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Abst r act

Thi s docunent describes the Schnorr non-interactive zero-know edge
(NI'zZK) proof, a non-interactive variant of the three-pass Schnorr
identification scheme. The Schnorr N zZK proof allows one to prove
the know edge of a discrete logarithmw thout |eaking any information
about its value. It can serve as a useful building block for many
cryptographic protocols to ensure that participants follow the
protocol specification honestly. This docurment specifies the Schnorr
Nl ZK proof in both the finite field and the elliptic curve settings.
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| nt roducti on

A wel | -known principle for designing robust public key protocols is
as follows: "Do not assunme that a message you receive has a
particular form (such as g*r for known r) unless you can check this"
[ANO5]. This is the sixth of the eight principles defined by Ross
Ander son and Roger Needham at Crypto '95. Hence, it is also known as
the "sixth principle". 1In the past thirty years, nany public key
protocols failed to prevent attacks, which can be explained by the
violation of this principle [Haol0].

Wi le there may be several ways to satisfy the sixth principle, this
document descri bes one technique that allows one to prove the

know edge of a discrete logarithm(e.g., r for g*r) wi thout revealing
its value. This technique is called the Schnorr N ZK proof, which is
a non-interactive variant of the three-pass Schnorr identification
schene [Stinson06]. The original Schnorr identification schene is
nmade non-interactive through a Fiat-Shamr transfornmation [FS86],
assum ng that there exists a secure cryptographi c hash function
(i.e., the so-called random oracl e nodel).
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The Schnorr NI ZK proof can be inplenented over a finite field or an
elliptic curve (EC). The technical specification is basically the
same, except that the underlying cyclic group is different. For
conpl et eness, this docunent describes the Schnorr N ZK proof in both
the finite field and the EC settings.

1.1. Requirenents Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [ RFC2119] [RFCB8174] when, and only when, they appear in al
capitals, as shown here.

1.2. Notation
The followi ng notation is used in this docunent:
o Alice: the assunmed identity of the prover in the protoco
0o Bob: the assuned identity of the verifier in the protoco
o a| b: adivides b
o a || b: concatenation of a and b
o [a, b]: the interval of integers between and including a and b
o t: the bit length of the challenge chosen by Bob
0o H a secure cryptographi c hash function
o p: alarge prine
o (g: alarge prine divisor of p-1, i.e., ]| p-1
o Zp*: a multiplicative group of integers nodulo p
0 &q: a subgroup of Zp* with prine order ¢
0O (¢: a generator of (g
o g"d: g raised to the power of d

o anodb: anopdulo b

o Fp: afinite field of p elenents, where pis a prine
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2.

2. 1.

2. 2.

o E(Fp): an elliptic curve defined over Fp

o

G a generator of the subgroup over E(Fp) with prime order n

o n: the order of G

o

h: the cofactor of the subgroup generated by G which is equal to
the order of the elliptic curve divided by n

o Px [b]: multiplication of a point Pwith a scalar b over E(Fp)
Schnorr NI ZK Proof over Finite Field
G oup Paraneters

VWhen i npl emrented over a finite field, the Schnorr N ZK proof may use
the same group setting as DSA [FI PS186-4]. Let p and g be two | arge
primes with q | p-1. Let Gq denote the subgroup of Zp* of prine
order g, and g be a generator for the subgroup. Refer to the DSA
exanples in the NIST Cryptographic Tool kit [N ST _DSA] for val ues of
(p, q, g) that provide different security levels. A level of 128-bit
security or above is recommended. Here, DSA groups are used only as
an exanmple. Oher multiplicative groups where the discrete |ogarithm
problem (DLP) is intractable are also suitable for the inplenentation
of the Schnorr N ZK proof.

Schnorr ldentification Schene

The Schnorr identification scheme runs interactively between Alice
(prover) and Bob (verifier). |In the setup of the schene, Alice
publ i shes her public key A = g”a nod p, where a is the private key
chosen uniformy at randomfrom[O0, g-1].

The protocol works in three passes:

1. Alice chooses a nunber v uniformy at randomfrom[0, g-1] and
conputes V = g*v nod p. She sends V to Bob.

2. Bob chooses a challenge c uniformy at randomfrom [0, 2°t-1],
where t is the bit Iength of the challenge (say, t = 160). Bob
sends ¢ to Alice.

