I EN 149 J. Postel
RFC 765]

June 1980

FI LE TRANSFER PROTOCOL

| NTRODUCTI ON

The objectives of FTP are 1) to pronote sharing of files (computer
programs and/or data), 2) to encourage indirect or inplicit (via
programnms) use of renote conputers, 3) to shield a user from
variations in file storage systens anpbng Hosts, and 4) to transfer
data reliably and efficiently. FTP, though usable directly by a user
at a termnal, is designed mainly for use by prograns.

The attenpt in this specification is to satisfy the diverse needs of
users of maxi-Hosts, mini-Hosts, and TIPs, with a sinple, and easily
i mpl enent ed protocol design.

Thi s paper assunmes know edge of the follow ng protocols described in
the ARPA Internet Protocol Handbook.

The Transm ssion Control Protoco
The TELNET Pr ot ocol
DI SCUSSI ON

In this section, the term nology and the FTP nodel are di scussed.

The terns defined in this section are only those that have specia
significance in FTP. Sone of the term nology is very specific to the
FTP nodel ; sone readers may wish to turn to the section on the FTP
nodel while review ng the termn nol ogy.

TERM NOLOGY
ASCl |

The ASCI| character set as defined in the ARPA Internet

Prot ocol Handbook. |In FTP, ASCI| characters are defined to be
the I ower half of an eight-bit code set (i.e., the nost
significant bit is zero).

access controls

Access control s define users’ access privileges to the use of a
system and to the files in that system Access controls are
necessary to prevent unauthorized or accidental use of files.

It is the prerogative of a server-FTP process to i nvoke access
control s.

June 1980 | EN 149
File Transfer Protocol RFC 765

byte size

There are two byte sizes of interest in FTP. the |ogical byte
size of the file, and the transfer byte size used for the
transm ssion of the data. The transfer byte size is always 8
bits. The transfer byte size is not necessarily the byte size
in which data is to be stored in a system nor the |ogical byte
size for interpretation of the structure of the data.

data connection

A sinpl ex connection over which data is transferred, in a
speci fied node and type. The data transferred may be a part of
afile, an entire file or a nunber of files. The path may be
bet ween a server-DTP and a user-DTP, or between two
server - DTPs.

data port

The passive data transfer process "listens" on the data port
for a connection fromthe active transfer process in order to
open the data connecti on.

ECF

The end-of-file condition that defines the end of a file being
transferred.

EOR

The end-of-record condition that defines the end of a record
bei ng transferred.

error recovery
A procedure that allows a user to recover fromcertain errors
such as failure of either Host systemor transfer process. In
FTP, error recovery may involve restarting a file transfer at a
gi ven checkpoi nt.

FTP commands

A set of conmands that conprise the control information flow ng
fromthe user-FTP to the server-FTP process.

| EN 149 June 1980
RFC 765 File Transfer Protoco

file

An ordered set of computer data (including prograns), of
arbitrary length, uniquely identified by a pathnane.

node

The node in which data is to be transferred via the data
connection. The node defines the data format during transfer

i ncluding EOR and ECF. The transfer nodes defined in FTP are
described in the Section on Transni ssion Mdes.

NVT
The Network Virtual Term nal as defined in the TELNET Protocol
NVFS

The Network Virtual File System A concept which defines a
standard network file systemw th standard commands and

pat hnane conventions. FTP only partially inplenments the NVFS
concept at this tine.

page

A file may be structured as a set of independent parts called
pages. FTP supports the transm ssion of discontinuous files as
i ndependent i ndexed pages.

pat hname

Pat hnane is defined to be the character string which nust be
input to a file systemby a user in order to identify a file.
Pat hname nornmal |y contains device and/or directory names, and
file name specification. FTP does not yet specify a standard
pat hname convention. Each user must follow the file nam ng
conventions of the file systenms involved in the transfer.

record
A sequential file my be structured as a number of contiguous

parts called records. Record structures are supported by FTP
but a file need not have record structure.

June 1980 | EN 149
File Transfer Protocol RFC 765

reply

A reply is an acknow edgnent (positive or negative) sent from
server to user via the TELNET connections in response to FTP
conmands. The general formof a reply is a conpletion code
(including error codes) followed by a text string. The codes
are for use by programs and the text is usually intended for
human users.

server-DTP

The data transfer process, in its normal "active" state,
establ i shes the data connection with the "listening" data port,
sets up paranmeters for transfer and storage, and transfers data
on command fromits PI. The DTP can be placed in a "passive"
state to listen for, rather than initiate a, connection on the
data port.

server-FTP process

A process or set of processes which performthe function of
file transfer in cooperation with a user-FTP process and,
possi bly, another server. The functions consist of a protoco
interpreter (PI) and a data transfer process (DTP).

server- Pl
The protocol interpreter "listens" on Port L for a connection
froma user-Pl and establishes a TELNET conmuni cati on
connecti on. It receives standard FTP commands fromt he

user-Pl, sends replies, and governs the server-DIP
TELNET connections

The full-dupl ex conmuni cation path between a user-Pl and a
server-Pl, operating according to the TELNET Protocol

type

The data representation type used for data transfer and
storage. Type inplies certain transformations between the tine
of data storage and data transfer. The representation types
defined in FTP are described in the Section on Establishing
Dat a Connecti ons.

| EN 149 June 1980
RFC 765 File Transfer Protoco

user

A human being or a process on behal f of a human being w shing
to obtain file transfer service. The hunan user may interact
directly with a server-FTP process, but use of a user-FTP

process is preferred since the protocol design is weighted
t owar ds aut onat a.

user - DTP
The data transfer process "listens" on the data port for a
connection froma server-FTP process. |If two servers are

transferring data between them the user-DIP is inactive.

user - FTP process

A set of functions including a protocol interpreter, a data
transfer process and a user interface which together perform
the function of file transfer in cooperation with one or nore
server-FTP processes. The user interface allows a |oca

| anguage to be used in the conmand-reply dial ogue with the
user.

user - Pl

The protocol interpreter initiates the TELNET connection from
its port Uto the server-FTP process, initiates FTP commands,
and governs the user-DTP if that process is part of the file

transfer.

June 1980 | EN 149
File Transfer Protocol RFC 765

THE FTP MODEL

Wth the above definitions in mnd, the foll owi ng nodel (shown in
Figure 1) may be diagramed for an FTP service.

EEEEEEEEE \|
|| user || --e-----
|| I nterface|<--->| User
[\----1----/] a--e----

---------- | Voo
[/------ \| FTP Comands |/--------- \
|| Server|<---------------- >| User ||
[l Pl || FTP Replies || Pl ||
[\--:---7] [\----1----1]
| \Y | | \Y |

-------- [/------\] Dat a [/---------\] R

| File |<--->|Server|<---------------- > User | <--->] File

| System || DTP || Connecti on [] DTP [] | Syst en]

-------- [\N------1] [\--------- | R

Server-FTP User - FTP

NOTES: 1. The data connection may be used in either direction
2. The data connection need not exist all of the tine.

Figure 1 Model for FTP Use

In the nodel described in Figure 1, the user-protocol interpreter
initiates the TELNET connection. At the initiation of the user
standard FTP commands are generated by the user-Pl and transnmitted
to the server process via the TELNET connection. (The user nay
establish a direct TELNET connection to the server-FTP, froma TIP
termi nal for exanple, and generate standard FTP conmands hi nsel f,
bypassi ng the user-FTP process.) Standard replies are sent from
the server-Pl to the user-Pl over the TELNET connection in
response to the conmands.

The FTP commands specify the parameters for the data connection
(data port, transfer node, representation type, and structure) and
the nature of file systemoperation (store, retrieve, append,
delete, etc.). The user-DTP or its designate should "listen" on
the specified data port, and the server initiate the data
connection and data transfer in accordance with the specified
paranmeters. |t should be noted that the data port need not be in

| EN 149 June 1980
RFC 765 File Transfer Protoco

the same Host that initiates the FTP commands via the TELNET
connection, but the user or his user-FTP process nust ensure a

"l'isten" on the specified data port. It should also be noted that
the data connection may be used for simultaneous sending and
recei vi ng.

In anot her situation a user mght wish to transfer files between
two Hosts, neither of which is his |ocal Host. He sets up TELNET
connections to the two servers and then arranges for a data
connection between them In this manner control information is
passed to the user-Pl but data is transferred between the server
data transfer processes. Following is a nodel of this
server-server interaction.

TELNET =~ -----omm-m-- TELNET
---------- > User-FTP | <-----------
| | User-Pl | |
| I | |
A2 R \
| Server-FTP | Dat a Connecti on | Server-FTP
| n Au | T >| n Bu |
-------------- Port (A) Port (B) --------------
Figure 2

The protocol requires that the TELNET connections be open while
data transfer is in progress. It is the responsibility of the
user to request the closing of the TELNET connecti ons when
finished using the FTP service, while it is the server who takes
the action. The server nay abort data transfer if the TELNET
connections are closed w thout conmand.

DATA TRANSFER FUNCTI ONS

Files are transferred only via the data connection. The TELNET
connection is used for the transfer of commands, which describe the
functions to be performed, and the replies to these commands (see the
Section on FTP Replies). Several conmands are concerned with the
transfer of data between Hosts. These data transfer commands i ncl ude
the MODE conmand which specify how the bits of the data are to be
transmtted, and the STRUcture and TYPE commands, which are used to
define the way in which the data are to be represented. The

transm ssion and representation are basically i ndependent but

June 1980 | EN 149
File Transfer Protocol RFC 765

"Stream' transm ssion node is dependent on the file structure
attribute and i f "Conpressed" transm ssion node is used the nature of
the filler byte depends on the representation type.

DATA REPRESENTATI ON AND STCORAGE

Data is transferred froma storage device in the sending Host to a
storage device in the receiving Host. COten it is necessary to
performcertain transformati ons on the data because data storage
representations in the two systens are different. For exanple,
NVT-ASCI I has different data storage representations in different
systens. PDP-10’s generally store NVTI-ASCI| as five 7-bit ASCl
characters, left-justified in a 36-bit word. 360"s store NVT-ASCI
as 8-bit EBCDIC codes. Miultics stores NVI-ASCI|I as four 9-bit
characters in a 36-bit word. It nay be desirable to convert
characters into the standard NVT-ASCI| representati on when
transmtting text between dissimlar systens. The sending and
receiving sites would have to performthe necessary
transformati ons between the standard representation and their

i nternal representations.

A different problemin representation arises when transnitting
bi nary data (not character codes) between Host systens with
different word lengths. It is not always clear how the sender
shoul d send data, and the receiver store it. For exanple, when
transmtting 32-bit bytes froma 32-bit word-length systemto a
36-bit word-length system it nmay be desirable (for reasons of
ef ficiency and useful ness) to store the 32-bit bytes
right-justified in a 36-bit word in the latter system In any
case, the user should have the option of specifying data
representation and transformation functions. It should be noted
that FTP provides for very limted data type representations.
Transformati ons desired beyond this limted capability should be
performed by the user directly.

Data representations are handled in FTP by a user specifying a
representation type. This type may inmplicitly (as in ASCI1 or
EBCDIC) or explicitly (as in Local byte) define a byte size for
interpretation which is referred to as the "logical byte size."
This has nothing to do with the byte size used for transm ssion
over the data connection, called the "transfer byte size", and the
two should not be confused. For exanple, NVT-ASCI|I has a |ogica
byte size of 8 bits. |If the type is Local byte, then the TYPE
conmand has an obligatory second paraneter specifying the |ogica
byte size. The transfer byte size is always 8 bits.

| EN 149 June 1980
RFC 765 File Transfer Protoco

The types ASCI|I and EBCDIC al so take a second (optional)
paraneter; this is to indicate what kind of vertical format
control, if any, is associated with a file. The follow ng data
representation types are defined in FTP:

ASCI | For nat

This is the default type and nust be accepted by all FTP

i mpl enentations. It is intended primarily for the transfer
of text files, except when both Hosts would find the EBCD C
type nore convenient.

