RFC. 816

FAULT | SOLATI ON AND RECOVERY
David D. dark
M T Laboratory for Conputer Science

Conput er Systens and Commruni cati ons G oup
July, 1982

1. I nt roducti on

Qccasionally, a network or a gateway will go down, and the sequence
of hops which the packet takes from source to destination must change.
Fault isolation is that action which hosts and gateways collectively
take to determine that sonething is wong; fault recovery is the
identification and selection of an alternative route which will serve to
reconnect the source to the destination. |In fact, the gateways perform
nost of the functions of fault isolation and recovery. There are,
however, a few actions which hosts nust take if they wish to provide a
reasonable level of service. Thi s docunent describes the portion of

fault isolation and recovery which is the responsibility of the host.

2. \Wat Gateways Do

Gat eways col lectively inplenment an algorithmwhich identifies the
best route between all pairs of networks. They do this by exchangi ng
packets which contain each gateway's | atest opi ni on about the
operational status of its neighbor networks and gateways. Assum ng that
this algorithmis operating properly, one can expect the gateways to go

through a period of confusion i mediately after sone network or gateway

has failed, but one can assune that once a period of negotiation has
passed, the gateways are equipped with a consistent and correct nodel of
the connectivity of the internet. At present this period of negotiation
may actually take several ninutes, and nany TCP inplenentations tinme out
within that period, but it is a design goal of the eventual algorithm
that the gateway should be able to reconstruct the topol ogy quickly
enough that a TCP connection should be able to survive a failure of the

rout e.

3. Host Algorithmfor Fault Recovery

Since the gateways always attenpt to have a consistent and correct
nodel of the internetwork topol ogy, the host strategy for fault recovery
is very sinple. Wenever the host feels that sonething is wong, it
asks the gateway for advice, and, assuming the advice is forthcom ng, it
believes the advice conpletely. The advice will be wong only during
the transient period of negotiation, which imediately follows an

out age, but will otherw se be reliably correct.

In fact, it 1is never necessary for a host to explicitly ask a
gateway for advice, because the gateway will provide it as appropriate.
VWen a host sends a datagramto sonme distant net, the host should be
prepared to receive back either of two advisory nessages which the
gateway may send. The |ICMP "redirect" nessage indicates that the
gateway to which the host sent the datagram is not |longer the best
gateway to reach the net in question. The gateway w |l have forwarded
the datagram but the host should revise its routing table to have a

different immediate address for this net. The | CMP "destination

unreachabl e" nessage indicates that as a result of an outage, it is
currently inmpossible to reach the addressed net or host in any manner

On receipt of this nessage, a host can either abandon the connection
i medi ately without any further retransm ssion, or resend slowy to see

if the fault is corrected in reasonable tine.

If a host could assunme that these two | CMP nessages woul d al ways
arrive when sonething was amiss in the network, then no other action on
the part of the host would be required in order maintain its tables in
an optinal condition. Unfortunately, there are two circunstances under
which the nessages wll not arrive properly. First, during the
transient following a failure, error nessages may arrive that do not
correctly represent the state of the world. Thus, hosts nust take an
i sol ated error nessage with some scepticism (This transient period is
di scussed nore fully below) Second, if the host has been sending
datagrans to a particul ar gateway, and that gateway itself crashes, then
all the other gateways in the internet will reconstruct the topology,
but the gateway in question will still be down, and therefore cannot
provi de any advice back to the host. As long as the host continues to
direct datagrans at this dead gateway, the datagrams will sinply vanish
off the face of the earth, and nothing will cone back in return. Host s

must detect this failure.

If sone gateway many hops away fails, this is not of concern to the
host, for then the discovery of the failure is the responsibility of the
i medi ate nei ghbor gateways, which will performthis action in a manner

invisible to the host. The problem only arises if the very first

gat eway, the one to which the host is imredi ately sending the datagrans,
fails. We thus identify one single task which the host must perform as
its part of fault isolation in the internet: the host nust use sone
strategy to detect that a gateway to which it is sending datagrans is

dead.

Let us assume for the nonent that the host inplenments sone
algorithm to detect failed gateways; we will return |ater to discuss
what this algorithmmght be. First, let wus consider what the host
should do when it has determined that a gateway is down. In fact, with
the exception of one small problem the action the host should take is
extremely sinple. The host should sel ect sone ot her gateway, and try
sending the datagramto it. Assuming that gateway is up, this wll
either produce correct results, or sonme |CVMP advice. Since we assune
that, ignoring temporary periods inmrediately following an outage, any
gateway is capable of giving correct advice, once the host has received
advice from any gateway, that host is in as good a condition as it can

hope to be.

There is always the unpl easant possibility that when the host tries
a different gateway, that gateway too will be down. Therefore, whatever
algorithm the host wuses to detect a dead gateway must continuously be

applied, as the host tries every gateway in turn that it knows about.

