in the
backchannel) .

.4. Crash Recovery

A critical requirement in crash recovery is that both the client and
the server know when the other has failed. Additionally, it is
required that a client sees a consistent view of data across server
restarts. All READ and WRITE operations that may have been queued
within the client or network buffers must wait until the client has
successfully recovered the locks protecting the READ and WRITE
operations. Any that reach the server before the server can safely
determine that the client has recovered enough locking state to be
sure that such operations can be safely processed must be rejected.
This will happen because either:

* The state presented is no longer valid since it is associated with
a now invalid client ID. In this case, the client will receive
either an NFS4ERR_BADSESSION or NFS4ERR_DEADSESSION error, and any
attempt to attach a new session to that invalid client ID will
result in an NFS4ERR_STALE_CLIENTID error.

* Subsequent recovery of locks may make execution of the operation
inappropriate (NFS4ERR_GRACE) .

.4.1. Client Failure and Recovery

In the event that a client fails, the server may release the client’s
locks when the associated lease has expired. Conflicting locks from
another client may only be granted after this lease expiration. As
discussed in Section 8.3, when a client has not failed and re-
establishes its lease before expiration occurs, requests for
conflicting locks will not be granted.

To minimize client delay upon restart, lock requests are associated
with an instance of the client by a client-supplied verifier. This
verifier is part of the client_owner4 sent in the initial EXCHANGE_ID
call made by the client. The server returns a client ID as a result
of the EXCHANGE_ID operation. The client then confirms the use of
the client ID by establishing a session associated with that client
ID (see Section 18.36.3 for a description of how this is done). All
locks, including opens, byte-range locks, delegations, and layouts
obtained by sessions using that client ID, are associated with that
client ID.

Since the verifier will be changed by the client upon each
initialization, the server can compare a new verifier to the verifier
associated with currently held locks and determine that they do not
match. This signifies the client’s new instantiation and subsequent
loss (upon confirmation of the new client ID) of locking state. As a
result, the server is free to release all locks held that are
associated with the old client ID that was derived from the old
verifier. At this point, conflicting locks from other clients, kept
waiting while the lease had not yet expired, can be granted. 1In
addition, all stateids associated with the old client ID can also be
freed, as they are no longer reference-able.

Note that the verifier must have the same uniqueness properties as
the verifier for the COMMIT operation.

8.

4

.2. Server Failure and Recovery

If the server loses locking state (usually as a result of a restart),
it must allow clients time to discover this fact and re-establish the
lost locking state. The client must be able to re-establish the
locking state without having the server deny valid requests because
the server has granted conflicting access to another client.
Likewise, if there is a possibility that clients have not yet re-
established their locking state for a file and that such locking
state might make it invalid to perform READ or WRITE operations. For
example, if mandatory locks are a possibility, the server must
disallow READ and WRITE operations for that file.

A client can determine that loss of locking state has occurred via
several methods.

1. When a SEQUENCE (most common) or other operation returns
NFS4ERR_BADSESSION, this may mean that the session has been
destroyed but the client ID is still wvalid. The client sends a
CREATE_SESSION request with the client ID to re-establish the
session. If CREATE_SESSION fails with NFS4ERR_STALE_CLIENTID,
the client must establish a new client ID (see Section 8.1) and
re—establish its lock state with the new client ID, after the
CREATE_SESSION operation succeeds (see Section 8.4.2.1).

2. When a SEQUENCE (most common) or other operation on a persistent
session returns NFS4ERR_DEADSESSION, this indicates that a
session is no longer usable for new, i.e., not satisfied from the
reply cache, operations. Once all pending operations are
determined to be either performed before the retry or not
performed, the client sends a CREATE_SESSION request with the
client ID to re-establish the session. If CREATE_SESSION fails
with NFS4ERR_STALE_CLIENTID, the client must establish a new
client ID (see Section 8.1) and re—establish its lock state after
the CREATE_SESSION, with the new client ID, succeeds
(Section 8.4.2.1).

3. When an operation, neither SEQUENCE nor preceded by SEQUENCE (for
example, CREATE_SESSION, DESTROY_SESSION), returns
NFS4ERR_STALE_CLIENTID, the client MUST establish a new client ID
(Section 8.1) and re-—-establish its lock state (Section 8.4.2.1).

8.4.2.1. State Reclaim

When state information and the associated locks are lost as a result
of a server restart, the protocol must provide a way to cause that
state to be re-established. The approach used is to define, for most
types of locking state (layouts are an exception), a request whose
function is to allow the client to re-establish on the server a lock
first obtained from a previous instance. Generally, these requests
are variants of the requests normally used to create locks of that
type and are referred to as "reclaim-type" requests, and the process
of re-establishing such locks is referred to as "reclaiming" them.

Because each client must have an opportunity to reclaim all of the
locks that it has without the possibility that some other client will
be granted a conflicting lock, a "grace period" is devoted to the
reclaim process. During this period, requests creating client IDs
and sessions are handled normally, but locking requests are subject
to special restrictions. Only reclaim-type locking requests are
allowed, unless the server can reliably determine (through state
persistently maintained across restart instances) that granting any
such lock cannot possibly conflict with a subsequent reclaim. When a
request is made to obtain a new lock (i.e., not a reclaim-type
request) during the grace period and such a determination cannot be
made, the server must return the error NFS4ERR_GRACE.

Once a session is established using the new client ID, the client
will use reclaim-type locking requests (e.g., LOCK operations with
reclaim set to TRUE and OPEN operations with a claim type of

CLAIM PREVIOUS; see Section 9.11) to re-establish its locking state.
Once this is done, or if there is no such locking state to reclaim,
the client sends a global RECLAIM_COMPLETE operation, i.e., one with
the rca_one_fs argument set to FALSE, to indicate that it has
reclaimed all of the locking state that it will reclaim. Once a
client sends such a RECLAIM_COMPLETE operation, it may attempt non-
reclaim locking operations, although it might get an NFS4ERR_GRACE
status result from each such operation until the period of special
handling is over. See Section 11.11.9 for a discussion of the
analogous handling lock reclamation in the case of file systems
transitioning from server to server.

During the grace period, the server must reject READ and WRITE
operations and non-reclaim locking requests (i.e., other LOCK and
OPEN operations) with an error of NFS4ERR_GRACE, unless it can
guarantee that these may be done safely, as described below.

The grace period may last until all clients that are known to
possibly have had locks have done a global RECLAIM COMPLETE
operation, indicating that they have finished reclaiming the locks
they held before the server restart. This means that a client that
has done a RECLAIM_COMPLETE must be prepared to receive an
NFS4ERR_GRACE when attempting to acquire new locks. In order for the
server to know that all clients with possible prior lock state have
done a RECLAIM COMPLETE, the server must maintain in stable storage a
list clients that may have such locks. The server may also terminate
the grace period before all clients have done a global
RECLAIM_COMPLETE. The server SHOULD NOT terminate the grace period
before a time equal to the lease period in order to give clients an
opportunity to find out about the server restart, as a result of
sending requests on associated sessions with a frequency governed by
the lease time. ©Note that when a client does not send such requests
(or they are sent by the client but not received by the server), it
is possible for the grace period to expire before the client finds
out that the server restart has occurred.

Some additional time in order to allow a client to establish a new
client ID and session and to effect lock reclaims may be added to the
lease time. Note that analogous rules apply to file system-specific
grace periods discussed in Section 11.11.9.

If the server can reliably determine that granting a non-reclaim
request will not conflict with reclamation of locks by other clients,
the NFS4ERR_GRACE error does not have to be returned even within the
grace period, although NFS4ERR_GRACE must always be returned to
clients attempting a non-reclaim lock request before doing their own
global RECLAIM_COMPLETE. For the server to be able to service READ
and WRITE operations during the grace period, it must again be able
to guarantee that no possible conflict could arise between a
potential reclaim locking request and the READ or WRITE operation.
If the server is unable to offer that guarantee, the NFS4ERR_GRACE
error must be returned to the client.

For a server to provide simple, valid handling during the grace
period, the easiest method is to simply reject all non-reclaim
locking requests and READ and WRITE operations by returning the
NFS4ERR_GRACE error. However, a server may keep information about
granted locks in stable storage. With this information, the server
could determine if a locking, READ or WRITE operation can be safely
processed.

For example, if the server maintained on stable storage summary
information on whether mandatory locks exist, either mandatory byte-
range locks, or share reservations specifying deny modes, many
requests could be allowed during the grace period. If it is known
that no such share reservations exist, OPEN request that do not
specify deny modes may be safely granted. If, in addition, it is
known that no mandatory byte-range locks exist, either through
information stored on stable storage or simply because the server
does not support such locks, READ and WRITE operations may be safely
processed during the grace period. Another important case is where

it is known that no mandatory byte-range locks exist, either because
the server does not provide support for them or because their absence
is known from persistently recorded data. In this case, READ and
WRITE operations specifying stateids derived from reclaim-type
operations may be validly processed during the grace period because
of the fact that the valid reclaim ensures that no lock subsequently
granted can prevent the I/O.

To reiterate, for a server that allows non-reclaim lock and I/O
requests to be processed during the grace period, it MUST determine
that no lock subsequently reclaimed will be rejected and that no lock
subsequently reclaimed would have prevented any I/0O operation
processed during the grace period.

Clients should be prepared for the return of NFS4ERR_GRACE errors for
non-reclaim lock and I/0 requests. In this case, the client should
employ a retry mechanism for the request. A delay (on the order of
several seconds) between retries should be used to avoid overwhelming
the server. Further discussion of the general issue is included in
[55]. The client must account for the server that can perform I/O
and non-reclaim locking requests within the grace period as well as
those that cannot do so.

A reclaim-type locking request outside the server’s grace period can
only succeed if the server can guarantee that no conflicting lock or
I/0 request has been granted since restart.

A server may, upon restart, establish a new value for the lease
period. Therefore, clients should, once a new client ID is
established, refetch the lease_time attribute and use it as the basis
for lease renewal for the lease associated with that server.

However, the server must establish, for this restart event, a grace
period at least as long as the lease period for the previous server
instantiation. This allows the client state obtained during the
previous server instance to be reliably re-established.

The possibility exists that, because of server configuration events,
the client will be communicating with a server different than the one
on which the locks were obtained, as shown by the combination of
eir_server_scope and eir_server_owner. This leads to the issue of if
and when the client should attempt to reclaim locks previously
obtained on what is being reported as a different server. The rules
to resolve this question are as follows:

* TIf the server scope is different, the client should not attempt to
reclaim locks. In this situation, no lock reclaim is possible.
Any attempt to re-obtain the locks with non-reclaim operations is
problematic since there is no guarantee that the existing
filehandles will be recognized by the new server, or that if
recognized, they denote the same objects. It is best to treat the
locks as having been revoked by the reconfiguration event.

* If the server scope is the same, the client should attempt to
reclaim locks, even if the eir_server_owner value is different.
In this situation, it is the responsibility of the server to
return NFS4ERR_NO_GRACE if it cannot provide correct support for
lock reclaim operations, including the prevention of edge
conditions.

The eir_server_owner field is not used in making this determination.
Its function is to specify trunking possibilities for the client (see
Section 2.10.5) and not to control lock reclaim.

8.4.2.1.1. Security Considerations for State Reclaim

During the grace period, a client can reclaim state that it believes
or asserts it had before the server restarted. Unless the server
maintained a complete record of all the state the client had, the
server has little choice but to trust the client. (Of course, if the
server maintained a complete record, then it would not have to force
the client to reclaim state after server restart.) While the server

has to trust the client to tell the truth, the negative consequences
for security are limited to enabling denial-of-service attacks in
situations in which AUTH_SYS is supported. The fundamental rule for
the server when processing reclaim requests is that it MUST NOT grant
the reclaim if an equivalent non-reclaim request would not be granted
during steady state due to access control or access conflict issues.
For example, an OPEN request during a reclaim will be refused with
NFS4ERR_ACCESS if the principal making the request does not have
access to open the file according to the discretionary ACL

(Section 6.2.2) on the file.

Nonetheless, it is possible that a client operating in error or
maliciously could, during reclaim, prevent another client from
reclaiming access to state. For example, an attacker could send an
OPEN reclaim operation with a deny mode that prevents another client
from reclaiming the OPEN state it had before the server restarted.
The attacker could perform the same denial of service during steady
state prior to server restart, as long as the attacker had
permissions. Given that the attack vectors are equivalent, the grace
period does not offer any additional opportunity for denial of
service, and any concerns about this attack wvector, whether during
grace or steady state, are addressed the same way: use RPCSEC_GSS for
authentication and limit access to the file only to principals that
the owner of the file trusts.

Note that if prior to restart the server had client IDs with the
EXCHGID4_FLAG_BIND_PRINC_STATEID (Section 18.35) capability set, then
the server SHOULD record in stable storage the client owner and the
principal that established the client ID wvia EXCHANGE_ID. 1If the
server does not, then there is a risk a client will be unable to
reclaim state if it does not have a credential for a principal that
was originally authorized to establish the state.

.4.3. Network Partitions and Recovery

If the duration of a network partition is greater than the lease
period provided by the server, the server will not have received a
lease renewal from the client. If this occurs, the server may free
all locks held for the client or it may allow the lock state to
remain for a considerable period, subject to the constraint that if a
request for a conflicting lock is made, locks associated with an
expired lease do not prevent such a conflicting lock from being
granted but MUST be revoked as necessary so as to avoid interfering
with such conflicting requests.

If the server chooses to delay freeing of lock state until there is a
conflict, it may either free all of the client’s locks once there is
a conflict or it may only revoke the minimum set of locks necessary
to allow conflicting requests. When it adopts the finer-grained
approach, it must revoke all locks associated with a given stateid,
even if the conflict is with only a subset of locks.

When the server chooses to free all of a client’s lock state, either
immediately upon lease expiration or as a result of the first attempt
to obtain a conflicting a lock, the server may report the loss of
lock state in a number of ways.

The server may choose to invalidate the session and the associated
client ID. In this case, once the client can communicate with the
server, it will receive an NFS4ERR_BADSESSION error. Upon attempting
to create a new session, it would get an NFS4ERR_STALE_CLIENTID.

Upon creating the new client ID and new session, the client will
attempt to reclaim locks. Normally, the server will not allow the
client to reclaim locks, because the server will not be in its
recovery grace period.

Another possibility is for the server to maintain the session and
client ID but for all stateids held by the client to become invalid
or stale. Once the client can reach the server after such a network
partition, the status returned by the SEQUENCE operation will
indicate a loss of locking state; i.e., the flag

SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED will be set in sr_status_flags.
In addition, all I/O submitted by the client with the now invalid
stateids will fail with the server returning the error
NFS4ERR_EXPIRED. Once the client learns of the loss of locking
state, it will suitably notify the applications that held the
invalidated locks. The client should then take action to free
invalidated stateids, either by establishing a new client ID using a
new verifier or by doing a FREE_STATEID operation to release each of
the invalidated stateids.

When the server adopts a finer-grained approach to revocation of
locks when a client’s lease has expired, only a subset of stateids
will normally become invalid during a network partition. When the
client can communicate with the server after such a network partition
heals, the status returned by the SEQUENCE operation will indicate a
partial loss of locking state
(SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED) . In addition, operations,
including I/0 submitted by the client, with the now invalid stateids
will fail with the server returning the error NFS4ERR_EXPIRED. Once
the client learns of the loss of locking state, it will use the
TEST_STATEID operation on all of its stateids to determine which
locks have been lost and then suitably notify the applications that
held the invalidated locks. The client can then release the
invalidated locking state and acknowledge the revocation of the
associated locks by doing a FREE_STATEID operation on each of the
invalidated stateids.

When a network partition is combined with a server restart, there are
edge conditions that place requirements on the server in order to
avoid silent data corruption following the server restart. Two of
these edge conditions are known, and are discussed below.

The first edge condition arises as a result of the scenarios such as
the following:

1. Client A acquires a lock.

2. Client A and server experience mutual network partition, such
that client A is unable to renew its lease.

3. Client A’s lease expires, and the server releases the lock.

4. Client B acquires a lock that would have conflicted with that of

client A.
5. Client B releases its lock.
6. Server restarts.
7. Network partition between client A and server heals.
8. Client A connects to a new server instance and finds out about

server restart.
9. Client A reclaims its lock within the server’s grace period.
Thus, at the final step, the server has erroneously granted client
A’s lock reclaim. If client B modified the object the lock was

protecting, client A will experience object corruption.

The second known edge condition arises in situations such as the
following:

1. Client A acquires one or more locks.
2. Server restarts.
3. Client A and server experience mutual network partition, such

that client A is unable to reclaim all of its locks within the
grace period.

4. Server’s reclaim grace period ends. Client A has either no
locks or an incomplete set of locks known to the server.

5. Client B acquires a lock that would have conflicted with a lock
of client A that was not reclaimed.

6. Client B releases the lock.

7. Server restarts a second time.

8. Network partition between client A and server heals.

9. Client A connects to new server instance and finds out about

server restart.
10. Client A reclaims its lock within the server’s grace period.

As with the first edge condition, the final step of the scenario of
the second edge condition has the server erroneously granting client
A’s lock reclaim.

Solving the first and second edge conditions requires either that the
server always assumes after it restarts that some edge condition
occurs, and thus returns NFS4ERR_NO_GRACE for all reclaim attempts,
or that the server record some information in stable storage. The
amount of information the server records in stable storage is in
inverse proportion to how harsh the server intends to be whenever
edge conditions arise. The server that is completely tolerant of all
edge conditions will record in stable storage every lock that is
acquired, removing the lock record from stable storage only when the
lock is released. For the two edge conditions discussed above, the
harshest a server can be, and still support a grace period for
reclaims, requires that the server record in stable storage some
minimal information. For example, a server implementation could, for
each client, save in stable storage a record containing:

* the co_ownerid field from the client_owner4 presented in the
EXCHANGE_ID operation.

* a boolean that indicates if the client’s lease expired or if there
was administrative intervention (see Section 8.5) to revoke a
byte-range lock, share reservation, or delegation and there has
been no acknowledgment, via FREE_STATEID, of such revocation.

* a boolean that indicates whether the client may have locks that it
believes to be reclaimable in situations in which the grace period
was terminated, making the server’s view of lock reclaimability
suspect. The server will set this for any client record in stable
storage where the client has not done a suitable RECLAIM_COMPLETE
(global or file system-specific depending on the target of the
lock request) before it grants any new (i.e., not reclaimed) lock
to any client.

Assuming the above record keeping, for the first edge condition,
after the server restarts, the record that client A’s lease expired
means that another client could have acquired a conflicting byte-
range lock, share reservation, or delegation. Hence, the server must
reject a reclaim from client A with the error NFS4ERR_NO_GRACE.

For the second edge condition, after the server restarts for a second
time, the indication that the client had not completed its reclaims
at the time at which the grace period ended means that the server
must reject a reclaim from client A with the error NFS4ERR_NO_GRACE.

When either edge condition occurs, the client’s attempt to reclaim
locks will result in the error NFS4ERR_NO_GRACE. When this is
received, or after the client restarts with no lock state, the client
will send a global RECLAIM COMPLETE. When the RECLAIM COMPLETE is
received, the server and client are again in agreement regarding
reclaimable locks and both booleans in persistent storage can be
reset, to be set again only when there is a subsequent event that

causes lock reclaim operations to be questionable.

Regardless of the level and approach to record keeping, the server
MUST implement one of the following strategies (which apply to
reclaims of share reservations, byte-range locks, and delegations):

1. Reject all reclaims with NFS4ERR_NO_GRACE. This is extremely
unforgiving, but necessary if the server does not record lock
state in stable storage.

2. Record sufficient state in stable storage such that all known
edge conditions involving server restart, including the two noted
in this section, are detected. It is acceptable to erroneously
recognize an edge condition and not allow a reclaim, when, with
sufficient knowledge, it would be allowed. The error the server
would return in this case is NFS4ERR_NO_GRACE. Note that it is
not known if there are other edge conditions.

In the event that, after a server restart, the server determines
there is unrecoverable damage or corruption to the information in
stable storage, then for all clients and/or locks that may be
affected, the server MUST return NFS4ERR_NO_GRACE.

A mandate for the client’s handling of the NFS4ERR_NO_GRACE error is
outside the scope of this specification, since the strategies for
such handling are very dependent on the client’s operating
environment. However, one potential approach is described below.

When the client receives NFS4ERR_NO_GRACE, it could examine the
change attribute of the objects for which the client is trying to
reclaim state, and use that to determine whether to re-establish the
state via normal OPEN or LOCK operations. This is acceptable
provided that the client’s operating environment allows it. In other
words, the client implementor is advised to document for his users
the behavior. The client could also inform the application that its
byte-range lock or share reservations (whether or not they were
delegated) have been lost, such as via a UNIX signal, a Graphical
User Interface (GUI) pop-up window, etc. See Section 10.5 for a
discussion of what the client should do for dealing with unreclaimed
delegations on client state.

For further discussion of revocation of locks, see Section 8.5.
.5. Server Revocation of Locks

At any point, the server can revoke locks held by a client, and the
client must be prepared for this event. When the client detects that
its locks have been or may have been revoked, the client is
responsible for validating the state information between itself and
the server. Validating locking state for the client means that it
must verify or reclaim state for each lock currently held.

The first occasion of lock revocation is upon server restart. Note
that this includes situations in which sessions are persistent and
locking state is lost. 1In this class of instances, the client will
receive an error (NFS4ERR_STALE_CLIENTID) on an operation that takes
client ID, usually as part of recovery in response to a problem with
the current session), and the client will proceed with normal crash
recovery as described in the Section 8.4.2.1.

The second occasion of lock revocation is the inability to renew the
lease before expiration, as discussed in Section 8.4.3. While this
is considered a rare or unusual event, the client must be prepared to
recover. The server is responsible for determining the precise
consequences of the lease expiration, informing the client of the
scope of the lock revocation decided upon. The client then uses the
status information provided by the server in the SEQUENCE results
(field sr_status_flags, see Section 18.46.3) to synchronize its
locking state with that of the server, in order to recover.

The third occasion of lock revocation can occur as a result of

revocation of locks within the lease period, either because of
administrative intervention or because a recallable lock (a
delegation or layout) was not returned within the lease period after
having been recalled. While these are considered rare events, they
are possible, and the client must be prepared to deal with them.

When either of these events occurs, the client finds out about the
situation through the status returned by the SEQUENCE operation. Any
use of stateids associated with locks revoked during the lease period
will receive the error NFS4ERR_ADMIN_REVOKED or
NFS4ERR_DELEG_REVOKED, as appropriate.

In all situations in which a subset of locking state may have been
revoked, which include all cases in which locking state is revoked
within the lease period, it is up to the client to determine which
locks have been revoked and which have not. It does this by using
the TEST_STATEID operation on the appropriate set of stateids. Once
the set of revoked locks has been determined, the applications can be
notified, and the invalidated stateids can be freed and lock
revocation acknowledged by using FREE_STATEID.

.6. Short and Long Leases

When determining the time period for the server lease, the usual
lease trade-offs apply. A short lease is good for fast server
recovery at a cost of increased operations to effect lease renewal
(when there are no other operations during the period to effect lease
renewal as a side effect). A long lease is certainly kinder and
gentler to servers trying to handle very large numbers of clients.
The number of extra requests to effect lock renewal drops in inverse
proportion to the lease time. The disadvantages of a long lease
include the possibility of slower recovery after certain failures.
After server failure, a longer grace period may be required when some
clients do not promptly reclaim their locks and do a global
RECLAIM_COMPLETE. In the event of client failure, the longer period
for a lease to expire will force conflicting requests to wait longer.

A long lease is practical if the server can store lease state in
stable storage. Upon recovery, the server can reconstruct the lease
state from its stable storage and continue operation with its
clients.

.7. Clocks, Propagation Delay, and Calculating Lease Expiration

To avoid the need for synchronized clocks, lease times are granted by
the server as a time delta. However, there is a requirement that the
client and server clocks do not drift excessively over the duration
of the lease. There is also the issue of propagation delay across
the network, which could easily be several hundred milliseconds, as
well as the possibility that requests will be lost and need to be
retransmitted.

To take propagation delay into account, the client should subtract it
from lease times (e.g., if the client estimates the one-way
propagation delay as 200 milliseconds, then it can assume that the
lease is already 200 milliseconds old when it gets it). 1In addition,
it will take another 200 milliseconds to get a response back to the
server. So the client must send a lease renewal or write data back
to the server at least 400 milliseconds before the lease would
expire. If the propagation delay varies over the life of the lease
(e.g., the client is on a mobile host), the client will need to
continuously subtract the increase in propagation delay from the
lease times.

The server’s lease period configuration should take into account the
network distance of the clients that will be accessing the server’s
resources. It is expected that the lease period will take into
account the network propagation delays and other network delay
factors for the client population. Since the protocol does not allow
for an automatic method to determine an appropriate lease period, the
server’s administrator may have to tune the lease period.

8.

9.

8. Obsolete Locking Infrastructure from NESv4.0

There are a number of operations and fields within existing
operations that no longer have a function in NFSv4.l1l. In one way oOr
another, these changes are all due to the implementation of sessions
that provide client context and exactly once semantics as a base
feature of the protocol, separate from locking itself.

The following NFSv4.0 operations MUST NOT be implemented in NFSv4.l.
The server MUST return NFS4ERR_NOTSUPP if these operations are found
in an NFSv4.1 COMPOUND.

* SETCLIENTID since its function has been replaced by EXCHANGE_ID.

* SETCLIENTID_CONFIRM since client ID confirmation now happens by
means of CREATE_SESSION.

* OPEN_CONFIRM because state-owner-based segids have been replaced
by the sequence ID in the SEQUENCE operation.

* RELEASE_LOCKOWNER because lock-owners with no associated locks do
not have any sequence-related state and so can be deleted by the
server at will.

* RENEW because every SEQUENCE operation for a session causes lease
renewal, making a separate operation superfluous.

Also, there are a number of fields, present in existing operations,
related to locking that have no use in minor version 1. They were
used in minor version 0 to perform functions now provided in a
different fashion.

* Sequence ids used to sequence requests for a given state-owner and
to provide retry protection, now provided via sessions.

* Client IDs used to identify the client associated with a given
request. Client identification is now available using the client
ID associated with the current session, without needing an
explicit client ID field.

Such vestigial fields in existing operations have no function in
NFSv4.1l and are ignored by the server. Note that client IDs in
operations new to NFSv4.l (such as CREATE_SESSION and
DESTROY_CLIENTID) are not ignored.

File Locking and Share Reservations

To support Win32 share reservations, it is necessary to provide
operations that atomically open or create files. Having a separate
share/unshare operation would not allow correct implementation of the
Win32 OpenFile API. 1In order to correctly implement share semantics,
the previous NFS protocol mechanisms used when a file is opened or
created (LOOKUP, CREATE, ACCESS) need to be replaced. The NFSv4.1l
protocol defines an OPEN operation that is capable of atomically
looking up, creating, and locking a file on the server.

1. Opens and Byte—-Range Locks

It is assumed that manipulating a byte-range lock is rare when
compared to READ and WRITE operations. It is also assumed that
server restarts and network partitions are relatively rare.
Therefore, it is important that the READ and WRITE operations have a
lightweight mechanism to indicate if they possess a held lock. A
LOCK operation contains the heavyweight information required to
establish a byte-range lock and uniquely define the owner of the
lock.

.1.1. State-Owner Definition

When opening a file or requesting a byte-range lock, the client must
specify an identifier that represents the owner of the requested

lock. This identifier is in the form of a state-owner, represented
in the protocol by a state_owner4, a variable-length opaque array
that, when concatenated with the current client ID, uniquely defines
the owner of a lock managed by the client. This may be a thread ID,
process ID, or other unique value.

Owners of opens and owners of byte-range locks are separate entities
and remain separate even if the same opaque arrays are used to
designate owners of each. The protocol distinguishes between open-
owners (represented by open_owner4 structures) and lock-owners
(represented by lock_owner4 structures).

Each open is associated with a specific open-owner while each byte-
range lock is associated with a lock-owner and an open-owner, the
latter being the open-owner associated with the open file under which
the LOCK operation was done. Delegations and layouts, on the other
hand, are not associated with a specific owner but are associated
with the client as a whole (identified by a client ID).

9.1.2. Use of the Stateid and Locking

All READ, WRITE, and SETATTR operations contain a stateid. For the
purposes of this section, SETATTR operations that change the size
attribute of a file are treated as if they are writing the area
between the old and new sizes (i.e., the byte-range truncated or
added to the file by means of the SETATTR), even where SETATTR is not
explicitly mentioned in the text. The stateid passed to one of these
operations must be one that represents an open, a set of byte-range
locks, or a delegation, or it may be a special stateid representing
anonymous access or the special bypass stateid.

If the state-owner performs a READ or WRITE operation in a situation
in which it has established a byte-range lock or share reservation on
the server (any OPEN constitutes a share reservation), the stateid
(previously returned by the server) must be used to indicate what
locks, including both byte-range locks and share reservations, are
held by the state-owner. If no state is established by the client,
either a byte-range lock or a share reservation, a special stateid
for anonymous state (zero as the value for "other" and "seqgid") is
used. (See Section 8.2.3 for a description of ’special’ stateids in
general.) Regardless of whether a stateid for anonymous state or a
stateid returned by the server is used, if there is a conflicting
share reservation or mandatory byte-range lock held on the file, the
server MUST refuse to service the READ or WRITE operation.

Share reservations are established by OPEN operations and by their
nature are mandatory in that when the OPEN denies READ or WRITE
operations, that denial results in such operations being rejected
with error NFS4ERR_LOCKED. Byte-range locks may be implemented by
the server as either mandatory or advisory, or the choice of
mandatory or advisory behavior may be determined by the server on the
basis of the file being accessed (for example, some UNIX-based
servers support a "mandatory lock bit" on the mode attribute such
that if set, byte-range locks are required on the file before I/0 is
possible). When byte-range locks are advisory, they only prevent the
granting of conflicting lock requests and have no effect on READs or
WRITEs. Mandatory byte-range locks, however, prevent conflicting I/O
operations. When they are attempted, they are rejected with
NFS4ERR_LOCKED. When the client gets NFS4ERR_LOCKED on a file for
which it knows it has the proper share reservation, it will need to
send a LOCK operation on the byte-range of the file that includes the
byte-range the I/0 was to be performed on, with an appropriate
locktype field of the LOCK operation’s arguments (i.e., READ*_LT for
a READ operation, WRITE*_LT for a WRITE operation).

Note that for UNIX environments that support mandatory byte-range
locking, the distinction between advisory and mandatory locking is
subtle. 1In fact, advisory and mandatory byte-range locks are exactly
the same as far as the APIs and requirements on implementation. If
the mandatory lock attribute is set on the file, the server checks to
see if the lock-owner has an appropriate shared (READ_LT) or

exclusive (WRITE_LT) byte-range lock on the byte-range it wishes to
READ from or WRITE to. If there is no appropriate lock, the server
checks if there is a conflicting lock (which can be done by
attempting to acquire the conflicting lock on behalf of the lock-
owner, and if successful, release the lock after the READ or WRITE
operation is done), and if there is, the server returns
NFS4ERR_LOCKED.

For Windows environments, byte-range locks are always mandatory, so
the server always checks for byte-range locks during I/O requests.

Thus, the LOCK operation does not need to distinguish between
advisory and mandatory byte-range locks. It is the server’s
processing of the READ and WRITE operations that introduces the
distinction.

Every stateid that is wvalidly passed to READ, WRITE, or SETATTR, with
the exception of special stateid values, defines an access mode for
the file (i.e., OPEN4_SHARE_ACCESS_READ, OPEN4_SHARE_ACCESS_WRITE, or
OPEN4_SHARE_ACCESS_BOTH) .

* For stateids associated with opens, this is the mode defined by
the original OPEN that caused the allocation of the OPEN stateid
and as modified by subsequent OPENs and OPEN_DOWNGRADEs for the
same open-owner/file pair.

* For stateids returned by byte-range LOCK operations, the
appropriate mode is the access mode for the OPEN stateid
associated with the lock set represented by the stateid.

* For delegation stateids, the access mode is based on the type of
delegation.

When a READ, WRITE, or SETATTR (that specifies the size attribute)
operation is done, the operation is subject to checking against the
access mode to verify that the operation is appropriate given the
stateid with which the operation is associated.

In the case of WRITE-type operations (i.e., WRITEs and SETATTRs that
set size), the server MUST verify that the access mode allows writing
and MUST return an NFS4ERR_OPENMODE error if it does not. In the
case of READ, the server may perform the corresponding check on the
access mode, or it may choose to allow READ on OPENs for
OPEN4_SHARE_ACCESS_WRITE, to accommodate clients whose WRITE
implementation may unavoidably do reads (e.g., due to buffer cache
constraints). However, even if READs are allowed in these
circumstances, the server MUST still check for locks that conflict
with the READ (e.g., another OPEN specified OPEN4_SHARE_DENY_READ or
OPEN4_SHARE_DENY_BOTH). Note that a server that does enforce the
access mode check on READs need not explicitly check for conflicting
share reservations since the existence of OPEN for
OPEN4_SHARE_ACCESS_READ guarantees that no conflicting share
reservation can exist.

The READ bypass special stateid (all bits of "other" and "seqgid" set
to one) indicates a desire to bypass locking checks. The server MAY
allow READ operations to bypass locking checks at the server, when
this special stateid is used. However, WRITE operations with this
special stateid value MUST NOT bypass locking checks and are treated
exactly the same as if a special stateid for anonymous state were
used.

A lock may not be granted while a READ or WRITE operation using one

of the special stateids is being performed and the scope of the lock
to be granted would conflict with the READ or WRITE operation. This
can occur when:

* A mandatory byte-range lock is requested with a byte-range that
conflicts with the byte-range of the READ or WRITE operation. For
the purposes of this paragraph, a conflict occurs when a shared
lock is requested and a WRITE operation is being performed, or an

exclusive lock is requested and either a READ or a WRITE operation
is being performed.

* A share reservation is requested that denies reading and/or
writing and the corresponding operation is being performed.

* A delegation is to be granted and the delegation type would
prevent the I/O operation, i.e., READ and WRITE conflict with an
OPEN_DELEGATE_WRITE delegation and WRITE conflicts with an
OPEN_DELEGATE_READ delegation.

When a client holds a delegation, it needs to ensure that the stateid
sent conveys the association of operation with the delegation, to
avoid the delegation from being avoidably recalled. When the
delegation stateid, a stateid open associated with that delegation,
or a stateid representing byte-range locks derived from such an open
is used, the server knows that the READ, WRITE, or SETATTR does not
conflict with the delegation but is sent under the aegis of the
delegation. Even though it is possible for the server to determine
from the client ID (via the session ID) that the client does in fact
have a delegation, the server is not obliged to check this, so using
a special stateid can result in avoidable recall of the delegation.

9.2. Lock Ranges

The protocol allows a lock-owner to request a lock with a byte-range
and then either upgrade, downgrade, or unlock a sub-range of the
initial lock, or a byte-range that overlaps —-- fully or partially —--
either with that initial lock or a combination of a set of existing
locks for the same lock-owner. It is expected that this will be an
uncommon type of request. In any case, servers or server file
systems may not be able to support sub-range lock semantics. In the
event that a server receives a locking request that represents a sub-
range of current locking state for the lock-owner, the server is
allowed to return the error NFS4ERR_LOCK_RANGE to signify that it
does not support sub-range lock operations. Therefore, the client
should be prepared to receive this error and, if appropriate, report
the error to the requesting application.

The client is discouraged from combining multiple independent locking
ranges that happen to be adjacent into a single request since the
server may not support sub-range requests for reasons related to the
recovery of byte-range locking state in the event of server failure.
As discussed in Section 8.4.2, the server may employ certain
optimizations during recovery that work effectively only when the
client’s behavior during lock recovery is similar to the client’s
locking behavior prior to server failure.

9.3. Upgrading and Downgrading Locks

If a client has a WRITE_LT lock on a byte-range, it can request an
atomic downgrade of the lock to a READ_LT lock via the LOCK
operation, by setting the type to READ_LT. If the server supports
atomic downgrade, the request will succeed. If not, it will return
NFS4ERR_LOCK_NOTSUPP. The client should be prepared to receive this
error and, 1f appropriate, report the error to the requesting
application.

If a client has a READ_LT lock on a byte-range, it can request an
atomic upgrade of the lock to a WRITE_LT lock via the LOCK operation
by setting the type to WRITE_LT or WRITEW_LT. If the server does not
support atomic upgrade, it will return NFS4ERR_LOCK_NOTSUPP. If the
upgrade can be achieved without an existing conflict, the request
will succeed. Otherwise, the server will return either
NFS4ERR_DENIED or NFS4ERR_DEADLOCK. The error NFS4ERR_DEADLOCK is
returned if the client sent the LOCK operation with the type set to
WRITEW_LT and the server has detected a deadlock. The client should
be prepared to receive such errors and, if appropriate, report the
error to the requesting application.

9.4. Stateid Segid Values and Byte—-Range Locks

When a LOCK or LOCKU operation is performed, the stateid returned has
the same "other" value as the argument’s stateid, and a "seqgid" value
that is incremented (relative to the argument’s stateid) to reflect
the occurrence of the LOCK or LOCKU operation. The server MUST
increment the value of the "seqgid" field whenever there is any change
to the locking status of any byte offset as described by any of the
locks covered by the stateid. A change in locking status includes a
change from locked to unlocked or the reverse or a change from being
locked for READ_LT to being locked for WRITE_LT or the reverse.

When there is no such change, as, for example, when a range already
locked for WRITE_LT is locked again for WRITE_LT, the server MAY
increment the "segid" value.

.5. 1Issues with Multiple Open-Owners

When the same file is opened by multiple open-owners, a client will
have multiple OPEN stateids for that file, each associated with a
different open-owner. In that case, there can be multiple LOCK and
LOCKU requests for the same lock-owner sent using the different OPEN
stateids, and so a situation may arise in which there are multiple
stateids, each representing byte-range locks on the same file and
held by the same lock-owner but each associated with a different
open—-owner.

In such a situation, the locking status of each byte (i.e., whether
it is locked, the READ_LT or WRITE_LT type of the lock, and the lock-
owner holding the lock) MUST reflect the last LOCK or LOCKU operation
done for the lock-owner in question, independent of the stateid
through which the request was sent.

When a byte is locked by the lock-owner in question, the open-owner
to which that byte-range lock is assigned SHOULD be that of the open-
owner associated with the stateid through which the last LOCK of that
byte was done. When there is a change in the open-owner associated
with locks for the stateid through which a LOCK or LOCKU was done,
the "seqid" field of the stateid MUST be incremented, even if the
locking, in terms of lock-owners has not changed. When there is a
change to the set of locked bytes associated with a different stateid
for the same lock-owner, i.e., associated with a different open-
owner, the "seqgid" wvalue for that stateid MUST NOT be incremented.

.6. Blocking Locks

Some clients require the support of blocking locks. While NFSv4.1l
provides a callback when a previously unavailable lock becomes
available, this is an OPTIONAL feature and clients cannot depend on
its presence. Clients need to be prepared to continually poll for
the lock. This presents a fairness problem. Two of the lock types,
READW_LT and WRITEW_LT, are used to indicate to the server that the
client is requesting a blocking lock. When the callback is not used,
the server should maintain an ordered list of pending blocking locks.
When the conflicting lock is released, the server may wait for the
period of time equal to lease_time for the first waiting client to
re-request the lock. After the lease period expires, the next
waiting client request is allowed the lock. Clients are required to
poll at an interval sufficiently small that it is likely to acquire
the lock in a timely manner. The server is not required to maintain
a list of pending blocked locks as it is used to increase fairness
and not correct operation. Because of the unordered nature of crash
recovery, storing of lock state to stable storage would be required
to guarantee ordered granting of blocking locks.

Servers may also note the lock types and delay returning denial of
the request to allow extra time for a conflicting lock to be
released, allowing a successful return. In this way, clients can
avoid the burden of needless frequent polling for blocking locks.
The server should take care in the length of delay in the event the
client retransmits the request.

If a server receives a blocking LOCK operation, denies it, and then
later receives a nonblocking request for the same lock, which is also
denied, then it should remove the lock in question from its list of
pending blocking locks. Clients should use such a nonblocking
request to indicate to the server that this is the last time they
intend to poll for the lock, as may happen when the process
requesting the lock is interrupted. This is a courtesy to the
server, to prevent it from unnecessarily waiting a lease period
before granting other LOCK operations. However, clients are not
required to perform this courtesy, and servers must not depend on
them doing so. Also, clients must be prepared for the possibility
that this final locking request will be accepted.

When a server indicates, via the flag OPEN4_RESULT_MAY NOTIFY_ LOCK,
that CB_NOTIFY_LOCK callbacks might be done for the current open
file, the client should take notice of this, but, since this is a
hint, cannot rely on a CB_NOTIFY_LOCK always being done. A client
may reasonably reduce the frequency with which it polls for a denied
lock, since the greater latency that might occur is likely to be
eliminated given a prompt callback, but it still needs to poll. When
it receives a CB_NOTIFY_LOCK, it should promptly try to obtain the
lock, but it should be aware that other clients may be polling and
that the server is under no obligation to reserve the lock for that
particular client.

9.7. Share Reservations

A share reservation is a mechanism to control access to a file. It
is a separate and independent mechanism from byte-range locking.

When a client opens a file, it sends an OPEN operation to the server
specifying the type of access required (READ, WRITE, or BOTH) and the
type of access to deny others (OPEN4_SHARE_DENY_NONE,
OPEN4_SHARE_DENY_READ, OPEN4_SHARE_DENY_WRITE, or
OPEN4_SHARE_DENY_BOTH) . If the OPEN fails, the client will fail the
application’s open request.

Pseudo-code definition of the semantics:

if (request.access == 0) {
return (NFS4ERR_INVAL)

} else {
if ((request.access & file_state.deny)) ||
(request.deny & file_state.access)) {

return (NFS4ERR_SHARE_DENIED)

}
return (NFS4ERR_OK) ;

When doing this checking of share reservations on OPEN, the current
file_state used in the algorithm includes bits that reflect all
current opens, including those for the open-owner making the new OPEN
request.

The constants used for the OPEN and OPEN_DOWNGRADE operations for the
access and deny fields are as follows:

const OPEN4_SHARE_ACCESS_READ = 0x00000001;
const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;
const OPEN4_SHARE_DENY_NONE = 0x00000000;
const OPEN4_SHARE_DENY_READ = 0x00000001;
const OPEN4_SHARE_DENY WRITE = 0x00000002;
const OPEN4_SHARE_DENY_ BOTH = 0x00000003;

9.8. OPEN/CLOSE Operations

To provide correct share semantics, a client MUST use the OPEN
operation to obtain the initial filehandle and indicate the desired
access and what access, if any, to deny. Even if the client intends
to use a special stateid for anonymous state or READ bypass, it must
still obtain the filehandle for the regular file with the OPEN

9.

9.

operation so the appropriate share semantics can be applied. Clients
that do not have a deny mode built into their programming interfaces
for opening a file should request a deny mode of
OPEN4_SHARE_DENY_NONE.

The OPEN operation with the CREATE flag also subsumes the CREATE
operation for regular files as used in previous versions of the NFS
protocol. This allows a create with a share to be done atomically.

The CLOSE operation removes all share reservations held by the open-—
owner on that file. If byte-range locks are held, the client SHOULD
release all locks before sending a CLOSE operation. The server MAY
free all outstanding locks on CLOSE, but some servers may not support
the CLOSE of a file that still has byte-range locks held. The server
MUST return failure, NFS4ERR_LOCKS_HELD, if any locks would exist
after the CLOSE.

The LOOKUP operation will return a filehandle without establishing
any lock state on the server. Without a valid stateid, the server
will assume that the client has the least access. For example, if
one client opened a file with OPEN4_SHARE_DENY_BOTH and another
client accesses the file via a filehandle obtained through LOOKUP,
the second client could only read the file using the special read
bypass stateid. The second client could not WRITE the file at all
because it would not have a valid stateid from OPEN and the special
anonymous stateid would not be allowed access.

9. Open Upgrade and Downgrade

When an OPEN is done for a file and the open-owner for which the OPEN
is being done already has the file open, the result is to upgrade the
open file status maintained on the server to include the access and
deny bits specified by the new OPEN as well as those for the existing
OPEN. The result is that there is one open file, as far as the
protocol is concerned, and it includes the union of the access and
deny bits for all of the OPEN requests completed. The OPEN 1is
represented by a single stateid whose "other" value matches that of
the original open, and whose "segid" value is incremented to reflect
the occurrence of the upgrade. The increment is required in cases in
which the "upgrade" results in no change to the open mode (e.g., an
OPEN is done for read when the existing open file is opened for
OPEN4_SHARE_ACCESS_BOTH). Only a single CLOSE will be done to reset
the effects of both OPENs. The client may use the stateid returned
by the OPEN effecting the upgrade or with a stateid sharing the same
"other" field and a seqgid of zero, although care needs to be taken as
far as upgrades that happen while the CLOSE is pending. Note that
the client, when sending the OPEN, may not know that the same file is
in fact being opened. The above only applies if both OPENs result in
the OPENed object being designated by the same filehandle.

When the server chooses to export multiple filehandles corresponding
to the same file object and returns different filehandles on two
different OPENs of the same file object, the server MUST NOT "OR"
together the access and deny bits and coalesce the two open files.
Instead, the server must maintain separate OPENs with separate
stateids and will require separate CLOSEs to free them.

When multiple open files on the client are merged into a single OPEN
file object on the server, the close of one of the open files (on the
client) may necessitate change of the access and deny status of the
open file on the server. This is because the union of the access and
deny bits for the remaining opens may be smaller (i.e., a proper
subset) than previously. The OPEN_DOWNGRADE operation is used to
make the necessary change and the client should use it to update the
server so that share reservation requests by other clients are
handled properly. The stateid returned has the same "other" field as
that passed to the server. The "seqid" wvalue in the returned stateid
MUST be incremented, even in situations in which there is no change
to the access and deny bits for the file.

10. Parallel OPENs

9.

10.

10.

Unlike the case of NFSv4.0, in which OPEN operations for the same
open-owner are inherently serialized because of the owner-based
seqid, multiple OPENs for the same open-owner may be done in
parallel. When clients do this, they may encounter situations in
which, because of the existence of hard links, two OPEN operations
may turn out to open the same file, with a later OPEN performed being
an upgrade of the first, with this fact only visible to the client
once the operations complete.

In this situation, clients may determine the order in which the OPENs
were performed by examining the stateids returned by the OPENs.
Stateids that share a common value of the "other" field can be
recognized as having opened the same file, with the order of the
operations determinable from the order of the "segid" fields, mod any
possible wraparound of the 32-bit field.

When the possibility exists that the client will send multiple OPENs
for the same open-owner in parallel, it may be the case that an open
upgrade may happen without the client knowing beforehand that this
could happen. Because of this possibility, CLOSEs and
OPEN_DOWNGRADEs should generally be sent with a non-zero segid in the
stateid, to avoid the possibility that the status change associated
with an open upgrade is not inadvertently lost.

11. Reclaim of Open and Byte—-Range Locks

Special forms of the LOCK and OPEN operations are provided when it is
necessary to re-establish byte-range locks or opens after a server
failure.

* To reclaim existing opens, an OPEN operation is performed using a
CLAIM_PREVIOUS. Because the client, in this type of situation,
will have already opened the file and have the filehandle of the
target file, this operation requires that the current filehandle
be the target file, rather than a directory, and no file name is
specified.

* To reclaim byte-range locks, a LOCK operation with the reclaim
parameter set to true is used.

Reclaims of opens associated with delegations are discussed in
Section 10.2.1.

Client-Side Caching

Client-side caching of data, of file attributes, and of file names is
essential to providing good performance with the NFS protocol.
Providing distributed cache coherence is a difficult problem, and
previous versions of the NFS protocol have not attempted it.

Instead, several NFS client implementation techniques have been used
to reduce the problems that a lack of coherence poses for users.
These techniques have not been clearly defined by earlier protocol
specifications, and it is often unclear what is wvalid or invalid
client behavior.

The NFSv4.1l protocol uses many techniques similar to those that have
been used in previous protocol versions. The NFSv4.1l protocol does
not provide distributed cache coherence. However, it defines a more
limited set of caching guarantees to allow locks and share
reservations to be used without destructive interference from client-
side caching.

In addition, the NFSv4.1l protocol introduces a delegation mechanism,
which allows many decisions normally made by the server to be made
locally by clients. This mechanism provides efficient support of the
common cases where sharing is infrequent or where sharing is read-
only.

1. Performance Challenges for Client-Side Caching

10

Caching techniques used in previous versions of the NFS protocol have
been successful in providing good performance. However, several
scalability challenges can arise when those techniques are used with
very large numbers of clients. This is particularly true when
clients are geographically distributed, which classically increases
the latency for cache revalidation requests.

The previous versions of the NFS protocol repeat their file data
cache validation requests at the time the file is opened. This
behavior can have serious performance drawbacks. A common case is
one in which a file is only accessed by a single client. Therefore,
sharing is infrequent.

In this case, repeated references to the server to find that no
conflicts exist are expensive. A better option with regards to
performance is to allow a client that repeatedly opens a file to do
so without reference to the server. This is done until potentially
conflicting operations from another client actually occur.

A similar situation arises in connection with byte-range locking.
Sending LOCK and LOCKU operations as well as the READ and WRITE
operations necessary to make data caching consistent with the locking
semantics (see Section 10.3.2) can severely limit performance. When
locking is used to provide protection against infrequent conflicts, a
large penalty is incurred. This penalty may discourage the use of
byte-range locking by applications.

The NFSv4.1l protocol provides more aggressive caching strategies with
the following design goals:

* Compatibility with a large range of server semantics.

* Providing the same caching benefits as previous versions of the
NFS protocol when unable to support the more aggressive model.

* Requirements for aggressive caching are organized so that a large
portion of the benefit can be obtained even when not all of the
requirements can be met.

The appropriate requirements for the server are discussed in later
sections in which specific forms of caching are covered (see
Section 10.4).

.2. Delegation and Callbacks

Recallable delegation of server responsibilities for a file to a
client improves performance by avoiding repeated requests to the
server in the absence of inter-client conflict. With the use of a
"callback" RPC from server to client, a server recalls delegated
responsibilities when another client engages in sharing of a
delegated file.

A delegation is passed from the server to the client, specifying the
object of the delegation and the type of delegation. There are
different types of delegations, but each type contains a stateid to
be used to represent the delegation when performing operations that
depend on the delegation. This stateid is similar to those
associated with locks and share reservations but differs in that the
stateid for a delegation is associated with a client ID and may be
used on behalf of all the open-owners for the given client. A
delegation is made to the client as a whole and not to any specific
process or thread of control within it.

The backchannel is established by CREATE_SESSION and
BIND_CONN_TO_SESSION, and the client is required to maintain it.
Because the backchannel may be down, even temporarily, correct
protocol operation does not depend on them. Preliminary testing of
backchannel functionality by means of a CB_COMPOUND procedure with a
single operation, CB_SEQUENCE, can be used to check the continuity of
the backchannel. A server avoids delegating responsibilities until
it has determined that the backchannel exists. Because the granting

of a delegation is always conditional upon the absence of conflicting
access, clients MUST NOT assume that a delegation will be granted and
they MUST always be prepared for OPENs, WANT_DELEGATIONs, and
GET_DIR_DELEGATIONs to be processed without any delegations being
granted.

Unlike locks, an operation by a second client to a delegated file
will cause the server to recall a delegation through a callback. For
individual operations, we will describe, under IMPLEMENTATION, when
such operations are required to effect a recall. A number of points
should be noted, however.

* The server is free to recall a delegation whenever it feels it is
desirable and may do so even if no operations requiring recall are
being done.

* Operations done outside the NFSv4.l protocol, due to, for example,
access by other protocols, or by local access, also need to result
in delegation recall when they make analogous changes to file
system data. What is crucial is if the change would invalidate
the guarantees provided by the delegation. When this is possible,
the delegation needs to be recalled and MUST be returned or
revoked before allowing the operation to proceed.

* The semantics of the file system are crucial in defining when
delegation recall is required. If a particular change within a
specific implementation causes change to a file attribute, then
delegation recall is required, whether that operation has been
specifically listed as requiring delegation recall. Again, what
is critical is whether the guarantees provided by the delegation
are being invalidated.

Despite those caveats, the implementation sections for a number of
operations describe situations in which delegation recall would be
required under some common circumstances:

* For GETATTR, see Section 18.7.4.
* For OPEN, see Section 18.16.4.

* For READ, see Section 18.22.4.

* For REMOVE, see Section 18.25.4.
* For RENAME, see Section 18.26.4.
* For SETATTR, see Section 18.30.4.
* For WRITE, see Section 18.32.4.

