
ï»¿

Internet Engineering Task Force (IETF) V. Pascual
Request for Comments: 8857 Nokia
Category: Standards Track A. RomÃ¡n
ISSN: 2070-1721 Quobis
 S. Cazeaux
 Orange
 G. Salgueiro
 R. Ravindranath
 Cisco
 January 2021

 The WebSocket Protocol as a Transport for the Binary Floor Control
 Protocol (BFCP)

Abstract

 The WebSocket protocol enables two-way real-time communication
 between clients and servers. This document specifies the use of
 Binary Floor Control Protocol (BFCP) as a new WebSocket subprotocol
 enabling a reliable transport mechanism between BFCP entities in new
 scenarios.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8857.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 2.1. Definitions
 3. The WebSocket Protocol
 4. The WebSocket BFCP Subprotocol
 4.1. Handshake
 4.2. BFCP Encoding
 5. Transport Reliability
 6. SDP Considerations
 6.1. Transport Negotiation
 6.2. SDP Media Attributes
 7. SDP Offer/Answer Procedures
 7.1. General

 7.2. Example Usage of ’websocket-uri’ SDP Attribute
 8. Authentication
 9. Security Considerations
 10. IANA Considerations
 10.1. Registration of the WebSocket BFCP Subprotocol
 10.2. Registration of the ’TCP/WS/BFCP’ and ’TCP/WSS/BFCP’ SDP
 "proto" Values
 11. References
 11.1. Normative References
 11.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The WebSocket (WS) protocol [RFC6455] enables two-way message
 exchange between clients and servers on top of a persistent TCP
 connection, optionally secured with Transport Layer Security (TLS)
 [RFC8446]. The initial protocol handshake makes use of Hypertext
 Transfer Protocol (HTTP) [RFC7230] semantics, allowing the WebSocket
 protocol to reuse existing HTTP infrastructure.

 The Binary Floor Control Protocol (BFCP) is a protocol to coordinate
 access to shared resources in a conference. It is defined in
 [RFC8855] and is used between floor participants and floor control
 servers, and between floor chairs (i.e., moderators) and floor
 control servers.

 Modern web browsers include a WebSocket client stack complying with
 the WebSocket API [WS-API] as specified by the W3C. It is expected
 that other client applications (those running in personal computers
 and devices such as smartphones) will also make a WebSocket client
 stack available. This document extends the applicability of
 [RFC8855] and [RFC8856] to enable the usage of BFCP in these
 scenarios.

 The transport over which BFCP entities exchange messages depends on
 how the clients obtain information to contact the floor control
 server (e.g., using a Session Description Protocol (SDP) offer/answer
 exchange per [RFC8856] or the procedure described in RFC 5018
 [RFC5018]). [RFC8855] defines two transports for BFCP: TCP and UDP.
 This specification defines a new WebSocket subprotocol (as defined in
 Section 1.9 of [RFC6455]) for transporting BFCP messages between a
 WebSocket client and server. This subprotocol provides a reliable
 and boundary-preserving transport for BFCP when run on top of TCP.
 Since WebSocket provides a reliable transport, the extensions defined
 in [RFC8855] for sending BFCP over unreliable transports are not
 applicable.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Definitions

 BFCP WebSocket Client: Any BFCP entity capable of opening outbound
 connections to WebSocket servers and communicating using the
 WebSocket BFCP subprotocol as defined by this document.

 BFCP WebSocket Server: Any BFCP entity capable of listening for
 inbound connections from WebSocket clients and communicating
 using the WebSocket BFCP subprotocol as defined by this
 document.

3. The WebSocket Protocol

 The WebSocket protocol [RFC6455] is a transport layer on top of TCP

 (optionally secured with TLS [RFC8446]) in which both client and
 server exchange message units in both directions. The protocol
 defines a connection handshake, WebSocket subprotocol and extensions
 negotiation, a frame format for sending application and control data,
 a masking mechanism, and status codes for indicating disconnection
 causes.