The sender converts the data fromhis internal character
representation to the standard 8-bit NvVT- ASCl

representation (see the TELNET specification). The receiver
will convert the data fromthe standard formto his own
internal form

In accordance with the NVT standard, the <CRLF> sequence
shoul d be used, where necessary, to denote the end of a |ine
of text. (See the discussion of file structure at the end
of the Section on Data Representation and Storage).

Using the standard NVT-ASCI| representati on neans that data
must be interpreted as 8-bit bytes.

The Format paranmeter for ASCI|I and EBCDI C types is discussed
bel ow.

EBCDI C For mat

This type is intended for efficient transfer between Hosts
whi ch use EBCDI C for their internal character
representation.

For transm ssion the data are represented as 8-bit EBCDI C
characters. The character code is the only difference
bet ween the functional specifications of EBCD C and ASCI
types.

End-of -1i ne (as opposed to end-of-record--see the di scussion
of structure) will probably be rarely used with EBCDI C type
for purposes of denoting structure, but where it is
necessary the <NL> character should be used.

June 1980 | EN 149
File Transfer Protocol RFC 765

A character file may be transferred to a Host for one of three
purposes: for printing, for storage and later retrieval, or for
processing. If afile is sent for printing, the receiving Host
must know how the vertical format control is represented. In the
second case, it nust be possible to store a file at a Host and
then retrieve it later in exactly the sane form Finally, it
ought to be possible to nove a file fromone Host to another and
process the file at the second Host without undue trouble. A
single ASCI| or EBCDI C format does not satisfy all these

condi tions and so these types have a second paramneter specifying
one of the following three formats:

Non- pri nt

This is the default format to be used if the second (format)
paranmeter is omitted. Non-print format nust be accepted by
all FTP inplementations.

The file need contain no vertical format information. |[If it
is passed to a printer process, this process nmay assune
standard val ues for spaci ng and nargi ns.

Normal ly, this format will be used with files destined for
processi ng or just storage.

TELNET Format Control s

The file contains ASCI|I/EBCDI C vertical format controls
(i.e., <CR>, <LF> <NL> <VT> <FF>) which the printer
process will interpret appropriately. <CRLF> in exactly
this sequence, al so denotes end-of-Iline.

Carriage Control (ASA)

The file contains ASA (FORTRAN) vertical format contro
characters. (See RFC 740 Appendi x C and Comuni cati ons of
the ACM Vol. 7, No. 10, 606 (Oct. 1964)). In a line or a
record, formatted according to the ASA Standard, the first
character is not to be printed. Instead it should be used
to determine the vertical nmovement of the paper which should
take place before the rest of the record is printed.

10

I EN 149
RFC 765

June 1980
File Transfer Protocol

The ASA Standard specifies the follow ng control characters:

Char act er Vertical Spacing

bl ank Move paper up one line

0 Move paper up two |ines

1 Move paper to top of next page
+ No nmovenent, i.e., overprint

Clearly there nust be some way for a printer process to

di stinguish the end of the structural entity. If a file has
record structure (see below) this is no problem records
will be explicitly marked during transfer and storage. |If

the file has no record structure, the <CRLF> end-of-line
sequence is used to separate printing |ines, but these
format effectors are overridden by the ASA controls.

| mage

The data are sent as contiguous bits which, for transfer,
are packed into the 8-bit transfer bytes. The receiving
site nmust store the data as contiguous bits. The structure
of the storage system m ght necessitate the padding of the
file (or of each record, for a record-structured file) to
some conveni ent boundary (byte, word or block). This

paddi ng, which nust be all zeros, may occur only at the end
of the file (or at the end of each record) and there nust be
a way of identifying the padding bits so that they nay be
stripped off if the file is retrieved. The padding
transformation should be well publicized to enable a user to
process a file at the storage site.

I mage type is intended for the efficient storage and
retrieval of files and for the transfer of binary data. It
is recomended that this type be accepted by all FTP

i mpl enent ati ons.

Local byte Byte size

The data is transferred in | ogical bytes of the size
specified by the obligatory second paraneter, Byte size.
The val ue of Byte size must be a decimal integer; there is
no default value. The |ogical byte size is not necessarily
the sanme as the transfer byte size. |If there is a

11

June 1980 | EN 149
File Transfer Protocol RFC 765

difference in byte sizes, then the |ogical bytes should be
packed contiguously, disregarding transfer byte boundaries
and with any necessary paddi ng at the end.

When the data reaches the receiving Host it will be
transforned in a manner dependent on the |ogical byte size
and the particular Host. This transformati on nust be
invertible (that is an identical file can be retrieved if
the sane paraneters are used) and should be well publicized
by the FTP inpl enentors.

For exanple, a user sending 36-bit floating-point nunbers to
a Host with a 32-bit word could send his data as Local byte
with a logical byte size of 36. The receiving Host would
then be expected to store the |ogical bytes so that they
could be easily manipulated; in this exanple putting the
36-bit logical bytes into 64-bit double words should
suffice.

Anot her exanple, a pair of hosts with a 36-bit word size my
send data to one another in words by using TYPE L 36. The
data woul d be sent in the 8-bit transmi ssion bytes packed so
that 9 transmi ssion bytes carried two host words.

A note of caution about paranmeters: a file nust be stored and
retrieved with the sane paraneters if the retrieved version is to
be identical to the version originally transmtted. Conversely,
FTP i mpl ementations nust return a file identical to the origina
if the paraneters used to store and retrieve a file are the sane.

In addition to different representation types, FTP allows the
structure of a file to be specified. Three file structures are
defined in FTP:

file-structure, where there is no internal structure and the
file is considered to be a conti nuous
sequence of data bytes,

record-structure, where the file is nade up of sequentia
records,

and page-structure, where the file is nade up of independent
i ndexed pages.

File-structure is the default, to be assunmed if the STRUcture
command has not been used but both file and record structures nust

12

| EN 149 June 1980
RFC 765 File Transfer Protoco

be accepted for "text" files (i.e., files with TYPE ASCI| or
EBCDIC) by all FTP inplenmentations. The structure of a file wll
af fect both the transfer node of a file (see the Section on
Transm ssion Mddes) and the interpretation and storage of the
file.

The "natural " structure of a file will depend on which Host stores

the file. A source-code file will usually be stored on an | BM 360
in fixed length records but on a PDP-10 as a stream of characters
partitioned into lines, for exanple by <CRLF>. |f the transfer of

files between such disparate sites is to be useful, there nust be
some way for one site to recognize the other’s assunptions about
the file.

Wth sonme sites being naturally file-oriented and others naturally
record-oriented there may be problens if a file with one structure
is sent to a Host oriented to the other. |If a text file is sent
with record-structure to a Host which is file oriented, then that
Host should apply an internal transformation to the file based on
the record structure. Cbviously this transformation should be
useful but it nust also be invertible so that an identical file
may be retrieved using record structure.

In the case of a file being sent with file-structure to a
record-oriented Host, there exists the question of what criteria
the Host should use to divide the file into records which can be
processed locally. |If this division is necessary the FTP

i mpl ement ati on should use the end-of-1ine sequence, <CRLF> for
ASCI |, or <NL> for EBCDIC text files, as the delimter. |If an FTP
i mpl enent ati on adopts this technique, it nust be prepared to
reverse the transformation if the file is retrieved with
file-structure.

Page Structure

To transmit files that are di sconti nuous FTP defines a page
structure. Files of this type are sonetimes know as "random
access files" or even as "holey files". 1In these files there
is sometimes other information associated with the file as a
whole (e.g., a file descriptor), or with a section of the file
(e.g., page access controls), or both. |In FTP, the sections of
the file are call ed pages.

To provide for various page sizes and associ ated i nformation

each page is sent with a page header. The page header has the
foll owi ng defined fields:

13

June 1980 | EN 149
File Transfer Protocol RFC 765

Header Length

The nunber of |ogical bytes in the page header including
this byte. The mininum header length is 4.

Page | ndex
The | ogi cal page nunber of this section of the file.
This is not the transm ssion sequence nunber of this
page, but the index used to identify this page of the
file.

Data Length

The nunber of |ogical bytes in the page data. The
m ni mum data length is O.

Page Type

The type of page this is. The follow ng page types are
def i ned:

0 = Last Page
This is used to indicate the end of a paged
structured transm ssion. The header |ength nust be
4, and the data length nmust be O.

1 = Sinple Page
This is the normal type for sinple paged files with
no page | evel associated control information. The
header | ength nust be 4.

2 = Descriptor Page

This type is used to transmt the descriptive
information for the file as a whol e.

3 = Access Control ed Page
This is type includes an additional header field

for paged files with page | evel access contro
i nformati on. The header |ength nust be 5.

14

| EN 149 June 1980
RFC 765 File Transfer Protoco

Optional Fields

Further header fields may be used to supply per page
control information, for exanple, per page access
control

Al fields are one logical byte in length. The |ogical byte
size is specified by the TYPE command.

ESTABLI SHI NG DATA CONNECTI ONS

The nechanics of transferring data consists of setting up the data
connection to the appropriate ports and choosing the paraneters
for transfer. Both the user and the server-DIPs have a default
data port. The user-process default data port is the sane as the

control connection port, i.e., U The server-process default data
port is the port adjacent to the control connection port, i.e.,
L-1.

The transfer byte size is 8-bit bytes. This byte size is relevant
only for the actual transfer of the data; it has no bearing on
representation of the data within a Host's file system

The passive data transfer process (this nmay be a user-DIP or a
second server-DTP) shall "listen" on the data port prior to
sendi ng a transfer request command. The FTP request command
determ nes the direction of the data transfer. The server, upon
receiving the transfer request, will initiate the data connection
to the port. Wen the connection is established, the data
transfer begins between DIP's, and the server-Pl sends a
confirmng reply to the user-PI

It is possible for the user to specify an alternate data port by
use of the PORT command. He might want a file dunped on a TIP
l[ine printer or retrieved froma third party Host. In the latter
case the user-Pl sets up TELNET connections with both server-Pl’s.
One server is then told (by an FTP command) to "listen" for a
connection which the other will initiate. The user-Pl sends one
server-Pl a PORT command indicating the data port of the other
Finally both are sent the appropriate transfer commands. The
exact sequence of conmands and replies sent between the
user-controller and the servers is defined in the Section on FTP
Repl i es.

In general it is the server’'s responsibility to maintain the data
connection--to initiate it and to close it. The exception to this

15

June 1980 | EN 149
File Transfer Protocol RFC 765

is when the user-DIP is sending the data in a transfer npde that
requires the connection to be closed to indicate EO-. The server
MUST cl ose the data connection under the follow ng conditions:

1. The server has conpleted sending data in a transfer node
that requires a close to indicate EOF

2. The server receives an ABORT command from the user

3. The port specification is changed by a command fromthe
user.

4. The TELNET connection is closed legally or otherw se.
5. An irrecoverable error condition occurs.

O herwise the close is a server option, the exercise of which he
must indicate to the user-process by an appropriate reply.

TRANSM SSI ON MODES

The next consideration in transferring data is choosing the
appropriate transm ssion node. There are three nodes: one which
formats the data and allows for restart procedures; one which al so
conpresses the data for efficient transfer; and one which passes

the data with little or no processing. 1In this |ast case the node
interacts with the structure attribute to deternmine the type of
processing. In the conpressed nbde the representation type

deternmines the filler byte.

Al data transfers nmust be conpleted with an end-of-file (ECF)
which may be explicitly stated or inplied by the closing of the
data connection. For files with record structure, all the

end-of -record markers (EOR) are explicit, including the final one.
For files transmtted in page structure a "l ast-page" page type is
used.

NOTE: In the rest of this section, byte neans "transfer byte"
except where explicitly stated ot herw se.

For the purpose of standardized transfer, the sending Host will
translate his internal end of line or end of record denotation
into the representation prescribed by the transfer node and file
structure, and the receiving Host will performthe inverse
translation to his internal denotation. An IBM 360 record count
field may not be recogni zed at another Host, so the end of record

16

| EN 149 June 1980
RFC 765 File Transfer Protoco

informati on may be transferred as a two byte control code in
Stream nbde or as a flagged bit in a Block or Conpressed node
descriptor. End of line in an ASCIl1 or EBCDIC file with no record
structure should be indicated by <CRLF> or <NL>, respectively.
Since these transformations inply extra work for sone systens,

i dentical systens transferring non-record structured text files
m ght wish to use a binary representation and stream node for the
transfer.