On recall, the client holding the delegation needs to flush modified
state (such as modified data) to the server and return the
delegation. The conflicting request will not be acted on until the
recall is complete. The recall is considered complete when the
client returns the delegation or the server times its wait for the
delegation to be returned and revokes the delegation as a result of
the timeout. In the interim, the server will either delay responding
to conflicting requests or respond to them with NFS4ERR_DELAY.
Following the resolution of the recall, the server has the
information necessary to grant or deny the second client’s request.

At the time the client receives a delegation recall, it may have
substantial state that needs to be flushed to the server. Therefore,
the server should allow sufficient time for the delegation to be
returned since it may involve numerous RPCs to the server. If the
server is able to determine that the client is diligently flushing
state to the server as a result of the recall, the server may extend
the usual time allowed for a recall. However, the time allowed for
recall completion should not be unbounded.

An example of this is when responsibility to mediate opens on a given

10

file is delegated to a client (see Section 10.4). The server will
not know what opens are in effect on the client. Without this
knowledge, the server will be unable to determine if the access and
deny states for the file allow any particular open until the
delegation for the file has been returned.

A client failure or a network partition can result in failure to
respond to a recall callback. In this case, the server will revoke
the delegation, which in turn will render useless any modified state
still on the client.

.2.1. Delegation Recovery

There are three situations that delegation recovery needs to deal
with:

* client restart

* server restart

* network partition (full or backchannel-only)

In the event the client restarts, the failure to renew the lease will
result in the revocation of byte-range locks and share reservations.

Delegations, however, may be treated a bit differently.

There will be situations in which delegations will need to be re-

established after a client restarts. The reason for this is that the
client may have file data stored locally and this data was associated
with the previously held delegations. The client will need to re-

establish the appropriate file state on the server.

To allow for this type of client recovery, the server MAY extend the
period for delegation recovery beyond the typical lease expiration
period. This implies that requests from other clients that conflict
with these delegations will need to wait. Because the normal recall
process may require significant time for the client to flush changed
state to the server, other clients need be prepared for delays that
occur because of a conflicting delegation. This longer interval
would increase the window for clients to restart and consult stable
storage so that the delegations can be reclaimed. For OPEN
delegations, such delegations are reclaimed using OPEN with a claim
type of CLAIM DELEGATE_PREV or CLAIM DELEG_PREV_FH (see Sections 10.5
and 18.16 for discussion of OPEN delegation and the details of OPEN,
respectively) .

A server MAY support claim types of CLAIM_DELEGATE_PREV and

CLAIM DELEG_PREV_FH, and if it does, it MUST NOT remove delegations
upon a CREATE_SESSION that confirm a client ID created by
EXCHANGE_ID. Instead, the server MUST, for a period of time no less
than that of the value of the lease_time attribute, maintain the
client’s delegations to allow time for the client to send
CLAIM_DELEGATE_PREV and/or CLAIM_DELEG_PREV_FH requests. The server
that supports CLAIM_DELEGATE_PREV and/or CLAIM _DELEG_PREV_FH MUST
support the DELEGPURGE operation.

When the server restarts, delegations are reclaimed (using the OPEN
operation with CLAIM_PREVIOUS) in a similar fashion to byte-range
locks and share reservations. However, there is a slight semantic
difference. 1In the normal case, if the server decides that a
delegation should not be granted, it performs the requested action
(e.g., OPEN) without granting any delegation. For reclaim, the
server grants the delegation but a special designation is applied so
that the client treats the delegation as having been granted but
recalled by the server. Because of this, the client has the duty to
write all modified state to the server and then return the
delegation. This process of handling delegation reclaim reconciles
three principles of the NFSv4.l protocol:

* Upon reclaim, a client reporting resources assigned to it by an
earlier server instance must be granted those resources.

10.

10.

* The server has unquestionable authority to determine whether
delegations are to be granted and, once granted, whether they are
to be continued.

* The use of callbacks should not be depended upon until the client
has proven its ability to receive them.

When a client needs to reclaim a delegation and there is no
associated open, the client may use the CLAIM PREVIOUS variant of the
WANT_DELEGATION operation. However, since the server is not required
to support this operation, an alternative is to reclaim via a dummy
OPEN together with the delegation using an OPEN of type
CLAIM_PREVIOUS. The dummy open file can be released using a CLOSE to
re—-establish the original state to be reclaimed, a delegation without
an associated open.

When a client has more than a single open associated with a
delegation, state for those additional opens can be established using
OPEN operations of type CLAIM DELEGATE_CUR. When these are used to
establish opens associated with reclaimed delegations, the server
MUST allow them when made within the grace period.

When a network partition occurs, delegations are subject to freeing
by the server when the lease renewal period expires. This is similar
to the behavior for locks and share reservations. For delegations,
however, the server may extend the period in which conflicting
requests are held off. Eventually, the occurrence of a conflicting
request from another client will cause revocation of the delegation.
A loss of the backchannel (e.g., by later network configuration
change) will have the same effect. A recall request will fail and
revocation of the delegation will result.

A client normally finds out about revocation of a delegation when it
uses a stateid associated with a delegation and receives one of the
errors NFS4ERR_EXPIRED, NFS4ERR_ADMIN_REVOKED, or
NFS4ERR_DELEG_REVOKED. It also may find out about delegation
revocation after a client restart when it attempts to reclaim a
delegation and receives that same error. Note that in the case of a
revoked OPEN_DELEGATE_WRITE delegation, there are issues because data
may have been modified by the client whose delegation is revoked and
separately by other clients. See Section 10.5.1 for a discussion of
such issues. Note also that when delegations are revoked,
information about the revoked delegation will be written by the
server to stable storage (as described in Section 8.4.3). This is
done to deal with the case in which a server restarts after revoking
a delegation but before the client holding the revoked delegation is
notified about the revocation.

3. Data Caching

When applications share access to a set of files, they need to be
implemented so as to take account of the possibility of conflicting
access by another application. This is true whether the applications
in question execute on different clients or reside on the same
client.

Share reservations and byte-range locks are the facilities the
NFSv4.1l protocol provides to allow applications to coordinate access
by using mutual exclusion facilities. The NFSv4.l protocol’s data
caching must be implemented such that it does not invalidate the
assumptions on which those using these facilities depend.

3.1. Data Caching and OPENs

In order to avoid invalidating the sharing assumptions on which
applications rely, NFSv4.1l clients should not provide cached data to
applications or modify it on behalf of an application when it would
not be valid to obtain or modify that same data via a READ or WRITE
operation.

Furthermore, in the absence of an OPEN delegation (see Section 10.4),
two additional rules apply. Note that these rules are obeyed in
practice by many NFSv3 clients.

* First, cached data present on a client must be revalidated after
doing an OPEN. Revalidating means that the client fetches the
change attribute from the server, compares it with the cached
change attribute, and if different, declares the cached data (as
well as the cached attributes) as invalid. This is to ensure that
the data for the OPENed file is still correctly reflected in the
client’s cache. This validation must be done at least when the
client’s OPEN operation includes a deny of OPEN4_SHARE_DENY WRITE
or OPEN4_SHARE_DENY_ BOTH, thus terminating a period in which other
clients may have had the opportunity to open the file with
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH access. Clients
may choose to do the revalidation more often (i.e., at OPENs
specifying a deny mode of OPEN4_SHARE_DENY_NONE) to parallel the
NFSv3 protocol’s practice for the benefit of users assuming this
degree of cache revalidation.

Since the change attribute is updated for data and metadata
modifications, some client implementors may be tempted to use the
time_modify attribute and not the change attribute to validate
cached data, so that metadata changes do not spuriously invalidate
clean data. The implementor is cautioned in this approach. The
change attribute is guaranteed to change for each update to the
file, whereas time_modify is guaranteed to change only at the
granularity of the time_delta attribute. Use by the client’s data
cache validation logic of time_modify and not change runs the risk
of the client incorrectly marking stale data as valid. Thus, any
cache validation approach by the client MUST include the use of
the change attribute.

* Second, modified data must be flushed to the server before closing
a file OPENed for OPEN4_SHARE_ACCESS_WRITE. This is complementary
to the first rule. If the data is not flushed at CLOSE, the
revalidation done after the client OPENs a file is unable to
achieve its purpose. The other aspect to flushing the data before
close is that the data must be committed to stable storage, at the
server, before the CLOSE operation is requested by the client. 1In
the case of a server restart and a CLOSEd file, it may not be
possible to retransmit the data to be written to the file, hence,
this requirement.

10.3.2. Data Caching and File Locking

For those applications that choose to use byte-range locking instead
of share reservations to exclude inconsistent file access, there is
an analogous set of constraints that apply to client-side data
caching. These rules are effective only if the byte-range locking is
used in a way that matches in an equivalent way the actual READ and
WRITE operations executed. This is as opposed to byte-range locking
that is based on pure convention. For example, it is possible to
manipulate a two-megabyte file by dividing the file into two one-—
megabyte ranges and protecting access to the two byte-ranges by byte-
range locks on bytes zero and one. A WRITE_LT lock on byte zero of
the file would represent the right to perform READ and WRITE
operations on the first byte-range. A WRITE_LT lock on byte one of
the file would represent the right to perform READ and WRITE
operations on the second byte-range. As long as all applications
manipulating the file obey this convention, they will work on a local
file system. However, they may not work with the NFSv4.1 protocol
unless clients refrain from data caching.

The rules for data caching in the byte-range locking environment are:

* First, when a client obtains a byte-range lock for a particular
byte-range, the data cache corresponding to that byte-range (if
any cache data exists) must be revalidated. If the change
attribute indicates that the file may have been updated since the
cached data was obtained, the client must flush or invalidate the

10.

10.

cached data for the newly locked byte-range. A client might

choose to invalidate all of the non-modified cached data that it
has for the file, but the only requirement for correct operation
is to invalidate all of the data in the newly locked byte-range.

* Second, before releasing a WRITE_LT lock for a byte-range, all
modified data for that byte-range must be flushed to the server.
The modified data must also be written to stable storage.

Note that flushing data to the server and the invalidation of cached
data must reflect the actual byte-ranges locked or unlocked.

Rounding these up or down to reflect client cache block boundaries
will cause problems if not carefully done. For example, writing a
modified block when only half of that block is within an area being
unlocked may cause invalid modification to the byte-range outside the
unlocked area. This, in turn, may be part of a byte-range locked by
another client. Clients can avoid this situation by synchronously
performing portions of WRITE operations that overlap that portion
(initial or final) that is not a full block. Similarly, invalidating
a locked area that is not an integral number of full buffer blocks
would require the client to read one or two partial blocks from the
server if the revalidation procedure shows that the data that the
client possesses may not be valid.

The data that is written to the server as a prerequisite to the
unlocking of a byte-range must be written, at the server, to stable
storage. The client may accomplish this either with synchronous
writes or by following asynchronous writes with a COMMIT operation.
This is required because retransmission of the modified data after a
server restart might conflict with a lock held by another client.

A client implementation may choose to accommodate applications that
use byte-range locking in non-standard ways (e.g., using a byte-range
lock as a global semaphore) by flushing to the server more data upon
a LOCKU than is covered by the locked range. This may include
modified data within files other than the one for which the unlocks
are being done. In such cases, the client must not interfere with
applications whose READs and WRITEs are being done only within the
bounds of byte-range locks that the application holds. For example,
an application locks a single byte of a file and proceeds to write
that single byte. A client that chose to handle a LOCKU by flushing
all modified data to the server could validly write that single byte
in response to an unrelated LOCKU operation. However, it would not
be valid to write the entire block in which that single written byte
was located since it includes an area that is not locked and might be
locked by another client. Client implementations can avoid this
problem by dividing files with modified data into those for which all
modifications are done to areas covered by an appropriate byte-range
lock and those for which there are modifications not covered by a
byte-range lock. Any writes done for the former class of files must
not include areas not locked and thus not modified on the client.

3.3. Data Caching and Mandatory File Locking

Client-side data caching needs to respect mandatory byte-range
locking when it is in effect. The presence of mandatory byte-range
locking for a given file is indicated when the client gets back
NFS4ERR_LOCKED from a READ or WRITE operation on a file for which it
has an appropriate share reservation. When mandatory locking is in
effect for a file, the client must check for an appropriate byte-

range lock for data being read or written. If a byte-range lock
exists for the range being read or written, the client may satisfy
the request using the client’s validated cache. If an appropriate

byte-range lock is not held for the range of the read or write, the
read or write request must not be satisfied by the client’s cache and
the request must be sent to the server for processing. When a read
or write request partially overlaps a locked byte-range, the request
should be subdivided into multiple pieces with each byte-range
(locked or not) treated appropriately.

3.4. Data Caching and File Identity

10.

When clients cache data, the file data needs to be organized
according to the file system object to which the data belongs. For
NFSv3 clients, the typical practice has been to assume for the
purpose of caching that distinct filehandles represent distinct file
system objects. The client then has the choice to organize and
maintain the data cache on this basis.

In the NFSv4.1l protocol, there is now the possibility to have
significant deviations from a "one filehandle per object" model
because a filehandle may be constructed on the basis of the object’s
pathname. Therefore, clients need a reliable method to determine if
two filehandles designate the same file system object. If clients
were simply to assume that all distinct filehandles denote distinct
objects and proceed to do data caching on this basis, caching
inconsistencies would arise between the distinct client-side objects
that mapped to the same server-side obiject.

By providing a method to differentiate filehandles, the NFSv4.1l
protocol alleviates a potential functional regression in comparison
with the NFSv3 protocol. Without this method, caching
inconsistencies within the same client could occur, and this has not
been present in previous versions of the NFS protocol. Note that it
is possible to have such inconsistencies with applications executing
on multiple clients, but that is not the issue being addressed here.

For the purposes of data caching, the following steps allow an
NFSv4.1l client to determine whether two distinct filehandles denote
the same server-side object:

* TIf GETATTR directed to two filehandles returns different values of
the fsid attribute, then the filehandles represent distinct
objects.

* If GETATTR for any file with an fsid that matches the fsid of the
two filehandles in question returns a unique_handles attribute
with a value of TRUE, then the two objects are distinct.

* TIf GETATTR directed to the two filehandles does not return the
fileid attribute for both of the handles, then it cannot be
determined whether the two objects are the same. Therefore,
operations that depend on that knowledge (e.g., client-side data
caching) cannot be done reliably. Note that if GETATTR does not
return the fileid attribute for both filehandles, it will return
it for neither of the filehandles, since the fsid for both
filehandles is the same.

* TIf GETATTR directed to the two filehandles returns different
values for the fileid attribute, then they are distinct objects.

* Otherwise, they are the same object.
4. Open Delegation

When a file is being OPENed, the server may delegate further handling
of opens and closes for that file to the opening client. Any such
delegation is recallable since the circumstances that allowed for the
delegation are subject to change. In particular, if the server
receives a conflicting OPEN from another client, the server must
recall the delegation before deciding whether the OPEN from the other
client may be granted. Making a delegation is up to the server, and
clients should not assume that any particular OPEN either will or
will not result in an OPEN delegation. The following is a typical
set of conditions that servers might use in deciding whether an OPEN
should be delegated:

* The client must be able to respond to the server’s callback
requests. If a backchannel has been established, the server will
send a CB_COMPOUND request, containing a single operation,
CB_SEQUENCE, for a test of backchannel availability.

* The client must have responded properly to previous recalls.

* There must be no current OPEN conflicting with the requested
delegation.

* There should be no current delegation that conflicts with the
delegation being requested.

* The probability of future conflicting open requests should be low
based on the recent history of the file.

* The existence of any server-specific semantics of OPEN/CLOSE that
would make the required handling incompatible with the prescribed
handling that the delegated client would apply (see below).

There are two types of OPEN delegations: OPEN_DELEGATE_READ and
OPEN_DELEGATE_WRITE. An OPEN_DELEGATE_READ delegation allows a
client to handle, on its own, requests to open a file for reading
that do not deny OPEN4_SHARE_ACCESS_READ access to others. Multiple
OPEN_DELEGATE_READ delegations may be outstanding simultaneously and
do not conflict. An OPEN_DELEGATE_WRITE delegation allows the client
to handle, on its own, all opens. Only one OPEN_DELEGATE_WRITE
delegation may exist for a given file at a given time, and it is
inconsistent with any OPEN_DELEGATE_READ delegations.

When a client has an OPEN_DELEGATE_READ delegation, it is assured
that neither the contents, the attributes (with the exception of
time_access), nor the names of any links to the file will change
without its knowledge, so long as the delegation is held. When a
client has an OPEN_DELEGATE_WRITE delegation, it may modify the file
data locally since no other client will be accessing the file’s data.
The client holding an OPEN_DELEGATE_WRITE delegation may only locally
affect file attributes that are intimately connected with the file
data: size, change, time_access, time_metadata, and time_modify. All
other attributes must be reflected on the server.

When a client has an OPEN delegation, it does not need to send OPENs
or CLOSEs to the server. Instead, the client may update the
appropriate status internally. For an OPEN_DELEGATE_READ delegation,
opens that cannot be handled locally (opens that are for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH or that deny
OPEN4_SHARE_ACCESS_READ access) must be sent to the server.

When an OPEN delegation is made, the reply to the OPEN contains an
OPEN delegation structure that specifies the following:

* the type of delegation (OPEN_DELEGATE_READ or
OPEN_DELEGATE_WRITE) .

* space limitation information to control flushing of data on close
(OPEN_DELEGATE_WRITE delegation only; see Section 10.4.1)

* an nfsaced4 specifying read and write permissions
* a stateid to represent the delegation

The delegation stateid is separate and distinct from the stateid for
the OPEN proper. The standard stateid, unlike the delegation
stateid, is associated with a particular lock-owner and will continue
to be valid after the delegation is recalled and the file remains
open.

When a request internal to the client is made to open a file and an
OPEN delegation is in effect, it will be accepted or rejected solely
on the basis of the following conditions. Any requirement for other
checks to be made by the delegate should result in the OPEN
delegation being denied so that the checks can be made by the server
itself.

* The access and deny bits for the request and the file as described
in Section 9.7.

10.

* The read and write permissions as determined below.

The nfsaced4 passed with delegation can be used to avoid frequent
ACCESS calls. The permission check should be as follows:

* If the nfsace4 indicates that the open may be done, then it should
be granted without reference to the server.

* TIf the nfsace4 indicates that the open may not be done, then an
ACCESS request must be sent to the server to obtain the definitive

answer.

The server may return an nfsaced4 that is more restrictive than the

actual ACL of the file. This includes an nfsaced4 that specifies
denial of all access. Note that some common practices such as
mapping the traditional user "root" to the user "nobody" (see

Section 5.9) may make it incorrect to return the actual ACL of the
file in the delegation response.

The use of a delegation together with various other forms of caching
creates the possibility that no server authentication and
authorization will ever be performed for a given user since all of
the user’s requests might be satisfied locally. Where the client is
depending on the server for authentication and authorization, the
client should be sure authentication and authorization occurs for
each user by use of the ACCESS operation. This should be the case
even i1f an ACCESS operation would not be required otherwise. As
mentioned before, the server may enforce frequent authentication by
returning an nfsace4 denying all access with every OPEN delegation.

4.1. Open Delegation and Data Caching

An OPEN delegation allows much of the message overhead associated
with the opening and closing files to be eliminated. An open when an
OPEN delegation is in effect does not require that a validation
message be sent to the server. The continued endurance of the
"OPEN_DELEGATE_READ delegation" provides a guarantee that no OPEN for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH, and thus no write,
has occurred. Similarly, when closing a file opened for
OPEN4_SHARE_ACCESS_WRITE/OPEN4_SHARE_ACCESS_BOTH and if an
OPEN_DELEGATE_WRITE delegation is in effect, the data written does
not have to be written to the server until the OPEN delegation is
recalled. The continued endurance of the OPEN delegation provides a
guarantee that no open, and thus no READ or WRITE, has been done by
another client.

For the purposes of OPEN delegation, READs and WRITEs done without an
OPEN are treated as the functional equivalents of a corresponding
type of OPEN. Although a client SHOULD NOT use special stateids when
an open exists, delegation handling on the server can use the client
ID associated with the current session to determine if the operation
has been done by the holder of the delegation (in which case, no
recall is necessary) or by another client (in which case, the
delegation must be recalled and I/O not proceed until the delegation
is returned or revoked).

With delegations, a client is able to avoid writing data to the
server when the CLOSE of a file is serviced. The file close system
call is the usual point at which the client is notified of a lack of
stable storage for the modified file data generated by the
application. At the close, file data is written to the server and,
through normal accounting, the server is able to determine if the
available file system space for the data has been exceeded (i.e., the
server returns NFS4ERR_NOSPC or NFS4ERR_DQUOT). This accounting
includes quotas. The introduction of delegations requires that an
alternative method be in place for the same type of communication to
occur between client and server.

In the delegation response, the server provides either the limit of
the size of the file or the number of modified blocks and associated

10.

10.

block size. The server must ensure that the client will be able to
write modified data to the server of a size equal to that provided in
the original delegation. The server must make this assurance for all
outstanding delegations. Therefore, the server must be careful in
its management of available space for new or modified data, taking
into account available file system space and any applicable quotas.
The server can recall delegations as a result of managing the
available file system space. The client should abide by the server’s
state space limits for delegations. If the client exceeds the stated
limits for the delegation, the server’s behavior is undefined.

Based on server conditions, quotas, or available file system space,
the server may grant OPEN_DELEGATE_WRITE delegations with very
restrictive space limitations. The limitations may be defined in a
way that will always force modified data to be flushed to the server
on close.

With respect to authentication, flushing modified data to the server
after a CLOSE has occurred may be problematic. For example, the user
of the application may have logged off the client, and unexpired
authentication credentials may not be present. In this case, the
client may need to take special care to ensure that local unexpired
credentials will in fact be available. This may be accomplished by
tracking the expiration time of credentials and flushing data well in
advance of their expiration or by making private copies of
credentials to assure their availability when needed.

4.2. Open Delegation and File Locks

When a client holds an OPEN_DELEGATE_WRITE delegation, lock
operations are performed locally. This includes those required for
mandatory byte-range locking. This can be done since the delegation
implies that there can be no conflicting locks. Similarly, all of
the revalidations that would normally be associated with obtaining
locks and the flushing of data associated with the releasing of locks
need not be done.

When a client holds an OPEN_DELEGATE_READ delegation, lock operations
are not performed locally. All lock operations, including those
requesting non-exclusive locks, are sent to the server for
resolution.

4.3. Handling of CB_GETATTR

The server needs to employ special handling for a GETATTR where the
target is a file that has an OPEN_DELEGATE_WRITE delegation in
effect. The reason for this is that the client holding the
OPEN_DELEGATE_WRITE delegation may have modified the data, and the
server needs to reflect this change to the second client that
submitted the GETATTR. Therefore, the client holding the
OPEN_DELEGATE_WRITE delegation needs to be interrogated. The server
will use the CB_GETATTR operation. The only attributes that the
server can reliably query via CB_GETATTR are size and change.

Since CB_GETATTR is being used to satisfy another client’s GETATTR
request, the server only needs to know if the client holding the
delegation has a modified version of the file. TIf the client’s copy
of the delegated file is not modified (data or size), the server can
satisfy the second client’s GETATTR request from the attributes
stored locally at the server. If the file is modified, the server
only needs to know about this modified state. If the server
determines that the file is currently modified, it will respond to
the second client’s GETATTR as if the file had been modified locally
at the server.

Since the form of the change attribute is determined by the server
and is opaque to the client, the client and server need to agree on a
method of communicating the modified state of the file. For the size
attribute, the client will report its current view of the file size.
For the change attribute, the handling is more involved.

For the client, the following steps will be taken when receiving an
OPEN_DELEGATE_WRITE delegation:

* The value of the change attribute will be obtained from the server
and cached. Let this value be represented by c.

* The client will create a value greater than c that will be used
for communicating that modified data is held at the client. Let
this value be represented by d.

* When the client is queried via CB_GETATTR for the change
attribute, it checks to see if it holds modified data. If the
file is modified, the value d is returned for the change attribute
value. If this file is not currently modified, the client returns
the value c for the change attribute.

For simplicity of implementation, the client MAY for each CB_GETATTR
return the same value d. This is true even if, between successive
CB_GETATTR operations, the client again modifies the file’s data or
metadata in its cache. The client can return the same value because
the only requirement is that the client be able to indicate to the
server that the client holds modified data. Therefore, the value of
d may always be c + 1.

While the change attribute is opaque to the client in the sense that
it has no idea what units of time, if any, the server is counting
change with, it is not opaque in that the client has to treat it as
an unsigned integer, and the server has to be able to see the results
of the client’s changes to that integer. Therefore, the server MUST
encode the change attribute in network order when sending it to the
client. The client MUST decode it from network order to its native
order when receiving it, and the client MUST encode it in network
order when sending it to the server. For this reason, change is
defined as an unsigned integer rather than an opaque array of bytes.

For the server, the following steps will be taken when providing an
OPEN_DELEGATE_WRITE delegation:

* Upon providing an OPEN_DELEGATE_WRITE delegation, the server will
cache a copy of the change attribute in the data structure it uses
to record the delegation. Let this value be represented by sc.

* When a second client sends a GETATTR operation on the same file to
the server, the server obtains the change attribute from the first
client. Let this wvalue be cc.

* If the value cc is equal to sc, the file is not modified and the
server returns the current values for change, time_metadata, and
time_modify (for example) to the second client.

* TIf the value cc is NOT equal to sc, the file is currently modified
at the first client and most likely will be modified at the server
at a future time. The server then uses its current time to
construct attribute values for time_metadata and time_modify. A
new value of sc, which we will call nsc, is computed by the
server, such that nsc >= sc + 1. The server then returns the
constructed time_metadata, time_modify, and nsc values to the
requester. The server replaces sc in the delegation record with
nsc. To prevent the possibility of time_modify, time_metadata,
and change from appearing to go backward (which would happen if
the client holding the delegation fails to write its modified data
to the server before the delegation is revoked or returned), the
server SHOULD update the file’s metadata record with the
constructed attribute values. For reasons of reasonable
performance, committing the constructed attribute values to stable
storage is OPTIONAL.

As discussed earlier in this section, the client MAY return the same
cc value on subsequent CB_GETATTR calls, even if the file was
modified in the client’s cache yet again between successive
CB_GETATTR calls. Therefore, the server must assume that the file

10

has been modified yet again, and MUST take care to ensure that the
new nsc it constructs and returns is greater than the previous nsc it
returned. An example implementation’s delegation record would
satisfy this mandate by including a boolean field (let us call it
"modified") that is set to FALSE when the delegation is granted, and
an sc value set at the time of grant to the change attribute wvalue.
The modified field would be set to TRUE the first time cc != sc, and
would stay TRUE until the delegation is returned or revoked. The
processing for constructing nsc, time_modify, and time_metadata would
use this pseudo code:

if (!modified) {
do CB_GETATTR for change and size;

if (cc !'= sc)
modified = TRUE;
} else {
do CB_GETATTR for size;

}

if (modified) {
sc = sc + 1;
time_modify = time_metadata = current_time;
update sc, time_modify, time_metadata into file’s metadata;

}

This would return to the client (that sent GETATTR) the attributes it
requested, but make sure size comes from what CB_GETATTR returned.
The server would not update the file’s metadata with the client’s
modified size.

In the case that the file attribute size is different than the
server’s current value, the server treats this as a modification
regardless of the value of the change attribute retrieved via
CB_GETATTR and responds to the second client as in the last step.

This methodology resolves issues of clock differences between client
and server and other scenarios where the use of CB_GETATTR break
down.

It should be noted that the server is under no obligation to use
CB_GETATTR, and therefore the server MAY simply recall the delegation
to avoid its use.

.4.4. Recall of Open Delegation

The following events necessitate recall of an OPEN delegation:

* potentially conflicting OPEN request (or a READ or WRITE operation
done with a special stateid)

* SETATTR sent by another client
* REMOVE request for the file

* RENAME request for the file as either the source or target of the
RENAME

Whether a RENAME of a directory in the path leading to the file
results in recall of an OPEN delegation depends on the semantics of
the server’s file system. If that file system denies such RENAMEs
when a file is open, the recall must be performed to determine
whether the file in question is, in fact, open.

In addition to the situations above, the server may choose to recall
OPEN delegations at any time if resource constraints make it
advisable to do so. Clients should always be prepared for the
possibility of recall.

When a client receives a recall for an OPEN delegation, it needs to
update state on the server before returning the delegation. These

10.

same updates must be done whenever a client chooses to return a
delegation voluntarily. The following items of state need to be
dealt with:

* If the file associated with the delegation is no longer open and
no previous CLOSE operation has been sent to the server, a CLOSE
operation must be sent to the server.

* TIf a file has other open references at the client, then OPEN
operations must be sent to the server. The appropriate stateids
will be provided by the server for subsequent use by the client
since the delegation stateid will no longer be wvalid. These OPEN
requests are done with the claim type of CLAIM _DELEGATE_CUR. This
will allow the presentation of the delegation stateid so that the
client can establish the appropriate rights to perform the OPEN.
(See Section 18.16, which describes the OPEN operation, for
details.)

* TIf there are granted byte-range locks, the corresponding LOCK
operations need to be performed. This applies to the
OPEN_DELEGATE_WRITE delegation case only.

* For an OPEN_DELEGATE_WRITE delegation, if at the time of recall
the file is not open for OPEN4_SHARE_ACCESS_WRITE/
OPEN4_SHARE_ACCESS_BOTH, all modified data for the file must be
flushed to the server. If the delegation had not existed, the
client would have done this data flush before the CLOSE operation.

* For an OPEN_DELEGATE_WRITE delegation when a file is still open at
the time of recall, any modified data for the file needs to be
flushed to the server.

* With the OPEN_DELEGATE_WRITE delegation in place, it is possible
that the file was truncated during the duration of the delegation.
For example, the truncation could have occurred as a result of an
OPEN UNCHECKED with a size attribute value of zero. Therefore, if
a truncation of the file has occurred and this operation has not
been propagated to the server, the truncation must occur before
any modified data is written to the server.

In the case of OPEN_DELEGATE_WRITE delegation, byte-range locking
imposes some additional requirements. To precisely maintain the
associated invariant, it is required to flush any modified data in
any byte-range for which a WRITE_LT lock was released while the
OPEN_DELEGATE_WRITE delegation was in effect. However, because the
OPEN_DELEGATE_WRITE delegation implies no other locking by other
clients, a simpler implementation is to flush all modified data for
the file (as described just above) if any WRITE_LT lock has been
released while the OPEN_DELEGATE_WRITE delegation was in effect.

An implementation need not wait until delegation recall (or the
decision to voluntarily return a delegation) to perform any of the
above actions, if implementation considerations (e.g., resource
availability constraints) make that desirable. Generally, however,
the fact that the actual OPEN state of the file may continue to
change makes it not worthwhile to send information about opens and
closes to the server, except as part of delegation return. An
exception is when the client has no more internal opens of the file.
In this case, sending a CLOSE is useful because it reduces resource
utilization on the client and server. Regardless of the client’s
choices on scheduling these actions, all must be performed before the
delegation is returned, including (when applicable) the close that
corresponds to the OPEN that resulted in the delegation. These
actions can be performed either in previous requests or in previous
operations in the same COMPOUND request.

4.5. Clients That Fail to Honor Delegation Recalls
A client may fail to respond to a recall for various reasons, such as

a failure of the backchannel from server to the client. The client
may be unaware of a failure in the backchannel. This lack of

10.

10.

awareness could result in the client finding out long after the
failure that its delegation has been revoked, and another client has
modified the data for which the client had a delegation. This is
especially a problem for the client that held an OPEN_DELEGATE_WRITE
delegation.

Status bits returned by SEQUENCE operations help to provide an
alternate way of informing the client of issues regarding the status
of the backchannel and of recalled delegations. When the backchannel
is not available, the server returns the status bit
SEQ4_STATUS_CB_PATH_DOWN on SEQUENCE operations. The client can
react by attempting to re—-establish the backchannel and by returning
recallable objects if a backchannel cannot be successfully re-—
established.

Whether the backchannel is functioning or not, it may be that the
recalled delegation is not returned. Note that the client’s lease
might still be renewed, even though the recalled delegation is not
returned. In this situation, servers SHOULD revoke delegations that
are not returned in a period of time equal to the lease period. This
period of time should allow the client time to note the backchannel-
down status and re-establish the backchannel.

When delegations are revoked, the server will return with the
SEQ4_STATUS_RECALLABLE_STATE_REVOKED status bit set on subsequent
SEQUENCE operations. The client should note this and then use
TEST_STATEID to find which delegations have been revoked.

4.6. Delegation Revocation

At the point a delegation is revoked, if there are associated opens
on the client, these opens may or may not be revoked. If no byte-
range lock or open is granted that is inconsistent with the existing
open, the stateid for the open may remain valid and be disconnected
from the revoked delegation, just as would be the case if the
delegation were returned.

For example, if an OPEN for OPEN4_SHARE_ACCESS_BOTH with a deny of
OPEN4_SHARE_DENY_NONE is associated with the delegation, granting of
another such OPEN to a different client will revoke the delegation
but need not revoke the OPEN, since the two OPENs are consistent with
each other. On the other hand, if an OPEN denying write access is
granted, then the existing OPEN must be revoked.

When opens and/or locks are revoked, the applications holding these
opens or locks need to be notified. This notification usually occurs
by returning errors for READ/WRITE operations or when a close is
attempted for the open file.

If no opens exist for the file at the point the delegation is
revoked, then notification of the revocation is unnecessary.

However, if there is modified data present at the client for the
file, the user of the application should be notified. Unfortunately,
it may not be possible to notify the user since active applications
may not be present at the client. See Section 10.5.1 for additional
details.

4.7. Delegations via WANT_DELEGATION

In addition to providing delegations as part of the reply to OPEN
operations, servers MAY provide delegations separate from open, via
the OPTIONAL WANT_DELEGATION operation. This allows delegations to
be obtained in advance of an OPEN that might benefit from them, for
objects that are not a valid target of OPEN, or to deal with cases in
which a delegation has been recalled and the client wants to make an
attempt to re-establish it if the absence of use by other clients
allows that.

The WANT_DELEGATION operation may be performed on any type of file
object other than a directory.

When a delegation is obtained using WANT_DELEGATION, any open files
for the same filehandle held by that client are to be treated as
subordinate to the delegation, just as if they had been created using
an OPEN of type CLAIM_DELEGATE_CUR. They are otherwise unchanged as
to seqgid, access and deny modes, and the relationship with byte-range
locks. Similarly, because existing byte-range locks are subordinate
to an open, those byte-range locks also become indirectly subordinate
to that new delegation.

The WANT_DELEGATION operation provides for delivery of delegations
via callbacks, when the delegations are not immediately available.
When a requested delegation is available, it is delivered to the
client via a CB_PUSH_DELEG operation. When this happens, open files
for the same filehandle become subordinate to the new delegation at
the point at which the delegation is delivered, just as if they had
been created using an OPEN of type CLAIM DELEGATE_CUR. Similarly,
this occurs for existing byte-range locks subordinate to an open.

.5. Data Caching and Revocation

When locks and delegations are revoked, the assumptions upon which
successful caching depends are no longer guaranteed. For any locks
or share reservations that have been revoked, the corresponding
state-owner needs to be notified. This notification includes
applications with a file open that has a corresponding delegation
that has been revoked. Cached data associated with the revocation
must be removed from the client. In the case of modified data
existing in the client’s cache, that data must be removed from the
client without being written to the server. As mentioned, the
assumptions made by the client are no longer valid at the point when
a lock or delegation has been revoked. For example, another client
may have been granted a conflicting byte-range lock after the
revocation of the byte-range lock at the first client. Therefore,
the data within the lock range may have been modified by the other
client. Obviously, the first client is unable to guarantee to the
application what has occurred to the file in the case of revocation.

Notification to a state-owner will in many cases consist of simply
returning an error on the next and all subsequent READs/WRITEs to the
open file or on the close. Where the methods available to a client
make such notification impossible because errors for certain
operations may not be returned, more drastic action such as signals
or process termination may be appropriate. The justification here is
that an invariant on which an application depends may be violated.
Depending on how errors are typically treated for the client-
operating environment, further levels of notification including
logging, console messages, and GUI pop-ups may be appropriate.

.5.1. Revocation Recovery for Write Open Delegation

Revocation recovery for an OPEN_DELEGATE_WRITE delegation poses the
special issue of modified data in the client cache while the file 1is
not open. In this situation, any client that does not flush modified
data to the server on each close must ensure that the user receives
appropriate notification of the failure as a result of the

revocation. Since such situations may require human action to
correct problems, notification schemes in which the appropriate user
or administrator is notified may be necessary. Logging and console

messages are typical examples.

If there is modified data on the client, it must not be flushed
normally to the server. A client may attempt to provide a copy of
the file data as modified during the delegation under a different
name in the file system namespace to ease recovery. Note that when
the client can determine that the file has not been modified by any
other client, or when the client has a complete cached copy of the
file in question, such a saved copy of the client’s view of the file
may be of particular value for recovery. In another case, recovery
using a copy of the file based partially on the client’s cached data
and partially on the server’s copy as modified by other clients will
be anything but straightforward, so clients may avoid saving file

10.

contents in these situations or specially mark the results to warn
users of possible problems.

Saving of such modified data in delegation revocation situations may
be limited to files of a certain size or might be used only when
sufficient disk space is available within the target file system.
Such saving may also be restricted to situations when the client has
sufficient buffering resources to keep the cached copy available
until it is properly stored to the target file system.

6. Attribute Caching

This section pertains to the caching of a file’s attributes on a
client when that client does not hold a delegation on the file.

The attributes discussed in this section do not include named
attributes. Individual named attributes are analogous to files, and
caching of the data for these needs to be handled just as data
caching is for ordinary files. Similarly, LOOKUP results from an
OPENATTR directory (as well as the directory’s contents) are to be
cached on the same basis as any other pathnames.

Clients may cache file attributes obtained from the server and use
them to avoid subsequent GETATTR requests. Such caching is write
through in that modification to file attributes is always done by
means of requests to the server and should not be done locally and
should not be cached. The exception to this are modifications to
attributes that are intimately connected with data caching.
Therefore, extending a file by writing data to the local data cache
is reflected immediately in the size as seen on the client without
this change being immediately reflected on the server. Normally,
such changes are not propagated directly to the server, but when the
modified data is flushed to the server, analogous attribute changes
are made on the server. When OPEN delegation is in effect, the
modified attributes may be returned to the server in reaction to a
CB_RECALL call.

The result of local caching of attributes is that the attribute
caches maintained on individual clients will not be coherent.
Changes made in one order on the server may be seen in a different
order on one client and in a third order on another client.

The typical file system application programming interfaces do not
provide means to atomically modify or interrogate attributes for
multiple files at the same time. The following rules provide an
environment where the potential incoherencies mentioned above can be
reasonably managed. These rules are derived from the practice of
previous NFS protocols.

* All attributes for a given file (per-fsid attributes excepted) are
cached as a unit at the client so that no non-serializability can
arise within the context of a single file.

* An upper time boundary is maintained on how long a client cache
entry can be kept without being refreshed from the server.

* When operations are performed that change attributes at the
server, the updated attribute set is requested as part of the
containing RPC. This includes directory operations that update
attributes indirectly. This is accomplished by following the
modifying operation with a GETATTR operation and then using the
results of the GETATTR to update the client’s cached attributes.

Note that if the full set of attributes to be cached is requested by
READDIR, the results can be cached by the client on the same basis as
attributes obtained via GETATTR.

A client may validate its cached version of attributes for a file by
fetching both the change and time_access attributes and assuming that
if the change attribute has the same value as it did when the
attributes were cached, then no attributes other than time_access

10.

have changed. The reason why time_access is also fetched is because
many servers operate in environments where the operation that updates
change does not update time_access. For example, POSIX file
semantics do not update access time when a file is modified by the
write system call [15]. Therefore, the client that wants a current
time_access value should fetch it with change during the attribute
cache validation processing and update its cached time_access.

The client may maintain a cache of modified attributes for those
attributes intimately connected with data of modified regular files
(size, time_modify, and change). Other than those three attributes,
the client MUST NOT maintain a cache of modified attributes.
Instead, attribute changes are immediately sent to the server.

In some operating environments, the equivalent to time_access is
expected to be implicitly updated by each read of the content of the
file object. 1If an NFS client is caching the content of a file
object, whether it is a regular file, directory, or symbolic link,
the client SHOULD NOT update the time_access attribute (via SETATTR
or a small READ or READDIR request) on the server with each read that
is satisfied from cache. The reason is that this can defeat the
performance benefits of caching content, especially since an explicit
SETATTR of time_access may alter the change attribute on the server.
If the change attribute changes, clients that are caching the content
will think the content has changed, and will re-read unmodified data
from the server. ©Nor is the client encouraged to maintain a modified
version of time_access in its cache, since the client either would
eventually have to write the access time to the server with bad
performance effects or never update the server’s time_access, thereby
resulting in a situation where an application that caches access time
between a close and open of the same file observes the access time

oscillating between the past and present. The time_access attribute
always means the time of last access to a file by a read that was
satisfied by the server. This way clients will tend to see only

time_access changes that go forward in time.
7. Data and Metadata Caching and Memory Mapped Files

Some operating environments include the capability for an application
to map a file’s content into the application’s address space. Each
time the application accesses a memory location that corresponds to a
block that has not been loaded into the address space, a page fault
occurs and the file is read (or if the block does not exist in the
file, the block is allocated and then instantiated in the
application’s address space) .

As long as each memory-mapped access to the file requires a page
fault, the relevant attributes of the file that are used to detect
access and modification (time_access, time_metadata, time_modify, and
change) will be updated. However, in many operating environments,
when page faults are not required, these attributes will not be
updated on reads or updates to the file via memory access (regardless
of whether the file is local or is accessed remotely). A client or
server MAY fail to update attributes of a file that is being accessed
via memory-mapped I/O. This has several implications:

* If there is an application on the server that has memory mapped a
file that a client is also accessing, the client may not be able
to get a consistent value of the change attribute to determine
whether or not its cache is stale. A server that knows that the
file is memory-mapped could always pessimistically return updated
values for change so as to force the application to always get the
most up-to-date data and metadata for the file. However, due to
the negative performance implications of this, such behavior is
OPTIONAL.

* If the memory-mapped file is not being modified on the server, and
instead is just being read by an application via the memory-mapped
interface, the client will not see an updated time_access
attribute. However, in many operating environments, neither will
any process running on the server. Thus, NFS clients are at no

10.

disadvantage with respect to local processes.

* TIf there is another client that is memory mapping the file, and if
that client is holding an OPEN_DELEGATE_WRITE delegation, the same
set of issues as discussed in the previous two bullet points
apply. So, when a server does a CB_GETATTR to a file that the
client has modified in its cache, the reply from CB_GETATTR will
not necessarily be accurate. As discussed earlier, the client’s
obligation is to report that the file has been modified since the
delegation was granted, not whether it has been modified again
between successive CB_GETATTR calls, and the server MUST assume
that any file the client has modified in cache has been modified
again between successive CB_GETATTR calls. Depending on the
nature of the client’s memory management system, this weak
obligation may not be possible. A client MAY return stale
information in CB_GETATTR whenever the file is memory-mapped.

* The mixture of memory mapping and byte-range locking on the same
file is problematic. Consider the following scenario, where a

page size on each client is 8192 bytes.

— Client A memory maps the first page (8192 bytes) of file X.

Client B memory maps the first page (8192 bytes) of file X.
— Client A WRITE_LT locks the first 4096 bytes.
— Client B WRITE_LT locks the second 4096 bytes.

— Client A, via a STORE instruction, modifies part of its locked
byte-range.

— Simultaneous to client A, client B executes a STORE on part of
its locked byte-range.

Here the challenge is for each client to resynchronize to get a
correct view of the first page. In many operating environments, the
virtual memory management systems on each client only know a page is
modified, not that a subset of the page corresponding to the
respective lock byte-ranges has been modified. So it is not possible
for each client to do the right thing, which is to write to the
server only that portion of the page that is locked. For example, if
client A simply writes out the page, and then client B writes out the
page, client A’s data is lost.

Moreover, if mandatory locking is enabled on the file, then we have a
different problem. When clients A and B execute the STORE
instructions, the resulting page faults require a byte-range lock on
the entire page. Each client then tries to extend their locked range
to the entire page, which results in a deadlock. Communicating the
NFS4ERR_DEADLOCK error to a STORE instruction is difficult at best.

If a client is locking the entire memory-mapped file, there is no
problem with advisory or mandatory byte-range locking, at least until
the client unlocks a byte-range in the middle of the file.

Given the above issues, the following are permitted:

* Clients and servers MAY deny memory mapping a file for which they
know there are byte-range locks.

* Clients and servers MAY deny a byte-range lock on a file they know
is memory-mapped.

* A client MAY deny memory mapping a file that it knows requires
mandatory locking for I/0O. If mandatory locking is enabled after
the file is opened and mapped, the client MAY deny the application
further access to its mapped file.

8. Name and Directory Caching without Directory Delegations

10.

The NFSv4.l directory delegation facility (described in Section 10.9
below) is OPTIONAL for servers to implement. Even where it is
implemented, it may not always be functional because of resource

availability issues or other constraints. Thus, it is important to
understand how name and directory caching are done in the absence of
directory delegations. These topics are discussed in the next two
subsections.

8.1. Name Caching

The results of LOOKUP and READDIR operations may be cached to avoid
the cost of subsequent LOOKUP operations. Just as in the case of
attribute caching, inconsistencies may arise among the various client
caches. To mitigate the effects of these inconsistencies and given
the context of typical file system APIs, an upper time boundary is
maintained for how long a client name cache entry can be kept without
verifying that the entry has not been made invalid by a directory
change operation performed by another client.

When a client is not making changes to a directory for which there
exist name cache entries, the client needs to periodically fetch
attributes for that directory to ensure that it is not being
modified. After determining that no modification has occurred, the
expiration time for the associated name cache entries may be updated
to be the current time plus the name cache staleness bound.

When a client is making changes to a given directory, it needs to
determine whether there have been changes made to the directory by
other clients. It does this by using the change attribute as
reported before and after the directory operation in the associated
change_info4 value returned for the operation. The server is able to
communicate to the client whether the change_info4 data is provided
atomically with respect to the directory operation. If the change
values are provided atomically, the client has a basis for
determining, given proper care, whether other clients are modifying
the directory in question.

The simplest way to enable the client to make this determination is
for the client to serialize all changes made to a specific directory.
When this is done, and the server provides before and after values of
the change attribute atomically, the client can simply compare the
after value of the change attribute from one operation on a directory
with the before value on the subsequent operation modifying that
directory. When these are equal, the client is assured that no other
client is modifying the directory in question.

When such serialization is not used, and there may be multiple
simultaneous outstanding operations modifying a single directory sent
from a single client, making this sort of determination can be more
complicated. If two such operations complete in a different order
than they were actually performed, that might give an appearance
consistent with modification being made by another client. Where
this appears to happen, the client needs to await the completion of
all such modifications that were started previously, to see if the
outstanding before and after change numbers can be sorted into a
chain such that the before value of one change number matches the
after value of a previous one, in a chain consistent with this client
being the only one modifying the directory.

In either of these cases, the client is able to determine whether the
directory is being modified by another client. If the comparison
indicates that the directory was updated by another client, the name
cache associated with the modified directory is purged from the
client. If the comparison indicates no modification, the name cache
can be updated on the client to reflect the directory operation and
the associated timeout can be extended. The post-operation change
value needs to be saved as the basis for future change_info4
comparisons.

As demonstrated by the scenario above, name caching requires that the
client revalidate name cache data by inspecting the change attribute

10.

10.

10.

of a directory at the point when the name cache item was cached.
This requires that the server update the change attribute for
directories when the contents of the corresponding directory is
modified. For a client to use the change_info4 information
appropriately and correctly, the server must report the pre- and
post-operation change attribute values atomically. When the server
is unable to report the before and after values atomically with
respect to the directory operation, the server must indicate that
fact in the change_info4 return value. When the information is not
atomically reported, the client should not assume that other clients
have not changed the directory.

8.2. Directory Caching

The results of READDIR operations may be used to avoid subsequent
READDIR operations. Just as in the cases of attribute and name
caching, inconsistencies may arise among the various client caches.
To mitigate the effects of these inconsistencies, and given the
context of typical file system APIs, the following rules should be
followed:

* Cached READDIR information for a directory that is not obtained in
a single READDIR operation must always be a consistent snapshot of
directory contents. This is determined by using a GETATTIR before
the first READDIR and after the last READDIR that contributes to
the cache.

* An upper time boundary is maintained to indicate the length of
time a directory cache entry is considered valid before the client
must revalidate the cached information.

The revalidation technique parallels that discussed in the case of
name caching. When the client is not changing the directory in
question, checking the change attribute of the directory with GETATTR
is adequate. The lifetime of the cache entry can be extended at
these checkpoints. When a client is modifying the directory, the
client needs to use the change_info4 data to determine whether there
are other clients modifying the directory. If it is determined that
no other client modifications are occurring, the client may update
its directory cache to reflect its own changes.

As demonstrated previously, directory caching requires that the
client revalidate directory cache data by inspecting the change
attribute of a directory at the point when the directory was cached.
This requires that the server update the change attribute for
directories when the contents of the corresponding directory is
modified. For a client to use the change_info4 information
appropriately and correctly, the server must report the pre- and
post-operation change attribute values atomically. When the server
is unable to report the before and after values atomically with
respect to the directory operation, the server must indicate that
fact in the change_info4 return value. When the information is not
atomically reported, the client should not assume that other clients
have not changed the directory.

9. Directory Delegations
9.1. Introduction to Directory Delegations

Directory caching for the NFSv4.1l protocol, as previously described,
is similar to file caching in previous versions. Clients typically
cache directory information for a duration determined by the client.
At the end of a predefined timeout, the client will query the server
to see if the directory has been updated. By caching attributes,
clients reduce the number of GETATTIR calls made to the server to
validate attributes. Furthermore, frequently accessed files and
directories, such as the current working directory, have their
attributes cached on the client so that some NFS operations can be
performed without having to make an RPC call. By caching name and
inode information about most recently looked up entries in a
Directory Name Lookup Cache (DNLC), clients do not need to send

10.

LOOKUP calls to the server every time these files are accessed.

This caching approach works reasonably well at reducing network

traffic in many environments. However, it does not address
environments where there are numerous queries for files that do not
exist. In these cases of "misses", the client sends requests to the

server in order to provide reasonable application semantics and
promptly detect the creation of new directory entries. Examples of
high miss activity are compilation in software development

environments. The current behavior of NFS limits its potential
scalability and wide—-area sharing effectiveness in these types of
environments. Other distributed stateful file system architectures

such as AFS and DFS have proven that adding state around directory
contents can greatly reduce network traffic in high-miss
environments.

Delegation of directory contents is an OPTIONAL feature of NFSv4.l.
Directory delegations provide similar traffic reduction benefits as
with file delegations. By allowing clients to cache directory
contents (in a read-only fashion) while being notified of changes,
the client can avoid making frequent requests to interrogate the
contents of slowly-changing directories, reducing network traffic and
improving client performance. It can also simplify the task of
determining whether other clients are making changes to the directory
when the client itself is making many changes to the directory and
changes are not serialized.

Directory delegations allow improved namespace cache consistency to
be achieved through delegations and synchronous recalls, in the
absence of notifications. In addition, if time-based consistency is
sufficient, asynchronous notifications can provide performance
benefits for the client, and possibly the server, under some common
operating conditions such as slowly-changing and/or very large
directories.

9.2. Directory Delegation Design

NFSv4.1l introduces the GET_DIR_DELEGATION (Section 18.39) operation
to allow the client to ask for a directory delegation. The
delegation covers directory attributes and all entries in the
directory. 1If either of these change, the delegation will be
recalled synchronously. The operation causing the recall will have
to wait before the recall is complete. Any changes to directory
entry attributes will not cause the delegation to be recalled.

In addition to asking for delegations, a client can also ask for
notifications for certain events. These events include changes to
the directory’s attributes and/or its contents. If a client asks for
notification for a certain event, the server will notify the client
when that event occurs. This will not result in the delegation being
recalled for that client. The notifications are asynchronous and
provide a way of avoiding recalls in situations where a directory is
changing enough that the pure recall model may not be effective while
trying to allow the client to get substantial benefit. In the
absence of notifications, once the delegation is recalled the client
has to refresh its directory cache; this might not be very efficient
for very large directories.