 The WebSocket connection handshake is based on HTTP [RFC7230] and
 utilizes the HTTP GET method with an Upgrade header field. This is
 sent by the client and then answered by the server (if the
 negotiation succeeded) with an HTTP 101 status code. Once the
 handshake is completed, the connection upgrades from HTTP to the
 WebSocket protocol. This handshake procedure is designed to reuse
 the existing HTTP infrastructure. During the connection handshake,
 the client and server agree on the application protocol to use on top
 of the WebSocket transport. Such an application protocol (also known
 as a "WebSocket subprotocol") defines the format and semantics of the
 messages exchanged by the endpoints. This could be a custom protocol
 or a standardized one (as the WebSocket BFCP subprotocol defined in
 this document). Once the HTTP 101 response is processed, both the
 client and server reuse the underlying TCP connection for sending
 WebSocket messages and control frames to each other. Unlike plain
 HTTP, this connection is persistent and can be used for multiple
 message exchanges.

 The WebSocket protocol defines message units to be used by
 applications for the exchange of data, so it provides a message
 boundary-preserving transport layer.

4. The WebSocket BFCP Subprotocol

 The term WebSocket subprotocol refers to an application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket BFCP subprotocol for carrying BFCP messages
 over a WebSocket connection.

4.1. Handshake

 The BFCP WebSocket client and BFCP WebSocket server negotiate usage
 of the WebSocket BFCP subprotocol during the WebSocket handshake
 procedure as defined in Section 1.3 of [RFC6455]. The client MUST
 include the value "bfcp" in the Sec-WebSocket-Protocol header field
 in its handshake request. The 101 reply from the server MUST contain
 "bfcp" in its corresponding Sec-WebSocket-Protocol header field.

 Below is an example of a WebSocket handshake in which the client
 requests the WebSocket BFCP subprotocol support from the server:

 GET / HTTP/1.1
 Host: bfcp-ws.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://www.example.com
 Sec-WebSocket-Protocol: bfcp
 Sec-WebSocket-Version: 13

 The handshake response from the server accepting the WebSocket BFCP
 subprotocol would look as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: bfcp

 Once the negotiation has been completed, the WebSocket connection is
 established and can be used for the transport of BFCP messages.

4.2. BFCP Encoding

 BFCP messages use a TLV (Type-Length-Value) binary encoding,
 therefore BFCP WebSocket clients and BFCP WebSocket servers MUST be
 transported in unfragmented binary WebSocket frames (FIN: 1, opcode:
 %x2) to exchange BFCP messages. The WebSocket frame data MUST be a
 valid BFCP message, so the length of the payload of the WebSocket
 frame MUST be lower than the maximum size allowed (2^(16) +12 bytes)
 for a BFCP message as described in [RFC8855]. In addition, the
 encoding rules for reliable protocols defined in [RFC8855] MUST be
 followed.

 While this specification assumes that BFCP encoding is only TLV
 binary, future documents may define other mechanisms, like JSON
 serialization. If encoding changes, a new subprotocol identifier
 would need to be selected.

 Each BFCP message MUST be carried within a single WebSocket message,
 and a WebSocket message MUST NOT contain more than one BFCP message.

5. Transport Reliability

 The WebSocket protocol [RFC6455] provides a reliable transport, and
 therefore the BFCP WebSocket subprotocol defined by this document
 also provides reliable BFCP transport. Thus, client and server
 transactions using the WebSocket protocol for transport MUST follow
 the procedures for reliable transports as defined in [RFC8855] and
 [RFC8856].

 BFCP WebSocket clients cannot receive incoming WebSocket connections
 initiated by any other peer. This means that a BFCP WebSocket client
 MUST actively initiate a connection towards a BFCP WebSocket server.
 The BFCP server will have a globally routable address and thus does
 not require ICE, as clients always initiate connections to it.

6. SDP Considerations

6.1. Transport Negotiation

 Rules to generate an "m=" line for a BFCP stream are described in
 [RFC8856], Section 4.

 New values are defined for the SDP "proto" field: ’TCP/WS/BFCP’ and
 ’TCP/WSS/BFCP’.

 ’TCP/WS/BFCP’ is used when BFCP runs on top of WS, which in turn
 runs on top of TCP.

 ’TCP/WSS/BFCP’ is used when BFCP runs on top of secure WebSocket
 (WSS), which in turn runs on top of TLS and TCP.

 The "port" field is set following the rules in Section 4 and
 Section 7.1 of [RFC8856]. Depending on the value of the SDP ’setup’
 attribute defined in [RFC4145], the "port" field contains the port to
 which the remote endpoint will direct BFCP messages, or it is
 irrelevant (i.e., the endpoint will initiate the connection towards
 the remote endpoint) and should be set to a value of ’9’, which is
 the discard port. The ’connection’ attribute and port MUST follow
 the rules of [RFC4145].