The foll owi ng transm ssi on nodes are defined in FTP:
STREAM

The data is transnmitted as a streamof bytes. There is no
restriction on the representation type used; record
structures are all owed.

In a record structured file EOR and EOF will each be

i ndicated by a two-byte control code. The first byte of the
control code will be all ones, the escape character. The
second byte will have the |ow order bit on and zeros

el sewhere for EOR and the second | ow order bit on for EOF
that is, the byte will have value 1 for ECOR and value 2 for
ECOF. EOR and EOF may be indicated together on the |ast byte
transmtted by turning both |ow order bits on, i.e., the
value 3. If a byte of all ones was intended to be sent as
data, it should be repeated in the second byte of the
control code.

If the structure is file structure, the ECF is indicated by
the sending Host closing the data connection and all bytes
are data bytes.

BLOCK

The file is transnmitted as a series of data bl ocks preceded
by one or nore header bytes. The header bytes contain a
count field, and descriptor code. The count field indicates
the total length of the data block in bytes, thus narking
the beginning of the next data block (there are no filler
bits). The descriptor code defines: last block in the file
(EOF) last block in the record (EOR), restart narker (see
the Section on Error Recovery and Restart) or suspect data
(i.e., the data being transferred is suspected of errors and
is not reliable). This last code is NOT intended for error
control within FTP. It is notivated by the desire of sites

17

June 1980 | EN 149
File Transfer Protocol RFC 765

exchanging certain types of data (e.g., seismc or weather
data) to send and receive all the data despite local errors
(such as "magnetic tape read errors"), but to indicate in
the transm ssion that certain portions are suspect). Record
structures are allowed in this node, and any representation
type may be used.

The header consists of the three bytes. O the 24 bits of
header information, the 16 | ow order bits shall represent
byte count, and the 8 high order bits shall represent
descri ptor codes as shown bel ow.

Bl ock Header
o o o +
| Descriptor | Byt e Count
| 8 bits | 16 bits |
oo o - oo o - oo o - +

The descriptor codes are indicated by bit flags in the
descriptor byte. Four codes have been assigned, where each
code nunber is the decinmal value of the corresponding bit in

the byte.
Code Meani ng
128 End of data block is EOR
64 End of data block is EOF
32 Suspected errors in data bl ock
16 Data block is a restart narker

Wth this encoding nore than one descriptor coded condition
may exist for a particular block. As many bits as necessary
may be fl agged.

The restart marker is enmbedded in the data streamas an

i ntegral nunmber of 8-bit bytes representing printable
characters in the | anguage being used over the TELNET
connection (e.g., default--NVT-ASCIl). <SP> (Space, in the
appropriate | anguage) nmust not be used WTHI N a restart

mar ker .

18

| EN 149 June 1980
RFC 765 File Transfer Protocol

For exanple, to transmt a six-character narker, the
foll owi ng woul d be sent:

Fomm e Fomm e Fomm e +
| Descrptr| Byte count |
| code= 16| =6 |
Fomm e Fomm e Fomm e +
Fomm e e Fomm e e Fomm e e +

COVPRESSED

There are three kinds of information to be sent: regular
data, sent in a byte string; conpressed data, consisting of
replications or filler; and control information, sent in a
two- byt e escape sequence. If n>0 bytes (up to 127) of
regul ar data are sent, these n bytes are preceded by a byte
with the left-nost bit set to 0 and the right-nost 7 bits
cont ai ni ng the nunber n.

Byte string:
1 7 8 8
s S R o ok ik R RS Ho et e e e -t
| 0| n || d(1) | d(n)
+-

T S S S S A S S e S s S e S
N N

---n bytes---
of data

String of n data bytes d(1),..., d(n)
Count n must be positive.

To conpress a string of n replications of the data byte d,
the following 2 bytes are sent:

19

June 1980 | EN 149
File Transfer Protocol RFC 765

Replicated Byte

2 6 8
I S U S S DU S S S S S
|1 0] n || d |

T S S S e e

A string of n filler bytes can be conpressed into a single
byte, where the filler byte varies with the representation
type. If the type is ASCII or EBCDIC the filler byte is
<SP> (Space, ASCI| code 32., EBCDIC code 64). If the type
is lmage or Local byte the filler is a zero byte.

Filler String:

2 6
S S
|1 1] n |

i S SR S S

The escape sequence is a double byte, the first of which is
the escape byte (all zeros) and the second of which contains
descriptor codes as defined in Block node. The descriptor
codes have the sane neaning as in Block nmode and apply to
the succeeding string of bytes.

Conpressed node is useful for obtaining increased bandw dth
on very large network transmissions at a little extra CPU
cost. It can be nost effectively used to reduce the size of
printer files such as those generated by RJE Hosts.

ERROR RECOVERY AND RESTART

There is no provision for detecting bits lost or scranbled in data
transfer; this level of error control is handled by the TCP
However, a restart procedure is provided to protect users from
gross systemfailures (including failures of a Host, an
FTP-process, or the underlying network).

The restart procedure is defined only for the bl ock and conpressed
nodes of data transfer. It requires the sender of data to insert
a special marker code in the data streamw th sonme narker
information. The marker information has neaning only to the
sender, but mnust consist of printable characters in the default or
negoti at ed | anguage of the TELNET connection (ASCII or EBCDI C)

The marker could represent a bit-count, a record-count, or any

20

| EN 149 June 1980
RFC 765 File Transfer Protoco

other information by which a systemmy identify a data
checkpoint. The receiver of data, if it inplenents the restart
procedure, would then mark the correspondi ng position of this
marker in the receiving system and return this information to the
user.

In the event of a systemfailure, the user can restart the data
transfer by identifying the marker point with the FTP restart
procedure. The following exanple illustrates the use of the
restart procedure.

The sender of the data inserts an appropriate marker block in the
data stream at a convenient point. The receiving Host marks the
corresponding data point inits file systemand conveys the | ast
known sender and receiver marker information to the user, either
directly or over the TELNET connection in a 110 reply (dependi ng
on who is the sender). 1In the event of a systemfailure, the user
or controller process restarts the server at the |ast server

mar ker by sending a restart command with server’s marker code as
its argunment. The restart command is transmtted over the TELNET
connection and is imediately foll owed by the comand (such as
RETR, STOR or LIST) which was bei ng executed when the system
failure occurred.

FI LE TRANSFER FUNCTI ONS

The communi cation channel fromthe user-Pl to the server-Pl is
establ i shed by a TCP connection fromthe user to a standard server
port. The user protocol interpreter is responsible for sending FTP
conmands and interpreting the replies received; the server-P
interprets conmands, sends replies and directs its DIP to set up the
data connection and transfer the data. |If the second party to the
data transfer (the passive transfer process) is the user-DIP then it
is governed through the internal protocol of the user-FTP Host; if it
is a second server-DIP then it is governed by its Pl on command from
the user-Pl. The FTP replies are discussed in the next section. In
the description of a few of the conmands in this section it is

hel pful to be explicit about the possible replies.

FTP COMVANDS
ACCESS CONTRCOL COMVANDS

The foll owi ng commands specify access control identifiers
(command codes are shown in parent heses).

21

June 1980 | EN 149
File Transfer Protocol RFC 765

USER NAME (USER)

The argunment field is a TELNET string identifying the user
The user identification is that which is required by the
server for access to its file system This command wl|l
normally be the first command transmitted by the user after
the TELNET connections are made (Ssome servers may require
this). Additional identification information in the form of
a password and/or an account comrand rmay al so be required by
some servers. Servers may allow a new USER command to be
entered at any point in order to change the access contro
and/ or accounting information. This has the effect of
flushing any user, password, and account information already
suppl i ed and begi nning the | ogin sequence again. Al

transfer paraneters are unchanged and any file transfer in
progress is conpleted under the ol d account.

PASSWORD (PASS)
The argurment field is a TELNET string identifying the user’s

password. This conmand nust be i mredi ately preceded by the
user nane comand, and, for sonme sites, conpletes the user’s

identification for access control. Since password
information is quite sensitive, it is desirable in genera
to "mask" it or suppress typeout. It appears that the
server has no fool proof way to achieve this. It is

therefore the responsibility of the user-FTP process to hide
the sensitive password information

ACCOUNT (ACCT)

The argurment field is a TELNET string identifying the user’s
account. The command is not necessarily related to the USER
conmand, as sone sites may require an account for |ogin and
others only for specific access, such as storing files. 1In
the latter case the command may arrive at any time.

There are reply codes to differentiate these cases for the
aut omat on: when account information is required for login
the response to a successful PASSword command is reply code
332. On the other hand, if account information is NOT
required for login, the reply to a successful PASSword
command is 230; and if the account information is needed for
a command issued later in the dial ogue, the server should

22

| EN 149 June 1980
RFC 765 File Transfer Protoco

return a 332 or 532 reply dependi ng on whether he stores
(pendi ng recei pt of the ACCounT conmand) or discards the
conmand, respectively.

REI NI TI ALl ZE (REI N)

This command term nates a USER, flushing all 1/O and account
i nfornmation, except to allow any transfer in progress to be
conpleted. Al paraneters are reset to the default settings
and the TELNET connection is left open. This is identica
to the state in which a user finds hinself imediately after
the TELNET connection is opened. A USER comrand may be
expected to foll ow

LOGOUT (QUI T)

This command terninates a USER and if file transfer is not
in progress, the server closes the TELNET connection. |If
file transfer is in progress, the connection will renmain
open for result response and the server will then close it.
If the user-process is transferring files for several USERs
but does not wish to close and then reopen connections for
each, then the REIN command should be used instead of QUIT.

An unexpected cl ose on the TELNET connection will cause the
server to take the effective action of an abort (ABOR) and a
| ogout (QUIT).

TRANSFER PARAMETER COMVANDS

Al data transfer parameters have default values, and the
conmmands specifying data transfer paraneters are required only
if the default paranmeter values are to be changed. The default
value is the last specified value, or if no value has been
specified, the standard default value as stated here. This
inmplies that the server must "remenber" the applicable default
val ues. The commands may be in any order except that they nust
precede the FTP service request. The follow ng conmands
specify data transfer paraneters.

DATA PORT (PORT)
The argurment is a HOST-PORT specification for the data port
to be used in data connection. There defaults for both the

user and server data ports, and under nornal circunstances
this coomand and its reply are not needed. |I|f this comand

23

June 1980 | EN 149
File Transfer Protocol RFC 765

is used the argunment is the concatenation of a 32-bit

i nternet host address and a 16-bit TCP port address. This

address information is broken into 8-bit fields and the

val ue of each field is transmitted as a deci nal nunber (in

character string representation). The fields are separated
by conmas. A port conmand woul d be:

PORT h1, h2, h3, h4, p1, p2

where, hl is the high order 8 bits of the internet host
addr ess.

PASSI VE (PASV)

Thi s command requests the server-DTP to "listen" on a data
port (which is not its default data port) and to wait for a
connection rather than initiate one upon receipt of a
transfer conmand. The response to this conmand includes the
host and port address this server is listening on

REPRESENTATI ON TYPE (TYPE)

The argument specifies the representation type as described
in the Section on Data Representation and Storage. Severa
types take a second paraneter. The first paraneter is
denoted by a single TELNET character, as is the second
Format paranmeter for ASCI|I and EBCDI C, the second paraneter
for local byte is a decinal integer to indicate Bytesize.
The paraneters are separated by a <SP> (Space, ASCI| code
32.).

The foll owi ng codes are assigned for type:

\ /
A - ASCI | | N - Non-print
| -><-| T - TELNET format effectors
E - EBCDI C | C - Carriage Control (ASA)
/ \
I - |l mage

L <byte size> - Local byte Byte size

The default representation type is ASCII Non-print. |[If the
Format paranmeter is changed, and later just the first
argunent is changed, Format then returns to the Non-print
defaul t.