The delegation is read-only and the client may not make changes to
the directory other than by performing NFSv4.1l operations that modify
the directory or the associated file attributes so that the server
has knowledge of these changes. In order to keep the client’s
namespace synchronized with that of the server, the server will
notify the delegation-holding client (assuming it has requested
notifications) of the changes made as a result of that client’s
directory-modifying operations. This is to avoid any need for that
client to send subsequent GETATTR or READDIR operations to the
server. If a single client is holding the delegation and that client
makes any changes to the directory (i.e., the changes are made via
operations sent on a session associated with the client ID holding
the delegation), the delegation will not be recalled. Multiple

10.

10.

10.

11.

clients may hold a delegation on the same directory, but if any such
client modifies the directory, the server MUST recall the delegation
from the other clients, unless those clients have made provisions to
be notified of that sort of modification.

Delegations can be recalled by the server at any time. Normally, the
server will recall the delegation when the directory changes in a way
that is not covered by the notification, or when the directory
changes and notifications have not been requested. If another client
removes the directory for which a delegation has been granted, the
server will recall the delegation.

9.3. Attributes in Support of Directory Notifications

See Section 5.11 for a description of the attributes associated with
directory notifications.

9.4. Directory Delegation Recall

The server will recall the directory delegation by sending a callback
to the client. It will use the same callback procedure as used for
recalling file delegations. The server will recall the delegation
when the directory changes in a way that is not covered by the
notification. However, the server need not recall the delegation if
attributes of an entry within the directory change.

If the server notices that handing out a delegation for a directory
is causing too many notifications to be sent out, it may decide to
not hand out delegations for that directory and/or recall those
already granted. If a client tries to remove the directory for which
a delegation has been granted, the server will recall all associated
delegations.

The implementation sections for a number of operations describe
situations in which notification or delegation recall would be
required under some common circumstances. In this regard, a similar
set of caveats to those listed in Section 10.2 apply.

* For CREATE, see Section 18.4.4.

* For LINK, see Section 18.9.4.

* For OPEN, see Section 18.16.4.

* For REMOVE, see Section 18.25.4.
* For RENAME, see Section 18.26.4.
* For SETATTR, see Section 18.30.4.
9.5. Directory Delegation Recovery

Recovery from client or server restart for state on regular files has
two main goals: avoiding the necessity of breaking application
guarantees with respect to locked files and delivery of updates
cached at the client. Neither of these goals applies to directories
protected by OPEN_DELEGATE_READ delegations and notifications. Thus,
no provision is made for reclaiming directory delegations in the
event of client or server restart. The client can simply establish a
directory delegation in the same fashion as was done initially.

Multi-Server Namespace

NFSv4.1l supports attributes that allow a namespace to extend beyond
the boundaries of a single server. It is desirable that clients and
servers support construction of such multi-server namespaces. Use of
such multi-server namespaces is OPTIONAL; however, and for many
purposes, single-server namespaces are perfectly acceptable. The use
of multi-server namespaces can provide many advantages by separating
a file system’s logical position in a namespace from the (possibly
changing) logistical and administrative considerations that cause a

11.

11.

particular file system to be located on a particular server via a
single network access path that has to be known in advance or
determined using DNS.

1. Terminology

In this section as a whole (i.e., within all of Section 11), the
phrase "client ID" always refers to the 64-bit shorthand identifier
assigned by the server (a clientid4) and never to the structure that
the client uses to identify itself to the server (called an
nfs_client_id4 or client_owner in NFSv4.0 and NFSv4.1l, respectively).
The opaque identifier within those structures is referred to as a
"client id string".

1.1. Terminology Related to Trunking

It is particularly important to clarify the distinction between
trunking detection and trunking discovery. The definitions we
present are applicable to all minor versions of NFSv4, but we will
focus on how these terms apply to NFS version 4.1.

* Trunking detection refers to ways of deciding whether two specific
network addresses are connected to the same NFSv4 server. The
means available to make this determination depends on the protocol
version, and, in some cases, on the client implementation.

In the case of NFS version 4.1 and later minor versions, the means
of trunking detection are as described in this document and are
available to every client. Two network addresses connected to the
same server can always be used together to access a particular
server but cannot necessarily be used together to access a single
session. See below for definitions of the terms "server-
trunkable” and "session-trunkable".

* Trunking discovery is a process by which a client using one
network address can obtain other addresses that are connected to
the same server. Typically, it builds on a trunking detection
facility by providing one or more methods by which candidate
addresses are made available to the client, who can then use
trunking detection to appropriately filter them.

Despite the support for trunking detection, there was no
description of trunking discovery provided in RFC 5661 [66],
making it necessary to provide those means in this document.

The combination of a server network address and a particular
connection type to be used by a connection is referred to as a
"server endpoint". Although using different connection types may
result in different ports being used, the use of different ports by
multiple connections to the same network address in such cases is not
the essence of the distinction between the two endpoints used. This
is in contrast to the case of port-specific endpoints, in which the
explicit specification of port numbers within network addresses is
used to allow a single server node to support multiple NFS servers.

Two network addresses connected to the same server are said to be
server—-trunkable. Two such addresses support the use of client ID
trunking, as described in Section 2.10.5.

Two network addresses connected to the same server such that those
addresses can be used to support a single common session are referred
to as session-trunkable. Note that two addresses may be server-
trunkable without being session-trunkable, and that, when two
connections of different connection types are made to the same
network address and are based on a single file system location entry,
they are always session-trunkable, independent of the connection
type, as specified by Section 2.10.5, since their derivation from the
same file system location entry, together with the identity of their
network addresses, assures that both connections are to the same
server and will return server-owner information, allowing session
trunking to be used.

11.1.2. Terminology Related to File System Location

Regarding the terminology that relates to the construction of multi-
server namespaces out of a set of local per—-server namespaces:

*

Each server has a set of exported file systems that may be
accessed by NFSv4 clients. Typically, this is done by assigning
each file system a name within the pseudo-fs associated with the
server, although the pseudo-fs may be dispensed with if there is
only a single exported file system. Each such file system is part
of the server’s local namespace, and can be considered as a file
system instance within a larger multi-server namespace.

The set of all exported file systems for a given server
constitutes that server’s local namespace.

In some cases, a server will have a namespace more extensive than
its local namespace by using features associated with attributes
that provide file system location information. These features,
which allow construction of a multi-server namespace, are all
described in individual sections below and include referrals
(Section 11.5.6), migration (Section 11.5.5), and replication
(Section 11.5.4).

A file system present in a server’s pseudo-fs may have multiple
file system instances on different servers associated with it.
All such instances are considered replicas of one another.
Whether such replicas can be used simultaneously is discussed in
Section 11.11.1, while the level of coordination between them
(important when switching between them) is discussed in Sections
11.11.2 through 11.11.8 below.

When a file system is present in a server’s pseudo-fs, but there

is no corresponding local file system, it is said to be "absent".
In such cases, all associated instances will be accessed on other
servers.

Regarding the terminology that relates to attributes used in trunking
discovery and other multi-server namespace features:

*

File system location attributes include the fs_locations and
fs_locations_info attributes.

File system location entries provide the individual file system
locations within the file system location attributes. Each such
entry specifies a server, in the form of a hostname or an address,
and an fs name, which designates the location of the file system
within the server’s local namespace. A file system location entry
designates a set of server endpoints to which the client may
establish connections. There may be multiple endpoints because a
hostname may map to multiple network addresses and because
multiple connection types may be used to communicate with a single
network address. However, except where explicit port numbers are
used to designate a set of servers within a single server node,
all such endpoints MUST designate a way of connecting to a single
server. The exact form of the location entry varies with the
particular file system location attribute used, as described in
Section 11.2.

The network addresses used in file system location entries
typically appear without port number indications and are used to
designate a server at one of the standard ports for NFS access,
e.g., 2049 for TCP or 20049 for use with RPC-over-RDMA. Port
numbers may be used in file system location entries to designate
servers (typically user-level ones) accessed using other port
numbers. In the case where network addresses indicate trunking
relationships, the use of an explicit port number is inappropriate
since trunking is a relationship between network addresses. See
Section 11.5.2 for details.

11

* File system location elements are derived from location entries,
and each describes a particular network access path consisting of
a network address and a location within the server’s local
namespace. Such location elements need not appear within a file
system location attribute, but the existence of each location
element derives from a corresponding location entry. When a
location entry specifies an IP address, there is only a single
corresponding location element. File system location entries that
contain a hostname are resolved using DNS, and may result in one
or more location elements. All location elements consist of a
location address that includes the IP address of an interface to a
server and an fs name, which is the location of the file system
within the server’s local namespace. The fs name can be empty if
the server has no pseudo-fs and only a single exported file system
at the root filehandle.

* Two file system location elements are said to be server-trunkable
if they specify the same fs name and the location addresses are
such that the location addresses are server—-trunkable. When the
corresponding network paths are used, the client will always be
able to use client ID trunking, but will only be able to use
session trunking if the paths are also session-trunkable.

* Two file system location elements are said to be session-trunkable
if they specify the same fs name and the location addresses are
such that the location addresses are session-trunkable. When the
corresponding network paths are used, the client will be able to
able to use either client ID trunking or session trunking.

Discussion of the term "replica" is complicated by the fact that the
term was used in RFC 5661 [66] with a meaning different from that
used in this document. In short, in [66] each replica is identified
by a single network access path, while in the current document, a set
of network access paths that have server-trunkable network addresses
and the same root-relative file system pathname is considered to be a
single replica with multiple network access paths.

Each set of server-trunkable location elements defines a set of
available network access paths to a particular file system. When
there are multiple such file systems, each of which containing the
same data, these file systems are considered replicas of one another.
Logically, such replication is symmetric, since the fs currently in
use and an alternate fs are replicas of each other. Often, in other
documents, the term "replica" is not applied to the fs currently in
use, despite the fact that the replication relation is inherently
symmetric.

.2. File System Location Attributes

NFSv4.1l contains attributes that provide information about how a
given file system may be accessed (i.e., at what network address and

namespace position). As a result, file systems in the namespace of
one server can be associated with one or more instances of that file
system on other servers. These attributes contain file system

location entries specifying a server address target (either as a DNS
name representing one or more IP addresses or as a specific IP
address) together with the pathname of that file system within the
associated single—-server namespace.

The fs_locations_info RECOMMENDED attribute allows specification of
one or more file system instance locations where the data
corresponding to a given file system may be found. In addition to
the specification of file system instance locations, this attribute
provides helpful information to do the following:

* Guide choices among the various file system instances provided
(e.g., priority for use, writability, currency, etc.).

* Help the client efficiently effect as seamless a transition as
possible among multiple file system instances, when and if that
should be necessary.

11.

* Guide the selection of the appropriate connection type to be used
when establishing a connection.

Within the fs_locations_info attribute, each fs_locations_serverid
entry corresponds to a file system location entry: the fls_server
field designates the server, and the fl_rootpath field of the
encompassing fs_locations_item4 gives the location pathname within
the server’s pseudo-fs.

The fs_locations attribute defined in NFSv4.0 is also a part of
NFSv4.1l. This attribute only allows specification of the file system
locations where the data corresponding to a given file system may be
found. Servers SHOULD make this attribute available whenever
fs_locations_info is supported, but client use of fs_locations_info
is preferable because it provides more information.

Within the fs_locations attribute, each fs_location4 contains a file
system location entry with the server field designating the server
and the rootpath field giving the location pathname within the
server’s pseudo—-fs.

3. File System Presence or Absence
A given location in an NFSv4.1l namespace (typically but not

necessarily a multi-server namespace) can have a number of file
system instance locations associated with it (via the fs_locations or

fs_locations_info attribute). There may also be an actual current
file system at that location, accessible via normal namespace
operations (e.g., LOOKUP). 1In this case, the file system is said to

be "present" at that position in the namespace, and clients will
typically use it, reserving use of additional locations specified via
the location-related attributes to situations in which the principal
location is no longer available.

When there is no actual file system at the namespace location in
question, the file system is said to be "absent". An absent file
system contains no files or directories other than the root. Any
reference to it, except to access a small set of attributes useful in
determining alternate locations, will result in an error,
NFS4ERR_MOVED. Note that if the server ever returns the error
NFS4ERR_MOVED, it MUST support the fs_locations attribute and SHOULD
support the fs_locations_info and fs_status attributes.

While the error name suggests that we have a case of a file system
that once was present, and has only become absent later, this is only
one possibility. A position in the namespace may be permanently
absent with the set of file system(s) designated by the location
attributes being the only realization. The name NFS4ERR_MOVED
reflects an earlier, more limited conception of its function, but
this error will be returned whenever the referenced file system is
absent, whether it has moved or not.

Except in the case of GETATTR-type operations (to be discussed
later), when the current filehandle at the start of an operation is
within an absent file system, that operation is not performed and the
error NFS4ERR_MOVED is returned, to indicate that the file system is
absent on the current server.

Because a GETFH cannot succeed if the current filehandle is within an
absent file system, filehandles within an absent file system cannot
be transferred to the client. When a client does have filehandles
within an absent file system, it is the result of obtaining them when
the file system was present, and having the file system become absent
subsequently.

It should be noted that because the check for the current filehandle
being within an absent file system happens at the start of every
operation, operations that change the current filehandle so that it
is within an absent file system will not result in an error. This
allows such combinations as PUTFH-GETATTR and LOOKUP-GETATTR to be

11.

11.

11.

used to get attribute information, particularly location attribute
information, as discussed below.

The RECOMMENDED file system attribute fs_status can be used to
interrogate the present/absent status of a given file system.

4. Getting Attributes for an Absent File System

When a file system is absent, most attributes are not available, but
it is necessary to allow the client access to the small set of
attributes that are available, and most particularly those that give
information about the correct current locations for this file system:
fs_locations and fs_locations_info.

4.1. GETATTR within an Absent File System

As mentioned above, an exception is made for GETATTR in that
attributes may be obtained for a filehandle within an absent file
system. This exception only applies if the attribute mask contains
at least one attribute bit that indicates the client is interested in
a result regarding an absent file system: fs_locations,
fs_locations_info, or fs_status. If none of these attributes is
requested, GETATTR will result in an NFS4ERR_MOVED error.

When a GETATTR is done on an absent file system, the set of supported
attributes is very limited. Many attributes, including those that
are normally REQUIRED, will not be available on an absent file
system. In addition to the attributes mentioned above (fs_locations,
fs_locations_info, fs_status), the following attributes SHOULD be
available on absent file systems. In the case of RECOMMENDED
attributes, they should be available at least to the same degree that
they are available on present file systems.

change_policy: This attribute is useful for absent file systems and
can be helpful in summarizing to the client when any of the
location-related attributes change.

fsid: This attribute should be provided so that the client can
determine file system boundaries, including, in particular, the
boundary between present and absent file systems. This value must
be different from any other fsid on the current server and need
have no particular relationship to fsids on any particular
destination to which the client might be directed.

mounted_on_fileid: For objects at the top of an absent file system,
this attribute needs to be available. Since the fileid is within
the present parent file system, there should be no need to
reference the absent file system to provide this information.

Other attributes SHOULD NOT be made available for absent file
systems, even when it is possible to provide them. The server should
not assume that more information is always better and should avoid
gratuitously providing additional information.

When a GETATTR operation includes a bit mask for one of the
attributes fs_locations, fs_locations_info, or fs_status, but where
the bit mask includes attributes that are not supported, GETATTR will
not return an error, but will return the mask of the actual
attributes supported with the results.

Handling of VERIFY/NVERIFY is similar to GETATTR in that if the
attribute mask does not include fs_locations, fs_locations_info, or
fs_status, the error NFS4ERR_MOVED will result. It differs in that
any appearance in the attribute mask of an attribute not supported
for an absent file system (and note that this will include some
normally REQUIRED attributes) will also cause an NFS4ERR_MOVED
result.

4.2. READDIR and Absent File Systems

A READDIR performed when the current filehandle is within an absent

11.

file system will result in an NFS4ERR_MOVED error, since, unlike the
case of GETATTR, no such exception is made for READDIR.

Attributes for an absent file system may be fetched via a READDIR for
a directory in a present file system, when that directory contains
the root directories of one or more absent file systems. In this
case, the handling is as follows:

* If the attribute set requested includes one of the attributes
fs_locations, fs_locations_info, or fs_status, then fetching of
attributes proceeds normally and no NFS4ERR_MOVED indication is
returned, even when the rdattr_error attribute is requested.

* TIf the attribute set requested does not include one of the
attributes fs_locations, fs_locations_info, or fs_status, then if
the rdattr_error attribute is requested, each directory entry for
the root of an absent file system will report NFS4ERR_MOVED as the
value of the rdattr_error attribute.

* TIf the attribute set requested does not include any of the
attributes fs_locations, fs_locations_info, fs_status, or
rdattr_error, then the occurrence of the root of an absent file
system within the directory will result in the READDIR failing
with an NFS4ERR_MOVED error.

* The unavailability of an attribute because of a file system’s
absence, even one that is ordinarily REQUIRED, does not result in
any error indication. The set of attributes returned for the root
directory of the absent file system in that case is simply
restricted to those actually available.

5. Uses of File System Location Information

The file system location attributes (i.e., fs_locations and
fs_locations_info), together with the possibility of absent file
systems, provide a number of important facilities for reliable,
manageable, and scalable data access.

When a file system is present, these attributes can provide the
following:

* The locations of alternative replicas to be used to access the
same data in the event of server failures, communications
problems, or other difficulties that make continued access to the
current replica impossible or otherwise impractical. Provisioning
and use of such alternate replicas is referred to as "replication"
and is discussed in Section 11.5.4 below.

* The network address(es) to be used to access the current file
system instance or replicas of it. Client use of this information
is discussed in Section 11.5.2 below.

Under some circumstances, multiple replicas may be used
simultaneously to provide higher-performance access to the file
system in question, although the lack of state sharing between
servers may be an impediment to such use.

When a file system is present but becomes absent, clients can be
given the opportunity to have continued access to their data using a
different replica. 1In this case, a continued attempt to use the data
in the now-absent file system will result in an NFS4ERR_MOVED error,
and then the successor replica or set of possible replica choices can
be fetched and used to continue access. Transfer of access to the
new replica location is referred to as "migration” and is discussed
in Section 11.5.4 below.

When a file system is currently absent, specification of file system
location provides a means by which file systems located on one server
can be associated with a namespace defined by another server, thus
allowing a general multi-server namespace facility. A designation of
such a remote instance, in place of a file system not previously

11.

11.

present, is called a "pure referral" and is discussed in
Section 11.5.6 below.

Because client support for attributes related to file system location
is OPTIONAL, a server may choose to take action to hide migration and
referral events from such clients, by acting as a proxy, for example.
The server can determine the presence of client support from the
arguments of the EXCHANGE_ID operation (see Section 18.35.3).

5.1. Combining Multiple Uses in a Single Attribute

A file system location attribute will sometimes contain information
relating to the location of multiple replicas, which may be used in
different ways:

* File system location entries that relate to the file system
instance currently in use provide trunking information, allowing
the client to find additional network addresses by which the
instance may be accessed.

* File system location entries that provide information about
replicas to which access is to be transferred.

* Other file system location entries that relate to replicas that
are available to use in the event that access to the current
replica becomes unsatisfactory.

In order to simplify client handling and to allow the best choice of
replicas to access, the server should adhere to the following
guidelines:

* All file system location entries that relate to a single file
system instance should be adjacent.

* File system location entries that relate to the instance currently
in use should appear first.

* File system location entries that relate to replica(s) to which
migration is occurring should appear before replicas that are
available for later use if the current replica should become
inaccessible.

5.2. File System Location Attributes and Trunking

Trunking is the use of multiple connections between a client and
server in order to increase the speed of data transfer. A client may
determine the set of network addresses to use to access a given file
system in a number of ways:

* When the name of the server is known to the client, it may use DNS
to obtain a set of network addresses to use in accessing the
server.

* The client may fetch the file system location attribute for the
file system. This will provide either the name of the server
(which can be turned into a set of network addresses using DNS) or
a set of server-trunkable location entries. Using the latter
alternative, the server can provide addresses it regards as
desirable to use to access the file system in question. Although
these entries can contain port numbers, these port numbers are not
used in determining trunking relationships. Once the candidate
addresses have been determined and EXCHANGE_ID done to the proper
server, only the value of the so_major_id field returned by the
servers in question determines whether a trunking relationship
actually exists.

When the client fetches a location attribute for a file system, it

should be noted that the client may encounter multiple entries for a
number of reasons, such that when it determines trunking information,
it may need to bypass addresses not trunkable with one already known.

11.

11.

The server can provide location entries that include either names or
network addresses. It might use the latter form because of DNS-
related security concerns or because the set of addresses to be used
might require active management by the server.

Location entries used to discover candidate addresses for use in
trunking are subject to change, as discussed in Section 11.5.7 below.
The client may respond to such changes by using additional addresses
once they are verified or by ceasing to use existing ones. The
server can force the client to cease using an address by returning
NFS4ERR_MOVED when that address is used to access a file system.

This allows a transfer of client access that is similar to migration,
although the same file system instance is accessed throughout.

5.3. File System Location Attributes and Connection Type Selection

Because of the need to support multiple types of connections, clients
face the issue of determining the proper connection type to use when
establishing a connection to a given server network address. In some
cases, this issue can be addressed through the use of the connection
"step-up" facility described in Section 18.36. However, because
there are cases in which that facility is not available, the client
may have to choose a connection type with no possibility of changing
it within the scope of a single connection.

The two file system location attributes differ as to the information
made available in this regard. The fs_locations attribute provides
no information to support connection type selection. As a result,
clients supporting multiple connection types would need to attempt to
establish connections using multiple connection types until the one
preferred by the client is successfully established.

The fs_locations_info attribute includes the FSLI4ATF_RDMA flag, which
is convenient for a client wishing to use RDMA. When this flag is
set, it indicates that RPC-over—-RDMA support is available using the
specified location entry. A client can establish a TCP connection
and then convert that connection to use RDMA by using the step-up
facility.

Irrespective of the particular attribute used, when there is no
indication that a step-up operation can be performed, a client
supporting RDMA operation can establish a new RDMA connection, and it
can be bound to the session already established by the TCP
connection, allowing the TCP connection to be dropped and the session
converted to further use in RDMA mode, if the server supports that.

5.4. File System Replication

The fs_locations and fs_locations_info attributes provide alternative
file system locations, to be used to access data in place of or in
addition to the current file system instance. On first access to a
file system, the client should obtain the set of alternate locations
by interrogating the fs_locations or fs_locations_info attribute,
with the latter being preferred.

In the event that the occurrence of server failures, communications
problems, or other difficulties make continued access to the current
file system impossible or otherwise impractical, the client can use
the alternate locations as a way to get continued access to its data.

The alternate locations may be physical replicas of the (typically
read-only) file system data supplemented by possible asynchronous
propagation of updates. Alternatively, they may provide for the use
of various forms of server clustering in which multiple servers
provide alternate ways of accessing the same physical file system.
How the difference between replicas affects file system transitions
can be represented within the fs_locations and fs_locations_info
attributes, and how the client deals with file system transition
issues will be discussed in detail in later sections.

Although the location attributes provide some information about the

11.

nature of the inter-replica transition, many aspects of the semantics
of possible asynchronous updates are not currently described by the
protocol, which makes it necessary for clients using replication to
switch among replicas undergoing change to familiarize themselves
with the semantics of the update approach used. Due to this lack of
specificity, many applications may find the use of migration more
appropriate because a server can propagate all updates made before an
established point in time to the new replica as part of the migration
event.

5.4.1. File System Trunking Presented as Replication

In some situations, a file system location entry may indicate a file
system access path to be used as an alternate location, where
trunking, rather than replication, is to be used. The situations in
which this is appropriate are limited to those in which both of the
following are true:

* The two file system locations (i.e., the one on which the location
attribute is obtained and the one specified in the file system
location entry) designate the same locations within their
respective single—-server namespaces.

* The two server network addresses (i.e., the one being used to
obtain the location attribute and the one specified in the file
system location entry) designate the same server (as indicated by
the same value of the so_major_id field of the eir_server_owner
field returned in response to EXCHANGE_ID).

When these conditions hold, operations using both access paths are
generally trunked, although trunking may be disallowed when the
attribute fs_locations_info is used:

* When the fs_locations_info attribute shows the two entries as not
having the same simultaneous-use class, trunking is inhibited, and
the two access paths cannot be used together.

In this case, the two paths can be used serially with no
transition activity required on the part of the client, and any
transition between access paths is transparent. In transferring
access from one to the other, the client acts as if communication
were interrupted, establishing a new connection and possibly a new
session to continue access to the same file system.

* Note that for two such location entries, any information within
the fs_locations_info attribute that indicates the need for
special transition activity, i.e., the appearance of the two file
system location entries with different handle, fileid, write-—
verifier, change, and readdir classes, indicates a serious
problem. The client, if it allows transition to the file system
instance at all, must not treat any transition as a transparent
one. The server SHOULD NOT indicate that these two entries (for
the same file system on the same server) belong to different
handle, fileid, write-verifier, change, and readdir classes,
whether or not the two entries are shown belonging to the same
simultaneous-use class.

These situations were recognized by [66], even though that document
made no explicit mention of trunking:

* It treated the situation that we describe as trunking as one of
simultaneous use of two distinct file system instances, even
though, in the explanatory framework now used to describe the
situation, the case is one in which a single file system is
accessed by two different trunked addresses.

* It treated the situation in which two paths are to be used
serially as a special sort of "transparent transition". However,
in the descriptive framework now used to categorize transition
situations, this is considered a case of a "network endpoint
transition”" (see Section 11.9).

11.5.5. File System Migration

When a file system is present and becomes inaccessible using the
current access path, the NFSv4.1l protocol provides a means by which
clients can be given the opportunity to have continued access to
their data. This may involve using a different access path to the
existing replica or providing a path to a different replica. The new
access path or the location of the new replica is specified by a file
system location attribute. The ensuing migration of access includes
the ability to retain locks across the transition. Depending on
circumstances, this can involve:

* The continued use of the existing clientid when accessing the
current replica using a new access path.

* Use of lock reclaim, taking advantage of a per-fs grace period.
* Use of Transparent State Migration.

Typically, a client will be accessing the file system in question,
get an NFS4ERR_MOVED error, and then use a file system location
attribute to determine the new access path for the data. When
fs_locations_info is used, additional information will be available
that will define the nature of the client’s handling of the
transition to a new server.

In most instances, servers will choose to migrate all clients using a
particular file system to a successor replica at the same time to
avoid cases in which different clients are updating different
replicas. However, migration of an individual client can be helpful
in providing load balancing, as long as the replicas in question are
such that they represent the same data as described in

Section 11.11.8.

* In the case in which there is no transition between replicas
(i.e., only a change in access path), there are no special
difficulties in using of this mechanism to effect load balancing.

* In the case in which the two replicas are sufficiently coordinated
as to allow a single client coherent, simultaneous access to both,
there is, in general, no obstacle to the use of migration of
particular clients to effect load balancing. Generally, such
simultaneous use involves cooperation between servers to ensure
that locks granted on two coordinated replicas cannot conflict and
can remain effective when transferred to a common replica.

* In the case in which a large set of clients is accessing a file
system in a read-only fashion, it can be helpful to migrate all
clients with writable access simultaneously, while using load
balancing on the set of read-only copies, as long as the rules in
Section 11.11.8, which are designed to prevent data reversion, are
followed.

In other cases, the client might not have sufficient guarantees of
data similarity or coherence to function properly (e.g., the data in
the two replicas is similar but not identical), and the possibility
that different clients are updating different replicas can exacerbate
the difficulties, making the use of load balancing in such situations
a perilous enterprise.

The protocol does not specify how the file system will be moved
between servers or how updates to multiple replicas will be
coordinated. It is anticipated that a number of different server-to-
server coordination mechanisms might be used, with the choice left to
the server implementer. The NFSv4.l1l protocol specifies the method
used to communicate the migration event between client and server.

In the case of various forms of server clustering, the new location
may be another server providing access to the same physical file
system. The client’s responsibilities in dealing with this

11.

transition will depend on whether a switch between replicas has
occurred and the means the server has chosen to provide continuity of
locking state. These issues will be discussed in detail below.

Although a single successor location is typical, multiple locations
may be provided. When multiple locations are provided, the client
will typically use the first one provided. If that is inaccessible
for some reason, later ones can be used. In such cases, the client
might consider the transition to the new replica to be a migration
event, even though some of the servers involved might not be aware of
the use of the server that was inaccessible. In such a case, a
client might lose access to locking state as a result of the access
transfer.

When an alternate location is designated as the target for migration,
it must designate the same data (with metadata being the same to the
degree indicated by the fs_locations_info attribute). Where file
systems are writable, a change made on the original file system must
be visible on all migration targets. Where a file system is not
writable but represents a read-only copy (possibly periodically
updated) of a writable file system, similar requirements apply to the
propagation of updates. Any change visible in the original file
system must already be effected on all migration targets, to avoid
any possibility that a client, in effecting a transition to the
migration target, will see any reversion in file system state.

5.6. Referrals

Referrals allow the server to associate a file system namespace entry
located on one server with a file system located on another server.
When this includes the use of pure referrals, servers are provided a
way of placing a file system in a location within the namespace
essentially without respect to its physical location on a particular
server. This allows a single server or a set of servers to present a
multi-server namespace that encompasses file systems located on a
wider range of servers. Some likely uses of this facility include
establishment of site-wide or organization-wide namespaces, with the
eventual possibility of combining such together into a truly global
namespace, such as the one provided by AFS (the Andrew File System)
[65].

Referrals occur when a client determines, upon first referencing a
position in the current namespace, that it is part of a new file
system and that the file system is absent. When this occurs,
typically upon receiving the error NFS4ERR_MOVED, the actual location
or locations of the file system can be determined by fetching a
locations attribute.

The file system location attribute may designate a single file system
location or multiple file system locations, to be selected based on

the needs of the client. The server, in the fs_locations_info
attribute, may specify priorities to be associated with various file
system location choices. The server may assign different priorities

to different locations as reported to individual clients, in order to
adapt to client physical location or to effect load balancing. When
both read-only and read-write file systems are present, some of the
read-only locations might not be absolutely up-to-date (as they would
have to be in the case of replication and migration). Servers may
also specify file system locations that include client-substituted
variables so that different clients are referred to different file
systems (with different data contents) based on client attributes
such as CPU architecture.

If the fs_locations_info attribute lists multiple possible targets,
the relationships among them may be important to the client in
selecting which one to use. The same rules specified in

Section 11.5.5 below regarding multiple migration targets apply to
these multiple replicas as well. For example, the client might
prefer a writable target on a server that has additional writable
replicas to which it subsequently might switch. Note that, as
distinguished from the case of replication, there is no need to deal

11.

with the case of propagation of updates made by the current client,
since the current client has not accessed the file system in
question.

Use of multi-server namespaces is enabled by NFSv4.1l but is not
required. The use of multi-server namespaces and their scope will
depend on the applications used and system administration
preferences.

Multi-server namespaces can be established by a single server
providing a large set of pure referrals to all of the included file
systems. Alternatively, a single multi-server namespace may be
administratively segmented with separate referral file systems (on
separate servers) for each separately administered portion of the
namespace. The top-level referral file system or any segment may use
replicated referral file systems for higher availability.

Generally, multi-server namespaces are for the most part uniform, in
that the same data made available to one client at a given location
in the namespace is made available to all clients at that namespace
location. However, there are facilities provided that allow
different clients to be directed to different sets of data, for
reasons such as enabling adaptation to such client characteristics as
CPU architecture. These facilities are described in Section 11.17.3.

Note that it is possible, when providing a uniform namespace, to
provide different location entries to different clients in order to
provide each client with a copy of the data physically closest to it
or otherwise optimize access (e.g., provide load balancing).

5.7. Changes in a File System Location Attribute

Although clients will typically fetch a file system location
attribute when first accessing a file system and when NFS4ERR_MOVED
is returned, a client can choose to fetch the attribute periodically,
in which case, the value fetched may change over time.

For clients not prepared to access multiple replicas simultaneously
(see Section 11.11.1), the handling of the various cases of location
change are as follows:

* Changes in the list of replicas or in the network addresses
associated with replicas do not require immediate action. The
client will typically update its list of replicas to reflect the
new information.

* Additions to the list of network addresses for the current file
system instance need not be acted on promptly. However, to
prepare for a subsequent migration event, the client can choose to
take note of the new address and then use it whenever it needs to
switch access to a new replica.

* Deletions from the list of network addresses for the current file
system instance do not require the client to immediately cease use
of existing access paths, although new connections are not to be
established on addresses that have been deleted. However, clients
can choose to act on such deletions by preparing for an eventual
shift in access, which becomes unavoidable as soon as the server
returns NFS4ERR_MOVED to indicate that a particular network access
path is not usable to access the current file system.

For clients that are prepared to access several replicas
simultaneously, the following additional cases need to be addressed.
As in the cases discussed above, changes in the set of replicas need
not be acted upon promptly, although the client has the option of
adjusting its access even in the absence of difficulties that would
lead to the selection of a new replica.

* When a new replica is added, which may be accessed simultaneously
with one currently in use, the client is free to use the new
replica immediately.

11.

11

* When a replica currently in use is deleted from the list, the
client need not cease using it immediately. However, since the
server may subsequently force such use to cease (by returning
NFS4ERR_MOVED), clients might decide to limit the need for later
state transfer. For example, new opens might be done on other
replicas, rather than on one not present in the list.

6. Trunking without File System Location Information

In situations in which a file system is accessed using two server-—
trunkable addresses (as indicated by the same value of the
so_major_id field of the eir_server_owner field returned in response
to EXCHANGE_ID), trunked access is allowed even though there might
not be any location entries specifically indicating the use of
trunking for that file system.

This situation was recognized by [66], although that document made no
explicit mention of trunking and treated the situation as one of
simultaneous use of two distinct file system instances. In the
explanatory framework now used to describe the situation, the case is
one in which a single file system is accessed by two different
trunked addresses.

.7. Users and Groups in a Multi-Server Namespace

As in the case of a single-server environment (see Section 5.9), when
an owner or group name of the form "id@domain" is assigned to a file,
there is an implicit promise to return that same string when the
corresponding attribute is interrogated subsequently. In the case of
a multi-server namespace, that same promise applies even if server
boundaries have been crossed. Similarly, when the owner attribute of
a file is derived from the security principal that created the file,
that attribute should have the same value even if the interrogation
occurs on a different server from the file creation.

Similarly, the set of security principals recognized by all the
participating servers needs to be the same, with each such principal
having the same credentials, regardless of the particular server
being accessed.

In order to meet these requirements, those setting up multi-server
namespaces will need to limit the servers included so that:

* In all cases in which more than a single domain is supported, the
requirements stated in RFC 8000 [31] are to be respected.

* All servers support a common set of domains that includes all of
the domains clients use and expect to see returned as the domain
portion of an owner or group in the form "id@domain". Note that,
although this set most often consists of a single domain, it is
possible for multiple domains to be supported.

* All servers, for each domain that they support, accept the same
set of user and group ids as valid.

* All servers recognize the same set of security principals. For
each principal, the same credential is required, independent of
the server being accessed. In addition, the group membership for
each such principal is to be the same, independent of the server
accessed.

Note that there is no requirement in general that the users
corresponding to particular security principals have the same local
representation on each server, even though it is most often the case
that this is so.

When AUTH_SYS is used, the following additional requirements must be
met:

* Only a single NFSv4 domain can be supported through the use of

11.

11.

11.

AUTH_SYS.

* The "local" representation of all owners and groups must be the

same on all servers. The word "local" is used here since that is
the way that numeric user and group ids are described in
Section 5.9. However, when AUTH_SYS or stringified numeric owners

or groups are used, these identifiers are not truly local, since
they are known to the clients as well as to the server.

Similarly, when stringified numeric user and group ids are used, the
"local" representation of all owners and groups must be the same on
all servers, even when AUTH_SYS is not used.

8. Additional Client-Side Considerations

When clients make use of servers that implement referrals,
replication, and migration, care should be taken that a user who
mounts a given file system that includes a referral or a relocated
file system continues to see a coherent picture of that user-side
file system despite the fact that it contains a number of server-side
file systems that may be on different servers.

One important issue is upward navigation from the root of a server-
side file system to its parent (specified as ".." in UNIX), in the
case in which it transitions to that file system as a result of
referral, migration, or a transition as a result of replication.

When the client is at such a point, and it needs to ascend to the
parent, it must go back to the parent as seen within the multi-server
namespace rather than sending a LOOKUPP operation to the server,
which would result in the parent within that server’s single-server

namespace. In order to do this, the client needs to remember the
filehandles that represent such file system roots and use these
instead of sending a LOOKUPP operation to the current server. This

will allow the client to present to applications a consistent
namespace, where upward navigation and downward navigation are
consistent.

Another issue concerns refresh of referral locations. When referrals
are used extensively, they may change as server configurations
change. It is expected that clients will cache information related
to traversing referrals so that future client-side requests are
resolved locally without server communication. This is usually
rooted in client-side name look up caching. Clients should
periodically purge this data for referral points in order to detect
changes in location information. When the change_policy attribute
changes for directories that hold referral entries or for the
referral entries themselves, clients should consider any associated
cached referral information to be out of date.

9. Overview of File Access Transitions
File access transitions are of two types:

* Those that involve a transition from accessing the current replica
to another one in connection with either replication or migration.
How these are dealt with is discussed in Section 11.11.

* Those in which access to the current file system instance is
retained, while the network path used to access that instance is
changed. This case is discussed in Section 11.10.

10. Effecting Network Endpoint Transitions

The endpoints used to access a particular file system instance may
change in a number of ways, as listed below. In each of these cases,
the same fsid, client IDs, filehandles, and stateids are used to
continue access, with a continuity of lock state. In many cases, the
same sessions can also be used.

The appropriate action depends on the set of replacement addresses
that are available for use (i.e., server endpoints that are server-—

trunkable with one previously being used).

* When use of a particular address is to cease, and there is also
another address currently in use that is server-trunkable with it,
requests that would have been issued on the address whose use is
to be discontinued can be issued on the remaining address(es).
When an address is server-trunkable but not session-trunkable with
the address whose use is to be discontinued, the request might
need to be modified to reflect the fact that a different session
will be used.

* When use of a particular connection is to cease, as indicated by
receiving NFS4ERR_MOVED when using that connection, but that
address is still indicated as accessible according to the
appropriate file system location entries, it is likely that
requests can be issued on a new connection of a different
connection type once that connection is established. Since any
two non-port-specific server endpoints that share a network
address are inherently session-trunkable, the client can use
BIND_CONN_TO_SESSION to access the existing session with the new
connection.

* When there are no potential replacement addresses in use, but
there are valid addresses session-trunkable with the one whose use
is to be discontinued, the client can use BIND_CONN_TO_SESSION to
access the existing session using the new address. Although the
target session will generally be accessible, there may be rare
situations in which that session is no longer accessible when an
attempt is made to bind the new connection to it. In this case,
the client can create a new session to enable continued access to
the existing instance using the new connection, providing for the
use of existing filehandles, stateids, and client ids while
supplying continuity of locking state.

* When there is no potential replacement address in use, and there
are no valid addresses session-trunkable with the one whose use is
to be discontinued, other server-trunkable addresses may be used
to provide continued access. Although the use of CREATE_SESSION
is available to provide continued access to the existing instance,
servers have the option of providing continued access to the
existing session through the new network access path in a fashion
similar to that provided by session migration (see Section 11.12).
To take advantage of this possibility, clients can perform an
initial BIND_CONN_TO_SESSION, as in the previous case, and use
CREATE_SESSION only if that fails.

11.11. Effecting File System Transitions

There are a range of situations in which there is a change to be
effected in the set of replicas used to access a particular file
system. Some of these may involve an expansion or contraction of the
set of replicas used as discussed in Section 11.11.1 below.

For reasons explained in that section, most transitions will involve
a transition from a single replica to a corresponding replacement
replica. When effecting replica transition, some types of sharing
between the replicas may affect handling of the transition as
described in Sections 11.11.2 through 11.11.8 below. The attribute
fs_locations_info provides helpful information to allow the client to
determine the degree of inter-replica sharing.

With regard to some types of state, the degree of continuity across
the transition depends on the occasion prompting the transition, with
transitions initiated by the servers (i.e., migration) offering much
more scope for a nondisruptive transition than cases in which the
client on its own shifts its access to another replica (i.e.,
replication). This issue potentially applies to locking state and to
session state, which are dealt with below as follows:

* An introduction to the possible means of providing continuity in
these areas appears in Section 11.11.9 below.

11.

11.

11

* Transparent State Migration is introduced in Section 11.12. The
possible transfer of session state is addressed there as well.

* The client handling of transitions, including determining how to
deal with the various means that the server might take to supply
effective continuity of locking state, is discussed in
Section 11.13.

* The source and destination servers’ responsibilities in effecting
Transparent State Migration of locking and session state are
discussed in Section 11.14.

11.1. File System Transitions and Simultaneous Access

The fs_locations_info attribute (described in Section 11.17) may
indicate that two replicas may be used simultaneously, although some
situations in which such simultaneous access is permitted are more
appropriately described as instances of trunking (see

Section 11.5.4.1). Although situations in which multiple replicas
may be accessed simultaneously are somewhat similar to those in which
a single replica is accessed by multiple network addresses, there are
important differences since locking state is not shared among
multiple replicas.

Because of this difference in state handling, many clients will not
have the ability to take advantage of the fact that such replicas
represent the same data. Such clients will not be prepared to use
multiple replicas simultaneously but will access each file system
using only a single replica, although the replica selected might make
multiple server-trunkable addresses available.

Clients who are prepared to use multiple replicas simultaneously can
divide opens among replicas however they choose. Once that choice is
made, any subsequent transitions will treat the set of locking state
associated with each replica as a single entity.

For example, if one of the replicas become unavailable, access will
be transferred to a different replica, which is also capable of
simultaneous access with the one still in use.

When there is no such replica, the transition may be to the replica
already in use. At this point, the client has a choice between
merging the locking state for the two replicas under the aegis of the
sole replica in use or treating these separately until another
replica capable of simultaneous access presents itself.

11.2. Filehandles and File System Transitions

There are a number of ways in which filehandles can be handled across
a file system transition. These can be divided into two broad
classes depending upon whether the two file systems across which the
transition happens share sufficient state to effect some sort of
continuity of file system handling.

When there is no such cooperation in filehandle assignment, the two
file systems are reported as being in different handle classes. 1In
this case, all filehandles are assumed to expire as part of the file
system transition. ©Note that this behavior does not depend on the
fh_expire_type attribute and supersedes the specification of the
FH4_VOL_MIGRATION bit, which only affects behavior when
fs_locations_info is not available.

When there is cooperation in filehandle assignment, the two file
systems are reported as being in the same handle classes. In this
case, persistent filehandles remain valid after the file system
transition, while volatile filehandles (excluding those that are only
volatile due to the FH4_VOL_MIGRATION bit) are subject to expiration
on the target server.

.11.3. Fileids and File System Transitions

11.

In NFSv4.0, the issue of continuity of fileids in the event of a file
system transition was not addressed. The general expectation had
been that in situations in which the two file system instances are
created by a single vendor using some sort of file system image copy,
fileids would be consistent across the transition, while in the
analogous multi-vendor transitions they would not. This poses
difficulties, especially for the client without special knowledge of
the transition mechanisms adopted by the server. Note that although
fileid is not a REQUIRED attribute, many servers support fileids and
many clients provide APIs that depend on fileids.

It is important to note that while clients themselves may have no
trouble with a fileid changing as a result of a file system
transition event, applications do typically have access to the fileid
(e.g., via stat). The result is that an application may work
perfectly well if there is no file system instance transition or if
any such transition is among instances created by a single vendor,
yet be unable to deal with the situation in which a multi-vendor
transition occurs at the wrong time.

Providing the same fileids in a multi-vendor (multiple server
vendors) environment has generally been held to be quite difficult.
While there is work to be done, it needs to be pointed out that this
difficulty is partly self-imposed. Servers have typically identified
fileid with inode number, i.e. with a quantity used to find the file
in question. This identification poses special difficulties for
migration of a file system between vendors where assigning the same
index to a given file may not be possible. Note here that a fileid
is not required to be useful to find the file in question, only that
it is unique within the given file system. Servers prepared to
accept a fileid as a single piece of metadata and store it apart from
the value used to index the file information can relatively easily
maintain a fileid wvalue across a migration event, allowing a truly
transparent migration event.

In any case, where servers can provide continuity of fileids, they
should, and the client should be able to find out that such
continuity is available and take appropriate action. Information
about the continuity (or lack thereof) of fileids across a file
system transition is represented by specifying whether the file
systems in question are of the same fileid class.

Note that when consistent fileids do not exist across a transition
(either because there is no continuity of fileids or because fileid
is not a supported attribute on one of instances involved), and there
are no reliable filehandles across a transition event (either because
there is no filehandle continuity or because the filehandles are
volatile), the client is in a position where it cannot verify that
files it was accessing before the transition are the same objects.

It is forced to assume that no object has been renamed, and, unless
there are guarantees that provide this (e.g., the file system is
read-only), problems for applications may occur. Therefore, use of
such configurations should be limited to situations where the
problems that this may cause can be tolerated.

11.4. Fsids and File System Transitions

Since fsids are generally only unique on a per-server basis, it is
likely that they will change during a file system transition.

Clients should not make the fsids received from the server visible to
applications since they may not be globally unique, and because they
may change during a file system transition event. Applications are
best served if they are isolated from such transitions to the extent
possible.

Although normally a single source file system will transition to a
single target file system, there is a provision for splitting a
single source file system into multiple target file systems, by
specifying the FSLI4F_MULTI_FS flag.

11

11.

11.

11.

11.

.11.4.1. File System Splitting

When a file system transition is made and the fs_locations_info
indicates that the file system in question might be split into
multiple file systems (via the FSLI4F_MULTI_FS flag), the client
SHOULD do GETATTRs to determine the fsid attribute on all known
objects within the file system undergoing transition to determine the
new file system boundaries.

Clients might choose to maintain the fsids passed to existing
applications by mapping all of the fsids for the descendant file
systems to the common fsid used for the original file system.

Splitting a file system can be done on a transition between file
systems of the same fileid class, since the fact that fileids are
unique within the source file system ensure they will be unique in
each of the target file systems.

11.5. The Change Attribute and File System Transitions

Since the change attribute is defined as a server-specific one,
change attributes fetched from one server are normally presumed to be
invalid on another server. Such a presumption is troublesome since
it would invalidate all cached change attributes, requiring
refetching. Even more disruptive, the absence of any assured
continuity for the change attribute means that even if the same value
is retrieved on refetch, no conclusions can be drawn as to whether
the object in question has changed. The identical change attribute
could be merely an artifact of a modified file with a different
change attribute construction algorithm, with that new algorithm Jjust
happening to result in an identical change value.

When the two file systems have consistent change attribute formats,
and this fact is communicated to the client by reporting in the same
change class, the client may assume a continuity of change attribute
construction and handle this situation just as it would be handled
without any file system transition.

11.6. Write Verifiers and File System Transitions

In a file system transition, the two file systems might be
cooperating in the handling of unstably written data. Clients can
determine if this is the case by seeing if the two file systems
belong to the same write-verifier class. When this is the case,
write verifiers returned from one system may be compared to those
returned by the other and superfluous writes can be avoided.

When two file systems belong to different write-verifier classes, any
verifier generated by one must not be compared to one provided by the
other. 1Instead, the two verifiers should be treated as not equal
even when the values are identical.

11.7. READDIR Cookies and Verifiers and File System Transitions

In a file system transition, the two file systems might be consistent

in their handling of READDIR cookies and verifiers. Clients can
determine if this is the case by seeing if the two file systems
belong to the same readdir class. When this is the case, readdir

class, READDIR cookies, and verifiers from one system will be
recognized by the other, and READDIR operations started on one server
can be validly continued on the other simply by presenting the cookie
and verifier returned by a READDIR operation done on the first file
system to the second.

When two file systems belong to different readdir classes, any
READDIR cookie and verifier generated by one is not valid on the
second and must not be presented to that server by the client. The
client should act as if the verifier were rejected.

11.8. File System Data and File System Transitions

When multiple replicas exist and are used simultaneously or in
succession by a client, applications using them will normally expect
that they contain either the same data or data that is consistent
with the normal sorts of changes that are made by other clients
updating the data of the file system (with metadata being the same to
the degree indicated by the fs_locations_info attribute). However,
when multiple file systems are presented as replicas of one another,
the precise relationship between the data of one and the data of
another is not, as a general matter, specified by the NFSv4.1l
protocol. It is quite possible to present as replicas file systems
where the data of those file systems is sufficiently different that
some applications have problems dealing with the transition between
replicas. The namespace will typically be constructed so that
applications can choose an appropriate level of support, so that in
one position in the namespace, a varied set of replicas might be
listed, while in another, only those that are up-to-date would be
considered replicas. The protocol does define three special cases of
the relationship among replicas to be specified by the server and
relied upon by clients:

* When multiple replicas exist and are used simultaneously by a
client (see the FSLIB4_CLSIMUL definition within
fs_locations_info), they must designate the same data. Where file
systems are writable, a change made on one instance must be
visible on all instances at the same time, regardless of whether
the interrogated instance is the one on which the modification was
done. This allows a client to use these replicas simultaneously
without any special adaptation to the fact that there are multiple
replicas, beyond adapting to the fact that locks obtained on one
replica are maintained separately (i.e., under a different client
ID). In this case, locks (whether share reservations or byte-
range locks) and delegations obtained on one replica are
immediately reflected on all replicas, in the sense that access
from all other servers is prevented regardless of the replica
used. However, because the servers are not required to treat two
associated client IDs as representing the same client, it is best
to access each file using only a single client ID.

* When one replica is designated as the successor instance to
another existing instance after the return of NFS4ERR_MOVED (i.e.,
the case of migration), the client may depend on the fact that all
changes written to stable storage on the original instance are
written to stable storage of the successor (uncommitted writes are
dealt with in Section 11.11.6 above).

* Where a file system is not writable but represents a read-only
copy (possibly periodically updated) of a writable file system,
clients have similar requirements with regard to the propagation
of updates. They may need a guarantee that any change visible on
the original file system instance must be immediately visible on
any replica before the client transitions access to that replica,
in order to avoid any possibility that a client, in effecting a
transition to a replica, will see any reversion in file system
state. The specific means of this guarantee varies based on the
value of the fss_type field that is reported as part of the
fs_status attribute (see Section 11.18). Since these file systems
are presumed to be unsuitable for simultaneous use, there is no
specification of how locking is handled; in general, locks
obtained on one file system will be separate from those on others.
Since these are expected to be read-only file systems, this is not
likely to pose an issue for clients or applications.

When none of these special situations applies, there is no basis
within the protocol for the client to make assumptions about the
contents of a replica file system or its relationship to previous
file system instances. Thus, switching between nominally identical
read-write file systems would not be possible because either the
client does not use the fs_locations_info attribute, or the server
does not support it.

11.11.9. Lock State and File System Transitions

11.

While accessing a file system, clients obtain locks enforced by the
server, which may prevent actions by other clients that are
inconsistent with those locks.

When access is transferred between replicas, clients need to be
assured that the actions disallowed by holding these locks cannot
have occurred during the transition. This can be ensured by the
methods below. Unless at least one of these is implemented, clients
will not be assured of continuity of lock possession across a
migration event:

* Providing the client an opportunity to re-obtain his locks via a
per—fs grace period on the destination server, denying all clients
using the destination file system the opportunity to obtain new
locks that conflict with those held by the transferred client as
long as that client has not completed its per-fs grace period.
Because the lock reclaim mechanism was originally defined to
support server reboot, it implicitly assumes that filehandles
will, upon reclaim, be the same as those at open. In the case of
migration, this requires that source and destination servers use
the same filehandles, as evidenced by using the same server scope
(see Section 2.10.4) or by showing this agreement using
fs_locations_info (see Section 11.11.2 above).

Note that such a grace period can be implemented without
interfering with the ability of non-transferred clients to obtain
new locks while it is going on. As long as the destination server
is aware of the transferred locks, it can distinguish requests to
obtain new locks that contrast with existing locks from those that
do not, allowing it to treat such client requests without
reference to the ongoing grace period.

* Locking state can be transferred as part of the transition by
providing Transparent State Migration as described in
Section 11.12.

Of these, Transparent State Migration provides the smoother
experience for clients in that there is no need to go through a
reclaim process before new locks can be obtained; however, it
requires a greater degree of inter-server coordination. In general,
the servers taking part in migration are free to provide either
facility. However, when the filehandles can differ across the
migration event, Transparent State Migration is the only available
means of providing the needed functionality.

It should be noted that these two methods are not mutually exclusive
and that a server might well provide both. 1In particular, if there
is some circumstance preventing a specific lock from being
transferred transparently, the destination server can allow it to be
reclaimed by implementing a per-fs grace period for the migrated file
system.