 While this document recommends the use of secure WebSocket (i.e.,
 TCP/WSS) for security reasons, TCP/WS is also permitted so as to
 achieve maximum compatibility among clients.

6.2. SDP Media Attributes

 [RFC8124] defines a new SDP attribute to indicate the connection
 Uniform Resource Identifier (URI) for the WebSocket client. The SDP
 attribute ’websocket-uri’ defined in Section 3 of [RFC8124] MUST be
 used when BFCP runs on top of WS or WSS. When the ’websocket-uri’
 attribute is present in the media section of the SDP, the procedures
 mentioned in Section 4 of [RFC8124] MUST be followed.

7. SDP Offer/Answer Procedures

7.1. General

 An endpoint (i.e., both the offerer and the answerer) MUST create an
 SDP media description ("m=" line) for each BFCP-over-WebSocket media
 stream and MUST assign either a ’TCP/WSS/BFCP’ or ’TCP/WS/BFCP’ value
 to the "proto" field of the "m=" line depending on whether the
 endpoint wishes to use secure WebSocket or WebSocket. Furthermore,
 the server side, which could be either the offerer or answerer, MUST
 add a ’websocket-uri’ attribute in the media section depending on
 whether it wishes to use WebSocket or secure WebSocket. This new
 attribute MUST follow the syntax defined in [RFC8124]. Additionally,
 the SDP offer/answer procedures defined in Section 4 of [RFC8124]
 MUST be followed for the "m=" line associated with a BFCP-over-
 WebSocket media stream.

7.2. Example Usage of ’websocket-uri’ SDP Attribute

 The following is an example of an "m=" line for a BFCP connection.
 In this example, the offerer sends the SDP with the "proto" field
 having a value of ’TCP/WSS/BFCP’, indicating that the offerer wishes
 to use secure WebSocket as a transport for the media stream, and the
 "fmt" field having a value of ’*’ (for details on the "fmt" field,
 see Section 4 of [RFC8856]).

 Offer (browser):
 m=application 9 TCP/WSS/BFCP *
 a=setup:active
 a=connection:new
 a=floorctrl:c-only
 m=audio 55000 RTP/AVP 0
 m=video 55002 RTP/AVP 31

 Answer (server):
 m=application 50000 TCP/WSS/BFCP *
 a=setup:passive
 a=connection:new
 a=websocket-uri:wss://bfcp-ws.example.com?token=3170449312
 a=floorctrl:s-only
 a=confid:4321
 a=userid:1234
 a=floorid:1 m-stream:10
 a=floorid:2 m-stream:11
 m=audio 50002 RTP/AVP 0
 a=label:10
 m=video 50004 RTP/AVP 31
 a=label:11

 It is possible that an endpoint (e.g., a browser) sends an offerless
 INVITE to the server. In such cases, the server will act as SDP
 offerer. The server MUST assign the SDP ’setup’ attribute with a
 value of ’passive’. The server MUST have a ’websocket-uri’ attribute
 with a ’ws-URI’ or ’wss-URI’ value depending on whether the server
 wishes to use WebSocket or secure WebSocket. This attribute MUST
 follow the syntax defined in Section 3 of [RFC8124]. For BFCP
 application, the "proto" value in the "m=" line MUST be ’TCP/WSS/
 BFCP’ if WebSocket is over TLS, else it MUST be ’TCP/WS/BFCP’.

8. Authentication

 Section 9 of [RFC8855] states that BFCP clients and floor control
 servers SHOULD authenticate each other prior to accepting messages,
 and RECOMMENDS that mutual TLS/DTLS authentication be used. However,
 browser-based WebSocket clients have no control over the use of TLS
 in the WebSocket API [WS-API], so it is RECOMMENDED that standard
 web-based methods for client and server authentication are used, as
 follows.

 When a BFCP WebSocket client connects to a BFCP WebSocket server, it
 SHOULD use TCP/WSS as its transport. If the signaling or control

 protocol traffic used to set up the conference is authenticated and
 confidentiality and integrity protected, secure WebSocket (WSS) MUST
 be used, and the floor control server MUST authenticate the client.
 The WebSocket client MUST follow the procedures in [RFC7525] while
 setting up TLS connection with the WebSocket server. The BFCP client
 validates the server by means of verifying the server certificate.
 This means the ’websocket-uri’ value MUST contain a hostname. The
 verification process does not use "a=fingerprint".