24

I EN 149
RFC 765

June 1980
File Transfer Protocol

FI LE STRUCTURE (STRU)
The argurment is a single TELNET character code specifying
file structure described in the Section on Data
Representati on and Storage.
The foll owi ng codes are assigned for structure:
F - File (no record structure)
R - Record structure
P - Page structure
The default structure is File.
TRANSFER MODE (MODE)
The argurment is a single TELNET character code specifying
the data transfer npdes described in the Section on
Transm ssi on Modes.
The foll owi ng codes are assigned for transfer nodes:
S - Stream
B - Bl ock
C - Conpressed

The default transfer nbde is Stream

FTP SERVI CE COMVANDS

The FTP service commands define the file transfer or the file
system function requested by the user. The argunent of an FTP
service command will normally be a pathname. The syntax of

pat hnames nust conformto server site conventions (with
standard defaults applicable), and the | anguage conventions of
the TELNET connection. The suggested default handling is to
use the last specified device, directory or file name, or the
standard default defined for |local users. The commands may be
in any order except that a "renanme from' comand nust be
followed by a "renane to" comand and the restart command nust
be followed by the interrupted service comand. The data, when
transferred in response to FTP servi ce comuands, shall always
be sent over the data connection, except for certain
informative replies. The foll owi ng commands specify FTP
service requests:

25

June 1980 | EN 149
File Transfer Protocol RFC 765

RETRI EVE (RETR)

Thi s command causes the server-DTP to transfer a copy of the
file, specified in the pathnane, to the server- or user-DTP
at the other end of the data connection. The status and

contents of the file at the server site shall be unaffected.

STORE (STOR)

Thi s command causes the server-DTP to accept the data
transferred via the data connection and to store the data as
afile at the server site. |If the file specified in the

pat hname exists at the server site then its contents shal

be replaced by the data being transferred. A newfile is
created at the server site if the file specified in the

pat hname does not al ready exist.

APPEND (with create) (APPE)

Thi s command causes the server-DIP to accept the data
transferred via the data connection and to store the data in
afile at the server site. |If the file specified in the

pat hname exists at the server site, then the data shall be
appended to that file; otherwise the file specified in the
pat hname shall be created at the server site.

MAIL FILE (MFL)

The intent of this command is to enable a user at the user
site to mail data (in formof a file) to another user at the
server site. It should be noted that the files to be mail ed
are transnmitted via the data connection in ASCII or EBCDI C
type. (It is the user’'s responsibility to ensure that the
type is correct.) These files should be inserted into the
destination user’s mail box by the server in accordance with
serving Host mail conventions. The mail may be nmarked as
sent fromthe particul ar user HOST and the user specified by
the "USER command. The argunent field may contain a Host
systemident, or it may be enpty. If the argunment field is
enpty or blank (one or nore spaces), then the nmail is
destined for a printer or other designated place for genera
delivery site mail.

26

| EN 149 June 1980
RFC 765 File Transfer Protoco

MAIL (MAIL)

This command allows a user to send mail that is NOT in a
file over the TELNET connection. The argunent field may
contain systemident, or it may be enmpty. The ident is
defined as above for the MLFL command. After the "MAIL
conmand i s received, the server is to treat the foll ow ng
lines as text of the mail sent by the user. The mail text
is to be terminated by a line containing only a single

period, that is, the character sequence "CRLF. CRLF'. It is
suggested that a nodest volume of mail service should be
free; i.e., it may be entered before a USER comand.

MAI L SEND TO TERM NAL (MSND)

This command is |like the MAIL command, except that the data
is displayed on the addressed user’'s terminal, if such
access is currently allowed, otherw se an error is returned.

MAI L SEND TO TERM NAL OR MAI LBOX (MsOW

This command is |ike the MAIL command, except that the data
is displayed on the addressed user’s terminal, if such
access is currently allowed, otherwi se the data is placed in
the user’s mail box.

MAI L SEND TO TERM NAL AND MNAI LBOX (MSAM

This command is |like the MAIL conmand, except that the data
is displayed on the addressed user’s termnal, if such
access is currently allowed, and, in any case, the data is
pl aced in the user’s nail box.

MAI L RECI Pl ENT SCHEME QUESTI ON (MRSQ)
This FTP command is used to select a scheme for the
transm ssion of mail to several users at the sanme host. The
schenes are to list the recipients first, or to send the
mai |l first.

MAI L RECI PI ENT (MRCP)

This command is used to identify the individual recipients
of the nmail in the transmssion of mail for multiple users
at one host.

27

June 1980 | EN 149
File Transfer Protocol RFC 765

ALLOCATE (ALLO)

This command may be required by sonme servers to reserve
sufficient storage to accommopdate the new file to be
transferred. The argunment shall be a decinal integer
representing the nunmber of bytes (using the |ogical byte
size) of storage to be reserved for the file. For files
sent with record or page structure a maxi numrecord or page
size (in logical bytes) mght also be necessary; this is

i ndicated by a decinmal integer in a second argunent field of
the command. This second argument is optional, but when
present should be separated fromthe first by the three
TELNET characters <SP> R <SP>. This command shal |l be
followed by a STORe or APPEnd command. The ALLO command
shoul d be treated as a NOOP (no operation) by those servers
whi ch do not require that the maxi mum size of the file be
decl ared beforehand, and those servers interested in only
the maxi mum record or page size should accept a dunmy val ue
in the first argunment and ignore it.

RESTART (REST)

The argurment field represents the server marker at which
file transfer is to be restarted. This command does not
cause file transfer but "spaces" over the file to the

speci fied data checkpoint. This conmand shall be

i mediately foll owed by the appropriate FTP service comrmand
whi ch shall cause file transfer to resune.

RENAME FROM (RNFR)

This command specifies the file which is to be renaned.
This command rmust be inmediately followed by a "renanme to"
conmand speci fying the new fil e pathnane.

RENAME TO (RNTO
Thi s command specifies the new pathnane of the file
specified in the i mediately preceding "renane front
conmand. Together the two commands cause a file to be
renamed.

ABORT (ABOR)

This command tells the server to abort the previous FTP
servi ce command and any associ ated transfer of data. The

28

I EN 149
RFC 765

June 1980
File Transfer Protocol

abort command may require "special action", as discussed in
the Section on FTP Commands, to force recognition by the
server. No action is to be taken if the previous comand
has been conpl eted (including data transfer). The TELNET
connection is not to be closed by the server, but the data
connection rmust be cl osed.

There are two cases for the server upon receipt of this
conmand: (1) the FTP service conmand was al ready conpl eted
or (2) the FTP service command is still in progress.

In the first case, the server closes the data connection
(if it is open) and responds with a 226 reply, indicating
that the abort command was successful ly processed.

In the second case, the server aborts the FTP service in
progress and cl oses the data connection, returning a 426
reply to indicate that the service request termnated in
abnormal ly. The server then sends a 226 reply,

i ndicating that the abort comand was successfully
processed.

DELETE (DELE)

Thi s command causes the file specified in the pathname to be
del eted at the server site. |If an extra level of protection
is desired (such as the query, "DOyou really wish to

del ete?"), it should be provided by the user-FTP process.

CHANGE WORKI NG DI RECTCRY (VD)

This command all ows the user to work with a different
directory or dataset for file storage or retrieval wthout
altering his login or accounting information. Transfer
paranmeters are simlarly unchanged. The argunent is a

pat hname specifying a directory or other system dependent
file group designator.

LI ST (LI ST)
This command causes a list to be sent fromthe server to the
passive DTP. |f the pathname specifies a directory, the
server should transfer a list of files in the specified
directory. |If the pathnane specifies a file then the server

shoul d send current infornmation on the file. A nul
argunent inplies the user’s current working or default

29

June 1980 | EN 149
File Transfer Protocol RFC 765

directory. The data transfer is over the data connection in
type ASCI| or type EBCDIC. (The user nust ensure that the
TYPE is appropriately ASCI| or EBCD Q).

NAME- LI ST (NLST)

This command causes a directory listing to be sent from
server to user site. The pathnane should specify a
directory or other systemspecific file group descriptor; a
nul | argurment inplies the current directory. The server
will return a stream of nanes of files and no ot her
information. The data will be transferred in ASCI| or
EBCDI C type over the data connection as valid pathnane
strings separated by <CRLF> or <NL>. (Again the user nust
ensure that the TYPE is correct.)

SI TE PARAMETERS (Sl TE)

This command is used by the server to provide services
specific to his systemthat are essential to file transfer
but not sufficiently universal to be included as comands in
the protocol. The nature of these services and the
specification of their syntax can be stated in a reply to
the HELP SI TE conmand.

STATUS (STAT)

This command shall cause a status response to be sent over
the TELNET connection in the formof a reply. The comrand
may be sent during a file transfer (along with the TELNET I P
and Synch signal s--see the Section on FTP Comrands) in which
case the server will respond with the status of the
operation in progress, or it may be sent between file
transfers. In the latter case the conmand nmay have an
argunent field. |If the argunent is a pathname, the command
is anal ogous to the "list" command except that data shall be
transferred over the TELNET connection. |If a partia

pat hnane is given, the server may respond with a list of
file names or attributes associated with that specification
If no argument is given, the server should return genera
status information about the server FTP process. This
shoul d i nclude current values of all transfer parameters and
the status of connections.

30

| EN 149 June 1980
RFC 765 File Transfer Protoco

HELP (HELP)

This command shall cause the server to send hel pfu
information regarding its inplenentation status over the
TELNET connection to the user. The comrand may take an
argunent (e.g., any command nane) and return nore specific
information as a response. The reply is type 211 or 214.

It is suggested that HELP be all owed before entering a USER
conmand. The server nay use this reply to specify
site-dependent paraneters, e.g., in response to HELP SITE.

NOCP (NOOP)

Thi s command does not affect any paraneters or previously
entered conmmands. It specifies no action other than that the
server send an OK reply.

The File Transfer Protocol follows the specifications of the
TELNET protocol for all comunications over the TELNET connecti on
Si nce, the | anguage used for TELNET conmuni cation may be a

negoti ated option, all references in the next two sections will be
to the "TELNET | anguage" and the correspondi ng "TELNET end of line
code". Currently one may take these to mean NVT-ASCI| and <CRLF>.
No ot her specifications of the TELNET protocol will be cited.

FTP commands are "TELNET strings" term nated by the "TELNET end of
line code". The command codes thensel ves are al phabetic
characters term nated by the character <SP> (Space) if paraneters
foll ow and TELNET- EOL ot herwi se. The comrand codes and the
semantics of commands are described in this section; the detailed
syntax of comrands is specified in the Section on Commands, the
reply sequences are discussed in the Section on Sequencing of
Conmands and Replies, and scenarios illustrating the use of
conmands are provided in the Section on Typical FTP Scenari os.

FTP commands may be partitioned as those specifying access-contro
identifiers, data transfer paraneters, or FTP service requests.
Certain commands (such as ABOR, STAT, QUIT) may be sent over the
TELNET connection while a data transfer is in progress. Sone
servers may not be able to nonitor the TELNET and data connections
si mul taneously, in which case sone special action will be
necessary to get the server’s attention. The exact form of the
"special action" is undefined; but the follow ng ordered format is
tentatively reconmended:

31

June 1980 | EN 149
File Transfer Protocol RFC 765

1. User systeminserts the TELNET "Interrupt Process" (IP)
signal in the TELNET stream

2. User system sends the TELNET "Synch" signha

3. User systeminserts the command (e.g., ABOR) in the TELNET
stream

4. Server Pl,, after receiving "IP', scans the TELNET stream
for EXACTLY ONE FTP comrand

(For other servers this may not be necessary but the actions
|isted above shoul d have no unusual effect.)

FTP REPLI ES

Replies to File Transfer Protocol conmands are devised to ensure
the synchroni zati on of requests and actions in the process of file
transfer, and to guarantee that the user process always knows the
state of the Server. Every comand nust generate at |east one
reply, although there may be nore than one; in the latter case,
the nmultiple replies nust be easily distinguished. In addition
some commands occur in sequential groups, such as USER, PASS and
ACCT, or RNFR and RNTO. The replies show the existence of an
internediate state if all preceding commands have been successful.
A failure at any point in the sequence necessitates the repetition
of the entire sequence fromthe begi nning.