11.9.1. Security Consideration Related to Reclaiming Lock State
after File System Transitions

Although it is possible for a client reclaiming state to misrepresent
its state in the same fashion as described in Section 8.4.2.1.1, most
implementations providing for such reclamation in the case of file
system transitions will have the ability to detect such
misrepresentations. This limits the ability of unauthenticated
clients to execute denial-of-service attacks in these circumstances.
Nevertheless, the rules stated in Section 8.4.2.1.1 regarding
principal verification for reclaim requests apply in this situation
as well.

Typically, implementations that support file system transitions will
have extensive information about the locks to be transferred. This

is because of the following:

* Since failure is not involved, there is no need to store locking

11.

information in persistent storage.

* There is no need, as there is in the failure case, to update
multiple repositories containing locking state to keep them in
sync. Instead, there is a one-time communication of locking state
from the source to the destination server.

* Providing this information avoids potential interference with
existing clients using the destination file system by denying them
the ability to obtain new locks during the grace period.

When such detailed locking information, not necessarily including the
associated stateids, is available:

* It is possible to detect reclaim requests that attempt to reclaim
locks that did not exist before the transfer, rejecting them with
NFS4ERR_RECLAIM_ BAD (Section 15.1.9.4).

* It is possible when dealing with non-reclaim requests, to
determine whether they conflict with existing locks, eliminating
the need to return NFS4ERR_GRACE (Section 15.1.9.2) on non-reclaim
requests.

It is possible for implementations of grace periods in connection
with file system transitions not to have detailed locking information
available at the destination server, in which case, the security
situation is exactly as described in Section 8.4.2.1.1.

11.9.2. Leases and File System Transitions

In the case of lease renewal, the client may not be submitting
requests for a file system that has been transferred to another
server. This can occur because of the lease renewal mechanism. The
client renews the lease associated with all file systems when
submitting a request on an associated session, regardless of the
specific file system being referenced.

In order for the client to schedule renewal of its lease where there
is locking state that may have been relocated to the new server, the
client must find out about lease relocation before that lease expire.
To accomplish this, the SEQUENCE operation will return the status bit
SEQ4_STATUS_LEASE_MOVED if responsibility for any of the renewed
locking state has been transferred to a new server. This will
continue until the client receives an NFS4ERR_MOVED error for each of
the file systems for which there has been locking state relocation.

When a client receives an SEQ4_STATUS_LEASE_MOVED indication from a
server, for each file system of the server for which the client has
locking state, the client should perform an operation. For
simplicity, the client may choose to reference all file systems, but
what is important is that it must reference all file systems for
which there was locking state where that state has moved. Once the
client receives an NFS4ERR_MOVED error for each such file system, the
server will clear the SEQ4_STATUS_LEASE_MOVED indication. The client
can terminate the process of checking file systems once this
indication is cleared (but only if the client has received a reply
for all outstanding SEQUENCE requests on all sessions it has with the
server), since there are no others for which locking state has moved.

A client may use GETATTR of the fs_status (or fs_locations_info)
attribute on all of the file systems to get absence indications in a
single (or a few) request(s), since absent file systems will not
cause an error in this context. However, it still must do an
operation that receives NFS4ERR_MOVED on each file system, in order
to clear the SEQ4_STATUS_LEASE_MOVED indication.

Once the set of file systems with transferred locking state has been
determined, the client can follow the normal process to obtain the
new server information (through the fs_locations and
fs_locations_info attributes) and perform renewal of that lease on
the new server, unless information in the fs_locations_info attribute

11.

11.

11.

shows that no state could have been transferred. If the server has
not had state transferred to it transparently, the client will
receive NFS4ERR_STALE_CLIENTID from the new server, as described
above, and the client can then reclaim locks as is done in the event
of server failure.

11.9.3. Transitions and the Lease_time Attribute

In order that the client may appropriately manage its lease in the
case of a file system transition, the destination server must
establish proper values for the lease_time attribute.

When state is transferred transparently, that state should include
the correct value of the lease_time attribute. The lease_time
attribute on the destination server must never be less than that on
the source, since this would result in premature expiration of a
lease granted by the source server. Upon transitions in which state
is transferred transparently, the client is under no obligation to
refetch the lease_time attribute and may continue to use the wvalue
previously fetched (on the source server).

If state has not been transferred transparently, either because the
associated servers are shown as having different eir_server_scope
strings or because the client ID is rejected when presented to the
new server, the client should fetch the value of lease_time on the
new (i.e., destination) server, and use it for subsequent locking
requests. However, the server must respect a grace period of at
least as long as the lease_time on the source server, in order to
ensure that clients have ample time to reclaim their lock before
potentially conflicting non-reclaimed locks are granted.

12. Transferring State upon Migration

When the transition is a result of a server—-initiated decision to
transition access, and the source and destination servers have
implemented appropriate cooperation, it is possible to do the
following:

* Transfer locking state from the source to the destination server
in a fashion similar to that provided by Transparent State
Migration in NFSv4.0, as described in [69]. Server
responsibilities are described in Section 11.14.2.

* Transfer session state from the source to the destination server.
Server responsibilities in effecting such a transfer are described
in Section 11.14.3.

The means by which the client determines which of these transfer
events has occurred are described in Section 11.13.

12.1. Transparent State Migration and pNFS
When pNFS is involved, the protocol is capable of supporting:

* Migration of the Metadata Server (MDS), leaving the Data Servers
(DSs) in place.

* Migration of the file system as a whole, including the MDS and
associated DSs.

* Replacement of one DS by another.
* Migration of a pNFS file system to one in which pNFS is not used.

* Migration of a file system not using pNFS to one in which layouts
are available.

Note that migration, per se, is only involved in the transfer of the
MDS function. Although the servicing of a layout may be transferred
from one data server to another, this not done using the file system
location attributes. The MDS can effect such transfers by recalling

11.

11.

or revoking existing layouts and granting new ones on a different
data server.

Migration of the MDS function is directly supported by Transparent
State Migration. Layout state will normally be transparently
transferred, just as other state is. As a result, Transparent State
Migration provides a framework in which, given appropriate inter-MDS
data transfer, one MDS can be substituted for another.

Migration of the file system function as a whole can be accomplished
by recalling all layouts as part of the initial phase of the
migration process. As a result, I/0 will be done through the MDS
during the migration process, and new layouts can be granted once the
client is interacting with the new MDS. An MDS can also effect this
sort of transition by revoking all layouts as part of Transparent
State Migration, as long as the client is notified about the loss of
locking state.

In order to allow migration to a file system on which pNFS is not
supported, clients need to be prepared for a situation in which
layouts are not available or supported on the destination file system
and so direct I/O requests to the destination server, rather than
depending on layouts being available.

Replacement of one DS by another is not addressed by migration as
such but can be effected by an MDS recalling layouts for the DS to be
replaced and issuing new ones to be served by the successor DS.

Migration may transfer a file system from a server that does not
support pNFS to one that does. 1In order to properly adapt to this
situation, clients that support pNFS, but function adequately in its
absence, should check for pNFS support when a file system is migrated
and be prepared to use pNFS when support is available on the
destination.

13. Client Responsibilities When Access Is Transitioned

For a client to respond to an access transition, it must become aware
of it. The ways in which this can happen are discussed in

Section 11.13.1, which discusses indications that a specific file
system access path has transitioned as well as situations in which
additional activity is necessary to determine the set of file systems
that have been migrated. Section 11.13.2 goes on to complete the
discussion of how the set of migrated file systems might be
determined. Sections 11.13.3 through 11.13.5 discuss how the client
should deal with each transition it becomes aware of, either directly
or as a result of migration discovery.

The following terms are used to describe client activities:

* "Transition recovery" refers to the process of restoring access to
a file system on which NFS4ERR_MOVED was received.

* "Migration recovery" refers to that subset of transition recovery
that applies when the file system has migrated to a different
replica.

* "Migration discovery" refers to the process of determining which
file system(s) have been migrated. It is necessary to avoid a
situation in which leases could expire when a file system is not
accessed for a long period of time, since a client unaware of the
migration might be referencing an unmigrated file system and not
renewing the lease associated with the migrated file system.

13.1. Client Transition Notifications
When there is a change in the network access path that a client is to
use to access a file system, there are a number of related status

indications with which clients need to deal:

* If an attempt is made to use or return a filehandle within a file

system that is no longer accessible at the address previously used
to access it, the error NFS4ERR_MOVED is returned.

Exceptions are made to allow such filehandles to be used when
interrogating a file system location attribute. This enables a
client to determine a new replica’s location or a new network
access path.

This condition continues on subsequent attempts to access the file
system in question. The only way the client can avoid the error
is to cease accessing the file system in question at its old
server location and access it instead using a different address at
which it is now available.

* Whenever a client sends a SEQUENCE operation to a server that
generated state held on that client and associated with a file
system no longer accessible on that server, the response will
contain the status bit SEQ4_STATUS_LEASE_MOVED, indicating that
there has been a lease migration.

This condition continues until the client acknowledges the
notification by fetching a file system location attribute for the
file system whose network access path is being changed. When
there are multiple such file systems, a location attribute for
each such file system needs to be fetched. The location attribute
for all migrated file systems needs to be fetched in order to
clear the condition. Even after the condition is cleared, the
client needs to respond by using the location information to
access the file system at its new location to ensure that leases
are not needlessly expired.

Unlike NFSv4.0, in which the corresponding conditions are both errors
and thus mutually exclusive, in NFSv4.1 the client can, and often
will, receive both indications on the same request. As a result,
implementations need to address the question of how to coordinate the
necessary recovery actions when both indications arrive in the
response to the same request. It should be noted that when
processing an NFSv4 COMPOUND, the server will normally decide whether
SEQ4_STATUS_LEASE_MOVED is to be set before it determines which file
system will be referenced or whether NFS4ERR_MOVED is to be returned.

Since these indications are not mutually exclusive in NFSv4.1l, the
following combinations are possible results when a COMPOUND is
issued:

* The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED
is asserted.

In this case, transition recovery is required. While it is
possible that migration discovery is needed in addition, it is
likely that only the accessed file system has transitioned. 1In
any case, because addressing NFS4ERR_MOVED is necessary to allow
the rejected requests to be processed on the target, dealing with
it will typically have priority over migration discovery.

* The COMPOUND status is NFS4ERR_MOVED, and SEQ4_STATUS_LEASE_MOVED
is clear.

In this case, transition recovery is also required. It is clear
that migration discovery is not needed to find file systems that
have been migrated other than the one returning NFS4ERR_MOVED.
Cases in which this result can arise include a referral or a
migration for which there is no associated locking state. This
can also arise in cases in which an access path transition other
than migration occurs within the same server. In such a case,
there is no need to set SEQ4_STATUS_LEASE_MOVED, since the lease
remains associated with the current server even though the access
path has changed.

* The COMPOUND status is not NFS4ERR_MOVED, and
SEQ4_STATUS_LEASE_MOVED is asserted.

11.

In this case, no transition recovery activity is required on the
file system(s) accessed by the request. However, to prevent
avoidable lease expiration, migration discovery needs to be done.

* The COMPOUND status is not NFS4ERR_MOVED, and
SEQ4_STATUS_LEASE_MOVED is clear.

In this case, neither transition-related activity nor migration
discovery is required.

Note that the specified actions only need to be taken if they are not
already going on. For example, when NFS4ERR_MOVED is received while
accessing a file system for which transition recovery is already
occurring, the client merely waits for that recovery to be completed,
while the receipt of the SEQ4_STATUS_LEASE_MOVED indication only
needs to initiate migration discovery for a server if such discovery
is not already underway for that server.

The fact that a lease-migrated condition does not result in an error
in NFSv4.1 has a number of important consequences. In addition to
the fact that the two indications are not mutually exclusive, as
discussed above, there are number of issues that are important in
considering implementation of migration discovery, as discussed in
Section 11.13.2.

Because SEQ4_STATUS_LEASE_MOVED is not an error condition, it is
possible for file systems whose access paths have not changed to be
successfully accessed on a given server even though recovery is
necessary for other file systems on the same server. As a result,
access can take place while:

* The migration discovery process is happening for that server.

* The transition recovery process is happening for other file
systems connected to that server.

13.2. Performing Migration Discovery

Migration discovery can be performed in the same context as
transition recovery, allowing recovery for each migrated file system
to be invoked as it is discovered. Alternatively, it may be done in
a separate migration discovery thread, allowing migration discovery
to be done in parallel with one or more instances of transition
recovery.

In either case, because the lease-migrated indication does not result
in an error, other access to file systems on the server can proceed
normally, with the possibility that further such indications will be
received, raising the issue of how such indications are to be dealt
with. In general:

* No action needs to be taken for such indications received by any
threads performing migration discovery, since continuation of that
work will address the issue.

* In other cases in which migration discovery is currently being
performed, nothing further needs to be done to respond to such
lease migration indications, as long as one can be certain that
the migration discovery process would deal with those indications.
See below for details.

* For such indications received in all other contexts, the
appropriate response is to initiate or otherwise provide for the
execution of migration discovery for file systems associated with
the server IP address returning the indication.

This leaves a potential difficulty in situations in which the
migration discovery process is near to completion but is still
operating. One should not ignore a SEQ4_STATUS_LEASE_MOVED
indication if the migration discovery process is not able to respond

to the discovery of additional migrating file systems without
additional aid. A further complexity relevant in addressing such
situations is that a lease-migrated indication may reflect the
server’s state at the time the SEQUENCE operation was processed,
which may be different from that in effect at the time the response
is received. Because new migration events may occur at any time, and
because a SEQ4_STATUS_LEASE_MOVED indication may reflect the
situation in effect a considerable time before the indication is
received, special care needs to be taken to ensure that
SEQ4_STATUS_LEASE_MOVED indications are not inappropriately ignored.

A useful approach to this issue involves the use of separate
externally-visible migration discovery states for each server.
Separate values could represent the various possible states for the
migration discovery process for a server:

* Non-operation, in which migration discovery is not being
performed.

* Normal operation, in which there is an ongoing scan for migrated
file systems.

* Completion/verification of migration discovery processing, in
which the possible completion of migration discovery processing
needs to be verified.

Given that framework, migration discovery processing would proceed as
follows:

* While in the normal-operation state, the thread performing
discovery would fetch, for successive file systems known to the
client on the server being worked on, a file system location
attribute plus the fs_status attribute.

* TIf the fs_status attribute indicates that the file system is a
migrated one (i.e., fss_absent is true, and fss_type !=
STATUS4_REFERRAL), then a migrated file system has been found. 1In
this situation, it is likely that the fetch of the file system
location attribute has cleared one of the file systems
contributing to the lease-migrated indication.

* 1In cases in which that happened, the thread cannot know whether
the lease-migrated indication has been cleared, and so it enters
the completion/verification state and proceeds to issue a COMPOUND
to see if the SEQ4_STATUS_LEASE_MOVED indication has been cleared.

* When the discovery process is in the completion/verification
state, if other requests get a lease-migrated indication, they
note that it was received. Later, the existence of such
indications is used when the request completes, as described
below.

When the request used in the completion/verification state completes:

* TIf a lease-migrated indication is returned, the discovery
continues normally. Note that this is so even if all file systems
have been traversed, since new migrations could have occurred
while the process was going on.

* Otherwise, if there is any record that other requests saw a lease-
migrated indication while the request was occurring, that record
is cleared, and the verification request is retried. The
discovery process remains in the completion/verification state.

* If there have been no lease-migrated indications, the work of
migration discovery is considered completed, and it enters the
non-operating state. Once it enters this state, subsequent lease-
migrated indications will trigger a new migration discovery
process.

It should be noted that the process described above is not guaranteed

11.

to terminate, as a long series of new migration events might
continually delay the clearing of the SEQ4_STATUS_LEASE_MOVED
indication. To prevent unnecessary lease expiration, it is
appropriate for clients to use the discovery of migrations to effect
lease renewal immediately, rather than waiting for the clearing of
the SEQ4_STATUS_LEASE_MOVED indication when the complete set of
migrations is available.

Lease discovery needs to be provided as described above. This
ensures that the client discovers file system migrations soon enough
to renew its leases on each destination server before they expire.
Non-renewal of leases can lead to loss of locking state. While the
consequences of such loss can be ameliorated through implementations
of courtesy locks, servers are under no obligation to do so, and a
conflicting lock request may mean that a lock is revoked
unexpectedly. Clients should be aware of this possibility.

13.3. Overview of Client Response to NFS4ERR_MOVED

This section outlines a way in which a client that receives
NFS4ERR_MOVED can effect transition recovery by using a new server or
server endpoint if one is available. As part of that process, it
will determine:

* Whether the NFS4ERR_MOVED indicates migration has occurred, or
whether it indicates another sort of file system access transition
as discussed in Section 11.10 above.

* In the case of migration, whether Transparent State Migration has
occurred.

* Whether any state has been lost during the process of Transparent
State Migration.

* Whether sessions have been transferred as part of Transparent
State Migration.

During the first phase of this process, the client proceeds to
examine file system location entries to find the initial network
address it will use to continue access to the file system or its
replacement. For each location entry that the client examines, the
process consists of five steps:

1. Performing an EXCHANGE_ID directed at the location address. This
operation is used to register the client owner (in the form of a
client_owner4) with the server, to obtain a client ID to be used
subsequently to communicate with it, to obtain that client ID’s
confirmation status, and to determine server_owner4 and scope for
the purpose of determining if the entry is trunkable with the
address previously being used to access the file system (i.e.,
that it represents another network access path to the same file
system and can share locking state with it).

2. Making an initial determination of whether migration has
occurred. The initial determination will be based on whether the
EXCHANGE_ID results indicate that the current location element is
server—-trunkable with that used to access the file system when
access was terminated by receiving NFS4ERR_MOVED. If it is, then
migration has not occurred. In that case, the transition is
dealt with, at least initially, as one involving continued access
to the same file system on the same server through a new network

address.
3. Obtaining access to existing session state or creating new
sessions. How this is done depends on the initial determination

of whether migration has occurred and can be done as described in
Section 11.13.4 below in the case of migration or as described in
Section 11.13.5 below in the case of a network address transfer
without migration.

4., Verifying the trunking relationship assumed in step 2 as

11.

discussed in Section 2.10.5.1. Although this step will generally
confirm the initial determination, it is possible for
verification to invalidate the initial determination of network
address shift (without migration) and instead determine that
migration had occurred. There is no need to redo step 3 above,
since it will be possible to continue use of the session
established already.

5. Obtaining access to existing locking state and/or re-obtaining
it. How this is done depends on the final determination of
whether migration has occurred and can be done as described below
in Section 11.13.4 in the case of migration or as described in
Section 11.13.5 in the case of a network address transfer without
migration.

Once the initial address has been determined, clients are free to
apply an abbreviated process to find additional addresses trunkable
with it (clients may seek session-trunkable or server-trunkable
addresses depending on whether they support client ID trunking).
During this later phase of the process, further location entries are
examined using the abbreviated procedure specified below:

A: Before the EXCHANGE_ID, the fs name of the location entry is
examined, and if it does not match that currently being used, the
entry is ignored. Otherwise, one proceeds as specified by step 1
above.

B: In the case that the network address is session-trunkable with
one used previously, a BIND_CONN_TO_SESSION is used to access
that session using the new network address. Otherwise, or if the
bind operation fails, a CREATE_SESSION is done.

C: The verification procedure referred to in step 4 above is used.
However, if it fails, the entry is ignored and the next available
entry is used.

13.4. Obtaining Access to Sessions and State after Migration

In the event that migration has occurred, migration recovery will
involve determining whether Transparent State Migration has occurred.
This decision is made based on the client ID returned by the
EXCHANGE_ID and the reported confirmation status.

* TIf the client ID is an unconfirmed client ID not previously known
to the client, then Transparent State Migration has not occurred.

* If the client ID is a confirmed client ID previously known to the
client, then any transferred state would have been merged with an
existing client ID representing the client to the destination
server. In this state merger case, Transparent State Migration
might or might not have occurred, and a determination as to
whether it has occurred is deferred until sessions are established
and the client is ready to begin state recovery.

* TIf the client ID is a confirmed client ID not previously known to
the client, then the client can conclude that the client ID was
transferred as part of Transparent State Migration. In this
transferred client ID case, Transparent State Migration has
occurred, although some state might have been lost.

Once the client ID has been obtained, it is necessary to obtain
access to sessions to continue communication with the new server. 1In
any of the cases in which Transparent State Migration has occurred,
it is possible that a session was transferred as well. To deal with
that possibility, clients can, after doing the EXCHANGE_ID, issue a
BIND_CONN_TO_SESSION to connect the transferred session to a
connection to the new server. If that fails, it is an indication
that the session was not transferred and that a new session needs to
be created to take its place.

In some situations, it is possible for a BIND_CONN_TO_SESSION to

11.

succeed without session migration having occurred. If state merger
has taken place, then the associated client ID may have already had a
set of existing sessions, with it being possible that the session ID
of a given session is the same as one that might have been migrated.
In that event, a BIND_CONN_TO_SESSION might succeed, even though
there could have been no migration of the session with that session
ID. In such cases, the client will receive sequence errors when the
slot sequence values used are not appropriate on the new session.
When this occurs, the client can create a new a session and cease
using the existing one.

Once the client has determined the initial migration status, and
determined that there was a shift to a new server, it needs to re-
establish its locking state, if possible. To enable this to happen
without loss of the guarantees normally provided by locking, the
destination server needs to implement a per-fs grace period in all
cases in which lock state was lost, including those in which
Transparent State Migration was not implemented. Each client for
which there was a transfer of locking state to the new server will
have the duration of the grace period to reclaim its locks, from the
time its locks were transferred.

Clients need to deal with the following cases:

* In the state merger case, it is possible that the server has not
attempted Transparent State Migration, in which case state may
have been lost without it being reflected in the SEQ4_STATUS bits.
To determine whether this has happened, the client can use
TEST_STATEID to check whether the stateids created on the source
server are still accessible on the destination server. Once a
single stateid is found to have been successfully transferred, the
client can conclude that Transparent State Migration was begun,
and any failure to transport all of the stateids will be reflected
in the SEQ4_STATUS bits. Otherwise, Transparent State Migration
has not occurred.

* 1In a case in which Transparent State Migration has not occurred,
the client can use the per-fs grace period provided by the
destination server to reclaim locks that were held on the source
server.

* In a case in which Transparent State Migration has occurred, and
no lock state was lost (as shown by SEQ4_STATUS flags), no lock
reclaim is necessary.

* In a case in which Transparent State Migration has occurred, and
some lock state was lost (as shown by SEQ4_STATUS flags), existing
stateids need to be checked for validity using TEST_STATEID, and
reclaim used to re-—-establish any that were not transferred.

For all of the cases above, RECLAIM_COMPLETE with an rca_one_fs value
of TRUE needs to be done before normal use of the file system,
including obtaining new locks for the file system. This applies even
if no locks were lost and there was no need for any to be reclaimed.

13.5. Obtaining Access to Sessions and State after Network Address
Transfer

The case in which there is a transfer to a new network address
without migration is similar to that described in Section 11.13.4
above in that there is a need to obtain access to needed sessions and
locking state. However, the details are simpler and will vary
depending on the type of trunking between the address receiving
NFS4ERR_MOVED and that to which the transfer is to be made.

To make a session available for use, a BIND_CONN_TO_SESSION should be
used to obtain access to the session previously in use. Only if this
fails, should a CREATE_SESSION be done. While this procedure mirrors
that in Section 11.13.4 above, there is an important difference in
that preservation of the session is not purely optional but depends
on the type of trunking.

11.

11.

Access to appropriate locking state will generally need no actions
beyond access to the session. However, the SEQ4_STATUS bits need to
be checked for lost locking state, including the need to reclaim
locks after a server reboot, since there is always a possibility of
locking state being lost.

14. Server Responsibilities Upon Migration

In the event of file system migration, when the client connects to
the destination server, that server needs to be able to provide the
client continued access to the files it had open on the source
server. There are two ways to provide this:

* By provision of an fs-specific grace period, allowing the client
the ability to reclaim its locks, in a fashion similar to what
would have been done in the case of recovery from a server
restart. See Section 11.14.1 for a more complete discussion.

* By implementing Transparent State Migration possibly in connection
with session migration, the server can provide the client
immediate access to the state built up on the source server on the
destination server.

These features are discussed separately in Sections 11.14.2 and
11.14.3, which discuss Transparent State Migration and session
migration, respectively.

All the features described above can involve transfer of lock-related
information between source and destination servers. In some cases,
this transfer is a necessary part of the implementation, while in
other cases, it is a helpful implementation aid, which servers might
or might not use. The subsections below discuss the information that
would be transferred but do not define the specifics of the transfer
protocol. This is left as an implementation choice, although
standards in this area could be developed at a later time.

14.1. Server Responsibilities in Effecting State Reclaim after
Migration

In this case, the destination server needs no knowledge of the locks
held on the source server. It relies on the clients to accurately
report (via reclaim operations) the locks previously held, and does
not allow new locks to be granted on migrated file systems until the
grace period expires. Disallowing of new locks applies to all
clients accessing these file systems, while grace period expiration
occurs for each migrated client independently.

During this grace period, clients have the opportunity to use reclaim
operations to obtain locks for file system objects within the
migrated file system, in the same way that they do when recovering
from server restart, and the servers typically rely on clients to
accurately report their locks, although they have the option of
subjecting these requests to verification. If the clients only
reclaim locks held on the source server, no conflict can arise. Once
the client has reclaimed its locks, it indicates the completion of
lock reclamation by performing a RECLAIM COMPLETE specifying
rca_one_fs as TRUE.

While it is not necessary for source and destination servers to
cooperate to transfer information about locks, implementations are
well advised to consider transferring the following useful
information:

* If information about the set of clients that have locking state
for the transferred file system is made available, the destination
server will be able to terminate the grace period once all such
clients have reclaimed their locks, allowing normal locking
activity to resume earlier than it would have otherwise.

* Locking summary information for individual clients (at wvarious

possible levels of detail) can detect some instances in which
clients do not accurately represent the locks held on the source

server.
11.14.2. Server Responsibilities in Effecting Transparent State
Migration

The basic responsibility of the source server in effecting
Transparent State Migration is to make available to the destination
server a description of each piece of locking state associated with
the file system being migrated. In addition to client id string and
verifier, the source server needs to provide for each stateid:

* The stateid including the current sequence value.
* The associated client ID.
* The handle of the associated file.

* The type of the lock, such as open, byte-range lock, delegation,
or layout.

* For locks such as opens and byte-range locks, there will be
information about the owner(s) of the lock.

* For recallable/revocable lock types, the current recall status
needs to be included.

* For each lock type, there will be associated type-specific
information. For opens, this will include share and deny mode
while for byte-range locks and layouts, there will be a type and a
byte-range.

Such information will most probably be organized by client id string
on the destination server so that it can be used to provide
appropriate context to each client when it makes itself known to the
client. Issues connected with a client impersonating another by
presenting another client’s client id string can be addressed using
NFSv4.1l state protection features, as described in Section 21.

A further server responsibility concerns locks that are revoked or
otherwise lost during the process of file system migration. Because
locks that appear to be lost during the process of migration will be
reclaimed by the client, the servers have to take steps to ensure
that locks revoked soon before or soon after migration are not
inadvertently allowed to be reclaimed in situations in which the
continuity of lock possession cannot be assured.

* For locks lost on the source but whose loss has not yet been
acknowledged by the client (by using FREE_STATEID), the
destination must be aware of this loss so that it can deny a
request to reclaim them.

* For locks lost on the destination after the state transfer but
before the client’s RECLAIM _COMPLETE is done, the destination
server should note these and not allow them to be reclaimed.

An additional responsibility of the cooperating servers concerns
situations in which a stateid cannot be transferred transparently
because it conflicts with an existing stateid held by the client and
associated with a different file system. In this case, there are two
valid choices:

* Treat the transfer, as in NFSv4.0, as one without Transparent
State Migration. In this case, conflicting locks cannot be
granted until the client does a RECLAIM_COMPLETE, after reclaiming
the locks it had, with the exception of reclaims denied because
they were attempts to reclaim locks that had been lost.

* Implement Transparent State Migration, except for the lock with
the conflicting stateid. In this case, the client will be aware

11.

of a lost lock (through the SEQ4_STATUS flags) and be allowed to
reclaim it.

When transferring state between the source and destination, the
issues discussed in Section 7.2 of [69] must still be attended to.
In this case, the use of NFS4ERR_DELAY may still be necessary in
NFSv4.1, as it was in NFSv4.0, to prevent locking state changing
while it is being transferred. See Section 15.1.1.3 for information
about appropriate client retry approaches in the event that
NFS4ERR_DELAY is returned.

There are a number of important differences in the NFS4.1 context:

* The absence of RELEASE_LOCKOWNER means that the one case in which
an operation could not be deferred by use of NFS4ERR_DELAY no
longer exists.

* Sequencing of operations is no longer done using owner-based
operation sequences numbers. Instead, sequencing is session-
based.

As a result, when sessions are not transferred, the techniques
discussed in Section 7.2 of [69] are adequate and will not be further
discussed.

14.3. Server Responsibilities in Effecting Session Transfer

The basic responsibility of the source server in effecting session
transfer is to make available to the destination server a description
of the current state of each slot with the session, including the
following:

* The last sequence value received for that slot.

* Whether there is cached reply data for the last request executed
and, if so, the cached reply.

When sessions are transferred, there are a number of issues that pose
challenges in terms of making the transferred state unmodifiable
during the period it is gathered up and transferred to the
destination server:

* A single session may be used to access multiple file systems, not
all of which are being transferred.

* Requests made on a session may, even if rejected, affect the state
of the session by advancing the sequence number associated with
the slot used.

As a result, when the file system state might otherwise be considered
unmodifiable, the client might have any number of in-flight requests,
each of which is capable of changing session state, which may be of a
number of types:

1. Those requests that were processed on the migrating file system
before migration began.

2. Those requests that received the error NFS4ERR_DELAY because the
file system being accessed was in the process of being migrated.

3. Those requests that received the error NFS4ERR_MOVED because the
file system being accessed had been migrated.

4. Those requests that accessed the migrating file system in order
to obtain location or status information.

5. Those requests that did not reference the migrating file system.
It should be noted that the history of any particular slot is likely

to include a number of these request classes. In the case in which a
session that is migrated is used by file systems other than the one

migrated, requests of class 5 may be common and may be the last
request processed for many slots.

Since session state can change even after the locking state has been
fixed as part of the migration process, the session state known to
the client could be different from that on the destination server,
which necessarily reflects the session state on the source server at
an earlier time. In deciding how to deal with this situation, it is
helpful to distinguish between two sorts of behavioral consequences
of the choice of initial sequence ID values:

* The error NFS4ERR_SEQ MISORDERED is returned when the sequence ID
in a request is neither equal to the last one seen for the current
slot nor the next greater one.

In view of the difficulty of arriving at a mutually acceptable
value for the correct last sequence value at the point of
migration, it may be necessary for the server to show some degree
of forbearance when the sequence ID is one that would be
considered unacceptable if session migration were not involved.

* Returning the cached reply for a previously executed request when
the sequence ID in the request matches the last value recorded for
the slot.

In the cases in which an error is returned and there is no
possibility of any non-idempotent operation having been executed,
it may not be necessary to adhere to this as strictly as might be
proper if session migration were not involved. For example, the
fact that the error NFS4ERR_DELAY was returned may not assist the
client in any material way, while the fact that NFS4ERR_MOVED was
returned by the source server may not be relevant when the request
was reissued and directed to the destination server.

An important issue is that the specification needs to take note of
all potential COMPOUNDs, even if they might be unlikely in practice.
For example, a COMPOUND is allowed to access multiple file systems
and might perform non-idempotent operations in some of them before
accessing a file system being migrated. Also, a COMPOUND may return
considerable data in the response before being rejected with
NFS4ERR_DELAY or NFS4ERR_MOVED, and may in addition be marked as
sa_cachethis. However, note that if the client and server adhere to
rules in Section 15.1.1.3, there is no possibility of non-idempotent
operations being spuriously reissued after receiving NFS4ERR_DELAY
response.

To address these issues, a destination server MAY do any of the
following when implementing session transfer:

* Avoid enforcing any sequencing semantics for a particular slot
until the client has established the starting sequence for that
slot on the destination server.

* For each slot, avoid returning a cached reply returning
NFS4ERR_DELAY or NFS4ERR_MOVED until the client has established
the starting sequence for that slot on the destination server.

* Until the client has established the starting sequence for a
particular slot on the destination server, avoid reporting
NFS4ERR_SEQ _MISORDERED or returning a cached reply that contains
either NFS4ERR_DELAY or NFS4ERR_MOVED and consists solely of a
series of operations where the response is NFS4_OK until the final
error.

Because of the considerations mentioned above, including the rules
for the handling of NFS4ERR_DELAY included in Section 15.1.1.3, the
destination server can respond appropriately to SEQUENCE operations
received from the client by adopting the three policies listed below:

* Not responding with NFS4ERR_SEQ MISORDERED for the initial request
on a slot within a transferred session because the destination

server cannot be aware of requests made by the client after the
server handoff but before the client became aware of the shift.
In cases in which NFS4ERR_SEQ_MISORDERED would normally have been
reported, the request is to be processed normally as a new
request.

* Replying as it would for a retry whenever the sequence matches
that transferred by the source server, even though this would not
provide retry handling for requests issued after the server
handoff, under the assumption that, when such requests are issued,
they will never be responded to in a state-changing fashion,
making retry support for them unnecessary.

* Once a non-retry SEQUENCE is received for a given slot, using that
as the basis for further sequence checking, with no further
reference to the sequence value transferred by the source server.

11.15. Effecting File System Referrals

Referrals are effected when an absent file system is encountered and
one or more alternate locations are made available by the
fs_locations or fs_locations_info attributes. The client will
typically get an NFS4ERR_MOVED error, fetch the appropriate location
information, and proceed to access the file system on a different
server, even though it retains its logical position within the
original namespace. Referrals differ from migration events in that
they happen only when the client has not previously referenced the
file system in question (so there is nothing to transition).
Referrals can only come into effect when an absent file system is
encountered at its root.

The examples given in the sections below are somewhat artificial in
that an actual client will not typically do a multi-component look
up, but will have cached information regarding the upper levels of
the name hierarchy. However, these examples are chosen to make the
required behavior clear and easy to put within the scope of a small
number of requests, without getting into a discussion of the details
of how specific clients might choose to cache things.

11.15.1. Referral Example (LOOKUP)
Let us suppose that the following COMPOUND is sent in an environment
in which /this/is/the/path is absent from the target server. This
may be for a number of reasons. It may be that the file system has
moved, or it may be that the target server is functioning mainly, or
solely, to refer clients to the servers on which various file systems
are located.
* PUTROOTFH
* LOOKUP "this"
* LOOKUP "is"
* LOOKUP "the"
* LOOKUP "path"
* GETFH
* GETATTR (fsid, fileid, size, time_modify)

Under the given circumstances, the following will be the result.

* PUTROOTFH —--> NFS_OK. The current fh is now the root of the
pseudo—-f£fs.

* LOOKUP "this"™ —--> NFS_OK. The current fh is for /this and is
within the pseudo-fs.

* LOOKUP "is" ——> NFS_OK. The current fh is for /this/is and is

within the pseudo-fs.

* LOOKUP "the" —--> NFS_OK. The current fh is for /this/is/the and
is within the pseudo-fs.

* LOOKUP "path" —--> NFS_OK. The current fh is for /this/is/the/path
and is within a new, absent file system, but ... the client will
never see the value of that fh.

* GETFH —--> NFS4ERR_MOVED. Fails because current fh is in an absent
file system at the start of the operation, and the specification
makes no exception for GETFH.

* GETATTR (fsid, fileid, size, time_modify). Not executed because
the failure of the GETFH stops processing of the COMPOUND.

Given the failure of the GETFH, the client has the job of determining
the root of the absent file system and where to find that file
system, i.e., the server and path relative to that server’s root fh.
Note that in this example, the client did not obtain filehandles and
attribute information (e.g., fsid) for the intermediate directories,
so that it would not be sure where the absent file system starts. It
could be the case, for example, that /this/is/the is the root of the
moved file system and that the reason that the look up of "path"
succeeded is that the file system was not absent on that operation
but was moved between the last LOOKUP and the GETFH (since COMPOUND
is not atomic). Even if we had the fsids for all of the intermediate
directories, we could have no way of knowing that /this/is/the/path
was the root of a new file system, since we don’t yet have its fsid.

In order to get the necessary information, let us re-send the chain
of LOOKUPs with GETFHs and GETATTRs to at least get the fsids so we
can be sure where the appropriate file system boundaries are. The
client could choose to get fs_locations_info at the same time but in
most cases the client will have a good guess as to where file system
boundaries are (because of where NFS4ERR_MOVED was, and was not,
received) making fetching of fs_locations_info unnecessary.

OP01: PUTROOTFH --> NFS_OK
* Current fh is root of pseudo-fs.
OP02: GETATTR (fsid) —--> NFS_OK

* Just for completeness. Normally, clients will know the fsid of
the pseudo-fs as soon as they establish communication with a

server.
OP03: LOOKUP "this"™ --> NFS_OK
OP04: GETATTR(fsid) —--> NFS_OK
* Get current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this example, so no
boundary.

OP05: GETFH —--> NFS_OK
* Current fh is for /this and is within pseudo-fs.
OP06: LOOKUP "is" —--> NFS_OK

* Current fh is for /this/is and is within pseudo-fs.

OP07: GETATTR (fsid) ——> NFS_OK
* Get current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this example, so no
boundary.

OP08: GETFH —--> NFS_OK

* Current fh is for /this/is and is within pseudo-fs.
OP09: LOOKUP "the" --> NFS_OK

* Current fh is for /this/is/the and is within pseudo-fs.

OP10: GETATTR(fsid) —--> NFS_OK
* Get current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this example, so no
boundary.

OP11: GETFH —--> NFS_OK
* Current fh is for /this/is/the and is within pseudo-fs.
OP12: LOOKUP "path" —--> NFS_OK

* Current fh is for /this/is/the/path and is within a new, absent
file system, but

* The client will never see the value of that fh.
OP13: GETATTR(fsid, fs_locations_info) —--> NFS_OK

* We are getting the fsid to know where the file system
boundaries are. In this operation, the fsid will be different
than that of the parent directory (which in turn was retrieved
in OP10). Note that the fsid we are given will not necessarily
be preserved at the new location. That fsid might be
different, and in fact the fsid we have for this file system
might be a valid fsid of a different file system on that new
server.

* In this particular case, we are pretty sure anyway that what
has moved is /this/is/the/path rather than /this/is/the since
we have the fsid of the latter and it is that of the pseudo-fs,
which presumably cannot move. However, in other examples, we
might not have this kind of information to rely on (e.g.,
/this/is/the might be a non-pseudo file system separate from
/this/is/the/path), so we need to have other reliable source
information on the boundary of the file system that is moved.
If, for example, the file system /this/is had moved, we would
have a case of migration rather than referral, and once the
boundaries of the migrated file system was clear we could fetch
fs_locations_info.

* We are fetching fs_locations_info because the fact that we got
an NFS4ERR_MOVED at this point means that it is most likely
that this is a referral and we need the destination. Even if
it is the case that /this/is/the is a file system that has
migrated, we will still need the location information for that
file system.

OP14: GETFH —--> NFS4ERR_MOVED

* Fails because current fh is in an absent file system at the
start of the operation, and the specification makes no
exception for GETFH. Note that this means the server will
never send the client a filehandle from within an absent file
system.

Given the above, the client knows where the root of the absent file
system is (/this/is/the/path) by noting where the change of fsid
occurred (between "the" and "path"). The fs_locations_info attribute
also gives the client the actual location of the absent file system,
so that the referral can proceed. The server gives the client the
bare minimum of information about the absent file system so that
there will be very little scope for problems of conflict between
information sent by the referring server and information of the file

11.

system’s home. ©No filehandles and very few attributes are present on
the referring server, and the client can treat those it receives as
transient information with the function of enabling the referral.
15.2. Referral Example (READDIR)

Another context in which a client may encounter referrals is when it
does a READDIR on a directory in which some of the sub-directories
are the roots of absent file systems.

Suppose such a directory is read as follows:

* PUTROOTFH

* LOOKUP "this"

* LOOKUP "is"

* LOOKUP "the"

* READDIR (fsid, size, time_modify, mounted_on_fileid)

In this case, because rdattr_error is not requested,
fs_locations_info is not requested, and some of the attributes cannot
be provided, the result will be an NFS4ERR _MOVED error on the

READDIR, with the detailed results as follows:

* PUTROOTFH —-—> NFS_OK. The current fh is at the root of the
pseudo-f£fs.

* LOOKUP "this" —--> NFS_OK. The current fh is for /this and is
within the pseudo-fs.

* LOOKUP "is" ——-> NFS_OK. The current fh is for /this/is and is
within the pseudo-fs.

* LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
is within the pseudo-fs.

* READDIR (fsid, size, time_modify, mounted_on_fileid) —-->
NFS4ERR_MOVED. Note that the same error would have been returned
if /this/is/the had migrated, but it is returned because the
directory contains the root of an absent file system.

So now suppose that we re-send with rdattr_error:

* PUTROOTFH

* LOOKUP "this"

* LOOKUP "is"

* LOOKUP "the"

* READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

The results will be:

* PUTROOTFH —--> NFS_OK. The current fh is at the root of the
pseudo—-f£fs.

* LOOKUP "this"™ —--> NFS_OK. The current fh is for /this and is
within the pseudo-fs.

* LOOKUP "is" ——> NFS_OK. The current fh is for /this/is and is
within the pseudo-fs.

* LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
is within the pseudo-fs.

* READDIR (rdattr_error, fsid, size, time_modify, mounted_on_fileid)

11.

——> NFS_OK. The attributes for directory entry with the component
named "path” will only contain rdattr_error with the value
NFS4ERR_MOVED, together with an fsid value and a value for
mounted_on_fileid.

Suppose we do another READDIR to get fs_locations_info (although we
could have used a GETATTR directly, as in Section 11.15.1).

* PUTROOTFH

* LOOKUP "this"
* LOOKUP "is"

* LOOKUP "the"

* READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
size, time_modify)

The results would be:

* PUTROOTFH —-—> NFS_OK. The current fh is at the root of the
pseudo-f£fs.

* LOOKUP "this" —--> NFS_OK. The current fh is for /this and is
within the pseudo-fs.

* LOOKUP "is" ——-> NFS_OK. The current fh is for /this/is and is
within the pseudo-fs.

* LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
is within the pseudo-fs.

* READDIR (rdattr_error, fs_locations_info, mounted_on_fileid, fsid,
size, time_modify) —-—-> NFS_OK. The attributes will be as shown
below.

The attributes for the directory entry with the component named
"path” will only contain:

* rdattr_error (value: NFS_OK)
* fs_locations_info

* mounted_on_fileid (value: unique fileid within referring file
system)

* fsid (value: unique value within referring server)

The attributes for entry "path" will not contain size or time_modify
because these attributes are not available within an absent file
system.

16. The Attribute fs_locations
The fs_locations attribute is structured in the following way:

struct fs_locationd {
utf8str_cis server<>;
pathname4 rootpath;
Vi

struct fs_locations4d {
pathname4 fs_root;
fs_location4 locations<>;
bi

The fs_location4 data type is used to represent the location of a
file system by providing a server name and the path to the root of
the file system within that server’s namespace. When a set of
servers have corresponding file systems at the same path within their

namespaces, an array of server names may be provided. An entry in
the server array is a UTF-8 string and represents one of a
traditional DNS host name, IPv4 address, IPv6 address, or a zero-
length string. An IPv4 or IPv6 address is represented as a universal
address (see Section 3.3.9 and [12]), minus the netid, and either
with or without the trailing ".pl.p2" suffix that represents the port
number. If the suffix is omitted, then the default port, 2049,
SHOULD be assumed. A zero-length string SHOULD be used to indicate
the current address being used for the RPC call. It is not a
requirement that all servers that share the same rootpath be listed
in one fs_location4 instance. The array of server names is provided
for convenience. Servers that share the same rootpath may also be
listed in separate fs_location4 entries in the fs_locations
attribute.

The fs_locations4 data type and the fs_locations attribute each
contain an array of such locations. Since the namespace of each
server may be constructed differently, the "fs_root" field is
provided. The path represented by fs_root represents the location of
the file system in the current server’s namespace, i.e., that of the
server from which the fs_locations attribute was obtained. The
fs_root path is meant to aid the client by clearly referencing the
root of the file system whose locations are being reported, no matter
what object within the current file system the current filehandle
designates. The fs_root is simply the pathname the client used to
reach the object on the current server (i.e., the object to which the
fs_locations attribute applies).

When the fs_locations attribute is interrogated and there are no
alternate file system locations, the server SHOULD return a zero-—
length array of fs_location4 structures, together with a wvalid
fs_root.

As an example, suppose there is a replicated file system located at
two servers (servA and servB). At servA, the file system is located
at path /a/b/c. At, servB the file system is located at path /x/y/z.
If the client were to obtain the fs_locations value for the directory
at /a/b/c/d, it might not necessarily know that the file system’s
root is located in servA’s namespace at /a/b/c. When the client
switches to servB, it will need to determine that the directory it
first referenced at servA is now represented by the path /x/y/z/d on
servB. To facilitate this, the fs_locations attribute provided by
servA would have an fs_root value of /a/b/c and two entries in
fs_locations. One entry in fs_locations will be for itself (servAd)
and the other will be for servB with a path of /x/y/z. With this
information, the client is able to substitute /x/y/z for the /a/b/c
at the beginning of its access path and construct /x/y/z/d to use for
the new server.

Note that there is no requirement that the number of components in
each rootpath be the same; there is no relation between the number of
components in rootpath or fs_root, and none of the components in a
rootpath and fs_root have to be the same. 1In the above example, we
could have had a third element in the locations array, with server
equal to "servC" and rootpath equal to "/I/II", and a fourth element
in locations with server equal to "servD" and rootpath equal to
"/aleph/beth/gimel/daleth/he".

The relationship between fs_root to a rootpath is that the client
replaces the pathname indicated in fs_root for the current server for

the substitute indicated in rootpath for the new server.

For an example of a referred or migrated file system, suppose there

is a file system located at servl. At servl, the file system is
located at /az/buky/vedi/glagoli. The client finds that object at
glagoli has migrated (or is a referral). The client gets the

fs_locations attribute, which contains an fs_root of /az/buky/vedi/
glagoli, and one element in the locations array, with server equal to
serv2, and rootpath equal to /izhitsa/fita. The client replaces
/az/buky/vedi/glagoli with /izhitsa/fita, and uses the latter
pathname on serv2.

11.

Thus, the server MUST return an fs_root that is equal to the path the
client used to reach the object to which the fs_locations attribute
applies. Otherwise, the client cannot determine the new path to use
on the new server.

Since the fs_locations attribute lacks information defining various
attributes of the various file system choices presented, it SHOULD
only be interrogated and used when fs_locations_info is not
available. When fs_locations is used, information about the specific
locations should be assumed based on the following rules.

The following rules are general and apply irrespective of the
context.

* All listed file system instances should be considered as of the
same handle class, if and only if, the current fh_expire_type
attribute does not include the FH4_VOL_MIGRATION bit. Note that
in the case of referral, filehandle issues do not apply since
there can be no filehandles known within the current file system,
nor is there any access to the fh_expire_type attribute on the
referring (absent) file system.

* All listed file system instances should be considered as of the
same fileid class if and only if the fh_expire_type attribute
indicates persistent filehandles and does not include the
FH4_VOL_MIGRATION bit. Note that in the case of referral, fileid
issues do not apply since there can be no fileids known within the
referring (absent) file system, nor is there any access to the
fh_expire_type attribute.

* All file system instances servers should be considered as of
different change classes.

For other class assignments, handling of file system transitions
depends on the reasons for the transition:

* When the transition is due to migration, that is, the client was
directed to a new file system after receiving an NFS4ERR_MOVED
error, the target should be treated as being of the same write-—
verifier class as the source.

* When the transition is due to failover to another replica, that
is, the client selected another replica without receiving an
NFS4ERR_MOVED error, the target should be treated as being of a
different write-verifier class from the source.

The specific choices reflect typical implementation patterns for
failover and controlled migration, respectively. Since other choices
are possible and useful, this information is better obtained by using
fs_locations_info. When a server implementation needs to communicate
other choices, it MUST support the fs_locations_info attribute.

See Section 21 for a discussion on the recommendations for the
security flavor to be used by any GETATTR operation that requests the
fs_locations attribute.

17. The Attribute fs_locations_info

The fs_locations_info attribute is intended as a more functional
replacement for the fs_locations attribute, which will continue to
exist and be supported. Clients can use it to get a more complete
set of data about alternative file system locations, including
additional network paths to access replicas in use and additional
replicas. When the server does not support fs_locations_info,
fs_locations can be used to get a subset of the data. A server that
supports fs_locations_info MUST support fs_locations as well.

There is additional data present in fs_locations_info that is not
available in fs_locations:

* Attribute continuity information. This information will allow a
client to select a replica that meets the transparency
requirements of the applications accessing the data and to
leverage optimizations due to the server guarantees of attribute
continuity (e.g., i1if the change attribute of a file of the file
system is continuous between multiple replicas, the client does
not have to invalidate the file’s cache when switching to a
different replica).

* File system identity information that indicates when multiple
replicas, from the client’s point of view, correspond to the same
target file system, allowing them to be used interchangeably,
without disruption, as distinct synchronized replicas of the same
file data.

Note that having two replicas with common identity information is
distinct from the case of two (trunked) paths to the same replica.

* Information that will bear on the suitability of wvarious replicas,
depending on the use that the client intends. For example, many
applications need an absolutely up-to-date copy (e.g., those that
write), while others may only need access to the most up-to-date
copy reasonably available.

* Server-derived preference information for replicas, which can be
used to implement load-balancing while giving the client the
entire file system list to be used in case the primary fails.

The fs_locations_info attribute is structured similarly to the
fs_locations attribute. A top-level structure (fs_locations_info4)
contains the entire attribute including the root pathname of the file
system and an array of lower-level structures that define replicas
that share a common rootpath on their respective servers. The lower-—
level structure in turn (fs_locations_item4) contains a specific
pathname and information on one or more individual network access
paths. For that last, lowest level, fs_locations_info has an
fs_locations_server4 structure that contains per-server-replica
information in addition to the file system location entry. This per-—
server-replica information includes a nominally opaque array,
fls_info, within which specific pieces of information are located at
the specific indices listed below.

Two fs_location_server4 entries that are within different
fs_location_item4 structures are never trunkable, while two entries
within in the same fs_location_item4 structure might or might not be
trunkable. Two entries that are trunkable will have identical
identity information, although, as noted above, the converse is not
the case.

The attribute will always contain at least a single
fs_locations_server entry. Typically, there will be an entry with
the FS4LIGF_CUR_REQ flag set, although in the case of a referral
there will be no entry with that flag set.

It should be noted that fs_locations_info attributes returned by
servers for various replicas may differ for various reasons. One
server may know about a set of replicas that are not known to other
servers. Further, compatibility attributes may differ. Filehandles
might be of the same class going from replica A to replica B but not
going in the reverse direction. This might happen because the
filehandles are the same, but replica B’s server implementation might
not have provision to note and report that equivalence.

The fs_locations_info attribute consists of a root pathname
(fli_fs_root, just like fs_root in the fs_locations attribute),
together with an array of fs_location_item4 structures. The
fs_location_item4 structures in turn consist of a root pathname
(fli_rootpath) together with an array (fli_entries) of elements of
data type fs_locations_server4, all defined as follows.

/*

* Defines an individual server access path
*/

struct fs_locations_serverd {

int32_t fls_currency;
opaque fls_info<>;
utf8str_cis fls_server;

}i
/*

* Byte indices of items within
* fls_info: flag fields, class numbers,
* bytes indicating ranks and orders.

*/
const FSLI4BX_ GFLAGS = 0;
const FSLI4BX_TFLAGS = 1;
const FSLI4BX_CLSIMUL = 2;
const FSLI4BX_ CLHANDLE = 3;
const FSLI4BX CLFILEID = 4;
const FSLI4BX_CLWRITEVER = 5;
const FSLI4BX_CLCHANGE = 6;
const FSLI4BX_CLREADDIR = 7;
const FSLI4BX_ READRANK = 8;
const FSLI4BX_ WRITERANK = 9;
const FSLI4BX_READORDER = 10;
const FSLI4BX_WRITEORDER = 11;

/*
* Bits defined within the general flag byte.
*/

const FSLI4GF_WRITABLE = 0x01;
const FSLI4GF_CUR_REQ = 0x02;
const FSLI4GF_ABSENT = 0x04;
const FSLI4GF_GOING = 0x08;
const FSLI4GF_SPLIT = 0x10;

/*
* Bits defined within the transport flag byte.
*/

const FSLI4TF_RDMA = 0x01;

* Defines a set of replicas sharing
* a common value of the rootpath

* within the corresponding

* single-server namespaces.