The only difficult part of this algorithmis to specify the means
by which the host naintains the table of all of the gateways to which it
has immediate access. Currently, the specification of the internet

prot ocol does not architect any message by which a host can ask to be

supplied with such a table. The reason is that different networks nay
provi de very different nechani sns by which this table can be filled in
For example, if the net is a broadcast net, such as an ethernet or a

ringnet, every gateway may sinply broadcast such a table from time to

time, and the host need do nothing but listen to obtain the required
information. Alternatively, the network may provide the nechanism of
| ogi cal addressing, by which a whole set of machines can be provided
with a single group address, to which a request can be sent for
assi st ance. Failing those two schenmes, the host can build up its table
of nei ghbor gateways by renmenbering all the gateways fromwhich it has
ever received a nmessage. Finally, in certain cases, it may be necessary
for this table, or at |least the initial entries in the table, to be
constructed nmanually by a nmanager or operator at the site. In cases
where the network in question provides absolutely no support for this
ki nd of host query, at |east sone manual intervention will be required

to get started, so that the host can find out about at |east one

gat eway.

4. Host Algorithns for Fault Isolation

We now return to the question raised above. Wat strategy should
the host use to detect that it is talking to a dead gateway, so that it
can know to switch to sonme other gateway in the list. In fact, there are
several algorithnms which can be used. Al are reasonably sinple to
i mpl enent, but they have very different inplications for the overhead on
the host, the gateway, and the network. Thus, to a certain extent, the
al gorithm pi cked nust depend on the details of the network and of the

host .

1. NETWORK LEVEL DETECTI ON

Many networks, particularly the Arpanet, performprecisely the
required function internal to the network. If a host sends a datagram
to a dead gateway on the Arpanet, the network will return a "host dead"
message, which is precisely the information the host needs to know in
order to switch to another gateway. Sone early inplenentations of
Internet on the Arpanet threw these nmessages away. That is an

exceedi ngl y poor i dea.

2. CONTI NUOUS POLLI NG

The |1CMP protocol provides an echo mechani sm by which a host may
solicit a response froma gateway. A host could sinply send this
nessage at a reasonable rate, to assure itself continuously that the
gateway was still up. This works, but, since the nmessage nmust be sent
fairly often to detect a fault in a reasonable tine, it can inply an
unbear abl e overhead on the host itself, the network, and the gateway.
This strategy is prohibited except where a specific analysis has

i ndi cated that the overhead is tol erable.

3. TRIGGERED POLLI NG

If the use of polling could be restricted to only those tines when
sonmething seened to be wong, then the overhead woul d be bearabl e.
Provi ded that one can get the proper advice from one’'s higher I|eve
protocols, it is possible to inplenment such a strategy. For exanple,

one could programthe TCP |l evel so that whenever it retransmtted a

segnent nore than once, it sent a hint down to the IP |ayer which
triggered polling. This strategy does not have excessive overhead, but
does have the problemthat the host may be somewhat slow to respond to
an error, since only after polling has started will the host be able to
confirm that sonething has gone wong, and by then the TCP above may

have al ready tined out.

Both forns of polling suffer froma mnor flaw. Hosts as well as
gat eways respond to | CMP echo nessages. Thus, polling cannot be used to
detect the error that a foreign address thought to be a gateway is
actually a host. Such a confusion can arise if the physical addresses

of machi nes are rearranged.

4. TRI GGERED RESELECTI ON

There is a strategy which nakes use of a hint froma higher |evel,
as did the previous strategy, but which avoids polling altogether
Whenever a higher level complains that the service seems to be
defective, the Internet |layer can pick the next gateway fromthe list of
avai | abl e gateways, and switch to it. Assuming that this gateway is up
no real harmcan conme of this decision, even if it was wong, for the
worst that will happen is a redirect nessage which instructs the host to
return to the gateway originally being used. [If, on the other hand, the
original gateway was indeed down, then this inmediately provides a new
route, so the period of tine until recovery is shortened. This | ast
strategy seens particularly clever, and is probably the nost generally
suitable for those cases where the network itself does not provide fault
isolation. (Regretably, | have forgotten who suggested this idea to me.

It is not nmy invention.)

5. Higher Level Fault Detection

The previous discussion has concentrated on fault detection and
recovery at the IP layer. This section considers what the higher |ayers

such as TCP shoul d do.

TCP has a single fault recovery action; it repeatedly retransmts a

segnent until either it gets an acknow edgenent or its connection tiner

expires. As di scussed above, it may use retransmi ssion as an event to
trigger a request for fault recovery to the IP I|ayer. In the other
direction, information may flow up fromIP, reporting such things as

|CVP Destination Unreachable or error messages from the attached
net wor k. The only subtle question about TCP and faults is what TCP

shoul d do when such an error nessage arrives or its connection tiner

expires.
The TCP specification discusses the tiner. 1In the description of
the open call, the tineout is described as an optional value that the

client of TCP my specify; if any segnent remains unacknow edged for
this period, TCP should abort the connection. The default for the
timeout is 30 seconds. Early TCPs were often inplenented with a fixed
timeout interval, but this did not work well in practice, as the

fol |l owi ng di scussi on nmay suggest.