The details of the command-reply sequence are made explicit in
a set of state diagranms bel ow

An FTP reply consists of a three digit nunmber (transmtted as
three al phanuneric characters) followed by sonme text. The nunber
is intended for use by autonmata to determi ne what state to enter

next; the text is intended for the human user. It is intended
that the three digits contain enough encoded information that the
user-process (the User-Pl) will not need to exam ne the text and

may either discard it or pass it on to the user, as appropriate.
In particular, the text nay be server-dependent, so there are
likely to be varying texts for each reply code.

Formally, a reply is defined to contain the 3-digit code, followed
by Space <SP>, followed by one |line of text (where some maxi mum
line | ength has been specified), and term nated by the TELNET
end-of -line code. There will be cases, however, where the text is
| onger than a single line. In these cases the conplete text mnust

32

| EN 149 June 1980
RFC 765 File Transfer Protoco

be bracketed so the User-process knows when it nmay stop reading
the reply (i.e. stop processing input on the TELNET connecti on)
and go do other things. This requires a special format on the
first line to indicate that nore than one line is com ng, and
another on the last line to designate it as the last. At |east
one of these must contain the appropriate reply code to indicate
the state of the transaction. To satisfy all factions it was
decided that both the first and last |ine codes should be the

sane.
Thus the format for nulti-line replies is that the first line
will begin with the exact required reply code, foll owed
i medi ately by a Hyphen, "-" (also known as M nus), followed by
text. The last line will begin with the same code, foll owed

i medi ately by Space <SP>, optionally sonme text, and the TELNET
end- of -1 i ne code.

For exanpl e:
123-First line
Second i ne
234 A line beginning with nunbers
123 The last line

The user-process then sinply needs to search for the second
occurrence of the sane reply code, followed by <SP> (Space), at
the beginning of a line, and ignore all intermediary lines. |If
an internediary line begins with a 3-digit nunber, the Server
nmust pad the front to avoid confusion

This schene all ows standard systemroutines to be used for
reply information (such as for the STAT reply), with
"artificial" first and last lines tacked on. In the rare
cases where these routines are able to generate three digits
and a Space at the beginning of any line, the beginning of

each text line should be offset by some neutral text, I|ike
Space.
Thi s schene assunes that multi-line replies may not be nested.
We have found that, in general, nesting of replies will not

occur, except for random system nessages (al so called

spont aneous replies) which nmay interrupt another reply. System
nmessages (i.e. those not processed by the FTP server) will NOT
carry reply codes and may occur anywhere in the comuand-reply
sequence. They may be ignored by the User-process as they are
only informati on for the human user

33

June 1980 | EN 149
File Transfer Protocol RFC 765

The three digits of the reply each have a special significance.
This is intended to allow a range of very sinple to very

sophi sticated response by the user-process. The first digit
denot es whet her the response is good, bad or inconplete.
(Referring to the state diagran) an unsophisticated user-process
will be able to determine its next action (proceed as pl anned,
redo, retrench, etc.) by sinply examining this first digit. A
user-process that wants to know approxi nately what kind of error
occurred (e.g. file systemerror, comrand syntax error) nay
exam ne the second digit, reserving the third digit for the finest
gradation of information (e.g. RNTO comrand wi t hout a preceding
RNFR.)

There are five values for the first digit of the reply code:
lyz Positive Prelimnary reply

The requested action is being initiated; expect another
reply before proceeding with a new command. (The
user - process sendi ng another conmand before the
conpletion reply would be in violation of protocol; but
server-FTP processes shoul d queue any commands t hat
arrive while a preceding command is in progress.) This
type of reply can be used to indicate that the commuand
was accepted and the user-process may now pay attention
to the data connections, for inplenentations where

si mul taneous nmonitoring is difficult.

2yz Positive Completion reply

The requested action has been successfully conpleted. A
new request may be initiated.

3yz Positive Internmediate reply

The command has been accepted, but the requested action
is being held in abeyance, pending receipt of further
information. The user should send another comrand
specifying this information. This reply is used in
command sequence groups.

4yz Transi ent Negative Conpletion reply
The command was not accepted and the requested action did

not take place, but the error condition is tenporary and
the action nay be requested again. The user should

34

I EN 149
RFC 765

Syz

June 1980
File Transfer Protocol

return to the beginning of the command sequence, if any.
It is difficult to assign a nmeaning to "transient",
particularly when two distinct sites (Server and

User - processes) have to agree on the interpretation.

Each reply in the 4yz category m ght have a slightly
different tine value, but the intent is that the
user-process is encouraged to try again. A rule of thunb
in determining if areply fits into the 4yz or the 5yz
(Permanent Negative) category is that replies are 4yz if
the commands can be repeated wi thout any change in
conmand formor in properties of the User or Server (e.g.
the command is spelled the sane with the same argunents
used; the user does not change his file access or user
nane; the server does not put up a new inplenentation.)

Per manent Negative Conpletion reply

The conmmand was not accepted and the requested action did
not take place. The User-process is discouraged from
repeating the exact request (in the same sequence). Even
sone "pernanent” error conditions can be corrected, so
the human user may want to direct his User-process to
reinitiate the command sequence by direct action at sone
point in the future (e.g. after the spelling has been
changed, or the user has altered his directory status.)

The foll owi ng function groupings are encoded in the second

digit:

x0z

x1lz

X2z

X3z

x4z

Syntax - These replies refer to syntax errors,
syntactically correct comrands that don’t fit any
functional category, uninplenmented or superfluous
comrands.

Information - These are replies to requests for
i nformation, such as status or help.

Connections - Replies referring to the TELNET and data
connecti ons.

Aut henti cation and accounting - Replies for the login
process and accounting procedures.

Unspeci fied as yet

35

June 1980 | EN 149
File Transfer Protocol RFC 765

x5z File system - These replies indicate the status of the
Server file systemvis-a-vis the requested transfer or
other file system action

The third digit gives a finer gradation of meaning in each of
the function categories, specified by the second digit. The
list of replies beloww Il illustrate this. Note that the text
associated with each reply is reconmmended, rather than

nmandat ory, and may even change according to the command with
which it is associated. The reply codes, on the other hand,
must strictly follow the specifications in the last section
that is, Server inplenentations should not invent new codes for
situations that are only slightly different fromthe ones
descri bed here, but rather shoul d adapt codes al ready defined.

A command such as TYPE or ALLO whose successful execution
does not offer the user-process any new information wll
cause a 200 reply to be returned. |If the conmmand is not

i mpl enented by a particul ar Server-FTP process because it
has no relevance to that conputer system for exanple ALLO
at a TOPS20 site, a Positive Completion reply is stil
desired so that the sinple User-process knows it can proceed
with its course of action. A 202 reply is used in this case
with, for exanple, the reply text: "No storage allocation
necessary."” |If, on the other hand, the comrand requests a
non-site-specific action and is uni npl enented, the response
is 502. A refinement of that is the 504 reply for a command
that IS inplenented, but that requests an uni npl enented

par aneter.

Reply Codes by Function G oups

200 Command okay
500 Syntax error, conmand unrecogni zed
[This may include errors such as command |ine too |ong.]
501 Syntax error in paranmeters or argunents
202 Command not inpl emented, superfluous at this site.
502 Command not i npl enent ed
503 Bad sequence of comands
504 Command not inplenmented for that paraneter

110 Restart marker reply.

36

I EN 149
RFC 765

June 1980
File Transfer Protocol

In this case the text is exact and not left to the
particular inplementation; it rmust read:
MARK yyyy = nmmm

where yyyy is User-process data stream marker, and nmmm
server’s equival ent marker. (note the spaces between
mar kers and "="

119 Term nal not available, will try mail box.

211 System status, or systemhelp reply

212 Directory status

213 File status

214 Hel p nessage
(on how to use the server or the neaning of a particul ar
non-standard command. This reply is useful only to the
human user.)

215 <schene> is the preferred schene.

120 Service ready in nnn mnutes

220 Service ready for new user

221 Service closing TELNET connecti on
(l ogged out if appropriate)

421 Service not avail able, closing TELNET connecti on
This may be a reply to any comuand if the service knows it
must shut down.]

125 Data connection already open; transfer starting

225 Data connection open; no transfer in progress

425 Can’'t open data connection

226 C osing data connection
requested file action successful (for exanple, file transfer
or file abort.)

426 Connection cl osed; transfer aborted.

227 Entering Passive Mde. hil, h2,h3, h4,pl, p2

230 User | ogged in, proceed

530 Not | ogged in

331 User name okay, need password
332 Need account for login

532 Need account for storing files

150 Fil e status okay; about to open data connection
151 User not local; WIIl forward to <user>@host >.
152 User Unknown; Mail will be forwarded by the operator.
250 Requested file action okay, conpleted.
350 Requested file action pending further information
450 Requested file action not taken
file unavailable (e.g. file busy)
550 Requested action not taken

37

June 1980 | EN 149
File Transfer Protocol RFC 765

file unavailable (e.g. file not found, no access)
451 Requested action aborted: local error in processing
551 Requested action aborted: page type unknown
452 Requested action not taken
i nsufficient storage space in system
552 Requested file action aborted:
exceeded storage allocation (for current directory or
dat aset)
553 Requested action not taken
file name not all owed
354 Start mail input; end with <CR><LF>. <CR><LF>

Nuneric Order List of Reply Codes

110 Restart marker reply.
In this case the text is exact and not left to the
particul ar inplementation; it rmust read:

MARK yyyy = nmmmm

where yyyy is User-process data stream marker, and nmmmm
server’'s equival ent marker. (note the spaces between
markers and "=".)

119 Terminal not available, will try mail box.

120 Service ready in nnn mnutes

125 Data connection already open; transfer starting

150 Fil e status okay; about to open data connection

151 User not local; WIIl forward to <user>@host >.

152 User Unknown; Mail will be forwarded by the operator.

200 Command okay

202 Command not inpl emented, superfluous at this site.

211 System status, or systemhelp reply

212 Directory status

213 File status

214 Hel p nessage
(on how to use the server or the neaning of a particul ar
non- st andard command. This reply is useful only to the
human user.)

215 <schene> is the preferred schene.

220 Service ready for new user

221 Service cl osing TELNET connection
(1 ogged out if appropriate)

225 Data connection open; no transfer in progress

226 C osing data connection
requested file action successful (for exanple, file transfer
or file abort.)

227 Entering Passive Mdde. hil,h2,h3, h4, pl, p2

38

| EN 149 June 1980
RFC 765 File Transfer Protoco

230 User | ogged in, proceed
250 Requested file action okay, conpleted.
331 User nane okay, need password
332 Need account for |ogin
350 Requested file action pending further information
354 Start mail input; end with <CR><LF>. <CR><LF>
421 Service not avail abl e, closing TELNET connecti on
This may be a reply to any comand if the service knows it
nust shut down.]
425 Can’'t open data connection
426 Connection cl osed; transfer aborted.
450 Requested file action not taken:
file unavailable (e.g. file busy)
451 Requested action aborted: local error in processing
452 Requested action not taken
i nsufficient storage space in system
500 Syntax error, conmand unrecogni zed
[This may include errors such as comand |ine too |ong.]
501 Syntax error in paranmeters or argunents
502 Command not i npl enent ed
503 Bad sequence of comands
504 Command not inplenmented for that paraneter
530 Not 1 ogged in
532 Need account for storing files
550 Requested action not taken
file unavailable (e.g. file not found, no access)
551 Requested action aborted: page type unknown
552 Requested file action aborted:
exceeded storage allocation (for current directory or
dat aset)
553 Requested action not taken
file name not all owed

39

June 1980 | EN 149
File Transfer Protocol RFC 765

DECLARATI VE SPECI FI CATI ONS

M NI MUM | MPLEMENTATI ON

In order to make FTP workabl e w t hout needl ess error nessages, the
following mnimuminplenmentation is required for all servers:

TYPE - ASCI|I Non-print
MODE - Stream
STRUCTURE - File, Record
COWANDS - USER, QUI T, PORT,
TYPE, MODE, STRU
for the default val ues
RETR, STOR,
NOOP

The default values for transfer parameters are:

TYPE - ASCI|I Non-print
MODE - Stream
STRU - File

Al Hosts must accept the above as the standard defaults.