*/

struct fs_locations_itemd ({
fs_locations_server4d fli_entries<>;
pathname4 fli_rootpath;

}i

/*

* Defines the overall structure of
* the fs_locations_info attribute.

*/
struct fs_locations_info4 {
uint32_t fli_flags;
int32_t fli_wvalid_for;
pathname4 fli_fs_root;
fs_locations_item4 fli_items<>;
}i
/*
* Flag bits in fli_flags.
*/
const FSLI4IF_VAR_SUB = 0x00000001;

typedef fs_locations_info4 fattr4d4_fs_locations_info;

11.

As noted above, the fs_locations_info attribute, when supported, may
be requested of absent file systems without causing NFS4ERR_MOVED to
be returned. It is generally expected that it will be available for
both present and absent file systems even if only a single
fs_locations_server4 entry is present, designating the current
(present) file system, or two fs_locations_serverd4d entries
designating the previous location of an absent file system (the one
just referenced) and its successor location. Servers are strongly
urged to support this attribute on all file systems if they support
it on any file system.

The data presented in the fs_locations_info attribute may be obtained
by the server in any number of ways, including specification by the
administrator or by current protocols for transferring data among
replicas and protocols not yet developed. NFSv4.l1l only defines how
this information is presented by the server to the client.

17.1. The fs_locations_server4 Structure

The fs_locations_serverd4 structure consists of the following items in
addition to the fls_server field, which specifies a network address
or set of addresses to be used to access the specified file system.
Note that both of these items (i.e., fls_currency and fls_info)
specify attributes of the file system replica and should not be
different when there are multiple fs_locations_server4 structures,
each specifying a network path to the chosen replica, for the same
replica.

When these values are different in two fs_locations_serveri4
structures, a client has no basis for choosing one over the other and
is best off simply ignoring both entries, whether these entries apply
to migration replication or referral. When there are more than two
such entries, majority voting can be used to exclude a single
erroneous entry from consideration. In the case in which trunking
information is provided for a replica currently being accessed, the
additional trunked addresses can be ignored while access continues on
the address currently being used, even if the entry corresponding to
that path might be considered invalid.

* An indication of how up-to-date the file system is (fls_currency)
in seconds. This value is relative to the master copy. A
negative value indicates that the server is unable to give any
reasonably useful value here. A value of zero indicates that the
file system is the actual writable data or a reliably coherent and
fully up-to-date copy. Positive values indicate how out-of-date
this copy can normally be before it is considered for update.
Such a value is not a guarantee that such updates will always be
performed on the required schedule but instead serves as a hint
about how far the copy of the data would be expected to be behind
the most up-to-date copy.

* A counted array of one-byte values (fls_info) containing
information about the particular file system instance. This data
includes general flags, transport capability flags, file system
equivalence class information, and selection priority information.
The encoding will be discussed below.

* The server string (fls_server). For the case of the replica
currently being accessed (via GETATTR), a zero-length string MAY
be used to indicate the current address being used for the RPC
call. The fls_server field can also be an IPv4 or IPv6 address,
formatted the same way as an IPv4 or IPv6 address in the "server"
field of the fs_location4 data type (see Section 11.16).

With the exception of the transport-flag field (at offset
FSLI4BX_TFLAGS with the fls_info array), all of this data defined in
this specification applies to the replica specified by the entry,
rather than the specific network path used to access it. The
classification of data in extensions to this data is discussed below.

Data within the fls_info array is in the form of 8-bit data items

with constants giving the offsets within the array of various values
describing this particular file system instance. This style of
definition was chosen, in preference to explicit XDR structure
definitions for these values, for a number of reasons.

* The kinds of data in the fls_info array, representing flags, file
system classes, and priorities among sets of file systems
representing the same data, are such that 8 bits provide a quite
acceptable range of values. Even where there might be more than
256 such file system instances, having more than 256 distinct
classes or priorities is unlikely.

* Explicit definition of the various specific data items within XDR
would limit expandability in that any extension within would
require yet another attribute, leading to specification and
implementation clumsiness. In the context of the NFSv4 extension
model in effect at the time fs_locations_info was designed (i.e.,
that which is described in RFC 5661 [66]), this would necessitate
a new minor version to effect any Standards Track extension to the
data in fls_info.

The set of fls_info data is subject to expansion in a future minor
version or in a Standards Track RFC within the context of a single
minor version. The server SHOULD NOT send and the client MUST NOT
use indices within the fls_info array or flag bits that are not
defined in Standards Track RFCs.

In light of the new extension model defined in RFC 8178 [67] and the
fact that the individual items within fls_info are not explicitly
referenced in the XDR, the following practices should be followed
when extending or otherwise changing the structure of the data
returned in fls_info within the scope of a single minor version:

* All extensions need to be described by Standards Track documents.
There is no need for such documents to be marked as updating RFC
5661 [66] or this document.

* It needs to be made clear whether the information in any added
data items applies to the replica specified by the entry or to the
specific network paths specified in the entry.

* There needs to be a reliable way defined to determine whether the
server is aware of the extension. This may be based on the length
field of the fls_info array, but it is more flexible to provide
fs—-scope or server—-scope attributes to indicate what extensions
are provided.

This encoding scheme can be adapted to the specification of multi-
byte numeric values, even though none are currently defined. If
extensions are made via Standards Track RFCs, multi-byte quantities
will be encoded as a range of bytes with a range of indices, with the
byte interpreted in big-endian byte order. Further, any such index
assignments will be constrained by the need for the relevant
quantities not to cross XDR word boundaries.

The fls_info array currently contains:
* Two 8-bit flag fields, one devoted to general file-system
characteristics and a second reserved for transport-related

capabilities.

* Six 8-bit class values that define various file system equivalence
classes as explained below.

* Four 8-bit priority wvalues that govern file system selection as
explained below.

The general file system characteristics flag (at byte index
FSLI4BX_GFLAGS) has the following bits defined within it:

* FSLIAGF_WRITABLE indicates that this file system target is

writable, allowing it to be selected by clients that may need to
write on this file system. When the current file system instance
is writable and is defined as of the same simultaneous use class
(as specified by the value at index FSLI4BX_CLSIMUL) to which the
client was previously writing, then it must incorporate within its
data any committed write made on the source file system instance.
See Section 11.11.6, which discusses the write-verifier class.
While there is no harm in not setting this flag for a file system
that turns out to be writable, turning the flag on for a read-only
file system can cause problems for clients that select a migration
or replication target based on the flag and then find themselves
unable to write.

FSLI4GF_CUR_REQ indicates that this replica is the one on which
the request is being made. Only a single server entry may have
this flag set and, in the case of a referral, no entry will have
it set. ©Note that this flag might be set even if the request was
made on a network access path different from any of those
specified in the current entry.

FSLI4GF_ABSENT indicates that this entry corresponds to an absent
file system replica. It can only be set if FSLI4GF_CUR_REQ 1is
set. When both such bits are set, it indicates that a file system
instance is not usable but that the information in the entry can
be used to determine the sorts of continuity available when
switching from this replica to other possible replicas. Since
this bit can only be true if FSLI4GF_CUR_REQ is true, the value
could be determined using the fs_status attribute, but the
information is also made available here for the convenience of the
client. An entry with this bit, since it represents a true file
system (albeit absent), does not appear in the event of a
referral, but only when a file system has been accessed at this
location and has subsequently been migrated.

FSLI4AGF_GOING indicates that a replica, while still available,
should not be used further. The client, if using it, should make
an orderly transfer to another file system instance as

expeditiously as possible. It is expected that file systems going
out of service will be announced as FSLI4GF_GOING some time before
the actual loss of service. It is also expected that the

fli_valid_for value will be sufficiently small to allow clients to
detect and act on scheduled events, while large enough that the
cost of the requests to fetch the fs_locations_info values will
not be excessive. Values on the order of ten minutes seem
reasonable.

When this flag is seen as part of a transition into a new file
system, a client might choose to transfer immediately to another
replica, or it may reference the current file system and only
transition when a migration event occurs. Similarly, when this
flag appears as a replica in the referral, clients would likely
avoid being referred to this instance whenever there is another
choice.

This flag, like the other items within fls_info, applies to the
replica rather than to a particular path to that replica. When it
appears, a transition to a new replica, rather than to a different
path to the same replica, is indicated.

FSLI4GF_SPLIT indicates that when a transition occurs from the
current file system instance to this one, the replacement may
consist of multiple file systems. In this case, the client has to
be prepared for the possibility that objects on the same file
system before migration will be on different ones after. Note
that FSLI4GF_SPLIT is not incompatible with the file systems
belonging to the same fileid class since, if one has a set of
fileids that are unique within a file system, each subset assigned
to a smaller file system after migration would not have any
conflicts internal to that file system.

A client, in the case of a split file system, will interrogate

existing files with which it has continuing connection (it is free
to simply forget cached filehandles). 1If the client remembers the
directory filehandle associated with each open file, it may
proceed upward using LOOKUPP to find the new file system
boundaries. Note that in the event of a referral, there will not
be any such files and so these actions will not be performed.
Instead, a reference to a portion of the original file system now
split off into other file systems will encounter an fsid change
and possibly a further referral.

Once the client recognizes that one file system has been split
into two, it can prevent the disruption of running applications by
presenting the two file systems as a single one until a convenient
point to recognize the transition, such as a restart. This would
require a mapping from the server’s fsids to fsids as seen by the
client, but this is already necessary for other reasons. As noted
above, existing fileids within the two descendant file systems
will not conflict. Providing non-conflicting fileids for newly
created files on the split file systems is the responsibility of
the server (or servers working in concert). The server can encode
filehandles such that filehandles generated before the split event
can be discerned from those generated after the split, allowing
the server to determine when the need for emulating two file
systems as one is over.

Although it is possible for this flag to be present in the event
of referral, it would generally be of little interest to the
client, since the client is not expected to have information
regarding the current contents of the absent file system.

The transport-flag field (at byte index FSLI4BX_TFLAGS) contains the
following bits related to the transport capabilities of the specific
network path(s) specified by the entry:

* FSLIATF_RDMA indicates that any specified network paths provide
NFSv4.1l clients access using an RDMA-capable transport.

Attribute continuity and file system identity information are
expressed by defining equivalence relations on the sets of file
systems presented to the client. Each such relation is expressed as
a set of file system equivalence classes. For each relation, a file
system has an 8-bit class number. Two file systems belong to the
same class if both have identical non-zero class numbers. Zero is
treated as non-matching. Most often, the relevant question for the
client will be whether a given replica is identical to / continuous
with the current one in a given respect, but the information should
be available also as to whether two other replicas match in that
respect as well.

The following fields specify the file system’s class numbers for the
equivalence relations used in determining the nature of file system
transitions. See Sections 11.9 through 11.14 and their wvarious
subsections for details about how this information is to be used.
Servers may assign these values as they wish, so long as file system
instances that share the same value have the specified relationship
to one another; conversely, file systems that have the specified
relationship to one another share a common class value. As each
instance entry is added, the relationships of this instance to
previously entered instances can be consulted, and if one is found
that bears the specified relationship, that entry’s class value can
be copied to the new entry. When no such previous entry exists, a
new value for that byte index (not previously used) can be selected,
most likely by incrementing the value of the last class value
assigned for that index.

* The field with byte index FSLI4BX_CLSIMUL defines the
simultaneous-use class for the file system.

* The field with byte index FSLI4BX_CLHANDLE defines the handle
class for the file system.

11.

* The field with byte index FSLI4BX_CLFILEID defines the fileid
class for the file system.

* The field with byte index FSLI4BX_CLWRITEVER defines the write-
verifier class for the file system.

* The field with byte index FSLI4BX_CLCHANGE defines the change
class for the file system.

* The field with byte index FSLI4BX_CLREADDIR defines the readdir
class for the file system.

Server-specified preference information is also provided via 8-bit
values within the fls_info array. The values provide a rank and an
order (see below) to be used with separate values specifiable for the
cases of read-only and writable file systems. These values are
compared for different file systems to establish the server-specified
preference, with lower values indicating "more preferred".

Rank is used to express a strict server-imposed ordering on clients,
with lower values indicating "more preferred". Clients should
attempt to use all replicas with a given rank before they use one
with a higher rank. Only if all of those file systems are
unavailable should the client proceed to those of a higher rank.
Because specifying a rank will override client preferences, servers
should be conservative about using this mechanism, particularly when
the environment is one in which client communication characteristics
are neither tightly controlled nor visible to the server.

Within a rank, the order value is used to specify the server’s
preference to guide the client’s selection when the client’s own
preferences are not controlling, with lower values of order
indicating "more preferred". If replicas are approximately equal in
all respects, clients should defer to the order specified by the
server. When clients look at server latency as part of their
selection, they are free to use this criterion, but it is suggested
that when latency differences are not significant, the server-
specified order should guide selection.

* The field at byte index FSLI4BX_ READRANK gives the rank wvalue to
be used for read-only access.

* The field at byte index FSLI4BX_READORDER gives the order value to
be used for read-only access.

* The field at byte index FSLI4BX WRITERANK gives the rank value to
be used for writable access.

* The field at byte index FSLI4BX_WRITEORDER gives the order value
to be used for writable access.

Depending on the potential need for write access by a given client,
one of the pairs of rank and order values is used. The read rank and
order should only be used if the client knows that only reading will
ever be done or if it is prepared to switch to a different replica in
the event that any write access capability is required in the future.

17.2. The fs_locations_info4 Structure

The fs_locations_info4 structure, encoding the fs_locations_info
attribute, contains the following:

* The fli_flags field, which contains general flags that affect the
interpretation of this fs_locations_info4 structure and all
fs_locations_item4 structures within it. The only flag currently
defined is FSLI4IF_VAR SUB. All bits in the fli_flags field that
are not defined should always be returned as zero.

* The fli_fs_root field, which contains the pathname of the root of
the current file system on the current server, just as it does in
the fs_locations4 structure.

11.

* An array called fli_items of fs_locations4_item structures, which
contain information about replicas of the current file system.
Where the current file system is actually present, or has been
present, i.e., this is not a referral situation, one of the
fs_locations_item4 structures will contain an fs_locations_server4
for the current server. This structure will have FSLI4GF_ABSENT
set if the current file system is absent, i.e., normal access to
it will return NFS4ERR_MOVED.

* The fli_valid_for field specifies a time in seconds for which it
is reasonable for a client to use the fs_locations_info attribute
without refetch. The fli_valid_for value does not provide a
guarantee of validity since servers can unexpectedly go out of
service or become inaccessible for any number of reasons. Clients
are well-advised to refetch this information for an actively
accessed file system at every fli_valid_for seconds. This is
particularly important when file system replicas may go out of
service in a controlled way using the FSLI4GF_GOING flag to
communicate an ongoing change. The server should set
fli_valid_for to a value that allows well-behaved clients to
notice the FSLI4GF_GOING flag and make an orderly switch before
the loss of service becomes effective. If this value is zero,
then no refetch interval is appropriate and the client need not
refetch this data on any particular schedule. 1In the event of a
transition to a new file system instance, a new value of the
fs_locations_info attribute will be fetched at the destination.

It is to be expected that this may have a different fli_wvalid_for
value, which the client should then use in the same fashion as the
previous value. Because a refetch of the attribute causes
information from all component entries to be refetched, the server
will typically provide a low value for this field if any of the
replicas are likely to go out of service in a short time frame.
Note that, because of the ability of the server to return
NFS4ERR_MOVED to trigger the use of different paths, when
alternate trunked paths are available, there is generally no need
to use low values of fli_wvalid_for in connection with the
management of alternate paths to the same replica.

The FSLI4IF_VAR_SUB flag within fli_flags controls whether wvariable
substitution is to be enabled. See Section 11.17.3 for an
explanation of variable substitution.

17.3. The fs_locations_item4 Structure

The fs_locations_item4 structure contains a pathname (in the field
fli_rootpath) that encodes the path of the target file system
replicas on the set of servers designated by the included
fs_locations_server4 entries. The precise manner in which this
target location is specified depends on the value of the
FSLI4IF_VAR_SUB flag within the associated fs_locations_info4
structure.

If this flag is not set, then fli_rootpath simply designates the
location of the target file system within each server’s single-server
namespace just as it does for the rootpath within the fs_location4
structure. When this bit is set, however, component entries of a
certain form are subject to client-specific variable substitution so
as to allow a degree of namespace non-uniformity in order to
accommodate the selection of client-specific file system targets to
adapt to different client architectures or other characteristics.

When such substitution is in effect, a variable beginning with the
string "${" and ending with the string "}" and containing a colon is
to be replaced by the client-specific value associated with that
variable. The string "unknown" should be used by the client when it
has no value for such a variable. The pathname resulting from such
substitutions is used to designate the target file system, so that
different clients may have different file systems, corresponding to
that location in the multi-server namespace.

11.

As mentioned above, such substituted pathname variables contain a
colon. The part before the colon is to be a DNS domain name, and the
part after is to be a case-insensitive alphanumeric string.

Where the domain is "ietf.org", only variable names defined in this
document or subsequent Standards Track RFCs are subject to such
substitution. Organizations are free to use their domain names to
create their own sets of client-specific variables, to be subject to
such substitution. In cases where such variables are intended to be
used more broadly than a single organization, publication of an
Informational RFC defining such variables is RECOMMENDED.

The variable ${ietf.org:CPU_ARCH} is used to denote that the CPU
architecture object files are compiled. This specification does not
limit the acceptable values (except that they must be valid UTF-8
strings), but such values as "x86", "x86_64", and "sparc" would be
expected to be used in line with industry practice.

The variable ${ietf.org:0S_TYPE} is used to denote the operating
system, and thus the kernel and library APIs, for which code might be
compiled. This specification does not limit the acceptable wvalues
(except that they must be valid UTF-8 strings), but such values as
"linux" and "freebsd" would be expected to be used in line with
industry practice.

The variable ${ietf.org:0S_VERSION} is used to denote the operating
system version, and thus the specific details of versioned

interfaces, for which code might be compiled. This specification
does not limit the acceptable values (except that they must be valid
UTF-8 strings). However, combinations of numbers and letters with

interspersed dots would be expected to be used in line with industry
practice, with the details of the version format depending on the
specific value of the variable ${ietf.org:0S_TYPE} with which it is
used.

Use of these variables could result in the direction of different
clients to different file systems on the same server, as appropriate
to particular clients. 1In cases in which the target file systems are
located on different servers, a single server could serve as a
referral point so that each valid combination of variable wvalues
would designate a referral hosted on a single server, with the
targets of those referrals on a number of different servers.

Because namespace administration is affected by the values selected
to substitute for various variables, clients should provide
convenient means of determining what variable substitutions a client
will implement, as well as, where appropriate, providing means to
control the substitutions to be used. The exact means by which this
will be done is outside the scope of this specification.

Although variable substitution is most suitable for use in the
context of referrals, it may be used in the context of replication
and migration. If it is used in these contexts, the server must
ensure that no matter what wvalues the client presents for the
substituted variables, the result is always a valid successor file
system instance to that from which a transition is occurring, i.e.,
that the data is identical or represents a later image of a writable
file system.

Note that when fli_rootpath is a null pathname (that is, one with
zero components), the file system designated is at the root of the
specified server, whether or not the FSLI4IF_VAR SUB flag within the
associated fs_locations_info4 structure is set.

18. The Attribute fs_status

In an environment in which multiple copies of the same basic set of
data are available, information regarding the particular source of
such data and the relationships among different copies can be very
helpful in providing consistent data to applications.

enum fs4_status_type {
STATUS4_FIXED = 1,
STATUS4_UPDATED = 2,

STATUS4_VERSIONED 3,
STATUS4_WRITABLE = 4,
STATUS4_REFERRAL = 5

bi

struct fs4_status {
bool fss_absent;
fs4_status_type fss_type;
utf8str_cs fss_source;
utf8str_cs fss_current;
int32_t fss_age;
nfstimed fss_version;

i

The boolean fss_absent indicates whether the file system is currently
absent. This value will be set if the file system was previously
present and becomes absent, or if the file system has never been
present and the type is STATUS4_REFERRAL. When this boolean is set
and the type is not STATUS4_REFERRAL, the remaining information in
the fs4_status reflects that last valid when the file system was
present.

The fss_type field indicates the kind of file system image
represented. This is of particular importance when using the version
values to determine appropriate succession of file system images.
When fss_absent is set, and the file system was previously present,
the value of fss_type reflected is that when the file was last
present. Five values are distinguished:

* STATUS4_FIXED, which indicates a read-only image in the sense that
it will never change. The possibility is allowed that, as a
result of migration or switch to a different image, changed data
can be accessed, but within the confines of this instance, no
change is allowed. The client can use this fact to cache
aggressively.

* STATUS4_VERSIONED, which indicates that the image, like the
STATUS4_UPDATED case, 1is updated externally, but it provides a
guarantee that the server will carefully update an associated
version value so that the client can protect itself from a
situation in which it reads data from one version of the file
system and then later reads data from an earlier version of the
same file system. See below for a discussion of how this can be
done.

* STATUS4_UPDATED, which indicates an image that cannot be updated
by the user writing to it but that may be changed externally,
typically because it is a periodically updated copy of another
writable file system somewhere else. In this case, version
information is not provided, and the client does not have the
responsibility of making sure that this version only advances upon
a file system instance transition. In this case, it is the
responsibility of the server to make sure that the data presented
after a file system instance transition is a proper successor
image and includes all changes seen by the client and any change
made before all such changes.

* STATUS4_WRITABLE, which indicates that the file system is an
actual writable one. The client need not, of course, actually
write to the file system, but once it does, it should not accept a
transition to anything other than a writable instance of that same
file system.

* STATUS4_REFERRAL, which indicates that the file system in question
is absent and has never been present on this server.

Note that in the STATUS4_UPDATED and STATUS4_VERSIONED cases, the
server is responsible for the appropriate handling of locks that are

inconsistent with external changes to delegations. If a server gives
out delegations, they SHOULD be recalled before an inconsistent
change is made to the data, and MUST be revoked if this is not
possible. Similarly, if an OPEN is inconsistent with data that is
changed (the OPEN has OPEN4_SHARE_DENY_WRITE/OPEN4_SHARE_DENY_BOTH
and the data is changed), that OPEN SHOULD be considered
administratively revoked.

The opaque strings fss_source and fss_current provide a way of
presenting information about the source of the file system image
being present. It is not intended that the client do anything with
this information other than make it available to administrative
tools. It is intended that this information be helpful when
researching possible problems with a file system image that might
arise when it is unclear if the correct image is being accessed and,
if not, how that image came to be made. This kind of diagnostic
information will be helpful, if, as seems likely, copies of file
systems are made in many different ways (e.g., simple user-level
copies, file-system-level point-in-time copies, clones of the
underlying storage), under a variety of administrative arrangements.
In such environments, determining how a given set of data was
constructed can be very helpful in resolving problems.

The opaque string fss_source is used to indicate the source of a
given file system with the expectation that tools capable of creating
a file system image propagate this information, when possible. It is
understood that this may not always be possible since a user-level
copy may be thought of as creating a new data set and the tools used
may have no mechanism to propagate this data. When a file system is
initially created, it is desirable to associate with it data
regarding how the file system was created, where it was created, who
created it, etc. Making this information available in this attribute
in a human-readable string will be helpful for applications and
system administrators and will also serve to make it available when
the original file system is used to make subsequent copies.

The opaque string fss_current should provide whatever information is
available about the source of the current copy. Such information
includes the tool creating it, any relevant parameters to that tool,
the time at which the copy was done, the user making the change, the
server on which the change was made, etc. All information should be
in a human-readable string.

The field fss_age provides an indication of how out-of-date the file
system currently is with respect to its ultimate data source (in case
of cascading data updates). This complements the fls_currency field
of fs_locations_server4 (see Section 11.17) in the following way: the
information in fls_currency gives a bound for how out of date the
data in a file system might typically get, while the value in fss_age
gives a bound on how out-of-date that data actually is. Negative
values imply that no information is available. A zero means that
this data is known to be current. A positive value means that this
data is known to be no older than that number of seconds with respect
to the ultimate data source. Using this value, the client may be
able to decide that a data copy is too old, so that it may search for
a newer version to use.

The fss_version field provides a version identification, in the form
of a time value, such that successive versions always have later time
values. When the fs_type is anything other than STATUS4_VERSIONED,
the server may provide such a value, but there is no guarantee as to
its validity and clients will not use it except to provide additional
information to add to fss_source and fss_current.

When fss_type is STATUS4_VERSIONED, servers SHOULD provide a value of
fss_version that progresses monotonically whenever any new version of
the data is established. This allows the client, if reliable image
progression is important to it, to fetch this attribute as part of
each COMPOUND where data or metadata from the file system is used.

When it is important to the client to make sure that only valid

successor images are accepted, it must make sure that it does not
read data or metadata from the file system without updating its sense
of the current state of the image. This is to avoid the possibility
that the fs_status that the client holds will be one for an earlier
image, which would cause the client to accept a new file system
instance that is later than that but still earlier than the updated
data read by the client.

In order to accept valid images reliably, the client must do a
GETATTR of the fs_status attribute that follows any interrogation of
data or metadata within the file system in question. Often this is
most conveniently done by appending such a GETATTR after all other
operations that reference a given file system. When errors occur
between reading file system data and performing such a GETATTR, care
must be exercised to make sure that the data in question is not used
before obtaining the proper fs_status value. In this connection,
when an OPEN is done within such a versioned file system and the
associated GETATTR of fs_status is not successfully completed, the
open file in question must not be accessed until that fs_status is
fetched.

The procedure above will ensure that before using any data from the
file system the client has in hand a newly-fetched current version of
the file system image. Multiple values for multiple requests in
flight can be resolved by assembling them into the required partial
order (and the elements should form a total order within the partial
order) and using the last. The client may then, when switching among
file system instances, decline to use an instance that does not have
an fss_type of STATUS4_VERSIONED or whose fss_version field is
earlier than the last one obtained from the predecessor file system
instance.

Parallel NFS (pNFS)
.1. Introduction

PNES is an OPTIONAL feature within NFSv4.1l; the pNFS feature set
allows direct client access to the storage devices containing file
data. When file data for a single NFSv4 server is stored on multiple
and/or higher-throughput storage devices (by comparison to the
server’s throughput capability), the result can be significantly
better file access performance. The relationship among multiple
clients, a single server, and multiple storage devices for pNFES
(server and clients have access to all storage devices) is shown in
Figure 1.

- +
|+-—————————— + Fom +
N — + | |
[] | NFSv4.l + pNFS | |
+|]| Clients |<————————————mmm > | Server |
+| | | |
e + | |
| Fmm +
|| |
|| |
|| Storage - +
|| Protocol |+ ——————————— +
| +————— | |+-—————————- + Control |
- I | Protocol |
e +|| sStorage |-——————————- +
+| Devices |
Fm— +
Figure 1

In this model, the clients, server, and storage devices are
responsible for managing file access. This is in contrast to NFSv4
without pNFS, where it is primarily the server’s responsibility; some
of this responsibility may be delegated to the client under strictly
specified conditions. See Section 12.2.5 for a discussion of the

12

12

12

12

12

Storage Protocol. See Section 12.2.6 for a discussion of the Control
Protocol.

PNFS takes the form of OPTIONAL operations that manage protocol
objects called ’layouts’ (Section 12.2.7) that contain a byte-range
and storage location information. The layout is managed in a similar
fashion as NFSv4.1l data delegations. For example, the layout is
leased, recallable, and revocable. However, layouts are distinct
abstractions and are manipulated with new operations. When a client
holds a layout, it is granted the ability to directly access the
byte-range at the storage location specified in the layout.

There are interactions between layouts and other NFSv4.l abstractions
such as data delegations and byte-range locking. Delegation issues
are discussed in Section 12.5.5. Byte-range locking issues are
discussed in Sections 12.2.9 and 12.5.1.

.2. ©PNFS Definitions

NFSv4.1’s pNFS feature provides parallel data access to a file system
that stripes its content across multiple storage servers. The first
instantiation of pNFS, as part of NFSv4.1l, separates the file system
protocol processing into two parts: metadata processing and data
processing. Data consist of the contents of regular files that are
striped across storage servers. Data striping occurs in at least two
ways: on a file-by-file basis and, within sufficiently large files,
on a block-by-block basis. In contrast, striped access to metadata
by pNFS clients is not provided in NFSv4.1l, even though the file
system back end of a pNFS server might stripe metadata. Metadata
consist of everything else, including the contents of non-regular
files (e.g., directories); see Section 12.2.1. The metadata
functionality is implemented by an NFSv4.1l server that supports pNFS
and the operations described in Section 18; such a server is called a
metadata server (Section 12.2.2).

The data functionality is implemented by one or more storage devices,
each of which are accessed by the client via a storage protocol. A
subset (defined in Section 13.6) of NFSv4.l is one such storage
protocol. New terms are introduced to the NFSv4.1l nomenclature and
existing terms are clarified to allow for the description of the pNFS
feature.

.2.1. Metadata

Information about a file system object, such as its name, location
within the namespace, owner, ACL, and other attributes. Metadata may
also include storage location information, and this will vary based
on the underlying storage mechanism that is used.

.2.2. Metadata Server

An NFSv4.1 server that supports the pNFS feature. A variety of
architectural choices exist for the metadata server and its use of
file system information held at the server. Some servers may contain
metadata only for file objects residing at the metadata server, while
the file data resides on associated storage devices. Other metadata
servers may hold both metadata and a varying degree of file data.

.2.3. PNFS Client

An NFSv4.1l client that supports pNFS operations and supports at least
one storage protocol for performing I/O to storage devices.

.2.4. Storage Device

A storage device stores a regular file’s data, but leaves metadata
management to the metadata server. A storage device could be another
NFSv4.1l server, an object-based storage device (0SD), a block device
accessed over a System Area Network (SAN, e.g., either FiberChannel
or iSCSI SAN), or some other entity.

12.

12

12

2.5. Storage Protocol

As noted in Figure 1, the storage protocol is the method used by the
client to store and retrieve data directly from the storage devices.

The NFSv4.l pNFS feature has been structured to allow for a variety
of storage protocols to be defined and used. One example storage
protocol is NFSv4.1l itself (as documented in Section 13). Other
options for the storage protocol are described elsewhere and include:

* Block/volume protocols such as Internet SCSI (iSCSI) [56] and FCP
[57]. The block/volume protocol support can be independent of the
addressing structure of the block/volume protocol used, allowing
more than one protocol to access the same file data and enabling

extensibility to other block/volume protocols. See [48] for a
layout specification that allows pNFS to use block/volume storage
protocols.

* Object protocols such as OSD over iSCSI or Fibre Channel [58].
See [47] for a layout specification that allows pNFS to use object
storage protocols.

It is possible that various storage protocols are available to both
client and server and it may be possible that a client and server do
not have a matching storage protocol available to them. Because of
this, the pNFS server MUST support normal NFSv4.l access to any file
accessible by the pNFS feature; this will allow for continued
interoperability between an NFSv4.1l client and server.

.2.6. Control Protocol

As noted in Figure 1, the control protocol is used by the exported
file system between the metadata server and storage devices.
Specification of such protocols is outside the scope of the NFSv4.l
protocol. Such control protocols would be used to control activities
such as the allocation and deallocation of storage, the management of
state required by the storage devices to perform client access
control, and, depending on the storage protocol, the enforcement of
authentication and authorization so that restrictions that would be
enforced by the metadata server are also enforced by the storage
device.

A particular control protocol is not REQUIRED by NFSv4.1 but
requirements are placed on the control protocol for maintaining
attributes like modify time, the change attribute, and the end-of-
file (EOF) position. Note that if pNFS is layered over a clustered,
parallel file system (e.g., PVFS [59]), the mechanisms that enable
clustering and parallelism in that file system can be considered the
control protocol.

.2.7. Layout Types

A layout describes the mapping of a file’s data to the storage
devices that hold the data. A layout is said to belong to a specific
layout type (data type layouttyped, see Section 3.3.13). The layout
type allows for variants to handle different storage protocols, such
as those associated with block/volume [48], object [47], and file
(Section 13) layout types. A metadata server, along with its control
protocol, MUST support at least one layout type. A private sub-range
of the layout type namespace is also defined. Values from the
private layout type range MAY be used for internal testing or
experimentation (see Section 3.3.13).

As an example, the organization of the file layout type could be an
array of tuples (e.g., device ID, filehandle), along with a
definition of how the data is stored across the devices (e.g.,
striping). A block/volume layout might be an array of tuples that
store <device ID, block number, block count> along with information
about block size and the associated file offset of the block number.
An object layout might be an array of tuples <device ID, object ID>
and an additional structure (i.e., the aggregation map) that defines

12

12

12.

how the logical byte sequence of the file data is serialized into the
different objects. ©Note that the actual layouts are typically more
complex than these simple expository examples.

Requests for pNFS-related operations will often specify a layout
type. Examples of such operations are GETDEVICEINFO and LAYOUTGET.
The response for these operations will include structures such as a
device_addr4 or a layout4, each of which includes a layout type
within it. The layout type sent by the server MUST always be the
same one requested by the client. When a server sends a response
that includes a different layout type, the client SHOULD ignore the
response and behave as if the server had returned an error response.

.2.8. Layout

A layout defines how a file’s data is organized on one or more
storage devices. There are many potential layout types; each of the
layout types are differentiated by the storage protocol used to
access data and by the aggregation scheme that lays out the file data
on the underlying storage devices. A layout is precisely identified
by the tuple <client ID, filehandle, layout type, iomode, range>,
where filehandle refers to the filehandle of the file on the metadata
server.

It is important to define when layouts overlap and/or conflict with
each other. For two layouts with overlapping byte-ranges to actually
overlap each other, both layouts must be of the same layout type,
correspond to the same filehandle, and have the same iomode. Layouts
conflict when they overlap and differ in the content of the layout
(i.e., the storage device/file mapping parameters differ). Note that
differing iomodes do not lead to conflicting layouts. It is
permissible for layouts with different iomodes, pertaining to the
same byte-range, to be held by the same client. An example of this
would be copy-on-write functionality for a block/volume layout type.

.2.9. Layout Iomode

The layout iomode (data type layoutiomode4, see Section 3.3.20)
indicates to the metadata server the client’s intent to perform
either just READ operations or a mixture containing READ and WRITE
operations. For certain layout types, it is useful for a client to
specify this intent at the time it sends LAYOUTGET (Section 18.43).
For example, for block/volume-based protocols, block allocation could
occur when a LAYOUTIOMODE4_RW iomode is specified. A special
LAYOUTIOMODE4_ANY iomode is defined and can only be used for
LAYOUTRETURN and CB_LAYOUTRECALL, not for LAYOUTGET. It specifies
that layouts pertaining to both LAYOUTIOMODE4_READ and
LAYOUTIOMODE4_RW iomodes are being returned or recalled,
respectively.

A storage device may validate I/0 with regard to the iomode; this is
dependent upon storage device implementation and layout type. Thus,
if the client’s layout iomode is inconsistent with the I/O being
performed, the storage device may reject the client’s I/O with an
error indicating that a new layout with the correct iomode should be
obtained via LAYOUTGET. For example, if a client gets a layout with
a LAYOUTIOMODE4_READ iomode and performs a WRITE to a storage device,
the storage device is allowed to reject that WRITE.

The use of the layout iomode does not conflict with OPEN share modes
or byte-range LOCK operations; open share mode and byte-range lock
conflicts are enforced as they are without the use of pNFS and are
logically separate from the pNFS layout level. Open share modes and
byte-range locks are the preferred method for restricting user access
to data files. For example, an OPEN of OPEN4_SHARE_ACCESS_WRITE does
not conflict with a LAYOUTGET containing an iomode of
LAYOUTIOMODE4_RW performed by another client. Applications that
depend on writing into the same file concurrently may use byte-range
locking to serialize their accesses.

2.10. Device 1IDs

12.

The device ID (data type deviceid4, see Section 3.3.14) identifies a
group of storage devices. The scope of a device ID is the pair
<client ID, layout type>. 1In practice, a significant amount of
information may be required to fully address a storage device.

Rather than embedding all such information in a layout, layouts embed
device IDs. The NFSv4.l operation GETDEVICEINFO (Section 18.40) is
used to retrieve the complete address information (including all
device addresses for the device ID) regarding the storage device
according to its layout type and device ID. For example, the address
of an NFSv4.1l data server or of an object-based storage device could
be an IP address and port. The address of a block storage device
could be a volume label.

Clients cannot expect the mapping between a device ID and its storage
device address(es) to persist across metadata server restart. See
Section 12.7.4 for a description of how recovery works in that
situation.

A device ID lives as long as there is a layout referring to the
device ID. If there are no layouts referring to the device ID, the
server is free to delete the device ID any time. Once a device ID is
deleted by the server, the server MUST NOT reuse the device ID for
the same layout type and client ID again. This requirement is
feasible because the device ID is 16 bytes long, leaving sufficient
room to store a generation number if the server’s implementation
requires most of the rest of the device ID’s content to be reused.
This requirement is necessary because otherwise the race conditions
between asynchronous notification of device ID addition and deletion
would be too difficult to sort out.

Device ID to device address mappings are not leased, and can be
changed at any time. (Note that while device ID to device address
mappings are likely to change after the metadata server restarts, the
server is not required to change the mappings.) A server has two
choices for changing mappings. It can recall all layouts referring
to the device ID or it can use a notification mechanism.

The NFSv4.1l protocol has no optimal way to recall all layouts that
referred to a particular device ID (unless the server associates a
single device ID with a single fsid or a single client ID; in which
case, CB_LAYOUTRECALL has options for recalling all layouts
associated with the fsid, client ID pair, or just the client ID).

Via a notification mechanism (see Section 20.12), device ID to device
address mappings can change over the duration of server operation
without recalling or revoking the layouts that refer to device ID.
The notification mechanism can also delete a device ID, but only if
the client has no layouts referring to the device ID. A notification
of a change to a device ID to device address mapping will immediately
or eventually invalidate some or all of the device ID’s mappings.

The server MUST support notifications and the client must request
them before they can be used. For further information about the
notification types, see Section 20.12.

3. pNFS Operations

NFSv4.1l has several operations that are needed for pNFS servers,
regardless of layout type or storage protocol. These operations are
all sent to a metadata server and summarized here. While pNFS is an
OPTIONAL feature, if pNFS is implemented, some operations are
REQUIRED in order to comply with pNFS. See Section 17.

These are the fore channel pNFS operations:
GETDEVICEINFO (Section 18.40), as noted previously
(Section 12.2.10), returns the mapping of device ID to storage

device address.

GETDEVICELIST (Section 18.41) allows clients to fetch all device IDs
for a specific file system.

12.

12.

12.

LAYOUTGET (Section 18.43) is used by a client to get a layout for a
file.

LAYOUTCOMMIT (Section 18.42) is used to inform the metadata server
of the client’s intent to commit data that has been written to the
storage device (the storage device as originally indicated in the
return value of LAYOUTGET).

LAYOUTRETURN (Section 18.44) is used to return layouts for a file, a
file system ID (FSID), or a client ID.

These are the backchannel pNFS operations:

CB_LAYOUTRECALL (Section 20.3) recalls a layout, all layouts
belonging to a file system, or all layouts belonging to a client
ID.

CB_RECALL_ANY (Section 20.6) tells a client that it needs to return
some number of recallable objects, including layouts, to the
metadata server.

CB_RECALLABLE_OBJ_AVAIL (Section 20.7) tells a client that a
recallable object that it was denied (in case of pNFS, a layout
denied by LAYOUTGET) due to resource exhaustion is now available.

CB_NOTIFY_DEVICEID (Section 20.12) notifies the client of changes to
device IDs.

4. pNFS Attributes

A number of attributes specific to pNFS are listed and described in
Section 5.12.

5. Layout Semantics
5.1. Guarantees Provided by Layouts

Layouts grant to the client the ability to access data located at a
storage device with the appropriate storage protocol. The client is
guaranteed the layout will be recalled when one of two things occur:
either a conflicting layout is requested or the state encapsulated by
the layout becomes invalid (this can happen when an event directly or
indirectly modifies the layout). When a layout is recalled and
returned by the client, the client continues with the ability to
access file data with normal NFSv4.1l operations through the metadata
server. Only the ability to access the storage devices is affected.

The requirement of NFSv4.1 that all user access rights MUST be
obtained through the appropriate OPEN, LOCK, and ACCESS operations is
not modified with the existence of layouts. Layouts are provided to
NFSv4.1l clients, and user access still follows the rules of the
protocol as if they did not exist. It is a requirement that for a
client to access a storage device, a layout must be held by the
client. If a storage device receives an I/O request for a byte-range
for which the client does not hold a layout, the storage device
SHOULD reject that I/O request. Note that the act of modifying a
file for which a layout is held does not necessarily conflict with
the holding of the layout that describes the file being modified.
Therefore, it is the requirement of the storage protocol or layout
type that determines the necessary behavior. For example, block/
volume layout types require that the layout’s iomode agree with the
type of I/0 being performed.

Depending upon the layout type and storage protocol in use, storage
device access permissions may be granted by LAYOUTGET and may be
encoded within the type-specific layout. For an example of storage
device access permissions, see an object-based protocol such as [58].
If access permissions are encoded within the layout, the metadata
server SHOULD recall the layout when those permissions become invalid
for any reason —- for example, when a file becomes unwritable or

12.

12.

inaccessible to a client. Note, clients are still required to
perform the appropriate OPEN, LOCK, and ACCESS operations as
described above. The degree to which it is possible for the client
to circumvent these operations and the consequences of doing so must
be clearly specified by the individual layout type specifications.
In addition, these specifications must be clear about the
requirements and non-requirements for the checking performed by the
server.

In the presence of pNFS functionality, mandatory byte-range locks
MUST behave as they would without pNFS. Therefore, if mandatory file
locks and layouts are provided simultaneously, the storage device
MUST be able to enforce the mandatory byte-range locks. For example,
if one client obtains a mandatory byte-range lock and a second client
accesses the storage device, the storage device MUST appropriately
restrict I/0 for the range of the mandatory byte-range lock. If the
storage device is incapable of providing this check in the presence
of mandatory byte-range locks, then the metadata server MUST NOT
grant layouts and mandatory byte-range locks simultaneously.

5.2. Getting a Layout

A client obtains a layout with the LAYOUTGET operation. The metadata
server will grant layouts of a particular type (e.g., block/volume,
object, or file). The client selects an appropriate layout type that
the server supports and the client is prepared to use. The layout
returned to the client might not exactly match the requested byte-
range as described in Section 18.43.3. As needed a client may send
multiple LAYOUTGET operations; these might result in multiple
overlapping, non-conflicting layouts (see Section 12.2.8).

In order to get a layout, the client must first have opened the file
via the OPEN operation. When a client has no layout on a file, it
MUST present an open stateid, a delegation stateid, or a byte-range
lock stateid in the loga_stateid argument. A successful LAYOUTGET
result includes a layout stateid. The first successful LAYOUTGET
processed by the server using a non-layout stateid as an argument
MUST have the "seqgid" field of the layout stateid in the response set
to one. Thereafter, the client MUST use a layout stateid (see
Section 12.5.3) on future invocations of LAYOUTGET on the file, and
the "segid" MUST NOT be set to zero. Once the layout has been
retrieved, it can be held across multiple OPEN and CLOSE sequences.
Therefore, a client may hold a layout for a file that is not
currently open by any user on the client. This allows for the
caching of layouts beyond CLOSE.

The storage protocol used by the client to access the data on the
storage device is determined by the layout’s type. The client is
responsible for matching the layout type with an available method to
interpret and use the layout. The method for this layout type
selection is outside the scope of the pNFS functionality.

Although the metadata server is in control of the layout for a file,
the pNFS client can provide hints to the server when a file is opened
or created about the preferred layout type and aggregation schemes.
PNFS introduces a layout_hint attribute (Section 5.12.4) that the
client can set at file creation time to provide a hint to the server
for new files. Setting this attribute separately, after the file has
been created might make it difficult, or impossible, for the server
implementation to comply.

Because the EXCLUSIVE4 createmode4 does not allow the setting of
attributes at file creation time, NFSv4.1 introduces the EXCLUSIVE4_1
createmoded4, which does allow attributes to be set at file creation
time. In addition, if the session is created with persistent reply
caches, EXCLUSIVE4_1 is neither necessary nor allowed. Instead,
GUARDED4 both works better and is prescribed. Table 18 in

Section 18.16.3 summarizes how a client is allowed to send an
exclusive create.

5.3. Layout Stateid

12.

As with all other stateids, the layout stateid consists of a "segid"
and "other" field. Once a layout stateid is established, the "other"
field will stay constant unless the stateid is revoked or the client
returns all layouts on the file and the server disposes of the
stateid. The "seqgid" field is initially set to one, and is never
zero on any NFSv4.1l operation that uses layout stateids, whether it
is a fore channel or backchannel operation. After the layout stateid
is established, the server increments by one the value of the "seqgid"
in each subsequent LAYOUTGET and LAYOUTRETURN response, and in each
CB_LAYOUTRECALL request.

Given the design goal of pNFS to provide parallelism, the layout
stateid differs from other stateid types in that the client is
expected to send LAYOUTGET and LAYOUTRETURN operations in parallel.
The "seqgid" value is used by the client to properly sort responses to
LAYOUTGET and LAYOUTRETURN. The "seqgid" is also used to prevent race
conditions between LAYOUTGET and CB_LAYOUTRECALL. Given that the
processing rules differ from layout stateids and other stateid types,
only the pNFS sections of this document should be considered to
determine proper layout stateid handling.

Once the client receives a layout stateid, it MUST use the correct
"seqid" for subsequent LAYOUTGET or LAYOUTRETURN operations. The
correct "seqid" is defined as the highest "seqgid" value from
responses of fully processed LAYOUTGET or LAYOUTRETURN operations or
arguments of a fully processed CB_LAYOUTRECALL operation. Since the
server is incrementing the "seqgid" value on each layout operation,
the client may determine the order of operation processing by
inspecting the "seqgid" wvalue. In the case of overlapping layout
ranges, the ordering information will provide the client the
knowledge of which layout ranges are held. Note that overlapping
layout ranges may occur because of the client’s specific requests or
because the server is allowed to expand the range of a requested
layout and notify the client in the LAYOUTRETURN results. Additional
layout stateid sequencing requirements are provided in

Section 12.5.5.2.

The client’s receipt of a "seqgid" is not sufficient for subsequent
use. The client must fully process the operations before the "seqgid"
can be used. For LAYOUTGET results, if the client is not using the
forgetful model (Section 12.5.5.1), it MUST first update its record
of what ranges of the file’s layout it has before using the seqgid.
For LAYOUTRETURN results, the client MUST delete the range from its
record of what ranges of the file’s layout it had before using the
seqid. For CB_LAYOUTRECALL arguments, the client MUST send a
response to the recall before using the segid. The fundamental
requirement in client processing is that the "seqgid" is used to
provide the order of processing. LAYOUTGET results may be processed
in parallel. LAYOUTRETURN results may be processed in parallel.
LAYOUTGET and LAYOUTRETURN responses may be processed in parallel as
long as the ranges do not overlap. CB_LAYOUTRECALL request
processing MUST be processed in "seqgid" order at all times.

Once a client has no more layouts on a file, the layout stateid is no
longer valid and MUST NOT be used. Any attempt to use such a layout
stateid will result in NFS4ERR_BAD_STATEID.

5.4. Committing a Layout

Allowing for varying storage protocol capabilities, the pNFS protocol
does not require the metadata server and storage devices to have a
consistent view of file attributes and data location mappings. Data
location mapping refers to aspects such as which offsets store data
as opposed to storing holes (see Section 13.4.4 for a discussion).
Related issues arise for storage protocols where a layout may hold
provisionally allocated blocks where the allocation of those blocks
does not survive a complete restart of both the client and server.
Because of this inconsistency, it is necessary to resynchronize the
client with the metadata server and its storage devices and make any
potential changes available to other clients. This is accomplished

12.

12.

by use of the LAYOUTCOMMIT operation.

The LAYOUTCOMMIT operation is responsible for committing a modified
layout to the metadata server. The data should be written and
committed to the appropriate storage devices before the LAYOUTCOMMIT
occurs. The scope of the LAYOUTCOMMIT operation depends on the
storage protocol in use. It is important to note that the level of
synchronization is from the point of view of the client that sent the
LAYOUTCOMMIT. The updated state on the metadata server need only
reflect the state as of the client’s last operation previous to the
LAYOUTCOMMIT. The metadata server is not REQUIRED to maintain a
global view that accounts for other clients’ I/0 that may have
occurred within the same time frame.

For block/volume-based layouts, LAYOUTCOMMIT may require updating the
block list that comprises the file and committing this layout to
stable storage. For file-based layouts, synchronization of
attributes between the metadata and storage devices, primarily the
size attribute, is required.

The control protocol is free to synchronize the attributes before it
receives a LAYOUTCOMMIT; however, upon successful completion of a
LAYOUTCOMMIT, state that exists on the metadata server that describes
the file MUST be synchronized with the state that exists on the
storage devices that comprise that file as of the client’s last sent
operation. Thus, a client that queries the size of a file between a
WRITE to a storage device and the LAYOUTCOMMIT might observe a size
that does not reflect the actual data written.

The client MUST have a layout in order to send a LAYOUTCOMMIT
operation.

5.4.1. LAYOUTCOMMIT and change/time_modify

The change and time_modify attributes may be updated by the server
when the LAYOUTCOMMIT operation is processed. The reason for this is
that some layout types do not support the update of these attributes
when the storage devices process I/0 operations. If a client has a
layout with the LAYOUTIOMODE4_RW iomode on the file, the client MAY
provide a suggested value to the server for time_modify within the
arguments to LAYOUTCOMMIT. Based on the layout type, the provided
value may or may not be used. The server should sanity-check the
client-provided values before they are used. For example, the server
should ensure that time does not flow backwards. The client always
has the option to set time_modify through an explicit SETATTR
operation.

For some layout protocols, the storage device is able to notify the
metadata server of the occurrence of an I/0; as a result, the change
and time_modify attributes may be updated at the metadata server.
For a metadata server that is capable of monitoring updates to the
change and time_modify attributes, LAYOUTCOMMIT processing is not
required to update the change attribute. In this case, the metadata
server must ensure that no further update to the data has occurred
since the last update of the attributes; file-based protocols may
have enough information to make this determination or may update the
change attribute upon each file modification. This also applies for
the time_modify attribute. If the server implementation is able to
determine that the file has not been modified since the last
time_modify update, the server need not update time_modify at
LAYOUTCOMMIT. At LAYOUTCOMMIT completion, the updated attributes
should be visible if that file was modified since the latest previous
LAYOUTCOMMIT or LAYOUTGET.

5.4.2. LAYOUTCOMMIT and size

The size of a file may be updated when the LAYOUTCOMMIT operation is
used by the client. One of the fields in the argument to
LAYOUTCOMMIT is loca_last_write_offset; this field indicates the
highest byte offset written but not yet committed with the
LAYOUTCOMMIT operation. The data type of loca_last_write_offset is

12.

12.

newoffset4 and is switched on a boolean value, no_newoffset, that
indicates if a previous write occurred or not. If no_newoffset is
FALSE, an offset is not given. If the client has a layout with
LAYOUTIOMODE4_RW iomode on the file, with a byte-range (denoted by
the values of lo_offset and lo_length) that overlaps
loca_last_write_offset, then the client MAY set no_newoffset to TRUE
and provide an offset that will update the file size. Keep in mind
that offset is not the same as length, though they are related. For
example, a loca_last_write_offset value of zero means that one byte
was written at offset zero, and so the length of the file is at least
one byte.

The metadata server may do one of the following:

1. Update the file’s size using the last write offset provided by
the client as either the true file size or as a hint of the file
size. If the metadata server has a method available, any new
value for file size should be sanity-checked. For example, the
file must not be truncated if the client presents a last write
offset less than the file’s current size.

2. Ignore the client-provided last write offset; the metadata server
must have sufficient knowledge from other sources to determine
the file’s size. For example, the metadata server queries the
storage devices with the control protocol.

The method chosen to update the file’s size will depend on the
storage device’s and/or the control protocol’s capabilities. For
example, if the storage devices are block devices with no knowledge
of file size, the metadata server must rely on the client to set the
last write offset appropriately.

The results of LAYOUTCOMMIT contain a new size value in the form of a
newsize4 union data type. If the file’s size is set as a result of
LAYOUTCOMMIT, the metadata server must reply with the new size;
otherwise, the new size is not provided. If the file size is
updated, the metadata server SHOULD update the storage devices such
that the new file size is reflected when LAYOUTCOMMIT processing is
complete. For example, the client should be able to read up to the
new file size.