 A floor control server that receives a message over TCP/WS can
 mandate the use of TCP/WSS by generating an Error message, as
 described in Section 13.8 of [RFC8855], with an error code with a
 value of 9 (Use TLS).

 Prior to sending BFCP requests, a BFCP WebSocket client connects to a
 BFCP WebSocket server and performs the connection handshake. As
 described in Section 4.1, the handshake procedure involves an HTTP
 GET method request from the client and a response from the server
 including an HTTP 101 status code.

 In order to authorize the WebSocket connection, the BFCP WebSocket
 server SHOULD inspect any cookie header fields [RFC6265] present in
 the HTTP GET request. For many web applications, the value of such a
 cookie is provided by the web server once the user has authenticated
 themselves to the web server, which could be done by many existing
 mechanisms. As an alternative method, the BFCP WebSocket server
 could request HTTP authentication by replying to the client’s GET
 method request with an HTTP 401 status code. The WebSocket protocol
 [RFC6455] covers this usage in Section 4.1:

 If the status code received from the server is not 101, the
 WebSocket client stack handles the response per HTTP [RFC7230]
 procedures; in particular, the client might perform authentication
 if it receives an 401 status code. The WebSocket clients are
 vulnerable to the attacks of basic authentication (mentioned in
 Section 4 of [RFC7617]) and digest authentication (mentioned in
 Section 5 of [RFC7616]). To overcome some of these weaknesses,
 WebSocket clients can use the HTTP Origin-Bound Authentication
 (HOBA) mechanism mentioned in [RFC7486], for example.

9. Security Considerations

 Considerations from [RFC8855], [RFC8856], and [RFC5018] apply.

 BFCP relies on lower-layer security mechanisms to provide replay and
 integrity protection and confidentiality. It is RECOMMENDED that the
 BFCP traffic transported over WebSocket be protected by using a
 Secure WebSocket connection (using TLS [RFC8446] over TCP). The
 security considerations in [RFC6455] apply for BFCP over WebSocket as
 well. The security model here is a typical webserver-client model
 where the client validates the server certificate and then connects
 to the server. Section 8 describes the authentication procedures
 between client and server.

 When using BFCP over WebSocket, the security mechanisms defined in
 [RFC8855] are not used. Instead, the application is required to
 build and rely on the security mechanisms in [RFC6455].

 The rest of this section analyses the threats described in Section 14
 of [RFC8855] when WebSocket is used as a transport protocol for BFCP.

 An attacker attempting to impersonate a floor control server is
 avoided by having servers accept BFCP messages over WSS only. As
 with any other web connection, the clients will verify the server’s
 certificate. The BFCP WebSocket client MUST follow the procedures in
 [RFC7525] (including hostname verification as per Section 6.1 of
 [RFC7525]) while setting up a TLS connection with floor control
 WebSocket server.

 An attacker attempting to impersonate a floor control client is
 avoided by having servers accept BFCP messages over WSS only. As

 described in Section 10.5 of [RFC6455] the floor control server can
 use any client authentication mechanism and follow the steps in
 Section 8 of this document.

 Attackers may attempt to modify messages exchanged by a client and a
 floor control server. This can be prevented by having WSS between
 client and server.

 An attacker trying to replay the messages is prevented by having
 floor control servers check that messages arriving over a given WSS
 connection use an authorized user ID.

 Attackers may eavesdrop on the network to get access to confidential
 information between the floor control server and a client (e.g., why
 a floor request was denied). In order to ensure that BFCP users are
 getting the level of protection that they would get using BFCP
 directly, applications need to have a way to control the WebSocket
 libraries to use encryption algorithms specified in Section 7 of
 [RFC8855]. Since the WebSocket API [WS-API] does not have a way to
 allow an application to select the encryption algorithm to be used,
 the protection level provided when WSS is used is limited to the
 underlying TLS algorithm used by the WebSocket library.