CONNECTI ONS
The server protocol interpreter shall "listen" on Port L. The
user or user protocol interpreter shall initiate the full-duplex

TELNET connection. Server- and user- processes should follow the
conventions of the TELNET protocol as specified in the ARPA

I nternet Protocol Handbook. Servers are under no obligation to
provide for editing of comand |ines and may specify that it be
done in the user Host. The TELNET connection shall be cl osed by
the server at the user’'s request after all transfers and replies
are conpl et ed.

The user-DTP nmust "listen" on the specified data port; this may be
the default user port (U) or a port specified in the PORT command.
The server shall initiate the data connection fromhis own default

data port (L-1) using the specified user data port. The direction
of the transfer and the port used will be determ ned by the FTP
servi ce comuand

40

| EN 149 June 1980
RFC 765 File Transfer Protoco

VWen data is to be transferred between two servers, A and B (refer
to Figure 2), the user-Pl, C, sets up TELNET connections with both
server-Pl's. One of the servers, say A is then sent a PASV
command telling himto "listen" on his data port rather than
initiate a connection when he receives a transfer service conmand.
VWen the user-Pl receives an acknow edgnent to the PASV conmmand,
whi ch includes the identity of the host and port being |istened
on, the user-Pl then sends A's port, a, to Bin a PORT command; a
reply is returned. The user-Pl may then send the corresponding
service conmands to A and B. Server B initiates the connection
and the transfer proceeds. The command-reply sequence is listed
bel ow where the nessages are vertically synchronous but

hori zontal | y asynchr onous:

User-Pl - Server A User-Pl - Server B
C->A : Connect C->B : Connect
C->A : PASV

A->C : 227 Entering Passive Mde. Al, A2, A3, A4, al, a2
C->B : PORT Al, A2, A3, A4, al, a2
B->C : 200 Okay
C>A: STOR C>B : RETR
B->A : Connect to HOST-A PORT-a

The data connection shall be closed by the server under the
conditions described in the Section on Establishing Data
Connections. |If the server wi shes to close the connection after a
transfer where it is not required, he should do so imediately
after the file transfer is conpleted. He should not wait unti
after a new transfer command is received because the user-process
will have already tested the data connection to see if it needs to
do a "listen"; (recall that the user nmust "listen" on a closed
data port BEFORE sending the transfer request). To prevent a race
condition here, the server sends a reply (226) after closing the
data connection (or if the connection is left open, a "file
transfer conpleted” reply (250) and the user-Pl should wait for
one of these replies before issuing a new transfer command.

41

June 1980 | EN 149
File Transfer Protocol RFC 765

COMVANDS

The commands are TELNET character string transnmtted over the
TELNET connections as described in the Section on FTP Conmands.
The command functions and semantics are described in the Section
on Access Control Conmmands, Transfer Paraneter Commands, FTP
Servi ce Conmands, and M scel | aneous Commands. The command synt ax
is specified here.

The commands begin with a command code foll owed by an argunent
field. The command codes are four or fewer al phabetic characters.
Upper and | ower case al phabetic characters are to be treated
identically. Thus any of the follow ng may represent the retrieve
comand:

RETR Retr retr ReTr r ETr

This al so applies to any synbols representing paraneter val ues,
such as A or a for ASCII TYPE. The conmand codes and the argunent
fields are separated by one or nobre spaces.

The argurment field consists of a variable length character string
ending with the character sequence <CRLF> (Carriage Return

Li nefeed) for NVT-ASCI| representation; for other negotiated

| anguages a different end of Iine character m ght be used. It
shoul d be noted that the server is to take NO action until the end
of line code is received.

The syntax is specified belowin NVT-ASCII. Al characters in the
argunent field are ASCI| characters including any ASCl

represented decimal integers. Square brackets denote an optiona
argunent field. |If the option is not taken, the appropriate
default is inplied.

42

I EN 149
RFC 765

The f ol

USER
PASS
ACCT
REI N
QUIT
PORT
PASV
TYPE
STRU
MODE
RETR
STOR
APPE
MLFL
MAI L
VBND
MBOM
MBAM
MRSQ
MRCP
ALLO

File Transfer

owi ng are the FTP conmands:

<SP> <user nanme> <CRLF>
<SP> <passwor d> <CRLF>

<SP> <account information> <CRLF>
<CRLF>

<CRLF>

<SP> <Host - port> <CRLF>

<CRLF>

<SP> <type code> <CRLF>

<SP> <structure code> <CRLF>
<SP> <npde code> <CRLF>
<SP> <pat hnane> <CRLF>
<SP> <pat hnane> <CRLF>
<SP> <pat hnanme> <CRLF>
[<SP> <ident>] <CRLF>

[<SP> <ident>] <CRLF>

[<SP> <i dent>] <CRLF>

[<SP> <ident>] <CRLF>

[<SP> <i dent>] <CRLF>

[<SP> <schene>] <CRLF>
<SP> <i dent> <CRLF>
<SP> <deci nal integer>

[<SP> R <SP> <deci mal integer>] <CRLF>

REST
RNFR
RNTO
ABOR
DELE

<SP> <mar ker> <CRLF>
<SP> <pat hnane> <CRLF>
<SP> <pat hnanme> <CRLF>
<CRLF>

<SP> <pat hname> <CRLF>

QWD <SP> <pat hname> <CRLF>

LI ST
NLST
SI TE
STAT
HELP
NCOP

[<SP> <pat hname>] <CRLF>
[<SP> <pat hname>] <CRLF>
<SP> <string> <CRLF>

[<SP> <pat hname>] <CRLF>
[<SP> <string>] <CRLF>
<CRLF>

43

June 1980
Pr ot oco

June 1980 | EN 149
File Transfer Protocol RFC 765

The syntax of the above argument fields (using BNF notation where
applicable) is:

<usernane> ::= <string>
<password> ::= <string>
<account information> ::= <string>
<string> ::= <char> | <char><string>
<char> ::= any of the 128 ASCI| characters except <CR> and <LF>
<marker> ::= <pr string>
<pr string> ::= <pr char> | <pr char><pr string>
<pr char> ::= printable characters, any
ASCI | code 33 through 126
<byte size> ::= any decinmal integer 1 through 255
<Host - port > :: = <Host - nunber >, <Port - nunber >
<Host - nunber > :: = <nunber >, <nunber >, <nunber >, <nunber >
<Port - nunber > ::= <nunber >, <nunber >
<nunber> ::= any decimal integer O through 255
<ident> ::= <string>
<scheme> ::= R | T | ?
<formcode> ::= N| T| C
<type code> ::= A [<SP> <form code>]
| E [<SP> <form code>]
| 1
| L <SP> <byte size>
<structure code> ::=F | R| P
<node code> ::= S| B| C
<pat hnane> ::= <string>

44

| EN 149 June 1980
RFC 765 File Transfer Protoco

SEQUENCI NG OF COMVANDS AND REPLI ES

The communi cation between the user and server is intended to be an
alternating dialogue. As such, the user issues an FTP command and
the server responds with a pronpt prinmary reply. The user should
wait for this initial primary success or failure response before
sendi ng further commands.

Certain conmands require a second reply for which the user shoul d
also wait. These replies may, for exanple, report on the progress
or completion of file transfer or the closing of the data

connection. They are secondary replies to file transfer commands.

One inportant group of informational replies is the connection
greetings. Under nornmal circunstances, a server will send a 220
reply, "awaiting input", when the connection is conpleted. The
user should wait for this greeting nessage before sendi ng any
conmands. |If the server is unable to accept input right away, he
shoul d send a 120 "expected delay” reply i mediately and a 220
reply when ready. The user will then know not to hang up if there
is a del ay.

The table below lists alternative success and failure replies for
each conmand. These mnmust be strictly adhered to; a server nay
substitute text in the replies, but the neaning and action inplied
by the code nunbers and by the specific command reply sequence
cannot be al tered.

Conmand- Repl y Sequences

In this section, the command-reply sequence is presented. Each
conmand is listed with its possible replies; conmmand groups are
listed together. Prelimnary replies are listed first (with
their succeeding replies indented and under them, then
positive and negative conpletion, and finally internediary
replies with the remaining commands fromthe sequence
following. This listing fornms the basis for the state

di agrams, which will be presented separately.

Connecti on Establi shnment
120
220
220
421

45

June 1980
File Transfer Protocol

Logi n
USER
230
530
500, 501, 421
331, 332
PASS
230
202
530
500, 501, 503,
332
ACCT
230
202
530
500, 501, 503,
Logout
QIT
221
500
REI N
120
220
220
421
500, 502
Transfer paraneters
PORT
200
500, 501, 421,
PASV
227
500, 501, 502,
MODE, TYPE, STRU
200
500, 501, 504,
File action comrands
ALLO
200
202
500, 501, 504,
REST
500, 501, 502,
350

421

421

530

421,

421,

421,

421,

46

530

530

530

530

I EN 149
RFC 765

I EN 149
RFC 765

STOR
125, 150
(110)
226, 250
425, 426, 451, 551, 552
532, 450, 452, 553
500, 501, 421, 530

RETR
125, 150
(110)
226, 250
425, 426, 451
450, 550
500, 501, 421, 530
LI ST, NLST
125, 150
226, 250
425, 426, 451
450
500, 501, 502, 421, 530
APPE
125, 150
(110)
226, 250

425, 426, 451, 551, 552
532, 450, 550, 452, 553
500, 501, 502, 421, 530
M.FL
125, 150, 151, 152
226, 250
425, 426, 451, 552
532, 450, 550, 452, 553
500, 501, 502, 421, 530
RNFR
450, 550
500, 501, 502, 421, 530
350
RNTO
250
532, 553
500, 501, 502, 503, 421, 530
DELE, CWD
250
450, 550
500, 501, 502, 421, 530

47

File Transfer

June 1980
Pr ot oco

June 1980 | EN 149
File Transfer Protocol RFC 765

ABOR
225, 226
500, 501, 502, 421
MAI L, MSND
151, 152
354
250
451, 552
354
250
451, 552
450, 550, 452, 553
500, 501, 502, 421, 530
MSOM MSAM
119, 151, 152
354
250
451, 552
354
250
451, 552
450, 550, 452, 553
500, 501, 502, 421, 530
MRSQ
200, 215
500, 501, 502, 421, 530
VRCP
151, 152
200
200
450, 550, 452, 553
500, 501, 502, 503, 421
| nformati onal commands
STAT
211, 212, 213
450
500, 501, 502, 421, 530
HELP
211, 214
500, 501, 502, 421
M scel | aneous commands
SITE
200
202
500, 501, 530

48

| EN 149 June 1980
RFC 765 File Transfer Protocol

NCOP
200
500 421

49

June 1980 | EN 149
File Transfer Protocol RFC 765

STATE DI AGRAMS

Here we present state diagrans for a very sinple m nded FTP

i mpl enentation. Only the first digit of the reply codes is used.
There is one state diagram for each group of FTP comrands or comrand
sequences.

The command groupi ngs were determ ned by constructing a nodel for
each conmand then collecting together the commands with structurally
i dentical nodels.