3. Alice conputes r =v - a* c nobd q and sends it to Bob
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At the end of the protocol, Bob perforns the foll owi ng checks. If
any check fails, the identification is unsuccessful.

1. To verify Ais within [1, p-1] and A*q = 1 nod p

2. To verify V =g*r * A*c nod p.

The first check ensures that Ais a valid public key, hence the
discrete logarithmof A with respect to the base g actually exists.
It is worth noting that sone applications nmay specifically exclude
the identity elenent as a valid public key. 1In that case, one shal
check Ais within [2, p-1] instead of [1, p-1].

The process is sunmarized in the follow ng di agram

choose randomv from [0, g-1]

conpute V = g*v nod p --V->

conpute r = v-a*c mod q <- ¢ -- choose randomc from [0, 2"t-1]

-- b ->check 1) Ais a valid public key
2) V=g * Atc nod p

Information Flows in Schnorr ldentification Schene over Finite Field
2.3. Non-interactive Zero-Know edge Proof

The Schnorr N ZK proof is obtained fromthe interactive Schnorr
identification scheme through a Fiat-Shanmir transformation [FS86].
This transformation involves using a secure cryptographi c hash
function to issue the challenge instead. Mre specifically, the
challenge is redefined as ¢ = Hg || V|| A]|| UserlD || Oherlnfo),
where UserIDis a unique identifier for the prover and Gtherinfo is
OPTI ONAL data. Here, the hash function H SHALL be a secure
cryptographi c hash function, e.g., SHA 256, SHA-384, SHA-512

SHA3- 256, SHA3-384, or SHA3-512. The bit length of the hash out put
shoul d be at |east equal to that of the order q of the considered
subgr oup.

O herinfo is defined to allow flexible inclusion of contextua
information (also known as "labels" in [ABML5]) in the Schnorr N zZK
proof so that the technique defined in this document can be generally
useful. For exanple, some security protocols built on top of the
Schnorr NI ZK proof may wi sh to include nore contextual infornmation
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such as the protocol nane, tinestanp, and so on. The exact itens (if
any) in Oherlnfo shall be left to specific protocols to define.
However, the format of Otherinfo in any specific protocol nust be
fixed and explicitly defined in the protocol specification.

Wthin the hash function, there nust be a clear boundary between any
two concatenated itens. It is RECOMVENDED that one shoul d al ways
prepend each itemwi th a 4-byte integer that represents the byte
length of that item Oherlnfo may contain nultiple subitenms. In
that case, the same rule shall apply to ensure a clear boundary

bet ween adj acent subitens.

2.4. Conputation Cost

3.

3.

In summary, to prove the know edge of the exponent for A = g*a, Alice
generates a Schnorr N ZK proof that contains: {UserlD, Oherlnfo, V =
g*v nod p, r =v - a*c nod q}, where c = Hg || V|| A]|| UserlD ||

QO herlnfo).

To generate a Schnorr N ZK proof, the cost is roughly one nodul ar
exponentiation: that is to compute g"v nod p. |In practice, this
exponentiation may be preconputed in the offline manner to optimze
efficiency. The cost of the remaining operations (random numnber
generation, nodular nultiplication, and hashing) is negligible as
conpared with the nodul ar exponentiation

To verify the Schnorr N zZK proof, the cost is approximately two
exponentiations: one for conputing A*q nmod p and the other for
conputing g*r * A*c nod p. (It takes roughly one exponentiation to
conpute the latter using a sinultaneous exponentiation techni que as
descri bed in [ MOV96].)

Schnorr NI ZK Proof over Elliptic Curve
1. Goup Paraneters

When i npl emrented over an elliptic curve, the Schnorr N ZK proof may
use the sane EC setting as ECDSA [FI PS186-4]. For the illustration
purpose, only curves over the prime fields (e.g., NI ST P-256) are
descri bed here. Oher curves over the binary fields (see

[ FI PS186-4]) that are suitable for ECDSA can al so be used for

i npl enenting the Schnorr NI ZK proof. Let E(Fp) be an elliptic curve
defined over a finite field Fp, where pis a large prine. Let G be a
base point on the curve that serves as a generator for the subgroup
over E(Fp) of prime order n. The cofactor of the subgroup is denoted
h, which is usually a snall value (not nore than 4). Details on EC
operations, such as addition, negation and scalar multiplications,
can be found in [MOV96]. Data types and conversions including
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el liptic-curve-point-to-octet-string and vice versa can be found in
Section 2.3 of [SEC1l]. Here, the NI ST curves are used only as an
exanple. Qher secure curves such as Curve25519 are al so suitable
for the inmplenentation as long as the elliptic curve discrete

| ogarithm probl em (ECDLP) renmins intractable.