10. IANA Considerations

10.1. Registration of the WebSocket BFCP Subprotocol

 IANA has registered the WebSocket BFCP subprotocol under the
 "WebSocket Subprotocol Name Registry" as follows:

 Subprotocol Identifier: bfcp

 Subprotocol Common Name: WebSocket Transport for BFCP (Binary Floor
 Control Protocol)

 Subprotocol Definition: RFC 8857

10.2. Registration of the ’TCP/WS/BFCP’ and ’TCP/WSS/BFCP’ SDP "proto"
 Values

 This document defines two new values for the SDP "proto" subregistry
 within the "Session Description Protocol (SDP) Parameters" registry.
 The resulting entries are shown in Table 1:

 +==============+===========+
 | Value | Reference |
 +==============+===========+
 | TCP/WS/BFCP | RFC 8857 |
 +--------------+-----------+
 | TCP/WSS/BFCP | RFC 8857 |
 +--------------+-----------+

 Table 1: Values for the
 SDP "proto" Field

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 DOI 10.17487/RFC4145, September 2005,
 <https://www.rfc-editor.org/info/rfc4145>.

 [RFC5018] Camarillo, G., "Connection Establishment in the Binary
 Floor Control Protocol (BFCP)", RFC 5018,

 DOI 10.17487/RFC5018, September 2007,
 <https://www.rfc-editor.org/info/rfc5018>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8124] Ravindranath, R. and G. Salgueiro, "The Session
 Description Protocol (SDP) WebSocket Connection URI
 Attribute", RFC 8124, DOI 10.17487/RFC8124, March 2017,
 <https://www.rfc-editor.org/info/rfc8124>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8855] Camarillo, G., Drage, K., Kristensen, T., Ott, J., and C.
 Eckel, "The Binary Floor Control Protocol (BFCP)",
 RFC 8855, DOI 10.17487/RFC8855, January 2021,
 <https://www.rfc-editor.org/info/rfc8855>.

 [RFC8856] Camarillo, G., Kristensen, T., and C. Holmberg, "Session
 Description Protocol (SDP) Format for Binary Floor Control
 Protocol (BFCP) Streams", RFC 8856, DOI 10.17487/RFC8856,
 January 2021, <https://www.rfc-editor.org/info/rfc8856>.

11.2. Informative References

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7486] Farrell, S., Hoffman, P., and M. Thomas, "HTTP Origin-
 Bound Authentication (HOBA)", RFC 7486,
 DOI 10.17487/RFC7486, March 2015,
 <https://www.rfc-editor.org/info/rfc7486>.

 [RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616,
 DOI 10.17487/RFC7616, September 2015,
 <https://www.rfc-editor.org/info/rfc7616>.

 [RFC7617] Reschke, J., "The ’Basic’ HTTP Authentication Scheme",
 RFC 7617, DOI 10.17487/RFC7617, September 2015,
 <https://www.rfc-editor.org/info/rfc7617>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [WS-API] Hickson, I., Ed., "The WebSocket API", W3C Candidate
 Recommendation, September 2012,
 <https://www.w3.org/TR/2012/CR-websockets-20120920/>.

Acknowledgements

 The authors want to thank Robert Welbourn from Acme Packet and Sergio
 Garcia Murillo, who made significant contributions to the first draft
 version of this document. This work benefited from the thorough
 review and constructive comments of Charles Eckel, Christer Holmberg,

 Paul Kyzivat, Dan Wing, and Alissa Cooper. Thanks to Bert Wijnen,
 Robert Sparks, and Mirja KÃ¼hlewind for their reviews and comments on
 this document.

 Thanks to Spencer Dawkins, Ben Campbell, Kathleen Moriarty, Alexey
 Melnikov, Jari Arkko, and Stephen Farrell for their feedback and
 comments during IESG reviews.

Authors’ Addresses

 Victor Pascual
 Nokia
 Barcelona
 Spain

 Email: victor.pascual_avila@nokia.com

 AntÃ³n RomÃ¡n
 Quobis
 Pol. Ind. A Granxa, Casa de Pedra
 36475 O PorriÃ±o
 Spain

 Email: anton.roman@quobis.com

 StÃ©phane Cazeaux
 Orange
 42 rue des Coutures
 14000 Caen
 France

 Email: stephane.cazeaux@orange.com

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7200-12 Kit Creek Road
 Research Triangle Park, NC 27709
 United States of America

 Email: gsalguei@cisco.com

 Ram Mohan Ravindranath
 Cisco Systems, Inc.
 Cessna Business Park
 Kadabeesanahalli Village, Varthur Hobli,
 Sarjapur-Marathahalli Outer Ring Road
 Bangalore 560103
 Karnataka
 India

 Email: rmohanr@cisco.com