For each command or command sequence there are three possible

out comes: success (S), failure (F), and error (E). In the state

di agranms bel ow we use the synbol B for "begin", and the synmbol Wfor
"wait for reply"

We first present the diagramthat represents the | argest group of FTP

commands:

1,3 +-- -4
----------- >| E |
| +---+

|
+-- -+ cnmd +-- -+ 2 +-- -+
- > W|--oeeeee > s |
+-- -+ +-- -+ +-- -+

Thi s di agram nodel s the conmmands:

ABCOR, ALLO DELE, OAD, HELP, MODE, MRCP, MRSQ, NOOP, PASV,
QUIT, SITE, PORT, STAT, STRU, TYPE

50

June 1980

File Transfer Protocol

I EN 149
RFC 765
The other |arge group of conmands is represented by a very simlar
di agram
3 +---+
----------- > E |
+- - -+
+---+ cnd +---+ 2 +---+
| B l---eeeeee > W-moeeees > s |
+---+ SR S +---+
| |
| | 4,5 +-- -+
I b > F
----- +-- -+

Thi s di agram nodel s

APPE, LI ST, MFL,

Note that this second node
only difference being that

group of commands, the
the 100 series replies
whil e the second group

t he commmands:

NLST, REIN, RETR, STOR

could also be used to represent the first

in the first group

are unexpected and therefore treated as error
expects (some may require) 100 series replies.

The remai ni ng di agrans nodel conmand sequences,
of these is the renane sequence:
+---+ RNFR +---+ 1,2 +---+
| Bl--moooe-- > W---ooee- > E |
+---+ +---+ e >4 - -+
| |
3 | 4,5 |
................... |
| | e
I e EER e, > S|
| | L3 | e
| 2] ------
| | |
\ | |
+---+ RNTO +---+ 4,5 ----- S+---+
I > W---eee- > F |
+---+ +---+ +---+

51

per haps the sinpl est

June 1980

File Transfer Protocol

A very simlar diagram nodels the Mi

---- 1
| |
+---+ cmd -e >4 - -+ 2
= > W[----ee-
+-- -+ +-- -+
| | |
3 | | 45 |
____________________ |
| |
| e
| | 1,3] |
| I
| | | |
\Y | | |
+---+ text +---+ 4,5 ---
I > W[----ee--
+-- -+ +-- -+

and Send commands:

S
> E |
S+-- -+

Thi s di agram nodel s the conmands:

MAI L, MSND, MSOM NMSAM
Note that the "text"

sent, recall that the | ast

peri od.

here is a series of
to the server with no response expected unti
[ine must consist only of a single

52

I EN 149
RFC 765

lines sent fromthe user

the last line is

I EN 149
RFC 765

The next diagramis a sinple node

June 1980
Pr ot ocol

File Transfer

of the Restart command:

+---+ REST +-- -+ 1,2 +-- -+
| B l----ee-- > W[--oee s > E |
+-- -+ +---+ -S>t - -+
| | |
3 | | 4,5 |
____________________ |
| | +-- -t
IR > S|
| - I IS
| 2| -eee--
| | | |
\Y || |
+---+ cmd +---+ 4,5 ----- S+-- -+
I > W[--oeee s > F |
+--- 4+ -S>t - -+ +--- 4+
| |
|1 |
VWere "cmd" is APPE, STOR RETR, or M.FL.

W note that the above three nodels are simlar
di agram and the Renane diagramare structurally identical

in fact the Mi
The

Restart differs fromthe other two only in the treatnent of 100
series replies at the second stage.

53

June 1980 | EN 149
File Transfer Protocol RFC 765

The npst conplicated diagramis for the Logi n sequence:

1

+---+ USER Fom e e e e S+4-- -+
| Bl---------- > W[2 ----> E|
+- - -+ Fom oo - - | - >t - -+

| | | 1|

311 45 |||

------------------- | | |

| |11 |

| I

e |

| 1| | | |

\Y | | | |
+---+ PASS -+ 2 | ------ >4---+
I > W-mmmmeeeeeee > s |
+---+ T >+---+

| | | | |

31 14,5 | |

______________________ |

| I I

I I I

| 1, 3| |1
\Y |2l | |

+-- -+ ACCT e ey S+-- -+
I >| W| 4,5 -------- > F |
+---+ Fom e e e e S+4-- -+

54

| EN 149 June 1980
RFC 765 File Transfer Protoco

Finally we present a generalized diagramthat could be used to npbde
the command and reply interchange:

| |
Begi n |
| \Y |
| +---+ cnd +---+ 2 +-- -+ |
-->| |------- >| |---------- >| | |
| | | W | S|----- |
-->| | -->| |----- | | |
+- - -+	+---+ 4,5	+- - -+					
		1]	3	+-- -			
	- S B SRR						
		+---t					
V
End

55

June 1980 | EN 149
File Transfer Protocol RFC 765

TYPI CAL FTP SCENARI O
User at Host U wanting to transfer files to/fromHost S:

In general the user will conmunicate to the server via a nmediating
user - FTP process. The followi ng may be a typical scenario. The
user - FTP pronpts are shown in parentheses, '---->" represents
conmands fromHost Uto Host S, and '<----' represents replies from
Host S to Host U.

LOCAL COVNMANDS BY USER ACTI ON | NVOLVED
ftp (host) nultics<CrR> Connect to Host S, port L,

est abl i shing TELNET connecti ons

<---- 220 Service ready <CRLF>
user nanme Doe <CR> USER Doe<CRLF>---->

<---- 331 User nane ok,

need passwor d<CRLF>

password rmumnbl e <CR> PASS nmunbl e<CRLF>---->

<---- 230 User |ogged in.<CRLF>

retrieve (local type) ASClI<CR>
(l ocal pathname) test 1 <CR> User - FTP opens local file in ASCI
(for.pathnane) test.pl 1<CR> RETR test. pl 1<CRLF> ---->
<---- 150 File status okay;
about to open data connection
Server nakes data connection

to port U
<CRLF>
<---- 226 Cosing data connection
file transfer successful <CRLF>
type | mage<CR> TYPE | <CRLF> ---->
<---- 200 Command OK<CRLF>

store (local type) inmge<CR>
(l ocal pathnane) file dump<CR> User-FTP opens local file in | mge.

(for.pathnanme) >udd>cn>fd<CR> STOR >udd>cn>f d<CRLF> ---->
<---- 450 Access deni ed<CRLF>
term nate QU T <CRLF> ---->

Server cl oses al
connecti ons.

56

| EN 149 June 1980
RFC 765 File Transfer Protoco

CONNECTI ON ESTABLI SHVENT
The FTP control connection is established via TCP between the user

process port U and the server process port L. This protocol is
assigned the service port 21 (25 octal), that is L=21

57

June 1980 | EN 149
File Transfer Protocol RFC 765

APPENDI X ON MAI L

The basic commands transmitting mail are the MAIL and the M.FL
commands. These conmmands cause the transmitted data to be entered
into the recipients mail box.

MAI L <SP> <reci pi ent nane> <CRLF>

I f accepted, returns 354 reply and considers all succeeding
lines to be the nmessage text, terminated by a line containing
only a period, upon which a 250 conpletion reply is returned.
Various errors are possible.

M.FL <SP> <reci pi ent nane> <CRLF>

I f accepted, acts |ike a STOR comuand, except that the data is
considered to be the nessage text. Various errors are
possi bl e.

There are two possible prelimnary replies that a server may use to
indicate that it is accepting mail for a user whose nailbox is not at
that server.

151 User not local; WIIl forward to <user>@chost >.

This reply indicates that the server knows the user’s nmil box
is on another host and will take responsibility for forwarding
the mail to that host. For exanple, at BBN (or I1SI) there are
several host which each have a list of many of the users on
several of the host. These hosts then can accept mail for any
user on their list and forward it to the correct host.

152 User Unknown; Mail will be forwarded by the operator.

This reply indicates that the host does not recognize the user

nane, but that it will accept the mail and have the operator
attenpt to deliver it. This is useful if the user nane is
m sspel l ed, but may be a disservice if the mail is really

undel i ver abl e.
Three FTP commands provi de for "sendi ng" a nessage to a |ogged-in

user’'s termnal, as well as variants for mailing it normally whet her
the user is logged in or not.

58

| EN 149 June 1980
RFC 765 File Transfer Protoco

MSND -- SeND to term nal

Returns 450 failure reply if the addressee is refusing or not
| ogged in.

M5OM -- Send to terminal O Mail box.

Returns 119 notification reply if termnal is not accessible.
MSAM -- Send to termnal And Mail box.

Returns 119 notification reply if termnal is not accessible.

Note that for MSOM and MSAM it is the mailing which determn nes
success, not the sending, although MSOM as i npl enented uses a 119
reply (in addition to the normal success/failure code) to indicate
that because the SEND failed, an attenpt is being made to mail the
nmessage instead. There are no correspondi ng variants for MFL, since
nmessages transmitted in this way are generally short.

There are two FTP commands which allow one to nail the text of a
nessage to several recipients simultaneously; such nessage

transm ssion is far nore efficient than the practice of sending the
text again and again for each additional recipient at a site.

There are two basic ways of sending a single text to severa
recipients. 1In one, all recipients are specified first, and then the
text is sent; in the other, the order is reversed and the text is
sent first, followed by the recipients. Both schenes are necessary
because neither by itself is optimal for all systenms, as will be
explained later. To select a particular scheme, the MRSQ command is
used; to specify recipients after a schene is chosen, MRCP conmands
are given; and to furnish text, the MAIL or MLFL conmands are used.

Schene Sel ection: MRSQ
MRSQ i s the means by which a user program can test for
i mpl enent ati on of MRSQ MRCP, select a particular schene, reset its

state thereof, and even do sone rudi nentary negotiation. |Its
format is like that of the TYPE command, as foll ows:

59

June 1980 | EN 149
File Transfer Protocol RFC 765

MRSQ [<SP> <scheme>] <CRLF>

<scheme> = a single character. The follow ng are defined:
R Recipients first. |If not inplenmented, T nust be.
T Text first. |If this is not inplemented, R nust be.
? Request for preference. Mist always be inpl enented.

No argunent neans a "selection" of none of the schenes (the
defaul t).

Repli es:
200 K, we’'ll use specified scheme.
215 <schene> This is the schenme | prefer.
501 | understand MRSQ but can’'t use that schene.
5xx Command unrecogni zed or uni npl enent ed.

Three aspects of MRSQ need to be pointed out here. The first is
that an MRSQ with no argument mnust always return a 200 reply and
restore the default state of having no schenme sel ected. Any other
reply inplies that MRSQ and hence MRCP are not understood or
cannot be perforned correctly.

The second is that the use of "?" as a <scheme> asks the FTP
server to return a 215 reply in which the server specifies a
"preferred" scheme. The format of this reply is sinple:

215 <SP> <scheme> [<SP> <arbitrary text>] <CRLF>

Any other reply (e.g. 4xx or 5xx) inplies that MRSQ and MRCP
are not inplemented, because "?" nust always be inplemented if
MRSQ i s.

The third inportant thing about MRSQis that it always has the
side effect of resetting all schenmes to their initial state. This
reset must be done no matter what the reply will be - 200, 215, or
501. The actions necessary for a reset will be expl ai ned when

di scussi ng how each schene actual |y works.

Message Text Specification: MAI L/ MFL

Regardl ess of which scheme (if any) has been selected, a MAIL or
MLFL with a non-null argument wll behave exactly as before; the
MRSQ MRCP commands have no effect on them However, such norna
MAI L/ MLFL commands do have the sane side effect as MRSQ they
"reset" the current scheme to its initial state.

60

| EN 149 June 1980
RFC 765 File Transfer Protoco

It is only when the argunent is null (e.g. MAIL<CRLF> or
MLFL<CRLF>) that the particular schene being used is inportant,
because rather than producing an error (as nost servers currently
do), the server will accept nessage text for this "null"
specification; what it does with it depends on which schenme is in
effect, and will be described in "Scheme Mechanics".

Reci pi ent specification: MRCP

In order to specify recipient nanes (i.e., idents) and receive
some acknow edgment (or refusal) for each name, the follow ng
command i s used:

MRCP <SP> <i dent> <CRLF>

Reply for no schene:

503 No schene specified yet; use MRSQ
Replies for scheme T are identical to those for MAIL/MFL.
Replies for scheme R (recipients first):

200 OK, nane stored.

452 Recipient table full, this nanme not stored.

553 Reci pi ent name rejected.

4xx Tenporary error, try this nane again later.

5xx Permanent error, report to sender

Note that use of this command is an error if no scheme has been
sel ected yet; an MRSQ <schene> nust have been given if MRCP is to
be used.