Clients of TCP can be divided into two classes: those running on
i medi ate behal f of a human, such as Telnet, and those supporting a
program such as a mamil sender. Hunmans require a sophisticated response

to errors. Depending on exactly what went wong, they may want to

abandon the connection at once, or wait for a long tinme to see if things
get better. Programs do not have this human inpatience, but also |ack
the power to nake conpl ex deci sions based on details of the exact error

condition. For them a sinple tineout is reasonable.

Based on these considerations, at |east two nodes of operation are
needed in TCP. One, for prograns, abandons the connection without
exception if the TCP tiner expires. The ot her node, suitable for
peopl e, never abandons the connection on its own initiative, but reports
to the layer above when the tinmer expires. Thus, the human user can see
error nmessages conmng fromall the relevant layers, TCP and |ICW, and
can request TCP to abort as appropriate. This second node requires that
TCP be able to send an asynchronous nessage up to its client to report
the tinmeout, and it requires that error nessages arriving at |ower

| ayers simlarly flow up through TCP

At levels above TCP, fault detection is also required. Either of
the followi ng can happen. First, the foreign client of TCP can fail
even though TCP is still running, so data is still acknow edged and the
timer never expires. Alternatively, the communication path can fail
wi thout the TCP tiner going off, because the local client has no data to

send. Both of these have caused troubl e.

Sending nmail provides an exanple of the first case. Wen sending
mai | using SMIP, there is an SMIP | evel acknow edgerment that is returned
when a piece of mail is successfully delivered. Several early nmai
recei ving prograns would crash just at the point where they had received

all of the mail text (so TCP did not detect a timeout due to outstanding

10

unacknowl edged data) but before the nail was acknow edged at the SMIP
level. This failure would cause early nail senders to wait forever for
the SMIP | evel acknow edgenent. The obvious cure was to set a tiner at
the SMIP | evel, but the first attenpt to do this did not work, for there
was no sinmple way to select the tiner interval. If the interva

selected was short, it expired in normal operational when sending a
large file to a slow host. An interval of many minutes was needed to
prevent false timeouts, but that nmeant that failures were detected only
very slowy. The current solution in several mailers is to pick a

timeout interval proportional to the size of the nessage.

Server telnet provides an exanple of the other kind of failure. It
can easily happen that the comrunications link can fail while there is
no traffic flow ng, perhaps because the user is thinking. Eventual | y,
the wuser will attenpt to type sonmething, at which time he will discover
that the connection is dead and abort it. But the host end of the
connection, having nothing to send, will not discover anything wong,
and will remain waiting forever. |In some systenms there is no way for a
user in a different process to destroy or take over such a hanging

process, so there is no way to recover.

One solution to this would be to have the host server telnet query
the wuser end now and then, to see if it is still up. (Telnet does not
have an explicit query feature, but the host could negotiate sone
uni nmpor t ant option, whi ch shoul d pr oduce either agreement or
di sagreenent in return.) The only problem with this is that a

reasonable sanple interval, if applied to every user on a | arge system

11

can generate an unacceptable amount of traffic and systemoverhead. A
smart server telnet would use this query only when sonmething seens

wrong, perhaps when there had been no user activity for sone tine.

In both these cases, the general conclusion is that client |eve
error detection is needed, and that the details of the mechanism are
very dependent on the application. Application programers nust be nade
aware of the problem of failures, and nust understand that error
detection at the TCP or |ower |evel cannot solve the whole problem for

t hem

6. Knowi ng When to Gve Up

It is not obvious, when error nessages such as | CVP Destination
Unr eachabl e arrive, whether TCP should abandon the connection. The
reason that error nessages are difficult to interpret is that, as
di scussed above, after a failure of a gateway or network, there is a
transi ent peri od during which the gateways may have incorrect
information, so that irrelevant or incorrect error messages may
sonetinmes return. An isolated | CMP Destination Unreachable may arrive
at a host, for exanmple, if a packet is sent during the period when the
gateways are trying to find a new route. To abandon a TCP connection
based on such a nmessage arriving would be to ignore the valuable feature
of the Internet that for nmany internal failures it reconstructs its

function w thout any disruption of the end points.

But if failure nmessages do not inply a failure, what are they for?

In fact, error messages serve several inportant purposes. First, if

12

they arrive 1in response to opening a new connection, they probably are
caused by opening the connection inproperly (e.g., to a non-existent
address) rather than by a transient network failure. Second, they
provi de valuable information, after the TCP timeout has occurred, as to
the probable cause of the failure. Finally, certain nessages, such as
| CMP Parameter Problem inply a possible inplenentation problem In
general , error nessages give valuable information about what went wong,
but are not to be taken as absolutely reliable. A general alerting
mechani sm such as the TCP timeout discussed above, provides a good
indication that whatever is wong is a serious condition, but wthout
the advi sory nessages to augnment the tiner, there is no way for the
client to know how to respond to the error. The conbination of the
timer and the advice fromthe error nessages provide a reasonabl e set of
facts for the client layer to have. It is inmportant that error messages
fromall |ayers be passed up to the client nodule in a wuseful and

consi stent way.