The client can extend the length of a file or truncate a file by
sending a SETATTR operation to the metadata server with the size
attribute specified. TIf the size specified is larger than the
current size of the file, the file is "zero extended", i.e., zeros
are implicitly added between the file’s previous EOF and the new EOF.
(In many implementations, the zero-extended byte-range of the file
consists of unallocated holes in the file.) When the client writes
past EOF via WRITE, the SETATTR operation does not need to be used.

5.4.3. LAYOUTCOMMIT and layoutupdate

The LAYOUTCOMMIT argument contains a loca_layoutupdate field
(Section 18.42.1) of data type layoutupdate4 (Section 3.3.18). This
argument is a layout-type-specific structure. The structure can be
used to pass arbitrary layout-type-specific information from the
client to the metadata server at LAYOUTCOMMIT time. For example, if
using a block/volume layout, the client can indicate to the metadata
server which reserved or allocated blocks the client used or did not
use. The content of loca_layoutupdate (field lou_body) need not be
the same layout-type-specific content returned by LAYOUTGET

(Section 18.43.2) in the loc_body field of the lo_content field of
the logr_layout field. The content of loca_layoutupdate is defined
by the layout type specification and is opaque to LAYOUTCOMMIT.

5.5. Recalling a Layout

Since a layout protects a client’s access to a file via a direct
client-storage—-device path, a layout need only be recalled when it is
semantically unable to serve this function. Typically, this occurs
when the layout no longer encapsulates the true location of the file

12.

over the byte-range it represents. Any operation or action, such as
server—driven restriping or load balancing, that changes the layout
will result in a recall of the layout. A layout is recalled by the
CB_LAYOUTRECALL callback operation (see Section 20.3) and returned
with LAYOUTRETURN (see Section 18.44). The CB_LAYOUTRECALL operation
may recall a layout identified by a byte-range, all layouts
associated with a file system ID (FSID), or all layouts associated
with a client ID. Section 12.5.5.2 discusses sequencing issues
surrounding the getting, returning, and recalling of layouts.

An iomode is also specified when recalling a layout. Generally, the
iomode in the recall request must match the layout being returned;
for example, a recall with an iomode of LAYOUTIOMODE4_RW should cause
the client to only return LAYOUTIOMODE4_RW layouts and not
LAYOUTIOMODE4_READ layouts. However, a special LAYOUTIOMODE4_ANY
enumeration is defined to enable recalling a layout of any iomode; in
other words, the client must return both LAYOUTIOMODE4_READ and
LAYOUTIOMODE4_RW layouts.

A REMOVE operation SHOULD cause the metadata server to recall the
layout to prevent the client from accessing a non-existent file and
to reclaim state stored on the client. Since a REMOVE may be delayed
until the last close of the file has occurred, the recall may also be
delayed until this time. After the last reference on the file has
been released and the file has been removed, the client should no
longer be able to perform I/0 using the layout. In the case of a
file-based layout, the data server SHOULD return NFS4ERR_STALE in
response to any operation on the removed file.

Once a layout has been returned, the client MUST NOT send I/0s to the
storage devices for the file, byte-range, and iomode represented by
the returned layout. If a client does send an I/0 to a storage
device for which it does not hold a layout, the storage device SHOULD
reject the I/O.

Although pNFS does not alter the file data caching capabilities of
clients, or their semantics, it recognizes that some clients may
perform more aggressive write-behind caching to optimize the benefits
provided by pNFS. However, write-behind caching may negatively
affect the latency in returning a layout in response to a
CB_LAYOUTRECALL; this is similar to file delegations and the impact
that file data caching has on DELEGRETURN. Client implementations
SHOULD limit the amount of unwritten data they have outstanding at
any one time in order to prevent excessively long responses to
CB_LAYOUTRECALL. Once a layout is recalled, a server MUST wait one
lease period before taking further action. As soon as a lease period
has passed, the server may choose to fence the client’s access to the
storage devices if the server perceives the client has taken too long
to return a layout. However, just as in the case of data delegation
and DELEGRETURN, the server may choose to wait, given that the client
is showing forward progress on its way to returning the layout. This
forward progress can take the form of successful interaction with the
storage devices or of sub-portions of the layout being returned by
the client. The server can also limit exposure to these problems by
limiting the byte-ranges initially provided in the layouts and thus
the amount of outstanding modified data.

5.5.1. Layout Recall Callback Robustness

It has been assumed thus far that pNFS client state (layout ranges
and iomode) for a file exactly matches that of the pNFS server for
that file. This assumption leads to the implication that any
callback results in a LAYOUTRETURN or set of LAYOUTRETURNs that
exactly match the range in the callback, since both client and server
agree about the state being maintained. However, it can be useful if
this assumption does not always hold. For example:

* TIf conflicts that require callbacks are very rare, and a server
can use a multi-file callback to recover per-client resources
(e.g., via an FSID recall or a multi-file recall within a single
CB_COMPOUND), the result may be significantly less client-server

PNFS traffic.

* It may be useful for servers to maintain information about what
ranges are held by a client on a coarse—grained basis, leading to
the server’s layout ranges being beyond those actually held by the
client. In the extreme, a server could manage conflicts on a per-—
file basis, only sending whole-file callbacks even though clients
may request and be granted sub-file ranges.

* It may be useful for clients to "forget" details about what
layouts and ranges the client actually has, leading to the
server’s layout ranges being beyond those that the client "thinks"
it has. As long as the client does not assume it has layouts that
are beyond what the server has granted, this is a safe practice.
When a client forgets what ranges and layouts it has, and it
receives a CB_LAYOUTRECALL operation, the client MUST follow up
with a LAYOUTRETURN for what the server recalled, or alternatively
return the NFS4ERR_NOMATCHING_LAYOUT error if it has no layout to
return in the recalled range.

* In order to avoid errors, it is vital that a client not assign
itself layout permissions beyond what the server has granted, and
that the server not forget layout permissions that have been
granted. On the other hand, if a server believes that a client
holds a layout that the client does not know about, it is useful
for the client to cleanly indicate completion of the requested
recall either by sending a LAYOUTRETURN operation for the entire
requested range or by returning an NFS4ERR_NOMATCHING_LAYOUT error
to the CB_LAYOUTRECALL.

Thus, in light of the above, it is useful for a server to be able to
send callbacks for layout ranges it has not granted to a client, and
for a client to return ranges it does not hold. A pNFS client MUST
always return layouts that comprise the full range specified by the
recall. Note, the full recalled layout range need not be returned as
part of a single operation, but may be returned in portions. This
allows the client to stage the flushing of dirty data and commits and
returns of layouts. Also, it indicates to the metadata server that
the client is making progress.

When a layout is returned, the client MUST NOT have any outstanding
I/0 requests to the storage devices involved in the layout.
Rephrasing, the client MUST NOT return the layout while it has
outstanding I/0 requests to the storage device.

Even with this requirement for the client, it is possible that I/O
requests may be presented to a storage device no longer allowed to
perform them. Since the server has no strict control as to when the
client will return the layout, the server may later decide to
unilaterally revoke the client’s access to the storage devices as
provided by the layout. In choosing to revoke access, the server
must deal with the possibility of lingering I/O requests, i.e., I/O
requests that are still in flight to storage devices identified by
the revoked layout. All layout type specifications MUST define
whether unilateral layout revocation by the metadata server is
supported; if it is, the specification must also describe how
lingering writes are processed. For example, storage devices
identified by the revoked layout could be fenced off from the client
that held the layout.

In order to ensure client/server convergence with regard to layout
state, the final LAYOUTRETURN operation in a sequence of LAYOUTRETURN
operations for a particular recall MUST specify the entire range
being recalled, echoing the recalled layout type, iomode, recall/
return type (FILE, FSID, or ALL), and byte-range, even if layouts
pertaining to partial ranges were previously returned. In addition,
if the client holds no layouts that overlap the range being recalled,
the client should return the NFS4ERR_NOMATCHING_LAYOUT error code to
CB_LAYOUTRECALL. This allows the server to update its view of the
client’s layout state.

12.

12.

12.

5.5.2. Sequencing of Layout Operations

As with other stateful operations, pNFS requires the correct
sequencing of layout operations. pNFS uses the "seqgid" in the layout
stateid to provide the correct sequencing between regular operations
and callbacks. It is the server’s responsibility to avoid
inconsistencies regarding the layouts provided and the client’s
responsibility to properly serialize its layout requests and layout
returns.

5.5.2.1. Layout Recall and Return Sequencing

One critical issue with regard to layout operations sequencing
concerns callbacks. The protocol must defend against races between
the reply to a LAYOUTGET or LAYOUTRETURN operation and a subsequent
CB_LAYOUTRECALL. A client MUST NOT process a CB_LAYOUTRECALL that
implies one or more outstanding LAYOUTGET or LAYOUTRETURN operations
to which the client has not yet received a reply. The client detects
such a CB_LAYOUTRECALL by examining the "seqgid" field of the recall’s
layout stateid. TIf the "segid" is not exactly one higher than what
the client currently has recorded, and the client has at least one
LAYOUTGET and/or LAYOUTRETURN operation outstanding, the client knows
the server sent the CB_LAYOUTRECALL after sending a response to an
outstanding LAYOUTGET or LAYOUTRETURN. The client MUST wait before
processing such a CB_LAYOUTRECALL until it processes all replies for
outstanding LAYOUTGET and LAYOUTRETURN operations for the
corresponding file with seqgid less than the segid given by
CB_LAYOUTRECALL (lor_stateid; see Section 20.3.)

In addition to the segid-based mechanism, Section 2.10.6.3 describes
the sessions mechanism for allowing the client to detect callback
race conditions and delay processing such a CB_LAYOUTRECALL. The
server MAY reference conflicting operations in the CB_SEQUENCE that
precedes the CB_LAYOUTRECALL. Because the server has already sent
replies for these operations before sending the callback, the replies
may race with the CB_LAYOUTRECALL. The client MUST wait for all the
referenced calls to complete and update its view of the layout state
before processing the CB_LAYOUTRECALL.

5.5.2.1.1. Get/Return Sequencing

The protocol allows the client to send concurrent LAYOUTGET and
LAYOUTRETURN operations to the server. The protocol does not provide
any means for the server to process the requests in the same order in
which they were created. However, through the use of the "segid"
field in the layout stateid, the client can determine the order in
which parallel outstanding operations were processed by the server.
Thus, when a layout retrieved by an outstanding LAYOUTGET operation
intersects with a layout returned by an outstanding LAYOUTRETURN on
the same file, the order in which the two conflicting operations are
processed determines the final state of the overlapping layout. The
order is determined by the "seqid" returned in each operation: the
operation with the higher segid was executed later.

It is permissible for the client to send multiple parallel LAYOUTGET
operations for the same file or multiple parallel LAYOUTRETURN
operations for the same file or a mix of both.

It is permissible for the client to use the current stateid (see
Section 16.2.3.1.2) for LAYOUTGET operations, for example, when
compounding LAYOUTGETs or compounding OPEN and LAYOUTGETs. It is
also permissible to use the current stateid when compounding
LAYOUTRETURNSs.

It is permissible for the client to use the current stateid when
combining LAYOUTRETURN and LAYOUTGET operations for the same file in
the same COMPOUND request since the server MUST process these in
order. However, if a client does send such COMPOUND requests, it
MUST NOT have more than one outstanding for the same file at the same
time, and it MUST NOT have other LAYOUTGET or LAYOUTRETURN operations
outstanding at the same time for that same file.

12.

12.

5.5.2.1.2. Client Considerations

Consider a pNFS client that has sent a LAYOUTGET, and before it
receives the reply to LAYOUTGET, it receives a CB_LAYOUTRECALL for
the same file with an overlapping range. There are two
possibilities, which the client can distinguish via the layout
stateid in the recall.

1. The server processed the LAYOUTGET before sending the recall, so
the LAYOUTGET must be waited for because it may be carrying
layout information that will need to be returned to deal with the
CB_LAYOUTRECALL.

2. The server sent the callback before receiving the LAYOUTGET. The
server will not respond to the LAYOUTGET until the
CB_LAYOUTRECALL is processed.

If these possibilities cannot be distinguished, a deadlock could
result, as the client must wait for the LAYOUTGET response before
processing the recall in the first case, but that response will not
arrive until after the recall is processed in the second case. Note
that in the first case, the "seqgid" in the layout stateid of the
recall is two greater than what the client has recorded; in the
second case, the "seqid" is one greater than what the client has
recorded. This allows the client to disambiguate between the two
cases. The client thus knows precisely which possibility applies.

In case 1, the client knows it needs to wait for the LAYOUTGET
response before processing the recall (or the client can return
NFS4ERR_DELAY) .

In case 2, the client will not wait for the LAYOUTGET response before
processing the recall because waiting would cause deadlock.
Therefore, the action at the client will only require waiting in the
case that the client has not yet seen the server’s earlier responses
to the LAYOUTGET operation(s).

The recall process can be considered completed when the final
LAYOUTRETURN operation for the recalled range is completed. The
LAYOUTRETURN uses the layout stateid (with seqgid) specified in
CB_LAYOUTRECALL. If the client uses multiple LAYOUTRETURNs in
processing the recall, the first LAYOUTRETURN will use the layout
stateid as specified in CB_LAYOUTRECALL. Subsequent LAYOUTRETURNSs
will use the highest segid as is the usual case.

5.5.2.1.3. Server Considerations

Consider a race from the metadata server’s point of view. The
metadata server has sent a CB_LAYOUTRECALL and receives an
overlapping LAYOUTGET for the same file before the LAYOUTRETURN(s)
that respond to the CB_LAYOUTRECALL. There are three cases:

1. The client sent the LAYOUTGET before processing the
CB_LAYOUTRECALL. The "seqgid" in the layout stateid of the
arguments of LAYOUTGET is one less than the "segid" in
CB_LAYOUTRECALL. The server returns NFS4ERR_RECALLCONFLICT to
the client, which indicates to the client that there is a pending
recall.

2. The client sent the LAYOUTGET after processing the
CB_LAYOUTRECALL, but the LAYOUTGET arrived before the
LAYOUTRETURN and the response to CB_LAYOUTRECALL that completed
that processing. The "seqgid" in the layout stateid of LAYOUTGET
is equal to or greater than that of the "seqgid" in
CB_LAYOUTRECALL. The server has not received a response to the
CB_LAYOUTRECALL, so it returns NFS4ERR_RECALLCONFLICT.

3. The client sent the LAYOUTGET after processing the
CB_LAYOUTRECALL; the server received the CB_LAYOUTRECALL
response, but the LAYOUTGET arrived before the LAYOUTRETURN that

12.

12.

completed that processing. The "seqgid" in the layout stateid of
LAYOUTGET is equal to that of the "seqgid" in CB_LAYOUTRECALL.
The server has received a response to the CB_LAYOUTRECALL, so it
returns NFS4ERR_RETURNCONFLICT.

5.5.2.1.4. Wraparound and Validation of Seqgid

The rules for layout stateid processing differ from other stateids in
the protocol because the "seqid" value cannot be zero and the
stateid’s "seqgid" wvalue changes in a CB_LAYOUTRECALL operation. The
non-zero requirement combined with the inherent parallelism of layout
operations means that a set of LAYOUTGET and LAYOUTRETURN operations

may contain the same value for "seqgid". The server uses a slightly
modified version of the modulo arithmetic as described in
Section 2.10.6.1 when incrementing the layout stateid’s "seqgid". The

difference is that zero is not a valid wvalue for "seqgid"; when the
value of a "segid" is OxFFFFFFFF, the next valid value will be
0x00000001. The modulo arithmetic is also used for the comparisons
of "segid" values in the processing of CB_LAYOUTRECALL events as
described above in Section 12.5.5.2.1.3.

Just as the server validates the "seqgid" in the event of
CB_LAYOUTRECALL usage, as described in Section 12.5.5.2.1.3, the
server also validates the "seqgid" value to ensure that it is within
an appropriate range. This range represents the degree of
parallelism the server supports for layout stateids. If the client
is sending multiple layout operations to the server in parallel, by
definition, the "seqgid" value in the supplied stateid will not be the
current "seqgid" as held by the server. The range of parallelism
spans from the highest or current "seqgid" to a "seqgid" wvalue in the
past. To assist in the discussion, the server’s current "seqgid"
value for a layout stateid is defined as SERVER_CURRENT_SEQID. The
lowest "seqgid" value that is acceptable to the server is represented
by PAST_SEQID. And the value for the range of valid "seqgid"s or
range of parallelism is VALID_SEQID_RANGE. Therefore, the following
holds: VALID_SEQID_RANGE = SERVER_CURRENT_SEQID - PAST_SEQID. In the
following, all arithmetic is the modulo arithmetic as described
above.

The server MUST support a minimum VALID_SEQID_RANGE. The minimum is
defined as: VALID_SEQID_RANGE = summation over 1..N of
(ca_maxoperations (i) - 1), where N is the number of session fore
channels and ca_maxoperations (i) is the value of the ca_maxoperations
returned from CREATE_SESSION of the i’th session. The reason for "-
1" is to allow for the required SEQUENCE operation. The server MAY
support a VALID_SEQID_RANGE value larger than the minimum. The
maximum VALID_SEQID_RANGE is (27(32) - 2) (accounting for zero not
being a valid "seqgid" value).

If the server finds the "seqid" is zero, the NFS4ERR_BAD_STATEID
error is returned to the client. The server further validates the
"segid" to ensure it is within the range of parallelism,
VALID_SEQID_RANGE. If the "seqgid" value is outside of that range,
the error NFS4ERR_OLD_STATEID is returned to the client. Upon
receipt of NFS4ERR_OLD_STATEID, the client updates the stateid in the
layout request based on processing of other layout requests and re-
sends the operation to the server.

5.5.2.1.5. Bulk Recall and Return

PNFS supports recalling and returning all layouts that are for files
belonging to a particular fsid (LAYOUTRECALL4_FSID,
LAYOUTRETURN4_FSID) or client ID (LAYOUTRECALL4_ALL,
LAYOUTRETURN4_ALL). There are no "bulk" stateids, so detection of
races via the segid is not possible. The server MUST NOT initiate
bulk recall while another recall is in progress, or the corresponding
LAYOUTRETURN is in progress or pending. In the event the server
sends a bulk recall while the client has a pending or in-progress
LAYOUTRETURN, CB_LAYOUTRECALL, or LAYOUTGET, the client returns
NFS4ERR_DELAY. In the event the client sends a LAYOUTGET or
LAYOUTRETURN while a bulk recall is in progress, the server returns

12.

12.

12.

NFS4ERR_RECALLCONFLICT. If the client sends a LAYOUTGET or
LAYOUTRETURN after the server receives NFS4ERR_DELAY from a bulk
recall, then to ensure forward progress, the server MAY return
NFS4ERR_RECALLCONFLICT.

Once a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL is sent, the server MUST
NOT allow the client to use any layout stateid except for
LAYOUTCOMMIT operations. Once the client receives a CB_LAYOUTRECALL
of LAYOUTRECALL4_ALL, it MUST NOT use any layout stateid except for
LAYOUTCOMMIT operations. Once a LAYOUTRETURN of LAYOUTRETURN4_ALL is
sent, all layout stateids granted to the client ID are freed. The
client MUST NOT use the layout stateids again. It MUST use LAYOUTGET
to obtain new layout stateids.

Once a CB_LAYOUTRECALL of LAYOUTRECALL4_FSID is sent, the server MUST
NOT allow the client to use any layout stateid that refers to a file
with the specified fsid except for LAYOUTCOMMIT operations. Once the
client receives a CB_LAYOUTRECALL of LAYOUTRECALL4_ALL, it MUST NOT
use any layout stateid that refers to a file with the specified fsid
except for LAYOUTCOMMIT operations. Once a LAYOUTRETURN of
LAYOUTRETURN4_FSID is sent, all layout stateids granted to the
referenced fsid are freed. The client MUST NOT use those freed
layout stateids for files with the referenced fsid again.
Subsequently, for any file with the referenced fsid, to use a layout,
the client MUST first send a LAYOUTGET operation in order to obtain a
new layout stateid for that file.

If the server has sent a bulk CB_LAYOUTRECALL and receives a
LAYOUTGET, or a LAYOUTRETURN with a stateid, the server MUST return
NFS4ERR_RECALLCONFLICT. If the server has sent a bulk
CB_LAYOUTRECALL and receives a LAYOUTRETURN with an lr_returntype
that is not equal to the lor_recalltype of the CB_LAYOUTRECALL, the
server MUST return NFS4ERR_RECALLCONFLICT.

5.6. Revoking Layouts

Parallel NFS permits servers to revoke layouts from clients that fail
to respond to recalls and/or fail to renew their lease in time.
Depending on the layout type, the server might revoke the layout and
might take certain actions with respect to the client’s I/O to data
servers.

5.7. Metadata Server Write Propagation

Asynchronous writes written through the metadata server may be
propagated lazily to the storage devices. For data written
asynchronously through the metadata server, a client performing a
read at the appropriate storage device is not guaranteed to see the
newly written data until a COMMIT occurs at the metadata server.
While the write is pending, reads to the storage device may give out
either the old data, the new data, or a mixture of new and old. Upon
completion of a synchronous WRITE or COMMIT (for asynchronously
written data), the metadata server MUST ensure that storage devices
give out the new data and that the data has been written to stable
storage. If the server implements its storage in any way such that
it cannot obey these constraints, then it MUST recall the layouts to
prevent reads being done that cannot be handled correctly. Note that
the layouts MUST be recalled prior to the server responding to the
associated WRITE operations.

6. PNFS Mechanics

This section describes the operations flow taken by a pNFS client to
a metadata server and storage device.

When a pNFS client encounters a new FSID, it sends a GETATTR to the
NFSv4.1l server for the fs_layout_type (Section 5.12.1) attribute. If
the attribute returns at least one layout type, and the layout types
returned are among the set supported by the client, the client knows
that pNFS is a possibility for the file system. If, from the server
that returned the new FSID, the client does not have a client ID that

12.

12.

came from an EXCHANGE_ID result that returned
EXCHGID4_FLAG_USE_PNFS_MDS, it MUST send an EXCHANGE_ID to the server
with the EXCHGID4_FLAG_USE_PNFS_MDS bit set. If the server’s
response does not have EXCHGID4_FLAG_USE_PNFS_MDS, then contrary to
what the fs_layout_type attribute said, the server does not support
PNFS, and the client will not be able use pNFS to that server; in
this case, the server MUST return NFS4ERR_NOTSUPP in response to any
PNFS operation.

The client then creates a session, requesting a persistent session,
so that exclusive creates can be done with single round trip via the
createmode4 of GUARDED4. TIf the session ends up not being
persistent, the client will use EXCLUSIVE4_1 for exclusive creates.

If a file is to be created on a pNFS-enabled file system, the client
uses the OPEN operation. With the normal set of attributes that may
be provided upon OPEN used for creation, there is an OPTIONAL
layout_hint attribute. The client’s use of layout_hint allows the
client to express its preference for a layout type and its associated
layout details. The use of a createmode4 of UNCHECKED4, GUARDED4, or
EXCLUSIVE4_1 will allow the client to provide the layout_hint
attribute at create time. The client MUST NOT use EXCLUSIVE4 (see
Table 18). The client is RECOMMENDED to combine a GETATTR operation
after the OPEN within the same COMPOUND. The GETATTR may then
retrieve the layout_type attribute for the newly created file. The
client will then know what layout type the server has chosen for the
file and therefore what storage protocol the client must use.

If the client wants to open an existing file, then it also includes a
GETATTR to determine what layout type the file supports.

The GETATTR in either the file creation or plain file open case can
also include the layout_blksize and layout_alignment attributes so
that the client can determine optimal offsets and lengths for I/0 on
the file.

Assuming the client supports the layout type returned by GETATTR and
it chooses to use pNFS for data access, it then sends LAYOUTGET using
the filehandle and stateid returned by OPEN, specifying the range it
wants to do I/O on. The response is a layout, which may be a subset
of the range for which the client asked. It also includes device IDs
and a description of how data is organized (or in the case of
writing, how data is to be organized) across the devices. The device
IDs and data description are encoded in a format that is specific to
the layout type, but the client is expected to understand.

When the client wants to send an I/0, it determines to which device
ID it needs to send the I/0 command by examining the data description
in the layout. It then sends a GETDEVICEINFO to find the device
address (es) of the device ID. The client then sends the I/0O request
to one of device ID’s device addresses, using the storage protocol
defined for the layout type. Note that if a client has multiple I/Os
to send, these I/0O requests may be done in parallel.

If the I/0 was a WRITE, then at some point the client may want to use
LAYOUTCOMMIT to commit the modification time and the new size of the
file (if it believes it extended the file size) to the metadata
server and the modified data to the file system.

7. Recovery

Recovery is complicated by the distributed nature of the pNFS
protocol. In general, crash recovery for layouts is similar to crash
recovery for delegations in the base NFSv4.l1l protocol. However, the
client’s ability to perform I/O without contacting the metadata
server introduces subtleties that must be handled correctly if the
possibility of file system corruption is to be avoided.

7.1. Recovery from Client Restart

Client recovery for layouts is similar to client recovery for other

12.

12.

lock and delegation state. When a pNFS client restarts, it will lose
all information about the layouts that it previously owned. There
are two methods by which the server can reclaim these resources and
allow otherwise conflicting layouts to be provided to other clients.

The first is through the expiry of the client’s lease. If the client
recovery time is longer than the lease period, the client’s lease
will expire and the server will know that state may be released. For
layouts, the server may release the state immediately upon lease
expiry or it may allow the layout to persist, awaiting possible lease
revival, as long as no other layout conflicts.

The second is through the client restarting in less time than it
takes for the lease period to expire. In such a case, the client
will contact the server through the standard EXCHANGE_ID protocol.
The server will find that the client’s co_ownerid matches the
co_ownerid of the previous client invocation, but that the verifier
is different. The server uses this as a signal to release all layout
state associated with the client’s previous invocation. In this
scenario, the data written by the client but not covered by a
successful LAYOUTCOMMIT is in an undefined state; it may have been
written or it may now be lost. This is acceptable behavior and it is
the client’s responsibility to use LAYOUTCOMMIT to achieve the
desired level of stability.

7.2. Dealing with Lease Expiration on the Client

If a client believes its lease has expired, it MUST NOT send I/O to
the storage device until it has validated its lease. The client can
send a SEQUENCE operation to the metadata server. If the SEQUENCE
operation is successful, but sr_status_flag has
SEQ4_STATUS_EXPIRED_ALI_STATE_REVOKED,
SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, or
SEQ4_STATUS_ADMIN_STATE_REVOKED set, the client MUST NOT use
currently held layouts. The client has two choices to recover from
the lease expiration. First, for all modified but uncommitted data,
the client writes it to the metadata server using the FILE_SYNC4 flag
for the WRITEs, or WRITE and COMMIT. Second, the client re-
establishes a client ID and session with the server and obtains new
layouts and device-ID-to-device-address mappings for the modified
data ranges and then writes the data to the storage devices with the
newly obtained layouts.

If sr_status_flags from the metadata server has
SEQ4_STATUS_RESTART_RECLAIM NEEDED set (or SEQUENCE returns
NFS4ERR_BAD_SESSION and CREATE_SESSION returns
NFS4ERR_STALE_CLIENTID), then the metadata server has restarted, and
the client SHOULD recover using the methods described in

Section 12.7.4.

If sr_status_flags from the metadata server has
SEQ4_STATUS_LEASE_MOVED set, then the client recovers by following
the procedure described in Section 11.11.9.2. After that, the client
may get an indication that the layout state was not moved with the
file system. The client recovers as in the other applicable
situations discussed in the first two paragraphs of this section.

If sr_status_flags reports no loss of state, then the lease for the
layouts that the client has are valid and renewed, and the client can
once again send I/O requests to the storage devices.

While clients SHOULD NOT send I/Os to storage devices that may extend
past the lease expiration time period, this is not always possible,
for example, an extended network partition that starts after the I/O
is sent and does not heal until the I/O request is received by the

storage device. Thus, the metadata server and/or storage devices are
responsible for protecting themselves from I/Os that are both sent
before the lease expires and arrive after the lease expires. See

Section 12.7.3.

7.3. Dealing with Loss of Layout State on the Metadata Server

12.

This is a description of the case where all of the following are
true:

* the metadata server has not restarted

* a pNFS client’s layouts have been discarded (usually because the
client’s lease expired) and are invalid

* an I/O from the pNFS client arrives at the storage device

The metadata server and its storage devices MUST solve this by
fencing the client. In other words, they MUST solve this by
preventing the execution of I/0 operations from the client to the
storage devices after layout state loss. The details of how fencing
is done are specific to the layout type. The solution for NFSv4.1l
file-based layouts is described in (Section 13.11), and solutions for
other layout types are in their respective external specification
documents.

7.4. Recovery from Metadata Server Restart

The pNFS client will discover that the metadata server has restarted
via the methods described in Section 8.4.2 and discussed in a pNFS-
specific context in Section 12.7.2, Paragraph 2. The client MUST
stop using layouts and delete the device ID to device address
mappings it previously received from the metadata server. Having
done that, if the client wrote data to the storage device without
committing the layouts via LAYOUTCOMMIT, then the client has
additional work to do in order to have the client, metadata server,
and storage device(s) all synchronized on the state of the data.

* TIf the client has data still modified and unwritten in the
client’s memory, the client has only two choices.

1. The client can obtain a layout via LAYOUTGET after the
server’s grace period and write the data to the storage
devices.

2. The client can WRITE that data through the metadata server
using the WRITE (Section 18.32) operation, and then obtain
layouts as desired.

* TIf the client asynchronously wrote data to the storage device, but
still has a copy of the data in its memory, then it has available
to it the recovery options listed above in the previous bullet

point. If the metadata server is also in its grace period, the
client has available to it the options below in the next bullet
point.

* The client does not have a copy of the data in its memory and the
metadata server is still in its grace period. The client cannot
use LAYOUTGET (within or outside the grace period) to reclaim a
layout because the contents of the response from LAYOUTGET may not
match what it had previously. The range might be different or the
client might get the same range but the content of the layout
might be different. Even if the content of the layout appears to
be the same, the device IDs may map to different device addresses,
and even if the device addresses are the same, the device
addresses could have been assigned to a different storage device.
The option of retrieving the data from the storage device and
writing it to the metadata server per the recovery scenario
described above is not available because, again, the mappings of
range to device ID, device ID to device address, and device
address to physical device are stale, and new mappings via new
LAYOUTGET do not solve the problem.

The only recovery option for this scenario is to send a
LAYOUTCOMMIT in reclaim mode, which the metadata server will
accept as long as it is in its grace period. The use of
LAYOUTCOMMIT in reclaim mode informs the metadata server that the

layout has changed. It is critical that the metadata server
receive this information before its grace period ends, and thus
before it starts allowing updates to the file system.

To send LAYOUTCOMMIT in reclaim mode, the client sets the
loca_reclaim field of the operation’s arguments (Section 18.42.1)
to TRUE. During the metadata server’s recovery grace period (and
only during the recovery grace period) the metadata server is
prepared to accept LAYOUTCOMMIT requests with the loca_reclaim
field set to TRUE.

When loca_reclaim is TRUE, the client is attempting to commit
changes to the layout that occurred prior to the restart of the
metadata server. The metadata server applies some consistency
checks on the loca_layoutupdate field of the arguments to
determine whether the client can commit the data written to the
storage device to the file system. The loca_layoutupdate field is
of data type layoutupdate4 and contains layout-type-specific

content (in the lou_body field of loca_layoutupdate). The layout-—
type-specific information that loca_layoutupdate might have is
discussed in Section 12.5.4.3. If the metadata server’s

consistency checks on loca_layoutupdate succeed, then the metadata
server MUST commit the data (as described by the loca_offset,
loca_length, and loca_layoutupdate fields of the arguments) that
was written to the storage device. If the metadata server’s
consistency checks on loca_layoutupdate fail, the metadata server
rejects the LAYOUTCOMMIT operation and makes no changes to the
file system. However, any time LAYOUTCOMMIT with loca_reclaim
TRUE fails, the pNFS client has lost all the data in the range
defined by <loca_offset, loca_length>. A client can defend
against this risk by caching all data, whether written
synchronously or asynchronously in its memory, and by not
releasing the cached data until a successful LAYOUTCOMMIT. This
condition does not hold true for all layout types; for example,
file-based storage devices need not suffer from this limitation.

* The client does not have a copy of the data in its memory and the
metadata server is no longer in its grace period; i.e., the
metadata server returns NFS4ERR_NO_GRACE. As with the scenario in
the above bullet point, the failure of LAYOUTCOMMIT means the data
in the range <loca_offset, loca_length> lost. The defense against
the risk is the same —-- cache all written data on the client until
a successful LAYOUTCOMMIT.

12.7.5. Operations during Metadata Server Grace Period

Some of the recovery scenarios thus far noted that some operations
(namely, WRITE and LAYOUTGET) might be permitted during the metadata
server’s grace period. The metadata server may allow these
operations during its grace period. For LAYOUTGET, the metadata
server must reliably determine that servicing such a request will not
conflict with an impending LAYOUTCOMMIT reclaim request. For WRITE,
the metadata server must reliably determine that servicing the
request will not conflict with an impending OPEN or with a LOCK where
the file has mandatory byte-range locking enabled.

As mentioned previously, for expediency, the metadata server might
reject some operations (namely, WRITE and LAYOUTGET) during its grace
period, because the simplest correct approach is to reject all non-
reclaim pNFS requests and WRITE operations by returning the
NFS4ERR_GRACE error. However, depending on the storage protocol
(which is specific to the layout type) and metadata server
implementation, the metadata server may be able to determine that a
particular request is safe. For example, a metadata server may save
provisional allocation mappings for each file to stable storage, as
well as information about potentially conflicting OPEN share modes
and mandatory byte-range locks that might have been in effect at the
time of restart, and the metadata server may use this information
during the recovery grace period to determine that a WRITE request is
safe.

12.

12.

12.

7.6. Storage Device Recovery

Recovery from storage device restart is mostly dependent upon the
layout type in use. However, there are a few general techniques a
client can use if it discovers a storage device has crashed while
holding modified, uncommitted data that was asynchronously written.
First and foremost, it is important to realize that the client is the
only one that has the information necessary to recover non-committed
data since it holds the modified data and probably nothing else does.
Second, the best solution is for the client to err on the side of
caution and attempt to rewrite the modified data through another
path.

The client SHOULD immediately WRITE the data to the metadata server,
with the stable field in the WRITE4args set to FILE_SYNC4. Once it
does this, there is no need to wait for the original storage device.

8. Metadata and Storage Device Roles

If the same physical hardware is used to implement both a metadata
server and storage device, then the same hardware entity is to be
understood to be implementing two distinct roles and it is important
that it be clearly understood on behalf of which role the hardware is
executing at any given time.

Two sub-cases can be distinguished.

1. The storage device uses NFSv4.l as the storage protocol, i.e.,
the same physical hardware is used to implement both a metadata
and data server. See Section 13.1 for a description of how
multiple roles are handled.

2. The storage device does not use NFSv4.l1l as the storage protocol,
and the same physical hardware is used to implement both a
metadata and storage device. Whether distinct network addresses
are used to access the metadata server and storage device is
immaterial. This is because it is always clear to the pNFS
client and server, from the upper-layer protocol being used
(NFSv4.1l or non-NFSv4.1l), to which role the request to the common
server network address is directed.

9. Security Considerations for pNFS

PNEFS separates file system metadata and data and provides access to
both. There are pNFS-specific operations (listed in Section 12.3)
that provide access to the metadata; all existing NFSv4.l
conventional (non-pNFS) security mechanisms and features apply to
accessing the metadata. The combination of components in a pNFS
system (see Figure 1) 1is required to preserve the security properties
of NFSv4.1 with respect to an entity that is accessing a storage
device from a client, including security countermeasures to defend
against threats for which NFSv4.1l provides defenses in environments
where these threats are considered significant.

In some cases, the security countermeasures for connections to
storage devices may take the form of physical isolation or a
recommendation to avoid the use of pNFS in an environment. For
example, it may be impractical to provide confidentiality protection
for some storage protocols to protect against eavesdropping. In
environments where eavesdropping on such protocols is of sufficient
concern to require countermeasures, physical isolation of the
communication channel (e.g., via direct connection from client(s) to
storage device(s)) and/or a decision to forgo use of pNFS (e.g., and
fall back to conventional NFSv4.1l) may be appropriate courses of
action.

Where communication with storage devices is subject to the same
threats as client-to-metadata server communication, the protocols
used for that communication need to provide security mechanisms as
strong as or no weaker than those available via RPCSEC_GSS for
NFSv4.1l. Except for the storage protocol used for the

13.

13.

LAYOUT4_NFSV4_1_ FILES layout (see Section 13), i.e., except for
NFSv4.1l, it is beyond the scope of this document to specify the
security mechanisms for storage access protocols.

PNFS implementations MUST NOT remove NFSv4.1l’s access controls. The
combination of clients, storage devices, and the metadata server are
responsible for ensuring that all client-to-storage-device file data
access respects NFSv4.1’s ACLs and file open modes. This entails
performing both of these checks on every access in the client, the
storage device, or both (as applicable; when the storage device is an
NFSv4.1l server, the storage device is ultimately responsible for
controlling access as described in Section 13.9.2). If a pNFS
configuration performs these checks only in the client, the risk of a
misbehaving client obtaining unauthorized access is an important
consideration in determining when it is appropriate to use such a
PNFS configuration. Such layout types SHOULD NOT be used when
client-only access checks do not provide sufficient assurance that
NFSv4.1l access control is being applied correctly. (This is not a
problem for the file layout type described in Section 13 because the
storage access protocol for LAYOUT4_NFSV4_1_FILES is NFSv4.1l, and
thus the security model for storage device access via
LAYOUT4_NFSv4_1_FILES is the same as that of the metadata server.)
For handling of access control specific to a layout, the reader
should examine the layout specification, such as the NFSv4.1l/
file-based layout (Section 13) of this document, the blocks layout
[48], and objects layout [47].

NFSv4.1l as a Storage Protocol in pNFS: the File Layout Type

This section describes the semantics and format of NFSv4.l file-based
layouts for pNFS. NFSv4.1l file-based layouts use the
LAYOUT4_NFSV4_1_FILES layout type. The LAYOUT4_NFSV4_1_FILES type
defines striping data across multiple NFSv4.1l data servers.

1. Client ID and Session Considerations

Sessions are a REQUIRED feature of NFSv4.1l, and this extends to both
the metadata server and file-based (NFSv4.l-based) data servers.

The role a server plays in pNFS is determined by the result it
returns from EXCHANGE_ID. The roles are:

* Metadata server (EXCHGID4_FLAG_USE_PNFS_MDS is set in the result
eir_flags).

* Data server (EXCHGID4_FLAG_USE_PNFS_DS).

* Non-metadata server (EXCHGID4_FLAG_USE_NON_PNFS). This is an
NFSv4.1l server that does not support operations (e.g., LAYOUTGET)
or attributes that pertain to pNFS.

The client MAY request zero or more of EXCHGID4_FLAG_USE_NON_PNFS,
EXCHGID4_FLAG_USE_PNFS_DS, or EXCHGID4_FLAG_USE_PNFS_MDS, even though
some combinations (e.g., EXCHGID4_FLAG_USE_NON_PNFS
EXCHGID4_FLAG_USE_PNFS_MDS) are contradictory. However, the server
MUST only return the following acceptable combinations:

+ +
| Acceptable Results from EXCHANGE_ID |
+ +
| EXCHGID4_FLAG_USE_PNFS_MDS |
e +
| EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS |
o +
| EXCHGID4_FLAG_USE_PNFS_DS |
e +
| EXCHGID4_FLAG_USE_NON_PNFS |
o +

| EXCHGID4_FLAG_USE_PNFS_DS EXCHGID4_FLAG_USE_NON_PNFS |

Table 8

As the above table implies, a server can have one or two roles. A
server can be both a metadata server and a data server, or it can be
both a data server and non-metadata server. In addition to returning
two roles in the EXCHANGE_ID’s results, and thus serving both roles
via a common client ID, a server can serve two roles by returning a
unique client ID and server owner for each role in each of two
EXCHANGE_ID results, with each result indicating each role.

In the case of a server with concurrent pNFS roles that are served by
a common client ID, if the EXCHANGE_ID request from the client has
zero or a combination of the bits set in eia_flags, the server result
should set bits that represent the higher of the acceptable
combination of the server roles, with a preference to match the roles
requested by the client. Thus, if a client request has
(EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_USE_PNFS_MDS |
EXCHGID4_FLAG_USE_PNFS_DS) flags set, and the server is both a
metadata server and a data server, serving both the roles by a common
client ID, the server SHOULD return with

(EXCHGID4_FLAG_USE_PNFS_MDS | EXCHGID4_FLAG_USE_PNFS_DS) set.

In the case of a server that has multiple concurrent pNFS roles, each
role served by a unique client ID, if the client specifies zero or a
combination of roles in the request, the server results SHOULD return
only one of the roles from the combination specified by the client
request. If the role specified by the server result does not match
the intended use by the client, the client should send the
EXCHANGE_ID specifying just the interested pNFS role.

If a pNFS metadata client gets a layout that refers it to an NFSv4.l
data server, it needs a client ID on that data server. If it does
not yet have a client ID from the server that had the
EXCHGID4_FLAG_USE_PNFS_DS flag set in the EXCHANGE_ID results, then
the client needs to send an EXCHANGE_ID to the data server, using the
same co_ownerid as it sent to the metadata server, with the
EXCHGID4_FLAG_USE_PNFS_DS flag set in the arguments. If the server’s
EXCHANGE_ID results have EXCHGID4_FLAG_USE_PNFS_DS set, then the
client may use the client ID to create sessions that will exchange
PNFS data operations. The client ID returned by the data server has
no relationship with the client ID returned by a metadata server
unless the client IDs are equal, and the server owners and server
scopes of the data server and metadata server are equal.

In NFSv4.1l, the session ID in the SEQUENCE operation implies the
client ID, which in turn might be used by the server to map the
stateid to the right client/server pair. However, when a data server
is presented with a READ or WRITE operation with a stateid, because
the stateid is associated with a client ID on a metadata server, and
because the session ID in the preceding SEQUENCE operation is tied to
the client ID of the data server, the data server has no obvious way
to determine the metadata server from the COMPOUND procedure, and
thus has no way to validate the stateid. One RECOMMENDED approach is
for pNFS servers to encode metadata server routing and/or identity
information in the data server filehandles as returned in the layout.

If metadata server routing and/or identity information is encoded in
data server filehandles, when the metadata server identity or
location changes, the data server filehandles it gave out will become
invalid (stale), and so the metadata server MUST first recall the
layouts. Invalidating a data server filehandle does not render the
NFS client’s data cache invalid. The client’s cache should map a
data server filehandle to a metadata server filehandle, and a
metadata server filehandle to cached data.

If a server is both a metadata server and a data server, the server
might need to distinguish operations on files that are directed to
the metadata server from those that are directed to the data server.
It is RECOMMENDED that the values of the filehandles returned by the
LAYOUTGET operation be different than the value of the filehandle
returned by the OPEN of the same file.

13.

13

13.

Another scenario is for the metadata server and the storage device to
be distinct from one client’s point of view, and the roles reversed

from another client’s point of view. For example, in the cluster
file system model, a metadata server to one client might be a data
server to another client. If NFSv4.l is being used as the storage

protocol, then pNFS servers need to encode the values of filehandles
according to their specific roles.

1.1. Sessions Considerations for Data Servers

Section 2.10.11.2 states that a client has to keep its lease renewed
in order to prevent a session from being deleted by the server. If
the reply to EXCHANGE_ID has just the EXCHGID4_FLAG_USE_PNFS_DS role
set, then (as noted in Section 13.6) the client will not be able to
determine the data server’s lease_time attribute because GETATTR will
not be permitted. Instead, the rule is that any time a client
receives a layout referring it to a data server that returns just the
EXCHGID4_FLAG_USE_PNFS_DS role, the client MAY assume that the
lease_time attribute from the metadata server that returned the
layout applies to the data server. Thus, the data server MUST be
aware of the values of all lease_time attributes of all metadata
servers for which it is providing I/0, and it MUST use the maximum of
all such lease_time values as the lease interval for all client IDs
and sessions established on it.

For example, if one metadata server has a lease_time attribute of 20
seconds, and a second metadata server has a lease_time attribute of
10 seconds, then if both servers return layouts that refer to an
EXCHGID4_FLAG_USE_PNFS_DS-only data server, the data server MUST
renew a client’s lease if the interval between two SEQUENCE
operations on different COMPOUND requests is less than 20 seconds.

.2. File Layout Definitions

The following definitions apply to the LAYOUT4_NFSV4_1_FILES layout
type and may be applicable to other layout types.

Unit. A unit is a fixed-size quantity of data written to a data
server.

Pattern. A pattern is a method of distributing one or more equal
sized units across a set of data servers. A pattern is iterated
one or more times.

Stripe. A stripe is a set of data distributed across a set of data
servers in a pattern before that pattern repeats.

Stripe Count. A stripe count is the number of units in a pattern.

Stripe Width. A stripe width is the size of a stripe in bytes. The
stripe width = the stripe count * the size of the stripe unit.

Hereafter, this document will refer to a unit that is a written in a
pattern as a "stripe unit".

A pattern may have more stripe units than data servers. If so, some
data servers will have more than one stripe unit per stripe. A data
server that has multiple stripe units per stripe MAY store each unit
in a different data file (and depending on the implementation, will
possibly assign a unique data filehandle to each data file).

3. File Layout Data Types

The high level NFSv4.1l layout types are nfsv4_1_file_layouthint4,
nfsv4_1_file_layout_ds_addr4, and nfsv4_1_file_layouté4.

The SETATTR operation supports a layout hint attribute

(Section 5.12.4). When the client sets a layout hint (data type
layouthint4) with a layout type of LAYOUT4_NFSV4_1_FILES (the
loh_type field), the loh_body field contains a value of data type

nfsv4_1_file_layouthint4.

const NFL4_UFLG_MASK = 0x0000003F;
const NFL4_UFLG_DENSE = 0x00000001;
const NFL4_UFLG_COMMIT_THRU_MDS 0x00000002;
const NFL4_UFLG_STRIPE_UNIT_SIZE_MASK

= OxXFFFFFFCO;
typedef uint32_t nfl_util4;
enum filelayout_hint_cared {
NFLH4_CARE_DENSE = NFL4_UFLG_DENSE,

NFLH4_CARE_COMMIT_THRU_MDS
= NFL4_UFLG_COMMIT_THRU_MDS,

NFLH4_CARE_STRIPE_UNIT_SIZE
= 0x00000040,

NFLH4_CARE_STRIPE_COUNT = 0x00000080
i

/* Encoded in the loh_body field of data type layouthintéd: */

struct nfsv4_1_file layouthint4d ({

uint32_t nflh_care;
nfl_util4 nflh_util;
count4 nflh stripe_count;

}i

The generic layout hint structure is described in Section 3.3.19.

The client uses the layout hint in the layout_hint (Section 5.12.4)
attribute to indicate the preferred type of layout to be used for a
newly created file. The LAYOUT4_NFSV4_1_FILES layout-type-specific
content for the layout hint is composed of three fields. The first
field, nflh_care, is a set of flags indicating which values of the
hint the client cares about. If the NFLH4_CARE_DENSE flag is set,
then the client indicates in the second field, nflh_util, a
preference for how the data file is packed (Section 13.4.4), which is
controlled by the value of the expression nflh _util & NFL4_UFLG_DENSE
("&" represents the bitwise AND operator). If the
NFLH4_CARE_COMMIT_THRU_MDS flag is set, then the client indicates a
preference for whether the client should send COMMIT operations to
the metadata server or data server (Section 13.7), which is
controlled by the value of nflh_util & NFL4_UFLG_COMMIT_THRU_MDS. If
the NFLH4_CARE_STRIPE_UNIT_SIZE flag is set, the client indicates its
preferred stripe unit size, which is indicated in nflh_util &
NFL4_UFLG_STRIPE_UNIT_SIZE_MASK (thus, the stripe unit size MUST be a
multiple of 64 bytes). The minimum stripe unit size is 64 bytes. If
the NFLH4_CARE_STRIPE_COUNT flag is set, the client indicates in the
third field, nflh_stripe_count, the stripe count. The stripe count
multiplied by the stripe unit size is the stripe width.

When LAYOUTGET returns a LAYOUT4_NFSV4_1_FILES layout (indicated in
the loc_type field of the lo_content field), the loc_body field of
the lo_content field contains a value of data type
nfsv4_1_file_layoutd4. Among other content, nfsv4_1_file_ layout4 has
a storage device ID (field nfl_deviceid) of data type deviceid4. The
GETDEVICEINFO operation maps a device ID to a storage device address
(type device_addr4). When GETDEVICEINFO returns a device address
with a layout type of LAYOUT4_NFSV4_1_FILES (the da_layout_type
field), the da_addr_body field contains a value of data type
nfsv4_1_file_layout_ds_addr4.

typedef netaddr4 multipath_listd<>;

/*
* Encoded in the da_addr_body field of
* data type device_addri4:

*/
struct nfsv4_1_file_layout_ds_addr4d ({

uint32_t nflda_stripe_indices<>;
multipath_list4 nflda_multipath_ds_list<>;
}i

The nfsv4_1_file_layout_ds_addr4 data type represents the device
address. It is composed of two fields:

1. nflda multipath_ds_list: An array of lists of data servers, where
each list can be one or more elements, and each element
represents a data server address that may serve equally as the
target of I/O operations (see Section 13.5). The length of this
array might be different than the stripe count.

2. nflda_stripe_indices: An array of indices used to index into
nflda_multipath_ds_list. The value of each element of
nflda_stripe_indices MUST be less than the number of elements in
nflda_multipath_ds_1list. Each element of nflda_multipath_ds_1list
SHOULD be referred to by one or more elements of
nflda_stripe_indices. The number of elements in
nflda_stripe_indices is always equal to the stripe count.

/*
* Encoded in the loc_body field of
* data type layout_contentiéd:

*/

struct nfsv4_1_file_ layoutd {
deviceid4 nfl_deviceid;
nfl util4 nfl_util;
uint32_t nfl first_stripe_index;
offset4 nfl_pattern_offset;
nfs_fh4 nfl_fh_list<>;

}i

The nfsv4_1_file_layout4 data type represents the layout. It is
composed of the following fields:

1. nfl _deviceid: The device ID that maps to a value of type
nfsv4_1_ file_layout_ds_addr4.

2. nfl_util: Like the nflh util field of data type
nfsv4d_1_file_layouthint4, a compact representation of how the
data on a file on each data server is packed, whether the client
should send COMMIT operations to the metadata server or data
server, and the stripe unit size. If a server returns two or
more overlapping layouts, each stripe unit size in each
overlapping layout MUST be the same.

3. nfl first stripe_index: The index into the first element of the
nflda_stripe_indices array to use.

4. nfl _pattern_offset: This field is the logical offset into the
file where the striping pattern starts. It is required for
converting the client’s logical I/O offset (e.g., the current
offset in a POSIX file descriptor before the read() or write()
system call is sent) into the stripe unit number (see
Section 13.4.1).

If dense packing is used, then nfl_pattern_offset is also needed
to convert the client’s logical I/0 offset to an offset on the
file on the data server corresponding to the stripe unit number
(see Section 13.4.4).

Note that nfl_pattern_offset is not always the same as lo_offset.
For example, via the LAYOUTGET operation, a client might request
a layout starting at offset 1000 of a file that has its striping
pattern start at offset zero.

5. nfl _fh list: An array of data server filehandles for each list of
data servers in each element of the nflda_multipath_ds_1list
array. The number of elements in nfl_fh_list depends on whether

sparse or dense packing is being used.

13

13.

13.

* TIf sparse packing is being used, the number of elements in
nfl _fh list MUST be one of three values:

— Zero. This means that filehandles used for each data
server are the same as the filehandle returned by the OPEN
operation from the metadata server.

— One. This means that every data server uses the same
filehandle: what is specified in nfl_fh_1list[0].

— The same number of elements in nflda _multipath_ds_list.
Thus, in this case, when sending an I/O operation to any
data server in nflda_multipath_ds_list[X], the filehandle
in nfl_fh 1list[X] MUST be used.

See the discussion on sparse packing in Section 13.4.4.