Schene nechanics: MRSQ R (Reci pients first)

In the recipients-first scheme, MRCP is used to specify names
which the FTP server stores in a list or table. Normally the
reply for each MRCP will be either a 200 for acceptance, or a

4xx/ 5xx code for rejection; all 5xx codes are permanent rejections
(e.g. user not known) which should be reported to the hunman
sender, whereas 4xx codes in general connote some tenporary error
that may be rectified later. None of the 4xx/5xx replies inpinge
on previous or succeedi ng MRCP conmands, except for 452 which

i ndicates that no further MRCP's will succeed unless a nessage is
sent to the already stored recipients or a reset is done.

Sendi ng message text to stored recipients is done by giving a MAIL
or MLFL command with no argunent; that is, just MAIL<CRLF> or
MLFL<CRLF>. Transm ssion of the nmessage text is exactly the sane
as for normal MAIL/MFL; however, a positive acknow edgnent at the

61

June 1980 | EN 149
File Transfer Protocol RFC 765

end of transm ssion neans that the nessage has been sent to ALL
reci pients that were renenbered with MRCP, and a failure code
nmeans that it shoul d be considered to have failed for ALL of these
specified recipients. This applies regardl ess of the actual error
code; and whether the reply signifies success or failure, al
stored recipient nanes are flushed and forgotten - in other words,
things are reset to their initial state. This purging of the

reci pient name list nust also be done as the "reset" side effect
of any use of MRSQ

A 452 reply to an MRCP can thus be handl ed by using a MAIL/MFL to
specify the nmessage for currently stored recipients, and then
sendi ng nmore MRCP's and anot her MAIL/MFL, as many tines as
necessary; for exanple, if a server only had roomfor 10 nanes
this would result in a 50-recipient nmessage being sent 5 tines, to
10 different recipients each tine.

If a user attenpts to specify message text (MAIL/MFL with no
argunent) before any successful MRCP's have been given, this
shoul d be treated exactly as a "nornal" MAIL/MLFL with a nul
reci pient would be; sonme servers will return an error of sone
type, such as "550 Null recipient".

See Exanple 1 for an exanple using MRSQ R
Schene nechanics: MRSQ T (Text first)

In the text-first scheme, MAIL/M.FL with no argunent is used to
speci fy message text, which the server stores away. Succeeding
MRCP's are then treated as if they were MAIL/M.FL conmands, except
that none of the text transfer manipul ati ons are done; the stored
nessage text is sent to the specified recipient, and a reply code
is returned identical to that which an actual MAIL/M.FL woul d

i nvoke. (Note ANY 2xx code indi cates success.)

The stored nessage text is not forgotten until the next MAI L/ MFL
or MRSQ, which will either replace it with new text or flush it
entirely. Any use of MRSQwi Il reset this schene by flushing
stored text, as will any use of MAIL/M.FL with a non-nul

ar gument .

If an MRCP is seen before any message text has been stored, the
user in effect is trying to send a null message; sone servers
mght allow this, others would return an error code.

See Exanple 2 for an exanple using MRSQ T.

62

I EN 149
RFC 765

June 1980
File Transfer Protocol

Wy two schemes anyway?

Because neither by itself is optimal for all systens. MRSQ R
allows nore of a "bulk" mailing, because everything is saved up
and then mail ed simultaneously; this is very useful for systemns
such as I TS where the FTP server does not itself wite mail
directly, but hands it on to a central mmiler denon of great
power; the nore information (e.g. recipients) associated with a
single "hand-off", the nore efficiently nail can be delivered.

By contrast, MRSQ T is geared to FTP servers which want to deliver
mail directly, in one-by-one increnmental fashion. This way they
can return an individual success/failure reply code for each

reci pient given which may depend on variable file systemfactors
such as exceeding disk allocation, nailbox access conflicts, and
so forth; if they tried to enulate MRSQ R s bulk mailing, they
woul d have to ensure that a success reply to the MAIL/MFL indeed
meant that it had been delivered to ALL recipients specified - not
j ust sone.

Not es:

*

Because these comrands are not required in the ninimm

i mpl enentati on of FTP, one must be prepared to deal with sites
whi ch don’t recognize either MRSQ or MRCP. "MRSQ' and "MRSQ ?"
are explicitly designed as tests to see whether either schene is
i mpl enented; MRCP is not, and a failure return of the

“uni npl emented" variety could be confused with "No schene

sel ected yet", or even with "Recipient unknown". Be safe, be
sure, use MRSQ

There is no way to indicate in a positive response to "MRSQ ?"
that the preferred "schene" for a server is that of the default
state; i.e. none of the nulti-recipient schemes. The rationale
is that in this case, it would be pointless to inplenent

MRSQ MRCP at all, and the response woul d therefore be negative.

One reason that the use of MAIL/M.FL is restricted to nul
argunents with this nulti-recipient extension is the anbiguity
that would result if a non-null argunent were allowed; for
exanple, if MRSQ R was in effect and sone MRCP's had been given,
and a MAIL FOO<CRLF> was done, there would be no way to

di stinguish a failure reply for mail box "FOO'" from a gl oba
failure for all recipients specified. A simlar situation
exists for MRSQ T; it would not be clear whether the text was
stored and the mail box failed, or vice versa, or both.

63

June 1980 | EN 149
File Transfer Protocol RFC 765

* "Resets" are done by all MRSQ s and "normal”™ MAIL/MFL'S to
avoi d confusion and overly conplicated inplenmentation. The MRSQ
conmand i nplies a change or uncertainty of status, and the
| atter commands woul d ot herwi se have to use sone i ndependent
nmechani sns to avoid cl obbering the data bases (e.g., nessage
text storage area) used by the T/R schenes. However, once a
schene is selected, it remains "in effect” just as a "TYPE A"
remai ns sel ected. The recommended way for doing a reset,
wi t hout changing the current selection, is with "MRSQ ?".
Renmenber that "MRSQ' al one reverts to the no-schene state.

* |t is permssible to intersperse other FTP commands anong t he
MRSQ MRCP/ MAI L sequences.

64

| EN 149 June 1980
RFC 765 File Transfer Protoco

Example 1
Exampl e of MRSQ R (Reci pients first)

This is an exanple of how MRSQ R is used; first the user nust
establish that the server in fact inplements MRSQ

U MRSQ
S: 200 OK, no schene sel ected.

An MRSQ with a null argunent always returns a 200 if inpl enented,

sel ecting the "schene" of null, i.e. none of them |If MRSQ were
not inplenmented, a code of 4xx or 5xx woul d be returned.

U MSQ R
S: 200 OK, using that schene

All"s well; now the recipients can be specified.

MRCP Foo
200 X

MRCP Raboof
553 Who’'s that? No such user here.

MRCP bar
200 &K

wc o uca

Well, two out of three ain't bad. Note that the denise of
"Raboof" has no effect on the storage of "Foo" or "bar". Nowto
furni sh the message text, by giving a MAIL or MLFL with no
argument :

MAI L
354 Type mail, ended by <CRLF>. <CRLF>
Bl ah bl ah blah blah....etc etc etc

wccocuno

é50 Mai | sent.

The text has now been sent to both "Foo" and "bar".

65

June 1980 | EN 149
File Transfer Protocol RFC 765

Exampl e 2
Exampl e of MRSQ T (Text first)
Usi ng the same nessage as the previous exanple:

U MRSQ ?
S: 215 T Text first, please.

MRSQ i s indeed inplenented, and the server says that it prefers
"T", but that needn’'t stop the user fromtrying sonething el se:

U MSQ R
S: 501 Sorry, | really can't do that.

It's possible that it could have understood "R' also, but in
general it’'s best to use the "preferred" schenme, since the server
knows which is nost efficient for its particular site. Anyway:

U MSQT
S: 200 OK, using that schene.

Schene "T" is now sel ected, and the text nust be sent:
MAI L

354 Type mail, ended by <CRLF>. <CRLF>
Bl ah bl ah blah blah....etc etc etc

wccuna

250 Mai | stored.
Now reci pi ents can be specified:

MRCP Foo
250 Stored mail sent.

MRCP Raboof
553 Who’'s that? No such user here.

MRCP bar
250 Stored mail sent.

wc o uc

66

| EN 149 June 1980
RFC 765 File Transfer Protoco

Agai n, the text has now been sent to both "Foo" and "bar", and

still remains stored. A new nessage can be sent w th another
MAI L/ MRCP. .. sequence, but the fastidious or paranoid could chose
to do:

U MRSQ ?

S: 215 T Text first, please.

Wi ch resets things without altering the schene in effect.

67

June 1980 | EN 149
File Transfer Protocol RFC 765

APPENDI X ON PAGE STRUCTURE

The need for FTP to support page structure derives principally from
the need to support efficient transm ssion of files between TOPS20
systens, particularly the files used by NLS.

The file system of TOPS20 is based on the concept of pages. The
system |l evel is nost efficient at manipulating files as pages.
System | evel programs provide an interface to the file system so that
many applications view files as sequential streans of characters.
However, a few applications use the underlying page structures
directly, and some of these create holey files.

A TOPS20 file is just a bunch of words pointed to by a page table.
If those words contain CRLF's, fine -- but that doesn't nean "record"
to TOPS20.

A TOPS20 disk file consists of four things: a pathname, a page table,
a (possibly empty) set of pages, and a set of attributes.

The pathnane is specified in the RETR or STOR conmand. It includes
the directory nane, file name, file nane extension, and version
nunber .

The page table contains up to 2**18 entries. Each entry may be
EMPTY, or nmay point to a page. |If it is not enpty, there are also
sone page-specific access bits; not all pages of a file need have the
sane access protection.

A page is a contiguous set of 512 words of 36 bits each

The attributes of the file, in the File Descriptor Block (FDB),
contain such things as creation tinme, wite tine, read tine, witer’'s
byte-size, end of file pointer, count of reads and wites, backup
system tape nunbers, etc.

Note that there is NO requirenent that pages in the page table be
contiguous. There may be enpty page table slots between occupied
ones. Also, the end of file pointer is sinply a nunber. There is no
requirenent that it in fact point at the "last" datumin the file.
Ordinary sequential I/Ocalls in TOPS20 will cause the end of file
pointer to be left after the | ast datumwitten, but other operations
may cause it not to be so, if a particular programm ng system so
requires.

68

I EN 149
RFC 765

June 1980
File Transfer Protocol

In fact both of these special cases, "holey" files and
end-of-file pointers not at the end of the file, occur with NLS data

files.

The TOPS20 paged files can be sent with the FTP transfer paraneters:

TYPE L 36,

STRU P, and MODE S (in fact any node coul d be used).

Each page of infornmation has a header. Each header field, which is a
| ogi cal byte, is a TOPS20 word, since the TYPE is L 36.

The header fields are:

Word O:

Header Lengt h.

The header length is 5.

Word 1:

Page | ndex.

If the data is a disk file page, this is the nunber of that
page in the file' s page map. Enpty pages (holes) in the file
are sinmply not sent. Note that a hole is NOT the sane as a
page of zeros.

Word 2:

The

Dat a Lengt h.

nunber of data words in this page, follow ng the header

Thus the total length of the transmission unit is the Header
Length plus the Data Length.

Word 3:

Page Type.

A code for what type of chunk this is. A data page is type 3,

t he

Word 4:

The

map.

t he

After the
currently

FDB page is type 2.

Page Access Control

access bits associated with the page in the file’ s page
(This full word quantity is put into AC2 of an SPACS by

program reading fromnet to disk.)

header are Data Length data words. Data Length is
either 512 for a data page or 21 for an FDB. Trailing

zeros in a disk file page may be di scarded, making Data Length | ess
than 512 in that case

69

June 1980 | EN 149
File Transfer Protocol RFC 765

Data transfers are inplemented |ike the | ayers of an onion: sone
characters are packaged into a line. Sonme |lines are packaged into a
file. The file is broken into other nanageable units for

transm ssion. Those units have conpression applied to them The
units may be flagged by restart markers. On the other end, the
process i s reversed.

70