3.2. Schnorr Identification Scheme

In the setup of the schene, Alice publishes her public key
A =Gx [a], where a is the private key chosen unifornmy at random
from[1l, n-1].

The protocol works in three passes:

1. Alice chooses a nunber v uniformly at randomfrom[1, n-1] and
conputes V = Gx [v]. She sends V to Bob.

2. Bob chooses a challenge ¢ uniformy at randomfrom [0, 2~t-1],
where t is the bit Iength of the challenge (say, t = 80). Bob
sends ¢ to Alice.

3. Alice conputes r =v - a* c nod n and sends it to Bob

At the end of the protocol, Bob perforns the foll owi ng checks. If
any check fails, the verification is unsuccessful.

1. To verify Ais a valid point on the curve and A x [h] is not the
point at infinity;

2. To verify V=Gx [r] + Ax [c].

The first check ensures that Ais a valid public key, hence the

di screte logarithmof A with respect to the base G actually exists.
Unlike in the DSA-like group setting where a full nodul ar
exponentiation is required to validate a public key, in the ECDSA-
like setting, the public key validation incurs al nost negligible cost
due to the cofactor being small (e.g., 1, 2, or 4).
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The process is sunmarized in the foll ow ng di agram

choose randomv from|[1, n-1]

compute V = G x [V] --V->

conpute r V- a*cmdn <- c -- choose randomc from|[O0, 2°t-1]

-- b ->check 1) Ais a valid public key
2) V=Gx [r] + Ax [c]

nformation Flows in Schnorr Identification Scheme
over Elliptic Curve

3.3. Non-interactive Zero-Know edge Proof

Sanme as before, the non-interactive variant is obtained through a

Fi at-Sham r transformation [FS86], by using a secure cryptographic
hash function to issue the challenge instead. The challenge c is
defined as ¢ = HHG || V|| A]|| UserID || Oherlnfo), where UserIDis
a unique identifier for the prover and O herlnfo is OPTIONAL data as
expl ai ned earlier.

3.4. Computation Cost

In summary, to prove the know edge of the discrete logarithmfor A =
G x [a] with respect to base G over the elliptic curve, Alice
generates a Schnorr N ZK proof that contains: {UserlD, Qherlnfo, V =
Gx [v], r =v - a*c nod n}, where ¢c = H{G || V|| A]|| UserlD ||

O herl nfo).

To generate a Schnorr N ZK proof, the cost is one scal ar
nmultiplication: that is to conpute G x [V].

To verify the Schnorr N ZK proof in the EC setting, the cost is
approximately one multiplication over the elliptic curve: i.e.,
conputing G x [r] + Ax [c] (using the sane sinultaneous conputation
techni que as before). The cost of public key validation in the EC
setting is essentially free.
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4.

Variants of Schnorr N ZK proof

In the finite field setting, the prover sends (V, r) (along with
UserI D and Ot herlnfo), and the verifier first conmputes c, and then
checks for V = g~r * APc nod p. This requires the transm ssion of an
el ement V of Zp, whose size is typically between 2048 and 3072 bits,
and an el enent r of Zg whose size is typically between 224 and 256
bits. It is possible to reduce the amount of transmitted data to two
el ements of Zq as bel ow

In the nodified variant, the prover works exactly the same as before,
except that it sends (c, r) instead of (V, r). The verifier conputes
V = g*r * A'c nod p and then checks whether H(g || V|| A|]| UserlD
|| Gherinfo) = c. The security of this nodified variant foll ows
fromthe fact that one can conpute V from(c, r) and ¢ from(V, r).
Therefore, sending (c, r) is equivalent to sending (V, ¢, r), which
inturn is equivalent to sending (V, r). Thus, the size of the
Schnorr NI ZK proof is significantly reduced. However, the
conputation costs for both the prover and the verifier stay the sane.

The sane optim zation technique also applies to the elliptic curve
setting by replacing (V, r) with (c, r), but the benefit is extrenely
l[imted. Wen V is encoded in the conmpressed form this optimzation
only saves 1 bit. The conputation costs for generating and verifying
the NI ZK proof remmin the sanme as before.