* TIf dense packing is being used, the number of elements in
nfl_fh_list MUST be the same as the number of elements in
nflda_stripe_indices. Thus, when sending an I/O operation to
any data server in
nflda_multipath_ds_list[nflda_stripe_indices[Y]], the
filehandle in nfl_fh 1list[Y] MUST be used. In addition, any
time there exists i and j, (i != j), such that the
intersection of
nflda_multipath_ds_list[nflda_stripe_indices[i]] and
nflda_multipath_ds_list[nflda_stripe_indices[j]] is not empty,
then nfl_fh_1list[i] MUST NOT equal nfl_fh list[j]. In other
words, when dense packing is being used, if a data server
appears in two or more units of a striping pattern, each
reference to the data server MUST use a different filehandle.

Indeed, if there are multiple striping patterns, as indicated
by the presence of multiple objects of data type layoutd
(either returned in one or multiple LAYOUTGET operations), and
a data server is the target of a unit of one pattern and
another unit of another pattern, then each reference to each
data server MUST use a different filehandle.

See the discussion on dense packing in Section 13.4.4.

The details on the interpretation of the layout are in Section 13.4.

.4. Interpreting the File Layout

4.1. Determining the Stripe Unit Number
To find the stripe unit number that corresponds to the client’s
logical file offset, the pattern offset will also be used. The i’th

stripe unit (SUi) is:

relative_offset = file_offset - nfl_pattern_offset;
SUi1 = floor(relative_offset / stripe_unit_size);

4.2. Interpreting the File Layout Using Sparse Packing
When sparse packing is used, the algorithm for determining the
filehandle and set of data-server network addresses to write stripe
unit i (SUi) to is:

stripe_count = number of elements in nflda_stripe_indices;

J = (SUi + nfl_first_stripe_index) % stripe_count;

idx = nflda_stripe_indices[j];

fh_count = number of elements in nfl_fh_ list;
ds_count = number of elements in nflda_multipath_ds_1list;

switch (fh_count) {

case ds_count:
fh = nfl_fh list[idx];
break;

case 1l:
fh = nfl_fh 1ist[0];
break;

case 0:
fh = filehandle returned by OPEN;
break;

default:
throw a fatal exception;
break;

}
address_list = nflda multipath ds_list[idx];

The client would then select a data server from address_list, and
send a READ or WRITE operation using the filehandle specified in fh.

Consider the following example:

Suppose we have a device address consisting of seven data servers,
arranged in three equivalence (Section 13.5) classes:

{a B, C, D}, {EI}, {F, G}
where A through G are network addresses.
Then

nflda_multipath_ds_list<> = { A, B, C, D}, { E }, {F, G}
i.e.,

nflda_multipath_ds_1list[0]

{Aa B, C, D}
nflda_multipath_ds_1list[1l] = { E }

nflda_multipath_ds_list[2] { F, G}

Suppose the striping index array is:
nflda_stripe_indices<> = { 2, 0, 1, 0 }

Now suppose the client gets a layout that has a device ID that maps
to the above device address. The initial index contains

nfl_first_stripe_index = 2,
and the filehandle list is
nfl_fh_list = { 0x36, 0x87, 0x67 }.

If the client wants to write to SUO, the set of valid { network
address, filehandle } combinations for SUi are determined by:

nfl first_stripe_index = 2

So

o
IS

idx = nflda_stripe_indices[(0 + 2)

nflda_stripe_indices|[2]
=1

So

Il
-~

nflda_multipath_ds_list[1] E }
and
nfl_fh list[1] = { 0x87 }
The client can thus write SUO to { 0x87, { E } }.

The destinations of the first 13 storage units are:

+ + + +
| sui | filehandle | data servers |
+ + + +
| o | 87 | E |
o Fomm Fom e +
| 1 | 36 | a,B,C,D |
e Fmm Fmm +
| 2 | 67 | F,G |
tm———— fmmm o +
| 3 | 36 | a,B,C,D |
o Fomm Fom +
tm——— fmm Fmm +
| a4 | 87 | E |
fm———— o o +
| 5 | 36 | a,B,C,D |
to———= Fomm Fomm +
| 6 | 67 | F,G |
t———— fmm Fmm +
| 7 | 36 | A,B,C,D |
Fm———— o T T +
tm——— fmmm o +
| 8 | 87 | E |
o Fomm Fom e +
| 9 | 36 | a,B,C,D |
e Fmm Fmm +
| 10 | 67 | F,G |
tm———— fmmm o +
| 11 | 36 | a,B,C,D |
o Fomm Fom +
tm——— fmm Fmm +
| 12 | 87 | E |
Fm———— o T T +
Table 9

13.4.3. Interpreting the File Layout Using Dense Packing

When dense packing is used, the algorithm for determining the
filehandle and set of data server network addresses to write stripe
unit i (SUi) to is:

stripe_count = number of elements in nflda_stripe_indices;

[}

J = (SUi + nfl_first_stripe_index) % stripe_count;
idx = nflda_stripe_indices[]j];

fh_count = number of elements in nfl_fh_ list;
ds_count = number of elements in nflda_multipath_ds_1list;

switch (fh_count) {
case stripe_count:
fh = nfl_fh list[]j];
break;

default:
throw a fatal exception;
break;

}

address_1list = nflda_multipath_ds_list[idx];

The client would then select a data server from address_list, and
send a READ or WRITE operation using the filehandle specified in fh.

Consider the following example (which is the same as the sparse
packing example, except for the filehandle list):

Suppose we have a device address consisting of seven data servers,
arranged in three equivalence (Section 13.5) classes:

{A B, C, D}, {E}, {F, G}
where A through G are network addresses.
Then
nflda_multipath_ds_list<> = { A, B, ¢, D}, { E }, {F, G}

i.e.,

nflda_multipath_ds_1list[0] { A, B, C, D}

nflda_multipath_ds_list[1]

{ B}

nflda_multipath_ds_list[2] { F, G}
Suppose the striping index array is:

nflda_stripe_indices<> = { 2, 0, 1, 0 }

Now suppose the client gets a layout that has a device ID that maps
to the above device address. The initial index contains

nfl first_stripe_index = 2,
and

nfl_fh_list = { 0x67, 0x37, 0x87, 0x36 }.
The interesting examples for dense packing are SUl and SU3 because
each stripe unit refers to the same data server list, yet each stripe
unit MUST use a different filehandle. 1If the client wants to write

to SUl, the set of valid { network address, filehandle } combinations
for SUi are determined by:

nfl first_stripe_index = 2
So
j=(1+2) % 4=3
idx = nflda_stripe_indices|[j]

nflda_stripe_indices|[3]
=0

So

nflda_multipath_ds_1list([0] = { A, B, C, D }
and

nfl_fh 1list[3] = { 0x36 }
The client can thus write SUl1 to { 0x36, { A, B, C, D } }.
For SU3, j = (3 + 2) % 4 =1, and nflda_stripe_indices[1l] = 0. Then

nflda_multipath_ds_1list[0] { A, B, C, D}, and nfl_fh 1list[l] =
0x37. The client can thus write SU3 to { 0x37, { A, B, C, D } }.

The destinations of the first 13 storage units are:

+ + + +
| sui | filehandle | data servers |
+ + + +
| o | 87 | E |
e o ————— o +
| 1 | 36 | a,B,C,D |
t——— o e +
| 2 | 67 | F,G |
+——— o o +
| 3 | 37 | a,B,C,D |
e o ————— o ———————— +
e o Fo—————— +
| 4 | 87 | E |
+——— F—— F——————— +
| 5 | 36 | a,B,C,D |
e o o +
| 6 | 67 | F,G |
e o Fo—————— +
| 7 | 37 | a,B,C,D |
+——— F—— F——————— +
+——— o o +
| 8 | 87 | E |
e o ————— o +
| 9 | 36 | a,B,C,D |
t——— o e +
| 10 | 67 | F,G |
+——— o o +
| 11 | 37 | a,B,C,D |
e o ————— o ———————— +
e o Fo—————— +
| 12 | 87 | E |
+——— F—— F——————— +
Table 10

13.4.4. Sparse and Dense Stripe Unit Packing

The flag NFL4_UFLG_DENSE of the nfl_utild4 data type (field nflh_util
of the data type nfsv4_1_file_layouthint4 and field nfl_util of data
type nfsv4_1_file_layout_ds_addr4) specifies how the data is packed
within the data file on a data server. It allows for two different
data packings: sparse and dense. The packing type determines the
calculation that will be made to map the client-visible file offset
to the offset within the data file located on the data server.

If nfl util & NFL4_UFLG_DENSE is zero, this means that sparse packing
is being used. Hence, the logical offsets of the file as viewed by a
client sending READs and WRITEs directly to the metadata server are
the same offsets each data server uses when storing a stripe unit.
The effect then, for striping patterns consisting of at least two
stripe units, is for each data server file to be sparse or "holey".
So for example, suppose there is a pattern with three stripe units,
the stripe unit size is 4096 bytes, and there are three data servers
in the pattern. Then, the file in data server 1 will have stripe
units 0, 3, 6, 9, ... filled; data server 2’'s file will have stripe
units 1, 4, 7, 10, ... filled; and data server 3’s file will have
stripe units 2, 5, 8, 11, ... filled. The unfilled stripe units of
each file will be holes; hence, the files in each data server are
sparse.

If sparse packing is being used and a client attempts I/0O to one of
the holes, then an error MUST be returned by the data server. Using
the above example, if data server 3 received a READ or WRITE
operation for block 4, the data server would return
NFS4ERR_PNFS_TIO_HOLE. Thus, data servers need to understand the
striping pattern in order to support sparse packing.

If nfl util & NFL4_UFLG_DENSE is one, this means that dense packing
is being used, and the data server files have no holes. Dense

13.

packing might be selected because the data server does not
(efficiently) support holey files or because the data server cannot
recognize read-ahead unless there are no holes. If dense packing is
indicated in the layout, the data files will be packed. Using the
same striping pattern and stripe unit size that were used for the
sparse packing example, the corresponding dense packing example would
have all stripe units of all data files filled as follows:

* Logical stripe units 0, 3, 6, ... of the file would live on stripe
units 0, 1, 2, ... of the file of data server 1.

* Logical stripe units 1, 4, 7, ... of the file would live on stripe
units 0, 1, 2, ... of the file of data server 2.

* Logical stripe units 2, 5, 8, ... of the file would live on stripe
units 0, 1, 2, ... of the file of data server 3.

Because dense packing does not leave holes on the data servers, the
PNES client is allowed to write to any offset of any data file of any
data server in the stripe. Thus, the data servers need not know the
file’s striping pattern.

The calculation to determine the byte offset within the data file for
dense data server layouts is:

stripe_width = stripe_unit_size * N;
where N = number of elements in nflda_stripe_indices.

relative_offset = file_offset - nfl_pattern_offset;

data_file_offset = floor(relative_offset / stripe_width)
* stripe_unit_size

Q

+ relative_offset % stripe_unit_size

If dense packing is being used, and a data server appears more than
once in a striping pattern, then to distinguish one stripe unit from
another, the data server MUST use a different filehandle. Let’s
suppose there are two data servers. Logical stripe units 0, 3, 6 are
served by data server 1; logical stripe units 1, 4, 7 are served by
data server 2; and logical stripe units 2, 5, 8 are also served by
data server 2. Unless data server 2 has two filehandles (each
referring to a different data file), then, for example, a write to
logical stripe unit 1 overwrites the write to logical stripe unit 2
because both logical stripe units are located in the same stripe unit
(0) of data server 2.

5. Data Server Multipathing

The NFSv4.1l file layout supports multipathing to multiple data server
addresses. Data-server—-level multipathing is used for bandwidth
scaling via trunking (Section 2.10.5) and for higher availability of
use in the case of a data-server failure. Multipathing allows the
client to switch to another data server address which may be that of
another data server that is exporting the same data stripe unit,
without having to contact the metadata server for a new layout.

To support data server multipathing, each element of the
nflda_multipath_ds_list contains an array of one more data server
network addresses. This array (data type multipath_list4) represents
a list of data servers (each identified by a network address), with
the possibility that some data servers will appear in the list
multiple times.

The client is free to use any of the network addresses as a
destination to send data server requests. If some network addresses
are less optimal paths to the data than others, then the MDS SHOULD
NOT include those network addresses in an element of
nflda_multipath_ds_list. If less optimal network addresses exist to
provide failover, the RECOMMENDED method to offer the addresses is to
provide them in a replacement device-ID-to-device-address mapping, or
a replacement device ID. When a client finds that no data server in

13.

an element of nflda_multipath_ds_list responds, it SHOULD send a
GETDEVICEINFO to attempt to replace the existing device-ID-to-device-
address mappings. If the MDS detects that all data servers
represented by an element of nflda_multipath_ds_list are unavailable,
the MDS SHOULD send a CB_NOTIFY_DEVICEID (if the client has indicated
it wants device ID notifications for changed device IDs) to change
the device-ID-to-device-address mappings to the available data
servers. If the device ID itself will be replaced, the MDS SHOULD
recall all layouts with the device ID, and thus force the client to
get new layouts and device ID mappings via LAYOUTGET and
GETDEVICEINFO.

Generally, if two network addresses appear in an element of
nflda_multipath_ds_list, they will designate the same data server,
and the two data server addresses will support the implementation of
client ID or session trunking (the latter is RECOMMENDED) as defined
in Section 2.10.5. The two data server addresses will share the same
server owner or major ID of the server owner. It is not always
necessary for the two data server addresses to designate the same
server with trunking being used. For example, the data could be
read-only, and the data consist of exact replicas.

6. Operations Sent to NFSv4.l1l Data Servers

Clients accessing data on an NFSv4.1 data server MUST send only the
NULL procedure and COMPOUND procedures whose operations are taken
only from two restricted subsets of the operations defined as valid
NFSv4.1l operations. Clients MUST use the filehandle specified by the
layout when accessing data on NFSv4.l data servers.

The first of these operation subsets consists of management
operations. This subset consists of the BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION, CREATE_SESSION, DESTROY_CLIENTID,
DESTROY_SESSION, EXCHANGE_ID, SECINFO_NO_NAME, SET_SSV, and SEQUENCE
operations. The client may use these operations in order to set up
and maintain the appropriate client IDs, sessions, and security
contexts involved in communication with the data server. Henceforth,
these will be referred to as data-server housekeeping operations.

The second subset consists of COMMIT, READ, WRITE, and PUTFH. These
operations MUST be used with a current filehandle specified by the
layout. 1In the case of PUTFH, the new current filehandle MUST be one
taken from the layout. Henceforth, these will be referred to as
data-server I/0 operations. As described in Section 12.5.1, a client
MUST NOT send an I/0O to a data server for which it does not hold a
valid layout; the data server MUST reject such an I/O.

Unless the server has a concurrent non-data-server personality --
i.e., EXCHANGE_ID results returned (EXCHGID4_FLAG_USE_PNFS_DS |
EXCHGID4_FLAG_USE_PNFS_MDS) or (EXCHGID4_FLAG_USE_PNFS_DS |
EXCHGID4_FLAG_USE_NON_PNFS) see Section 13.1 -- any attempted use of
operations against a data server other than those specified in the
two subsets above MUST return NFS4ERR_NOTSUPP to the client.

When the server has concurrent data-server and non-data-server
personalities, each COMPOUND sent by the client MUST be constructed
so that it is appropriate to one of the two personalities, and it
MUST NOT contain operations directed to a mix of those personalities.
The server MUST enforce this. To understand the constraints,
operations within a COMPOUND are divided into the following three
classes:

1. An operation that is ambiguous regarding its personality
assignment. This includes all of the data-server housekeeping
operations. Additionally, if the server has assigned filehandles
so that the ones defined by the layout are the same as those used
by the metadata server, all operations using such filehandles are
within this class, with the following exception. The exception
is that if the operation uses a stateid that is incompatible with
a data-server personality (e.g., a special stateid or the stateid
has a non-zero "seqgid" field, see Section 13.9.1), the operation

13.

is in class 3, as described below. A COMPOUND containing
multiple class 1 operations (and operations of no other class)
MAY be sent to a server with multiple concurrent data server and
non-data-server personalities.

2. An operation that is unambiguously referable to the data-server
personality. This includes data-server I/0 operations where the
filehandle is one that can only be validly directed to the data-
server personality.

3. An operation that is unambiguously referable to the non-data-
server personality. This includes all COMPOUND operations that
are neither data-server housekeeping nor data-server I/0
operations, plus data-server I/0 operations where the current fh
(or the one to be made the current fh in the case of PUTFH) is
only valid on the metadata server or where a stateid is used that
is incompatible with the data server, i.e., is a special stateid
or has a non-zero seqgid value.

When a COMPOUND first executes an operation from class 3 above, it
acts as a normal COMPOUND on any other server, and the data-server
personality ceases to be relevant. There are no special restrictions
on the operations in the COMPOUND to limit them to those for a data
server. When a PUTFH is done, filehandles derived from the layout
are not valid. TIf their format is not normally acceptable, then
NFS4ERR_BADHANDLE MUST result. Similarly, current filehandles for
other operations do not accept filehandles derived from layouts and
are not normally usable on the metadata server. Using these will
result in NFS4ERR_STALE.

When a COMPOUND first executes an operation from class 2, which would
be PUTFH where the filehandle is one from a layout, the COMPOUND
henceforth is interpreted with respect to the data-server
personality. Operations outside the two classes discussed above MUST
result in NFS4ERR_NOTSUPP. Filehandles are validated using the rules
of the data server, resulting in NFS4ERR_BADHANDLE and/or
NFS4ERR_STALE even when they would not normally do so when addressed
to the non-data-server personality. Stateids must obey the rules of
the data server in that any use of special stateids or stateids with
non-zero sedgid values must result in NFS4ERR_BAD_STATEID.

Until the server first executes an operation from class 2 or class 3,
the client MUST NOT depend on the operation being executed by either

the data-server or the non-data-server personality. The server MUST

pick one personality consistently for a given COMPOUND, with the only
possible transition being a single one when the first operation from

class 2 or class 3 is executed.

Because of the complexity induced by assigning filehandles so they
can be used on both a data server and a metadata server, it is
RECOMMENDED that where the same server can have both personalities,
the server assign separate unique filehandles to both personalities.
This makes it unambiguous for which server a given request is
intended.

GETATTR and SETATTR MUST be directed to the metadata server. 1In the
case of a SETATTR of the size attribute, the control protocol is
responsible for propagating size updates/truncations to the data
servers. In the case of extending WRITEs to the data servers, the
new size must be visible on the metadata server once a LAYOUTCOMMIT
has completed (see Section 12.5.4.2). Section 13.10 describes the
mechanism by which the client is to handle data-server files that do
not reflect the metadata server’s size.

7. COMMIT through Metadata Server

The file layout provides two alternate means of providing for the
commit of data written through data servers. The flag
NFL4_UFLG_COMMIT_THRU_MDS in the field nfl_util of the file layout
(data type nfsv4_1_file_layout4d4) is an indication from the metadata
server to the client of the REQUIRED way of performing COMMIT, either

13.

by sending the COMMIT to the data server or the metadata server.
These two methods of dealing with the issue correspond to broad
styles of implementation for a pNFS server supporting the file layout
type.

* When the flag is FALSE, COMMIT operations MUST to be sent to the
data server to which the corresponding WRITE operations were sent.
This approach is sometimes useful when file striping is
implemented within the pNFS server (instead of the file system),
with the individual data servers each implementing their own file
systems.

* When the flag is TRUE, COMMIT operations MUST be sent to the
metadata server, rather than to the individual data servers. This
approach is sometimes useful when file striping is implemented
within the clustered file system that is the backend to the pNFS
server. In such an implementation, each COMMIT to each data
server might result in repeated writes of metadata blocks to the
detriment of write performance. Sending a single COMMIT to the
metadata server can be more efficient when there exists a
clustered file system capable of implementing such a coordinated
COMMIT.

If nfl util & NFL4_UFLG_COMMIT_THRU_MDS is TRUE, then in order to
maintain the current NFSv4.l commit and recovery model, the data
servers MUST return a common writeverf verifier in all WRITE
responses for a given file layout, and the metadata server’s
COMMIT implementation must return the same writeverf. The value
of the writeverf verifier MUST be changed at the metadata server
or any data server that is referenced in the layout, whenever
there is a server event that can possibly lead to loss of
uncommitted data. The scope of the verifier can be for a file or
for the entire pNFS server. It might be more difficult for the
server to maintain the verifier at the file level, but the benefit
is that only events that impact a given file will require recovery
action.

Note that if the layout specified dense packing, then the offset used
to a COMMIT to the MDS may differ than that of an offset used to a
COMMIT to the data server.

The single COMMIT to the metadata server will return a verifier, and
the client should compare it to all the verifiers from the WRITEs and
fail the COMMIT if there are any mismatched verifiers. If COMMIT to
the metadata server fails, the client should re-send WRITEs for all
the modified data in the file. The client should treat modified data
with a mismatched verifier as a WRITE failure and try to recover by
resending the WRITEs to the original data server or using another
path to that data if the layout has not been recalled.

Alternatively, the client can obtain a new layout or it could rewrite
the data directly to the metadata server. If nfl_util &
NFL4_UFLG_COMMIT_THRU_MDS is FALSE, sending a COMMIT to the metadata
server might have no effect. If nfl util & NFL4_UFLG_COMMIT_THRU_MDS
is FALSE, a COMMIT sent to the metadata server should be used only to
commit data that was written to the metadata server. See

Section 12.7.6 for recovery options.

8. The Layout Iomode

The layout iomode need not be used by the metadata server when
servicing NFSv4.1l file-based layouts, although in some circumstances
it may be useful. For example, if the server implementation supports
reading from read-only replicas or mirrors, it would be useful for
the server to return a layout enabling the client to do so. As such,
the client SHOULD set the iomode based on its intent to read or write
the data. The client may default to an iomode of LAYOUTIOMODE4_RW.
The iomode need not be checked by the data servers when clients
perform I/0O. However, the data servers SHOULD still validate that
the client holds a valid layout and return an error if the client
does not.

13.

13.

13.

13

9. Metadata and Data Server State Coordination
9.1. Global Stateid Requirements

When the client sends I/O to a data server, the stateid used MUST NOT
be a layout stateid as returned by LAYOUTGET or sent by
CB_LAYOUTRECALL. Permitted stateids are based on one of the
following: an OPEN stateid (the stateid field of data type OPEN4resok
as returned by OPEN), a delegation stateid (the stateid field of data
types open_read_delegation4 and open_write_delegation4 as returned by
OPEN or WANT_DELEGATION, or as sent by CB_PUSH_DELEG), or a stateid
returned by the LOCK or LOCKU operations. The stateid sent to the
data server MUST be sent with the seqgid set to zero, indicating the
most current version of that stateid, rather than indicating a
specific non-zero seqgid value. In no case is the use of special
stateid values allowed.

The stateid used for I/0O MUST have the same effect and be subject to
the same validation on a data server as it would if the I/O was being
performed on the metadata server itself in the absence of pNFS. This
has the implication that stateids are globally valid on both the
metadata and data servers. This requires the metadata server to
propagate changes in LOCK and OPEN state to the data servers, so that
the data servers can validate I/O accesses. This is discussed
further in Section 13.9.2. Depending on when stateids are
propagated, the existence of a valid stateid on the data server may
act as proof of a valid layout.

Clients performing I/0 operations need to select an appropriate
stateid based on the locks (including opens and delegations) held by
the client and the various types of state-owners sending the I/O
requests. The rules for doing so when referencing data servers are
somewhat different from those discussed in Section 8.2.5, which apply
when accessing metadata servers.

The following rules, applied in order of decreasing priority, govern
the selection of the appropriate stateid:

* TIf the client holds a delegation for the file in question, the
delegation stateid should be used.

* Otherwise, there must be an OPEN stateid for the current open-
owner, and that OPEN stateid for the open file in question is
used, unless mandatory locking prevents that. See below.

* If the data server had previously responded with NFS4ERR_LOCKED to
use of the OPEN stateid, then the client should use the byte-range
lock stateid whenever one exists for that open file with the
current lock-owner.

* Special stateids should never be used. If they are used, the data
server MUST reject the I/O with an NFS4ERR_BAD_STATEID error.

9.2. Data Server State Propagation

Since the metadata server, which handles byte-range lock and open-—
mode state changes as well as ACLs, might not be co-located with the
data servers where I/0 accesses are validated, the server
implementation MUST take care of propagating changes of this state to
the data servers. Once the propagation to the data servers is
complete, the full effect of those changes MUST be in effect at the
data servers. However, some state changes need not be propagated
immediately, although all changes SHOULD be propagated promptly.
These state propagations have an impact on the design of the control
protocol, even though the control protocol is outside of the scope of
this specification. Immediate propagation refers to the synchronous
propagation of state from the metadata server to the data server(s);
the propagation must be complete before returning to the client.

.9.2.1. Lock State Propagation

13.

13.

If the pNFS server supports mandatory byte-range locking, any
mandatory byte-range locks on a file MUST be made effective at the
data servers before the request that establishes them returns to the
caller. The effect MUST be the same as if the mandatory byte-range
lock state were synchronously propagated to the data servers, even
though the details of the control protocol may avoid actual transfer
of the state under certain circumstances.

On the other hand, since advisory byte-range lock state is not used
for checking I/O accesses at the data servers, there is no semantic
reason for propagating advisory byte-range lock state to the data
servers. Since updates to advisory locks neither confer nor remove
privileges, these changes need not be propagated immediately, and may
not need to be propagated promptly. The updates to advisory locks
need only be propagated when the data server needs to resolve a
question about a stateid. In fact, if byte-range locking is not
mandatory (i.e., is advisory) the clients are advised to avoid using
the byte-range lock-based stateids for I/O. The stateids returned by
OPEN are sufficient and eliminate overhead for this kind of state
propagation.

If a client gets back an NFS4ERR_LOCKED error from a data server,
this is an indication that mandatory byte-range locking is in force.
The client recovers from this by getting a byte-range lock that
covers the affected range and re-sends the I/0 with the stateid of
the byte-range lock.

9.2.2. Open and Deny Mode Validation

Open and deny mode validation MUST be performed against the open and
deny mode (s) held by the data servers. When access is reduced or a
deny mode made more restrictive (because of CLOSE or OPEN_DOWNGRADE),
the data server MUST prevent any I/0s that would be denied if
performed on the metadata server. When access is expanded, the data
server MUST make sure that no requests are subsequently rejected
because of open or deny issues that no longer apply, given the
previous relaxation.

9.2.3. File Attributes

Since the SETATTR operation has the ability to modify state that is
visible on both the metadata and data servers (e.g., the size), care
must be taken to ensure that the resultant state across the set of
data servers is consistent, especially when truncating or growing the
file.

As described earlier, the LAYOUTCOMMIT operation is used to ensure
that the metadata is synchronized with changes made to the data
servers. For the NFSv4.l-based data storage protocol, it is
necessary to re-synchronize state such as the size attribute, and the
setting of mtime/change/atime. See Section 12.5.4 for a full
description of the semantics regarding LAYOUTCOMMIT and attribute
synchronization. It should be noted that by using an NFSv4.l-based
layout type, it is possible to synchronize this state before
LAYOUTCOMMIT occurs. For example, the control protocol can be used
to query the attributes present on the data servers.

Any changes to file attributes that control authorization or access
as reflected by ACCESS calls or READs and WRITEs on the metadata
server, MUST be propagated to the data servers for enforcement on
READ and WRITE I/O calls. If the changes made on the metadata server
result in more restrictive access permissions for any user, those
changes MUST be propagated to the data servers synchronously.

The OPEN operation (Section 18.16.4) does not impose any requirement
that I/O operations on an open file have the same credentials as the
OPEN itself (unless EXCHGID4_FLAG_BIND_PRINC_STATEID is set when
EXCHANGE_ID creates the client ID), and so it requires the server’s
READ and WRITE operations to perform appropriate access checking.
Changes to ACLs also require new access checking by READ and WRITE on
the server. The propagation of access-right changes due to changes

13.

13.

in ACLs may be asynchronous only if the server implementation is able
to determine that the updated ACL is not more restrictive for any
user specified in the old ACL. Due to the relative infrequency of
ACL updates, it is suggested that all changes be propagated
synchronously.

10. Data Server Component File Size

A potential problem exists when a component data file on a particular
data server has grown past EOF; the problem exists for both dense and
sparse layouts. Imagine the following scenario: a client creates a
new file (size == 0) and writes to byte 131072; the client then seeks
to the beginning of the file and reads byte 100. The client should
receive zeroes back as a result of the READ. However, if the
striping pattern directs the client to send the READ to a data server
other than the one that received the client’s original WRITE, the
data server servicing the READ may believe that the file’s size 1is
still 0 bytes. In that event, the data server’s READ response will
contain zero bytes and an indication of EOF. The data server can
only return zeroces if it knows that the file’s size has been
extended. This would require the immediate propagation of the file’s
size to all data servers, which is potentially very costly.
Therefore, the client that has initiated the extension of the file’s
size MUST be prepared to deal with these EOF conditions. When the
offset in the arguments to READ is less than the client’s view of the
file size, i1f the READ response indicates EOF and/or contains fewer
bytes than requested, the client will interpret such a response as a
hole in the file, and the NFS client will substitute zeroes for the
data.

The NFSv4.l protocol only provides close-to-open file data cache
semantics; meaning that when the file is closed, all modified data is
written to the server. When a subsequent OPEN of the file is done,
the change attribute is inspected for a difference from a cached
value for the change attribute. For the case above, this means that
a LAYOUTCOMMIT will be done at close (along with the data WRITEs) and
will update the file’s size and change attribute. Access from
another client after that point will result in the appropriate size
being returned.

11. Layout Revocation and Fencing

As described in Section 12.7, the layout-type-specific storage
protocol is responsible for handling the effects of I/Os that started
before lease expiration and extend through lease expiration. The
LAYOUT4_NFSV4_1_FILES layout type can prevent all I/0Os to data
servers from being executed after lease expiration (this prevention
is called "fencing"), without relying on a precise client lease timer
and without requiring data servers to maintain lease timers. The
LAYOUT4_NFSV4_1_FILES pNFS server has the flexibility to revoke
individual layouts, and thus fence I/O on a per—-file basis.

In addition to lease expiration, the reasons a layout can be revoked
include: client fails to respond to a CB_LAYOUTRECALL, the metadata
server restarts, or administrative intervention. Regardless of the
reason, once a client’s layout has been revoked, the pNFS server MUST
prevent the client from sending I/0 for the affected file from and to
all data servers; in other words, it MUST fence the client from the
affected file on the data servers.

Fencing works as follows. As described in Section 13.1, in COMPOUND
procedure requests to the data server, the data filehandle provided
by the PUTFH operation and the stateid in the READ or WRITE operation
are used to ensure that the client has a valid layout for the I/O
being performed; if it does not, the I/O is rejected with
NFS4ERR_PNFS_NO_LAYOUT. The server can simply check the stateid and,
additionally, make the data filehandle stale if the layout specified
a data filehandle that is different from the metadata server’s
filehandle for the file (see the nfl_fh_list description in

Section 13.3).

13.

14.

Before the metadata server takes any action to revoke layout state
given out by a previous instance, it must make sure that all layout
state from that previous instance are invalidated at the data
servers. This has the following implications.

* The metadata server must not restripe a file until it has
contacted all of the data servers to invalidate the layouts from
the previous instance.

* The metadata server must not give out mandatory locks that
conflict with layouts from the previous instance without either
doing a specific layout invalidation (as it would have to do
anyway) or doing a global data server invalidation.

12. Security Considerations for the File Layout Type

The NFSv4.1 file layout type MUST adhere to the security
considerations outlined in Section 12.9. NFSv4.l data servers MUST
make all of the required access checks on each READ or WRITE I/O as
determined by the NFSv4.1l protocol. If the metadata server would
deny a READ or WRITE operation on a file due to its ACL, mode
attribute, open access mode, open deny mode, mandatory byte-range
lock state, or any other attributes and state, the data server MUST
also deny the READ or WRITE operation. This impacts the control
protocol and the propagation of state from the metadata server to the
data servers; see Section 13.9.2 for more details.

The methods for authentication, integrity, and privacy for data
servers based on the LAYOUT4_NFSV4_1_ FILES layout type are the same
as those used by metadata servers. Metadata and data servers use ONC
RPC security flavors to authenticate, and SECINFO and SECINFO_NO_NAME
to negotiate the security mechanism and services to be used. Thus,
when using the LAYOUT4_NFSV4_1_FILES layout type, the impact on the
RPC-based security model due to pNFS (as alluded to in Sections 1.8.1
and 1.8.2.2) is zero.

For a given file object, a metadata server MAY require different
security parameters (secinfo4 value) than the data server. For a
given file object with multiple data servers, the secinfo4 value
SHOULD be the same across all data servers. If the secinfo4 values
across a metadata server and its data servers differ for a specific
file, the mapping of the principal to the server’s internal user
identifier MUST be the same in order for the access-control checks
based on ACL, mode, open and deny mode, and mandatory locking to be
consistent across on the pNFS server.

If an NFSv4.l implementation supports pNFS and supports NFSv4.l file
layouts, then the implementation MUST support the SECINFO_NO_NAME
operation on both the metadata and data servers.

Internationalization

The primary issue in which NFSv4.l1 needs to deal with
internationalization, or I18N, is with respect to file names and
other strings as used within the protocol. The choice of string
representation must allow reasonable name/string access to clients
that use various languages. The UTF-8 encoding of the UCS (Universal
Multiple—-Octet Coded Character Set) as defined by IS010646 [18]
allows for this type of access and follows the policy described in
"IETF Policy on Character Sets and Languages", RFC 2277 [19].

RFC 3454 [16], otherwise known as "stringprep", documents a framework
for using Unicode/UTF-8 in networking protocols so as "to increase
the likelihood that string input and string comparison work in ways
that make sense for typical users throughout the world". A protocol
must define a profile of stringprep "in order to fully specify the
processing options". The remainder of this section defines the
NFSv4.1 stringprep profiles. Much of the terminology used for the
remainder of this section comes from stringprep.

There are three UTF-8 string types defined for NFSv4.1l: utf8str_cs,

14.

14.

14.

14.

utf8str_cis, and utf8str_mixed. Separate profiles are defined for
each. Each profile defines the following, as required by stringprep:

* The intended applicability of the profile.

* The character repertoire that is the input and output to
stringprep (which is Unicode 3.2 for the referenced version of
stringprep). However, NFSv4.l implementations are not limited to
3.2.

* The mapping tables from stringprep used (as described in Section 3
of stringprep).

* Any additional mapping tables specific to the profile.

* The Unicode normalization used, if any (as described in Section 4
of stringprep).

* The tables from the stringprep listing of characters that are
prohibited as output (as described in Section 5 of stringprep).

* The bidirectional string testing used, if any (as described in
Section 6 of stringprep).

* Any additional characters that are prohibited as output specific
to the profile.

Stringprep discusses Unicode characters, whereas NFSv4.l renders
UTF-8 characters. Since there is a one-to-one mapping from UTF-8 to
Unicode, when the remainder of this document refers to Unicode, the
reader should assume UTF-8.

Much of the text for the profiles comes from RFC 3491 [20].
1. Stringprep Profile for the utf8str_cs Type

Every use of the utf8str_cs type definition in the NFSv4 protocol
specification follows the profile named nfs4_cs_prep.

1.1. Intended Applicability of the nfs4_cs_prep Profile

The utf8str_cs type is a case-sensitive string of UTF-8 characters.
Its primary use in NFSv4.1l is for naming components and pathnames.
Components and pathnames are stored on the server’s file system. Two
valid distinct UTF-8 strings might be the same after processing via
the utf8str_cs profile. If the strings are two names inside a
directory, the NFSv4.1l server will need to either:

* disallow the creation of a second name if its post-processed form
collides with that of an existing name, or

* allow the creation of the second name, but arrange so that after
post-processing, the second name is different than the post-
processed form of the first name.

1.2. Character Repertoire of nfs4_cs_prep

The nfs4_cs_prep profile uses Unicode 3.2, as defined in stringprep’s

Appendix A.l. However, NFSv4.l implementations are not limited to

3.2.

1.3. Mapping Used by nfs4_cs_prep

The nfs4_cs_prep profile specifies mapping using the following tables
from stringprep:

Table B.1
Table B.2 is normally not part of the nfs4_cs_prep profile as it 1is

primarily for dealing with case—-insensitive comparisons. However, if
the NFSv4.1l file server supports the case_insensitive file system

14.

14.

14.

14

14

14

14

14

14

attribute, and if case_insensitive is TRUE, the NFSv4.1l server MUST
use Table B.2 (in addition to Table Bl) when processing utf8str_cs
strings, and the NFSv4.1l client MUST assume Table B.2 (in addition to
Table B.1l) is being used.

If the case_preserving attribute is present and set to FALSE, then
the NFSv4.1 server MUST use Table B.2 to map case when processing
utf8str_cs strings. Whether the server maps from lower to upper case
or from upper to lower case is an implementation dependency.

1.4. Normalization used by nfs4_cs_prep

The nfs4_cs_prep profile does not specify a normalization form. A
later revision of this specification may specify a particular
normalization form. Therefore, the server and client can expect that
they may receive unnormalized characters within protocol requests and
responses. If the operating environment requires normalization, then
the implementation must normalize utf8str_cs strings within the
protocol before presenting the information to an application (at the
client) or local file system (at the server).

1.5. Prohibited Output for nfs4d_cs_prep

The nfs4_cs_prep profile RECOMMENDS prohibiting the use of the
following tables from stringprep:

Table C.5
Table C.6
1.6. Bidirectional Output for nfs4_cs_prep

The nfs4_cs_prep profile does not specify any checking of
bidirectional strings.

.2. Stringprep Profile for the utf8str_cis Type

Every use of the utf8str_cis type definition in the NFSv4.1l protocol
specification follows the profile named nfs4_cis_prep.

.2.1. Intended Applicability of the nfs4_cis_prep Profile

The utf8str_cis type is a case-insensitive string of UTF-8
characters. 1Its primary use in NFSv4.l1 is for naming NFS servers.

.2.2. Character Repertoire of nfs4_cis_prep

The nfs4_cis_prep profile uses Unicode 3.2, as defined in
stringprep’s Appendix A.l. However, NFSv4.l implementations are not
limited to 3.2.

.2.3. Mapping Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies mapping using the following
tables from stringprep:

Table B.1

Table B.2

.2.4. Normalization Used by nfs4_cis_prep

The nfs4_cis_prep profile specifies using Unicode normalization form
KC, as described in stringprep.

.2.5. Prohibited Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies prohibiting using the following
tables from stringprep:

Table C.1.2

14

14.

14

14

14.

14.

14.

Table C.2.2

Table C.3

Table C.4

Table C.5

Table C.6

Table C.7

Table C.8

Table C.9

.2.6. Bidirectional Output for nfs4_cis_prep

The nfs4_cis_prep profile specifies checking bidirectional strings as
described in stringprep’s Section 6.

3. Stringprep Profile for the utf8str_mixed Type

Every use of the utf8str_mixed type definition in the NFSv4.1l
protocol specification follows the profile named nfs4_mixed_prep.

.3.1. Intended Applicability of the nfs4_mixed_prep Profile

The utf8str_mixed type is a string of UTF-8 characters, with a prefix
that is case sensitive, a separator equal to ’'@’, and a suffix that
is a fully qualified domain name. Its primary use in NFSv4.1 is for
naming principals identified in an Access Control Entry.

.3.2. Character Repertoire of nfs4_mixed_prep

The nfs4_mixed_prep profile uses Unicode 3.2, as defined in
stringprep’s Appendix A.1l. However, NFSv4.l implementations are not
limited to 3.2.

3.3. Mapping Used by nfs4_cis_prep

For the prefix and the separator of a utf8str_mixed string, the
nfs4_mixed_prep profile specifies mapping using the following table
from stringprep:

Table B.1

For the suffix of a utf8str_mixed string, the nfs4_mixed prep profile
specifies mapping using the following tables from stringprep:

Table B.1
Table B.2
3.4. Normalization Used by nfs4_mixed_prep

The nfs4_mixed_prep profile specifies using Unicode normalization
form KC, as described in stringprep.

3.5. Prohibited Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies prohibiting using the following
tables from stringprep:

Table C.1.2
Table C.2.2

Table C.3

Table C.4
Table C.5
Table C.6
Table C.7
Table C.8
Table C.9
14.3.6. Bidirectional Output for nfs4_mixed_prep

The nfs4_mixed_prep profile specifies checking bidirectional strings
as described in stringprep’s Section 6.

14.4. UTF-8 Capabilities

const FSCHARSET_CAP4_CONTAINS_NON_UTF8 0x1;
const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

typedef uint32_t fs_charset_cap4;

Because some operating environments and file systems do not enforce
character set encodings, NFSv4.1l supports the fs_charset_cap
attribute (Section 5.8.2.11) that indicates to the client a file
system’s UTF-8 capabilities. The attribute is an integer containing
a pair of flags. The first flag is FSCHARSET_CAP4_CONTAINS_NON_UTFS,
which, if set to one, tells the client that the file system contains
non-UTF-8 characters, and the server will not convert non-UTF
characters to UTF-8 if the client reads a symbolic link or directory,
neither will operations with component names or pathnames in the
arguments convert the strings to UTF-8. The second flag is
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set to one, indicates that
the server will accept (and generate) only UTF-8 characters on the
file system. If FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one,
FSCHARSET_CAP4_CONTAINS_NON_UTF8 MUST be set to zero.
FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 SHOULD always be set to one.

14.5. UTF-8 Related Errors

Where the client sends an invalid UTF-8 string, the server should
return NFS4ERR_INVAL (see Table 11). This includes cases in which
inappropriate prefixes are detected and where the count includes
trailing bytes that do not constitute a full UCS character.

Where the client-supplied string is wvalid UTF-8 but contains
characters that are not supported by the server as a value for that
string (e.g., names containing characters outside of Unicode plane O
on file systems that fail to support such characters despite their
presence in the Unicode standard), the server should return
NFS4ERR_BADCHAR.

Where a UTF-8 string is used as a file name, and the file system
(while supporting all of the characters within the name) does not
allow that particular name to be used, the server should return the
error NFS4ERR_BADNAME (Table 11). This includes situations in which
the server file system imposes a normalization constraint on name
strings, but will also include such situations as file system
prohibitions of "." and ".." as file names for certain operations,
and other such constraints.

15. Error Values

NFS error numbers are assigned to failed operations within a Compound
(COMPOUND or CB_COMPOUND) request. A Compound request contains a
number of NFS operations that have their results encoded in sequence
in a Compound reply. The results of successful operations will
consist of an NFS4_OK status followed by the encoded results of the
operation. If an NFS operation fails, an error status will be

15.

entered in the reply and the Compound request

1.

Error Definitions

will be terminated.

+ + +
Error | Number | Description
+ + +
NFS4_OK | 0 | section 15.1.3.1
——————————————————————————————— et
NFS4ERR_ACCESS | 13 | section 15.1.6.1 |
——————————————————————————————— e E
NFS4ERR_ATTRNOTSUPP | 10032 | section 15.1.15.1 |
——————————————————————————————— e Et
NFS4ERR_ADMIN_REVOKED | 10047 | section 15.1.5.1
——————————————————————————————— et
NFS4ERR_BACK_CHAN_BUSY | 10057 | section 15.1.12.1 |
——————————————————————————————— e E
NFS4ERR_BADCHAR | 10040 | section 15.1.7.1 |
——————————————————————————————— o
NFS4ERR_BADHANDLE | 10001 | section 15.1.2.1 |
——————————————————————————————— et
NFS4ERR_BADIOMODE | 10049 | section 15.1.10.1 |
——————————————————————————————— e E
NFS4ERR_BADLAYOUT | 10050 | section 15.1.10.2 |
——————————————————————————————— o
NFS4ERR_BADNAME | 10041 | section 15.1.7.2 |
——————————————————————————————— et
NFS4ERR_BADOWNER | 10039 | section 15.1.15.2 |
——————————————————————————————— e E
NFS4ERR_BADSESSION | 10052 | section 15.1.11.1 |
——————————————————————————————— o
NFS4ERR_BADSLOT | 10053 | section 15.1.11.2 |
——————————————————————————————— et
NFS4ERR_BADTYPE | 10007 | section 15.1.4.1 |
——————————————————————————————— e E
NFS4ERR_BADXDR | 10036 | section 15.1.1.1 |
——————————————————————————————— o
NFS4ERR_BAD_COOKIE | 10003 | section 15.1.1.2 |
——————————————————————————————— et
NFS4ERR_BAD_HIGH_SLOT | 10077 | section 15.1.11.3 |
——————————————————————————————— e E
NFS4ERR_BAD_RANGE | 10042 | section 15.1.8.1 |
——————————————————————————————— o
NFS4ERR_BAD_SEQID | 10026 | Section 15.1.16.1 |
——————————————————————————————— et
NFS4ERR_BAD_SESSION_DIGEST | 10051 | section 15.1.12.2 |
——————————————————————————————— e E
NFS4ERR_BAD_STATEID | 10025 | section 15.1.5.2 |
——————————————————————————————— o
NFS4ERR_CB_PATH_DOWN | 10048 | Section 15.1.11.4 |
——————————————————————————————— et
NFS4ERR_CLID_INUSE | 10017 | section 15.1.13.2 |
——————————————————————————————— e E
NFS4ERR_CLIENTID_BUSY | 10074 | section 15.1.13.1 |
——————————————————————————————— o
NFS4ERR_COMPLETE_ALREADY | 10054 | Section 15.1.9.1
——————————————————————————————— et
NFS4ERR_CONN_NOT_BOUND_TO_SESSION | 10055 | Section 15.1.11.6 |
——————————————————————————————— e E
NFS4ERR_DEADLOCK | 10045 | section 15.1.8.2 |
——————————————————————————————— o
NFS4ERR_DEADSESSION | 10078 | Section 15.1.11.5 |
——————————————————————————————— et
NFS4ERR_DELAY | 10008 | section 15.1.1.3 |
——————————————————————————————— e E
NFS4ERR_DELEG_ALREADY_WANTED | 10056 | Section 15.1.14.1 |
——————————————————————————————— o
NFS4ERR_DELEG_REVOKED | 10087 | Section 15.1.5.3 |
——————————————————————————————— et
NFS4ERR_DENIED | 10010 | section 15.1.8.3 |
e fomm Fom +

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

NFS4ERR_DIRDELEG_UNAVAIL

NFS4ERR_DQUOT

NFS4ERR_ENCR_ALG_UNSUPP

NFS4ERR_EXIST

NFS4ERR_EXPIRED

NFS4ERR_FBIG

NFS4ERR_FHEXPIRED

NFS4ERR_FILE_OPEN

NFS4ERR_GRACE

NFS4ERR_HASH ALG_UNSUPP

NFS4ERR_INVAL

NFS4ERR_IO

NFS4ERR_ISDIR

NFS4ERR_LAYOUTTRYLATER

NFS4ERR_LAYOUTUNAVAILABLE

NFS4ERR_LEASE_MOVED

NFS4ERR_LOCKED

NFS4ERR_LOCKS_HELD

NFS4ERR_LOCK_NOTSUPP

NFS4ERR_LOCK_RANGE

NFS4ERR_MINOR_VERS_MISMATCH

NFS4ERR_MLINK

NFS4ERR_MOVED

NFS4ERR_NAMETOOLONG

NFS4ERR_NOENT

NFS4ERR_NOFILEHANDLE

NFS4ERR_NOMATCHING_LAYOUT

NFS4ERR_NOSPC

NFS4ERR_NOTDIR

NFS4ERR_NOTEMPTY

NFS4ERR_NOTSUPP

NFS4ERR_NOT_ONLY_OP

NFS4ERR_NOT_SAME

NFS4ERR_NO_GRACE

NFS4ERR_NXIO

NFS4ERR_OLD_STATEID

—_—t—t—t+—+—F+—+—F—+ — + — +— F— F—F—F—F—F— F— F — F — F — + — o — o — F — F — F — F — F — + — + —

—_—t—t—t—+—+—+—F+—+ — +— +— F— F— F—F—F—F— F— F — F — F — + — ot — o — o — F — F — F — F — F — + —

Section

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________
NFS4ERR_REP_TOO_BIG_TO_CACHE
+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

+ ___________________________________

F—————————— e —

+ ___________________________________

NFS4ERR_OPENMODE
NFS4ERR_OP_ILLEGAL
NFS4ERR_OP_NOT_IN_SESSION
NFS4ERR_PERM
NFS4ERR_PNFS_TIO_HOLE
NFS4ERR_PNFS_NO_LAYOUT
NFS4ERR_RECALLCONFLICT
NFS4ERR_RECLAIM_BAD
NFS4ERR_RECLAIM_CONFLICT
NFS4ERR_REJECT_DELEG

NFS4ERR_REP_TOO_BIG

NFS4ERR_REQ TOO_BIG
NFS4ERR_RESTOREFH
NFS4ERR_RETRY_UNCACHED_REP
NFS4ERR_RETURNCONFLICT
NFS4ERR_ROF'S
NFS4ERR_SAME
NFS4ERR_SHARE_DENIED
NFS4ERR_SEQUENCE_POS
NFS4ERR_SEQ_ FALSE_RETRY
NFS4ERR_SEQ MISORDERED
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_CLIENTID
NFS4ERR_STALE_STATEID
NFS4ERR_SYMLINK
NFS4ERR_TOOSMALL
NFS4ERR_TOO_MANY_OPS
NFS4ERR_UNKNOWN_LAYOUTTYPE
NFS4ERR_UNSAFE_COMPOUND
NFS4ERR_WRONGSEC
NFS4ERR_WRONG_CRED
NFS4ERR_WRONG_TYPE

NFS4ERR_XDEV

+—t—F—F—F—F—+—F—F—F—F—+—F—F—F—F—+— b — F— F— F— +— b — F— F— F— +— b — F— F — F— +— F— +— + — +

+—t—F—F—F—F—+—F—F—F—F—+—F—F—F—F—+— b — F— F— F— +— b — F— F— F— +— b — F— F — F— +— F— +— + — +

15.

15.

15.

15.

Table 11: Protocol Error Definitions
1.1. General Errors

This section deals with errors that are applicable to a broad set of
different purposes.

1.1.1. NFS4ERR_BADXDR (Error Code 10036)

The arguments for this operation do not match those specified in the
XDR definition. This includes situations in which the request ends
before all the arguments have been seen. Note that this error
applies when fixed enumerations (these include booleans) have a value
within the input stream that is not valid for the enum. A replier
may pre-parse all operations for a Compound procedure before doing
any operation execution and return RPC-level XDR errors in that case.

1.1.2. NFS4ERR_BAD_COOKIE (Error Code 10003)

Used for operations that provide a set of information indexed by some
quantity provided by the client or cookie sent by the server for an
earlier invocation. Where the wvalue cannot be used for its intended
purpose, this error results.

1.1.3. NFS4ERR_DELAY (Error Code 10008)

For any of a number of reasons, the replier could not process this
operation in what was deemed a reasonable time. The client should
wait and then try the request with a new slot and sequence value.

Some examples of scenarios that might lead to this situation:

* A server that supports hierarchical storage receives a request to
process a file that had been migrated.

* An operation requires a delegation recall to proceed, but the need
to wait for this delegation to be recalled and returned makes
processing this request in a timely fashion impossible.

* A request is being performed on a session being migrated from
another server as described in Section 11.14.3, and the lack of
full information about the state of the session on the source
makes it impossible to process the request immediately.

In such cases, returning the error NFS4ERR_DELAY allows necessary
preparatory operations to proceed without holding up requester
resources such as a session slot. After delaying for period of time,
the client can then re-send the operation in question, often as part
of a nearly identical request. Because of the need to avoid spurious
reissues of non-idempotent operations and to avoid acting in response
to NFS4ERR_DELAY errors returned on responses returned from the
replier’s reply cache, integration with the session-provided reply
cache is necessary. There are a number of cases to deal with, each
of which requires different sorts of handling by the requester and
replier:

* If NFS4ERR_DELAY is returned on a SEQUENCE operation, the request
is retried in full with the SEQUENCE operation containing the same
slot and sequence values. In this case, the replier MUST avoid
returning a response containing NFS4ERR_DELAY as the response to
SEQUENCE solely because an earlier instance of the same request
returned that error and it was stored in the reply cache. If the
replier did this, the retries would not be effective as there
would be no opportunity for the replier to see whether the
condition that generated the NFS4ERR_DELAY had been rectified
during the interim between the original request and the retry.

* If NFS4ERR_DELAY is returned on an operation other than SEQUENCE
that validly appears as the first operation of a request, the
handling is similar. The request can be retried in full without

15.

15.

15

15

15.

modification. In this case as well, the replier MUST avoid
returning a response containing NFS4ERR_DELAY as the response to
an initial operation of a request solely on the basis of its
presence in the reply cache. If the replier did this, the retries
would not be effective as there would be no opportunity for the
replier to see whether the condition that generated the
NFS4ERR_DELAY had been rectified during the interim between the
original request and the retry.

* If NFS4ERR_DELAY is returned on an operation other than the first
in the request, the request when retried MUST contain a SEQUENCE
operation that is different than the original one, with either the
slot ID or the sequence value different from that in the original
request. Because requesters do this, there is no need for the
replier to take special care to avoid returning an NFS4ERR_DELAY
error obtained from the reply cache. When no non-idempotent
operations have been processed before the NFS4ERR_DELAY was
returned, the requester should retry the request in full, with the
only difference from the original request being the modification
to the slot ID or sequence value in the reissued SEQUENCE
operation.

* When NFS4ERR_DELAY is returned on an operation other than the
first within a request and there has been a non-idempotent
operation processed before the NFS4ERR_DELAY was returned,
reissuing the request as is normally done would incorrectly cause
the re—-execution of the non-idempotent operation.

To avoid this situation, the client should reissue the request
without the non-idempotent operation. The request still must use
a SEQUENCE operation with either a different slot ID or sequence
value from the SEQUENCE in the original request. Because this is
done, there is no way the replier could avoid spuriously re-
executing the non-idempotent operation since the different
SEQUENCE parameters prevent the requester from recognizing that
the non-idempotent operation is being retried.

Note that without the ability to return NFS4ERR_DELAY and the
requester’s willingness to re-send when receiving it, deadlock might
result. For example, if a recall is done, and if the delegation
return or operations preparatory to delegation return are held up by
other operations that need the delegation to be returned, session
slots might not be available. The result could be deadlock.

1.1.4. NFS4ERR_INVAL (Error Code 22)

The arguments for this operation are not valid for some reason, even
though they do match those specified in the XDR definition for the
request.

1.1.5. NFS4ERR_NOTSUPP (Error Code 10004)

Operation not supported, either because the operation is an OPTIONAL

one and is not supported by this server or because the operation MUST
NOT be implemented in the current minor version.

.1.1.6. NFS4ERR_SERVERFAULT (Error Code 10006)

An error occurred on the server that does not map to any of the
specific legal NFSv4.l protocol error values. The client should
translate this into an appropriate error. UNIX clients may choose to
translate this to EIO.

.1.1.7. NFS4ERR_TOOSMALL (Error Code 10005)

Used where an operation returns a variable amount of data, with a
limit specified by the client. Where the data returned cannot be fit
within the limit specified by the client, this error results.

1.2. Filehandle Errors

15.

15.

15.

15.

15.

15.

15.

15.

These errors deal with the situation in which the current or saved
filehandle, or the filehandle passed to PUTFH intended to become the
current filehandle, is invalid in some way. This includes situations
in which the filehandle is a valid filehandle in general but is not
of the appropriate object type for the current operation.

Where the error description indicates a problem with the current or
saved filehandle, it is to be understood that filehandles are only
checked for the condition if they are implicit arguments of the
operation in question.

1.2.1. NFS4ERR_BADHANDLE (Error Code 10001)

Illegal NFS filehandle for the current server. The current
filehandle failed internal consistency checks. Once accepted as
valid (by PUTFH), no subsequent status change can cause the
filehandle to generate this error.

1.2.2. NFS4ERR_FHEXPIRED (Error Code 10014)

A current or saved filehandle that is an argument to the current
operation is volatile and has expired at the server.

1.2.3. NFS4ERR_ISDIR (Error Code 21)

The current or saved filehandle designates a directory when the
current operation does not allow a directory to be accepted as the
target of this operation.

1.2.4. NFS4ERR_MOVED (Error Code 10019)

The file system that contains the current filehandle object is not
present at the server or is not accessible with the network address
used. It may have been made accessible on a different set of network
addresses, relocated or migrated to another server, or it may have
never been present. The client may obtain the new file system
location by obtaining the fs_locations or fs_locations_info attribute
for the current filehandle. For further discussion, refer to

Section 11.3.

As with the case of NFS4ERR_DELAY, it is possible that one or more
non-idempotent operations may have been successfully executed within
a COMPOUND before NFS4ERR_MOVED is returned. Because of this, once
the new location is determined, the original request that received
the NFS4ERR_MOVED should not be re-executed in full. 1Instead, the
client should send a new COMPOUND with any successfully executed non-
idempotent operations removed. When the client uses the same session
for the new COMPOUND, its SEQUENCE operation should use a different
slot ID or sequence.

1.2.5. NFS4ERR_NOFILEHANDLE (Error Code 10020)

The logical current or saved filehandle value is required by the
current operation and is not set. This may be a result of a
malformed COMPOUND operation (i.e., no PUTFH or PUTROOTFH before an
operation that requires the current filehandle be set).

1.2.6. NFS4ERR_NOTDIR (Error Code 20)

The current (or saved) filehandle designates an object that is not a
directory for an operation in which a directory is required.

1.2.7. NFS4ERR_STALE (Error Code 70)

The current or saved filehandle value designating an argument to the
current operation is invalid. The file referred to by that
filehandle no longer exists or access to it has been revoked.

1.2.8. NFS4ERR_SYMLINK (Error Code 10029)

The current filehandle designates a symbolic link when the current

15.

15.

15.

15.

15.

15.

15.

15.

15

15.

operation does not allow a symbolic link as the target.
1.2.9. NFS4ERR_WRONG_TYPE (Error Code 10083)

The current (or saved) filehandle designates an object that is of an
invalid type for the current operation, and there is no more specific
error (such as NFS4ERR_ISDIR or NFS4ERR_SYMLINK) that applies. Note
that in NFSv4.0, such situations generally resulted in the less-
specific error NFS4ERR_INVAL.

1.3. Compound Structure Errors

This section deals with errors that relate to the overall structure
of a Compound request (by which we mean to include both COMPOUND and
CB_COMPOUND), rather than to particular operations.

There are a number of basic constraints on the operations that may
appear in a Compound request. Sessions add to these basic
constraints by requiring a Sequence operation (either SEQUENCE or
CB_SEQUENCE) at the start of the Compound.

1.3.1. NFS_OK (Error code 0)

Indicates the operation completed successfully, in that all of the
constituent operations completed without error.

1.3.2. NFS4ERR_MINOR_VERS_MISMATCH (Error code 10021)

The minor version specified is not one that the current listener
supports. This value is returned in the overall status for the
Compound but is not associated with a specific operation since the
results will specify a result count of zero.

1.3.3. NFS4ERR_NOT_ONLY_OP (Error Code 10081)

Certain operations, which are allowed to be executed outside of a
session, MUST be the only operation within a Compound whenever the
Compound does not start with a Sequence operation. This error
results when that constraint is not met.

1.3.4. NFS4ERR_OP_ILLEGAL (Error Code 10044)

The operation code is not a valid one for the current Compound
procedure. The opcode in the result stream matched with this error
is the ILLEGAL value, although the value that appears in the request
stream may be different. Where an illegal value appears and the
replier pre-parses all operations for a Compound procedure before
doing any operation execution, an RPC-level XDR error may be
returned.

1.3.5. NFS4ERR_OP_NOT_IN_SESSION (Error Code 10071)

Most forward operations and all callback operations are only valid
within the context of a session, so that the Compound request in
question MUST begin with a Sequence operation. If an attempt is made
to execute these operations outside the context of session, this
error results.

1.3.6. NFS4ERR_REP_TOO_BIG (Error Code 10066)

The reply to a Compound would exceed the channel’s negotiated maximum
response size.

.1.3.7. NFS4ERR_REP_TOO_BIG_TO_CACHE (Error Code 10067)

The reply to a Compound would exceed the channel’s negotiated maximum
size for replies cached in the reply cache when the Sequence for the
current request specifies that this request is to be cached.

1.3.8. NFS4ERR_REQ TOO_BIG (Error Code 10065)

15.

15.

15.

15.

15.

15.

15

15.

15.

15.

15.

15.

15.

The Compound request exceeds the channel’s negotiated maximum size
for requests.

1.3.9. NFS4ERR_RETRY_ UNCACHED_REP (Error Code 10068)

The requester has attempted a retry of a Compound that it previously
requested not be placed in the reply cache.

1.3.10. NFS4ERR_SEQUENCE_POS (Error Code 10064)

A Sequence operation appeared in a position other than the first
operation of a Compound request.

1.3.11. NFS4ERR_TOO_MANY_OPS (Error Code 10070)

The Compound request has too many operations, exceeding the count
negotiated when the session was created.

1.3.12. NFS4ERR_UNSAFE_COMPOUND (Error Code 10068)

The client has sent a COMPOUND request with an unsafe mix of
operations —- specifically, with a non-idempotent operation that
changes the current filehandle and that is not followed by a GETFH.

1.4. File System Errors

These errors describe situations that occurred in the underlying file
system implementation rather than in the protocol or any NFSv4.x
feature.

1.4.1. NFS4ERR_BADTYPE (Error Code 10007)

An attempt was made to create an object with an inappropriate type
specified to CREATE. This may be because the type is undefined,
because the type is not supported by the server, or because the type
is not intended to be created by CREATE (such as a regular file or
named attribute, for which OPEN is used to do the file creation).

.1.4.2. NFS4ERR_DQUOT (Error Code 69)

Resource (quota) hard limit exceeded. The user’s resource limit on
the server has been exceeded.

1.4.3. NFS4ERR_EXIST (Error Code 17)

A file of the specified target name (when creating, renaming, or
linking) already exists.

1.4.4. NFS4ERR_FBIG (Error Code 27)

The file is too large. The operation would have caused the file to
grow beyond the server’s limit.

1.4.5. NFS4ERR_FILE_OPEN (Error Code 10046)

The operation is not allowed because a file involved in the operation
is currently open. Servers may, but are not required to, disallow
linking-to, removing, or renaming open files.

1.4.6. NFS4ERR_IO (Error Code 5)

Indicates that an I/O error occurred for which the file system was
unable to provide recovery.

1.4.7. NFS4ERR_MLINK (Error Code 31)

The request would have caused the server’s limit for the number of
hard links a file may have to be exceeded.

1.4.8. NFS4ERR_NOENT (Error Code 2)

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

Indicates no such file or directory. The file or directory name
specified does not exist.

1.4.9. NFS4ERR_NOSPC (Error Code 28)

Indicates there is no space left on the device. The operation would
have caused the server’s file system to exceed its limit.

1.4.10. NFS4ERR_NOTEMPTY (Error Code 66)
An attempt was made to remove a directory that was not empty.
1.4.11. NFS4ERR_ROFS (Error Code 30)

Indicates a read-only file system. A modifying operation was
attempted on a read-only file system.

1.4.12. NFS4ERR_XDEV (Error Code 18)

Indicates an attempt to do an operation, such as linking, that
inappropriately crosses a boundary. This may be due to such
boundaries as:

* that between file systems (where the fsids are different).

* that between different named attribute directories or between a
named attribute directory and an ordinary directory.

* that between byte-ranges of a file system that the file system
implementation treats as separate (for example, for space
accounting purposes), and where cross—-connection between the byte-
ranges are not allowed.

1.5. State Management Errors

These errors indicate problems with the stateid (or one of the
stateids) passed to a given operation. This includes situations in
which the stateid is invalid as well as situations in which the
stateid is valid but designates locking state that has been revoked.
Depending on the operation, the stateid when valid may designate
opens, byte-range locks, file or directory delegations, layouts, or
device maps.

1.5.1. NFS4ERR_ADMIN_REVOKED (Error Code 10047)

A stateid designates locking state of any type that has been revoked
due to administrative interaction, possibly while the lease is valid.

1.5.2. NFS4ERR_BAD_STATEID (Error Code 10026)

A stateid does not properly designate any valid state. See Sections
8.2.4 and 8.2.3 for a discussion of how stateids are validated.

1.5.3. NFS4ERR_DELEG_REVOKED (Error Code 10087)

A stateid designates recallable locking state of any type (delegation
or layout) that has been revoked due to the failure of the client to
return the lock when it was recalled.

1.5.4. NFS4ERR_EXPIRED (Error Code 10011)

A stateid designates locking state of any type that has been revoked
due to expiration of the client’s lease, either immediately upon
lease expiration, or following a later request for a conflicting
lock.

1.5.5. NFS4ERR_OLD_STATEID (Error Code 10024)

A stateid with a non-zero seqgid value does match the current seqgid
for the state designated by the user.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

1.6. Security Errors
These are the various permission-related errors in NFSv4.1l.
1.6.1. NFS4ERR_ACCESS (Error Code 13)

Indicates permission denied. The caller does not have the correct
permission to perform the requested operation. Contrast this with
NFS4ERR_PERM (Section 15.1.6.2), which restricts itself to owner or
privileged-user permission failures, and NFS4ERR_WRONG_CRED

(Section 15.1.6.4), which deals with appropriate permission to delete
or modify transient objects based on the credentials of the user that
created them.

1.6.2. NFS4ERR_PERM (Error Code 1)

Indicates requester is not the owner. The operation was not allowed
because the caller is neither a privileged user (root) nor the owner
of the target of the operation.

1.6.3. NFS4ERR_WRONGSEC (Error Code 10016)

Indicates that the security mechanism being used by the client for
the operation does not match the server’s security policy. The
client should change the security mechanism being used and re-send
the operation (but not with the same slot ID and sequence ID; one or
both MUST be different on the re-send). SECINFO and SECINFO_NO_NAME
can be used to determine the appropriate mechanism.

1.6.4. NFS4ERR_WRONG_CRED (Error Code 10082)

An operation that manipulates state was attempted by a principal that
was not allowed to modify that piece of state.

1.7. Name Errors

Names in NFSv4 are UTF-8 strings. When the strings are not valid
UTF-8 or are of length zero, the error NFS4ERR_INVAL results.

Besides this, there are a number of other errors to indicate specific
problems with names.

1.7.1. NFS4ERR_BADCHAR (Error Code 10040)

A UTF-8 string contains a character that is not supported by the
server in the context in which it being used.

1.7.2. NFS4ERR_BADNAME (Error Code 10041)

A name string in a request consisted of valid UTF-8 characters
supported by the server, but the name is not supported by the server
as a valid name for the current operation. An example might be
creating a file or directory named ".." on a server whose file system
uses that name for links to parent directories.

1.7.3. NFS4ERR_NAMETOOLONG (Error Code 63)

Returned when the filename in an operation exceeds the server’s
implementation limit.

1.8. Locking Errors

This section deals with errors related to locking, both as to share
reservations and byte-range locking. It does not deal with errors
specific to the process of reclaiming locks. Those are dealt with in
Section 15.1.09.

1.8.1. NFS4ERR_BAD_RANGE (Error Code 10042)
The byte-range of a LOCK, LOCKT, or LOCKU operation is not allowed by

the server. For example, this error results when a server that only
supports 32-bit ranges receives a range that cannot be handled by

15.

15.

15.

15.

15.

15.

15

15.

15

15.

15.

that server. (See Section 18.10.3.)
1.8.2. NFS4ERR_DEADLOCK (Error Code 10045)

The server has been able to determine a byte-range locking deadlock
condition for a READW_LT or WRITEW_LT LOCK operation.

1.8.3. NFS4ERR_DENIED (Error Code 10010)

An attempt to lock a file is denied. Since this may be a temporary
condition, the client is encouraged to re-send the lock request (but
not with the same slot ID and sequence ID; one or both MUST be
different on the re-send) until the lock is accepted. See

Section 9.6 for a discussion of the re-send.

1.8.4. NFS4ERR_LOCKED (Error Code 10012)

A READ or WRITE operation was attempted on a file where there was a
conflict between the I/0 and an existing lock:

* There is a share reservation inconsistent with the I/0O being done.

* The range to be read or written intersects an existing mandatory
byte-range lock.

1.8.5. NFS4ERR_LOCKS_HELD (Error Code 10037)
An operation was prevented by the unexpected presence of locks.
1.8.6. NFS4ERR_LOCK_NOTSUPP (Error Code 10043)

A LOCK operation was attempted that would require the upgrade or
downgrade of a byte-range lock range already held by the owner, and
the server does not support atomic upgrade or downgrade of locks.

1.8.7. NFS4ERR_LOCK_RANGE (Error Code 10028)

A LOCK operation is operating on a range that overlaps in part a
currently held byte-range lock for the current lock-owner and does
not precisely match a single such byte-range lock where the server
does not support this type of request, and thus does not implement
POSIX locking semantics [21]. See Sections 18.10.4, 18.11.4, and
18.12.4 for a discussion of how this applies to LOCK, LOCKT, and
LOCKU respectively.

.1.8.8. NFS4ERR_OPENMODE (Error Code 10038)

The client attempted a READ, WRITE, LOCK, or other operation not
sanctioned by the stateid passed (e.g., writing to a file opened for
read-only access).

1.8.9. NFS4ERR_SHARE_DENIED (Error Code 10015)

An attempt to OPEN a file with a share reservation has failed because
of a share conflict.

.1.9. Reclaim Errors

These errors relate to the process of reclaiming locks after a server
restart.

1.9.1. NFS4ERR_COMPLETE_ALREADY (Error Code 10054)

The client previously sent a successful RECLAIM_COMPLETE operation
specifying the same scope, whether that scope is global or for the
same file system in the case of a per-fs RECLAIM COMPLETE. An

additional RECLAIM_COMPLETE operation is not necessary and results in
this error.

1.9.2. NFS4ERR_GRACE (Error Code 10013)

15.

15.

15.

15.

15.

This error is returned when the server is in its grace period with
regard to the file system object for which the lock was requested.
In this situation, a non-reclaim locking request cannot be granted.
This can occur because either:

* The server does not have sufficient information about locks that
might be potentially reclaimed to determine whether the lock could
be granted.

* The request is made by a client responsible for reclaiming its
locks that has not yet done the appropriate RECLAIM_COMPLETE
operation, allowing it to proceed to obtain new locks.

In the case of a per-fs grace period, there may be clients (i.e.,
those currently using the destination file system) who might be
unaware of the circumstances resulting in the initiation of the grace
period. Such clients need to periodically retry the request until
the grace period is over, just as other clients do.

1.9.3. NFS4ERR_NO_GRACE (Error Code 10033)

A reclaim of client state was attempted in circumstances in which the
server cannot guarantee that conflicting state has not been provided
to another client. This occurs in any of the following situations:

* There is no active grace period applying to the file system object
for which the request was made.

* The client making the request has no current role in reclaiming
locks.

* Previous operations have created a situation in which the server
is not able to determine that a reclaim-interfering edge condition
does not exist.

1.9.4. NFS4ERR_RECLAIM BAD (Error Code 10034)

The server has determined that a reclaim attempted by the client is
not valid, i.e., the lock specified as being reclaimed could not
possibly have existed before the server restart or file system
migration event. A server is not obliged to make this determination
and will typically rely on the client to only reclaim locks that the
client was granted prior to restart. However, when a server does
have reliable information to enable it to make this determination,
this error indicates that the reclaim has been rejected as invalid.
This is as opposed to the error NFS4ERR_RECLAIM_CONFLICT (see
Section 15.1.9.5) where the server can only determine that there has
been an invalid reclaim, but cannot determine which request is
invalid.

1.9.5. NFS4ERR_RECLAIM CONFLICT (Error Code 10035)

The reclaim attempted by the client has encountered a conflict and
cannot be satisfied. This potentially indicates a misbehaving
client, although not necessarily the one receiving the error. The
misbehavior might be on the part of the client that established the
lock with which this client conflicted. See also Section 15.1.9.4
for the related error, NFS4ERR_RECLAIM_BAD.

1.10. pNFS Errors

This section deals with pNFS-related errors including those that are
associated with using NFSv4.1l to communicate with a data server.

1.10.1. NFS4ERR_BADIOMODE (Error Code 10049)

An invalid or inappropriate layout iomode was specified. For example
an inappropriate layout iomode, suppose a client’s LAYOUTGET
operation specified an iomode of LAYOUTIOMODE4_RW, and the server is
neither able nor willing to let the client send write requests to
data servers; the server can reply with NFS4ERR_BADIOMODE. The

15.

15.

15.

15.

15

15.

15.

15.

15.

15.

15.

15.

client would then send another LAYOUTGET with an iomode of
LAYOUTIOMODE4_READ.

1.10.2. NFS4ERR_BADLAYOUT (Error Code 10050)

The layout specified is invalid in some way. For LAYOUTCOMMIT, this
indicates that the specified layout is not held by the client or is
not of mode LAYOUTIOMODE4_RW. For LAYOUTGET, it indicates that a
layout matching the client’s specification as to minimum length
cannot be granted.

1.10.3. NFS4ERR_LAYOUTTRYLATER (Error Code 10058)

Layouts are temporarily unavailable for the file. The client should
re-send later (but not with the same slot ID and sequence ID; one or
both MUST be different on the re-send).

1.10.4. NFS4ERR_LAYOUTUNAVAILABLE (Error Code 10059)

Returned when layouts are not available for the current file system
or the particular specified file.

1.10.5. NFS4ERR_NOMATCHING_LAYOUT (Error Code 10060)

Returned when layouts are recalled and the client has no layouts
matching the specification of the layouts being recalled.

.1.10.6. NFS4ERR_PNFS_IO_HOLE (Error Code 10075)

The pNFS client has attempted to read from or write to an illegal
hole of a file of a data server that is using sparse packing. See
Section 13.4.4.

1.10.7. NFS4ERR_PNFS_NO_LAYOUT (Error Code 10080)

The pNFS client has attempted to read from or write to a file (using
a request to a data server) without holding a valid layout. This
includes the case where the client had a layout, but the iomode does
not allow a WRITE.

1.10.8. NFS4ERR_RETURNCONFLICT (Error Code 10086)

A layout is unavailable due to an attempt to perform the LAYOUTGET
before a pending LAYOUTRETURN on the file has been received. See
Section 12.5.5.2.1.3.

1.10.9. NFS4ERR_UNKNOWN_LAYOUTTYPE (Error Code 10062)

The client has specified a layout type that is not supported by the
server.

1.11. Session Use Errors

This section deals with errors encountered when using sessions, that
is, errors encountered when a request uses a Sequence (i.e., either
SEQUENCE or CB_SEQUENCE) operation.

1.11.1. NFS4ERR_BADSESSION (Error Code 10052)

The specified session ID is unknown to the server to which the
operation is addressed.

1.11.2. NFS4ERR_BADSLOT (Error Code 10053)

The requester sent a Sequence operation that attempted to use a slot
the replier does not have in its slot table. It is possible the slot
may have been retired.

1.11.3. NFS4ERR_BAD_HIGH_SLOT (Error Code 10077)

The highest_slot argument in a Sequence operation exceeds the

15

15

15

15.

15.

15

15.

15

15.

15.

15.

15.

replier’s enforced highest_slotid.

.1.11.4. NFS4ERR_CB_PATH_DOWN (Error Code 10048)

There is a problem contacting the client via the callback path. The
function of this error has been mostly superseded by the use of
status flags in the reply to the SEQUENCE operation (see

Section 18.46).

.1.11.5. NFS4ERR_DEADSESSION (Error Code 10078)

The specified session is a persistent session that is dead and does
not accept new requests or perform new operations on existing
requests (in the case in which a request was partially executed
before server restart).

.1.11.6. NFS4ERR_CONN_NOT_BOUND_TO_SESSION (Error Code 10055)

A Sequence operation was sent on a connection that has not been
associated with the specified session, where the client specified
that connection association was to be enforced with SP4_MACH_CRED or
SP4_SSV state protection.

1.11.7. NFS4ERR_SEQ FALSE_RETRY (Error Code 10076)

The requester sent a Sequence operation with a slot ID and sequence
ID that are in the reply cache, but the replier has detected that the
retried request is not the same as the original request. See

Section 2.10.6.1.3.1.

1.11.8. NFS4ERR_SEQ MISORDERED (Error Code 10063)

The requester sent a Sequence operation with an invalid sequence ID.

.1.12. Session Management Errors

This section deals with errors associated with requests used in
session management.

1.12.1. NFS4ERR_BACK_CHAN_BUSY (Error Code 10057)

An attempt was made to destroy a session when the session cannot be
destroyed because the server has callback requests outstanding.

.1.12.2. NFS4ERR_BAD_SESSION_DIGEST (Error Code 10051)

The digest used in a SET_SSV request is not wvalid.
1.13. Client Management Errors

This section deals with errors associated with requests used to
create and manage client IDs.

1.13.1. NFS4ERR_CLIENTID_BUSY (Error Code 10074)

The DESTROY_CLIENTID operation has found there are sessions and/or
unexpired state associated with the client ID to be destroyed.

1.13.2. NFS4ERR_CLID_INUSE (Error Code 10017)

While processing an EXCHANGE_ID operation, the server was presented
with a co_ownerid field that matches an existing client with wvalid
leased state, but the principal sending the EXCHANGE_ID operation
differs from the principal that established the existing client.
This indicates a collision (most likely due to chance) between
clients. The client should recover by changing the co_ownerid and
re-sending EXCHANGE_ID (but not with the same slot ID and sequence
ID; one or both MUST be different on the re-send).

1.13.3. NFS4ERR_ENCR_ALG_UNSUPP (Error Code 10079)

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

An EXCHANGE_ID was sent that specified state protection via SSV, and
where the set of encryption algorithms presented by the client did
not include any supported by the server.

1.13.4. NFS4ERR_HASH_ALG_UNSUPP (Error Code 10072)

An EXCHANGE_ID was sent that specified state protection via SSV, and
where the set of hashing algorithms presented by the client did not
include any supported by the server.

1.13.5. NFS4ERR_STALE_CLIENTID (Error Code 10022)

A client ID not recognized by the server was passed to an operation.
Note that unlike the case of NFSv4.0, client IDs are not passed
explicitly to the server in ordinary locking operations and cannot
result in this error. Instead, when there is a server restart, it is
first manifested through an error on the associated session, and the
staleness of the client ID is detected when trying to associate a
client ID with a new session.

1.14. Delegation Errors

This section deals with errors associated with requesting and
returning delegations.

1.14.1. NFS4ERR_DELEG_ALREADY_WANTED (Error Code 10056)

The client has requested a delegation when it had already registered
that it wants that same delegation.

1.14.2. NFS4ERR_DIRDELEG_UNAVAIL (Error Code 10084)

This error is returned when the server is unable or unwilling to
provide a requested directory delegation.

1.14.3. NFS4ERR_RECALLCONFLICT (Error Code 10061)

A recallable object (i.e., a layout or delegation) is unavailable due
to a conflicting recall operation that is currently in progress for
that object.

1.14.4. NFS4ERR_REJECT_DELEG (Error Code 10085)

The callback operation invoked to deal with a new delegation has
rejected it.

1.15. Attribute Handling Errors

This section deals with errors specific to attribute handling within
NFSv4.

1.15.1. NFS4ERR_ATTRNOTSUPP (Error Code 10032)

An attribute specified is not supported by the server. This error
MUST NOT be returned by the GETATTR operation.

1.15.2. NFS4ERR_BADOWNER (Error Code 10039)

This error is returned when an owner or owner_group attribute wvalue
or the who field of an ACE within an ACL attribute value cannot be
translated to a local representation.

1.15.3. NFS4ERR_NOT_SAME (Error Code 10027)

This error is returned by the VERIFY operation to signify that the
attributes compared were not the same as those provided in the
client’s request.

1.15.4. NFS4ERR_SAME (Error Code 10009)

This error is returned by the NVERIFY operation to signify that the

15.

15.

15.

15.

15.

15.

15

attributes compared were the same as those provided in the client’s
request.

1.16. Obsoleted Errors

These errors MUST NOT be generated by any NFSv4.l operation. This
can be for a number of reasons.

* The function provided by the error has been superseded by one of
the status bits returned by the SEQUENCE operation.

* The new session structure and associated change in locking have
made the error unnecessary.

* There has been a restructuring of some errors for NFSv4.l that
resulted in the elimination of certain errors.

1.16.1. NFS4ERR_BAD_SEQID (Error Code 10026)

The sequence number (seqid) in a locking request is neither the next
expected number or the last number processed. These seqgids are
ignored in NFSv4.l.

1.16.2. NFS4ERR_LEASE_MOVED (Error Code 10031)

A lease being renewed is associated with a file system that has been
migrated to a new server. The error has been superseded by the
SEQ4_STATUS_LEASE_MOVED status bit (see Section 18.46).

1.16.3. NFS4ERR_NXIO (Error Code 5)

I/0 error. No such device or address. This error is for errors
involving block and character device access, but because NFSv4.1l is
not a device-access protocol, this error is not applicable.

1.16.4. NFS4ERR_RESTOREFH (Error Code 10030)

The RESTOREFH operation does not have a saved filehandle (identified
by SAVEFH) to operate upon. In NFSv4.1l, this error has been
superseded by NFS4ERR_NOFILEHANDLE.

1.16.5. NFS4ERR_STALE_STATEID (Error Code 10023)

A stateid generated by an earlier server instance was used. This
error is moot in NFSv4.l1l because all operations that take a stateid
MUST be preceded by the SEQUENCE operation, and the earlier server
instance is detected by the session infrastructure that supports
SEQUENCE.

.2. Operations and Their Valid Errors

This section contains a table that gives the valid error returns for
each protocol operation. The error code NFS4_OK (indicating no
error) is not listed but should be understood to be returnable by all
operations with two important exceptions:

* The operations that MUST NOT be implemented: OPEN_CONFIRM,
RELEASE_LOCKOWNER, RENEW, SETCLIENTID, and SETCLIENTID_CONFIRM.

* The invalid operation: ILLEGAL.

+ + +
Operation | Errors
+ + +
ACCESS NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,

BACKCHANNEL_CTL

BIND_CONN_TO_SESSION

CREATE

NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOENT,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS
NFS4ERR_BADSESSION, NFS4ERR_BADXDR,
NFS4ERR_BAD_SESSION_DIGEST,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOT_ONLY_OP,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS
NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_LOCKS_HELD, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_IO,
NFS4ERR_ISDIR, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_ OPS,
NFS4ERR_WRONG_TYPE

NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADNAME,
NFS4ERR_BADOWNER, NFS4ERR_BADTYPE,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DQUOT,
NFS4ERR_EXIST, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MLINK, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,

NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNSAFE_COMPOUND

CREATE_SESSION NFS4ERR_BADXDR, NFS4ERR_CLID_INUSE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOENT,
NFS4ERR_NOT_ONLY_OP, NFS4ERR_NOSPC,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SEQ MISORDERED,
NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID,
NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DELEGPURGE NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DELEGRETURN NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DESTROY_CLIENTID NFS4ERR_BADXDR, NFS4ERR_CLIENTID_BUSY,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_NOT_ONLY_OP,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

DESTROY_SESSION NFS4ERR_BACK_CHAN_BUSY,
NFS4ERR_BADSESSION, NFS4ERR_BADXDR,
NFS4ERR_CB_PATH_DOWN,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_NOT_ONLY_OP,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,

NFS4ERR_SERVERFAULT,
NFS4ERR_STALE_CLIENTID,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

EXCHANGE_ID NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
NFS4ERR_CLID_INUSE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_ENCR_ALG_UNSUPP,
NFS4ERR_HASH_ALG_UNSUPP,
NFS4ERR_INVAL, NFS4ERR_NOENT,
NFS4ERR_NOT_ONLY_OP, NFS4ERR_NOT_SAME,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

FREE_STATEID NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_LOCKS_HELD,
NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

GET_DIR_DELEGATION NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DIRDELEG_UNAVAIL,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS

GETATTR NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

GETDEVICEINFO NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOENT, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS,

| NFS4ERR_UNKNOWN_LAYOUTTYPE
e o +
GETDEVICELIST NFS4ERR_BADXDR, NFS4ERR_BAD_COOKIE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NOT_SAME,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE

GETFH NFS4ERR_FHEXPIRED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_STALE
fom T +
ILLEGAL | NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL
o e +
LAYOUTCOMMIT NFS4ERR_ACCESS, NFS4ERR_ADMIN REVOKED,
NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADIOMODE, NFS4ERR_BADLAYOUT,
NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FBIG,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_ISDIR NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_NO_GRACE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECLAIM BAD,
NFS4ERR_RECLAIM CONFLICT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_CRED

LAYOUTGET NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADIOMODE, NFS4ERR_BADLAYOUT,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_LAYOUTTRYLATER,
NFS4ERR_LAYOUTUNAVAILABLE,
NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTSUPP, NFS4ERR_OLD_STATEID,
NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECALLCONFLICT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOOSMALL,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE
T T +

LAYOUTRETURN

NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE
NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_EXIST,
NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_IO,
NFS4ERR_MLINK, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTDIR, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE,
NFS4ERR_XDEV

NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE,
NFS4ERR_BAD_STATEID, NFS4ERR DEADLOCK,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DENIED, NFS4ERR_EXPIRED,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_ISDIR,
NFS4ERR_LOCK_NOTSUPP,
NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID,
NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECLAIM BAD,

NFS4ERR_RECLAIM CONFLICT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE
NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_BAD_RANGE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DENIED, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_LOCK_RANGE,

LOOKUP

LOOKUPP

NVERIFY

NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_ OPS,
NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE
NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_RANGE,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_LOCK_RANGE,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC

NFS4ERR_ACCESS, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_ OPS,
NFS4ERR_WRONGSEC

NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SAME, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,

| NFS4ERR_WRONG_TYPE
fom e +
OPEN NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADOWNER,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_ALREADY_WANTED,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXIST, NFS4ERR_EXPIRED,
NFS4ERR_FBIG, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PERM, NFS4ERR_RECLAIM BAD,
NFS4ERR_RECLAIM CONFLICT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_SHARE_DENIED, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNSAFE_COMPOUND,
NFS4ERR_WRONGSEC, NFS4ERR_WRONG_TYPE
Fmm e +

OPEN_CONF IRM | NFS4ERR_NOTSUPP

fom T +
OPEN_DOWNGRADE NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED

OPENATTR NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_FHEXPIRED,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNSAFE_COMPOUND,
NFS4ERR_WRONG_TYPE

PUTFH NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_MOVED,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,

PUTPUBFH

PUTROOTFH

READDIR

READLINK

T T +

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC
NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_ISDIR, NFS4ERR_IO,
NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PNFS_TIO_HOLE,
NFS4ERR_PNFS_NO_LAYOUT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_SYMLINK, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_BAD_COOKIE,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR _NOTDIR,
NFS4ERR_NOT_SAME,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOOSMALL, NFS4ERR_TOO_MANY_OPS
NFS4ERR_ACCESS, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY, NFS4ERR_FHEXPIRED,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

RECLAIM_COMPLETE

REMOVE

RESTOREFH

SAVEFH

NFS4ERR_BADXDR,
NFS4ERR_COMPLETE_ALREADY,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE

NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTDIR,
NFS4ERR_NOTEMPTY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS
NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_EXIST,
NFS4ERR_FHEXPIRED, NFS4ERR_FILE_OPEN,
NFS4ERR_GRACE, NFS4ERR_INVAL,
NFS4ERR_IO, NFS4ERR_MLINK,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
NFS4ERR_NOTEMPTY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONGSEC, NFS4ERR_XDEV

NFS4ERR_DEADSESSION,
NFS4ERR_FHEXPIRED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONGSEC
NFS4ERR_DEADSESSION,
NFS4ERR_FHEXPIRED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,

NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS

SECINFO NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADNAME, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTDIR,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS

SECINFO_NO_NAME NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_INVAL,
NFS4ERR_MOVED, NFS4ERR_NOENT,
NFS4ERR_NOFILEHANDLE, NFS4ERR _NOTDIR,
NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS

SEQUENCE NFS4ERR_BADSESSION, NFS4ERR_BADSLOT,
NFS4ERR_BADXDR, NFS4ERR_BAD_HIGH_SLOT,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SEQUENCE_POS,

NFS4ERR_SEQ FALSE_RETRY,
NFS4ERR_SEQ_ MISORDERED,
NFS4ERR_TOO_MANY_OPS

SET_SSV NFS4ERR_BADXDR,
NFS4ERR_BAD_SESSION_DIGEST,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_INVAL,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS

SETATTR NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR,
NFS4ERR_BADOWNER, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXPIRED, NFS4ERR_FBIG,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,

NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

o +
| SETCLIENTID

Fmm e +
| SETCLIENTID_CONFIRM |

fom +

TEST_STATEID NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

VERIFY NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADXDR,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOT_SAME,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

WANT_DELEGATION NFS4ERR_BADXDR, NFS4ERR_DEADSESSION,
NFS4ERR_DELAY,
NFS4ERR_DELEG_ALREADY_ WANTED,
NFS4ERR_FHEXPIRED, NEFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_RECALLCONFLICT,
NFS4ERR_RECLAIM_BAD,
NFS4ERR_RECLAIM_CONFLICT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

WRITE NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
NFS4ERR_EXPIRED, NFS4ERR_FBIG,
NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_IO,
NFS4ERR_ISDIR, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_OLD_STATEID,
NFS4ERR_OPENMODE,

15.

NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_PNFS_IO_HOLE,
NFS4ERR_PNFS_NO_LAYOUT,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_SYMLINK,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

o T +

Table 12: Valid Error Returns for Each Protocol Operation

3. Callback Operations and Their Valid Errors

This section contains a table that gives the wvalid error returns for
each callback operation. The error code NFS4_OK (indicating no

error) is not listed but should be understood to be returnable by all
callback operations with the exception of CB_ILLEGAL.

+

| callback Operation

+

Errors

+

+

CB_GETATTR

+ _________________________
CB_ILLEGAL

+ _________________________

CB_LAYOUTRECALL

CB_NOTIFY

CB_NOTIFY_DEVICEID

NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,
NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS,

NFS4ERR_BADXDR, NFS4ERR_OP_ILLEGAL
_______________________________________ +
NFS4ERR_BADHANDLE, NFS4ERR_BADIOMODE,
NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,

NFS4ERR_DELAY, NFS4ERR_INVAL,

NFS4ERR_NOMATCHING_LAYOUT,
NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE,
NFS4ERR_WRONG_TYPE

NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

o o +
CB_NOTIFY_LOCK NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

CB_PUSH_DELEG NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_DELAY, NFS4ERR_INVAL,
NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REJECT_DELEG,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS,
NFS4ERR_WRONG_TYPE

CB_RECALL NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEID, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_ TOO_BIG,

NFS4ERR_RETRY_ UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

CB_RECALL_ANY NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_INVAL,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS

CB_RECALLABLE_OBJ_AVAIL NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_INVAL, NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS

CB_RECALL_SLOT NFS4ERR_BADXDR,
NFS4ERR_BAD_HIGH_SLOT, NFS4ERR_DELAY,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_TOO_MANY_OPS

CB_SEQUENCE NFS4ERR_BADSESSION, NFS4ERR_BADSLOT,
NFS4ERR_BADXDR,
NFS4ERR_BAD_HIGH_SLOT,
NFS4ERR_CONN_NOT_BOUND_TO_SESSION,
NFS4ERR_DELAY, NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,

NFS4ERR_SEQUENCE_POS,
NFS4ERR_SEQ FALSE_RETRY,
NFS4ERR_SEQ MISORDERED,
NFS4ERR_TOO_MANY_OPS

CB_WANTS_CANCELLED NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_NOTSUPP,
NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG,
NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG,
NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT,
NFS4ERR_TOO_MANY_OPS
e e +

Table 13: Valid Error Returns for Each Protocol Callback Operation
15.4. Errors and the Operations That Use Them

+ + +
| Error Operations

+ + +
NFS4ERR_ACCESS ACCESS, COMMIT, CREATE,
GETATTR, GET_DIR _DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, NVERIFY,
OPEN, OPENATTR, READ,
READDIR, READLINK, REMOVE,
RENAME, SECINFO,
SECINFO_NO_NAME, SETATTR,
VERIFY, WRITE

NFS4ERR_ADMIN_REVOKED CLOSE, DELEGRETURN,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LOCK, LOCKU,
OPEN, OPEN_DOWNGRADE, READ,
SETATTR, WRITE

e e +
NFS4ERR_ATTRNOTSUPP CREATE, LAYOUTCOMMIT,
NVERIFY, OPEN, SETATTR,
VERIFY
g e +
| NFS4ERR_BACK_CHAN_BUSY DESTROY_SESSION
e e +
NFS4ERR_BADCHAR CREATE, EXCHANGE_ID, LINK,

LOOKUP, NVERIFY, OPEN,
REMOVE, RENAME, SECINFO,
SETATTR, VERIFY

NFS4ERR_BADHANDLE CB_GETATTR, CB_LAYOUTRECALL,
CB_NOTIFY, CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,

PUTFH
o o +
NFS4ERR_BADIOMODE CB_LAYOUTRECALL,
LAYOUTCOMMIT, LAYOUTGET
e e +
NFS4ERR_BADLAYOUT LAYOUTCOMMIT, LAYOUTGET
o o +
NFS4ERR_BADNAME CREATE, LINK, LOOKUP, OPEN,
REMOVE, RENAME, SECINFO
e e +
| NFS4ERR_BADOWNER CREATE, OPEN, SETATTR
e o +
NFS4ERR_BADSESSION BIND_CONN_TO_SESSION,
CB_SEQUENCE,
DESTROY_SESSION, SEQUENCE

o o +
| NFS4ERR_BADSLOT CB_SEQUENCE, SEQUENCE

g B +
| NFS4ERR_BADTYPE CREATE
g g +
NFS4ERR_BADXDR ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION,
CB_GETATTR, CB_ILLEGAL,
CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY DEVICEID,
CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY,
CB_RECALL_SLOT, CB_SEQUENCE,
CB_WANTS_CANCELLED, CLOSE,
COMMIT, CREATE,
CREATE_SESSION, DELEGPURGE,
DELEGRETURN,
DESTROY_CLIENTID,
DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID,
GETATTR, GETDEVICEINFO,
GETDEVICELIST,
GET_DIR_DELEGATION, ILLEGAL,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
NVERIFY, OPEN, OPENATTR,
OPEN_DOWNGRADE, PUTFH, READ,
READDIR, RECLAIM COMPLETE,
REMOVE, RENAME, SECINFO,
SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV,
TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

e e +
NFS4ERR_BAD_COOKIE | GETDEVICELIST, READDIR
o o +
NFS4ERR_BAD_HIGH_SLOT CB_RECALL_SLOT, CB_SEQUENCE,
SEQUENCE
e e +
| NFS4ERR_BAD_RANGE | LOCK, LOCKT, LOCKU
e o +
NFS4ERR_BAD_SESSION_DIGEST BIND_CONN_TO_SESSION,
SET_SSV
e e +
NFS4ERR_BAD_STATEID CB_LAYOUTRECALL, CB_NOTIFY,

CB_NOTIFY_LOCK, CB_RECALL,
CLOSE, DELEGRETURN,
FREE_STATEID, LAYOUTGET,
LAYOUTRETURN, LOCK, LOCKU,
OPEN, OPEN_DOWNGRADE, READ,
SETATTR, WRITE

e o +
| NFS4ERR_CB_PATH_DOWN | DESTROY_SESSION |
e o +
| NFS4ERR_CLID_INUSE | CREATE_SESSION, EXCHANGE_ID |
o e +
| NFS4ERR_CLIENTID_BUSY | DESTROY_CLIENTID |
e o +
| NFS4ERR_COMPLETE_ALREADY | RECLAIM_COMPLETE |
e o +
NFS4ERR_CONN_NOT_BOUND_TO_SESSION | CB_SEQUENCE,
DESTROY_SESSION, SEQUENCE
e o +
| NFS4ERR_DEADLOCK LOCK
e o +
NFS4ERR_DEADSESSION ACCESS, BACKCHANNEL_CTL,

BIND_CONN_TO_SESSION, CLOSE,
COMMIT, CREATE,
CREATE_SESSION, DELEGPURGE,
DELEGRETURN,

+

+

+

+

+

NFS4ERR_DELAY

NFS4ERR_DELEG_ALREADY_WANTED

NFS4ERR_DELEG_REVOKED

NFS4ERR_DENIED

NFS4ERR_DIRDELEG_UNAVAIL

NFS4ERR_DQUOT

NFS4ERR_ENCR_ALG_UNSUPP

NFS4ERR_EXIST

—_—t—t——+————+ —+

DESTROY_CLIENTID,
DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID,
GETATTR, GETDEVICEINFO,
GETDEVICELIST,

GET_DIR DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH,
READ, READDIR, READLINK,
RECLAIM COMPLETE, REMOVE,
RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME,
SEQUENCE, SETATTR, SET_SSV,
TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE

ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION,
CB_GETATTR, CB_LAYOUTRECALL,
CB_NOTIFY,

CB_NOTIFY_ DEVICEID,
CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,
CB_RECALLABLE_OBJ_AVAIL,
CB_RECALL_ANY,
CB_RECALL_SLOT, CB_SEQUENCE,
CB_WANTS_ CANCELLED, CLOSE,
COMMIT, CREATE,
CREATE_SESSION, DELEGPURGE,
DELEGRETURN,
DESTROY_CLIENTID,
DESTROY_SESSION,
EXCHANGE_ID, FREE_STATEID,
GETATTR, GETDEVICEINFO,
GETDEVICELIST,
GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE,
PUTFH, PUTPUBFH, PUTROOTFH,
READ, READDIR, READLINK,
RECLAIM COMPLETE, REMOVE,
RENAME, SECINFO,
SECINFO_NO_NAME, SEQUENCE,
SETATTR, SET_SSV,
TEST_STATEID, VERIFY,
WANT_DELEGATION, WRITE
_______________________________ +
OPEN, WANT_DELEGATION |
_______________________________ +
DELEGRETURN, LAYOUTCOMMIT, |
LAYOUTGET, LAYOUTRETURN, |
OPEN, READ, SETATTR, WRITE |
_______________________________ +
LOCK, LOCKT |
_______________________________ +
GET_DIR_DELEGATION |
_______________________________ +
CREATE, LAYOUTGET, LINK, |
OPEN, OPENATTR, RENAME, |
SETATTR, WRITE |
_______________________________ +
EXCHANGE_ID |
_______________________________ +
CREATE, LINK, OPEN, RENAME |

NFS4ERR_EXPIRED CLOSE, DELEGRETURN,
LAYOUTCOMMIT, LAYOUTRETURN,
LOCK, LOCKU, OPEN,
OPEN_DOWNGRADE, READ,
SETATTR, WRITE

NFS4ERR_FBIG LAYOUTCOMMIT, OPEN, SETATTR,
WRITE

NFS4ERR_FHEXPIRED ACCESS, CLOSE, COMMIT,
CREATE, DELEGRETURN,
GETATTR, GETDEVICELIST,
GETFH, GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE,
READ, READDIR, READLINK,
RECLAIM_COMPLETE, REMOVE,
RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME,
SETATTR, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_GRACE GETATTR, GET_DIR DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, NVERIFY, OPEN, READ,
REMOVE, RENAME, SETATTR,
VERIFY, WANT_DELEGATION,
WRITE

NFS4ERR_INVAL ACCESS, BACKCHANNEL_CTL,
BIND_CONN_TO_SESSION,
CB_GETATTR, CB_LAYOUTRECALL,
CB_NOTIFY,

CB_NOTIFY DEVICEID,
CB_PUSH_DELEG,
CB_RECALLABLE_OBJ_AVATIL,
CB_RECALL_ANY, CREATE,
CREATE_SESSION, DELEGRETURN,
EXCHANGE_ID, GETATTR,
GETDEVICEINFO,
GETDEVICELIST,
GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
NVERIFY, OPEN,
OPEN_DOWNGRADE, READ,
READDIR, READLINK,
RECLAIM_COMPLETE, REMOVE,
RENAME, SECINFO,
SECINFO_NO_NAME, SETATTR,
SET_SSV, VERIFY,
WANT_DELEGATION, WRITE

NFS4ERR_IO ACCESS, COMMIT, CREATE,
GETATTR, GETDEVICELIST,
GET_DIR DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LINK, LOOKUP, LOOKUPP,
NVERIFY, OPEN, OPENATTR,
READ, READDIR, READLINK,
REMOVE, RENAME, SETATTR,

F—————————— e —

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

+ ___________________________________

b

+ ___________________________________

NFS4ERR_LAYOUTTRYLATER
NFS4ERR_LAYOUTUNAVAILABLE

NFS4ERR_LOCKED

NFS4ERR_LOCKS_HELD
NFS4ERR_LOCK_NOTSUPP
NFS4ERR_LOCK_RANGE
NFS4ERR_MLINK

NFS4ERR_MOVED

NFS4ERR_NOENT

NFS4ERR_NOFILEHANDLE

NFS4ERR_NOMATCHING_LAYOUT

—t—t—F—F——F—F—— + —

VERIFY, WANT_ DELEGATION, |
WRITE |
_______________________________ +
COMMIT, LAYOUTCOMMIT, |
LAYOUTRETURN, LINK, LOCK, |
LOCKT, OPEN, READ, WRITE |
_______________________________ +
LAYOUTGET |
_______________________________ +
LAYOUTGET |
_______________________________ +
LAYOUTGET, READ, SETATTR, |
WRITE |

LOCK, LOCKT, LOCKU |
_______________________________ +
CREATE, LINK, RENAME |
_______________________________ +
ACCESS, CLOSE, COMMIT,
CREATE, DELEGRETURN,
GETATTR, GETFH,
GET_DIR_DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE,
PUTFH, READ, READDIR,
READLINK, RECLAIM_COMPLETE,
REMOVE, RENAME, RESTOREFH,
SAVEFH, SECINFO,
SECINFO_NO_NAME, SETATTR,
VERIFY, WANT_DELEGATION,
WRITE

CREATE, LINK, LOOKUP, OPEN,
REMOVE, RENAME, SECINFO

BACKCHANNEL_CTL,
CREATE_SESSION, EXCHANGE_ID,
GETDEVICEINFO, LOOKUP,
LOOKUPP, OPEN, OPENATTR,
REMOVE, RENAME, SECINFO,
SECINFO_NO_NAME

ACCESS, CLOSE, COMMIT,
CREATE, DELEGRETURN,
GETATTR, GETDEVICELIST,
GETFH, GET_DIR DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK, LOCK,
LOCKT, LOCKU, LOOKUP,
LOOKUPP, NVERIFY, OPEN,
OPENATTR, OPEN_DOWNGRADE,
READ, READDIR, READLINK,
RECLAIM _COMPLETE, REMOVE,
RENAME, RESTOREFH, SAVEFH,
SECINFO, SECINFO_NO_NAME,
SETATTR, VERIFY,
WANT_DELEGATION, WRITE

CREATE, CREATE_SESSION, |
LAYOUTGET, LINK, OPEN, |
OPENATTR, RENAME, SETATTR, |
WRITE |

| NFS4ERR_NOTEMPTY
+ ___________________________________
NFS4ERR_NOTSUPP

NFS4ERR_OLD_STATEID

NFS4ERR_OPENMODE

+—t—

_______________________________ +
CREATE, GET_DIR DELEGATION, |
LINK, LOOKUP, LOOKUPP, OPEN, |
READDIR, REMOVE, RENAME, |
SECINFO, SECINFO_NO_NAME |

CB_LAYOUTRECALL, CB_NOTIFY,
CB_NOTIFY_DEVICEID,
CB_NOTIFY_LOCK,
CB_PUSH_DELEG,
CB_RECALLABLE_OBJ_AVAIL,
CB_WANTS_CANCELLED,
DELEGPURGE, DELEGRETURN,
GETDEVICEINFO,
GETDEVICELIST,

GET_DIR DELEGATION,
LAYOUTCOMMIT, LAYOUTGET,
LAYOUTRETURN, LINK,
OPENATTR, OPEN_CONFIRM,
RELEASE_LOCKOWNER, RENEW,
SECINFO_NO_NAME,
SETCLIENTID,
SETCLIENTID_CONFIRM,
WANT_DELEGATION

BIND_CONN_TO_SESSION,
CREATE_SESSION,
DESTROY_CLIENTID,
DESTROY_SESSION, EXCHANGE_ID

EXCHANGE_ID, GETDEVICELIST,
READDIR, VERIFY

LAYOUTCOMMIT, LAYOUTRETURN,
LOCK, OPEN, WANT_DELEGATION

CLOSE, DELEGRETURN,
FREE_STATEID, LAYOUTGET,
LAYOUTRETURN, LOCK, LOCKU,
OPEN, OPEN_DOWNGRADE, READ,
SETATTR, WRITE

LAYOUTGET, LOCK, READ,
SETATTR, WRITE

e e +

NFS4ERR_OP_ILLEGAL

CB_ILLEGAL, ILLEGAL

o o +

NFS4ERR_OP_NOT_IN_SESSION

ACCESS, BACKCHANNEL_CTL,
CB_GETATTR, CB_LAYOUTRECALL,
CB_NOTIFY,
CB_NOTIFY_DEVICEID,
CB_NOTIFY_LOCK,
CB_PUSH_DELEG, CB_RECALL,