Applications of Schnorr N zZK proof

Sone key exchange protocols, such as J-PAKE [HR08] and YAK [ Haol0],
rely on the Schnorr N ZK proof to ensure participants have the

know edge of discrete |logarithms, hence follow ng the protoco
specification honestly. The technique described in this docunent can
be directly applied to those protocols.

The inclusion of Gtherinfo al so makes the Schnorr N ZK proof
general ly useful and flexible to cater for a w de range of
applications. For exanple, the described technique may be used to
allow a user to denonstrate the proof of possession (PoP) of a Iong-
termprivate key to a Certification Authority (CA) during the public
key registration phrase. It nust be ensured that the hash contains
data that |inks the proof to one particular key registration
procedure (e.g., by including the CA nane, the expiry date, the
applicant’s email contact, and so on, in OGherlnfo). 1In this case,
the Schnorr N zZK proof is functionally equivalent to a self-signed
Certificate Signing Request generated by using DSA or ECDSA.
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6.

Security Considerations

The Schnorr identification protocol has been proven to satisfy the
followi ng properties, assum ng that the verifier is honest and the
di screte logarithmproblemis intractable (see [Stinson06]).

1. Conpleteness -- a prover who knows the discrete logarithmis
al ways able to pass the verification challenge.

2. Soundness -- an adversary who does not know the discrete
| ogarithm has only a negligible probability (i.e., 2*(-t)) to
pass the verification challenge.

3. Honest verifier zero-know edge -- a prover |eaks no nore than one
bit of information to the honest verifier: whether the prover
knows the discrete |ogarithm

The Fiat-Shamr transformation is a standard technique to transforma
three-pass interactive Zero-Know edge Proof protocol (in which the
verifier chooses a random chall enge) to a non-interactive one,
assum ng that there exists a secure cryptographi c hash function
Since the hash function is publicly defined, the prover is able to
conpute the challenge by itself, hence making the protocol non-
interactive. In this case, the hash function (nore precisely, the
random oracle in the security proof) inplenents an honest verifier
because it assigns a uniformy random chall enge ¢ to each conmit nent
(g”v or Gx [Vv]) sent by the prover. This is exactly what an honest
verifier would do.

It is inmportant to note that in Schnorr’s identification schene and
its non-interactive variant, a secure random nunber generator is
REQUI RED. I n particular, bad randommess in v may reveal the secret
di screte logarithm For exanple, suppose the same randomvalue V =
g™"v nod p is used twice by the prover (e.g., because its random
nunber generator failed), but the verifier chooses different
chal l enges ¢ and ¢’ (or the hash function is used on two different
Q herlnfo data, producing two different values ¢ and ¢'). The
adversary now observes two proof transcripts (V, ¢, r) and (V, ¢’
r'), based on which he can conpute the secret key a by:

(r-r’)/(c’ -c) = (v-a*c-v+a*c’)/(c’-c) = a mod q.
More generally, such an attack nay even work for a slightly better

(but still bad) random nunber generator, where the value v is not
repeat ed, but the adversary knows a rel ation between two val ues v and
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8.

8. 1.

v’ such as v = v + w for sonme known value w. Suppose the adversary
observes two proof transcripts (V, ¢, r) and (V, ¢, r’). He can
conpute the secret key a by:

(r-r’+w)/(c’ -c) = (v-a*c-v-w+a*c’ +w)/(c’-c) = a nod q.

Thi s exanple reinforces the inportance of using a secure random
nunber generator to generate the epheneral secret v in Schnorr’s
schenes.

Finally, when a security protocol relies on the Schnorr N ZK proof
for proving the know edge of a discrete logarithmin a non-
interactive way, the threat of replay attacks shall be considered.
For exanple, the Schnorr N ZK proof m ght be replayed back to the
prover itself (to introduce some undesirable correlation between
items in a cryptographic protocol). This particular attack is
prevented by the inclusion of the unique UserlD in the hash. The
verifier shall check the prover’s UserIDis a valid identity and is
different fromits own. Depending on the context of specific
protocols, other fornms of replay attacks shoul d be consi dered, and
appropriate contextual information included in O herlnfo whenever
necessary.

| ANA Consi derati ons
Thi s docunent does not require any | ANA acti ons.
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